1 // SPDX-License-Identifier: GPL-2.0
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
7 * Implementation of the Transmission Control Protocol(TCP).
10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11 * Mark Evans, <evansmp@uhura.aston.ac.uk>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Florian La Roche, <flla@stud.uni-sb.de>
14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15 * Linus Torvalds, <torvalds@cs.helsinki.fi>
16 * Alan Cox, <gw4pts@gw4pts.ampr.org>
17 * Matthew Dillon, <dillon@apollo.west.oic.com>
18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19 * Jorge Cwik, <jorge@laser.satlink.net>
24 * Pedro Roque : Fast Retransmit/Recovery.
26 * Retransmit queue handled by TCP.
27 * Better retransmit timer handling.
28 * New congestion avoidance.
32 * Eric : Fast Retransmit.
33 * Randy Scott : MSS option defines.
34 * Eric Schenk : Fixes to slow start algorithm.
35 * Eric Schenk : Yet another double ACK bug.
36 * Eric Schenk : Delayed ACK bug fixes.
37 * Eric Schenk : Floyd style fast retrans war avoidance.
38 * David S. Miller : Don't allow zero congestion window.
39 * Eric Schenk : Fix retransmitter so that it sends
40 * next packet on ack of previous packet.
41 * Andi Kleen : Moved open_request checking here
42 * and process RSTs for open_requests.
43 * Andi Kleen : Better prune_queue, and other fixes.
44 * Andrey Savochkin: Fix RTT measurements in the presence of
46 * Andrey Savochkin: Check sequence numbers correctly when
47 * removing SACKs due to in sequence incoming
49 * Andi Kleen: Make sure we never ack data there is not
50 * enough room for. Also make this condition
51 * a fatal error if it might still happen.
52 * Andi Kleen: Add tcp_measure_rcv_mss to make
53 * connections with MSS<min(MTU,ann. MSS)
54 * work without delayed acks.
55 * Andi Kleen: Process packets with PSH set in the
57 * J Hadi Salim: ECN support
60 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
61 * engine. Lots of bugs are found.
62 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
65 #define pr_fmt(fmt) "TCP: " fmt
68 #include <linux/slab.h>
69 #include <linux/module.h>
70 #include <linux/sysctl.h>
71 #include <linux/kernel.h>
72 #include <linux/prefetch.h>
75 #include <net/inet_common.h>
76 #include <linux/ipsec.h>
77 #include <asm/unaligned.h>
78 #include <linux/errqueue.h>
79 #include <trace/events/tcp.h>
80 #include <linux/static_key.h>
82 int sysctl_tcp_max_orphans __read_mostly
= NR_FILE
;
84 #define FLAG_DATA 0x01 /* Incoming frame contained data. */
85 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
86 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
87 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
88 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
89 #define FLAG_DATA_SACKED 0x20 /* New SACK. */
90 #define FLAG_ECE 0x40 /* ECE in this ACK */
91 #define FLAG_LOST_RETRANS 0x80 /* This ACK marks some retransmission lost */
92 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
93 #define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */
94 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
95 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
96 #define FLAG_SET_XMIT_TIMER 0x1000 /* Set TLP or RTO timer */
97 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
98 #define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */
99 #define FLAG_NO_CHALLENGE_ACK 0x8000 /* do not call tcp_send_challenge_ack() */
100 #define FLAG_ACK_MAYBE_DELAYED 0x10000 /* Likely a delayed ACK */
102 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
103 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
104 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE|FLAG_DSACKING_ACK)
105 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
107 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
108 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
110 #define REXMIT_NONE 0 /* no loss recovery to do */
111 #define REXMIT_LOST 1 /* retransmit packets marked lost */
112 #define REXMIT_NEW 2 /* FRTO-style transmit of unsent/new packets */
114 static void tcp_gro_dev_warn(struct sock
*sk
, const struct sk_buff
*skb
,
117 static bool __once __read_mostly
;
120 struct net_device
*dev
;
125 dev
= dev_get_by_index_rcu(sock_net(sk
), skb
->skb_iif
);
126 if (!dev
|| len
>= dev
->mtu
)
127 pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n",
128 dev
? dev
->name
: "Unknown driver");
133 /* Adapt the MSS value used to make delayed ack decision to the
136 static void tcp_measure_rcv_mss(struct sock
*sk
, const struct sk_buff
*skb
)
138 struct inet_connection_sock
*icsk
= inet_csk(sk
);
139 const unsigned int lss
= icsk
->icsk_ack
.last_seg_size
;
142 icsk
->icsk_ack
.last_seg_size
= 0;
144 /* skb->len may jitter because of SACKs, even if peer
145 * sends good full-sized frames.
147 len
= skb_shinfo(skb
)->gso_size
? : skb
->len
;
148 if (len
>= icsk
->icsk_ack
.rcv_mss
) {
149 icsk
->icsk_ack
.rcv_mss
= min_t(unsigned int, len
,
151 /* Account for possibly-removed options */
152 if (unlikely(len
> icsk
->icsk_ack
.rcv_mss
+
153 MAX_TCP_OPTION_SPACE
))
154 tcp_gro_dev_warn(sk
, skb
, len
);
156 /* Otherwise, we make more careful check taking into account,
157 * that SACKs block is variable.
159 * "len" is invariant segment length, including TCP header.
161 len
+= skb
->data
- skb_transport_header(skb
);
162 if (len
>= TCP_MSS_DEFAULT
+ sizeof(struct tcphdr
) ||
163 /* If PSH is not set, packet should be
164 * full sized, provided peer TCP is not badly broken.
165 * This observation (if it is correct 8)) allows
166 * to handle super-low mtu links fairly.
168 (len
>= TCP_MIN_MSS
+ sizeof(struct tcphdr
) &&
169 !(tcp_flag_word(tcp_hdr(skb
)) & TCP_REMNANT
))) {
170 /* Subtract also invariant (if peer is RFC compliant),
171 * tcp header plus fixed timestamp option length.
172 * Resulting "len" is MSS free of SACK jitter.
174 len
-= tcp_sk(sk
)->tcp_header_len
;
175 icsk
->icsk_ack
.last_seg_size
= len
;
177 icsk
->icsk_ack
.rcv_mss
= len
;
181 if (icsk
->icsk_ack
.pending
& ICSK_ACK_PUSHED
)
182 icsk
->icsk_ack
.pending
|= ICSK_ACK_PUSHED2
;
183 icsk
->icsk_ack
.pending
|= ICSK_ACK_PUSHED
;
187 static void tcp_incr_quickack(struct sock
*sk
)
189 struct inet_connection_sock
*icsk
= inet_csk(sk
);
190 unsigned int quickacks
= tcp_sk(sk
)->rcv_wnd
/ (2 * icsk
->icsk_ack
.rcv_mss
);
194 if (quickacks
> icsk
->icsk_ack
.quick
)
195 icsk
->icsk_ack
.quick
= min(quickacks
, TCP_MAX_QUICKACKS
);
198 static void tcp_enter_quickack_mode(struct sock
*sk
)
200 struct inet_connection_sock
*icsk
= inet_csk(sk
);
201 tcp_incr_quickack(sk
);
202 icsk
->icsk_ack
.pingpong
= 0;
203 icsk
->icsk_ack
.ato
= TCP_ATO_MIN
;
206 /* Send ACKs quickly, if "quick" count is not exhausted
207 * and the session is not interactive.
210 static bool tcp_in_quickack_mode(struct sock
*sk
)
212 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
213 const struct dst_entry
*dst
= __sk_dst_get(sk
);
215 return (dst
&& dst_metric(dst
, RTAX_QUICKACK
)) ||
216 (icsk
->icsk_ack
.quick
&& !icsk
->icsk_ack
.pingpong
);
219 static void tcp_ecn_queue_cwr(struct tcp_sock
*tp
)
221 if (tp
->ecn_flags
& TCP_ECN_OK
)
222 tp
->ecn_flags
|= TCP_ECN_QUEUE_CWR
;
225 static void tcp_ecn_accept_cwr(struct tcp_sock
*tp
, const struct sk_buff
*skb
)
227 if (tcp_hdr(skb
)->cwr
)
228 tp
->ecn_flags
&= ~TCP_ECN_DEMAND_CWR
;
231 static void tcp_ecn_withdraw_cwr(struct tcp_sock
*tp
)
233 tp
->ecn_flags
&= ~TCP_ECN_DEMAND_CWR
;
236 static void __tcp_ecn_check_ce(struct tcp_sock
*tp
, const struct sk_buff
*skb
)
238 switch (TCP_SKB_CB(skb
)->ip_dsfield
& INET_ECN_MASK
) {
239 case INET_ECN_NOT_ECT
:
240 /* Funny extension: if ECT is not set on a segment,
241 * and we already seen ECT on a previous segment,
242 * it is probably a retransmit.
244 if (tp
->ecn_flags
& TCP_ECN_SEEN
)
245 tcp_enter_quickack_mode((struct sock
*)tp
);
248 if (tcp_ca_needs_ecn((struct sock
*)tp
))
249 tcp_ca_event((struct sock
*)tp
, CA_EVENT_ECN_IS_CE
);
251 if (!(tp
->ecn_flags
& TCP_ECN_DEMAND_CWR
)) {
252 /* Better not delay acks, sender can have a very low cwnd */
253 tcp_enter_quickack_mode((struct sock
*)tp
);
254 tp
->ecn_flags
|= TCP_ECN_DEMAND_CWR
;
256 tp
->ecn_flags
|= TCP_ECN_SEEN
;
259 if (tcp_ca_needs_ecn((struct sock
*)tp
))
260 tcp_ca_event((struct sock
*)tp
, CA_EVENT_ECN_NO_CE
);
261 tp
->ecn_flags
|= TCP_ECN_SEEN
;
266 static void tcp_ecn_check_ce(struct tcp_sock
*tp
, const struct sk_buff
*skb
)
268 if (tp
->ecn_flags
& TCP_ECN_OK
)
269 __tcp_ecn_check_ce(tp
, skb
);
272 static void tcp_ecn_rcv_synack(struct tcp_sock
*tp
, const struct tcphdr
*th
)
274 if ((tp
->ecn_flags
& TCP_ECN_OK
) && (!th
->ece
|| th
->cwr
))
275 tp
->ecn_flags
&= ~TCP_ECN_OK
;
278 static void tcp_ecn_rcv_syn(struct tcp_sock
*tp
, const struct tcphdr
*th
)
280 if ((tp
->ecn_flags
& TCP_ECN_OK
) && (!th
->ece
|| !th
->cwr
))
281 tp
->ecn_flags
&= ~TCP_ECN_OK
;
284 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock
*tp
, const struct tcphdr
*th
)
286 if (th
->ece
&& !th
->syn
&& (tp
->ecn_flags
& TCP_ECN_OK
))
291 /* Buffer size and advertised window tuning.
293 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
296 static void tcp_sndbuf_expand(struct sock
*sk
)
298 const struct tcp_sock
*tp
= tcp_sk(sk
);
299 const struct tcp_congestion_ops
*ca_ops
= inet_csk(sk
)->icsk_ca_ops
;
303 /* Worst case is non GSO/TSO : each frame consumes one skb
304 * and skb->head is kmalloced using power of two area of memory
306 per_mss
= max_t(u32
, tp
->rx_opt
.mss_clamp
, tp
->mss_cache
) +
308 SKB_DATA_ALIGN(sizeof(struct skb_shared_info
));
310 per_mss
= roundup_pow_of_two(per_mss
) +
311 SKB_DATA_ALIGN(sizeof(struct sk_buff
));
313 nr_segs
= max_t(u32
, TCP_INIT_CWND
, tp
->snd_cwnd
);
314 nr_segs
= max_t(u32
, nr_segs
, tp
->reordering
+ 1);
316 /* Fast Recovery (RFC 5681 3.2) :
317 * Cubic needs 1.7 factor, rounded to 2 to include
318 * extra cushion (application might react slowly to EPOLLOUT)
320 sndmem
= ca_ops
->sndbuf_expand
? ca_ops
->sndbuf_expand(sk
) : 2;
321 sndmem
*= nr_segs
* per_mss
;
323 if (sk
->sk_sndbuf
< sndmem
)
324 sk
->sk_sndbuf
= min(sndmem
, sock_net(sk
)->ipv4
.sysctl_tcp_wmem
[2]);
327 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
329 * All tcp_full_space() is split to two parts: "network" buffer, allocated
330 * forward and advertised in receiver window (tp->rcv_wnd) and
331 * "application buffer", required to isolate scheduling/application
332 * latencies from network.
333 * window_clamp is maximal advertised window. It can be less than
334 * tcp_full_space(), in this case tcp_full_space() - window_clamp
335 * is reserved for "application" buffer. The less window_clamp is
336 * the smoother our behaviour from viewpoint of network, but the lower
337 * throughput and the higher sensitivity of the connection to losses. 8)
339 * rcv_ssthresh is more strict window_clamp used at "slow start"
340 * phase to predict further behaviour of this connection.
341 * It is used for two goals:
342 * - to enforce header prediction at sender, even when application
343 * requires some significant "application buffer". It is check #1.
344 * - to prevent pruning of receive queue because of misprediction
345 * of receiver window. Check #2.
347 * The scheme does not work when sender sends good segments opening
348 * window and then starts to feed us spaghetti. But it should work
349 * in common situations. Otherwise, we have to rely on queue collapsing.
352 /* Slow part of check#2. */
353 static int __tcp_grow_window(const struct sock
*sk
, const struct sk_buff
*skb
)
355 struct tcp_sock
*tp
= tcp_sk(sk
);
357 int truesize
= tcp_win_from_space(sk
, skb
->truesize
) >> 1;
358 int window
= tcp_win_from_space(sk
, sock_net(sk
)->ipv4
.sysctl_tcp_rmem
[2]) >> 1;
360 while (tp
->rcv_ssthresh
<= window
) {
361 if (truesize
<= skb
->len
)
362 return 2 * inet_csk(sk
)->icsk_ack
.rcv_mss
;
370 static void tcp_grow_window(struct sock
*sk
, const struct sk_buff
*skb
)
372 struct tcp_sock
*tp
= tcp_sk(sk
);
375 if (tp
->rcv_ssthresh
< tp
->window_clamp
&&
376 (int)tp
->rcv_ssthresh
< tcp_space(sk
) &&
377 !tcp_under_memory_pressure(sk
)) {
380 /* Check #2. Increase window, if skb with such overhead
381 * will fit to rcvbuf in future.
383 if (tcp_win_from_space(sk
, skb
->truesize
) <= skb
->len
)
384 incr
= 2 * tp
->advmss
;
386 incr
= __tcp_grow_window(sk
, skb
);
389 incr
= max_t(int, incr
, 2 * skb
->len
);
390 tp
->rcv_ssthresh
= min(tp
->rcv_ssthresh
+ incr
,
392 inet_csk(sk
)->icsk_ack
.quick
|= 1;
397 /* 3. Tuning rcvbuf, when connection enters established state. */
398 static void tcp_fixup_rcvbuf(struct sock
*sk
)
400 u32 mss
= tcp_sk(sk
)->advmss
;
403 rcvmem
= 2 * SKB_TRUESIZE(mss
+ MAX_TCP_HEADER
) *
404 tcp_default_init_rwnd(mss
);
406 /* Dynamic Right Sizing (DRS) has 2 to 3 RTT latency
407 * Allow enough cushion so that sender is not limited by our window
409 if (sock_net(sk
)->ipv4
.sysctl_tcp_moderate_rcvbuf
)
412 if (sk
->sk_rcvbuf
< rcvmem
)
413 sk
->sk_rcvbuf
= min(rcvmem
, sock_net(sk
)->ipv4
.sysctl_tcp_rmem
[2]);
416 /* 4. Try to fixup all. It is made immediately after connection enters
419 void tcp_init_buffer_space(struct sock
*sk
)
421 int tcp_app_win
= sock_net(sk
)->ipv4
.sysctl_tcp_app_win
;
422 struct tcp_sock
*tp
= tcp_sk(sk
);
425 if (!(sk
->sk_userlocks
& SOCK_RCVBUF_LOCK
))
426 tcp_fixup_rcvbuf(sk
);
427 if (!(sk
->sk_userlocks
& SOCK_SNDBUF_LOCK
))
428 tcp_sndbuf_expand(sk
);
430 tp
->rcvq_space
.space
= tp
->rcv_wnd
;
431 tcp_mstamp_refresh(tp
);
432 tp
->rcvq_space
.time
= tp
->tcp_mstamp
;
433 tp
->rcvq_space
.seq
= tp
->copied_seq
;
435 maxwin
= tcp_full_space(sk
);
437 if (tp
->window_clamp
>= maxwin
) {
438 tp
->window_clamp
= maxwin
;
440 if (tcp_app_win
&& maxwin
> 4 * tp
->advmss
)
441 tp
->window_clamp
= max(maxwin
-
442 (maxwin
>> tcp_app_win
),
446 /* Force reservation of one segment. */
448 tp
->window_clamp
> 2 * tp
->advmss
&&
449 tp
->window_clamp
+ tp
->advmss
> maxwin
)
450 tp
->window_clamp
= max(2 * tp
->advmss
, maxwin
- tp
->advmss
);
452 tp
->rcv_ssthresh
= min(tp
->rcv_ssthresh
, tp
->window_clamp
);
453 tp
->snd_cwnd_stamp
= tcp_jiffies32
;
456 /* 5. Recalculate window clamp after socket hit its memory bounds. */
457 static void tcp_clamp_window(struct sock
*sk
)
459 struct tcp_sock
*tp
= tcp_sk(sk
);
460 struct inet_connection_sock
*icsk
= inet_csk(sk
);
461 struct net
*net
= sock_net(sk
);
463 icsk
->icsk_ack
.quick
= 0;
465 if (sk
->sk_rcvbuf
< net
->ipv4
.sysctl_tcp_rmem
[2] &&
466 !(sk
->sk_userlocks
& SOCK_RCVBUF_LOCK
) &&
467 !tcp_under_memory_pressure(sk
) &&
468 sk_memory_allocated(sk
) < sk_prot_mem_limits(sk
, 0)) {
469 sk
->sk_rcvbuf
= min(atomic_read(&sk
->sk_rmem_alloc
),
470 net
->ipv4
.sysctl_tcp_rmem
[2]);
472 if (atomic_read(&sk
->sk_rmem_alloc
) > sk
->sk_rcvbuf
)
473 tp
->rcv_ssthresh
= min(tp
->window_clamp
, 2U * tp
->advmss
);
476 /* Initialize RCV_MSS value.
477 * RCV_MSS is an our guess about MSS used by the peer.
478 * We haven't any direct information about the MSS.
479 * It's better to underestimate the RCV_MSS rather than overestimate.
480 * Overestimations make us ACKing less frequently than needed.
481 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
483 void tcp_initialize_rcv_mss(struct sock
*sk
)
485 const struct tcp_sock
*tp
= tcp_sk(sk
);
486 unsigned int hint
= min_t(unsigned int, tp
->advmss
, tp
->mss_cache
);
488 hint
= min(hint
, tp
->rcv_wnd
/ 2);
489 hint
= min(hint
, TCP_MSS_DEFAULT
);
490 hint
= max(hint
, TCP_MIN_MSS
);
492 inet_csk(sk
)->icsk_ack
.rcv_mss
= hint
;
494 EXPORT_SYMBOL(tcp_initialize_rcv_mss
);
496 /* Receiver "autotuning" code.
498 * The algorithm for RTT estimation w/o timestamps is based on
499 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
500 * <http://public.lanl.gov/radiant/pubs.html#DRS>
502 * More detail on this code can be found at
503 * <http://staff.psc.edu/jheffner/>,
504 * though this reference is out of date. A new paper
507 static void tcp_rcv_rtt_update(struct tcp_sock
*tp
, u32 sample
, int win_dep
)
509 u32 new_sample
= tp
->rcv_rtt_est
.rtt_us
;
512 if (new_sample
!= 0) {
513 /* If we sample in larger samples in the non-timestamp
514 * case, we could grossly overestimate the RTT especially
515 * with chatty applications or bulk transfer apps which
516 * are stalled on filesystem I/O.
518 * Also, since we are only going for a minimum in the
519 * non-timestamp case, we do not smooth things out
520 * else with timestamps disabled convergence takes too
524 m
-= (new_sample
>> 3);
532 /* No previous measure. */
536 tp
->rcv_rtt_est
.rtt_us
= new_sample
;
539 static inline void tcp_rcv_rtt_measure(struct tcp_sock
*tp
)
543 if (tp
->rcv_rtt_est
.time
== 0)
545 if (before(tp
->rcv_nxt
, tp
->rcv_rtt_est
.seq
))
547 delta_us
= tcp_stamp_us_delta(tp
->tcp_mstamp
, tp
->rcv_rtt_est
.time
);
550 tcp_rcv_rtt_update(tp
, delta_us
, 1);
553 tp
->rcv_rtt_est
.seq
= tp
->rcv_nxt
+ tp
->rcv_wnd
;
554 tp
->rcv_rtt_est
.time
= tp
->tcp_mstamp
;
557 static inline void tcp_rcv_rtt_measure_ts(struct sock
*sk
,
558 const struct sk_buff
*skb
)
560 struct tcp_sock
*tp
= tcp_sk(sk
);
562 if (tp
->rx_opt
.rcv_tsecr
&&
563 (TCP_SKB_CB(skb
)->end_seq
-
564 TCP_SKB_CB(skb
)->seq
>= inet_csk(sk
)->icsk_ack
.rcv_mss
)) {
565 u32 delta
= tcp_time_stamp(tp
) - tp
->rx_opt
.rcv_tsecr
;
570 delta_us
= delta
* (USEC_PER_SEC
/ TCP_TS_HZ
);
571 tcp_rcv_rtt_update(tp
, delta_us
, 0);
576 * This function should be called every time data is copied to user space.
577 * It calculates the appropriate TCP receive buffer space.
579 void tcp_rcv_space_adjust(struct sock
*sk
)
581 struct tcp_sock
*tp
= tcp_sk(sk
);
585 tcp_mstamp_refresh(tp
);
586 time
= tcp_stamp_us_delta(tp
->tcp_mstamp
, tp
->rcvq_space
.time
);
587 if (time
< (tp
->rcv_rtt_est
.rtt_us
>> 3) || tp
->rcv_rtt_est
.rtt_us
== 0)
590 /* Number of bytes copied to user in last RTT */
591 copied
= tp
->copied_seq
- tp
->rcvq_space
.seq
;
592 if (copied
<= tp
->rcvq_space
.space
)
596 * copied = bytes received in previous RTT, our base window
597 * To cope with packet losses, we need a 2x factor
598 * To cope with slow start, and sender growing its cwin by 100 %
599 * every RTT, we need a 4x factor, because the ACK we are sending
600 * now is for the next RTT, not the current one :
601 * <prev RTT . ><current RTT .. ><next RTT .... >
604 if (sock_net(sk
)->ipv4
.sysctl_tcp_moderate_rcvbuf
&&
605 !(sk
->sk_userlocks
& SOCK_RCVBUF_LOCK
)) {
609 /* minimal window to cope with packet losses, assuming
610 * steady state. Add some cushion because of small variations.
612 rcvwin
= ((u64
)copied
<< 1) + 16 * tp
->advmss
;
614 /* Accommodate for sender rate increase (eg. slow start) */
615 grow
= rcvwin
* (copied
- tp
->rcvq_space
.space
);
616 do_div(grow
, tp
->rcvq_space
.space
);
617 rcvwin
+= (grow
<< 1);
619 rcvmem
= SKB_TRUESIZE(tp
->advmss
+ MAX_TCP_HEADER
);
620 while (tcp_win_from_space(sk
, rcvmem
) < tp
->advmss
)
623 do_div(rcvwin
, tp
->advmss
);
624 rcvbuf
= min_t(u64
, rcvwin
* rcvmem
,
625 sock_net(sk
)->ipv4
.sysctl_tcp_rmem
[2]);
626 if (rcvbuf
> sk
->sk_rcvbuf
) {
627 sk
->sk_rcvbuf
= rcvbuf
;
629 /* Make the window clamp follow along. */
630 tp
->window_clamp
= tcp_win_from_space(sk
, rcvbuf
);
633 tp
->rcvq_space
.space
= copied
;
636 tp
->rcvq_space
.seq
= tp
->copied_seq
;
637 tp
->rcvq_space
.time
= tp
->tcp_mstamp
;
640 /* There is something which you must keep in mind when you analyze the
641 * behavior of the tp->ato delayed ack timeout interval. When a
642 * connection starts up, we want to ack as quickly as possible. The
643 * problem is that "good" TCP's do slow start at the beginning of data
644 * transmission. The means that until we send the first few ACK's the
645 * sender will sit on his end and only queue most of his data, because
646 * he can only send snd_cwnd unacked packets at any given time. For
647 * each ACK we send, he increments snd_cwnd and transmits more of his
650 static void tcp_event_data_recv(struct sock
*sk
, struct sk_buff
*skb
)
652 struct tcp_sock
*tp
= tcp_sk(sk
);
653 struct inet_connection_sock
*icsk
= inet_csk(sk
);
656 inet_csk_schedule_ack(sk
);
658 tcp_measure_rcv_mss(sk
, skb
);
660 tcp_rcv_rtt_measure(tp
);
664 if (!icsk
->icsk_ack
.ato
) {
665 /* The _first_ data packet received, initialize
666 * delayed ACK engine.
668 tcp_incr_quickack(sk
);
669 icsk
->icsk_ack
.ato
= TCP_ATO_MIN
;
671 int m
= now
- icsk
->icsk_ack
.lrcvtime
;
673 if (m
<= TCP_ATO_MIN
/ 2) {
674 /* The fastest case is the first. */
675 icsk
->icsk_ack
.ato
= (icsk
->icsk_ack
.ato
>> 1) + TCP_ATO_MIN
/ 2;
676 } else if (m
< icsk
->icsk_ack
.ato
) {
677 icsk
->icsk_ack
.ato
= (icsk
->icsk_ack
.ato
>> 1) + m
;
678 if (icsk
->icsk_ack
.ato
> icsk
->icsk_rto
)
679 icsk
->icsk_ack
.ato
= icsk
->icsk_rto
;
680 } else if (m
> icsk
->icsk_rto
) {
681 /* Too long gap. Apparently sender failed to
682 * restart window, so that we send ACKs quickly.
684 tcp_incr_quickack(sk
);
688 icsk
->icsk_ack
.lrcvtime
= now
;
690 tcp_ecn_check_ce(tp
, skb
);
693 tcp_grow_window(sk
, skb
);
696 /* Called to compute a smoothed rtt estimate. The data fed to this
697 * routine either comes from timestamps, or from segments that were
698 * known _not_ to have been retransmitted [see Karn/Partridge
699 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
700 * piece by Van Jacobson.
701 * NOTE: the next three routines used to be one big routine.
702 * To save cycles in the RFC 1323 implementation it was better to break
703 * it up into three procedures. -- erics
705 static void tcp_rtt_estimator(struct sock
*sk
, long mrtt_us
)
707 struct tcp_sock
*tp
= tcp_sk(sk
);
708 long m
= mrtt_us
; /* RTT */
709 u32 srtt
= tp
->srtt_us
;
711 /* The following amusing code comes from Jacobson's
712 * article in SIGCOMM '88. Note that rtt and mdev
713 * are scaled versions of rtt and mean deviation.
714 * This is designed to be as fast as possible
715 * m stands for "measurement".
717 * On a 1990 paper the rto value is changed to:
718 * RTO = rtt + 4 * mdev
720 * Funny. This algorithm seems to be very broken.
721 * These formulae increase RTO, when it should be decreased, increase
722 * too slowly, when it should be increased quickly, decrease too quickly
723 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
724 * does not matter how to _calculate_ it. Seems, it was trap
725 * that VJ failed to avoid. 8)
728 m
-= (srtt
>> 3); /* m is now error in rtt est */
729 srtt
+= m
; /* rtt = 7/8 rtt + 1/8 new */
731 m
= -m
; /* m is now abs(error) */
732 m
-= (tp
->mdev_us
>> 2); /* similar update on mdev */
733 /* This is similar to one of Eifel findings.
734 * Eifel blocks mdev updates when rtt decreases.
735 * This solution is a bit different: we use finer gain
736 * for mdev in this case (alpha*beta).
737 * Like Eifel it also prevents growth of rto,
738 * but also it limits too fast rto decreases,
739 * happening in pure Eifel.
744 m
-= (tp
->mdev_us
>> 2); /* similar update on mdev */
746 tp
->mdev_us
+= m
; /* mdev = 3/4 mdev + 1/4 new */
747 if (tp
->mdev_us
> tp
->mdev_max_us
) {
748 tp
->mdev_max_us
= tp
->mdev_us
;
749 if (tp
->mdev_max_us
> tp
->rttvar_us
)
750 tp
->rttvar_us
= tp
->mdev_max_us
;
752 if (after(tp
->snd_una
, tp
->rtt_seq
)) {
753 if (tp
->mdev_max_us
< tp
->rttvar_us
)
754 tp
->rttvar_us
-= (tp
->rttvar_us
- tp
->mdev_max_us
) >> 2;
755 tp
->rtt_seq
= tp
->snd_nxt
;
756 tp
->mdev_max_us
= tcp_rto_min_us(sk
);
759 /* no previous measure. */
760 srtt
= m
<< 3; /* take the measured time to be rtt */
761 tp
->mdev_us
= m
<< 1; /* make sure rto = 3*rtt */
762 tp
->rttvar_us
= max(tp
->mdev_us
, tcp_rto_min_us(sk
));
763 tp
->mdev_max_us
= tp
->rttvar_us
;
764 tp
->rtt_seq
= tp
->snd_nxt
;
766 tp
->srtt_us
= max(1U, srtt
);
769 static void tcp_update_pacing_rate(struct sock
*sk
)
771 const struct tcp_sock
*tp
= tcp_sk(sk
);
774 /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
775 rate
= (u64
)tp
->mss_cache
* ((USEC_PER_SEC
/ 100) << 3);
777 /* current rate is (cwnd * mss) / srtt
778 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate.
779 * In Congestion Avoidance phase, set it to 120 % the current rate.
781 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh)
782 * If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching
783 * end of slow start and should slow down.
785 if (tp
->snd_cwnd
< tp
->snd_ssthresh
/ 2)
786 rate
*= sock_net(sk
)->ipv4
.sysctl_tcp_pacing_ss_ratio
;
788 rate
*= sock_net(sk
)->ipv4
.sysctl_tcp_pacing_ca_ratio
;
790 rate
*= max(tp
->snd_cwnd
, tp
->packets_out
);
792 if (likely(tp
->srtt_us
))
793 do_div(rate
, tp
->srtt_us
);
795 /* WRITE_ONCE() is needed because sch_fq fetches sk_pacing_rate
796 * without any lock. We want to make sure compiler wont store
797 * intermediate values in this location.
799 WRITE_ONCE(sk
->sk_pacing_rate
, min_t(u64
, rate
,
800 sk
->sk_max_pacing_rate
));
803 /* Calculate rto without backoff. This is the second half of Van Jacobson's
804 * routine referred to above.
806 static void tcp_set_rto(struct sock
*sk
)
808 const struct tcp_sock
*tp
= tcp_sk(sk
);
809 /* Old crap is replaced with new one. 8)
812 * 1. If rtt variance happened to be less 50msec, it is hallucination.
813 * It cannot be less due to utterly erratic ACK generation made
814 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
815 * to do with delayed acks, because at cwnd>2 true delack timeout
816 * is invisible. Actually, Linux-2.4 also generates erratic
817 * ACKs in some circumstances.
819 inet_csk(sk
)->icsk_rto
= __tcp_set_rto(tp
);
821 /* 2. Fixups made earlier cannot be right.
822 * If we do not estimate RTO correctly without them,
823 * all the algo is pure shit and should be replaced
824 * with correct one. It is exactly, which we pretend to do.
827 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
828 * guarantees that rto is higher.
833 __u32
tcp_init_cwnd(const struct tcp_sock
*tp
, const struct dst_entry
*dst
)
835 __u32 cwnd
= (dst
? dst_metric(dst
, RTAX_INITCWND
) : 0);
838 cwnd
= TCP_INIT_CWND
;
839 return min_t(__u32
, cwnd
, tp
->snd_cwnd_clamp
);
842 /* Take a notice that peer is sending D-SACKs */
843 static void tcp_dsack_seen(struct tcp_sock
*tp
)
845 tp
->rx_opt
.sack_ok
|= TCP_DSACK_SEEN
;
846 tp
->rack
.dsack_seen
= 1;
849 /* It's reordering when higher sequence was delivered (i.e. sacked) before
850 * some lower never-retransmitted sequence ("low_seq"). The maximum reordering
851 * distance is approximated in full-mss packet distance ("reordering").
853 static void tcp_check_sack_reordering(struct sock
*sk
, const u32 low_seq
,
856 struct tcp_sock
*tp
= tcp_sk(sk
);
857 const u32 mss
= tp
->mss_cache
;
860 fack
= tcp_highest_sack_seq(tp
);
861 if (!before(low_seq
, fack
))
864 metric
= fack
- low_seq
;
865 if ((metric
> tp
->reordering
* mss
) && mss
) {
866 #if FASTRETRANS_DEBUG > 1
867 pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
868 tp
->rx_opt
.sack_ok
, inet_csk(sk
)->icsk_ca_state
,
872 tp
->undo_marker
? tp
->undo_retrans
: 0);
874 tp
->reordering
= min_t(u32
, (metric
+ mss
- 1) / mss
,
875 sock_net(sk
)->ipv4
.sysctl_tcp_max_reordering
);
879 /* This exciting event is worth to be remembered. 8) */
880 NET_INC_STATS(sock_net(sk
),
881 ts
? LINUX_MIB_TCPTSREORDER
: LINUX_MIB_TCPSACKREORDER
);
884 /* This must be called before lost_out is incremented */
885 static void tcp_verify_retransmit_hint(struct tcp_sock
*tp
, struct sk_buff
*skb
)
887 if (!tp
->retransmit_skb_hint
||
888 before(TCP_SKB_CB(skb
)->seq
,
889 TCP_SKB_CB(tp
->retransmit_skb_hint
)->seq
))
890 tp
->retransmit_skb_hint
= skb
;
893 /* Sum the number of packets on the wire we have marked as lost.
894 * There are two cases we care about here:
895 * a) Packet hasn't been marked lost (nor retransmitted),
896 * and this is the first loss.
897 * b) Packet has been marked both lost and retransmitted,
898 * and this means we think it was lost again.
900 static void tcp_sum_lost(struct tcp_sock
*tp
, struct sk_buff
*skb
)
902 __u8 sacked
= TCP_SKB_CB(skb
)->sacked
;
904 if (!(sacked
& TCPCB_LOST
) ||
905 ((sacked
& TCPCB_LOST
) && (sacked
& TCPCB_SACKED_RETRANS
)))
906 tp
->lost
+= tcp_skb_pcount(skb
);
909 static void tcp_skb_mark_lost(struct tcp_sock
*tp
, struct sk_buff
*skb
)
911 if (!(TCP_SKB_CB(skb
)->sacked
& (TCPCB_LOST
|TCPCB_SACKED_ACKED
))) {
912 tcp_verify_retransmit_hint(tp
, skb
);
914 tp
->lost_out
+= tcp_skb_pcount(skb
);
915 tcp_sum_lost(tp
, skb
);
916 TCP_SKB_CB(skb
)->sacked
|= TCPCB_LOST
;
920 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock
*tp
, struct sk_buff
*skb
)
922 tcp_verify_retransmit_hint(tp
, skb
);
924 tcp_sum_lost(tp
, skb
);
925 if (!(TCP_SKB_CB(skb
)->sacked
& (TCPCB_LOST
|TCPCB_SACKED_ACKED
))) {
926 tp
->lost_out
+= tcp_skb_pcount(skb
);
927 TCP_SKB_CB(skb
)->sacked
|= TCPCB_LOST
;
931 /* This procedure tags the retransmission queue when SACKs arrive.
933 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
934 * Packets in queue with these bits set are counted in variables
935 * sacked_out, retrans_out and lost_out, correspondingly.
937 * Valid combinations are:
938 * Tag InFlight Description
939 * 0 1 - orig segment is in flight.
940 * S 0 - nothing flies, orig reached receiver.
941 * L 0 - nothing flies, orig lost by net.
942 * R 2 - both orig and retransmit are in flight.
943 * L|R 1 - orig is lost, retransmit is in flight.
944 * S|R 1 - orig reached receiver, retrans is still in flight.
945 * (L|S|R is logically valid, it could occur when L|R is sacked,
946 * but it is equivalent to plain S and code short-curcuits it to S.
947 * L|S is logically invalid, it would mean -1 packet in flight 8))
949 * These 6 states form finite state machine, controlled by the following events:
950 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
951 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
952 * 3. Loss detection event of two flavors:
953 * A. Scoreboard estimator decided the packet is lost.
954 * A'. Reno "three dupacks" marks head of queue lost.
955 * B. SACK arrives sacking SND.NXT at the moment, when the
956 * segment was retransmitted.
957 * 4. D-SACK added new rule: D-SACK changes any tag to S.
959 * It is pleasant to note, that state diagram turns out to be commutative,
960 * so that we are allowed not to be bothered by order of our actions,
961 * when multiple events arrive simultaneously. (see the function below).
963 * Reordering detection.
964 * --------------------
965 * Reordering metric is maximal distance, which a packet can be displaced
966 * in packet stream. With SACKs we can estimate it:
968 * 1. SACK fills old hole and the corresponding segment was not
969 * ever retransmitted -> reordering. Alas, we cannot use it
970 * when segment was retransmitted.
971 * 2. The last flaw is solved with D-SACK. D-SACK arrives
972 * for retransmitted and already SACKed segment -> reordering..
973 * Both of these heuristics are not used in Loss state, when we cannot
974 * account for retransmits accurately.
976 * SACK block validation.
977 * ----------------------
979 * SACK block range validation checks that the received SACK block fits to
980 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
981 * Note that SND.UNA is not included to the range though being valid because
982 * it means that the receiver is rather inconsistent with itself reporting
983 * SACK reneging when it should advance SND.UNA. Such SACK block this is
984 * perfectly valid, however, in light of RFC2018 which explicitly states
985 * that "SACK block MUST reflect the newest segment. Even if the newest
986 * segment is going to be discarded ...", not that it looks very clever
987 * in case of head skb. Due to potentional receiver driven attacks, we
988 * choose to avoid immediate execution of a walk in write queue due to
989 * reneging and defer head skb's loss recovery to standard loss recovery
990 * procedure that will eventually trigger (nothing forbids us doing this).
992 * Implements also blockage to start_seq wrap-around. Problem lies in the
993 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
994 * there's no guarantee that it will be before snd_nxt (n). The problem
995 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
998 * <- outs wnd -> <- wrapzone ->
999 * u e n u_w e_w s n_w
1001 * |<------------+------+----- TCP seqno space --------------+---------->|
1002 * ...-- <2^31 ->| |<--------...
1003 * ...---- >2^31 ------>| |<--------...
1005 * Current code wouldn't be vulnerable but it's better still to discard such
1006 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1007 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1008 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1009 * equal to the ideal case (infinite seqno space without wrap caused issues).
1011 * With D-SACK the lower bound is extended to cover sequence space below
1012 * SND.UNA down to undo_marker, which is the last point of interest. Yet
1013 * again, D-SACK block must not to go across snd_una (for the same reason as
1014 * for the normal SACK blocks, explained above). But there all simplicity
1015 * ends, TCP might receive valid D-SACKs below that. As long as they reside
1016 * fully below undo_marker they do not affect behavior in anyway and can
1017 * therefore be safely ignored. In rare cases (which are more or less
1018 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1019 * fragmentation and packet reordering past skb's retransmission. To consider
1020 * them correctly, the acceptable range must be extended even more though
1021 * the exact amount is rather hard to quantify. However, tp->max_window can
1022 * be used as an exaggerated estimate.
1024 static bool tcp_is_sackblock_valid(struct tcp_sock
*tp
, bool is_dsack
,
1025 u32 start_seq
, u32 end_seq
)
1027 /* Too far in future, or reversed (interpretation is ambiguous) */
1028 if (after(end_seq
, tp
->snd_nxt
) || !before(start_seq
, end_seq
))
1031 /* Nasty start_seq wrap-around check (see comments above) */
1032 if (!before(start_seq
, tp
->snd_nxt
))
1035 /* In outstanding window? ...This is valid exit for D-SACKs too.
1036 * start_seq == snd_una is non-sensical (see comments above)
1038 if (after(start_seq
, tp
->snd_una
))
1041 if (!is_dsack
|| !tp
->undo_marker
)
1044 /* ...Then it's D-SACK, and must reside below snd_una completely */
1045 if (after(end_seq
, tp
->snd_una
))
1048 if (!before(start_seq
, tp
->undo_marker
))
1052 if (!after(end_seq
, tp
->undo_marker
))
1055 /* Undo_marker boundary crossing (overestimates a lot). Known already:
1056 * start_seq < undo_marker and end_seq >= undo_marker.
1058 return !before(start_seq
, end_seq
- tp
->max_window
);
1061 static bool tcp_check_dsack(struct sock
*sk
, const struct sk_buff
*ack_skb
,
1062 struct tcp_sack_block_wire
*sp
, int num_sacks
,
1065 struct tcp_sock
*tp
= tcp_sk(sk
);
1066 u32 start_seq_0
= get_unaligned_be32(&sp
[0].start_seq
);
1067 u32 end_seq_0
= get_unaligned_be32(&sp
[0].end_seq
);
1068 bool dup_sack
= false;
1070 if (before(start_seq_0
, TCP_SKB_CB(ack_skb
)->ack_seq
)) {
1073 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPDSACKRECV
);
1074 } else if (num_sacks
> 1) {
1075 u32 end_seq_1
= get_unaligned_be32(&sp
[1].end_seq
);
1076 u32 start_seq_1
= get_unaligned_be32(&sp
[1].start_seq
);
1078 if (!after(end_seq_0
, end_seq_1
) &&
1079 !before(start_seq_0
, start_seq_1
)) {
1082 NET_INC_STATS(sock_net(sk
),
1083 LINUX_MIB_TCPDSACKOFORECV
);
1087 /* D-SACK for already forgotten data... Do dumb counting. */
1088 if (dup_sack
&& tp
->undo_marker
&& tp
->undo_retrans
> 0 &&
1089 !after(end_seq_0
, prior_snd_una
) &&
1090 after(end_seq_0
, tp
->undo_marker
))
1096 struct tcp_sacktag_state
{
1098 /* Timestamps for earliest and latest never-retransmitted segment
1099 * that was SACKed. RTO needs the earliest RTT to stay conservative,
1100 * but congestion control should still get an accurate delay signal.
1104 struct rate_sample
*rate
;
1106 unsigned int mss_now
;
1109 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1110 * the incoming SACK may not exactly match but we can find smaller MSS
1111 * aligned portion of it that matches. Therefore we might need to fragment
1112 * which may fail and creates some hassle (caller must handle error case
1115 * FIXME: this could be merged to shift decision code
1117 static int tcp_match_skb_to_sack(struct sock
*sk
, struct sk_buff
*skb
,
1118 u32 start_seq
, u32 end_seq
)
1122 unsigned int pkt_len
;
1125 in_sack
= !after(start_seq
, TCP_SKB_CB(skb
)->seq
) &&
1126 !before(end_seq
, TCP_SKB_CB(skb
)->end_seq
);
1128 if (tcp_skb_pcount(skb
) > 1 && !in_sack
&&
1129 after(TCP_SKB_CB(skb
)->end_seq
, start_seq
)) {
1130 mss
= tcp_skb_mss(skb
);
1131 in_sack
= !after(start_seq
, TCP_SKB_CB(skb
)->seq
);
1134 pkt_len
= start_seq
- TCP_SKB_CB(skb
)->seq
;
1138 pkt_len
= end_seq
- TCP_SKB_CB(skb
)->seq
;
1143 /* Round if necessary so that SACKs cover only full MSSes
1144 * and/or the remaining small portion (if present)
1146 if (pkt_len
> mss
) {
1147 unsigned int new_len
= (pkt_len
/ mss
) * mss
;
1148 if (!in_sack
&& new_len
< pkt_len
)
1153 if (pkt_len
>= skb
->len
&& !in_sack
)
1156 err
= tcp_fragment(sk
, TCP_FRAG_IN_RTX_QUEUE
, skb
,
1157 pkt_len
, mss
, GFP_ATOMIC
);
1165 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1166 static u8
tcp_sacktag_one(struct sock
*sk
,
1167 struct tcp_sacktag_state
*state
, u8 sacked
,
1168 u32 start_seq
, u32 end_seq
,
1169 int dup_sack
, int pcount
,
1172 struct tcp_sock
*tp
= tcp_sk(sk
);
1174 /* Account D-SACK for retransmitted packet. */
1175 if (dup_sack
&& (sacked
& TCPCB_RETRANS
)) {
1176 if (tp
->undo_marker
&& tp
->undo_retrans
> 0 &&
1177 after(end_seq
, tp
->undo_marker
))
1179 if ((sacked
& TCPCB_SACKED_ACKED
) &&
1180 before(start_seq
, state
->reord
))
1181 state
->reord
= start_seq
;
1184 /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1185 if (!after(end_seq
, tp
->snd_una
))
1188 if (!(sacked
& TCPCB_SACKED_ACKED
)) {
1189 tcp_rack_advance(tp
, sacked
, end_seq
, xmit_time
);
1191 if (sacked
& TCPCB_SACKED_RETRANS
) {
1192 /* If the segment is not tagged as lost,
1193 * we do not clear RETRANS, believing
1194 * that retransmission is still in flight.
1196 if (sacked
& TCPCB_LOST
) {
1197 sacked
&= ~(TCPCB_LOST
|TCPCB_SACKED_RETRANS
);
1198 tp
->lost_out
-= pcount
;
1199 tp
->retrans_out
-= pcount
;
1202 if (!(sacked
& TCPCB_RETRANS
)) {
1203 /* New sack for not retransmitted frame,
1204 * which was in hole. It is reordering.
1206 if (before(start_seq
,
1207 tcp_highest_sack_seq(tp
)) &&
1208 before(start_seq
, state
->reord
))
1209 state
->reord
= start_seq
;
1211 if (!after(end_seq
, tp
->high_seq
))
1212 state
->flag
|= FLAG_ORIG_SACK_ACKED
;
1213 if (state
->first_sackt
== 0)
1214 state
->first_sackt
= xmit_time
;
1215 state
->last_sackt
= xmit_time
;
1218 if (sacked
& TCPCB_LOST
) {
1219 sacked
&= ~TCPCB_LOST
;
1220 tp
->lost_out
-= pcount
;
1224 sacked
|= TCPCB_SACKED_ACKED
;
1225 state
->flag
|= FLAG_DATA_SACKED
;
1226 tp
->sacked_out
+= pcount
;
1227 tp
->delivered
+= pcount
; /* Out-of-order packets delivered */
1229 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1230 if (tp
->lost_skb_hint
&&
1231 before(start_seq
, TCP_SKB_CB(tp
->lost_skb_hint
)->seq
))
1232 tp
->lost_cnt_hint
+= pcount
;
1235 /* D-SACK. We can detect redundant retransmission in S|R and plain R
1236 * frames and clear it. undo_retrans is decreased above, L|R frames
1237 * are accounted above as well.
1239 if (dup_sack
&& (sacked
& TCPCB_SACKED_RETRANS
)) {
1240 sacked
&= ~TCPCB_SACKED_RETRANS
;
1241 tp
->retrans_out
-= pcount
;
1247 /* Shift newly-SACKed bytes from this skb to the immediately previous
1248 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1250 static bool tcp_shifted_skb(struct sock
*sk
, struct sk_buff
*prev
,
1251 struct sk_buff
*skb
,
1252 struct tcp_sacktag_state
*state
,
1253 unsigned int pcount
, int shifted
, int mss
,
1256 struct tcp_sock
*tp
= tcp_sk(sk
);
1257 u32 start_seq
= TCP_SKB_CB(skb
)->seq
; /* start of newly-SACKed */
1258 u32 end_seq
= start_seq
+ shifted
; /* end of newly-SACKed */
1262 /* Adjust counters and hints for the newly sacked sequence
1263 * range but discard the return value since prev is already
1264 * marked. We must tag the range first because the seq
1265 * advancement below implicitly advances
1266 * tcp_highest_sack_seq() when skb is highest_sack.
1268 tcp_sacktag_one(sk
, state
, TCP_SKB_CB(skb
)->sacked
,
1269 start_seq
, end_seq
, dup_sack
, pcount
,
1271 tcp_rate_skb_delivered(sk
, skb
, state
->rate
);
1273 if (skb
== tp
->lost_skb_hint
)
1274 tp
->lost_cnt_hint
+= pcount
;
1276 TCP_SKB_CB(prev
)->end_seq
+= shifted
;
1277 TCP_SKB_CB(skb
)->seq
+= shifted
;
1279 tcp_skb_pcount_add(prev
, pcount
);
1280 BUG_ON(tcp_skb_pcount(skb
) < pcount
);
1281 tcp_skb_pcount_add(skb
, -pcount
);
1283 /* When we're adding to gso_segs == 1, gso_size will be zero,
1284 * in theory this shouldn't be necessary but as long as DSACK
1285 * code can come after this skb later on it's better to keep
1286 * setting gso_size to something.
1288 if (!TCP_SKB_CB(prev
)->tcp_gso_size
)
1289 TCP_SKB_CB(prev
)->tcp_gso_size
= mss
;
1291 /* CHECKME: To clear or not to clear? Mimics normal skb currently */
1292 if (tcp_skb_pcount(skb
) <= 1)
1293 TCP_SKB_CB(skb
)->tcp_gso_size
= 0;
1295 /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1296 TCP_SKB_CB(prev
)->sacked
|= (TCP_SKB_CB(skb
)->sacked
& TCPCB_EVER_RETRANS
);
1299 BUG_ON(!tcp_skb_pcount(skb
));
1300 NET_INC_STATS(sock_net(sk
), LINUX_MIB_SACKSHIFTED
);
1304 /* Whole SKB was eaten :-) */
1306 if (skb
== tp
->retransmit_skb_hint
)
1307 tp
->retransmit_skb_hint
= prev
;
1308 if (skb
== tp
->lost_skb_hint
) {
1309 tp
->lost_skb_hint
= prev
;
1310 tp
->lost_cnt_hint
-= tcp_skb_pcount(prev
);
1313 TCP_SKB_CB(prev
)->tcp_flags
|= TCP_SKB_CB(skb
)->tcp_flags
;
1314 TCP_SKB_CB(prev
)->eor
= TCP_SKB_CB(skb
)->eor
;
1315 if (TCP_SKB_CB(skb
)->tcp_flags
& TCPHDR_FIN
)
1316 TCP_SKB_CB(prev
)->end_seq
++;
1318 if (skb
== tcp_highest_sack(sk
))
1319 tcp_advance_highest_sack(sk
, skb
);
1321 tcp_skb_collapse_tstamp(prev
, skb
);
1322 if (unlikely(TCP_SKB_CB(prev
)->tx
.delivered_mstamp
))
1323 TCP_SKB_CB(prev
)->tx
.delivered_mstamp
= 0;
1325 tcp_rtx_queue_unlink_and_free(skb
, sk
);
1327 NET_INC_STATS(sock_net(sk
), LINUX_MIB_SACKMERGED
);
1332 /* I wish gso_size would have a bit more sane initialization than
1333 * something-or-zero which complicates things
1335 static int tcp_skb_seglen(const struct sk_buff
*skb
)
1337 return tcp_skb_pcount(skb
) == 1 ? skb
->len
: tcp_skb_mss(skb
);
1340 /* Shifting pages past head area doesn't work */
1341 static int skb_can_shift(const struct sk_buff
*skb
)
1343 return !skb_headlen(skb
) && skb_is_nonlinear(skb
);
1346 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1349 static struct sk_buff
*tcp_shift_skb_data(struct sock
*sk
, struct sk_buff
*skb
,
1350 struct tcp_sacktag_state
*state
,
1351 u32 start_seq
, u32 end_seq
,
1354 struct tcp_sock
*tp
= tcp_sk(sk
);
1355 struct sk_buff
*prev
;
1361 if (!sk_can_gso(sk
))
1364 /* Normally R but no L won't result in plain S */
1366 (TCP_SKB_CB(skb
)->sacked
& (TCPCB_LOST
|TCPCB_SACKED_RETRANS
)) == TCPCB_SACKED_RETRANS
)
1368 if (!skb_can_shift(skb
))
1370 /* This frame is about to be dropped (was ACKed). */
1371 if (!after(TCP_SKB_CB(skb
)->end_seq
, tp
->snd_una
))
1374 /* Can only happen with delayed DSACK + discard craziness */
1375 prev
= skb_rb_prev(skb
);
1379 if ((TCP_SKB_CB(prev
)->sacked
& TCPCB_TAGBITS
) != TCPCB_SACKED_ACKED
)
1382 if (!tcp_skb_can_collapse_to(prev
))
1385 in_sack
= !after(start_seq
, TCP_SKB_CB(skb
)->seq
) &&
1386 !before(end_seq
, TCP_SKB_CB(skb
)->end_seq
);
1390 pcount
= tcp_skb_pcount(skb
);
1391 mss
= tcp_skb_seglen(skb
);
1393 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1394 * drop this restriction as unnecessary
1396 if (mss
!= tcp_skb_seglen(prev
))
1399 if (!after(TCP_SKB_CB(skb
)->end_seq
, start_seq
))
1401 /* CHECKME: This is non-MSS split case only?, this will
1402 * cause skipped skbs due to advancing loop btw, original
1403 * has that feature too
1405 if (tcp_skb_pcount(skb
) <= 1)
1408 in_sack
= !after(start_seq
, TCP_SKB_CB(skb
)->seq
);
1410 /* TODO: head merge to next could be attempted here
1411 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1412 * though it might not be worth of the additional hassle
1414 * ...we can probably just fallback to what was done
1415 * previously. We could try merging non-SACKed ones
1416 * as well but it probably isn't going to buy off
1417 * because later SACKs might again split them, and
1418 * it would make skb timestamp tracking considerably
1424 len
= end_seq
- TCP_SKB_CB(skb
)->seq
;
1426 BUG_ON(len
> skb
->len
);
1428 /* MSS boundaries should be honoured or else pcount will
1429 * severely break even though it makes things bit trickier.
1430 * Optimize common case to avoid most of the divides
1432 mss
= tcp_skb_mss(skb
);
1434 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1435 * drop this restriction as unnecessary
1437 if (mss
!= tcp_skb_seglen(prev
))
1442 } else if (len
< mss
) {
1450 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1451 if (!after(TCP_SKB_CB(skb
)->seq
+ len
, tp
->snd_una
))
1454 if (!skb_shift(prev
, skb
, len
))
1456 if (!tcp_shifted_skb(sk
, prev
, skb
, state
, pcount
, len
, mss
, dup_sack
))
1459 /* Hole filled allows collapsing with the next as well, this is very
1460 * useful when hole on every nth skb pattern happens
1462 skb
= skb_rb_next(prev
);
1466 if (!skb_can_shift(skb
) ||
1467 ((TCP_SKB_CB(skb
)->sacked
& TCPCB_TAGBITS
) != TCPCB_SACKED_ACKED
) ||
1468 (mss
!= tcp_skb_seglen(skb
)))
1472 if (skb_shift(prev
, skb
, len
)) {
1473 pcount
+= tcp_skb_pcount(skb
);
1474 tcp_shifted_skb(sk
, prev
, skb
, state
, tcp_skb_pcount(skb
),
1485 NET_INC_STATS(sock_net(sk
), LINUX_MIB_SACKSHIFTFALLBACK
);
1489 static struct sk_buff
*tcp_sacktag_walk(struct sk_buff
*skb
, struct sock
*sk
,
1490 struct tcp_sack_block
*next_dup
,
1491 struct tcp_sacktag_state
*state
,
1492 u32 start_seq
, u32 end_seq
,
1495 struct tcp_sock
*tp
= tcp_sk(sk
);
1496 struct sk_buff
*tmp
;
1498 skb_rbtree_walk_from(skb
) {
1500 bool dup_sack
= dup_sack_in
;
1502 /* queue is in-order => we can short-circuit the walk early */
1503 if (!before(TCP_SKB_CB(skb
)->seq
, end_seq
))
1507 before(TCP_SKB_CB(skb
)->seq
, next_dup
->end_seq
)) {
1508 in_sack
= tcp_match_skb_to_sack(sk
, skb
,
1509 next_dup
->start_seq
,
1515 /* skb reference here is a bit tricky to get right, since
1516 * shifting can eat and free both this skb and the next,
1517 * so not even _safe variant of the loop is enough.
1520 tmp
= tcp_shift_skb_data(sk
, skb
, state
,
1521 start_seq
, end_seq
, dup_sack
);
1530 in_sack
= tcp_match_skb_to_sack(sk
, skb
,
1536 if (unlikely(in_sack
< 0))
1540 TCP_SKB_CB(skb
)->sacked
=
1543 TCP_SKB_CB(skb
)->sacked
,
1544 TCP_SKB_CB(skb
)->seq
,
1545 TCP_SKB_CB(skb
)->end_seq
,
1547 tcp_skb_pcount(skb
),
1549 tcp_rate_skb_delivered(sk
, skb
, state
->rate
);
1550 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
)
1551 list_del_init(&skb
->tcp_tsorted_anchor
);
1553 if (!before(TCP_SKB_CB(skb
)->seq
,
1554 tcp_highest_sack_seq(tp
)))
1555 tcp_advance_highest_sack(sk
, skb
);
1561 static struct sk_buff
*tcp_sacktag_bsearch(struct sock
*sk
,
1562 struct tcp_sacktag_state
*state
,
1565 struct rb_node
*parent
, **p
= &sk
->tcp_rtx_queue
.rb_node
;
1566 struct sk_buff
*skb
;
1570 skb
= rb_to_skb(parent
);
1571 if (before(seq
, TCP_SKB_CB(skb
)->seq
)) {
1572 p
= &parent
->rb_left
;
1575 if (!before(seq
, TCP_SKB_CB(skb
)->end_seq
)) {
1576 p
= &parent
->rb_right
;
1584 static struct sk_buff
*tcp_sacktag_skip(struct sk_buff
*skb
, struct sock
*sk
,
1585 struct tcp_sacktag_state
*state
,
1588 if (skb
&& after(TCP_SKB_CB(skb
)->seq
, skip_to_seq
))
1591 return tcp_sacktag_bsearch(sk
, state
, skip_to_seq
);
1594 static struct sk_buff
*tcp_maybe_skipping_dsack(struct sk_buff
*skb
,
1596 struct tcp_sack_block
*next_dup
,
1597 struct tcp_sacktag_state
*state
,
1603 if (before(next_dup
->start_seq
, skip_to_seq
)) {
1604 skb
= tcp_sacktag_skip(skb
, sk
, state
, next_dup
->start_seq
);
1605 skb
= tcp_sacktag_walk(skb
, sk
, NULL
, state
,
1606 next_dup
->start_seq
, next_dup
->end_seq
,
1613 static int tcp_sack_cache_ok(const struct tcp_sock
*tp
, const struct tcp_sack_block
*cache
)
1615 return cache
< tp
->recv_sack_cache
+ ARRAY_SIZE(tp
->recv_sack_cache
);
1619 tcp_sacktag_write_queue(struct sock
*sk
, const struct sk_buff
*ack_skb
,
1620 u32 prior_snd_una
, struct tcp_sacktag_state
*state
)
1622 struct tcp_sock
*tp
= tcp_sk(sk
);
1623 const unsigned char *ptr
= (skb_transport_header(ack_skb
) +
1624 TCP_SKB_CB(ack_skb
)->sacked
);
1625 struct tcp_sack_block_wire
*sp_wire
= (struct tcp_sack_block_wire
*)(ptr
+2);
1626 struct tcp_sack_block sp
[TCP_NUM_SACKS
];
1627 struct tcp_sack_block
*cache
;
1628 struct sk_buff
*skb
;
1629 int num_sacks
= min(TCP_NUM_SACKS
, (ptr
[1] - TCPOLEN_SACK_BASE
) >> 3);
1631 bool found_dup_sack
= false;
1633 int first_sack_index
;
1636 state
->reord
= tp
->snd_nxt
;
1638 if (!tp
->sacked_out
)
1639 tcp_highest_sack_reset(sk
);
1641 found_dup_sack
= tcp_check_dsack(sk
, ack_skb
, sp_wire
,
1642 num_sacks
, prior_snd_una
);
1643 if (found_dup_sack
) {
1644 state
->flag
|= FLAG_DSACKING_ACK
;
1645 tp
->delivered
++; /* A spurious retransmission is delivered */
1648 /* Eliminate too old ACKs, but take into
1649 * account more or less fresh ones, they can
1650 * contain valid SACK info.
1652 if (before(TCP_SKB_CB(ack_skb
)->ack_seq
, prior_snd_una
- tp
->max_window
))
1655 if (!tp
->packets_out
)
1659 first_sack_index
= 0;
1660 for (i
= 0; i
< num_sacks
; i
++) {
1661 bool dup_sack
= !i
&& found_dup_sack
;
1663 sp
[used_sacks
].start_seq
= get_unaligned_be32(&sp_wire
[i
].start_seq
);
1664 sp
[used_sacks
].end_seq
= get_unaligned_be32(&sp_wire
[i
].end_seq
);
1666 if (!tcp_is_sackblock_valid(tp
, dup_sack
,
1667 sp
[used_sacks
].start_seq
,
1668 sp
[used_sacks
].end_seq
)) {
1672 if (!tp
->undo_marker
)
1673 mib_idx
= LINUX_MIB_TCPDSACKIGNOREDNOUNDO
;
1675 mib_idx
= LINUX_MIB_TCPDSACKIGNOREDOLD
;
1677 /* Don't count olds caused by ACK reordering */
1678 if ((TCP_SKB_CB(ack_skb
)->ack_seq
!= tp
->snd_una
) &&
1679 !after(sp
[used_sacks
].end_seq
, tp
->snd_una
))
1681 mib_idx
= LINUX_MIB_TCPSACKDISCARD
;
1684 NET_INC_STATS(sock_net(sk
), mib_idx
);
1686 first_sack_index
= -1;
1690 /* Ignore very old stuff early */
1691 if (!after(sp
[used_sacks
].end_seq
, prior_snd_una
))
1697 /* order SACK blocks to allow in order walk of the retrans queue */
1698 for (i
= used_sacks
- 1; i
> 0; i
--) {
1699 for (j
= 0; j
< i
; j
++) {
1700 if (after(sp
[j
].start_seq
, sp
[j
+ 1].start_seq
)) {
1701 swap(sp
[j
], sp
[j
+ 1]);
1703 /* Track where the first SACK block goes to */
1704 if (j
== first_sack_index
)
1705 first_sack_index
= j
+ 1;
1710 state
->mss_now
= tcp_current_mss(sk
);
1714 if (!tp
->sacked_out
) {
1715 /* It's already past, so skip checking against it */
1716 cache
= tp
->recv_sack_cache
+ ARRAY_SIZE(tp
->recv_sack_cache
);
1718 cache
= tp
->recv_sack_cache
;
1719 /* Skip empty blocks in at head of the cache */
1720 while (tcp_sack_cache_ok(tp
, cache
) && !cache
->start_seq
&&
1725 while (i
< used_sacks
) {
1726 u32 start_seq
= sp
[i
].start_seq
;
1727 u32 end_seq
= sp
[i
].end_seq
;
1728 bool dup_sack
= (found_dup_sack
&& (i
== first_sack_index
));
1729 struct tcp_sack_block
*next_dup
= NULL
;
1731 if (found_dup_sack
&& ((i
+ 1) == first_sack_index
))
1732 next_dup
= &sp
[i
+ 1];
1734 /* Skip too early cached blocks */
1735 while (tcp_sack_cache_ok(tp
, cache
) &&
1736 !before(start_seq
, cache
->end_seq
))
1739 /* Can skip some work by looking recv_sack_cache? */
1740 if (tcp_sack_cache_ok(tp
, cache
) && !dup_sack
&&
1741 after(end_seq
, cache
->start_seq
)) {
1744 if (before(start_seq
, cache
->start_seq
)) {
1745 skb
= tcp_sacktag_skip(skb
, sk
, state
,
1747 skb
= tcp_sacktag_walk(skb
, sk
, next_dup
,
1754 /* Rest of the block already fully processed? */
1755 if (!after(end_seq
, cache
->end_seq
))
1758 skb
= tcp_maybe_skipping_dsack(skb
, sk
, next_dup
,
1762 /* ...tail remains todo... */
1763 if (tcp_highest_sack_seq(tp
) == cache
->end_seq
) {
1764 /* ...but better entrypoint exists! */
1765 skb
= tcp_highest_sack(sk
);
1772 skb
= tcp_sacktag_skip(skb
, sk
, state
, cache
->end_seq
);
1773 /* Check overlap against next cached too (past this one already) */
1778 if (!before(start_seq
, tcp_highest_sack_seq(tp
))) {
1779 skb
= tcp_highest_sack(sk
);
1783 skb
= tcp_sacktag_skip(skb
, sk
, state
, start_seq
);
1786 skb
= tcp_sacktag_walk(skb
, sk
, next_dup
, state
,
1787 start_seq
, end_seq
, dup_sack
);
1793 /* Clear the head of the cache sack blocks so we can skip it next time */
1794 for (i
= 0; i
< ARRAY_SIZE(tp
->recv_sack_cache
) - used_sacks
; i
++) {
1795 tp
->recv_sack_cache
[i
].start_seq
= 0;
1796 tp
->recv_sack_cache
[i
].end_seq
= 0;
1798 for (j
= 0; j
< used_sacks
; j
++)
1799 tp
->recv_sack_cache
[i
++] = sp
[j
];
1801 if (inet_csk(sk
)->icsk_ca_state
!= TCP_CA_Loss
|| tp
->undo_marker
)
1802 tcp_check_sack_reordering(sk
, state
->reord
, 0);
1804 tcp_verify_left_out(tp
);
1807 #if FASTRETRANS_DEBUG > 0
1808 WARN_ON((int)tp
->sacked_out
< 0);
1809 WARN_ON((int)tp
->lost_out
< 0);
1810 WARN_ON((int)tp
->retrans_out
< 0);
1811 WARN_ON((int)tcp_packets_in_flight(tp
) < 0);
1816 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1817 * packets_out. Returns false if sacked_out adjustement wasn't necessary.
1819 static bool tcp_limit_reno_sacked(struct tcp_sock
*tp
)
1823 holes
= max(tp
->lost_out
, 1U);
1824 holes
= min(holes
, tp
->packets_out
);
1826 if ((tp
->sacked_out
+ holes
) > tp
->packets_out
) {
1827 tp
->sacked_out
= tp
->packets_out
- holes
;
1833 /* If we receive more dupacks than we expected counting segments
1834 * in assumption of absent reordering, interpret this as reordering.
1835 * The only another reason could be bug in receiver TCP.
1837 static void tcp_check_reno_reordering(struct sock
*sk
, const int addend
)
1839 struct tcp_sock
*tp
= tcp_sk(sk
);
1841 if (!tcp_limit_reno_sacked(tp
))
1844 tp
->reordering
= min_t(u32
, tp
->packets_out
+ addend
,
1845 sock_net(sk
)->ipv4
.sysctl_tcp_max_reordering
);
1846 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPRENOREORDER
);
1849 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1851 static void tcp_add_reno_sack(struct sock
*sk
)
1853 struct tcp_sock
*tp
= tcp_sk(sk
);
1854 u32 prior_sacked
= tp
->sacked_out
;
1857 tcp_check_reno_reordering(sk
, 0);
1858 if (tp
->sacked_out
> prior_sacked
)
1859 tp
->delivered
++; /* Some out-of-order packet is delivered */
1860 tcp_verify_left_out(tp
);
1863 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1865 static void tcp_remove_reno_sacks(struct sock
*sk
, int acked
)
1867 struct tcp_sock
*tp
= tcp_sk(sk
);
1870 /* One ACK acked hole. The rest eat duplicate ACKs. */
1871 tp
->delivered
+= max_t(int, acked
- tp
->sacked_out
, 1);
1872 if (acked
- 1 >= tp
->sacked_out
)
1875 tp
->sacked_out
-= acked
- 1;
1877 tcp_check_reno_reordering(sk
, acked
);
1878 tcp_verify_left_out(tp
);
1881 static inline void tcp_reset_reno_sack(struct tcp_sock
*tp
)
1886 void tcp_clear_retrans(struct tcp_sock
*tp
)
1888 tp
->retrans_out
= 0;
1890 tp
->undo_marker
= 0;
1891 tp
->undo_retrans
= -1;
1895 static inline void tcp_init_undo(struct tcp_sock
*tp
)
1897 tp
->undo_marker
= tp
->snd_una
;
1898 /* Retransmission still in flight may cause DSACKs later. */
1899 tp
->undo_retrans
= tp
->retrans_out
? : -1;
1902 /* Enter Loss state. If we detect SACK reneging, forget all SACK information
1903 * and reset tags completely, otherwise preserve SACKs. If receiver
1904 * dropped its ofo queue, we will know this due to reneging detection.
1906 void tcp_enter_loss(struct sock
*sk
)
1908 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
1909 struct tcp_sock
*tp
= tcp_sk(sk
);
1910 struct net
*net
= sock_net(sk
);
1911 struct sk_buff
*skb
;
1912 bool is_reneg
; /* is receiver reneging on SACKs? */
1915 /* Reduce ssthresh if it has not yet been made inside this window. */
1916 if (icsk
->icsk_ca_state
<= TCP_CA_Disorder
||
1917 !after(tp
->high_seq
, tp
->snd_una
) ||
1918 (icsk
->icsk_ca_state
== TCP_CA_Loss
&& !icsk
->icsk_retransmits
)) {
1919 tp
->prior_ssthresh
= tcp_current_ssthresh(sk
);
1920 tp
->prior_cwnd
= tp
->snd_cwnd
;
1921 tp
->snd_ssthresh
= icsk
->icsk_ca_ops
->ssthresh(sk
);
1922 tcp_ca_event(sk
, CA_EVENT_LOSS
);
1926 tp
->snd_cwnd_cnt
= 0;
1927 tp
->snd_cwnd_stamp
= tcp_jiffies32
;
1929 tp
->retrans_out
= 0;
1932 if (tcp_is_reno(tp
))
1933 tcp_reset_reno_sack(tp
);
1935 skb
= tcp_rtx_queue_head(sk
);
1936 is_reneg
= skb
&& (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
);
1938 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPSACKRENEGING
);
1940 /* Mark SACK reneging until we recover from this loss event. */
1941 tp
->is_sack_reneg
= 1;
1943 tcp_clear_all_retrans_hints(tp
);
1945 skb_rbtree_walk_from(skb
) {
1946 mark_lost
= (!(TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
) ||
1949 tcp_sum_lost(tp
, skb
);
1950 TCP_SKB_CB(skb
)->sacked
&= (~TCPCB_TAGBITS
)|TCPCB_SACKED_ACKED
;
1952 TCP_SKB_CB(skb
)->sacked
&= ~TCPCB_SACKED_ACKED
;
1953 TCP_SKB_CB(skb
)->sacked
|= TCPCB_LOST
;
1954 tp
->lost_out
+= tcp_skb_pcount(skb
);
1957 tcp_verify_left_out(tp
);
1959 /* Timeout in disordered state after receiving substantial DUPACKs
1960 * suggests that the degree of reordering is over-estimated.
1962 if (icsk
->icsk_ca_state
<= TCP_CA_Disorder
&&
1963 tp
->sacked_out
>= net
->ipv4
.sysctl_tcp_reordering
)
1964 tp
->reordering
= min_t(unsigned int, tp
->reordering
,
1965 net
->ipv4
.sysctl_tcp_reordering
);
1966 tcp_set_ca_state(sk
, TCP_CA_Loss
);
1967 tp
->high_seq
= tp
->snd_nxt
;
1968 tcp_ecn_queue_cwr(tp
);
1970 /* F-RTO RFC5682 sec 3.1 step 1 mandates to disable F-RTO
1971 * if a previous recovery is underway, otherwise it may incorrectly
1972 * call a timeout spurious if some previously retransmitted packets
1973 * are s/acked (sec 3.2). We do not apply that retriction since
1974 * retransmitted skbs are permanently tagged with TCPCB_EVER_RETRANS
1975 * so FLAG_ORIG_SACK_ACKED is always correct. But we do disable F-RTO
1976 * on PTMU discovery to avoid sending new data.
1978 tp
->frto
= net
->ipv4
.sysctl_tcp_frto
&&
1979 !inet_csk(sk
)->icsk_mtup
.probe_size
;
1982 /* If ACK arrived pointing to a remembered SACK, it means that our
1983 * remembered SACKs do not reflect real state of receiver i.e.
1984 * receiver _host_ is heavily congested (or buggy).
1986 * To avoid big spurious retransmission bursts due to transient SACK
1987 * scoreboard oddities that look like reneging, we give the receiver a
1988 * little time (max(RTT/2, 10ms)) to send us some more ACKs that will
1989 * restore sanity to the SACK scoreboard. If the apparent reneging
1990 * persists until this RTO then we'll clear the SACK scoreboard.
1992 static bool tcp_check_sack_reneging(struct sock
*sk
, int flag
)
1994 if (flag
& FLAG_SACK_RENEGING
) {
1995 struct tcp_sock
*tp
= tcp_sk(sk
);
1996 unsigned long delay
= max(usecs_to_jiffies(tp
->srtt_us
>> 4),
1997 msecs_to_jiffies(10));
1999 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_RETRANS
,
2000 delay
, TCP_RTO_MAX
);
2006 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2007 * counter when SACK is enabled (without SACK, sacked_out is used for
2010 * With reordering, holes may still be in flight, so RFC3517 recovery
2011 * uses pure sacked_out (total number of SACKed segments) even though
2012 * it violates the RFC that uses duplicate ACKs, often these are equal
2013 * but when e.g. out-of-window ACKs or packet duplication occurs,
2014 * they differ. Since neither occurs due to loss, TCP should really
2017 static inline int tcp_dupack_heuristics(const struct tcp_sock
*tp
)
2019 return tp
->sacked_out
+ 1;
2022 /* Linux NewReno/SACK/ECN state machine.
2023 * --------------------------------------
2025 * "Open" Normal state, no dubious events, fast path.
2026 * "Disorder" In all the respects it is "Open",
2027 * but requires a bit more attention. It is entered when
2028 * we see some SACKs or dupacks. It is split of "Open"
2029 * mainly to move some processing from fast path to slow one.
2030 * "CWR" CWND was reduced due to some Congestion Notification event.
2031 * It can be ECN, ICMP source quench, local device congestion.
2032 * "Recovery" CWND was reduced, we are fast-retransmitting.
2033 * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
2035 * tcp_fastretrans_alert() is entered:
2036 * - each incoming ACK, if state is not "Open"
2037 * - when arrived ACK is unusual, namely:
2042 * Counting packets in flight is pretty simple.
2044 * in_flight = packets_out - left_out + retrans_out
2046 * packets_out is SND.NXT-SND.UNA counted in packets.
2048 * retrans_out is number of retransmitted segments.
2050 * left_out is number of segments left network, but not ACKed yet.
2052 * left_out = sacked_out + lost_out
2054 * sacked_out: Packets, which arrived to receiver out of order
2055 * and hence not ACKed. With SACKs this number is simply
2056 * amount of SACKed data. Even without SACKs
2057 * it is easy to give pretty reliable estimate of this number,
2058 * counting duplicate ACKs.
2060 * lost_out: Packets lost by network. TCP has no explicit
2061 * "loss notification" feedback from network (for now).
2062 * It means that this number can be only _guessed_.
2063 * Actually, it is the heuristics to predict lossage that
2064 * distinguishes different algorithms.
2066 * F.e. after RTO, when all the queue is considered as lost,
2067 * lost_out = packets_out and in_flight = retrans_out.
2069 * Essentially, we have now a few algorithms detecting
2072 * If the receiver supports SACK:
2074 * RFC6675/3517: It is the conventional algorithm. A packet is
2075 * considered lost if the number of higher sequence packets
2076 * SACKed is greater than or equal the DUPACK thoreshold
2077 * (reordering). This is implemented in tcp_mark_head_lost and
2078 * tcp_update_scoreboard.
2080 * RACK (draft-ietf-tcpm-rack-01): it is a newer algorithm
2081 * (2017-) that checks timing instead of counting DUPACKs.
2082 * Essentially a packet is considered lost if it's not S/ACKed
2083 * after RTT + reordering_window, where both metrics are
2084 * dynamically measured and adjusted. This is implemented in
2085 * tcp_rack_mark_lost.
2087 * If the receiver does not support SACK:
2089 * NewReno (RFC6582): in Recovery we assume that one segment
2090 * is lost (classic Reno). While we are in Recovery and
2091 * a partial ACK arrives, we assume that one more packet
2092 * is lost (NewReno). This heuristics are the same in NewReno
2095 * Really tricky (and requiring careful tuning) part of algorithm
2096 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2097 * The first determines the moment _when_ we should reduce CWND and,
2098 * hence, slow down forward transmission. In fact, it determines the moment
2099 * when we decide that hole is caused by loss, rather than by a reorder.
2101 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2102 * holes, caused by lost packets.
2104 * And the most logically complicated part of algorithm is undo
2105 * heuristics. We detect false retransmits due to both too early
2106 * fast retransmit (reordering) and underestimated RTO, analyzing
2107 * timestamps and D-SACKs. When we detect that some segments were
2108 * retransmitted by mistake and CWND reduction was wrong, we undo
2109 * window reduction and abort recovery phase. This logic is hidden
2110 * inside several functions named tcp_try_undo_<something>.
2113 /* This function decides, when we should leave Disordered state
2114 * and enter Recovery phase, reducing congestion window.
2116 * Main question: may we further continue forward transmission
2117 * with the same cwnd?
2119 static bool tcp_time_to_recover(struct sock
*sk
, int flag
)
2121 struct tcp_sock
*tp
= tcp_sk(sk
);
2123 /* Trick#1: The loss is proven. */
2127 /* Not-A-Trick#2 : Classic rule... */
2128 if (tcp_dupack_heuristics(tp
) > tp
->reordering
)
2134 /* Detect loss in event "A" above by marking head of queue up as lost.
2135 * For non-SACK(Reno) senders, the first "packets" number of segments
2136 * are considered lost. For RFC3517 SACK, a segment is considered lost if it
2137 * has at least tp->reordering SACKed seqments above it; "packets" refers to
2138 * the maximum SACKed segments to pass before reaching this limit.
2140 static void tcp_mark_head_lost(struct sock
*sk
, int packets
, int mark_head
)
2142 struct tcp_sock
*tp
= tcp_sk(sk
);
2143 struct sk_buff
*skb
;
2144 int cnt
, oldcnt
, lost
;
2146 /* Use SACK to deduce losses of new sequences sent during recovery */
2147 const u32 loss_high
= tcp_is_sack(tp
) ? tp
->snd_nxt
: tp
->high_seq
;
2149 WARN_ON(packets
> tp
->packets_out
);
2150 skb
= tp
->lost_skb_hint
;
2152 /* Head already handled? */
2153 if (mark_head
&& after(TCP_SKB_CB(skb
)->seq
, tp
->snd_una
))
2155 cnt
= tp
->lost_cnt_hint
;
2157 skb
= tcp_rtx_queue_head(sk
);
2161 skb_rbtree_walk_from(skb
) {
2162 /* TODO: do this better */
2163 /* this is not the most efficient way to do this... */
2164 tp
->lost_skb_hint
= skb
;
2165 tp
->lost_cnt_hint
= cnt
;
2167 if (after(TCP_SKB_CB(skb
)->end_seq
, loss_high
))
2171 if (tcp_is_reno(tp
) ||
2172 (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
))
2173 cnt
+= tcp_skb_pcount(skb
);
2175 if (cnt
> packets
) {
2176 if (tcp_is_sack(tp
) ||
2177 (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
) ||
2178 (oldcnt
>= packets
))
2181 mss
= tcp_skb_mss(skb
);
2182 /* If needed, chop off the prefix to mark as lost. */
2183 lost
= (packets
- oldcnt
) * mss
;
2184 if (lost
< skb
->len
&&
2185 tcp_fragment(sk
, TCP_FRAG_IN_RTX_QUEUE
, skb
,
2186 lost
, mss
, GFP_ATOMIC
) < 0)
2191 tcp_skb_mark_lost(tp
, skb
);
2196 tcp_verify_left_out(tp
);
2199 /* Account newly detected lost packet(s) */
2201 static void tcp_update_scoreboard(struct sock
*sk
, int fast_rexmit
)
2203 struct tcp_sock
*tp
= tcp_sk(sk
);
2205 if (tcp_is_reno(tp
)) {
2206 tcp_mark_head_lost(sk
, 1, 1);
2208 int sacked_upto
= tp
->sacked_out
- tp
->reordering
;
2209 if (sacked_upto
>= 0)
2210 tcp_mark_head_lost(sk
, sacked_upto
, 0);
2211 else if (fast_rexmit
)
2212 tcp_mark_head_lost(sk
, 1, 1);
2216 static bool tcp_tsopt_ecr_before(const struct tcp_sock
*tp
, u32 when
)
2218 return tp
->rx_opt
.saw_tstamp
&& tp
->rx_opt
.rcv_tsecr
&&
2219 before(tp
->rx_opt
.rcv_tsecr
, when
);
2222 /* skb is spurious retransmitted if the returned timestamp echo
2223 * reply is prior to the skb transmission time
2225 static bool tcp_skb_spurious_retrans(const struct tcp_sock
*tp
,
2226 const struct sk_buff
*skb
)
2228 return (TCP_SKB_CB(skb
)->sacked
& TCPCB_RETRANS
) &&
2229 tcp_tsopt_ecr_before(tp
, tcp_skb_timestamp(skb
));
2232 /* Nothing was retransmitted or returned timestamp is less
2233 * than timestamp of the first retransmission.
2235 static inline bool tcp_packet_delayed(const struct tcp_sock
*tp
)
2237 return !tp
->retrans_stamp
||
2238 tcp_tsopt_ecr_before(tp
, tp
->retrans_stamp
);
2241 /* Undo procedures. */
2243 /* We can clear retrans_stamp when there are no retransmissions in the
2244 * window. It would seem that it is trivially available for us in
2245 * tp->retrans_out, however, that kind of assumptions doesn't consider
2246 * what will happen if errors occur when sending retransmission for the
2247 * second time. ...It could the that such segment has only
2248 * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2249 * the head skb is enough except for some reneging corner cases that
2250 * are not worth the effort.
2252 * Main reason for all this complexity is the fact that connection dying
2253 * time now depends on the validity of the retrans_stamp, in particular,
2254 * that successive retransmissions of a segment must not advance
2255 * retrans_stamp under any conditions.
2257 static bool tcp_any_retrans_done(const struct sock
*sk
)
2259 const struct tcp_sock
*tp
= tcp_sk(sk
);
2260 struct sk_buff
*skb
;
2262 if (tp
->retrans_out
)
2265 skb
= tcp_rtx_queue_head(sk
);
2266 if (unlikely(skb
&& TCP_SKB_CB(skb
)->sacked
& TCPCB_EVER_RETRANS
))
2272 static void DBGUNDO(struct sock
*sk
, const char *msg
)
2274 #if FASTRETRANS_DEBUG > 1
2275 struct tcp_sock
*tp
= tcp_sk(sk
);
2276 struct inet_sock
*inet
= inet_sk(sk
);
2278 if (sk
->sk_family
== AF_INET
) {
2279 pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2281 &inet
->inet_daddr
, ntohs(inet
->inet_dport
),
2282 tp
->snd_cwnd
, tcp_left_out(tp
),
2283 tp
->snd_ssthresh
, tp
->prior_ssthresh
,
2286 #if IS_ENABLED(CONFIG_IPV6)
2287 else if (sk
->sk_family
== AF_INET6
) {
2288 pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2290 &sk
->sk_v6_daddr
, ntohs(inet
->inet_dport
),
2291 tp
->snd_cwnd
, tcp_left_out(tp
),
2292 tp
->snd_ssthresh
, tp
->prior_ssthresh
,
2299 static void tcp_undo_cwnd_reduction(struct sock
*sk
, bool unmark_loss
)
2301 struct tcp_sock
*tp
= tcp_sk(sk
);
2304 struct sk_buff
*skb
;
2306 skb_rbtree_walk(skb
, &sk
->tcp_rtx_queue
) {
2307 TCP_SKB_CB(skb
)->sacked
&= ~TCPCB_LOST
;
2310 tcp_clear_all_retrans_hints(tp
);
2313 if (tp
->prior_ssthresh
) {
2314 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
2316 tp
->snd_cwnd
= icsk
->icsk_ca_ops
->undo_cwnd(sk
);
2318 if (tp
->prior_ssthresh
> tp
->snd_ssthresh
) {
2319 tp
->snd_ssthresh
= tp
->prior_ssthresh
;
2320 tcp_ecn_withdraw_cwr(tp
);
2323 tp
->snd_cwnd_stamp
= tcp_jiffies32
;
2324 tp
->undo_marker
= 0;
2325 tp
->rack
.advanced
= 1; /* Force RACK to re-exam losses */
2328 static inline bool tcp_may_undo(const struct tcp_sock
*tp
)
2330 return tp
->undo_marker
&& (!tp
->undo_retrans
|| tcp_packet_delayed(tp
));
2333 /* People celebrate: "We love our President!" */
2334 static bool tcp_try_undo_recovery(struct sock
*sk
)
2336 struct tcp_sock
*tp
= tcp_sk(sk
);
2338 if (tcp_may_undo(tp
)) {
2341 /* Happy end! We did not retransmit anything
2342 * or our original transmission succeeded.
2344 DBGUNDO(sk
, inet_csk(sk
)->icsk_ca_state
== TCP_CA_Loss
? "loss" : "retrans");
2345 tcp_undo_cwnd_reduction(sk
, false);
2346 if (inet_csk(sk
)->icsk_ca_state
== TCP_CA_Loss
)
2347 mib_idx
= LINUX_MIB_TCPLOSSUNDO
;
2349 mib_idx
= LINUX_MIB_TCPFULLUNDO
;
2351 NET_INC_STATS(sock_net(sk
), mib_idx
);
2352 } else if (tp
->rack
.reo_wnd_persist
) {
2353 tp
->rack
.reo_wnd_persist
--;
2355 if (tp
->snd_una
== tp
->high_seq
&& tcp_is_reno(tp
)) {
2356 /* Hold old state until something *above* high_seq
2357 * is ACKed. For Reno it is MUST to prevent false
2358 * fast retransmits (RFC2582). SACK TCP is safe. */
2359 if (!tcp_any_retrans_done(sk
))
2360 tp
->retrans_stamp
= 0;
2363 tcp_set_ca_state(sk
, TCP_CA_Open
);
2364 tp
->is_sack_reneg
= 0;
2368 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2369 static bool tcp_try_undo_dsack(struct sock
*sk
)
2371 struct tcp_sock
*tp
= tcp_sk(sk
);
2373 if (tp
->undo_marker
&& !tp
->undo_retrans
) {
2374 tp
->rack
.reo_wnd_persist
= min(TCP_RACK_RECOVERY_THRESH
,
2375 tp
->rack
.reo_wnd_persist
+ 1);
2376 DBGUNDO(sk
, "D-SACK");
2377 tcp_undo_cwnd_reduction(sk
, false);
2378 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPDSACKUNDO
);
2384 /* Undo during loss recovery after partial ACK or using F-RTO. */
2385 static bool tcp_try_undo_loss(struct sock
*sk
, bool frto_undo
)
2387 struct tcp_sock
*tp
= tcp_sk(sk
);
2389 if (frto_undo
|| tcp_may_undo(tp
)) {
2390 tcp_undo_cwnd_reduction(sk
, true);
2392 DBGUNDO(sk
, "partial loss");
2393 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPLOSSUNDO
);
2395 NET_INC_STATS(sock_net(sk
),
2396 LINUX_MIB_TCPSPURIOUSRTOS
);
2397 inet_csk(sk
)->icsk_retransmits
= 0;
2398 if (frto_undo
|| tcp_is_sack(tp
)) {
2399 tcp_set_ca_state(sk
, TCP_CA_Open
);
2400 tp
->is_sack_reneg
= 0;
2407 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937.
2408 * It computes the number of packets to send (sndcnt) based on packets newly
2410 * 1) If the packets in flight is larger than ssthresh, PRR spreads the
2411 * cwnd reductions across a full RTT.
2412 * 2) Otherwise PRR uses packet conservation to send as much as delivered.
2413 * But when the retransmits are acked without further losses, PRR
2414 * slow starts cwnd up to ssthresh to speed up the recovery.
2416 static void tcp_init_cwnd_reduction(struct sock
*sk
)
2418 struct tcp_sock
*tp
= tcp_sk(sk
);
2420 tp
->high_seq
= tp
->snd_nxt
;
2421 tp
->tlp_high_seq
= 0;
2422 tp
->snd_cwnd_cnt
= 0;
2423 tp
->prior_cwnd
= tp
->snd_cwnd
;
2424 tp
->prr_delivered
= 0;
2426 tp
->snd_ssthresh
= inet_csk(sk
)->icsk_ca_ops
->ssthresh(sk
);
2427 tcp_ecn_queue_cwr(tp
);
2430 void tcp_cwnd_reduction(struct sock
*sk
, int newly_acked_sacked
, int flag
)
2432 struct tcp_sock
*tp
= tcp_sk(sk
);
2434 int delta
= tp
->snd_ssthresh
- tcp_packets_in_flight(tp
);
2436 if (newly_acked_sacked
<= 0 || WARN_ON_ONCE(!tp
->prior_cwnd
))
2439 tp
->prr_delivered
+= newly_acked_sacked
;
2441 u64 dividend
= (u64
)tp
->snd_ssthresh
* tp
->prr_delivered
+
2443 sndcnt
= div_u64(dividend
, tp
->prior_cwnd
) - tp
->prr_out
;
2444 } else if ((flag
& FLAG_RETRANS_DATA_ACKED
) &&
2445 !(flag
& FLAG_LOST_RETRANS
)) {
2446 sndcnt
= min_t(int, delta
,
2447 max_t(int, tp
->prr_delivered
- tp
->prr_out
,
2448 newly_acked_sacked
) + 1);
2450 sndcnt
= min(delta
, newly_acked_sacked
);
2452 /* Force a fast retransmit upon entering fast recovery */
2453 sndcnt
= max(sndcnt
, (tp
->prr_out
? 0 : 1));
2454 tp
->snd_cwnd
= tcp_packets_in_flight(tp
) + sndcnt
;
2457 static inline void tcp_end_cwnd_reduction(struct sock
*sk
)
2459 struct tcp_sock
*tp
= tcp_sk(sk
);
2461 if (inet_csk(sk
)->icsk_ca_ops
->cong_control
)
2464 /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2465 if (tp
->snd_ssthresh
< TCP_INFINITE_SSTHRESH
&&
2466 (inet_csk(sk
)->icsk_ca_state
== TCP_CA_CWR
|| tp
->undo_marker
)) {
2467 tp
->snd_cwnd
= tp
->snd_ssthresh
;
2468 tp
->snd_cwnd_stamp
= tcp_jiffies32
;
2470 tcp_ca_event(sk
, CA_EVENT_COMPLETE_CWR
);
2473 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
2474 void tcp_enter_cwr(struct sock
*sk
)
2476 struct tcp_sock
*tp
= tcp_sk(sk
);
2478 tp
->prior_ssthresh
= 0;
2479 if (inet_csk(sk
)->icsk_ca_state
< TCP_CA_CWR
) {
2480 tp
->undo_marker
= 0;
2481 tcp_init_cwnd_reduction(sk
);
2482 tcp_set_ca_state(sk
, TCP_CA_CWR
);
2485 EXPORT_SYMBOL(tcp_enter_cwr
);
2487 static void tcp_try_keep_open(struct sock
*sk
)
2489 struct tcp_sock
*tp
= tcp_sk(sk
);
2490 int state
= TCP_CA_Open
;
2492 if (tcp_left_out(tp
) || tcp_any_retrans_done(sk
))
2493 state
= TCP_CA_Disorder
;
2495 if (inet_csk(sk
)->icsk_ca_state
!= state
) {
2496 tcp_set_ca_state(sk
, state
);
2497 tp
->high_seq
= tp
->snd_nxt
;
2501 static void tcp_try_to_open(struct sock
*sk
, int flag
)
2503 struct tcp_sock
*tp
= tcp_sk(sk
);
2505 tcp_verify_left_out(tp
);
2507 if (!tcp_any_retrans_done(sk
))
2508 tp
->retrans_stamp
= 0;
2510 if (flag
& FLAG_ECE
)
2513 if (inet_csk(sk
)->icsk_ca_state
!= TCP_CA_CWR
) {
2514 tcp_try_keep_open(sk
);
2518 static void tcp_mtup_probe_failed(struct sock
*sk
)
2520 struct inet_connection_sock
*icsk
= inet_csk(sk
);
2522 icsk
->icsk_mtup
.search_high
= icsk
->icsk_mtup
.probe_size
- 1;
2523 icsk
->icsk_mtup
.probe_size
= 0;
2524 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPMTUPFAIL
);
2527 static void tcp_mtup_probe_success(struct sock
*sk
)
2529 struct tcp_sock
*tp
= tcp_sk(sk
);
2530 struct inet_connection_sock
*icsk
= inet_csk(sk
);
2532 /* FIXME: breaks with very large cwnd */
2533 tp
->prior_ssthresh
= tcp_current_ssthresh(sk
);
2534 tp
->snd_cwnd
= tp
->snd_cwnd
*
2535 tcp_mss_to_mtu(sk
, tp
->mss_cache
) /
2536 icsk
->icsk_mtup
.probe_size
;
2537 tp
->snd_cwnd_cnt
= 0;
2538 tp
->snd_cwnd_stamp
= tcp_jiffies32
;
2539 tp
->snd_ssthresh
= tcp_current_ssthresh(sk
);
2541 icsk
->icsk_mtup
.search_low
= icsk
->icsk_mtup
.probe_size
;
2542 icsk
->icsk_mtup
.probe_size
= 0;
2543 tcp_sync_mss(sk
, icsk
->icsk_pmtu_cookie
);
2544 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPMTUPSUCCESS
);
2547 /* Do a simple retransmit without using the backoff mechanisms in
2548 * tcp_timer. This is used for path mtu discovery.
2549 * The socket is already locked here.
2551 void tcp_simple_retransmit(struct sock
*sk
)
2553 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
2554 struct tcp_sock
*tp
= tcp_sk(sk
);
2555 struct sk_buff
*skb
;
2556 unsigned int mss
= tcp_current_mss(sk
);
2558 skb_rbtree_walk(skb
, &sk
->tcp_rtx_queue
) {
2559 if (tcp_skb_seglen(skb
) > mss
&&
2560 !(TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
)) {
2561 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_RETRANS
) {
2562 TCP_SKB_CB(skb
)->sacked
&= ~TCPCB_SACKED_RETRANS
;
2563 tp
->retrans_out
-= tcp_skb_pcount(skb
);
2565 tcp_skb_mark_lost_uncond_verify(tp
, skb
);
2569 tcp_clear_retrans_hints_partial(tp
);
2574 if (tcp_is_reno(tp
))
2575 tcp_limit_reno_sacked(tp
);
2577 tcp_verify_left_out(tp
);
2579 /* Don't muck with the congestion window here.
2580 * Reason is that we do not increase amount of _data_
2581 * in network, but units changed and effective
2582 * cwnd/ssthresh really reduced now.
2584 if (icsk
->icsk_ca_state
!= TCP_CA_Loss
) {
2585 tp
->high_seq
= tp
->snd_nxt
;
2586 tp
->snd_ssthresh
= tcp_current_ssthresh(sk
);
2587 tp
->prior_ssthresh
= 0;
2588 tp
->undo_marker
= 0;
2589 tcp_set_ca_state(sk
, TCP_CA_Loss
);
2591 tcp_xmit_retransmit_queue(sk
);
2593 EXPORT_SYMBOL(tcp_simple_retransmit
);
2595 void tcp_enter_recovery(struct sock
*sk
, bool ece_ack
)
2597 struct tcp_sock
*tp
= tcp_sk(sk
);
2600 if (tcp_is_reno(tp
))
2601 mib_idx
= LINUX_MIB_TCPRENORECOVERY
;
2603 mib_idx
= LINUX_MIB_TCPSACKRECOVERY
;
2605 NET_INC_STATS(sock_net(sk
), mib_idx
);
2607 tp
->prior_ssthresh
= 0;
2610 if (!tcp_in_cwnd_reduction(sk
)) {
2612 tp
->prior_ssthresh
= tcp_current_ssthresh(sk
);
2613 tcp_init_cwnd_reduction(sk
);
2615 tcp_set_ca_state(sk
, TCP_CA_Recovery
);
2618 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
2619 * recovered or spurious. Otherwise retransmits more on partial ACKs.
2621 static void tcp_process_loss(struct sock
*sk
, int flag
, bool is_dupack
,
2624 struct tcp_sock
*tp
= tcp_sk(sk
);
2625 bool recovered
= !before(tp
->snd_una
, tp
->high_seq
);
2627 if ((flag
& FLAG_SND_UNA_ADVANCED
) &&
2628 tcp_try_undo_loss(sk
, false))
2631 /* The ACK (s)acks some never-retransmitted data meaning not all
2632 * the data packets before the timeout were lost. Therefore we
2633 * undo the congestion window and state. This is essentially
2634 * the operation in F-RTO (RFC5682 section 3.1 step 3.b). Since
2635 * a retransmitted skb is permantly marked, we can apply such an
2636 * operation even if F-RTO was not used.
2638 if ((flag
& FLAG_ORIG_SACK_ACKED
) &&
2639 tcp_try_undo_loss(sk
, tp
->undo_marker
))
2642 if (tp
->frto
) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
2643 if (after(tp
->snd_nxt
, tp
->high_seq
)) {
2644 if (flag
& FLAG_DATA_SACKED
|| is_dupack
)
2645 tp
->frto
= 0; /* Step 3.a. loss was real */
2646 } else if (flag
& FLAG_SND_UNA_ADVANCED
&& !recovered
) {
2647 tp
->high_seq
= tp
->snd_nxt
;
2648 /* Step 2.b. Try send new data (but deferred until cwnd
2649 * is updated in tcp_ack()). Otherwise fall back to
2650 * the conventional recovery.
2652 if (!tcp_write_queue_empty(sk
) &&
2653 after(tcp_wnd_end(tp
), tp
->snd_nxt
)) {
2654 *rexmit
= REXMIT_NEW
;
2662 /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
2663 tcp_try_undo_recovery(sk
);
2666 if (tcp_is_reno(tp
)) {
2667 /* A Reno DUPACK means new data in F-RTO step 2.b above are
2668 * delivered. Lower inflight to clock out (re)tranmissions.
2670 if (after(tp
->snd_nxt
, tp
->high_seq
) && is_dupack
)
2671 tcp_add_reno_sack(sk
);
2672 else if (flag
& FLAG_SND_UNA_ADVANCED
)
2673 tcp_reset_reno_sack(tp
);
2675 *rexmit
= REXMIT_LOST
;
2678 /* Undo during fast recovery after partial ACK. */
2679 static bool tcp_try_undo_partial(struct sock
*sk
, u32 prior_snd_una
)
2681 struct tcp_sock
*tp
= tcp_sk(sk
);
2683 if (tp
->undo_marker
&& tcp_packet_delayed(tp
)) {
2684 /* Plain luck! Hole if filled with delayed
2685 * packet, rather than with a retransmit. Check reordering.
2687 tcp_check_sack_reordering(sk
, prior_snd_una
, 1);
2689 /* We are getting evidence that the reordering degree is higher
2690 * than we realized. If there are no retransmits out then we
2691 * can undo. Otherwise we clock out new packets but do not
2692 * mark more packets lost or retransmit more.
2694 if (tp
->retrans_out
)
2697 if (!tcp_any_retrans_done(sk
))
2698 tp
->retrans_stamp
= 0;
2700 DBGUNDO(sk
, "partial recovery");
2701 tcp_undo_cwnd_reduction(sk
, true);
2702 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPPARTIALUNDO
);
2703 tcp_try_keep_open(sk
);
2709 static void tcp_rack_identify_loss(struct sock
*sk
, int *ack_flag
)
2711 struct tcp_sock
*tp
= tcp_sk(sk
);
2713 /* Use RACK to detect loss */
2714 if (sock_net(sk
)->ipv4
.sysctl_tcp_recovery
& TCP_RACK_LOSS_DETECTION
) {
2715 u32 prior_retrans
= tp
->retrans_out
;
2717 tcp_rack_mark_lost(sk
);
2718 if (prior_retrans
> tp
->retrans_out
)
2719 *ack_flag
|= FLAG_LOST_RETRANS
;
2723 static bool tcp_force_fast_retransmit(struct sock
*sk
)
2725 struct tcp_sock
*tp
= tcp_sk(sk
);
2727 return after(tcp_highest_sack_seq(tp
),
2728 tp
->snd_una
+ tp
->reordering
* tp
->mss_cache
);
2731 /* Process an event, which can update packets-in-flight not trivially.
2732 * Main goal of this function is to calculate new estimate for left_out,
2733 * taking into account both packets sitting in receiver's buffer and
2734 * packets lost by network.
2736 * Besides that it updates the congestion state when packet loss or ECN
2737 * is detected. But it does not reduce the cwnd, it is done by the
2738 * congestion control later.
2740 * It does _not_ decide what to send, it is made in function
2741 * tcp_xmit_retransmit_queue().
2743 static void tcp_fastretrans_alert(struct sock
*sk
, const u32 prior_snd_una
,
2744 bool is_dupack
, int *ack_flag
, int *rexmit
)
2746 struct inet_connection_sock
*icsk
= inet_csk(sk
);
2747 struct tcp_sock
*tp
= tcp_sk(sk
);
2748 int fast_rexmit
= 0, flag
= *ack_flag
;
2749 bool do_lost
= is_dupack
|| ((flag
& FLAG_DATA_SACKED
) &&
2750 tcp_force_fast_retransmit(sk
));
2752 if (!tp
->packets_out
&& tp
->sacked_out
)
2755 /* Now state machine starts.
2756 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2757 if (flag
& FLAG_ECE
)
2758 tp
->prior_ssthresh
= 0;
2760 /* B. In all the states check for reneging SACKs. */
2761 if (tcp_check_sack_reneging(sk
, flag
))
2764 /* C. Check consistency of the current state. */
2765 tcp_verify_left_out(tp
);
2767 /* D. Check state exit conditions. State can be terminated
2768 * when high_seq is ACKed. */
2769 if (icsk
->icsk_ca_state
== TCP_CA_Open
) {
2770 WARN_ON(tp
->retrans_out
!= 0);
2771 tp
->retrans_stamp
= 0;
2772 } else if (!before(tp
->snd_una
, tp
->high_seq
)) {
2773 switch (icsk
->icsk_ca_state
) {
2775 /* CWR is to be held something *above* high_seq
2776 * is ACKed for CWR bit to reach receiver. */
2777 if (tp
->snd_una
!= tp
->high_seq
) {
2778 tcp_end_cwnd_reduction(sk
);
2779 tcp_set_ca_state(sk
, TCP_CA_Open
);
2783 case TCP_CA_Recovery
:
2784 if (tcp_is_reno(tp
))
2785 tcp_reset_reno_sack(tp
);
2786 if (tcp_try_undo_recovery(sk
))
2788 tcp_end_cwnd_reduction(sk
);
2793 /* E. Process state. */
2794 switch (icsk
->icsk_ca_state
) {
2795 case TCP_CA_Recovery
:
2796 if (!(flag
& FLAG_SND_UNA_ADVANCED
)) {
2797 if (tcp_is_reno(tp
) && is_dupack
)
2798 tcp_add_reno_sack(sk
);
2800 if (tcp_try_undo_partial(sk
, prior_snd_una
))
2802 /* Partial ACK arrived. Force fast retransmit. */
2803 do_lost
= tcp_is_reno(tp
) ||
2804 tcp_force_fast_retransmit(sk
);
2806 if (tcp_try_undo_dsack(sk
)) {
2807 tcp_try_keep_open(sk
);
2810 tcp_rack_identify_loss(sk
, ack_flag
);
2813 tcp_process_loss(sk
, flag
, is_dupack
, rexmit
);
2814 tcp_rack_identify_loss(sk
, ack_flag
);
2815 if (!(icsk
->icsk_ca_state
== TCP_CA_Open
||
2816 (*ack_flag
& FLAG_LOST_RETRANS
)))
2818 /* Change state if cwnd is undone or retransmits are lost */
2821 if (tcp_is_reno(tp
)) {
2822 if (flag
& FLAG_SND_UNA_ADVANCED
)
2823 tcp_reset_reno_sack(tp
);
2825 tcp_add_reno_sack(sk
);
2828 if (icsk
->icsk_ca_state
<= TCP_CA_Disorder
)
2829 tcp_try_undo_dsack(sk
);
2831 tcp_rack_identify_loss(sk
, ack_flag
);
2832 if (!tcp_time_to_recover(sk
, flag
)) {
2833 tcp_try_to_open(sk
, flag
);
2837 /* MTU probe failure: don't reduce cwnd */
2838 if (icsk
->icsk_ca_state
< TCP_CA_CWR
&&
2839 icsk
->icsk_mtup
.probe_size
&&
2840 tp
->snd_una
== tp
->mtu_probe
.probe_seq_start
) {
2841 tcp_mtup_probe_failed(sk
);
2842 /* Restores the reduction we did in tcp_mtup_probe() */
2844 tcp_simple_retransmit(sk
);
2848 /* Otherwise enter Recovery state */
2849 tcp_enter_recovery(sk
, (flag
& FLAG_ECE
));
2854 tcp_update_scoreboard(sk
, fast_rexmit
);
2855 *rexmit
= REXMIT_LOST
;
2858 static void tcp_update_rtt_min(struct sock
*sk
, u32 rtt_us
, const int flag
)
2860 u32 wlen
= sock_net(sk
)->ipv4
.sysctl_tcp_min_rtt_wlen
* HZ
;
2861 struct tcp_sock
*tp
= tcp_sk(sk
);
2863 if ((flag
& FLAG_ACK_MAYBE_DELAYED
) && rtt_us
> tcp_min_rtt(tp
)) {
2864 /* If the remote keeps returning delayed ACKs, eventually
2865 * the min filter would pick it up and overestimate the
2866 * prop. delay when it expires. Skip suspected delayed ACKs.
2870 minmax_running_min(&tp
->rtt_min
, wlen
, tcp_jiffies32
,
2871 rtt_us
? : jiffies_to_usecs(1));
2874 static bool tcp_ack_update_rtt(struct sock
*sk
, const int flag
,
2875 long seq_rtt_us
, long sack_rtt_us
,
2876 long ca_rtt_us
, struct rate_sample
*rs
)
2878 const struct tcp_sock
*tp
= tcp_sk(sk
);
2880 /* Prefer RTT measured from ACK's timing to TS-ECR. This is because
2881 * broken middle-boxes or peers may corrupt TS-ECR fields. But
2882 * Karn's algorithm forbids taking RTT if some retransmitted data
2883 * is acked (RFC6298).
2886 seq_rtt_us
= sack_rtt_us
;
2888 /* RTTM Rule: A TSecr value received in a segment is used to
2889 * update the averaged RTT measurement only if the segment
2890 * acknowledges some new data, i.e., only if it advances the
2891 * left edge of the send window.
2892 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2894 if (seq_rtt_us
< 0 && tp
->rx_opt
.saw_tstamp
&& tp
->rx_opt
.rcv_tsecr
&&
2895 flag
& FLAG_ACKED
) {
2896 u32 delta
= tcp_time_stamp(tp
) - tp
->rx_opt
.rcv_tsecr
;
2897 u32 delta_us
= delta
* (USEC_PER_SEC
/ TCP_TS_HZ
);
2899 seq_rtt_us
= ca_rtt_us
= delta_us
;
2901 rs
->rtt_us
= ca_rtt_us
; /* RTT of last (S)ACKed packet (or -1) */
2905 /* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is
2906 * always taken together with ACK, SACK, or TS-opts. Any negative
2907 * values will be skipped with the seq_rtt_us < 0 check above.
2909 tcp_update_rtt_min(sk
, ca_rtt_us
, flag
);
2910 tcp_rtt_estimator(sk
, seq_rtt_us
);
2913 /* RFC6298: only reset backoff on valid RTT measurement. */
2914 inet_csk(sk
)->icsk_backoff
= 0;
2918 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
2919 void tcp_synack_rtt_meas(struct sock
*sk
, struct request_sock
*req
)
2921 struct rate_sample rs
;
2924 if (req
&& !req
->num_retrans
&& tcp_rsk(req
)->snt_synack
)
2925 rtt_us
= tcp_stamp_us_delta(tcp_clock_us(), tcp_rsk(req
)->snt_synack
);
2927 tcp_ack_update_rtt(sk
, FLAG_SYN_ACKED
, rtt_us
, -1L, rtt_us
, &rs
);
2931 static void tcp_cong_avoid(struct sock
*sk
, u32 ack
, u32 acked
)
2933 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
2935 icsk
->icsk_ca_ops
->cong_avoid(sk
, ack
, acked
);
2936 tcp_sk(sk
)->snd_cwnd_stamp
= tcp_jiffies32
;
2939 /* Restart timer after forward progress on connection.
2940 * RFC2988 recommends to restart timer to now+rto.
2942 void tcp_rearm_rto(struct sock
*sk
)
2944 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
2945 struct tcp_sock
*tp
= tcp_sk(sk
);
2947 /* If the retrans timer is currently being used by Fast Open
2948 * for SYN-ACK retrans purpose, stay put.
2950 if (tp
->fastopen_rsk
)
2953 if (!tp
->packets_out
) {
2954 inet_csk_clear_xmit_timer(sk
, ICSK_TIME_RETRANS
);
2956 u32 rto
= inet_csk(sk
)->icsk_rto
;
2957 /* Offset the time elapsed after installing regular RTO */
2958 if (icsk
->icsk_pending
== ICSK_TIME_REO_TIMEOUT
||
2959 icsk
->icsk_pending
== ICSK_TIME_LOSS_PROBE
) {
2960 s64 delta_us
= tcp_rto_delta_us(sk
);
2961 /* delta_us may not be positive if the socket is locked
2962 * when the retrans timer fires and is rescheduled.
2964 rto
= usecs_to_jiffies(max_t(int, delta_us
, 1));
2966 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_RETRANS
, rto
,
2971 /* Try to schedule a loss probe; if that doesn't work, then schedule an RTO. */
2972 static void tcp_set_xmit_timer(struct sock
*sk
)
2974 if (!tcp_schedule_loss_probe(sk
, true))
2978 /* If we get here, the whole TSO packet has not been acked. */
2979 static u32
tcp_tso_acked(struct sock
*sk
, struct sk_buff
*skb
)
2981 struct tcp_sock
*tp
= tcp_sk(sk
);
2984 BUG_ON(!after(TCP_SKB_CB(skb
)->end_seq
, tp
->snd_una
));
2986 packets_acked
= tcp_skb_pcount(skb
);
2987 if (tcp_trim_head(sk
, skb
, tp
->snd_una
- TCP_SKB_CB(skb
)->seq
))
2989 packets_acked
-= tcp_skb_pcount(skb
);
2991 if (packets_acked
) {
2992 BUG_ON(tcp_skb_pcount(skb
) == 0);
2993 BUG_ON(!before(TCP_SKB_CB(skb
)->seq
, TCP_SKB_CB(skb
)->end_seq
));
2996 return packets_acked
;
2999 static void tcp_ack_tstamp(struct sock
*sk
, struct sk_buff
*skb
,
3002 const struct skb_shared_info
*shinfo
;
3004 /* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */
3005 if (likely(!TCP_SKB_CB(skb
)->txstamp_ack
))
3008 shinfo
= skb_shinfo(skb
);
3009 if (!before(shinfo
->tskey
, prior_snd_una
) &&
3010 before(shinfo
->tskey
, tcp_sk(sk
)->snd_una
)) {
3011 tcp_skb_tsorted_save(skb
) {
3012 __skb_tstamp_tx(skb
, NULL
, sk
, SCM_TSTAMP_ACK
);
3013 } tcp_skb_tsorted_restore(skb
);
3017 /* Remove acknowledged frames from the retransmission queue. If our packet
3018 * is before the ack sequence we can discard it as it's confirmed to have
3019 * arrived at the other end.
3021 static int tcp_clean_rtx_queue(struct sock
*sk
, u32 prior_fack
,
3023 struct tcp_sacktag_state
*sack
)
3025 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
3026 u64 first_ackt
, last_ackt
;
3027 struct tcp_sock
*tp
= tcp_sk(sk
);
3028 u32 prior_sacked
= tp
->sacked_out
;
3029 u32 reord
= tp
->snd_nxt
; /* lowest acked un-retx un-sacked seq */
3030 struct sk_buff
*skb
, *next
;
3031 bool fully_acked
= true;
3032 long sack_rtt_us
= -1L;
3033 long seq_rtt_us
= -1L;
3034 long ca_rtt_us
= -1L;
3036 u32 last_in_flight
= 0;
3042 for (skb
= skb_rb_first(&sk
->tcp_rtx_queue
); skb
; skb
= next
) {
3043 struct tcp_skb_cb
*scb
= TCP_SKB_CB(skb
);
3044 const u32 start_seq
= scb
->seq
;
3045 u8 sacked
= scb
->sacked
;
3048 tcp_ack_tstamp(sk
, skb
, prior_snd_una
);
3050 /* Determine how many packets and what bytes were acked, tso and else */
3051 if (after(scb
->end_seq
, tp
->snd_una
)) {
3052 if (tcp_skb_pcount(skb
) == 1 ||
3053 !after(tp
->snd_una
, scb
->seq
))
3056 acked_pcount
= tcp_tso_acked(sk
, skb
);
3059 fully_acked
= false;
3061 acked_pcount
= tcp_skb_pcount(skb
);
3064 if (unlikely(sacked
& TCPCB_RETRANS
)) {
3065 if (sacked
& TCPCB_SACKED_RETRANS
)
3066 tp
->retrans_out
-= acked_pcount
;
3067 flag
|= FLAG_RETRANS_DATA_ACKED
;
3068 } else if (!(sacked
& TCPCB_SACKED_ACKED
)) {
3069 last_ackt
= skb
->skb_mstamp
;
3070 WARN_ON_ONCE(last_ackt
== 0);
3072 first_ackt
= last_ackt
;
3074 last_in_flight
= TCP_SKB_CB(skb
)->tx
.in_flight
;
3075 if (before(start_seq
, reord
))
3077 if (!after(scb
->end_seq
, tp
->high_seq
))
3078 flag
|= FLAG_ORIG_SACK_ACKED
;
3081 if (sacked
& TCPCB_SACKED_ACKED
) {
3082 tp
->sacked_out
-= acked_pcount
;
3083 } else if (tcp_is_sack(tp
)) {
3084 tp
->delivered
+= acked_pcount
;
3085 if (!tcp_skb_spurious_retrans(tp
, skb
))
3086 tcp_rack_advance(tp
, sacked
, scb
->end_seq
,
3089 if (sacked
& TCPCB_LOST
)
3090 tp
->lost_out
-= acked_pcount
;
3092 tp
->packets_out
-= acked_pcount
;
3093 pkts_acked
+= acked_pcount
;
3094 tcp_rate_skb_delivered(sk
, skb
, sack
->rate
);
3096 /* Initial outgoing SYN's get put onto the write_queue
3097 * just like anything else we transmit. It is not
3098 * true data, and if we misinform our callers that
3099 * this ACK acks real data, we will erroneously exit
3100 * connection startup slow start one packet too
3101 * quickly. This is severely frowned upon behavior.
3103 if (likely(!(scb
->tcp_flags
& TCPHDR_SYN
))) {
3104 flag
|= FLAG_DATA_ACKED
;
3106 flag
|= FLAG_SYN_ACKED
;
3107 tp
->retrans_stamp
= 0;
3113 next
= skb_rb_next(skb
);
3114 if (unlikely(skb
== tp
->retransmit_skb_hint
))
3115 tp
->retransmit_skb_hint
= NULL
;
3116 if (unlikely(skb
== tp
->lost_skb_hint
))
3117 tp
->lost_skb_hint
= NULL
;
3118 tcp_rtx_queue_unlink_and_free(skb
, sk
);
3122 tcp_chrono_stop(sk
, TCP_CHRONO_BUSY
);
3124 if (likely(between(tp
->snd_up
, prior_snd_una
, tp
->snd_una
)))
3125 tp
->snd_up
= tp
->snd_una
;
3127 if (skb
&& (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
))
3128 flag
|= FLAG_SACK_RENEGING
;
3130 if (likely(first_ackt
) && !(flag
& FLAG_RETRANS_DATA_ACKED
)) {
3131 seq_rtt_us
= tcp_stamp_us_delta(tp
->tcp_mstamp
, first_ackt
);
3132 ca_rtt_us
= tcp_stamp_us_delta(tp
->tcp_mstamp
, last_ackt
);
3134 if (pkts_acked
== 1 && last_in_flight
< tp
->mss_cache
&&
3135 last_in_flight
&& !prior_sacked
&& fully_acked
&&
3136 sack
->rate
->prior_delivered
+ 1 == tp
->delivered
&&
3137 !(flag
& (FLAG_CA_ALERT
| FLAG_SYN_ACKED
))) {
3138 /* Conservatively mark a delayed ACK. It's typically
3139 * from a lone runt packet over the round trip to
3140 * a receiver w/o out-of-order or CE events.
3142 flag
|= FLAG_ACK_MAYBE_DELAYED
;
3145 if (sack
->first_sackt
) {
3146 sack_rtt_us
= tcp_stamp_us_delta(tp
->tcp_mstamp
, sack
->first_sackt
);
3147 ca_rtt_us
= tcp_stamp_us_delta(tp
->tcp_mstamp
, sack
->last_sackt
);
3149 rtt_update
= tcp_ack_update_rtt(sk
, flag
, seq_rtt_us
, sack_rtt_us
,
3150 ca_rtt_us
, sack
->rate
);
3152 if (flag
& FLAG_ACKED
) {
3153 flag
|= FLAG_SET_XMIT_TIMER
; /* set TLP or RTO timer */
3154 if (unlikely(icsk
->icsk_mtup
.probe_size
&&
3155 !after(tp
->mtu_probe
.probe_seq_end
, tp
->snd_una
))) {
3156 tcp_mtup_probe_success(sk
);
3159 if (tcp_is_reno(tp
)) {
3160 tcp_remove_reno_sacks(sk
, pkts_acked
);
3164 /* Non-retransmitted hole got filled? That's reordering */
3165 if (before(reord
, prior_fack
))
3166 tcp_check_sack_reordering(sk
, reord
, 0);
3168 delta
= prior_sacked
- tp
->sacked_out
;
3169 tp
->lost_cnt_hint
-= min(tp
->lost_cnt_hint
, delta
);
3171 } else if (skb
&& rtt_update
&& sack_rtt_us
>= 0 &&
3172 sack_rtt_us
> tcp_stamp_us_delta(tp
->tcp_mstamp
, skb
->skb_mstamp
)) {
3173 /* Do not re-arm RTO if the sack RTT is measured from data sent
3174 * after when the head was last (re)transmitted. Otherwise the
3175 * timeout may continue to extend in loss recovery.
3177 flag
|= FLAG_SET_XMIT_TIMER
; /* set TLP or RTO timer */
3180 if (icsk
->icsk_ca_ops
->pkts_acked
) {
3181 struct ack_sample sample
= { .pkts_acked
= pkts_acked
,
3182 .rtt_us
= sack
->rate
->rtt_us
,
3183 .in_flight
= last_in_flight
};
3185 icsk
->icsk_ca_ops
->pkts_acked(sk
, &sample
);
3188 #if FASTRETRANS_DEBUG > 0
3189 WARN_ON((int)tp
->sacked_out
< 0);
3190 WARN_ON((int)tp
->lost_out
< 0);
3191 WARN_ON((int)tp
->retrans_out
< 0);
3192 if (!tp
->packets_out
&& tcp_is_sack(tp
)) {
3193 icsk
= inet_csk(sk
);
3195 pr_debug("Leak l=%u %d\n",
3196 tp
->lost_out
, icsk
->icsk_ca_state
);
3199 if (tp
->sacked_out
) {
3200 pr_debug("Leak s=%u %d\n",
3201 tp
->sacked_out
, icsk
->icsk_ca_state
);
3204 if (tp
->retrans_out
) {
3205 pr_debug("Leak r=%u %d\n",
3206 tp
->retrans_out
, icsk
->icsk_ca_state
);
3207 tp
->retrans_out
= 0;
3214 static void tcp_ack_probe(struct sock
*sk
)
3216 struct inet_connection_sock
*icsk
= inet_csk(sk
);
3217 struct sk_buff
*head
= tcp_send_head(sk
);
3218 const struct tcp_sock
*tp
= tcp_sk(sk
);
3220 /* Was it a usable window open? */
3223 if (!after(TCP_SKB_CB(head
)->end_seq
, tcp_wnd_end(tp
))) {
3224 icsk
->icsk_backoff
= 0;
3225 inet_csk_clear_xmit_timer(sk
, ICSK_TIME_PROBE0
);
3226 /* Socket must be waked up by subsequent tcp_data_snd_check().
3227 * This function is not for random using!
3230 unsigned long when
= tcp_probe0_when(sk
, TCP_RTO_MAX
);
3232 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_PROBE0
,
3237 static inline bool tcp_ack_is_dubious(const struct sock
*sk
, const int flag
)
3239 return !(flag
& FLAG_NOT_DUP
) || (flag
& FLAG_CA_ALERT
) ||
3240 inet_csk(sk
)->icsk_ca_state
!= TCP_CA_Open
;
3243 /* Decide wheather to run the increase function of congestion control. */
3244 static inline bool tcp_may_raise_cwnd(const struct sock
*sk
, const int flag
)
3246 /* If reordering is high then always grow cwnd whenever data is
3247 * delivered regardless of its ordering. Otherwise stay conservative
3248 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
3249 * new SACK or ECE mark may first advance cwnd here and later reduce
3250 * cwnd in tcp_fastretrans_alert() based on more states.
3252 if (tcp_sk(sk
)->reordering
> sock_net(sk
)->ipv4
.sysctl_tcp_reordering
)
3253 return flag
& FLAG_FORWARD_PROGRESS
;
3255 return flag
& FLAG_DATA_ACKED
;
3258 /* The "ultimate" congestion control function that aims to replace the rigid
3259 * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction).
3260 * It's called toward the end of processing an ACK with precise rate
3261 * information. All transmission or retransmission are delayed afterwards.
3263 static void tcp_cong_control(struct sock
*sk
, u32 ack
, u32 acked_sacked
,
3264 int flag
, const struct rate_sample
*rs
)
3266 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
3268 if (icsk
->icsk_ca_ops
->cong_control
) {
3269 icsk
->icsk_ca_ops
->cong_control(sk
, rs
);
3273 if (tcp_in_cwnd_reduction(sk
)) {
3274 /* Reduce cwnd if state mandates */
3275 tcp_cwnd_reduction(sk
, acked_sacked
, flag
);
3276 } else if (tcp_may_raise_cwnd(sk
, flag
)) {
3277 /* Advance cwnd if state allows */
3278 tcp_cong_avoid(sk
, ack
, acked_sacked
);
3280 tcp_update_pacing_rate(sk
);
3283 /* Check that window update is acceptable.
3284 * The function assumes that snd_una<=ack<=snd_next.
3286 static inline bool tcp_may_update_window(const struct tcp_sock
*tp
,
3287 const u32 ack
, const u32 ack_seq
,
3290 return after(ack
, tp
->snd_una
) ||
3291 after(ack_seq
, tp
->snd_wl1
) ||
3292 (ack_seq
== tp
->snd_wl1
&& nwin
> tp
->snd_wnd
);
3295 /* If we update tp->snd_una, also update tp->bytes_acked */
3296 static void tcp_snd_una_update(struct tcp_sock
*tp
, u32 ack
)
3298 u32 delta
= ack
- tp
->snd_una
;
3300 sock_owned_by_me((struct sock
*)tp
);
3301 tp
->bytes_acked
+= delta
;
3305 /* If we update tp->rcv_nxt, also update tp->bytes_received */
3306 static void tcp_rcv_nxt_update(struct tcp_sock
*tp
, u32 seq
)
3308 u32 delta
= seq
- tp
->rcv_nxt
;
3310 sock_owned_by_me((struct sock
*)tp
);
3311 tp
->bytes_received
+= delta
;
3315 /* Update our send window.
3317 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3318 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3320 static int tcp_ack_update_window(struct sock
*sk
, const struct sk_buff
*skb
, u32 ack
,
3323 struct tcp_sock
*tp
= tcp_sk(sk
);
3325 u32 nwin
= ntohs(tcp_hdr(skb
)->window
);
3327 if (likely(!tcp_hdr(skb
)->syn
))
3328 nwin
<<= tp
->rx_opt
.snd_wscale
;
3330 if (tcp_may_update_window(tp
, ack
, ack_seq
, nwin
)) {
3331 flag
|= FLAG_WIN_UPDATE
;
3332 tcp_update_wl(tp
, ack_seq
);
3334 if (tp
->snd_wnd
!= nwin
) {
3337 /* Note, it is the only place, where
3338 * fast path is recovered for sending TCP.
3341 tcp_fast_path_check(sk
);
3343 if (!tcp_write_queue_empty(sk
))
3344 tcp_slow_start_after_idle_check(sk
);
3346 if (nwin
> tp
->max_window
) {
3347 tp
->max_window
= nwin
;
3348 tcp_sync_mss(sk
, inet_csk(sk
)->icsk_pmtu_cookie
);
3353 tcp_snd_una_update(tp
, ack
);
3358 static bool __tcp_oow_rate_limited(struct net
*net
, int mib_idx
,
3359 u32
*last_oow_ack_time
)
3361 if (*last_oow_ack_time
) {
3362 s32 elapsed
= (s32
)(tcp_jiffies32
- *last_oow_ack_time
);
3364 if (0 <= elapsed
&& elapsed
< net
->ipv4
.sysctl_tcp_invalid_ratelimit
) {
3365 NET_INC_STATS(net
, mib_idx
);
3366 return true; /* rate-limited: don't send yet! */
3370 *last_oow_ack_time
= tcp_jiffies32
;
3372 return false; /* not rate-limited: go ahead, send dupack now! */
3375 /* Return true if we're currently rate-limiting out-of-window ACKs and
3376 * thus shouldn't send a dupack right now. We rate-limit dupacks in
3377 * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS
3378 * attacks that send repeated SYNs or ACKs for the same connection. To
3379 * do this, we do not send a duplicate SYNACK or ACK if the remote
3380 * endpoint is sending out-of-window SYNs or pure ACKs at a high rate.
3382 bool tcp_oow_rate_limited(struct net
*net
, const struct sk_buff
*skb
,
3383 int mib_idx
, u32
*last_oow_ack_time
)
3385 /* Data packets without SYNs are not likely part of an ACK loop. */
3386 if ((TCP_SKB_CB(skb
)->seq
!= TCP_SKB_CB(skb
)->end_seq
) &&
3390 return __tcp_oow_rate_limited(net
, mib_idx
, last_oow_ack_time
);
3393 /* RFC 5961 7 [ACK Throttling] */
3394 static void tcp_send_challenge_ack(struct sock
*sk
, const struct sk_buff
*skb
)
3396 /* unprotected vars, we dont care of overwrites */
3397 static u32 challenge_timestamp
;
3398 static unsigned int challenge_count
;
3399 struct tcp_sock
*tp
= tcp_sk(sk
);
3400 struct net
*net
= sock_net(sk
);
3403 /* First check our per-socket dupack rate limit. */
3404 if (__tcp_oow_rate_limited(net
,
3405 LINUX_MIB_TCPACKSKIPPEDCHALLENGE
,
3406 &tp
->last_oow_ack_time
))
3409 /* Then check host-wide RFC 5961 rate limit. */
3411 if (now
!= challenge_timestamp
) {
3412 u32 ack_limit
= net
->ipv4
.sysctl_tcp_challenge_ack_limit
;
3413 u32 half
= (ack_limit
+ 1) >> 1;
3415 challenge_timestamp
= now
;
3416 WRITE_ONCE(challenge_count
, half
+ prandom_u32_max(ack_limit
));
3418 count
= READ_ONCE(challenge_count
);
3420 WRITE_ONCE(challenge_count
, count
- 1);
3421 NET_INC_STATS(net
, LINUX_MIB_TCPCHALLENGEACK
);
3426 static void tcp_store_ts_recent(struct tcp_sock
*tp
)
3428 tp
->rx_opt
.ts_recent
= tp
->rx_opt
.rcv_tsval
;
3429 tp
->rx_opt
.ts_recent_stamp
= get_seconds();
3432 static void tcp_replace_ts_recent(struct tcp_sock
*tp
, u32 seq
)
3434 if (tp
->rx_opt
.saw_tstamp
&& !after(seq
, tp
->rcv_wup
)) {
3435 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
3436 * extra check below makes sure this can only happen
3437 * for pure ACK frames. -DaveM
3439 * Not only, also it occurs for expired timestamps.
3442 if (tcp_paws_check(&tp
->rx_opt
, 0))
3443 tcp_store_ts_recent(tp
);
3447 /* This routine deals with acks during a TLP episode.
3448 * We mark the end of a TLP episode on receiving TLP dupack or when
3449 * ack is after tlp_high_seq.
3450 * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe.
3452 static void tcp_process_tlp_ack(struct sock
*sk
, u32 ack
, int flag
)
3454 struct tcp_sock
*tp
= tcp_sk(sk
);
3456 if (before(ack
, tp
->tlp_high_seq
))
3459 if (flag
& FLAG_DSACKING_ACK
) {
3460 /* This DSACK means original and TLP probe arrived; no loss */
3461 tp
->tlp_high_seq
= 0;
3462 } else if (after(ack
, tp
->tlp_high_seq
)) {
3463 /* ACK advances: there was a loss, so reduce cwnd. Reset
3464 * tlp_high_seq in tcp_init_cwnd_reduction()
3466 tcp_init_cwnd_reduction(sk
);
3467 tcp_set_ca_state(sk
, TCP_CA_CWR
);
3468 tcp_end_cwnd_reduction(sk
);
3469 tcp_try_keep_open(sk
);
3470 NET_INC_STATS(sock_net(sk
),
3471 LINUX_MIB_TCPLOSSPROBERECOVERY
);
3472 } else if (!(flag
& (FLAG_SND_UNA_ADVANCED
|
3473 FLAG_NOT_DUP
| FLAG_DATA_SACKED
))) {
3474 /* Pure dupack: original and TLP probe arrived; no loss */
3475 tp
->tlp_high_seq
= 0;
3479 static inline void tcp_in_ack_event(struct sock
*sk
, u32 flags
)
3481 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
3483 if (icsk
->icsk_ca_ops
->in_ack_event
)
3484 icsk
->icsk_ca_ops
->in_ack_event(sk
, flags
);
3487 /* Congestion control has updated the cwnd already. So if we're in
3488 * loss recovery then now we do any new sends (for FRTO) or
3489 * retransmits (for CA_Loss or CA_recovery) that make sense.
3491 static void tcp_xmit_recovery(struct sock
*sk
, int rexmit
)
3493 struct tcp_sock
*tp
= tcp_sk(sk
);
3495 if (rexmit
== REXMIT_NONE
)
3498 if (unlikely(rexmit
== 2)) {
3499 __tcp_push_pending_frames(sk
, tcp_current_mss(sk
),
3501 if (after(tp
->snd_nxt
, tp
->high_seq
))
3505 tcp_xmit_retransmit_queue(sk
);
3508 /* This routine deals with incoming acks, but not outgoing ones. */
3509 static int tcp_ack(struct sock
*sk
, const struct sk_buff
*skb
, int flag
)
3511 struct inet_connection_sock
*icsk
= inet_csk(sk
);
3512 struct tcp_sock
*tp
= tcp_sk(sk
);
3513 struct tcp_sacktag_state sack_state
;
3514 struct rate_sample rs
= { .prior_delivered
= 0 };
3515 u32 prior_snd_una
= tp
->snd_una
;
3516 bool is_sack_reneg
= tp
->is_sack_reneg
;
3517 u32 ack_seq
= TCP_SKB_CB(skb
)->seq
;
3518 u32 ack
= TCP_SKB_CB(skb
)->ack_seq
;
3519 bool is_dupack
= false;
3520 int prior_packets
= tp
->packets_out
;
3521 u32 delivered
= tp
->delivered
;
3522 u32 lost
= tp
->lost
;
3523 int rexmit
= REXMIT_NONE
; /* Flag to (re)transmit to recover losses */
3526 sack_state
.first_sackt
= 0;
3527 sack_state
.rate
= &rs
;
3529 /* We very likely will need to access rtx queue. */
3530 prefetch(sk
->tcp_rtx_queue
.rb_node
);
3532 /* If the ack is older than previous acks
3533 * then we can probably ignore it.
3535 if (before(ack
, prior_snd_una
)) {
3536 /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3537 if (before(ack
, prior_snd_una
- tp
->max_window
)) {
3538 if (!(flag
& FLAG_NO_CHALLENGE_ACK
))
3539 tcp_send_challenge_ack(sk
, skb
);
3545 /* If the ack includes data we haven't sent yet, discard
3546 * this segment (RFC793 Section 3.9).
3548 if (after(ack
, tp
->snd_nxt
))
3551 if (after(ack
, prior_snd_una
)) {
3552 flag
|= FLAG_SND_UNA_ADVANCED
;
3553 icsk
->icsk_retransmits
= 0;
3556 prior_fack
= tcp_is_sack(tp
) ? tcp_highest_sack_seq(tp
) : tp
->snd_una
;
3557 rs
.prior_in_flight
= tcp_packets_in_flight(tp
);
3559 /* ts_recent update must be made after we are sure that the packet
3562 if (flag
& FLAG_UPDATE_TS_RECENT
)
3563 tcp_replace_ts_recent(tp
, TCP_SKB_CB(skb
)->seq
);
3565 if (!(flag
& FLAG_SLOWPATH
) && after(ack
, prior_snd_una
)) {
3566 /* Window is constant, pure forward advance.
3567 * No more checks are required.
3568 * Note, we use the fact that SND.UNA>=SND.WL2.
3570 tcp_update_wl(tp
, ack_seq
);
3571 tcp_snd_una_update(tp
, ack
);
3572 flag
|= FLAG_WIN_UPDATE
;
3574 tcp_in_ack_event(sk
, CA_ACK_WIN_UPDATE
);
3576 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPHPACKS
);
3578 u32 ack_ev_flags
= CA_ACK_SLOWPATH
;
3580 if (ack_seq
!= TCP_SKB_CB(skb
)->end_seq
)
3583 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPPUREACKS
);
3585 flag
|= tcp_ack_update_window(sk
, skb
, ack
, ack_seq
);
3587 if (TCP_SKB_CB(skb
)->sacked
)
3588 flag
|= tcp_sacktag_write_queue(sk
, skb
, prior_snd_una
,
3591 if (tcp_ecn_rcv_ecn_echo(tp
, tcp_hdr(skb
))) {
3593 ack_ev_flags
|= CA_ACK_ECE
;
3596 if (flag
& FLAG_WIN_UPDATE
)
3597 ack_ev_flags
|= CA_ACK_WIN_UPDATE
;
3599 tcp_in_ack_event(sk
, ack_ev_flags
);
3602 /* We passed data and got it acked, remove any soft error
3603 * log. Something worked...
3605 sk
->sk_err_soft
= 0;
3606 icsk
->icsk_probes_out
= 0;
3607 tp
->rcv_tstamp
= tcp_jiffies32
;
3611 /* See if we can take anything off of the retransmit queue. */
3612 flag
|= tcp_clean_rtx_queue(sk
, prior_fack
, prior_snd_una
, &sack_state
);
3614 tcp_rack_update_reo_wnd(sk
, &rs
);
3616 if (tp
->tlp_high_seq
)
3617 tcp_process_tlp_ack(sk
, ack
, flag
);
3618 /* If needed, reset TLP/RTO timer; RACK may later override this. */
3619 if (flag
& FLAG_SET_XMIT_TIMER
)
3620 tcp_set_xmit_timer(sk
);
3622 if (tcp_ack_is_dubious(sk
, flag
)) {
3623 is_dupack
= !(flag
& (FLAG_SND_UNA_ADVANCED
| FLAG_NOT_DUP
));
3624 tcp_fastretrans_alert(sk
, prior_snd_una
, is_dupack
, &flag
,
3628 if ((flag
& FLAG_FORWARD_PROGRESS
) || !(flag
& FLAG_NOT_DUP
))
3631 delivered
= tp
->delivered
- delivered
; /* freshly ACKed or SACKed */
3632 lost
= tp
->lost
- lost
; /* freshly marked lost */
3633 rs
.is_ack_delayed
= !!(flag
& FLAG_ACK_MAYBE_DELAYED
);
3634 tcp_rate_gen(sk
, delivered
, lost
, is_sack_reneg
, sack_state
.rate
);
3635 tcp_cong_control(sk
, ack
, delivered
, flag
, sack_state
.rate
);
3636 tcp_xmit_recovery(sk
, rexmit
);
3640 /* If data was DSACKed, see if we can undo a cwnd reduction. */
3641 if (flag
& FLAG_DSACKING_ACK
)
3642 tcp_fastretrans_alert(sk
, prior_snd_una
, is_dupack
, &flag
,
3644 /* If this ack opens up a zero window, clear backoff. It was
3645 * being used to time the probes, and is probably far higher than
3646 * it needs to be for normal retransmission.
3650 if (tp
->tlp_high_seq
)
3651 tcp_process_tlp_ack(sk
, ack
, flag
);
3655 SOCK_DEBUG(sk
, "Ack %u after %u:%u\n", ack
, tp
->snd_una
, tp
->snd_nxt
);
3659 /* If data was SACKed, tag it and see if we should send more data.
3660 * If data was DSACKed, see if we can undo a cwnd reduction.
3662 if (TCP_SKB_CB(skb
)->sacked
) {
3663 flag
|= tcp_sacktag_write_queue(sk
, skb
, prior_snd_una
,
3665 tcp_fastretrans_alert(sk
, prior_snd_una
, is_dupack
, &flag
,
3667 tcp_xmit_recovery(sk
, rexmit
);
3670 SOCK_DEBUG(sk
, "Ack %u before %u:%u\n", ack
, tp
->snd_una
, tp
->snd_nxt
);
3674 static void tcp_parse_fastopen_option(int len
, const unsigned char *cookie
,
3675 bool syn
, struct tcp_fastopen_cookie
*foc
,
3678 /* Valid only in SYN or SYN-ACK with an even length. */
3679 if (!foc
|| !syn
|| len
< 0 || (len
& 1))
3682 if (len
>= TCP_FASTOPEN_COOKIE_MIN
&&
3683 len
<= TCP_FASTOPEN_COOKIE_MAX
)
3684 memcpy(foc
->val
, cookie
, len
);
3691 static void smc_parse_options(const struct tcphdr
*th
,
3692 struct tcp_options_received
*opt_rx
,
3693 const unsigned char *ptr
,
3696 #if IS_ENABLED(CONFIG_SMC)
3697 if (static_branch_unlikely(&tcp_have_smc
)) {
3698 if (th
->syn
&& !(opsize
& 1) &&
3699 opsize
>= TCPOLEN_EXP_SMC_BASE
&&
3700 get_unaligned_be32(ptr
) == TCPOPT_SMC_MAGIC
)
3706 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3707 * But, this can also be called on packets in the established flow when
3708 * the fast version below fails.
3710 void tcp_parse_options(const struct net
*net
,
3711 const struct sk_buff
*skb
,
3712 struct tcp_options_received
*opt_rx
, int estab
,
3713 struct tcp_fastopen_cookie
*foc
)
3715 const unsigned char *ptr
;
3716 const struct tcphdr
*th
= tcp_hdr(skb
);
3717 int length
= (th
->doff
* 4) - sizeof(struct tcphdr
);
3719 ptr
= (const unsigned char *)(th
+ 1);
3720 opt_rx
->saw_tstamp
= 0;
3722 while (length
> 0) {
3723 int opcode
= *ptr
++;
3729 case TCPOPT_NOP
: /* Ref: RFC 793 section 3.1 */
3734 if (opsize
< 2) /* "silly options" */
3736 if (opsize
> length
)
3737 return; /* don't parse partial options */
3740 if (opsize
== TCPOLEN_MSS
&& th
->syn
&& !estab
) {
3741 u16 in_mss
= get_unaligned_be16(ptr
);
3743 if (opt_rx
->user_mss
&&
3744 opt_rx
->user_mss
< in_mss
)
3745 in_mss
= opt_rx
->user_mss
;
3746 opt_rx
->mss_clamp
= in_mss
;
3751 if (opsize
== TCPOLEN_WINDOW
&& th
->syn
&&
3752 !estab
&& net
->ipv4
.sysctl_tcp_window_scaling
) {
3753 __u8 snd_wscale
= *(__u8
*)ptr
;
3754 opt_rx
->wscale_ok
= 1;
3755 if (snd_wscale
> TCP_MAX_WSCALE
) {
3756 net_info_ratelimited("%s: Illegal window scaling value %d > %u received\n",
3760 snd_wscale
= TCP_MAX_WSCALE
;
3762 opt_rx
->snd_wscale
= snd_wscale
;
3765 case TCPOPT_TIMESTAMP
:
3766 if ((opsize
== TCPOLEN_TIMESTAMP
) &&
3767 ((estab
&& opt_rx
->tstamp_ok
) ||
3768 (!estab
&& net
->ipv4
.sysctl_tcp_timestamps
))) {
3769 opt_rx
->saw_tstamp
= 1;
3770 opt_rx
->rcv_tsval
= get_unaligned_be32(ptr
);
3771 opt_rx
->rcv_tsecr
= get_unaligned_be32(ptr
+ 4);
3774 case TCPOPT_SACK_PERM
:
3775 if (opsize
== TCPOLEN_SACK_PERM
&& th
->syn
&&
3776 !estab
&& net
->ipv4
.sysctl_tcp_sack
) {
3777 opt_rx
->sack_ok
= TCP_SACK_SEEN
;
3778 tcp_sack_reset(opt_rx
);
3783 if ((opsize
>= (TCPOLEN_SACK_BASE
+ TCPOLEN_SACK_PERBLOCK
)) &&
3784 !((opsize
- TCPOLEN_SACK_BASE
) % TCPOLEN_SACK_PERBLOCK
) &&
3786 TCP_SKB_CB(skb
)->sacked
= (ptr
- 2) - (unsigned char *)th
;
3789 #ifdef CONFIG_TCP_MD5SIG
3792 * The MD5 Hash has already been
3793 * checked (see tcp_v{4,6}_do_rcv()).
3797 case TCPOPT_FASTOPEN
:
3798 tcp_parse_fastopen_option(
3799 opsize
- TCPOLEN_FASTOPEN_BASE
,
3800 ptr
, th
->syn
, foc
, false);
3804 /* Fast Open option shares code 254 using a
3805 * 16 bits magic number.
3807 if (opsize
>= TCPOLEN_EXP_FASTOPEN_BASE
&&
3808 get_unaligned_be16(ptr
) ==
3809 TCPOPT_FASTOPEN_MAGIC
)
3810 tcp_parse_fastopen_option(opsize
-
3811 TCPOLEN_EXP_FASTOPEN_BASE
,
3812 ptr
+ 2, th
->syn
, foc
, true);
3814 smc_parse_options(th
, opt_rx
, ptr
,
3824 EXPORT_SYMBOL(tcp_parse_options
);
3826 static bool tcp_parse_aligned_timestamp(struct tcp_sock
*tp
, const struct tcphdr
*th
)
3828 const __be32
*ptr
= (const __be32
*)(th
+ 1);
3830 if (*ptr
== htonl((TCPOPT_NOP
<< 24) | (TCPOPT_NOP
<< 16)
3831 | (TCPOPT_TIMESTAMP
<< 8) | TCPOLEN_TIMESTAMP
)) {
3832 tp
->rx_opt
.saw_tstamp
= 1;
3834 tp
->rx_opt
.rcv_tsval
= ntohl(*ptr
);
3837 tp
->rx_opt
.rcv_tsecr
= ntohl(*ptr
) - tp
->tsoffset
;
3839 tp
->rx_opt
.rcv_tsecr
= 0;
3845 /* Fast parse options. This hopes to only see timestamps.
3846 * If it is wrong it falls back on tcp_parse_options().
3848 static bool tcp_fast_parse_options(const struct net
*net
,
3849 const struct sk_buff
*skb
,
3850 const struct tcphdr
*th
, struct tcp_sock
*tp
)
3852 /* In the spirit of fast parsing, compare doff directly to constant
3853 * values. Because equality is used, short doff can be ignored here.
3855 if (th
->doff
== (sizeof(*th
) / 4)) {
3856 tp
->rx_opt
.saw_tstamp
= 0;
3858 } else if (tp
->rx_opt
.tstamp_ok
&&
3859 th
->doff
== ((sizeof(*th
) + TCPOLEN_TSTAMP_ALIGNED
) / 4)) {
3860 if (tcp_parse_aligned_timestamp(tp
, th
))
3864 tcp_parse_options(net
, skb
, &tp
->rx_opt
, 1, NULL
);
3865 if (tp
->rx_opt
.saw_tstamp
&& tp
->rx_opt
.rcv_tsecr
)
3866 tp
->rx_opt
.rcv_tsecr
-= tp
->tsoffset
;
3871 #ifdef CONFIG_TCP_MD5SIG
3873 * Parse MD5 Signature option
3875 const u8
*tcp_parse_md5sig_option(const struct tcphdr
*th
)
3877 int length
= (th
->doff
<< 2) - sizeof(*th
);
3878 const u8
*ptr
= (const u8
*)(th
+ 1);
3880 /* If the TCP option is too short, we can short cut */
3881 if (length
< TCPOLEN_MD5SIG
)
3884 while (length
> 0) {
3885 int opcode
= *ptr
++;
3896 if (opsize
< 2 || opsize
> length
)
3898 if (opcode
== TCPOPT_MD5SIG
)
3899 return opsize
== TCPOLEN_MD5SIG
? ptr
: NULL
;
3906 EXPORT_SYMBOL(tcp_parse_md5sig_option
);
3909 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3911 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3912 * it can pass through stack. So, the following predicate verifies that
3913 * this segment is not used for anything but congestion avoidance or
3914 * fast retransmit. Moreover, we even are able to eliminate most of such
3915 * second order effects, if we apply some small "replay" window (~RTO)
3916 * to timestamp space.
3918 * All these measures still do not guarantee that we reject wrapped ACKs
3919 * on networks with high bandwidth, when sequence space is recycled fastly,
3920 * but it guarantees that such events will be very rare and do not affect
3921 * connection seriously. This doesn't look nice, but alas, PAWS is really
3924 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3925 * states that events when retransmit arrives after original data are rare.
3926 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3927 * the biggest problem on large power networks even with minor reordering.
3928 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3929 * up to bandwidth of 18Gigabit/sec. 8) ]
3932 static int tcp_disordered_ack(const struct sock
*sk
, const struct sk_buff
*skb
)
3934 const struct tcp_sock
*tp
= tcp_sk(sk
);
3935 const struct tcphdr
*th
= tcp_hdr(skb
);
3936 u32 seq
= TCP_SKB_CB(skb
)->seq
;
3937 u32 ack
= TCP_SKB_CB(skb
)->ack_seq
;
3939 return (/* 1. Pure ACK with correct sequence number. */
3940 (th
->ack
&& seq
== TCP_SKB_CB(skb
)->end_seq
&& seq
== tp
->rcv_nxt
) &&
3942 /* 2. ... and duplicate ACK. */
3943 ack
== tp
->snd_una
&&
3945 /* 3. ... and does not update window. */
3946 !tcp_may_update_window(tp
, ack
, seq
, ntohs(th
->window
) << tp
->rx_opt
.snd_wscale
) &&
3948 /* 4. ... and sits in replay window. */
3949 (s32
)(tp
->rx_opt
.ts_recent
- tp
->rx_opt
.rcv_tsval
) <= (inet_csk(sk
)->icsk_rto
* 1024) / HZ
);
3952 static inline bool tcp_paws_discard(const struct sock
*sk
,
3953 const struct sk_buff
*skb
)
3955 const struct tcp_sock
*tp
= tcp_sk(sk
);
3957 return !tcp_paws_check(&tp
->rx_opt
, TCP_PAWS_WINDOW
) &&
3958 !tcp_disordered_ack(sk
, skb
);
3961 /* Check segment sequence number for validity.
3963 * Segment controls are considered valid, if the segment
3964 * fits to the window after truncation to the window. Acceptability
3965 * of data (and SYN, FIN, of course) is checked separately.
3966 * See tcp_data_queue(), for example.
3968 * Also, controls (RST is main one) are accepted using RCV.WUP instead
3969 * of RCV.NXT. Peer still did not advance his SND.UNA when we
3970 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
3971 * (borrowed from freebsd)
3974 static inline bool tcp_sequence(const struct tcp_sock
*tp
, u32 seq
, u32 end_seq
)
3976 return !before(end_seq
, tp
->rcv_wup
) &&
3977 !after(seq
, tp
->rcv_nxt
+ tcp_receive_window(tp
));
3980 /* When we get a reset we do this. */
3981 void tcp_reset(struct sock
*sk
)
3983 trace_tcp_receive_reset(sk
);
3985 /* We want the right error as BSD sees it (and indeed as we do). */
3986 switch (sk
->sk_state
) {
3988 sk
->sk_err
= ECONNREFUSED
;
3990 case TCP_CLOSE_WAIT
:
3996 sk
->sk_err
= ECONNRESET
;
3998 /* This barrier is coupled with smp_rmb() in tcp_poll() */
4003 if (!sock_flag(sk
, SOCK_DEAD
))
4004 sk
->sk_error_report(sk
);
4008 * Process the FIN bit. This now behaves as it is supposed to work
4009 * and the FIN takes effect when it is validly part of sequence
4010 * space. Not before when we get holes.
4012 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4013 * (and thence onto LAST-ACK and finally, CLOSE, we never enter
4016 * If we are in FINWAIT-1, a received FIN indicates simultaneous
4017 * close and we go into CLOSING (and later onto TIME-WAIT)
4019 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4021 void tcp_fin(struct sock
*sk
)
4023 struct tcp_sock
*tp
= tcp_sk(sk
);
4025 inet_csk_schedule_ack(sk
);
4027 sk
->sk_shutdown
|= RCV_SHUTDOWN
;
4028 sock_set_flag(sk
, SOCK_DONE
);
4030 switch (sk
->sk_state
) {
4032 case TCP_ESTABLISHED
:
4033 /* Move to CLOSE_WAIT */
4034 tcp_set_state(sk
, TCP_CLOSE_WAIT
);
4035 inet_csk(sk
)->icsk_ack
.pingpong
= 1;
4038 case TCP_CLOSE_WAIT
:
4040 /* Received a retransmission of the FIN, do
4045 /* RFC793: Remain in the LAST-ACK state. */
4049 /* This case occurs when a simultaneous close
4050 * happens, we must ack the received FIN and
4051 * enter the CLOSING state.
4054 tcp_set_state(sk
, TCP_CLOSING
);
4057 /* Received a FIN -- send ACK and enter TIME_WAIT. */
4059 tcp_time_wait(sk
, TCP_TIME_WAIT
, 0);
4062 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
4063 * cases we should never reach this piece of code.
4065 pr_err("%s: Impossible, sk->sk_state=%d\n",
4066 __func__
, sk
->sk_state
);
4070 /* It _is_ possible, that we have something out-of-order _after_ FIN.
4071 * Probably, we should reset in this case. For now drop them.
4073 skb_rbtree_purge(&tp
->out_of_order_queue
);
4074 if (tcp_is_sack(tp
))
4075 tcp_sack_reset(&tp
->rx_opt
);
4078 if (!sock_flag(sk
, SOCK_DEAD
)) {
4079 sk
->sk_state_change(sk
);
4081 /* Do not send POLL_HUP for half duplex close. */
4082 if (sk
->sk_shutdown
== SHUTDOWN_MASK
||
4083 sk
->sk_state
== TCP_CLOSE
)
4084 sk_wake_async(sk
, SOCK_WAKE_WAITD
, POLL_HUP
);
4086 sk_wake_async(sk
, SOCK_WAKE_WAITD
, POLL_IN
);
4090 static inline bool tcp_sack_extend(struct tcp_sack_block
*sp
, u32 seq
,
4093 if (!after(seq
, sp
->end_seq
) && !after(sp
->start_seq
, end_seq
)) {
4094 if (before(seq
, sp
->start_seq
))
4095 sp
->start_seq
= seq
;
4096 if (after(end_seq
, sp
->end_seq
))
4097 sp
->end_seq
= end_seq
;
4103 static void tcp_dsack_set(struct sock
*sk
, u32 seq
, u32 end_seq
)
4105 struct tcp_sock
*tp
= tcp_sk(sk
);
4107 if (tcp_is_sack(tp
) && sock_net(sk
)->ipv4
.sysctl_tcp_dsack
) {
4110 if (before(seq
, tp
->rcv_nxt
))
4111 mib_idx
= LINUX_MIB_TCPDSACKOLDSENT
;
4113 mib_idx
= LINUX_MIB_TCPDSACKOFOSENT
;
4115 NET_INC_STATS(sock_net(sk
), mib_idx
);
4117 tp
->rx_opt
.dsack
= 1;
4118 tp
->duplicate_sack
[0].start_seq
= seq
;
4119 tp
->duplicate_sack
[0].end_seq
= end_seq
;
4123 static void tcp_dsack_extend(struct sock
*sk
, u32 seq
, u32 end_seq
)
4125 struct tcp_sock
*tp
= tcp_sk(sk
);
4127 if (!tp
->rx_opt
.dsack
)
4128 tcp_dsack_set(sk
, seq
, end_seq
);
4130 tcp_sack_extend(tp
->duplicate_sack
, seq
, end_seq
);
4133 static void tcp_send_dupack(struct sock
*sk
, const struct sk_buff
*skb
)
4135 struct tcp_sock
*tp
= tcp_sk(sk
);
4137 if (TCP_SKB_CB(skb
)->end_seq
!= TCP_SKB_CB(skb
)->seq
&&
4138 before(TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
)) {
4139 NET_INC_STATS(sock_net(sk
), LINUX_MIB_DELAYEDACKLOST
);
4140 tcp_enter_quickack_mode(sk
);
4142 if (tcp_is_sack(tp
) && sock_net(sk
)->ipv4
.sysctl_tcp_dsack
) {
4143 u32 end_seq
= TCP_SKB_CB(skb
)->end_seq
;
4145 if (after(TCP_SKB_CB(skb
)->end_seq
, tp
->rcv_nxt
))
4146 end_seq
= tp
->rcv_nxt
;
4147 tcp_dsack_set(sk
, TCP_SKB_CB(skb
)->seq
, end_seq
);
4154 /* These routines update the SACK block as out-of-order packets arrive or
4155 * in-order packets close up the sequence space.
4157 static void tcp_sack_maybe_coalesce(struct tcp_sock
*tp
)
4160 struct tcp_sack_block
*sp
= &tp
->selective_acks
[0];
4161 struct tcp_sack_block
*swalk
= sp
+ 1;
4163 /* See if the recent change to the first SACK eats into
4164 * or hits the sequence space of other SACK blocks, if so coalesce.
4166 for (this_sack
= 1; this_sack
< tp
->rx_opt
.num_sacks
;) {
4167 if (tcp_sack_extend(sp
, swalk
->start_seq
, swalk
->end_seq
)) {
4170 /* Zap SWALK, by moving every further SACK up by one slot.
4171 * Decrease num_sacks.
4173 tp
->rx_opt
.num_sacks
--;
4174 for (i
= this_sack
; i
< tp
->rx_opt
.num_sacks
; i
++)
4178 this_sack
++, swalk
++;
4182 static void tcp_sack_new_ofo_skb(struct sock
*sk
, u32 seq
, u32 end_seq
)
4184 struct tcp_sock
*tp
= tcp_sk(sk
);
4185 struct tcp_sack_block
*sp
= &tp
->selective_acks
[0];
4186 int cur_sacks
= tp
->rx_opt
.num_sacks
;
4192 for (this_sack
= 0; this_sack
< cur_sacks
; this_sack
++, sp
++) {
4193 if (tcp_sack_extend(sp
, seq
, end_seq
)) {
4194 /* Rotate this_sack to the first one. */
4195 for (; this_sack
> 0; this_sack
--, sp
--)
4196 swap(*sp
, *(sp
- 1));
4198 tcp_sack_maybe_coalesce(tp
);
4203 /* Could not find an adjacent existing SACK, build a new one,
4204 * put it at the front, and shift everyone else down. We
4205 * always know there is at least one SACK present already here.
4207 * If the sack array is full, forget about the last one.
4209 if (this_sack
>= TCP_NUM_SACKS
) {
4211 tp
->rx_opt
.num_sacks
--;
4214 for (; this_sack
> 0; this_sack
--, sp
--)
4218 /* Build the new head SACK, and we're done. */
4219 sp
->start_seq
= seq
;
4220 sp
->end_seq
= end_seq
;
4221 tp
->rx_opt
.num_sacks
++;
4224 /* RCV.NXT advances, some SACKs should be eaten. */
4226 static void tcp_sack_remove(struct tcp_sock
*tp
)
4228 struct tcp_sack_block
*sp
= &tp
->selective_acks
[0];
4229 int num_sacks
= tp
->rx_opt
.num_sacks
;
4232 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4233 if (RB_EMPTY_ROOT(&tp
->out_of_order_queue
)) {
4234 tp
->rx_opt
.num_sacks
= 0;
4238 for (this_sack
= 0; this_sack
< num_sacks
;) {
4239 /* Check if the start of the sack is covered by RCV.NXT. */
4240 if (!before(tp
->rcv_nxt
, sp
->start_seq
)) {
4243 /* RCV.NXT must cover all the block! */
4244 WARN_ON(before(tp
->rcv_nxt
, sp
->end_seq
));
4246 /* Zap this SACK, by moving forward any other SACKS. */
4247 for (i
= this_sack
+1; i
< num_sacks
; i
++)
4248 tp
->selective_acks
[i
-1] = tp
->selective_acks
[i
];
4255 tp
->rx_opt
.num_sacks
= num_sacks
;
4259 * tcp_try_coalesce - try to merge skb to prior one
4261 * @dest: destination queue
4263 * @from: buffer to add in queue
4264 * @fragstolen: pointer to boolean
4266 * Before queueing skb @from after @to, try to merge them
4267 * to reduce overall memory use and queue lengths, if cost is small.
4268 * Packets in ofo or receive queues can stay a long time.
4269 * Better try to coalesce them right now to avoid future collapses.
4270 * Returns true if caller should free @from instead of queueing it
4272 static bool tcp_try_coalesce(struct sock
*sk
,
4274 struct sk_buff
*from
,
4279 *fragstolen
= false;
4281 /* Its possible this segment overlaps with prior segment in queue */
4282 if (TCP_SKB_CB(from
)->seq
!= TCP_SKB_CB(to
)->end_seq
)
4285 if (!skb_try_coalesce(to
, from
, fragstolen
, &delta
))
4288 atomic_add(delta
, &sk
->sk_rmem_alloc
);
4289 sk_mem_charge(sk
, delta
);
4290 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPRCVCOALESCE
);
4291 TCP_SKB_CB(to
)->end_seq
= TCP_SKB_CB(from
)->end_seq
;
4292 TCP_SKB_CB(to
)->ack_seq
= TCP_SKB_CB(from
)->ack_seq
;
4293 TCP_SKB_CB(to
)->tcp_flags
|= TCP_SKB_CB(from
)->tcp_flags
;
4295 if (TCP_SKB_CB(from
)->has_rxtstamp
) {
4296 TCP_SKB_CB(to
)->has_rxtstamp
= true;
4297 to
->tstamp
= from
->tstamp
;
4303 static void tcp_drop(struct sock
*sk
, struct sk_buff
*skb
)
4305 sk_drops_add(sk
, skb
);
4309 /* This one checks to see if we can put data from the
4310 * out_of_order queue into the receive_queue.
4312 static void tcp_ofo_queue(struct sock
*sk
)
4314 struct tcp_sock
*tp
= tcp_sk(sk
);
4315 __u32 dsack_high
= tp
->rcv_nxt
;
4316 bool fin
, fragstolen
, eaten
;
4317 struct sk_buff
*skb
, *tail
;
4320 p
= rb_first(&tp
->out_of_order_queue
);
4323 if (after(TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
))
4326 if (before(TCP_SKB_CB(skb
)->seq
, dsack_high
)) {
4327 __u32 dsack
= dsack_high
;
4328 if (before(TCP_SKB_CB(skb
)->end_seq
, dsack_high
))
4329 dsack_high
= TCP_SKB_CB(skb
)->end_seq
;
4330 tcp_dsack_extend(sk
, TCP_SKB_CB(skb
)->seq
, dsack
);
4333 rb_erase(&skb
->rbnode
, &tp
->out_of_order_queue
);
4335 if (unlikely(!after(TCP_SKB_CB(skb
)->end_seq
, tp
->rcv_nxt
))) {
4336 SOCK_DEBUG(sk
, "ofo packet was already received\n");
4340 SOCK_DEBUG(sk
, "ofo requeuing : rcv_next %X seq %X - %X\n",
4341 tp
->rcv_nxt
, TCP_SKB_CB(skb
)->seq
,
4342 TCP_SKB_CB(skb
)->end_seq
);
4344 tail
= skb_peek_tail(&sk
->sk_receive_queue
);
4345 eaten
= tail
&& tcp_try_coalesce(sk
, tail
, skb
, &fragstolen
);
4346 tcp_rcv_nxt_update(tp
, TCP_SKB_CB(skb
)->end_seq
);
4347 fin
= TCP_SKB_CB(skb
)->tcp_flags
& TCPHDR_FIN
;
4349 __skb_queue_tail(&sk
->sk_receive_queue
, skb
);
4351 kfree_skb_partial(skb
, fragstolen
);
4353 if (unlikely(fin
)) {
4355 /* tcp_fin() purges tp->out_of_order_queue,
4356 * so we must end this loop right now.
4363 static bool tcp_prune_ofo_queue(struct sock
*sk
);
4364 static int tcp_prune_queue(struct sock
*sk
);
4366 static int tcp_try_rmem_schedule(struct sock
*sk
, struct sk_buff
*skb
,
4369 if (atomic_read(&sk
->sk_rmem_alloc
) > sk
->sk_rcvbuf
||
4370 !sk_rmem_schedule(sk
, skb
, size
)) {
4372 if (tcp_prune_queue(sk
) < 0)
4375 while (!sk_rmem_schedule(sk
, skb
, size
)) {
4376 if (!tcp_prune_ofo_queue(sk
))
4383 static void tcp_data_queue_ofo(struct sock
*sk
, struct sk_buff
*skb
)
4385 struct tcp_sock
*tp
= tcp_sk(sk
);
4386 struct rb_node
**p
, *parent
;
4387 struct sk_buff
*skb1
;
4391 tcp_ecn_check_ce(tp
, skb
);
4393 if (unlikely(tcp_try_rmem_schedule(sk
, skb
, skb
->truesize
))) {
4394 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPOFODROP
);
4399 /* Disable header prediction. */
4401 inet_csk_schedule_ack(sk
);
4403 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPOFOQUEUE
);
4404 seq
= TCP_SKB_CB(skb
)->seq
;
4405 end_seq
= TCP_SKB_CB(skb
)->end_seq
;
4406 SOCK_DEBUG(sk
, "out of order segment: rcv_next %X seq %X - %X\n",
4407 tp
->rcv_nxt
, seq
, end_seq
);
4409 p
= &tp
->out_of_order_queue
.rb_node
;
4410 if (RB_EMPTY_ROOT(&tp
->out_of_order_queue
)) {
4411 /* Initial out of order segment, build 1 SACK. */
4412 if (tcp_is_sack(tp
)) {
4413 tp
->rx_opt
.num_sacks
= 1;
4414 tp
->selective_acks
[0].start_seq
= seq
;
4415 tp
->selective_acks
[0].end_seq
= end_seq
;
4417 rb_link_node(&skb
->rbnode
, NULL
, p
);
4418 rb_insert_color(&skb
->rbnode
, &tp
->out_of_order_queue
);
4419 tp
->ooo_last_skb
= skb
;
4423 /* In the typical case, we are adding an skb to the end of the list.
4424 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
4426 if (tcp_try_coalesce(sk
, tp
->ooo_last_skb
,
4427 skb
, &fragstolen
)) {
4429 tcp_grow_window(sk
, skb
);
4430 kfree_skb_partial(skb
, fragstolen
);
4434 /* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
4435 if (!before(seq
, TCP_SKB_CB(tp
->ooo_last_skb
)->end_seq
)) {
4436 parent
= &tp
->ooo_last_skb
->rbnode
;
4437 p
= &parent
->rb_right
;
4441 /* Find place to insert this segment. Handle overlaps on the way. */
4445 skb1
= rb_to_skb(parent
);
4446 if (before(seq
, TCP_SKB_CB(skb1
)->seq
)) {
4447 p
= &parent
->rb_left
;
4450 if (before(seq
, TCP_SKB_CB(skb1
)->end_seq
)) {
4451 if (!after(end_seq
, TCP_SKB_CB(skb1
)->end_seq
)) {
4452 /* All the bits are present. Drop. */
4453 NET_INC_STATS(sock_net(sk
),
4454 LINUX_MIB_TCPOFOMERGE
);
4457 tcp_dsack_set(sk
, seq
, end_seq
);
4460 if (after(seq
, TCP_SKB_CB(skb1
)->seq
)) {
4461 /* Partial overlap. */
4462 tcp_dsack_set(sk
, seq
, TCP_SKB_CB(skb1
)->end_seq
);
4464 /* skb's seq == skb1's seq and skb covers skb1.
4465 * Replace skb1 with skb.
4467 rb_replace_node(&skb1
->rbnode
, &skb
->rbnode
,
4468 &tp
->out_of_order_queue
);
4469 tcp_dsack_extend(sk
,
4470 TCP_SKB_CB(skb1
)->seq
,
4471 TCP_SKB_CB(skb1
)->end_seq
);
4472 NET_INC_STATS(sock_net(sk
),
4473 LINUX_MIB_TCPOFOMERGE
);
4477 } else if (tcp_try_coalesce(sk
, skb1
,
4478 skb
, &fragstolen
)) {
4481 p
= &parent
->rb_right
;
4484 /* Insert segment into RB tree. */
4485 rb_link_node(&skb
->rbnode
, parent
, p
);
4486 rb_insert_color(&skb
->rbnode
, &tp
->out_of_order_queue
);
4489 /* Remove other segments covered by skb. */
4490 while ((skb1
= skb_rb_next(skb
)) != NULL
) {
4491 if (!after(end_seq
, TCP_SKB_CB(skb1
)->seq
))
4493 if (before(end_seq
, TCP_SKB_CB(skb1
)->end_seq
)) {
4494 tcp_dsack_extend(sk
, TCP_SKB_CB(skb1
)->seq
,
4498 rb_erase(&skb1
->rbnode
, &tp
->out_of_order_queue
);
4499 tcp_dsack_extend(sk
, TCP_SKB_CB(skb1
)->seq
,
4500 TCP_SKB_CB(skb1
)->end_seq
);
4501 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPOFOMERGE
);
4504 /* If there is no skb after us, we are the last_skb ! */
4506 tp
->ooo_last_skb
= skb
;
4509 if (tcp_is_sack(tp
))
4510 tcp_sack_new_ofo_skb(sk
, seq
, end_seq
);
4513 tcp_grow_window(sk
, skb
);
4515 skb_set_owner_r(skb
, sk
);
4519 static int __must_check
tcp_queue_rcv(struct sock
*sk
, struct sk_buff
*skb
, int hdrlen
,
4523 struct sk_buff
*tail
= skb_peek_tail(&sk
->sk_receive_queue
);
4525 __skb_pull(skb
, hdrlen
);
4527 tcp_try_coalesce(sk
, tail
,
4528 skb
, fragstolen
)) ? 1 : 0;
4529 tcp_rcv_nxt_update(tcp_sk(sk
), TCP_SKB_CB(skb
)->end_seq
);
4531 __skb_queue_tail(&sk
->sk_receive_queue
, skb
);
4532 skb_set_owner_r(skb
, sk
);
4537 int tcp_send_rcvq(struct sock
*sk
, struct msghdr
*msg
, size_t size
)
4539 struct sk_buff
*skb
;
4547 if (size
> PAGE_SIZE
) {
4548 int npages
= min_t(size_t, size
>> PAGE_SHIFT
, MAX_SKB_FRAGS
);
4550 data_len
= npages
<< PAGE_SHIFT
;
4551 size
= data_len
+ (size
& ~PAGE_MASK
);
4553 skb
= alloc_skb_with_frags(size
- data_len
, data_len
,
4554 PAGE_ALLOC_COSTLY_ORDER
,
4555 &err
, sk
->sk_allocation
);
4559 skb_put(skb
, size
- data_len
);
4560 skb
->data_len
= data_len
;
4563 if (tcp_try_rmem_schedule(sk
, skb
, skb
->truesize
))
4566 err
= skb_copy_datagram_from_iter(skb
, 0, &msg
->msg_iter
, size
);
4570 TCP_SKB_CB(skb
)->seq
= tcp_sk(sk
)->rcv_nxt
;
4571 TCP_SKB_CB(skb
)->end_seq
= TCP_SKB_CB(skb
)->seq
+ size
;
4572 TCP_SKB_CB(skb
)->ack_seq
= tcp_sk(sk
)->snd_una
- 1;
4574 if (tcp_queue_rcv(sk
, skb
, 0, &fragstolen
)) {
4575 WARN_ON_ONCE(fragstolen
); /* should not happen */
4587 static void tcp_data_queue(struct sock
*sk
, struct sk_buff
*skb
)
4589 struct tcp_sock
*tp
= tcp_sk(sk
);
4593 if (TCP_SKB_CB(skb
)->seq
== TCP_SKB_CB(skb
)->end_seq
) {
4598 __skb_pull(skb
, tcp_hdr(skb
)->doff
* 4);
4600 tcp_ecn_accept_cwr(tp
, skb
);
4602 tp
->rx_opt
.dsack
= 0;
4604 /* Queue data for delivery to the user.
4605 * Packets in sequence go to the receive queue.
4606 * Out of sequence packets to the out_of_order_queue.
4608 if (TCP_SKB_CB(skb
)->seq
== tp
->rcv_nxt
) {
4609 if (tcp_receive_window(tp
) == 0)
4612 /* Ok. In sequence. In window. */
4614 if (skb_queue_len(&sk
->sk_receive_queue
) == 0)
4615 sk_forced_mem_schedule(sk
, skb
->truesize
);
4616 else if (tcp_try_rmem_schedule(sk
, skb
, skb
->truesize
))
4619 eaten
= tcp_queue_rcv(sk
, skb
, 0, &fragstolen
);
4620 tcp_rcv_nxt_update(tp
, TCP_SKB_CB(skb
)->end_seq
);
4622 tcp_event_data_recv(sk
, skb
);
4623 if (TCP_SKB_CB(skb
)->tcp_flags
& TCPHDR_FIN
)
4626 if (!RB_EMPTY_ROOT(&tp
->out_of_order_queue
)) {
4629 /* RFC2581. 4.2. SHOULD send immediate ACK, when
4630 * gap in queue is filled.
4632 if (RB_EMPTY_ROOT(&tp
->out_of_order_queue
))
4633 inet_csk(sk
)->icsk_ack
.pingpong
= 0;
4636 if (tp
->rx_opt
.num_sacks
)
4637 tcp_sack_remove(tp
);
4639 tcp_fast_path_check(sk
);
4642 kfree_skb_partial(skb
, fragstolen
);
4643 if (!sock_flag(sk
, SOCK_DEAD
))
4644 sk
->sk_data_ready(sk
);
4648 if (!after(TCP_SKB_CB(skb
)->end_seq
, tp
->rcv_nxt
)) {
4649 /* A retransmit, 2nd most common case. Force an immediate ack. */
4650 NET_INC_STATS(sock_net(sk
), LINUX_MIB_DELAYEDACKLOST
);
4651 tcp_dsack_set(sk
, TCP_SKB_CB(skb
)->seq
, TCP_SKB_CB(skb
)->end_seq
);
4654 tcp_enter_quickack_mode(sk
);
4655 inet_csk_schedule_ack(sk
);
4661 /* Out of window. F.e. zero window probe. */
4662 if (!before(TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
+ tcp_receive_window(tp
)))
4665 tcp_enter_quickack_mode(sk
);
4667 if (before(TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
)) {
4668 /* Partial packet, seq < rcv_next < end_seq */
4669 SOCK_DEBUG(sk
, "partial packet: rcv_next %X seq %X - %X\n",
4670 tp
->rcv_nxt
, TCP_SKB_CB(skb
)->seq
,
4671 TCP_SKB_CB(skb
)->end_seq
);
4673 tcp_dsack_set(sk
, TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
);
4675 /* If window is closed, drop tail of packet. But after
4676 * remembering D-SACK for its head made in previous line.
4678 if (!tcp_receive_window(tp
))
4683 tcp_data_queue_ofo(sk
, skb
);
4686 static struct sk_buff
*tcp_skb_next(struct sk_buff
*skb
, struct sk_buff_head
*list
)
4689 return !skb_queue_is_last(list
, skb
) ? skb
->next
: NULL
;
4691 return skb_rb_next(skb
);
4694 static struct sk_buff
*tcp_collapse_one(struct sock
*sk
, struct sk_buff
*skb
,
4695 struct sk_buff_head
*list
,
4696 struct rb_root
*root
)
4698 struct sk_buff
*next
= tcp_skb_next(skb
, list
);
4701 __skb_unlink(skb
, list
);
4703 rb_erase(&skb
->rbnode
, root
);
4706 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPRCVCOLLAPSED
);
4711 /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */
4712 void tcp_rbtree_insert(struct rb_root
*root
, struct sk_buff
*skb
)
4714 struct rb_node
**p
= &root
->rb_node
;
4715 struct rb_node
*parent
= NULL
;
4716 struct sk_buff
*skb1
;
4720 skb1
= rb_to_skb(parent
);
4721 if (before(TCP_SKB_CB(skb
)->seq
, TCP_SKB_CB(skb1
)->seq
))
4722 p
= &parent
->rb_left
;
4724 p
= &parent
->rb_right
;
4726 rb_link_node(&skb
->rbnode
, parent
, p
);
4727 rb_insert_color(&skb
->rbnode
, root
);
4730 /* Collapse contiguous sequence of skbs head..tail with
4731 * sequence numbers start..end.
4733 * If tail is NULL, this means until the end of the queue.
4735 * Segments with FIN/SYN are not collapsed (only because this
4739 tcp_collapse(struct sock
*sk
, struct sk_buff_head
*list
, struct rb_root
*root
,
4740 struct sk_buff
*head
, struct sk_buff
*tail
, u32 start
, u32 end
)
4742 struct sk_buff
*skb
= head
, *n
;
4743 struct sk_buff_head tmp
;
4746 /* First, check that queue is collapsible and find
4747 * the point where collapsing can be useful.
4750 for (end_of_skbs
= true; skb
!= NULL
&& skb
!= tail
; skb
= n
) {
4751 n
= tcp_skb_next(skb
, list
);
4753 /* No new bits? It is possible on ofo queue. */
4754 if (!before(start
, TCP_SKB_CB(skb
)->end_seq
)) {
4755 skb
= tcp_collapse_one(sk
, skb
, list
, root
);
4761 /* The first skb to collapse is:
4763 * - bloated or contains data before "start" or
4764 * overlaps to the next one.
4766 if (!(TCP_SKB_CB(skb
)->tcp_flags
& (TCPHDR_SYN
| TCPHDR_FIN
)) &&
4767 (tcp_win_from_space(sk
, skb
->truesize
) > skb
->len
||
4768 before(TCP_SKB_CB(skb
)->seq
, start
))) {
4769 end_of_skbs
= false;
4773 if (n
&& n
!= tail
&&
4774 TCP_SKB_CB(skb
)->end_seq
!= TCP_SKB_CB(n
)->seq
) {
4775 end_of_skbs
= false;
4779 /* Decided to skip this, advance start seq. */
4780 start
= TCP_SKB_CB(skb
)->end_seq
;
4783 (TCP_SKB_CB(skb
)->tcp_flags
& (TCPHDR_SYN
| TCPHDR_FIN
)))
4786 __skb_queue_head_init(&tmp
);
4788 while (before(start
, end
)) {
4789 int copy
= min_t(int, SKB_MAX_ORDER(0, 0), end
- start
);
4790 struct sk_buff
*nskb
;
4792 nskb
= alloc_skb(copy
, GFP_ATOMIC
);
4796 memcpy(nskb
->cb
, skb
->cb
, sizeof(skb
->cb
));
4797 TCP_SKB_CB(nskb
)->seq
= TCP_SKB_CB(nskb
)->end_seq
= start
;
4799 __skb_queue_before(list
, skb
, nskb
);
4801 __skb_queue_tail(&tmp
, nskb
); /* defer rbtree insertion */
4802 skb_set_owner_r(nskb
, sk
);
4804 /* Copy data, releasing collapsed skbs. */
4806 int offset
= start
- TCP_SKB_CB(skb
)->seq
;
4807 int size
= TCP_SKB_CB(skb
)->end_seq
- start
;
4811 size
= min(copy
, size
);
4812 if (skb_copy_bits(skb
, offset
, skb_put(nskb
, size
), size
))
4814 TCP_SKB_CB(nskb
)->end_seq
+= size
;
4818 if (!before(start
, TCP_SKB_CB(skb
)->end_seq
)) {
4819 skb
= tcp_collapse_one(sk
, skb
, list
, root
);
4822 (TCP_SKB_CB(skb
)->tcp_flags
& (TCPHDR_SYN
| TCPHDR_FIN
)))
4828 skb_queue_walk_safe(&tmp
, skb
, n
)
4829 tcp_rbtree_insert(root
, skb
);
4832 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4833 * and tcp_collapse() them until all the queue is collapsed.
4835 static void tcp_collapse_ofo_queue(struct sock
*sk
)
4837 struct tcp_sock
*tp
= tcp_sk(sk
);
4838 struct sk_buff
*skb
, *head
;
4841 skb
= skb_rb_first(&tp
->out_of_order_queue
);
4844 tp
->ooo_last_skb
= skb_rb_last(&tp
->out_of_order_queue
);
4847 start
= TCP_SKB_CB(skb
)->seq
;
4848 end
= TCP_SKB_CB(skb
)->end_seq
;
4850 for (head
= skb
;;) {
4851 skb
= skb_rb_next(skb
);
4853 /* Range is terminated when we see a gap or when
4854 * we are at the queue end.
4857 after(TCP_SKB_CB(skb
)->seq
, end
) ||
4858 before(TCP_SKB_CB(skb
)->end_seq
, start
)) {
4859 tcp_collapse(sk
, NULL
, &tp
->out_of_order_queue
,
4860 head
, skb
, start
, end
);
4864 if (unlikely(before(TCP_SKB_CB(skb
)->seq
, start
)))
4865 start
= TCP_SKB_CB(skb
)->seq
;
4866 if (after(TCP_SKB_CB(skb
)->end_seq
, end
))
4867 end
= TCP_SKB_CB(skb
)->end_seq
;
4872 * Clean the out-of-order queue to make room.
4873 * We drop high sequences packets to :
4874 * 1) Let a chance for holes to be filled.
4875 * 2) not add too big latencies if thousands of packets sit there.
4876 * (But if application shrinks SO_RCVBUF, we could still end up
4877 * freeing whole queue here)
4879 * Return true if queue has shrunk.
4881 static bool tcp_prune_ofo_queue(struct sock
*sk
)
4883 struct tcp_sock
*tp
= tcp_sk(sk
);
4884 struct rb_node
*node
, *prev
;
4886 if (RB_EMPTY_ROOT(&tp
->out_of_order_queue
))
4889 NET_INC_STATS(sock_net(sk
), LINUX_MIB_OFOPRUNED
);
4890 node
= &tp
->ooo_last_skb
->rbnode
;
4892 prev
= rb_prev(node
);
4893 rb_erase(node
, &tp
->out_of_order_queue
);
4894 tcp_drop(sk
, rb_to_skb(node
));
4896 if (atomic_read(&sk
->sk_rmem_alloc
) <= sk
->sk_rcvbuf
&&
4897 !tcp_under_memory_pressure(sk
))
4901 tp
->ooo_last_skb
= rb_to_skb(prev
);
4903 /* Reset SACK state. A conforming SACK implementation will
4904 * do the same at a timeout based retransmit. When a connection
4905 * is in a sad state like this, we care only about integrity
4906 * of the connection not performance.
4908 if (tp
->rx_opt
.sack_ok
)
4909 tcp_sack_reset(&tp
->rx_opt
);
4913 /* Reduce allocated memory if we can, trying to get
4914 * the socket within its memory limits again.
4916 * Return less than zero if we should start dropping frames
4917 * until the socket owning process reads some of the data
4918 * to stabilize the situation.
4920 static int tcp_prune_queue(struct sock
*sk
)
4922 struct tcp_sock
*tp
= tcp_sk(sk
);
4924 SOCK_DEBUG(sk
, "prune_queue: c=%x\n", tp
->copied_seq
);
4926 NET_INC_STATS(sock_net(sk
), LINUX_MIB_PRUNECALLED
);
4928 if (atomic_read(&sk
->sk_rmem_alloc
) >= sk
->sk_rcvbuf
)
4929 tcp_clamp_window(sk
);
4930 else if (tcp_under_memory_pressure(sk
))
4931 tp
->rcv_ssthresh
= min(tp
->rcv_ssthresh
, 4U * tp
->advmss
);
4933 tcp_collapse_ofo_queue(sk
);
4934 if (!skb_queue_empty(&sk
->sk_receive_queue
))
4935 tcp_collapse(sk
, &sk
->sk_receive_queue
, NULL
,
4936 skb_peek(&sk
->sk_receive_queue
),
4938 tp
->copied_seq
, tp
->rcv_nxt
);
4941 if (atomic_read(&sk
->sk_rmem_alloc
) <= sk
->sk_rcvbuf
)
4944 /* Collapsing did not help, destructive actions follow.
4945 * This must not ever occur. */
4947 tcp_prune_ofo_queue(sk
);
4949 if (atomic_read(&sk
->sk_rmem_alloc
) <= sk
->sk_rcvbuf
)
4952 /* If we are really being abused, tell the caller to silently
4953 * drop receive data on the floor. It will get retransmitted
4954 * and hopefully then we'll have sufficient space.
4956 NET_INC_STATS(sock_net(sk
), LINUX_MIB_RCVPRUNED
);
4958 /* Massive buffer overcommit. */
4963 static bool tcp_should_expand_sndbuf(const struct sock
*sk
)
4965 const struct tcp_sock
*tp
= tcp_sk(sk
);
4967 /* If the user specified a specific send buffer setting, do
4970 if (sk
->sk_userlocks
& SOCK_SNDBUF_LOCK
)
4973 /* If we are under global TCP memory pressure, do not expand. */
4974 if (tcp_under_memory_pressure(sk
))
4977 /* If we are under soft global TCP memory pressure, do not expand. */
4978 if (sk_memory_allocated(sk
) >= sk_prot_mem_limits(sk
, 0))
4981 /* If we filled the congestion window, do not expand. */
4982 if (tcp_packets_in_flight(tp
) >= tp
->snd_cwnd
)
4988 /* When incoming ACK allowed to free some skb from write_queue,
4989 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
4990 * on the exit from tcp input handler.
4992 * PROBLEM: sndbuf expansion does not work well with largesend.
4994 static void tcp_new_space(struct sock
*sk
)
4996 struct tcp_sock
*tp
= tcp_sk(sk
);
4998 if (tcp_should_expand_sndbuf(sk
)) {
4999 tcp_sndbuf_expand(sk
);
5000 tp
->snd_cwnd_stamp
= tcp_jiffies32
;
5003 sk
->sk_write_space(sk
);
5006 static void tcp_check_space(struct sock
*sk
)
5008 if (sock_flag(sk
, SOCK_QUEUE_SHRUNK
)) {
5009 sock_reset_flag(sk
, SOCK_QUEUE_SHRUNK
);
5010 /* pairs with tcp_poll() */
5012 if (sk
->sk_socket
&&
5013 test_bit(SOCK_NOSPACE
, &sk
->sk_socket
->flags
)) {
5015 if (!test_bit(SOCK_NOSPACE
, &sk
->sk_socket
->flags
))
5016 tcp_chrono_stop(sk
, TCP_CHRONO_SNDBUF_LIMITED
);
5021 static inline void tcp_data_snd_check(struct sock
*sk
)
5023 tcp_push_pending_frames(sk
);
5024 tcp_check_space(sk
);
5028 * Check if sending an ack is needed.
5030 static void __tcp_ack_snd_check(struct sock
*sk
, int ofo_possible
)
5032 struct tcp_sock
*tp
= tcp_sk(sk
);
5034 /* More than one full frame received... */
5035 if (((tp
->rcv_nxt
- tp
->rcv_wup
) > inet_csk(sk
)->icsk_ack
.rcv_mss
&&
5036 /* ... and right edge of window advances far enough.
5037 * (tcp_recvmsg() will send ACK otherwise). Or...
5039 __tcp_select_window(sk
) >= tp
->rcv_wnd
) ||
5040 /* We ACK each frame or... */
5041 tcp_in_quickack_mode(sk
) ||
5042 /* We have out of order data. */
5043 (ofo_possible
&& !RB_EMPTY_ROOT(&tp
->out_of_order_queue
))) {
5044 /* Then ack it now */
5047 /* Else, send delayed ack. */
5048 tcp_send_delayed_ack(sk
);
5052 static inline void tcp_ack_snd_check(struct sock
*sk
)
5054 if (!inet_csk_ack_scheduled(sk
)) {
5055 /* We sent a data segment already. */
5058 __tcp_ack_snd_check(sk
, 1);
5062 * This routine is only called when we have urgent data
5063 * signaled. Its the 'slow' part of tcp_urg. It could be
5064 * moved inline now as tcp_urg is only called from one
5065 * place. We handle URGent data wrong. We have to - as
5066 * BSD still doesn't use the correction from RFC961.
5067 * For 1003.1g we should support a new option TCP_STDURG to permit
5068 * either form (or just set the sysctl tcp_stdurg).
5071 static void tcp_check_urg(struct sock
*sk
, const struct tcphdr
*th
)
5073 struct tcp_sock
*tp
= tcp_sk(sk
);
5074 u32 ptr
= ntohs(th
->urg_ptr
);
5076 if (ptr
&& !sock_net(sk
)->ipv4
.sysctl_tcp_stdurg
)
5078 ptr
+= ntohl(th
->seq
);
5080 /* Ignore urgent data that we've already seen and read. */
5081 if (after(tp
->copied_seq
, ptr
))
5084 /* Do not replay urg ptr.
5086 * NOTE: interesting situation not covered by specs.
5087 * Misbehaving sender may send urg ptr, pointing to segment,
5088 * which we already have in ofo queue. We are not able to fetch
5089 * such data and will stay in TCP_URG_NOTYET until will be eaten
5090 * by recvmsg(). Seems, we are not obliged to handle such wicked
5091 * situations. But it is worth to think about possibility of some
5092 * DoSes using some hypothetical application level deadlock.
5094 if (before(ptr
, tp
->rcv_nxt
))
5097 /* Do we already have a newer (or duplicate) urgent pointer? */
5098 if (tp
->urg_data
&& !after(ptr
, tp
->urg_seq
))
5101 /* Tell the world about our new urgent pointer. */
5104 /* We may be adding urgent data when the last byte read was
5105 * urgent. To do this requires some care. We cannot just ignore
5106 * tp->copied_seq since we would read the last urgent byte again
5107 * as data, nor can we alter copied_seq until this data arrives
5108 * or we break the semantics of SIOCATMARK (and thus sockatmark())
5110 * NOTE. Double Dutch. Rendering to plain English: author of comment
5111 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
5112 * and expect that both A and B disappear from stream. This is _wrong_.
5113 * Though this happens in BSD with high probability, this is occasional.
5114 * Any application relying on this is buggy. Note also, that fix "works"
5115 * only in this artificial test. Insert some normal data between A and B and we will
5116 * decline of BSD again. Verdict: it is better to remove to trap
5119 if (tp
->urg_seq
== tp
->copied_seq
&& tp
->urg_data
&&
5120 !sock_flag(sk
, SOCK_URGINLINE
) && tp
->copied_seq
!= tp
->rcv_nxt
) {
5121 struct sk_buff
*skb
= skb_peek(&sk
->sk_receive_queue
);
5123 if (skb
&& !before(tp
->copied_seq
, TCP_SKB_CB(skb
)->end_seq
)) {
5124 __skb_unlink(skb
, &sk
->sk_receive_queue
);
5129 tp
->urg_data
= TCP_URG_NOTYET
;
5132 /* Disable header prediction. */
5136 /* This is the 'fast' part of urgent handling. */
5137 static void tcp_urg(struct sock
*sk
, struct sk_buff
*skb
, const struct tcphdr
*th
)
5139 struct tcp_sock
*tp
= tcp_sk(sk
);
5141 /* Check if we get a new urgent pointer - normally not. */
5143 tcp_check_urg(sk
, th
);
5145 /* Do we wait for any urgent data? - normally not... */
5146 if (tp
->urg_data
== TCP_URG_NOTYET
) {
5147 u32 ptr
= tp
->urg_seq
- ntohl(th
->seq
) + (th
->doff
* 4) -
5150 /* Is the urgent pointer pointing into this packet? */
5151 if (ptr
< skb
->len
) {
5153 if (skb_copy_bits(skb
, ptr
, &tmp
, 1))
5155 tp
->urg_data
= TCP_URG_VALID
| tmp
;
5156 if (!sock_flag(sk
, SOCK_DEAD
))
5157 sk
->sk_data_ready(sk
);
5162 /* Accept RST for rcv_nxt - 1 after a FIN.
5163 * When tcp connections are abruptly terminated from Mac OSX (via ^C), a
5164 * FIN is sent followed by a RST packet. The RST is sent with the same
5165 * sequence number as the FIN, and thus according to RFC 5961 a challenge
5166 * ACK should be sent. However, Mac OSX rate limits replies to challenge
5167 * ACKs on the closed socket. In addition middleboxes can drop either the
5168 * challenge ACK or a subsequent RST.
5170 static bool tcp_reset_check(const struct sock
*sk
, const struct sk_buff
*skb
)
5172 struct tcp_sock
*tp
= tcp_sk(sk
);
5174 return unlikely(TCP_SKB_CB(skb
)->seq
== (tp
->rcv_nxt
- 1) &&
5175 (1 << sk
->sk_state
) & (TCPF_CLOSE_WAIT
| TCPF_LAST_ACK
|
5179 /* Does PAWS and seqno based validation of an incoming segment, flags will
5180 * play significant role here.
5182 static bool tcp_validate_incoming(struct sock
*sk
, struct sk_buff
*skb
,
5183 const struct tcphdr
*th
, int syn_inerr
)
5185 struct tcp_sock
*tp
= tcp_sk(sk
);
5186 bool rst_seq_match
= false;
5188 /* RFC1323: H1. Apply PAWS check first. */
5189 if (tcp_fast_parse_options(sock_net(sk
), skb
, th
, tp
) &&
5190 tp
->rx_opt
.saw_tstamp
&&
5191 tcp_paws_discard(sk
, skb
)) {
5193 NET_INC_STATS(sock_net(sk
), LINUX_MIB_PAWSESTABREJECTED
);
5194 if (!tcp_oow_rate_limited(sock_net(sk
), skb
,
5195 LINUX_MIB_TCPACKSKIPPEDPAWS
,
5196 &tp
->last_oow_ack_time
))
5197 tcp_send_dupack(sk
, skb
);
5200 /* Reset is accepted even if it did not pass PAWS. */
5203 /* Step 1: check sequence number */
5204 if (!tcp_sequence(tp
, TCP_SKB_CB(skb
)->seq
, TCP_SKB_CB(skb
)->end_seq
)) {
5205 /* RFC793, page 37: "In all states except SYN-SENT, all reset
5206 * (RST) segments are validated by checking their SEQ-fields."
5207 * And page 69: "If an incoming segment is not acceptable,
5208 * an acknowledgment should be sent in reply (unless the RST
5209 * bit is set, if so drop the segment and return)".
5214 if (!tcp_oow_rate_limited(sock_net(sk
), skb
,
5215 LINUX_MIB_TCPACKSKIPPEDSEQ
,
5216 &tp
->last_oow_ack_time
))
5217 tcp_send_dupack(sk
, skb
);
5218 } else if (tcp_reset_check(sk
, skb
)) {
5224 /* Step 2: check RST bit */
5226 /* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a
5227 * FIN and SACK too if available):
5228 * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or
5229 * the right-most SACK block,
5231 * RESET the connection
5233 * Send a challenge ACK
5235 if (TCP_SKB_CB(skb
)->seq
== tp
->rcv_nxt
||
5236 tcp_reset_check(sk
, skb
)) {
5237 rst_seq_match
= true;
5238 } else if (tcp_is_sack(tp
) && tp
->rx_opt
.num_sacks
> 0) {
5239 struct tcp_sack_block
*sp
= &tp
->selective_acks
[0];
5240 int max_sack
= sp
[0].end_seq
;
5243 for (this_sack
= 1; this_sack
< tp
->rx_opt
.num_sacks
;
5245 max_sack
= after(sp
[this_sack
].end_seq
,
5247 sp
[this_sack
].end_seq
: max_sack
;
5250 if (TCP_SKB_CB(skb
)->seq
== max_sack
)
5251 rst_seq_match
= true;
5257 /* Disable TFO if RST is out-of-order
5258 * and no data has been received
5259 * for current active TFO socket
5261 if (tp
->syn_fastopen
&& !tp
->data_segs_in
&&
5262 sk
->sk_state
== TCP_ESTABLISHED
)
5263 tcp_fastopen_active_disable(sk
);
5264 tcp_send_challenge_ack(sk
, skb
);
5269 /* step 3: check security and precedence [ignored] */
5271 /* step 4: Check for a SYN
5272 * RFC 5961 4.2 : Send a challenge ack
5277 TCP_INC_STATS(sock_net(sk
), TCP_MIB_INERRS
);
5278 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPSYNCHALLENGE
);
5279 tcp_send_challenge_ack(sk
, skb
);
5291 * TCP receive function for the ESTABLISHED state.
5293 * It is split into a fast path and a slow path. The fast path is
5295 * - A zero window was announced from us - zero window probing
5296 * is only handled properly in the slow path.
5297 * - Out of order segments arrived.
5298 * - Urgent data is expected.
5299 * - There is no buffer space left
5300 * - Unexpected TCP flags/window values/header lengths are received
5301 * (detected by checking the TCP header against pred_flags)
5302 * - Data is sent in both directions. Fast path only supports pure senders
5303 * or pure receivers (this means either the sequence number or the ack
5304 * value must stay constant)
5305 * - Unexpected TCP option.
5307 * When these conditions are not satisfied it drops into a standard
5308 * receive procedure patterned after RFC793 to handle all cases.
5309 * The first three cases are guaranteed by proper pred_flags setting,
5310 * the rest is checked inline. Fast processing is turned on in
5311 * tcp_data_queue when everything is OK.
5313 void tcp_rcv_established(struct sock
*sk
, struct sk_buff
*skb
,
5314 const struct tcphdr
*th
)
5316 unsigned int len
= skb
->len
;
5317 struct tcp_sock
*tp
= tcp_sk(sk
);
5319 /* TCP congestion window tracking */
5320 trace_tcp_probe(sk
, skb
);
5322 tcp_mstamp_refresh(tp
);
5323 if (unlikely(!sk
->sk_rx_dst
))
5324 inet_csk(sk
)->icsk_af_ops
->sk_rx_dst_set(sk
, skb
);
5326 * Header prediction.
5327 * The code loosely follows the one in the famous
5328 * "30 instruction TCP receive" Van Jacobson mail.
5330 * Van's trick is to deposit buffers into socket queue
5331 * on a device interrupt, to call tcp_recv function
5332 * on the receive process context and checksum and copy
5333 * the buffer to user space. smart...
5335 * Our current scheme is not silly either but we take the
5336 * extra cost of the net_bh soft interrupt processing...
5337 * We do checksum and copy also but from device to kernel.
5340 tp
->rx_opt
.saw_tstamp
= 0;
5342 /* pred_flags is 0xS?10 << 16 + snd_wnd
5343 * if header_prediction is to be made
5344 * 'S' will always be tp->tcp_header_len >> 2
5345 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
5346 * turn it off (when there are holes in the receive
5347 * space for instance)
5348 * PSH flag is ignored.
5351 if ((tcp_flag_word(th
) & TCP_HP_BITS
) == tp
->pred_flags
&&
5352 TCP_SKB_CB(skb
)->seq
== tp
->rcv_nxt
&&
5353 !after(TCP_SKB_CB(skb
)->ack_seq
, tp
->snd_nxt
)) {
5354 int tcp_header_len
= tp
->tcp_header_len
;
5356 /* Timestamp header prediction: tcp_header_len
5357 * is automatically equal to th->doff*4 due to pred_flags
5361 /* Check timestamp */
5362 if (tcp_header_len
== sizeof(struct tcphdr
) + TCPOLEN_TSTAMP_ALIGNED
) {
5363 /* No? Slow path! */
5364 if (!tcp_parse_aligned_timestamp(tp
, th
))
5367 /* If PAWS failed, check it more carefully in slow path */
5368 if ((s32
)(tp
->rx_opt
.rcv_tsval
- tp
->rx_opt
.ts_recent
) < 0)
5371 /* DO NOT update ts_recent here, if checksum fails
5372 * and timestamp was corrupted part, it will result
5373 * in a hung connection since we will drop all
5374 * future packets due to the PAWS test.
5378 if (len
<= tcp_header_len
) {
5379 /* Bulk data transfer: sender */
5380 if (len
== tcp_header_len
) {
5381 /* Predicted packet is in window by definition.
5382 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5383 * Hence, check seq<=rcv_wup reduces to:
5385 if (tcp_header_len
==
5386 (sizeof(struct tcphdr
) + TCPOLEN_TSTAMP_ALIGNED
) &&
5387 tp
->rcv_nxt
== tp
->rcv_wup
)
5388 tcp_store_ts_recent(tp
);
5390 /* We know that such packets are checksummed
5393 tcp_ack(sk
, skb
, 0);
5395 tcp_data_snd_check(sk
);
5397 } else { /* Header too small */
5398 TCP_INC_STATS(sock_net(sk
), TCP_MIB_INERRS
);
5403 bool fragstolen
= false;
5405 if (tcp_checksum_complete(skb
))
5408 if ((int)skb
->truesize
> sk
->sk_forward_alloc
)
5411 /* Predicted packet is in window by definition.
5412 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5413 * Hence, check seq<=rcv_wup reduces to:
5415 if (tcp_header_len
==
5416 (sizeof(struct tcphdr
) + TCPOLEN_TSTAMP_ALIGNED
) &&
5417 tp
->rcv_nxt
== tp
->rcv_wup
)
5418 tcp_store_ts_recent(tp
);
5420 tcp_rcv_rtt_measure_ts(sk
, skb
);
5422 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPHPHITS
);
5424 /* Bulk data transfer: receiver */
5425 eaten
= tcp_queue_rcv(sk
, skb
, tcp_header_len
,
5428 tcp_event_data_recv(sk
, skb
);
5430 if (TCP_SKB_CB(skb
)->ack_seq
!= tp
->snd_una
) {
5431 /* Well, only one small jumplet in fast path... */
5432 tcp_ack(sk
, skb
, FLAG_DATA
);
5433 tcp_data_snd_check(sk
);
5434 if (!inet_csk_ack_scheduled(sk
))
5438 __tcp_ack_snd_check(sk
, 0);
5441 kfree_skb_partial(skb
, fragstolen
);
5442 sk
->sk_data_ready(sk
);
5448 if (len
< (th
->doff
<< 2) || tcp_checksum_complete(skb
))
5451 if (!th
->ack
&& !th
->rst
&& !th
->syn
)
5455 * Standard slow path.
5458 if (!tcp_validate_incoming(sk
, skb
, th
, 1))
5462 if (tcp_ack(sk
, skb
, FLAG_SLOWPATH
| FLAG_UPDATE_TS_RECENT
) < 0)
5465 tcp_rcv_rtt_measure_ts(sk
, skb
);
5467 /* Process urgent data. */
5468 tcp_urg(sk
, skb
, th
);
5470 /* step 7: process the segment text */
5471 tcp_data_queue(sk
, skb
);
5473 tcp_data_snd_check(sk
);
5474 tcp_ack_snd_check(sk
);
5478 TCP_INC_STATS(sock_net(sk
), TCP_MIB_CSUMERRORS
);
5479 TCP_INC_STATS(sock_net(sk
), TCP_MIB_INERRS
);
5484 EXPORT_SYMBOL(tcp_rcv_established
);
5486 void tcp_finish_connect(struct sock
*sk
, struct sk_buff
*skb
)
5488 struct tcp_sock
*tp
= tcp_sk(sk
);
5489 struct inet_connection_sock
*icsk
= inet_csk(sk
);
5491 tcp_set_state(sk
, TCP_ESTABLISHED
);
5492 icsk
->icsk_ack
.lrcvtime
= tcp_jiffies32
;
5495 icsk
->icsk_af_ops
->sk_rx_dst_set(sk
, skb
);
5496 security_inet_conn_established(sk
, skb
);
5499 tcp_init_transfer(sk
, BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB
);
5501 /* Prevent spurious tcp_cwnd_restart() on first data
5504 tp
->lsndtime
= tcp_jiffies32
;
5506 if (sock_flag(sk
, SOCK_KEEPOPEN
))
5507 inet_csk_reset_keepalive_timer(sk
, keepalive_time_when(tp
));
5509 if (!tp
->rx_opt
.snd_wscale
)
5510 __tcp_fast_path_on(tp
, tp
->snd_wnd
);
5515 static bool tcp_rcv_fastopen_synack(struct sock
*sk
, struct sk_buff
*synack
,
5516 struct tcp_fastopen_cookie
*cookie
)
5518 struct tcp_sock
*tp
= tcp_sk(sk
);
5519 struct sk_buff
*data
= tp
->syn_data
? tcp_rtx_queue_head(sk
) : NULL
;
5520 u16 mss
= tp
->rx_opt
.mss_clamp
, try_exp
= 0;
5521 bool syn_drop
= false;
5523 if (mss
== tp
->rx_opt
.user_mss
) {
5524 struct tcp_options_received opt
;
5526 /* Get original SYNACK MSS value if user MSS sets mss_clamp */
5527 tcp_clear_options(&opt
);
5528 opt
.user_mss
= opt
.mss_clamp
= 0;
5529 tcp_parse_options(sock_net(sk
), synack
, &opt
, 0, NULL
);
5530 mss
= opt
.mss_clamp
;
5533 if (!tp
->syn_fastopen
) {
5534 /* Ignore an unsolicited cookie */
5536 } else if (tp
->total_retrans
) {
5537 /* SYN timed out and the SYN-ACK neither has a cookie nor
5538 * acknowledges data. Presumably the remote received only
5539 * the retransmitted (regular) SYNs: either the original
5540 * SYN-data or the corresponding SYN-ACK was dropped.
5542 syn_drop
= (cookie
->len
< 0 && data
);
5543 } else if (cookie
->len
< 0 && !tp
->syn_data
) {
5544 /* We requested a cookie but didn't get it. If we did not use
5545 * the (old) exp opt format then try so next time (try_exp=1).
5546 * Otherwise we go back to use the RFC7413 opt (try_exp=2).
5548 try_exp
= tp
->syn_fastopen_exp
? 2 : 1;
5551 tcp_fastopen_cache_set(sk
, mss
, cookie
, syn_drop
, try_exp
);
5553 if (data
) { /* Retransmit unacked data in SYN */
5554 skb_rbtree_walk_from(data
) {
5555 if (__tcp_retransmit_skb(sk
, data
, 1))
5559 NET_INC_STATS(sock_net(sk
),
5560 LINUX_MIB_TCPFASTOPENACTIVEFAIL
);
5563 tp
->syn_data_acked
= tp
->syn_data
;
5564 if (tp
->syn_data_acked
)
5565 NET_INC_STATS(sock_net(sk
),
5566 LINUX_MIB_TCPFASTOPENACTIVE
);
5568 tcp_fastopen_add_skb(sk
, synack
);
5573 static void smc_check_reset_syn(struct tcp_sock
*tp
)
5575 #if IS_ENABLED(CONFIG_SMC)
5576 if (static_branch_unlikely(&tcp_have_smc
)) {
5577 if (tp
->syn_smc
&& !tp
->rx_opt
.smc_ok
)
5583 static int tcp_rcv_synsent_state_process(struct sock
*sk
, struct sk_buff
*skb
,
5584 const struct tcphdr
*th
)
5586 struct inet_connection_sock
*icsk
= inet_csk(sk
);
5587 struct tcp_sock
*tp
= tcp_sk(sk
);
5588 struct tcp_fastopen_cookie foc
= { .len
= -1 };
5589 int saved_clamp
= tp
->rx_opt
.mss_clamp
;
5592 tcp_parse_options(sock_net(sk
), skb
, &tp
->rx_opt
, 0, &foc
);
5593 if (tp
->rx_opt
.saw_tstamp
&& tp
->rx_opt
.rcv_tsecr
)
5594 tp
->rx_opt
.rcv_tsecr
-= tp
->tsoffset
;
5598 * "If the state is SYN-SENT then
5599 * first check the ACK bit
5600 * If the ACK bit is set
5601 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5602 * a reset (unless the RST bit is set, if so drop
5603 * the segment and return)"
5605 if (!after(TCP_SKB_CB(skb
)->ack_seq
, tp
->snd_una
) ||
5606 after(TCP_SKB_CB(skb
)->ack_seq
, tp
->snd_nxt
))
5607 goto reset_and_undo
;
5609 if (tp
->rx_opt
.saw_tstamp
&& tp
->rx_opt
.rcv_tsecr
&&
5610 !between(tp
->rx_opt
.rcv_tsecr
, tp
->retrans_stamp
,
5611 tcp_time_stamp(tp
))) {
5612 NET_INC_STATS(sock_net(sk
),
5613 LINUX_MIB_PAWSACTIVEREJECTED
);
5614 goto reset_and_undo
;
5617 /* Now ACK is acceptable.
5619 * "If the RST bit is set
5620 * If the ACK was acceptable then signal the user "error:
5621 * connection reset", drop the segment, enter CLOSED state,
5622 * delete TCB, and return."
5631 * "fifth, if neither of the SYN or RST bits is set then
5632 * drop the segment and return."
5638 goto discard_and_undo
;
5641 * "If the SYN bit is on ...
5642 * are acceptable then ...
5643 * (our SYN has been ACKed), change the connection
5644 * state to ESTABLISHED..."
5647 tcp_ecn_rcv_synack(tp
, th
);
5649 tcp_init_wl(tp
, TCP_SKB_CB(skb
)->seq
);
5650 tcp_ack(sk
, skb
, FLAG_SLOWPATH
);
5652 /* Ok.. it's good. Set up sequence numbers and
5653 * move to established.
5655 tp
->rcv_nxt
= TCP_SKB_CB(skb
)->seq
+ 1;
5656 tp
->rcv_wup
= TCP_SKB_CB(skb
)->seq
+ 1;
5658 /* RFC1323: The window in SYN & SYN/ACK segments is
5661 tp
->snd_wnd
= ntohs(th
->window
);
5663 if (!tp
->rx_opt
.wscale_ok
) {
5664 tp
->rx_opt
.snd_wscale
= tp
->rx_opt
.rcv_wscale
= 0;
5665 tp
->window_clamp
= min(tp
->window_clamp
, 65535U);
5668 if (tp
->rx_opt
.saw_tstamp
) {
5669 tp
->rx_opt
.tstamp_ok
= 1;
5670 tp
->tcp_header_len
=
5671 sizeof(struct tcphdr
) + TCPOLEN_TSTAMP_ALIGNED
;
5672 tp
->advmss
-= TCPOLEN_TSTAMP_ALIGNED
;
5673 tcp_store_ts_recent(tp
);
5675 tp
->tcp_header_len
= sizeof(struct tcphdr
);
5678 tcp_sync_mss(sk
, icsk
->icsk_pmtu_cookie
);
5679 tcp_initialize_rcv_mss(sk
);
5681 /* Remember, tcp_poll() does not lock socket!
5682 * Change state from SYN-SENT only after copied_seq
5683 * is initialized. */
5684 tp
->copied_seq
= tp
->rcv_nxt
;
5686 smc_check_reset_syn(tp
);
5690 tcp_finish_connect(sk
, skb
);
5692 fastopen_fail
= (tp
->syn_fastopen
|| tp
->syn_data
) &&
5693 tcp_rcv_fastopen_synack(sk
, skb
, &foc
);
5695 if (!sock_flag(sk
, SOCK_DEAD
)) {
5696 sk
->sk_state_change(sk
);
5697 sk_wake_async(sk
, SOCK_WAKE_IO
, POLL_OUT
);
5701 if (sk
->sk_write_pending
||
5702 icsk
->icsk_accept_queue
.rskq_defer_accept
||
5703 icsk
->icsk_ack
.pingpong
) {
5704 /* Save one ACK. Data will be ready after
5705 * several ticks, if write_pending is set.
5707 * It may be deleted, but with this feature tcpdumps
5708 * look so _wonderfully_ clever, that I was not able
5709 * to stand against the temptation 8) --ANK
5711 inet_csk_schedule_ack(sk
);
5712 tcp_enter_quickack_mode(sk
);
5713 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_DACK
,
5714 TCP_DELACK_MAX
, TCP_RTO_MAX
);
5725 /* No ACK in the segment */
5729 * "If the RST bit is set
5731 * Otherwise (no ACK) drop the segment and return."
5734 goto discard_and_undo
;
5738 if (tp
->rx_opt
.ts_recent_stamp
&& tp
->rx_opt
.saw_tstamp
&&
5739 tcp_paws_reject(&tp
->rx_opt
, 0))
5740 goto discard_and_undo
;
5743 /* We see SYN without ACK. It is attempt of
5744 * simultaneous connect with crossed SYNs.
5745 * Particularly, it can be connect to self.
5747 tcp_set_state(sk
, TCP_SYN_RECV
);
5749 if (tp
->rx_opt
.saw_tstamp
) {
5750 tp
->rx_opt
.tstamp_ok
= 1;
5751 tcp_store_ts_recent(tp
);
5752 tp
->tcp_header_len
=
5753 sizeof(struct tcphdr
) + TCPOLEN_TSTAMP_ALIGNED
;
5755 tp
->tcp_header_len
= sizeof(struct tcphdr
);
5758 tp
->rcv_nxt
= TCP_SKB_CB(skb
)->seq
+ 1;
5759 tp
->copied_seq
= tp
->rcv_nxt
;
5760 tp
->rcv_wup
= TCP_SKB_CB(skb
)->seq
+ 1;
5762 /* RFC1323: The window in SYN & SYN/ACK segments is
5765 tp
->snd_wnd
= ntohs(th
->window
);
5766 tp
->snd_wl1
= TCP_SKB_CB(skb
)->seq
;
5767 tp
->max_window
= tp
->snd_wnd
;
5769 tcp_ecn_rcv_syn(tp
, th
);
5772 tcp_sync_mss(sk
, icsk
->icsk_pmtu_cookie
);
5773 tcp_initialize_rcv_mss(sk
);
5775 tcp_send_synack(sk
);
5777 /* Note, we could accept data and URG from this segment.
5778 * There are no obstacles to make this (except that we must
5779 * either change tcp_recvmsg() to prevent it from returning data
5780 * before 3WHS completes per RFC793, or employ TCP Fast Open).
5782 * However, if we ignore data in ACKless segments sometimes,
5783 * we have no reasons to accept it sometimes.
5784 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5785 * is not flawless. So, discard packet for sanity.
5786 * Uncomment this return to process the data.
5793 /* "fifth, if neither of the SYN or RST bits is set then
5794 * drop the segment and return."
5798 tcp_clear_options(&tp
->rx_opt
);
5799 tp
->rx_opt
.mss_clamp
= saved_clamp
;
5803 tcp_clear_options(&tp
->rx_opt
);
5804 tp
->rx_opt
.mss_clamp
= saved_clamp
;
5809 * This function implements the receiving procedure of RFC 793 for
5810 * all states except ESTABLISHED and TIME_WAIT.
5811 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5812 * address independent.
5815 int tcp_rcv_state_process(struct sock
*sk
, struct sk_buff
*skb
)
5817 struct tcp_sock
*tp
= tcp_sk(sk
);
5818 struct inet_connection_sock
*icsk
= inet_csk(sk
);
5819 const struct tcphdr
*th
= tcp_hdr(skb
);
5820 struct request_sock
*req
;
5824 switch (sk
->sk_state
) {
5838 /* It is possible that we process SYN packets from backlog,
5839 * so we need to make sure to disable BH right there.
5842 acceptable
= icsk
->icsk_af_ops
->conn_request(sk
, skb
) >= 0;
5853 tp
->rx_opt
.saw_tstamp
= 0;
5854 tcp_mstamp_refresh(tp
);
5855 queued
= tcp_rcv_synsent_state_process(sk
, skb
, th
);
5859 /* Do step6 onward by hand. */
5860 tcp_urg(sk
, skb
, th
);
5862 tcp_data_snd_check(sk
);
5866 tcp_mstamp_refresh(tp
);
5867 tp
->rx_opt
.saw_tstamp
= 0;
5868 req
= tp
->fastopen_rsk
;
5870 WARN_ON_ONCE(sk
->sk_state
!= TCP_SYN_RECV
&&
5871 sk
->sk_state
!= TCP_FIN_WAIT1
);
5873 if (!tcp_check_req(sk
, skb
, req
, true))
5877 if (!th
->ack
&& !th
->rst
&& !th
->syn
)
5880 if (!tcp_validate_incoming(sk
, skb
, th
, 0))
5883 /* step 5: check the ACK field */
5884 acceptable
= tcp_ack(sk
, skb
, FLAG_SLOWPATH
|
5885 FLAG_UPDATE_TS_RECENT
|
5886 FLAG_NO_CHALLENGE_ACK
) > 0;
5889 if (sk
->sk_state
== TCP_SYN_RECV
)
5890 return 1; /* send one RST */
5891 tcp_send_challenge_ack(sk
, skb
);
5894 switch (sk
->sk_state
) {
5897 tcp_synack_rtt_meas(sk
, req
);
5899 /* Once we leave TCP_SYN_RECV, we no longer need req
5903 inet_csk(sk
)->icsk_retransmits
= 0;
5904 reqsk_fastopen_remove(sk
, req
, false);
5905 /* Re-arm the timer because data may have been sent out.
5906 * This is similar to the regular data transmission case
5907 * when new data has just been ack'ed.
5909 * (TFO) - we could try to be more aggressive and
5910 * retransmitting any data sooner based on when they
5915 tcp_init_transfer(sk
, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB
);
5916 tp
->copied_seq
= tp
->rcv_nxt
;
5919 tcp_set_state(sk
, TCP_ESTABLISHED
);
5920 sk
->sk_state_change(sk
);
5922 /* Note, that this wakeup is only for marginal crossed SYN case.
5923 * Passively open sockets are not waked up, because
5924 * sk->sk_sleep == NULL and sk->sk_socket == NULL.
5927 sk_wake_async(sk
, SOCK_WAKE_IO
, POLL_OUT
);
5929 tp
->snd_una
= TCP_SKB_CB(skb
)->ack_seq
;
5930 tp
->snd_wnd
= ntohs(th
->window
) << tp
->rx_opt
.snd_wscale
;
5931 tcp_init_wl(tp
, TCP_SKB_CB(skb
)->seq
);
5933 if (tp
->rx_opt
.tstamp_ok
)
5934 tp
->advmss
-= TCPOLEN_TSTAMP_ALIGNED
;
5936 if (!inet_csk(sk
)->icsk_ca_ops
->cong_control
)
5937 tcp_update_pacing_rate(sk
);
5939 /* Prevent spurious tcp_cwnd_restart() on first data packet */
5940 tp
->lsndtime
= tcp_jiffies32
;
5942 tcp_initialize_rcv_mss(sk
);
5943 tcp_fast_path_on(tp
);
5946 case TCP_FIN_WAIT1
: {
5949 /* If we enter the TCP_FIN_WAIT1 state and we are a
5950 * Fast Open socket and this is the first acceptable
5951 * ACK we have received, this would have acknowledged
5952 * our SYNACK so stop the SYNACK timer.
5955 /* We no longer need the request sock. */
5956 reqsk_fastopen_remove(sk
, req
, false);
5959 if (tp
->snd_una
!= tp
->write_seq
)
5962 tcp_set_state(sk
, TCP_FIN_WAIT2
);
5963 sk
->sk_shutdown
|= SEND_SHUTDOWN
;
5967 if (!sock_flag(sk
, SOCK_DEAD
)) {
5968 /* Wake up lingering close() */
5969 sk
->sk_state_change(sk
);
5973 if (tp
->linger2
< 0) {
5975 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPABORTONDATA
);
5978 if (TCP_SKB_CB(skb
)->end_seq
!= TCP_SKB_CB(skb
)->seq
&&
5979 after(TCP_SKB_CB(skb
)->end_seq
- th
->fin
, tp
->rcv_nxt
)) {
5980 /* Receive out of order FIN after close() */
5981 if (tp
->syn_fastopen
&& th
->fin
)
5982 tcp_fastopen_active_disable(sk
);
5984 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPABORTONDATA
);
5988 tmo
= tcp_fin_time(sk
);
5989 if (tmo
> TCP_TIMEWAIT_LEN
) {
5990 inet_csk_reset_keepalive_timer(sk
, tmo
- TCP_TIMEWAIT_LEN
);
5991 } else if (th
->fin
|| sock_owned_by_user(sk
)) {
5992 /* Bad case. We could lose such FIN otherwise.
5993 * It is not a big problem, but it looks confusing
5994 * and not so rare event. We still can lose it now,
5995 * if it spins in bh_lock_sock(), but it is really
5998 inet_csk_reset_keepalive_timer(sk
, tmo
);
6000 tcp_time_wait(sk
, TCP_FIN_WAIT2
, tmo
);
6007 if (tp
->snd_una
== tp
->write_seq
) {
6008 tcp_time_wait(sk
, TCP_TIME_WAIT
, 0);
6014 if (tp
->snd_una
== tp
->write_seq
) {
6015 tcp_update_metrics(sk
);
6022 /* step 6: check the URG bit */
6023 tcp_urg(sk
, skb
, th
);
6025 /* step 7: process the segment text */
6026 switch (sk
->sk_state
) {
6027 case TCP_CLOSE_WAIT
:
6030 if (!before(TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
))
6035 /* RFC 793 says to queue data in these states,
6036 * RFC 1122 says we MUST send a reset.
6037 * BSD 4.4 also does reset.
6039 if (sk
->sk_shutdown
& RCV_SHUTDOWN
) {
6040 if (TCP_SKB_CB(skb
)->end_seq
!= TCP_SKB_CB(skb
)->seq
&&
6041 after(TCP_SKB_CB(skb
)->end_seq
- th
->fin
, tp
->rcv_nxt
)) {
6042 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPABORTONDATA
);
6048 case TCP_ESTABLISHED
:
6049 tcp_data_queue(sk
, skb
);
6054 /* tcp_data could move socket to TIME-WAIT */
6055 if (sk
->sk_state
!= TCP_CLOSE
) {
6056 tcp_data_snd_check(sk
);
6057 tcp_ack_snd_check(sk
);
6066 EXPORT_SYMBOL(tcp_rcv_state_process
);
6068 static inline void pr_drop_req(struct request_sock
*req
, __u16 port
, int family
)
6070 struct inet_request_sock
*ireq
= inet_rsk(req
);
6072 if (family
== AF_INET
)
6073 net_dbg_ratelimited("drop open request from %pI4/%u\n",
6074 &ireq
->ir_rmt_addr
, port
);
6075 #if IS_ENABLED(CONFIG_IPV6)
6076 else if (family
== AF_INET6
)
6077 net_dbg_ratelimited("drop open request from %pI6/%u\n",
6078 &ireq
->ir_v6_rmt_addr
, port
);
6082 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
6084 * If we receive a SYN packet with these bits set, it means a
6085 * network is playing bad games with TOS bits. In order to
6086 * avoid possible false congestion notifications, we disable
6087 * TCP ECN negotiation.
6089 * Exception: tcp_ca wants ECN. This is required for DCTCP
6090 * congestion control: Linux DCTCP asserts ECT on all packets,
6091 * including SYN, which is most optimal solution; however,
6092 * others, such as FreeBSD do not.
6094 static void tcp_ecn_create_request(struct request_sock
*req
,
6095 const struct sk_buff
*skb
,
6096 const struct sock
*listen_sk
,
6097 const struct dst_entry
*dst
)
6099 const struct tcphdr
*th
= tcp_hdr(skb
);
6100 const struct net
*net
= sock_net(listen_sk
);
6101 bool th_ecn
= th
->ece
&& th
->cwr
;
6108 ect
= !INET_ECN_is_not_ect(TCP_SKB_CB(skb
)->ip_dsfield
);
6109 ecn_ok_dst
= dst_feature(dst
, DST_FEATURE_ECN_MASK
);
6110 ecn_ok
= net
->ipv4
.sysctl_tcp_ecn
|| ecn_ok_dst
;
6112 if ((!ect
&& ecn_ok
) || tcp_ca_needs_ecn(listen_sk
) ||
6113 (ecn_ok_dst
& DST_FEATURE_ECN_CA
) ||
6114 tcp_bpf_ca_needs_ecn((struct sock
*)req
))
6115 inet_rsk(req
)->ecn_ok
= 1;
6118 static void tcp_openreq_init(struct request_sock
*req
,
6119 const struct tcp_options_received
*rx_opt
,
6120 struct sk_buff
*skb
, const struct sock
*sk
)
6122 struct inet_request_sock
*ireq
= inet_rsk(req
);
6124 req
->rsk_rcv_wnd
= 0; /* So that tcp_send_synack() knows! */
6126 tcp_rsk(req
)->rcv_isn
= TCP_SKB_CB(skb
)->seq
;
6127 tcp_rsk(req
)->rcv_nxt
= TCP_SKB_CB(skb
)->seq
+ 1;
6128 tcp_rsk(req
)->snt_synack
= tcp_clock_us();
6129 tcp_rsk(req
)->last_oow_ack_time
= 0;
6130 req
->mss
= rx_opt
->mss_clamp
;
6131 req
->ts_recent
= rx_opt
->saw_tstamp
? rx_opt
->rcv_tsval
: 0;
6132 ireq
->tstamp_ok
= rx_opt
->tstamp_ok
;
6133 ireq
->sack_ok
= rx_opt
->sack_ok
;
6134 ireq
->snd_wscale
= rx_opt
->snd_wscale
;
6135 ireq
->wscale_ok
= rx_opt
->wscale_ok
;
6138 ireq
->ir_rmt_port
= tcp_hdr(skb
)->source
;
6139 ireq
->ir_num
= ntohs(tcp_hdr(skb
)->dest
);
6140 ireq
->ir_mark
= inet_request_mark(sk
, skb
);
6141 #if IS_ENABLED(CONFIG_SMC)
6142 ireq
->smc_ok
= rx_opt
->smc_ok
;
6146 struct request_sock
*inet_reqsk_alloc(const struct request_sock_ops
*ops
,
6147 struct sock
*sk_listener
,
6148 bool attach_listener
)
6150 struct request_sock
*req
= reqsk_alloc(ops
, sk_listener
,
6154 struct inet_request_sock
*ireq
= inet_rsk(req
);
6156 ireq
->ireq_opt
= NULL
;
6157 #if IS_ENABLED(CONFIG_IPV6)
6158 ireq
->pktopts
= NULL
;
6160 atomic64_set(&ireq
->ir_cookie
, 0);
6161 ireq
->ireq_state
= TCP_NEW_SYN_RECV
;
6162 write_pnet(&ireq
->ireq_net
, sock_net(sk_listener
));
6163 ireq
->ireq_family
= sk_listener
->sk_family
;
6168 EXPORT_SYMBOL(inet_reqsk_alloc
);
6171 * Return true if a syncookie should be sent
6173 static bool tcp_syn_flood_action(const struct sock
*sk
,
6174 const struct sk_buff
*skb
,
6177 struct request_sock_queue
*queue
= &inet_csk(sk
)->icsk_accept_queue
;
6178 const char *msg
= "Dropping request";
6179 bool want_cookie
= false;
6180 struct net
*net
= sock_net(sk
);
6182 #ifdef CONFIG_SYN_COOKIES
6183 if (net
->ipv4
.sysctl_tcp_syncookies
) {
6184 msg
= "Sending cookies";
6186 __NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPREQQFULLDOCOOKIES
);
6189 __NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPREQQFULLDROP
);
6191 if (!queue
->synflood_warned
&&
6192 net
->ipv4
.sysctl_tcp_syncookies
!= 2 &&
6193 xchg(&queue
->synflood_warned
, 1) == 0)
6194 pr_info("%s: Possible SYN flooding on port %d. %s. Check SNMP counters.\n",
6195 proto
, ntohs(tcp_hdr(skb
)->dest
), msg
);
6200 static void tcp_reqsk_record_syn(const struct sock
*sk
,
6201 struct request_sock
*req
,
6202 const struct sk_buff
*skb
)
6204 if (tcp_sk(sk
)->save_syn
) {
6205 u32 len
= skb_network_header_len(skb
) + tcp_hdrlen(skb
);
6208 copy
= kmalloc(len
+ sizeof(u32
), GFP_ATOMIC
);
6211 memcpy(©
[1], skb_network_header(skb
), len
);
6212 req
->saved_syn
= copy
;
6217 int tcp_conn_request(struct request_sock_ops
*rsk_ops
,
6218 const struct tcp_request_sock_ops
*af_ops
,
6219 struct sock
*sk
, struct sk_buff
*skb
)
6221 struct tcp_fastopen_cookie foc
= { .len
= -1 };
6222 __u32 isn
= TCP_SKB_CB(skb
)->tcp_tw_isn
;
6223 struct tcp_options_received tmp_opt
;
6224 struct tcp_sock
*tp
= tcp_sk(sk
);
6225 struct net
*net
= sock_net(sk
);
6226 struct sock
*fastopen_sk
= NULL
;
6227 struct request_sock
*req
;
6228 bool want_cookie
= false;
6229 struct dst_entry
*dst
;
6232 /* TW buckets are converted to open requests without
6233 * limitations, they conserve resources and peer is
6234 * evidently real one.
6236 if ((net
->ipv4
.sysctl_tcp_syncookies
== 2 ||
6237 inet_csk_reqsk_queue_is_full(sk
)) && !isn
) {
6238 want_cookie
= tcp_syn_flood_action(sk
, skb
, rsk_ops
->slab_name
);
6243 if (sk_acceptq_is_full(sk
)) {
6244 NET_INC_STATS(sock_net(sk
), LINUX_MIB_LISTENOVERFLOWS
);
6248 req
= inet_reqsk_alloc(rsk_ops
, sk
, !want_cookie
);
6252 tcp_rsk(req
)->af_specific
= af_ops
;
6253 tcp_rsk(req
)->ts_off
= 0;
6255 tcp_clear_options(&tmp_opt
);
6256 tmp_opt
.mss_clamp
= af_ops
->mss_clamp
;
6257 tmp_opt
.user_mss
= tp
->rx_opt
.user_mss
;
6258 tcp_parse_options(sock_net(sk
), skb
, &tmp_opt
, 0,
6259 want_cookie
? NULL
: &foc
);
6261 if (want_cookie
&& !tmp_opt
.saw_tstamp
)
6262 tcp_clear_options(&tmp_opt
);
6264 tmp_opt
.tstamp_ok
= tmp_opt
.saw_tstamp
;
6265 tcp_openreq_init(req
, &tmp_opt
, skb
, sk
);
6266 inet_rsk(req
)->no_srccheck
= inet_sk(sk
)->transparent
;
6268 /* Note: tcp_v6_init_req() might override ir_iif for link locals */
6269 inet_rsk(req
)->ir_iif
= inet_request_bound_dev_if(sk
, skb
);
6271 af_ops
->init_req(req
, sk
, skb
);
6273 if (security_inet_conn_request(sk
, skb
, req
))
6276 if (tmp_opt
.tstamp_ok
)
6277 tcp_rsk(req
)->ts_off
= af_ops
->init_ts_off(net
, skb
);
6279 dst
= af_ops
->route_req(sk
, &fl
, req
);
6283 if (!want_cookie
&& !isn
) {
6284 /* Kill the following clause, if you dislike this way. */
6285 if (!net
->ipv4
.sysctl_tcp_syncookies
&&
6286 (net
->ipv4
.sysctl_max_syn_backlog
- inet_csk_reqsk_queue_len(sk
) <
6287 (net
->ipv4
.sysctl_max_syn_backlog
>> 2)) &&
6288 !tcp_peer_is_proven(req
, dst
)) {
6289 /* Without syncookies last quarter of
6290 * backlog is filled with destinations,
6291 * proven to be alive.
6292 * It means that we continue to communicate
6293 * to destinations, already remembered
6294 * to the moment of synflood.
6296 pr_drop_req(req
, ntohs(tcp_hdr(skb
)->source
),
6298 goto drop_and_release
;
6301 isn
= af_ops
->init_seq(skb
);
6304 tcp_ecn_create_request(req
, skb
, sk
, dst
);
6307 isn
= cookie_init_sequence(af_ops
, sk
, skb
, &req
->mss
);
6308 req
->cookie_ts
= tmp_opt
.tstamp_ok
;
6309 if (!tmp_opt
.tstamp_ok
)
6310 inet_rsk(req
)->ecn_ok
= 0;
6313 tcp_rsk(req
)->snt_isn
= isn
;
6314 tcp_rsk(req
)->txhash
= net_tx_rndhash();
6315 tcp_openreq_init_rwin(req
, sk
, dst
);
6317 tcp_reqsk_record_syn(sk
, req
, skb
);
6318 fastopen_sk
= tcp_try_fastopen(sk
, skb
, req
, &foc
, dst
);
6321 af_ops
->send_synack(fastopen_sk
, dst
, &fl
, req
,
6322 &foc
, TCP_SYNACK_FASTOPEN
);
6323 /* Add the child socket directly into the accept queue */
6324 inet_csk_reqsk_queue_add(sk
, req
, fastopen_sk
);
6325 sk
->sk_data_ready(sk
);
6326 bh_unlock_sock(fastopen_sk
);
6327 sock_put(fastopen_sk
);
6329 tcp_rsk(req
)->tfo_listener
= false;
6331 inet_csk_reqsk_queue_hash_add(sk
, req
,
6332 tcp_timeout_init((struct sock
*)req
));
6333 af_ops
->send_synack(sk
, dst
, &fl
, req
, &foc
,
6334 !want_cookie
? TCP_SYNACK_NORMAL
:
6352 EXPORT_SYMBOL(tcp_conn_request
);