tcp: revert F-RTO middle-box workaround
[linux/fpc-iii.git] / net / ipv4 / tcp_input.c
blobcd8ea972dc65dd8382933c93744afb0d02d808f5
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
7 * Implementation of the Transmission Control Protocol(TCP).
9 * Authors: Ross Biro
10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11 * Mark Evans, <evansmp@uhura.aston.ac.uk>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Florian La Roche, <flla@stud.uni-sb.de>
14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15 * Linus Torvalds, <torvalds@cs.helsinki.fi>
16 * Alan Cox, <gw4pts@gw4pts.ampr.org>
17 * Matthew Dillon, <dillon@apollo.west.oic.com>
18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19 * Jorge Cwik, <jorge@laser.satlink.net>
23 * Changes:
24 * Pedro Roque : Fast Retransmit/Recovery.
25 * Two receive queues.
26 * Retransmit queue handled by TCP.
27 * Better retransmit timer handling.
28 * New congestion avoidance.
29 * Header prediction.
30 * Variable renaming.
32 * Eric : Fast Retransmit.
33 * Randy Scott : MSS option defines.
34 * Eric Schenk : Fixes to slow start algorithm.
35 * Eric Schenk : Yet another double ACK bug.
36 * Eric Schenk : Delayed ACK bug fixes.
37 * Eric Schenk : Floyd style fast retrans war avoidance.
38 * David S. Miller : Don't allow zero congestion window.
39 * Eric Schenk : Fix retransmitter so that it sends
40 * next packet on ack of previous packet.
41 * Andi Kleen : Moved open_request checking here
42 * and process RSTs for open_requests.
43 * Andi Kleen : Better prune_queue, and other fixes.
44 * Andrey Savochkin: Fix RTT measurements in the presence of
45 * timestamps.
46 * Andrey Savochkin: Check sequence numbers correctly when
47 * removing SACKs due to in sequence incoming
48 * data segments.
49 * Andi Kleen: Make sure we never ack data there is not
50 * enough room for. Also make this condition
51 * a fatal error if it might still happen.
52 * Andi Kleen: Add tcp_measure_rcv_mss to make
53 * connections with MSS<min(MTU,ann. MSS)
54 * work without delayed acks.
55 * Andi Kleen: Process packets with PSH set in the
56 * fast path.
57 * J Hadi Salim: ECN support
58 * Andrei Gurtov,
59 * Pasi Sarolahti,
60 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
61 * engine. Lots of bugs are found.
62 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
65 #define pr_fmt(fmt) "TCP: " fmt
67 #include <linux/mm.h>
68 #include <linux/slab.h>
69 #include <linux/module.h>
70 #include <linux/sysctl.h>
71 #include <linux/kernel.h>
72 #include <linux/prefetch.h>
73 #include <net/dst.h>
74 #include <net/tcp.h>
75 #include <net/inet_common.h>
76 #include <linux/ipsec.h>
77 #include <asm/unaligned.h>
78 #include <linux/errqueue.h>
79 #include <trace/events/tcp.h>
80 #include <linux/static_key.h>
82 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
84 #define FLAG_DATA 0x01 /* Incoming frame contained data. */
85 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
86 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
87 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
88 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
89 #define FLAG_DATA_SACKED 0x20 /* New SACK. */
90 #define FLAG_ECE 0x40 /* ECE in this ACK */
91 #define FLAG_LOST_RETRANS 0x80 /* This ACK marks some retransmission lost */
92 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
93 #define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */
94 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
95 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
96 #define FLAG_SET_XMIT_TIMER 0x1000 /* Set TLP or RTO timer */
97 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
98 #define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */
99 #define FLAG_NO_CHALLENGE_ACK 0x8000 /* do not call tcp_send_challenge_ack() */
100 #define FLAG_ACK_MAYBE_DELAYED 0x10000 /* Likely a delayed ACK */
102 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
103 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
104 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE|FLAG_DSACKING_ACK)
105 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
107 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
108 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
110 #define REXMIT_NONE 0 /* no loss recovery to do */
111 #define REXMIT_LOST 1 /* retransmit packets marked lost */
112 #define REXMIT_NEW 2 /* FRTO-style transmit of unsent/new packets */
114 static void tcp_gro_dev_warn(struct sock *sk, const struct sk_buff *skb,
115 unsigned int len)
117 static bool __once __read_mostly;
119 if (!__once) {
120 struct net_device *dev;
122 __once = true;
124 rcu_read_lock();
125 dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif);
126 if (!dev || len >= dev->mtu)
127 pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n",
128 dev ? dev->name : "Unknown driver");
129 rcu_read_unlock();
133 /* Adapt the MSS value used to make delayed ack decision to the
134 * real world.
136 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
138 struct inet_connection_sock *icsk = inet_csk(sk);
139 const unsigned int lss = icsk->icsk_ack.last_seg_size;
140 unsigned int len;
142 icsk->icsk_ack.last_seg_size = 0;
144 /* skb->len may jitter because of SACKs, even if peer
145 * sends good full-sized frames.
147 len = skb_shinfo(skb)->gso_size ? : skb->len;
148 if (len >= icsk->icsk_ack.rcv_mss) {
149 icsk->icsk_ack.rcv_mss = min_t(unsigned int, len,
150 tcp_sk(sk)->advmss);
151 /* Account for possibly-removed options */
152 if (unlikely(len > icsk->icsk_ack.rcv_mss +
153 MAX_TCP_OPTION_SPACE))
154 tcp_gro_dev_warn(sk, skb, len);
155 } else {
156 /* Otherwise, we make more careful check taking into account,
157 * that SACKs block is variable.
159 * "len" is invariant segment length, including TCP header.
161 len += skb->data - skb_transport_header(skb);
162 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
163 /* If PSH is not set, packet should be
164 * full sized, provided peer TCP is not badly broken.
165 * This observation (if it is correct 8)) allows
166 * to handle super-low mtu links fairly.
168 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
169 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
170 /* Subtract also invariant (if peer is RFC compliant),
171 * tcp header plus fixed timestamp option length.
172 * Resulting "len" is MSS free of SACK jitter.
174 len -= tcp_sk(sk)->tcp_header_len;
175 icsk->icsk_ack.last_seg_size = len;
176 if (len == lss) {
177 icsk->icsk_ack.rcv_mss = len;
178 return;
181 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
182 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
183 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
187 static void tcp_incr_quickack(struct sock *sk)
189 struct inet_connection_sock *icsk = inet_csk(sk);
190 unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
192 if (quickacks == 0)
193 quickacks = 2;
194 if (quickacks > icsk->icsk_ack.quick)
195 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
198 static void tcp_enter_quickack_mode(struct sock *sk)
200 struct inet_connection_sock *icsk = inet_csk(sk);
201 tcp_incr_quickack(sk);
202 icsk->icsk_ack.pingpong = 0;
203 icsk->icsk_ack.ato = TCP_ATO_MIN;
206 /* Send ACKs quickly, if "quick" count is not exhausted
207 * and the session is not interactive.
210 static bool tcp_in_quickack_mode(struct sock *sk)
212 const struct inet_connection_sock *icsk = inet_csk(sk);
213 const struct dst_entry *dst = __sk_dst_get(sk);
215 return (dst && dst_metric(dst, RTAX_QUICKACK)) ||
216 (icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong);
219 static void tcp_ecn_queue_cwr(struct tcp_sock *tp)
221 if (tp->ecn_flags & TCP_ECN_OK)
222 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
225 static void tcp_ecn_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb)
227 if (tcp_hdr(skb)->cwr)
228 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
231 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp)
233 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
236 static void __tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
238 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
239 case INET_ECN_NOT_ECT:
240 /* Funny extension: if ECT is not set on a segment,
241 * and we already seen ECT on a previous segment,
242 * it is probably a retransmit.
244 if (tp->ecn_flags & TCP_ECN_SEEN)
245 tcp_enter_quickack_mode((struct sock *)tp);
246 break;
247 case INET_ECN_CE:
248 if (tcp_ca_needs_ecn((struct sock *)tp))
249 tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_IS_CE);
251 if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
252 /* Better not delay acks, sender can have a very low cwnd */
253 tcp_enter_quickack_mode((struct sock *)tp);
254 tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
256 tp->ecn_flags |= TCP_ECN_SEEN;
257 break;
258 default:
259 if (tcp_ca_needs_ecn((struct sock *)tp))
260 tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_NO_CE);
261 tp->ecn_flags |= TCP_ECN_SEEN;
262 break;
266 static void tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
268 if (tp->ecn_flags & TCP_ECN_OK)
269 __tcp_ecn_check_ce(tp, skb);
272 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
274 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
275 tp->ecn_flags &= ~TCP_ECN_OK;
278 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
280 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
281 tp->ecn_flags &= ~TCP_ECN_OK;
284 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
286 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
287 return true;
288 return false;
291 /* Buffer size and advertised window tuning.
293 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
296 static void tcp_sndbuf_expand(struct sock *sk)
298 const struct tcp_sock *tp = tcp_sk(sk);
299 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
300 int sndmem, per_mss;
301 u32 nr_segs;
303 /* Worst case is non GSO/TSO : each frame consumes one skb
304 * and skb->head is kmalloced using power of two area of memory
306 per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
307 MAX_TCP_HEADER +
308 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
310 per_mss = roundup_pow_of_two(per_mss) +
311 SKB_DATA_ALIGN(sizeof(struct sk_buff));
313 nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd);
314 nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
316 /* Fast Recovery (RFC 5681 3.2) :
317 * Cubic needs 1.7 factor, rounded to 2 to include
318 * extra cushion (application might react slowly to EPOLLOUT)
320 sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2;
321 sndmem *= nr_segs * per_mss;
323 if (sk->sk_sndbuf < sndmem)
324 sk->sk_sndbuf = min(sndmem, sock_net(sk)->ipv4.sysctl_tcp_wmem[2]);
327 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
329 * All tcp_full_space() is split to two parts: "network" buffer, allocated
330 * forward and advertised in receiver window (tp->rcv_wnd) and
331 * "application buffer", required to isolate scheduling/application
332 * latencies from network.
333 * window_clamp is maximal advertised window. It can be less than
334 * tcp_full_space(), in this case tcp_full_space() - window_clamp
335 * is reserved for "application" buffer. The less window_clamp is
336 * the smoother our behaviour from viewpoint of network, but the lower
337 * throughput and the higher sensitivity of the connection to losses. 8)
339 * rcv_ssthresh is more strict window_clamp used at "slow start"
340 * phase to predict further behaviour of this connection.
341 * It is used for two goals:
342 * - to enforce header prediction at sender, even when application
343 * requires some significant "application buffer". It is check #1.
344 * - to prevent pruning of receive queue because of misprediction
345 * of receiver window. Check #2.
347 * The scheme does not work when sender sends good segments opening
348 * window and then starts to feed us spaghetti. But it should work
349 * in common situations. Otherwise, we have to rely on queue collapsing.
352 /* Slow part of check#2. */
353 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
355 struct tcp_sock *tp = tcp_sk(sk);
356 /* Optimize this! */
357 int truesize = tcp_win_from_space(sk, skb->truesize) >> 1;
358 int window = tcp_win_from_space(sk, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1;
360 while (tp->rcv_ssthresh <= window) {
361 if (truesize <= skb->len)
362 return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
364 truesize >>= 1;
365 window >>= 1;
367 return 0;
370 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
372 struct tcp_sock *tp = tcp_sk(sk);
374 /* Check #1 */
375 if (tp->rcv_ssthresh < tp->window_clamp &&
376 (int)tp->rcv_ssthresh < tcp_space(sk) &&
377 !tcp_under_memory_pressure(sk)) {
378 int incr;
380 /* Check #2. Increase window, if skb with such overhead
381 * will fit to rcvbuf in future.
383 if (tcp_win_from_space(sk, skb->truesize) <= skb->len)
384 incr = 2 * tp->advmss;
385 else
386 incr = __tcp_grow_window(sk, skb);
388 if (incr) {
389 incr = max_t(int, incr, 2 * skb->len);
390 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
391 tp->window_clamp);
392 inet_csk(sk)->icsk_ack.quick |= 1;
397 /* 3. Tuning rcvbuf, when connection enters established state. */
398 static void tcp_fixup_rcvbuf(struct sock *sk)
400 u32 mss = tcp_sk(sk)->advmss;
401 int rcvmem;
403 rcvmem = 2 * SKB_TRUESIZE(mss + MAX_TCP_HEADER) *
404 tcp_default_init_rwnd(mss);
406 /* Dynamic Right Sizing (DRS) has 2 to 3 RTT latency
407 * Allow enough cushion so that sender is not limited by our window
409 if (sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf)
410 rcvmem <<= 2;
412 if (sk->sk_rcvbuf < rcvmem)
413 sk->sk_rcvbuf = min(rcvmem, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]);
416 /* 4. Try to fixup all. It is made immediately after connection enters
417 * established state.
419 void tcp_init_buffer_space(struct sock *sk)
421 int tcp_app_win = sock_net(sk)->ipv4.sysctl_tcp_app_win;
422 struct tcp_sock *tp = tcp_sk(sk);
423 int maxwin;
425 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
426 tcp_fixup_rcvbuf(sk);
427 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
428 tcp_sndbuf_expand(sk);
430 tp->rcvq_space.space = tp->rcv_wnd;
431 tcp_mstamp_refresh(tp);
432 tp->rcvq_space.time = tp->tcp_mstamp;
433 tp->rcvq_space.seq = tp->copied_seq;
435 maxwin = tcp_full_space(sk);
437 if (tp->window_clamp >= maxwin) {
438 tp->window_clamp = maxwin;
440 if (tcp_app_win && maxwin > 4 * tp->advmss)
441 tp->window_clamp = max(maxwin -
442 (maxwin >> tcp_app_win),
443 4 * tp->advmss);
446 /* Force reservation of one segment. */
447 if (tcp_app_win &&
448 tp->window_clamp > 2 * tp->advmss &&
449 tp->window_clamp + tp->advmss > maxwin)
450 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
452 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
453 tp->snd_cwnd_stamp = tcp_jiffies32;
456 /* 5. Recalculate window clamp after socket hit its memory bounds. */
457 static void tcp_clamp_window(struct sock *sk)
459 struct tcp_sock *tp = tcp_sk(sk);
460 struct inet_connection_sock *icsk = inet_csk(sk);
461 struct net *net = sock_net(sk);
463 icsk->icsk_ack.quick = 0;
465 if (sk->sk_rcvbuf < net->ipv4.sysctl_tcp_rmem[2] &&
466 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
467 !tcp_under_memory_pressure(sk) &&
468 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
469 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
470 net->ipv4.sysctl_tcp_rmem[2]);
472 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
473 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
476 /* Initialize RCV_MSS value.
477 * RCV_MSS is an our guess about MSS used by the peer.
478 * We haven't any direct information about the MSS.
479 * It's better to underestimate the RCV_MSS rather than overestimate.
480 * Overestimations make us ACKing less frequently than needed.
481 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
483 void tcp_initialize_rcv_mss(struct sock *sk)
485 const struct tcp_sock *tp = tcp_sk(sk);
486 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
488 hint = min(hint, tp->rcv_wnd / 2);
489 hint = min(hint, TCP_MSS_DEFAULT);
490 hint = max(hint, TCP_MIN_MSS);
492 inet_csk(sk)->icsk_ack.rcv_mss = hint;
494 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
496 /* Receiver "autotuning" code.
498 * The algorithm for RTT estimation w/o timestamps is based on
499 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
500 * <http://public.lanl.gov/radiant/pubs.html#DRS>
502 * More detail on this code can be found at
503 * <http://staff.psc.edu/jheffner/>,
504 * though this reference is out of date. A new paper
505 * is pending.
507 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
509 u32 new_sample = tp->rcv_rtt_est.rtt_us;
510 long m = sample;
512 if (new_sample != 0) {
513 /* If we sample in larger samples in the non-timestamp
514 * case, we could grossly overestimate the RTT especially
515 * with chatty applications or bulk transfer apps which
516 * are stalled on filesystem I/O.
518 * Also, since we are only going for a minimum in the
519 * non-timestamp case, we do not smooth things out
520 * else with timestamps disabled convergence takes too
521 * long.
523 if (!win_dep) {
524 m -= (new_sample >> 3);
525 new_sample += m;
526 } else {
527 m <<= 3;
528 if (m < new_sample)
529 new_sample = m;
531 } else {
532 /* No previous measure. */
533 new_sample = m << 3;
536 tp->rcv_rtt_est.rtt_us = new_sample;
539 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
541 u32 delta_us;
543 if (tp->rcv_rtt_est.time == 0)
544 goto new_measure;
545 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
546 return;
547 delta_us = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcv_rtt_est.time);
548 if (!delta_us)
549 delta_us = 1;
550 tcp_rcv_rtt_update(tp, delta_us, 1);
552 new_measure:
553 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
554 tp->rcv_rtt_est.time = tp->tcp_mstamp;
557 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
558 const struct sk_buff *skb)
560 struct tcp_sock *tp = tcp_sk(sk);
562 if (tp->rx_opt.rcv_tsecr &&
563 (TCP_SKB_CB(skb)->end_seq -
564 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss)) {
565 u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
566 u32 delta_us;
568 if (!delta)
569 delta = 1;
570 delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
571 tcp_rcv_rtt_update(tp, delta_us, 0);
576 * This function should be called every time data is copied to user space.
577 * It calculates the appropriate TCP receive buffer space.
579 void tcp_rcv_space_adjust(struct sock *sk)
581 struct tcp_sock *tp = tcp_sk(sk);
582 u32 copied;
583 int time;
585 tcp_mstamp_refresh(tp);
586 time = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcvq_space.time);
587 if (time < (tp->rcv_rtt_est.rtt_us >> 3) || tp->rcv_rtt_est.rtt_us == 0)
588 return;
590 /* Number of bytes copied to user in last RTT */
591 copied = tp->copied_seq - tp->rcvq_space.seq;
592 if (copied <= tp->rcvq_space.space)
593 goto new_measure;
595 /* A bit of theory :
596 * copied = bytes received in previous RTT, our base window
597 * To cope with packet losses, we need a 2x factor
598 * To cope with slow start, and sender growing its cwin by 100 %
599 * every RTT, we need a 4x factor, because the ACK we are sending
600 * now is for the next RTT, not the current one :
601 * <prev RTT . ><current RTT .. ><next RTT .... >
604 if (sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf &&
605 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
606 int rcvmem, rcvbuf;
607 u64 rcvwin, grow;
609 /* minimal window to cope with packet losses, assuming
610 * steady state. Add some cushion because of small variations.
612 rcvwin = ((u64)copied << 1) + 16 * tp->advmss;
614 /* Accommodate for sender rate increase (eg. slow start) */
615 grow = rcvwin * (copied - tp->rcvq_space.space);
616 do_div(grow, tp->rcvq_space.space);
617 rcvwin += (grow << 1);
619 rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
620 while (tcp_win_from_space(sk, rcvmem) < tp->advmss)
621 rcvmem += 128;
623 do_div(rcvwin, tp->advmss);
624 rcvbuf = min_t(u64, rcvwin * rcvmem,
625 sock_net(sk)->ipv4.sysctl_tcp_rmem[2]);
626 if (rcvbuf > sk->sk_rcvbuf) {
627 sk->sk_rcvbuf = rcvbuf;
629 /* Make the window clamp follow along. */
630 tp->window_clamp = tcp_win_from_space(sk, rcvbuf);
633 tp->rcvq_space.space = copied;
635 new_measure:
636 tp->rcvq_space.seq = tp->copied_seq;
637 tp->rcvq_space.time = tp->tcp_mstamp;
640 /* There is something which you must keep in mind when you analyze the
641 * behavior of the tp->ato delayed ack timeout interval. When a
642 * connection starts up, we want to ack as quickly as possible. The
643 * problem is that "good" TCP's do slow start at the beginning of data
644 * transmission. The means that until we send the first few ACK's the
645 * sender will sit on his end and only queue most of his data, because
646 * he can only send snd_cwnd unacked packets at any given time. For
647 * each ACK we send, he increments snd_cwnd and transmits more of his
648 * queue. -DaveM
650 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
652 struct tcp_sock *tp = tcp_sk(sk);
653 struct inet_connection_sock *icsk = inet_csk(sk);
654 u32 now;
656 inet_csk_schedule_ack(sk);
658 tcp_measure_rcv_mss(sk, skb);
660 tcp_rcv_rtt_measure(tp);
662 now = tcp_jiffies32;
664 if (!icsk->icsk_ack.ato) {
665 /* The _first_ data packet received, initialize
666 * delayed ACK engine.
668 tcp_incr_quickack(sk);
669 icsk->icsk_ack.ato = TCP_ATO_MIN;
670 } else {
671 int m = now - icsk->icsk_ack.lrcvtime;
673 if (m <= TCP_ATO_MIN / 2) {
674 /* The fastest case is the first. */
675 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
676 } else if (m < icsk->icsk_ack.ato) {
677 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
678 if (icsk->icsk_ack.ato > icsk->icsk_rto)
679 icsk->icsk_ack.ato = icsk->icsk_rto;
680 } else if (m > icsk->icsk_rto) {
681 /* Too long gap. Apparently sender failed to
682 * restart window, so that we send ACKs quickly.
684 tcp_incr_quickack(sk);
685 sk_mem_reclaim(sk);
688 icsk->icsk_ack.lrcvtime = now;
690 tcp_ecn_check_ce(tp, skb);
692 if (skb->len >= 128)
693 tcp_grow_window(sk, skb);
696 /* Called to compute a smoothed rtt estimate. The data fed to this
697 * routine either comes from timestamps, or from segments that were
698 * known _not_ to have been retransmitted [see Karn/Partridge
699 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
700 * piece by Van Jacobson.
701 * NOTE: the next three routines used to be one big routine.
702 * To save cycles in the RFC 1323 implementation it was better to break
703 * it up into three procedures. -- erics
705 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
707 struct tcp_sock *tp = tcp_sk(sk);
708 long m = mrtt_us; /* RTT */
709 u32 srtt = tp->srtt_us;
711 /* The following amusing code comes from Jacobson's
712 * article in SIGCOMM '88. Note that rtt and mdev
713 * are scaled versions of rtt and mean deviation.
714 * This is designed to be as fast as possible
715 * m stands for "measurement".
717 * On a 1990 paper the rto value is changed to:
718 * RTO = rtt + 4 * mdev
720 * Funny. This algorithm seems to be very broken.
721 * These formulae increase RTO, when it should be decreased, increase
722 * too slowly, when it should be increased quickly, decrease too quickly
723 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
724 * does not matter how to _calculate_ it. Seems, it was trap
725 * that VJ failed to avoid. 8)
727 if (srtt != 0) {
728 m -= (srtt >> 3); /* m is now error in rtt est */
729 srtt += m; /* rtt = 7/8 rtt + 1/8 new */
730 if (m < 0) {
731 m = -m; /* m is now abs(error) */
732 m -= (tp->mdev_us >> 2); /* similar update on mdev */
733 /* This is similar to one of Eifel findings.
734 * Eifel blocks mdev updates when rtt decreases.
735 * This solution is a bit different: we use finer gain
736 * for mdev in this case (alpha*beta).
737 * Like Eifel it also prevents growth of rto,
738 * but also it limits too fast rto decreases,
739 * happening in pure Eifel.
741 if (m > 0)
742 m >>= 3;
743 } else {
744 m -= (tp->mdev_us >> 2); /* similar update on mdev */
746 tp->mdev_us += m; /* mdev = 3/4 mdev + 1/4 new */
747 if (tp->mdev_us > tp->mdev_max_us) {
748 tp->mdev_max_us = tp->mdev_us;
749 if (tp->mdev_max_us > tp->rttvar_us)
750 tp->rttvar_us = tp->mdev_max_us;
752 if (after(tp->snd_una, tp->rtt_seq)) {
753 if (tp->mdev_max_us < tp->rttvar_us)
754 tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
755 tp->rtt_seq = tp->snd_nxt;
756 tp->mdev_max_us = tcp_rto_min_us(sk);
758 } else {
759 /* no previous measure. */
760 srtt = m << 3; /* take the measured time to be rtt */
761 tp->mdev_us = m << 1; /* make sure rto = 3*rtt */
762 tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
763 tp->mdev_max_us = tp->rttvar_us;
764 tp->rtt_seq = tp->snd_nxt;
766 tp->srtt_us = max(1U, srtt);
769 static void tcp_update_pacing_rate(struct sock *sk)
771 const struct tcp_sock *tp = tcp_sk(sk);
772 u64 rate;
774 /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
775 rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3);
777 /* current rate is (cwnd * mss) / srtt
778 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate.
779 * In Congestion Avoidance phase, set it to 120 % the current rate.
781 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh)
782 * If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching
783 * end of slow start and should slow down.
785 if (tp->snd_cwnd < tp->snd_ssthresh / 2)
786 rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ss_ratio;
787 else
788 rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ca_ratio;
790 rate *= max(tp->snd_cwnd, tp->packets_out);
792 if (likely(tp->srtt_us))
793 do_div(rate, tp->srtt_us);
795 /* WRITE_ONCE() is needed because sch_fq fetches sk_pacing_rate
796 * without any lock. We want to make sure compiler wont store
797 * intermediate values in this location.
799 WRITE_ONCE(sk->sk_pacing_rate, min_t(u64, rate,
800 sk->sk_max_pacing_rate));
803 /* Calculate rto without backoff. This is the second half of Van Jacobson's
804 * routine referred to above.
806 static void tcp_set_rto(struct sock *sk)
808 const struct tcp_sock *tp = tcp_sk(sk);
809 /* Old crap is replaced with new one. 8)
811 * More seriously:
812 * 1. If rtt variance happened to be less 50msec, it is hallucination.
813 * It cannot be less due to utterly erratic ACK generation made
814 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
815 * to do with delayed acks, because at cwnd>2 true delack timeout
816 * is invisible. Actually, Linux-2.4 also generates erratic
817 * ACKs in some circumstances.
819 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
821 /* 2. Fixups made earlier cannot be right.
822 * If we do not estimate RTO correctly without them,
823 * all the algo is pure shit and should be replaced
824 * with correct one. It is exactly, which we pretend to do.
827 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
828 * guarantees that rto is higher.
830 tcp_bound_rto(sk);
833 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
835 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
837 if (!cwnd)
838 cwnd = TCP_INIT_CWND;
839 return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
842 /* Take a notice that peer is sending D-SACKs */
843 static void tcp_dsack_seen(struct tcp_sock *tp)
845 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
846 tp->rack.dsack_seen = 1;
849 /* It's reordering when higher sequence was delivered (i.e. sacked) before
850 * some lower never-retransmitted sequence ("low_seq"). The maximum reordering
851 * distance is approximated in full-mss packet distance ("reordering").
853 static void tcp_check_sack_reordering(struct sock *sk, const u32 low_seq,
854 const int ts)
856 struct tcp_sock *tp = tcp_sk(sk);
857 const u32 mss = tp->mss_cache;
858 u32 fack, metric;
860 fack = tcp_highest_sack_seq(tp);
861 if (!before(low_seq, fack))
862 return;
864 metric = fack - low_seq;
865 if ((metric > tp->reordering * mss) && mss) {
866 #if FASTRETRANS_DEBUG > 1
867 pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
868 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
869 tp->reordering,
871 tp->sacked_out,
872 tp->undo_marker ? tp->undo_retrans : 0);
873 #endif
874 tp->reordering = min_t(u32, (metric + mss - 1) / mss,
875 sock_net(sk)->ipv4.sysctl_tcp_max_reordering);
878 tp->rack.reord = 1;
879 /* This exciting event is worth to be remembered. 8) */
880 NET_INC_STATS(sock_net(sk),
881 ts ? LINUX_MIB_TCPTSREORDER : LINUX_MIB_TCPSACKREORDER);
884 /* This must be called before lost_out is incremented */
885 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
887 if (!tp->retransmit_skb_hint ||
888 before(TCP_SKB_CB(skb)->seq,
889 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
890 tp->retransmit_skb_hint = skb;
893 /* Sum the number of packets on the wire we have marked as lost.
894 * There are two cases we care about here:
895 * a) Packet hasn't been marked lost (nor retransmitted),
896 * and this is the first loss.
897 * b) Packet has been marked both lost and retransmitted,
898 * and this means we think it was lost again.
900 static void tcp_sum_lost(struct tcp_sock *tp, struct sk_buff *skb)
902 __u8 sacked = TCP_SKB_CB(skb)->sacked;
904 if (!(sacked & TCPCB_LOST) ||
905 ((sacked & TCPCB_LOST) && (sacked & TCPCB_SACKED_RETRANS)))
906 tp->lost += tcp_skb_pcount(skb);
909 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
911 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
912 tcp_verify_retransmit_hint(tp, skb);
914 tp->lost_out += tcp_skb_pcount(skb);
915 tcp_sum_lost(tp, skb);
916 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
920 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb)
922 tcp_verify_retransmit_hint(tp, skb);
924 tcp_sum_lost(tp, skb);
925 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
926 tp->lost_out += tcp_skb_pcount(skb);
927 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
931 /* This procedure tags the retransmission queue when SACKs arrive.
933 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
934 * Packets in queue with these bits set are counted in variables
935 * sacked_out, retrans_out and lost_out, correspondingly.
937 * Valid combinations are:
938 * Tag InFlight Description
939 * 0 1 - orig segment is in flight.
940 * S 0 - nothing flies, orig reached receiver.
941 * L 0 - nothing flies, orig lost by net.
942 * R 2 - both orig and retransmit are in flight.
943 * L|R 1 - orig is lost, retransmit is in flight.
944 * S|R 1 - orig reached receiver, retrans is still in flight.
945 * (L|S|R is logically valid, it could occur when L|R is sacked,
946 * but it is equivalent to plain S and code short-curcuits it to S.
947 * L|S is logically invalid, it would mean -1 packet in flight 8))
949 * These 6 states form finite state machine, controlled by the following events:
950 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
951 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
952 * 3. Loss detection event of two flavors:
953 * A. Scoreboard estimator decided the packet is lost.
954 * A'. Reno "three dupacks" marks head of queue lost.
955 * B. SACK arrives sacking SND.NXT at the moment, when the
956 * segment was retransmitted.
957 * 4. D-SACK added new rule: D-SACK changes any tag to S.
959 * It is pleasant to note, that state diagram turns out to be commutative,
960 * so that we are allowed not to be bothered by order of our actions,
961 * when multiple events arrive simultaneously. (see the function below).
963 * Reordering detection.
964 * --------------------
965 * Reordering metric is maximal distance, which a packet can be displaced
966 * in packet stream. With SACKs we can estimate it:
968 * 1. SACK fills old hole and the corresponding segment was not
969 * ever retransmitted -> reordering. Alas, we cannot use it
970 * when segment was retransmitted.
971 * 2. The last flaw is solved with D-SACK. D-SACK arrives
972 * for retransmitted and already SACKed segment -> reordering..
973 * Both of these heuristics are not used in Loss state, when we cannot
974 * account for retransmits accurately.
976 * SACK block validation.
977 * ----------------------
979 * SACK block range validation checks that the received SACK block fits to
980 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
981 * Note that SND.UNA is not included to the range though being valid because
982 * it means that the receiver is rather inconsistent with itself reporting
983 * SACK reneging when it should advance SND.UNA. Such SACK block this is
984 * perfectly valid, however, in light of RFC2018 which explicitly states
985 * that "SACK block MUST reflect the newest segment. Even if the newest
986 * segment is going to be discarded ...", not that it looks very clever
987 * in case of head skb. Due to potentional receiver driven attacks, we
988 * choose to avoid immediate execution of a walk in write queue due to
989 * reneging and defer head skb's loss recovery to standard loss recovery
990 * procedure that will eventually trigger (nothing forbids us doing this).
992 * Implements also blockage to start_seq wrap-around. Problem lies in the
993 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
994 * there's no guarantee that it will be before snd_nxt (n). The problem
995 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
996 * wrap (s_w):
998 * <- outs wnd -> <- wrapzone ->
999 * u e n u_w e_w s n_w
1000 * | | | | | | |
1001 * |<------------+------+----- TCP seqno space --------------+---------->|
1002 * ...-- <2^31 ->| |<--------...
1003 * ...---- >2^31 ------>| |<--------...
1005 * Current code wouldn't be vulnerable but it's better still to discard such
1006 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1007 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1008 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1009 * equal to the ideal case (infinite seqno space without wrap caused issues).
1011 * With D-SACK the lower bound is extended to cover sequence space below
1012 * SND.UNA down to undo_marker, which is the last point of interest. Yet
1013 * again, D-SACK block must not to go across snd_una (for the same reason as
1014 * for the normal SACK blocks, explained above). But there all simplicity
1015 * ends, TCP might receive valid D-SACKs below that. As long as they reside
1016 * fully below undo_marker they do not affect behavior in anyway and can
1017 * therefore be safely ignored. In rare cases (which are more or less
1018 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1019 * fragmentation and packet reordering past skb's retransmission. To consider
1020 * them correctly, the acceptable range must be extended even more though
1021 * the exact amount is rather hard to quantify. However, tp->max_window can
1022 * be used as an exaggerated estimate.
1024 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
1025 u32 start_seq, u32 end_seq)
1027 /* Too far in future, or reversed (interpretation is ambiguous) */
1028 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1029 return false;
1031 /* Nasty start_seq wrap-around check (see comments above) */
1032 if (!before(start_seq, tp->snd_nxt))
1033 return false;
1035 /* In outstanding window? ...This is valid exit for D-SACKs too.
1036 * start_seq == snd_una is non-sensical (see comments above)
1038 if (after(start_seq, tp->snd_una))
1039 return true;
1041 if (!is_dsack || !tp->undo_marker)
1042 return false;
1044 /* ...Then it's D-SACK, and must reside below snd_una completely */
1045 if (after(end_seq, tp->snd_una))
1046 return false;
1048 if (!before(start_seq, tp->undo_marker))
1049 return true;
1051 /* Too old */
1052 if (!after(end_seq, tp->undo_marker))
1053 return false;
1055 /* Undo_marker boundary crossing (overestimates a lot). Known already:
1056 * start_seq < undo_marker and end_seq >= undo_marker.
1058 return !before(start_seq, end_seq - tp->max_window);
1061 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1062 struct tcp_sack_block_wire *sp, int num_sacks,
1063 u32 prior_snd_una)
1065 struct tcp_sock *tp = tcp_sk(sk);
1066 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1067 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1068 bool dup_sack = false;
1070 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1071 dup_sack = true;
1072 tcp_dsack_seen(tp);
1073 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1074 } else if (num_sacks > 1) {
1075 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1076 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1078 if (!after(end_seq_0, end_seq_1) &&
1079 !before(start_seq_0, start_seq_1)) {
1080 dup_sack = true;
1081 tcp_dsack_seen(tp);
1082 NET_INC_STATS(sock_net(sk),
1083 LINUX_MIB_TCPDSACKOFORECV);
1087 /* D-SACK for already forgotten data... Do dumb counting. */
1088 if (dup_sack && tp->undo_marker && tp->undo_retrans > 0 &&
1089 !after(end_seq_0, prior_snd_una) &&
1090 after(end_seq_0, tp->undo_marker))
1091 tp->undo_retrans--;
1093 return dup_sack;
1096 struct tcp_sacktag_state {
1097 u32 reord;
1098 /* Timestamps for earliest and latest never-retransmitted segment
1099 * that was SACKed. RTO needs the earliest RTT to stay conservative,
1100 * but congestion control should still get an accurate delay signal.
1102 u64 first_sackt;
1103 u64 last_sackt;
1104 struct rate_sample *rate;
1105 int flag;
1106 unsigned int mss_now;
1109 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1110 * the incoming SACK may not exactly match but we can find smaller MSS
1111 * aligned portion of it that matches. Therefore we might need to fragment
1112 * which may fail and creates some hassle (caller must handle error case
1113 * returns).
1115 * FIXME: this could be merged to shift decision code
1117 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1118 u32 start_seq, u32 end_seq)
1120 int err;
1121 bool in_sack;
1122 unsigned int pkt_len;
1123 unsigned int mss;
1125 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1126 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1128 if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1129 after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1130 mss = tcp_skb_mss(skb);
1131 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1133 if (!in_sack) {
1134 pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1135 if (pkt_len < mss)
1136 pkt_len = mss;
1137 } else {
1138 pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1139 if (pkt_len < mss)
1140 return -EINVAL;
1143 /* Round if necessary so that SACKs cover only full MSSes
1144 * and/or the remaining small portion (if present)
1146 if (pkt_len > mss) {
1147 unsigned int new_len = (pkt_len / mss) * mss;
1148 if (!in_sack && new_len < pkt_len)
1149 new_len += mss;
1150 pkt_len = new_len;
1153 if (pkt_len >= skb->len && !in_sack)
1154 return 0;
1156 err = tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
1157 pkt_len, mss, GFP_ATOMIC);
1158 if (err < 0)
1159 return err;
1162 return in_sack;
1165 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1166 static u8 tcp_sacktag_one(struct sock *sk,
1167 struct tcp_sacktag_state *state, u8 sacked,
1168 u32 start_seq, u32 end_seq,
1169 int dup_sack, int pcount,
1170 u64 xmit_time)
1172 struct tcp_sock *tp = tcp_sk(sk);
1174 /* Account D-SACK for retransmitted packet. */
1175 if (dup_sack && (sacked & TCPCB_RETRANS)) {
1176 if (tp->undo_marker && tp->undo_retrans > 0 &&
1177 after(end_seq, tp->undo_marker))
1178 tp->undo_retrans--;
1179 if ((sacked & TCPCB_SACKED_ACKED) &&
1180 before(start_seq, state->reord))
1181 state->reord = start_seq;
1184 /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1185 if (!after(end_seq, tp->snd_una))
1186 return sacked;
1188 if (!(sacked & TCPCB_SACKED_ACKED)) {
1189 tcp_rack_advance(tp, sacked, end_seq, xmit_time);
1191 if (sacked & TCPCB_SACKED_RETRANS) {
1192 /* If the segment is not tagged as lost,
1193 * we do not clear RETRANS, believing
1194 * that retransmission is still in flight.
1196 if (sacked & TCPCB_LOST) {
1197 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1198 tp->lost_out -= pcount;
1199 tp->retrans_out -= pcount;
1201 } else {
1202 if (!(sacked & TCPCB_RETRANS)) {
1203 /* New sack for not retransmitted frame,
1204 * which was in hole. It is reordering.
1206 if (before(start_seq,
1207 tcp_highest_sack_seq(tp)) &&
1208 before(start_seq, state->reord))
1209 state->reord = start_seq;
1211 if (!after(end_seq, tp->high_seq))
1212 state->flag |= FLAG_ORIG_SACK_ACKED;
1213 if (state->first_sackt == 0)
1214 state->first_sackt = xmit_time;
1215 state->last_sackt = xmit_time;
1218 if (sacked & TCPCB_LOST) {
1219 sacked &= ~TCPCB_LOST;
1220 tp->lost_out -= pcount;
1224 sacked |= TCPCB_SACKED_ACKED;
1225 state->flag |= FLAG_DATA_SACKED;
1226 tp->sacked_out += pcount;
1227 tp->delivered += pcount; /* Out-of-order packets delivered */
1229 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1230 if (tp->lost_skb_hint &&
1231 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1232 tp->lost_cnt_hint += pcount;
1235 /* D-SACK. We can detect redundant retransmission in S|R and plain R
1236 * frames and clear it. undo_retrans is decreased above, L|R frames
1237 * are accounted above as well.
1239 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1240 sacked &= ~TCPCB_SACKED_RETRANS;
1241 tp->retrans_out -= pcount;
1244 return sacked;
1247 /* Shift newly-SACKed bytes from this skb to the immediately previous
1248 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1250 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *prev,
1251 struct sk_buff *skb,
1252 struct tcp_sacktag_state *state,
1253 unsigned int pcount, int shifted, int mss,
1254 bool dup_sack)
1256 struct tcp_sock *tp = tcp_sk(sk);
1257 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */
1258 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */
1260 BUG_ON(!pcount);
1262 /* Adjust counters and hints for the newly sacked sequence
1263 * range but discard the return value since prev is already
1264 * marked. We must tag the range first because the seq
1265 * advancement below implicitly advances
1266 * tcp_highest_sack_seq() when skb is highest_sack.
1268 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1269 start_seq, end_seq, dup_sack, pcount,
1270 skb->skb_mstamp);
1271 tcp_rate_skb_delivered(sk, skb, state->rate);
1273 if (skb == tp->lost_skb_hint)
1274 tp->lost_cnt_hint += pcount;
1276 TCP_SKB_CB(prev)->end_seq += shifted;
1277 TCP_SKB_CB(skb)->seq += shifted;
1279 tcp_skb_pcount_add(prev, pcount);
1280 BUG_ON(tcp_skb_pcount(skb) < pcount);
1281 tcp_skb_pcount_add(skb, -pcount);
1283 /* When we're adding to gso_segs == 1, gso_size will be zero,
1284 * in theory this shouldn't be necessary but as long as DSACK
1285 * code can come after this skb later on it's better to keep
1286 * setting gso_size to something.
1288 if (!TCP_SKB_CB(prev)->tcp_gso_size)
1289 TCP_SKB_CB(prev)->tcp_gso_size = mss;
1291 /* CHECKME: To clear or not to clear? Mimics normal skb currently */
1292 if (tcp_skb_pcount(skb) <= 1)
1293 TCP_SKB_CB(skb)->tcp_gso_size = 0;
1295 /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1296 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1298 if (skb->len > 0) {
1299 BUG_ON(!tcp_skb_pcount(skb));
1300 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1301 return false;
1304 /* Whole SKB was eaten :-) */
1306 if (skb == tp->retransmit_skb_hint)
1307 tp->retransmit_skb_hint = prev;
1308 if (skb == tp->lost_skb_hint) {
1309 tp->lost_skb_hint = prev;
1310 tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1313 TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1314 TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor;
1315 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1316 TCP_SKB_CB(prev)->end_seq++;
1318 if (skb == tcp_highest_sack(sk))
1319 tcp_advance_highest_sack(sk, skb);
1321 tcp_skb_collapse_tstamp(prev, skb);
1322 if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp))
1323 TCP_SKB_CB(prev)->tx.delivered_mstamp = 0;
1325 tcp_rtx_queue_unlink_and_free(skb, sk);
1327 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED);
1329 return true;
1332 /* I wish gso_size would have a bit more sane initialization than
1333 * something-or-zero which complicates things
1335 static int tcp_skb_seglen(const struct sk_buff *skb)
1337 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1340 /* Shifting pages past head area doesn't work */
1341 static int skb_can_shift(const struct sk_buff *skb)
1343 return !skb_headlen(skb) && skb_is_nonlinear(skb);
1346 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1347 * skb.
1349 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1350 struct tcp_sacktag_state *state,
1351 u32 start_seq, u32 end_seq,
1352 bool dup_sack)
1354 struct tcp_sock *tp = tcp_sk(sk);
1355 struct sk_buff *prev;
1356 int mss;
1357 int pcount = 0;
1358 int len;
1359 int in_sack;
1361 if (!sk_can_gso(sk))
1362 goto fallback;
1364 /* Normally R but no L won't result in plain S */
1365 if (!dup_sack &&
1366 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1367 goto fallback;
1368 if (!skb_can_shift(skb))
1369 goto fallback;
1370 /* This frame is about to be dropped (was ACKed). */
1371 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1372 goto fallback;
1374 /* Can only happen with delayed DSACK + discard craziness */
1375 prev = skb_rb_prev(skb);
1376 if (!prev)
1377 goto fallback;
1379 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1380 goto fallback;
1382 if (!tcp_skb_can_collapse_to(prev))
1383 goto fallback;
1385 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1386 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1388 if (in_sack) {
1389 len = skb->len;
1390 pcount = tcp_skb_pcount(skb);
1391 mss = tcp_skb_seglen(skb);
1393 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1394 * drop this restriction as unnecessary
1396 if (mss != tcp_skb_seglen(prev))
1397 goto fallback;
1398 } else {
1399 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1400 goto noop;
1401 /* CHECKME: This is non-MSS split case only?, this will
1402 * cause skipped skbs due to advancing loop btw, original
1403 * has that feature too
1405 if (tcp_skb_pcount(skb) <= 1)
1406 goto noop;
1408 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1409 if (!in_sack) {
1410 /* TODO: head merge to next could be attempted here
1411 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1412 * though it might not be worth of the additional hassle
1414 * ...we can probably just fallback to what was done
1415 * previously. We could try merging non-SACKed ones
1416 * as well but it probably isn't going to buy off
1417 * because later SACKs might again split them, and
1418 * it would make skb timestamp tracking considerably
1419 * harder problem.
1421 goto fallback;
1424 len = end_seq - TCP_SKB_CB(skb)->seq;
1425 BUG_ON(len < 0);
1426 BUG_ON(len > skb->len);
1428 /* MSS boundaries should be honoured or else pcount will
1429 * severely break even though it makes things bit trickier.
1430 * Optimize common case to avoid most of the divides
1432 mss = tcp_skb_mss(skb);
1434 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1435 * drop this restriction as unnecessary
1437 if (mss != tcp_skb_seglen(prev))
1438 goto fallback;
1440 if (len == mss) {
1441 pcount = 1;
1442 } else if (len < mss) {
1443 goto noop;
1444 } else {
1445 pcount = len / mss;
1446 len = pcount * mss;
1450 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1451 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1452 goto fallback;
1454 if (!skb_shift(prev, skb, len))
1455 goto fallback;
1456 if (!tcp_shifted_skb(sk, prev, skb, state, pcount, len, mss, dup_sack))
1457 goto out;
1459 /* Hole filled allows collapsing with the next as well, this is very
1460 * useful when hole on every nth skb pattern happens
1462 skb = skb_rb_next(prev);
1463 if (!skb)
1464 goto out;
1466 if (!skb_can_shift(skb) ||
1467 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1468 (mss != tcp_skb_seglen(skb)))
1469 goto out;
1471 len = skb->len;
1472 if (skb_shift(prev, skb, len)) {
1473 pcount += tcp_skb_pcount(skb);
1474 tcp_shifted_skb(sk, prev, skb, state, tcp_skb_pcount(skb),
1475 len, mss, 0);
1478 out:
1479 return prev;
1481 noop:
1482 return skb;
1484 fallback:
1485 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1486 return NULL;
1489 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1490 struct tcp_sack_block *next_dup,
1491 struct tcp_sacktag_state *state,
1492 u32 start_seq, u32 end_seq,
1493 bool dup_sack_in)
1495 struct tcp_sock *tp = tcp_sk(sk);
1496 struct sk_buff *tmp;
1498 skb_rbtree_walk_from(skb) {
1499 int in_sack = 0;
1500 bool dup_sack = dup_sack_in;
1502 /* queue is in-order => we can short-circuit the walk early */
1503 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1504 break;
1506 if (next_dup &&
1507 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1508 in_sack = tcp_match_skb_to_sack(sk, skb,
1509 next_dup->start_seq,
1510 next_dup->end_seq);
1511 if (in_sack > 0)
1512 dup_sack = true;
1515 /* skb reference here is a bit tricky to get right, since
1516 * shifting can eat and free both this skb and the next,
1517 * so not even _safe variant of the loop is enough.
1519 if (in_sack <= 0) {
1520 tmp = tcp_shift_skb_data(sk, skb, state,
1521 start_seq, end_seq, dup_sack);
1522 if (tmp) {
1523 if (tmp != skb) {
1524 skb = tmp;
1525 continue;
1528 in_sack = 0;
1529 } else {
1530 in_sack = tcp_match_skb_to_sack(sk, skb,
1531 start_seq,
1532 end_seq);
1536 if (unlikely(in_sack < 0))
1537 break;
1539 if (in_sack) {
1540 TCP_SKB_CB(skb)->sacked =
1541 tcp_sacktag_one(sk,
1542 state,
1543 TCP_SKB_CB(skb)->sacked,
1544 TCP_SKB_CB(skb)->seq,
1545 TCP_SKB_CB(skb)->end_seq,
1546 dup_sack,
1547 tcp_skb_pcount(skb),
1548 skb->skb_mstamp);
1549 tcp_rate_skb_delivered(sk, skb, state->rate);
1550 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1551 list_del_init(&skb->tcp_tsorted_anchor);
1553 if (!before(TCP_SKB_CB(skb)->seq,
1554 tcp_highest_sack_seq(tp)))
1555 tcp_advance_highest_sack(sk, skb);
1558 return skb;
1561 static struct sk_buff *tcp_sacktag_bsearch(struct sock *sk,
1562 struct tcp_sacktag_state *state,
1563 u32 seq)
1565 struct rb_node *parent, **p = &sk->tcp_rtx_queue.rb_node;
1566 struct sk_buff *skb;
1568 while (*p) {
1569 parent = *p;
1570 skb = rb_to_skb(parent);
1571 if (before(seq, TCP_SKB_CB(skb)->seq)) {
1572 p = &parent->rb_left;
1573 continue;
1575 if (!before(seq, TCP_SKB_CB(skb)->end_seq)) {
1576 p = &parent->rb_right;
1577 continue;
1579 return skb;
1581 return NULL;
1584 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1585 struct tcp_sacktag_state *state,
1586 u32 skip_to_seq)
1588 if (skb && after(TCP_SKB_CB(skb)->seq, skip_to_seq))
1589 return skb;
1591 return tcp_sacktag_bsearch(sk, state, skip_to_seq);
1594 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1595 struct sock *sk,
1596 struct tcp_sack_block *next_dup,
1597 struct tcp_sacktag_state *state,
1598 u32 skip_to_seq)
1600 if (!next_dup)
1601 return skb;
1603 if (before(next_dup->start_seq, skip_to_seq)) {
1604 skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1605 skb = tcp_sacktag_walk(skb, sk, NULL, state,
1606 next_dup->start_seq, next_dup->end_seq,
1610 return skb;
1613 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1615 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1618 static int
1619 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1620 u32 prior_snd_una, struct tcp_sacktag_state *state)
1622 struct tcp_sock *tp = tcp_sk(sk);
1623 const unsigned char *ptr = (skb_transport_header(ack_skb) +
1624 TCP_SKB_CB(ack_skb)->sacked);
1625 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1626 struct tcp_sack_block sp[TCP_NUM_SACKS];
1627 struct tcp_sack_block *cache;
1628 struct sk_buff *skb;
1629 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1630 int used_sacks;
1631 bool found_dup_sack = false;
1632 int i, j;
1633 int first_sack_index;
1635 state->flag = 0;
1636 state->reord = tp->snd_nxt;
1638 if (!tp->sacked_out)
1639 tcp_highest_sack_reset(sk);
1641 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1642 num_sacks, prior_snd_una);
1643 if (found_dup_sack) {
1644 state->flag |= FLAG_DSACKING_ACK;
1645 tp->delivered++; /* A spurious retransmission is delivered */
1648 /* Eliminate too old ACKs, but take into
1649 * account more or less fresh ones, they can
1650 * contain valid SACK info.
1652 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1653 return 0;
1655 if (!tp->packets_out)
1656 goto out;
1658 used_sacks = 0;
1659 first_sack_index = 0;
1660 for (i = 0; i < num_sacks; i++) {
1661 bool dup_sack = !i && found_dup_sack;
1663 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1664 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1666 if (!tcp_is_sackblock_valid(tp, dup_sack,
1667 sp[used_sacks].start_seq,
1668 sp[used_sacks].end_seq)) {
1669 int mib_idx;
1671 if (dup_sack) {
1672 if (!tp->undo_marker)
1673 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1674 else
1675 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1676 } else {
1677 /* Don't count olds caused by ACK reordering */
1678 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1679 !after(sp[used_sacks].end_seq, tp->snd_una))
1680 continue;
1681 mib_idx = LINUX_MIB_TCPSACKDISCARD;
1684 NET_INC_STATS(sock_net(sk), mib_idx);
1685 if (i == 0)
1686 first_sack_index = -1;
1687 continue;
1690 /* Ignore very old stuff early */
1691 if (!after(sp[used_sacks].end_seq, prior_snd_una))
1692 continue;
1694 used_sacks++;
1697 /* order SACK blocks to allow in order walk of the retrans queue */
1698 for (i = used_sacks - 1; i > 0; i--) {
1699 for (j = 0; j < i; j++) {
1700 if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1701 swap(sp[j], sp[j + 1]);
1703 /* Track where the first SACK block goes to */
1704 if (j == first_sack_index)
1705 first_sack_index = j + 1;
1710 state->mss_now = tcp_current_mss(sk);
1711 skb = NULL;
1712 i = 0;
1714 if (!tp->sacked_out) {
1715 /* It's already past, so skip checking against it */
1716 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1717 } else {
1718 cache = tp->recv_sack_cache;
1719 /* Skip empty blocks in at head of the cache */
1720 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1721 !cache->end_seq)
1722 cache++;
1725 while (i < used_sacks) {
1726 u32 start_seq = sp[i].start_seq;
1727 u32 end_seq = sp[i].end_seq;
1728 bool dup_sack = (found_dup_sack && (i == first_sack_index));
1729 struct tcp_sack_block *next_dup = NULL;
1731 if (found_dup_sack && ((i + 1) == first_sack_index))
1732 next_dup = &sp[i + 1];
1734 /* Skip too early cached blocks */
1735 while (tcp_sack_cache_ok(tp, cache) &&
1736 !before(start_seq, cache->end_seq))
1737 cache++;
1739 /* Can skip some work by looking recv_sack_cache? */
1740 if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1741 after(end_seq, cache->start_seq)) {
1743 /* Head todo? */
1744 if (before(start_seq, cache->start_seq)) {
1745 skb = tcp_sacktag_skip(skb, sk, state,
1746 start_seq);
1747 skb = tcp_sacktag_walk(skb, sk, next_dup,
1748 state,
1749 start_seq,
1750 cache->start_seq,
1751 dup_sack);
1754 /* Rest of the block already fully processed? */
1755 if (!after(end_seq, cache->end_seq))
1756 goto advance_sp;
1758 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1759 state,
1760 cache->end_seq);
1762 /* ...tail remains todo... */
1763 if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1764 /* ...but better entrypoint exists! */
1765 skb = tcp_highest_sack(sk);
1766 if (!skb)
1767 break;
1768 cache++;
1769 goto walk;
1772 skb = tcp_sacktag_skip(skb, sk, state, cache->end_seq);
1773 /* Check overlap against next cached too (past this one already) */
1774 cache++;
1775 continue;
1778 if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1779 skb = tcp_highest_sack(sk);
1780 if (!skb)
1781 break;
1783 skb = tcp_sacktag_skip(skb, sk, state, start_seq);
1785 walk:
1786 skb = tcp_sacktag_walk(skb, sk, next_dup, state,
1787 start_seq, end_seq, dup_sack);
1789 advance_sp:
1790 i++;
1793 /* Clear the head of the cache sack blocks so we can skip it next time */
1794 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1795 tp->recv_sack_cache[i].start_seq = 0;
1796 tp->recv_sack_cache[i].end_seq = 0;
1798 for (j = 0; j < used_sacks; j++)
1799 tp->recv_sack_cache[i++] = sp[j];
1801 if (inet_csk(sk)->icsk_ca_state != TCP_CA_Loss || tp->undo_marker)
1802 tcp_check_sack_reordering(sk, state->reord, 0);
1804 tcp_verify_left_out(tp);
1805 out:
1807 #if FASTRETRANS_DEBUG > 0
1808 WARN_ON((int)tp->sacked_out < 0);
1809 WARN_ON((int)tp->lost_out < 0);
1810 WARN_ON((int)tp->retrans_out < 0);
1811 WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1812 #endif
1813 return state->flag;
1816 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1817 * packets_out. Returns false if sacked_out adjustement wasn't necessary.
1819 static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
1821 u32 holes;
1823 holes = max(tp->lost_out, 1U);
1824 holes = min(holes, tp->packets_out);
1826 if ((tp->sacked_out + holes) > tp->packets_out) {
1827 tp->sacked_out = tp->packets_out - holes;
1828 return true;
1830 return false;
1833 /* If we receive more dupacks than we expected counting segments
1834 * in assumption of absent reordering, interpret this as reordering.
1835 * The only another reason could be bug in receiver TCP.
1837 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1839 struct tcp_sock *tp = tcp_sk(sk);
1841 if (!tcp_limit_reno_sacked(tp))
1842 return;
1844 tp->reordering = min_t(u32, tp->packets_out + addend,
1845 sock_net(sk)->ipv4.sysctl_tcp_max_reordering);
1846 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRENOREORDER);
1849 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1851 static void tcp_add_reno_sack(struct sock *sk)
1853 struct tcp_sock *tp = tcp_sk(sk);
1854 u32 prior_sacked = tp->sacked_out;
1856 tp->sacked_out++;
1857 tcp_check_reno_reordering(sk, 0);
1858 if (tp->sacked_out > prior_sacked)
1859 tp->delivered++; /* Some out-of-order packet is delivered */
1860 tcp_verify_left_out(tp);
1863 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1865 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1867 struct tcp_sock *tp = tcp_sk(sk);
1869 if (acked > 0) {
1870 /* One ACK acked hole. The rest eat duplicate ACKs. */
1871 tp->delivered += max_t(int, acked - tp->sacked_out, 1);
1872 if (acked - 1 >= tp->sacked_out)
1873 tp->sacked_out = 0;
1874 else
1875 tp->sacked_out -= acked - 1;
1877 tcp_check_reno_reordering(sk, acked);
1878 tcp_verify_left_out(tp);
1881 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1883 tp->sacked_out = 0;
1886 void tcp_clear_retrans(struct tcp_sock *tp)
1888 tp->retrans_out = 0;
1889 tp->lost_out = 0;
1890 tp->undo_marker = 0;
1891 tp->undo_retrans = -1;
1892 tp->sacked_out = 0;
1895 static inline void tcp_init_undo(struct tcp_sock *tp)
1897 tp->undo_marker = tp->snd_una;
1898 /* Retransmission still in flight may cause DSACKs later. */
1899 tp->undo_retrans = tp->retrans_out ? : -1;
1902 /* Enter Loss state. If we detect SACK reneging, forget all SACK information
1903 * and reset tags completely, otherwise preserve SACKs. If receiver
1904 * dropped its ofo queue, we will know this due to reneging detection.
1906 void tcp_enter_loss(struct sock *sk)
1908 const struct inet_connection_sock *icsk = inet_csk(sk);
1909 struct tcp_sock *tp = tcp_sk(sk);
1910 struct net *net = sock_net(sk);
1911 struct sk_buff *skb;
1912 bool is_reneg; /* is receiver reneging on SACKs? */
1913 bool mark_lost;
1915 /* Reduce ssthresh if it has not yet been made inside this window. */
1916 if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
1917 !after(tp->high_seq, tp->snd_una) ||
1918 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1919 tp->prior_ssthresh = tcp_current_ssthresh(sk);
1920 tp->prior_cwnd = tp->snd_cwnd;
1921 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1922 tcp_ca_event(sk, CA_EVENT_LOSS);
1923 tcp_init_undo(tp);
1925 tp->snd_cwnd = 1;
1926 tp->snd_cwnd_cnt = 0;
1927 tp->snd_cwnd_stamp = tcp_jiffies32;
1929 tp->retrans_out = 0;
1930 tp->lost_out = 0;
1932 if (tcp_is_reno(tp))
1933 tcp_reset_reno_sack(tp);
1935 skb = tcp_rtx_queue_head(sk);
1936 is_reneg = skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED);
1937 if (is_reneg) {
1938 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
1939 tp->sacked_out = 0;
1940 /* Mark SACK reneging until we recover from this loss event. */
1941 tp->is_sack_reneg = 1;
1943 tcp_clear_all_retrans_hints(tp);
1945 skb_rbtree_walk_from(skb) {
1946 mark_lost = (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
1947 is_reneg);
1948 if (mark_lost)
1949 tcp_sum_lost(tp, skb);
1950 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
1951 if (mark_lost) {
1952 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1953 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1954 tp->lost_out += tcp_skb_pcount(skb);
1957 tcp_verify_left_out(tp);
1959 /* Timeout in disordered state after receiving substantial DUPACKs
1960 * suggests that the degree of reordering is over-estimated.
1962 if (icsk->icsk_ca_state <= TCP_CA_Disorder &&
1963 tp->sacked_out >= net->ipv4.sysctl_tcp_reordering)
1964 tp->reordering = min_t(unsigned int, tp->reordering,
1965 net->ipv4.sysctl_tcp_reordering);
1966 tcp_set_ca_state(sk, TCP_CA_Loss);
1967 tp->high_seq = tp->snd_nxt;
1968 tcp_ecn_queue_cwr(tp);
1970 /* F-RTO RFC5682 sec 3.1 step 1 mandates to disable F-RTO
1971 * if a previous recovery is underway, otherwise it may incorrectly
1972 * call a timeout spurious if some previously retransmitted packets
1973 * are s/acked (sec 3.2). We do not apply that retriction since
1974 * retransmitted skbs are permanently tagged with TCPCB_EVER_RETRANS
1975 * so FLAG_ORIG_SACK_ACKED is always correct. But we do disable F-RTO
1976 * on PTMU discovery to avoid sending new data.
1978 tp->frto = net->ipv4.sysctl_tcp_frto &&
1979 !inet_csk(sk)->icsk_mtup.probe_size;
1982 /* If ACK arrived pointing to a remembered SACK, it means that our
1983 * remembered SACKs do not reflect real state of receiver i.e.
1984 * receiver _host_ is heavily congested (or buggy).
1986 * To avoid big spurious retransmission bursts due to transient SACK
1987 * scoreboard oddities that look like reneging, we give the receiver a
1988 * little time (max(RTT/2, 10ms)) to send us some more ACKs that will
1989 * restore sanity to the SACK scoreboard. If the apparent reneging
1990 * persists until this RTO then we'll clear the SACK scoreboard.
1992 static bool tcp_check_sack_reneging(struct sock *sk, int flag)
1994 if (flag & FLAG_SACK_RENEGING) {
1995 struct tcp_sock *tp = tcp_sk(sk);
1996 unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4),
1997 msecs_to_jiffies(10));
1999 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2000 delay, TCP_RTO_MAX);
2001 return true;
2003 return false;
2006 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2007 * counter when SACK is enabled (without SACK, sacked_out is used for
2008 * that purpose).
2010 * With reordering, holes may still be in flight, so RFC3517 recovery
2011 * uses pure sacked_out (total number of SACKed segments) even though
2012 * it violates the RFC that uses duplicate ACKs, often these are equal
2013 * but when e.g. out-of-window ACKs or packet duplication occurs,
2014 * they differ. Since neither occurs due to loss, TCP should really
2015 * ignore them.
2017 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
2019 return tp->sacked_out + 1;
2022 /* Linux NewReno/SACK/ECN state machine.
2023 * --------------------------------------
2025 * "Open" Normal state, no dubious events, fast path.
2026 * "Disorder" In all the respects it is "Open",
2027 * but requires a bit more attention. It is entered when
2028 * we see some SACKs or dupacks. It is split of "Open"
2029 * mainly to move some processing from fast path to slow one.
2030 * "CWR" CWND was reduced due to some Congestion Notification event.
2031 * It can be ECN, ICMP source quench, local device congestion.
2032 * "Recovery" CWND was reduced, we are fast-retransmitting.
2033 * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
2035 * tcp_fastretrans_alert() is entered:
2036 * - each incoming ACK, if state is not "Open"
2037 * - when arrived ACK is unusual, namely:
2038 * * SACK
2039 * * Duplicate ACK.
2040 * * ECN ECE.
2042 * Counting packets in flight is pretty simple.
2044 * in_flight = packets_out - left_out + retrans_out
2046 * packets_out is SND.NXT-SND.UNA counted in packets.
2048 * retrans_out is number of retransmitted segments.
2050 * left_out is number of segments left network, but not ACKed yet.
2052 * left_out = sacked_out + lost_out
2054 * sacked_out: Packets, which arrived to receiver out of order
2055 * and hence not ACKed. With SACKs this number is simply
2056 * amount of SACKed data. Even without SACKs
2057 * it is easy to give pretty reliable estimate of this number,
2058 * counting duplicate ACKs.
2060 * lost_out: Packets lost by network. TCP has no explicit
2061 * "loss notification" feedback from network (for now).
2062 * It means that this number can be only _guessed_.
2063 * Actually, it is the heuristics to predict lossage that
2064 * distinguishes different algorithms.
2066 * F.e. after RTO, when all the queue is considered as lost,
2067 * lost_out = packets_out and in_flight = retrans_out.
2069 * Essentially, we have now a few algorithms detecting
2070 * lost packets.
2072 * If the receiver supports SACK:
2074 * RFC6675/3517: It is the conventional algorithm. A packet is
2075 * considered lost if the number of higher sequence packets
2076 * SACKed is greater than or equal the DUPACK thoreshold
2077 * (reordering). This is implemented in tcp_mark_head_lost and
2078 * tcp_update_scoreboard.
2080 * RACK (draft-ietf-tcpm-rack-01): it is a newer algorithm
2081 * (2017-) that checks timing instead of counting DUPACKs.
2082 * Essentially a packet is considered lost if it's not S/ACKed
2083 * after RTT + reordering_window, where both metrics are
2084 * dynamically measured and adjusted. This is implemented in
2085 * tcp_rack_mark_lost.
2087 * If the receiver does not support SACK:
2089 * NewReno (RFC6582): in Recovery we assume that one segment
2090 * is lost (classic Reno). While we are in Recovery and
2091 * a partial ACK arrives, we assume that one more packet
2092 * is lost (NewReno). This heuristics are the same in NewReno
2093 * and SACK.
2095 * Really tricky (and requiring careful tuning) part of algorithm
2096 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2097 * The first determines the moment _when_ we should reduce CWND and,
2098 * hence, slow down forward transmission. In fact, it determines the moment
2099 * when we decide that hole is caused by loss, rather than by a reorder.
2101 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2102 * holes, caused by lost packets.
2104 * And the most logically complicated part of algorithm is undo
2105 * heuristics. We detect false retransmits due to both too early
2106 * fast retransmit (reordering) and underestimated RTO, analyzing
2107 * timestamps and D-SACKs. When we detect that some segments were
2108 * retransmitted by mistake and CWND reduction was wrong, we undo
2109 * window reduction and abort recovery phase. This logic is hidden
2110 * inside several functions named tcp_try_undo_<something>.
2113 /* This function decides, when we should leave Disordered state
2114 * and enter Recovery phase, reducing congestion window.
2116 * Main question: may we further continue forward transmission
2117 * with the same cwnd?
2119 static bool tcp_time_to_recover(struct sock *sk, int flag)
2121 struct tcp_sock *tp = tcp_sk(sk);
2123 /* Trick#1: The loss is proven. */
2124 if (tp->lost_out)
2125 return true;
2127 /* Not-A-Trick#2 : Classic rule... */
2128 if (tcp_dupack_heuristics(tp) > tp->reordering)
2129 return true;
2131 return false;
2134 /* Detect loss in event "A" above by marking head of queue up as lost.
2135 * For non-SACK(Reno) senders, the first "packets" number of segments
2136 * are considered lost. For RFC3517 SACK, a segment is considered lost if it
2137 * has at least tp->reordering SACKed seqments above it; "packets" refers to
2138 * the maximum SACKed segments to pass before reaching this limit.
2140 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2142 struct tcp_sock *tp = tcp_sk(sk);
2143 struct sk_buff *skb;
2144 int cnt, oldcnt, lost;
2145 unsigned int mss;
2146 /* Use SACK to deduce losses of new sequences sent during recovery */
2147 const u32 loss_high = tcp_is_sack(tp) ? tp->snd_nxt : tp->high_seq;
2149 WARN_ON(packets > tp->packets_out);
2150 skb = tp->lost_skb_hint;
2151 if (skb) {
2152 /* Head already handled? */
2153 if (mark_head && after(TCP_SKB_CB(skb)->seq, tp->snd_una))
2154 return;
2155 cnt = tp->lost_cnt_hint;
2156 } else {
2157 skb = tcp_rtx_queue_head(sk);
2158 cnt = 0;
2161 skb_rbtree_walk_from(skb) {
2162 /* TODO: do this better */
2163 /* this is not the most efficient way to do this... */
2164 tp->lost_skb_hint = skb;
2165 tp->lost_cnt_hint = cnt;
2167 if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2168 break;
2170 oldcnt = cnt;
2171 if (tcp_is_reno(tp) ||
2172 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2173 cnt += tcp_skb_pcount(skb);
2175 if (cnt > packets) {
2176 if (tcp_is_sack(tp) ||
2177 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
2178 (oldcnt >= packets))
2179 break;
2181 mss = tcp_skb_mss(skb);
2182 /* If needed, chop off the prefix to mark as lost. */
2183 lost = (packets - oldcnt) * mss;
2184 if (lost < skb->len &&
2185 tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
2186 lost, mss, GFP_ATOMIC) < 0)
2187 break;
2188 cnt = packets;
2191 tcp_skb_mark_lost(tp, skb);
2193 if (mark_head)
2194 break;
2196 tcp_verify_left_out(tp);
2199 /* Account newly detected lost packet(s) */
2201 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2203 struct tcp_sock *tp = tcp_sk(sk);
2205 if (tcp_is_reno(tp)) {
2206 tcp_mark_head_lost(sk, 1, 1);
2207 } else {
2208 int sacked_upto = tp->sacked_out - tp->reordering;
2209 if (sacked_upto >= 0)
2210 tcp_mark_head_lost(sk, sacked_upto, 0);
2211 else if (fast_rexmit)
2212 tcp_mark_head_lost(sk, 1, 1);
2216 static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when)
2218 return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2219 before(tp->rx_opt.rcv_tsecr, when);
2222 /* skb is spurious retransmitted if the returned timestamp echo
2223 * reply is prior to the skb transmission time
2225 static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp,
2226 const struct sk_buff *skb)
2228 return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) &&
2229 tcp_tsopt_ecr_before(tp, tcp_skb_timestamp(skb));
2232 /* Nothing was retransmitted or returned timestamp is less
2233 * than timestamp of the first retransmission.
2235 static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
2237 return !tp->retrans_stamp ||
2238 tcp_tsopt_ecr_before(tp, tp->retrans_stamp);
2241 /* Undo procedures. */
2243 /* We can clear retrans_stamp when there are no retransmissions in the
2244 * window. It would seem that it is trivially available for us in
2245 * tp->retrans_out, however, that kind of assumptions doesn't consider
2246 * what will happen if errors occur when sending retransmission for the
2247 * second time. ...It could the that such segment has only
2248 * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2249 * the head skb is enough except for some reneging corner cases that
2250 * are not worth the effort.
2252 * Main reason for all this complexity is the fact that connection dying
2253 * time now depends on the validity of the retrans_stamp, in particular,
2254 * that successive retransmissions of a segment must not advance
2255 * retrans_stamp under any conditions.
2257 static bool tcp_any_retrans_done(const struct sock *sk)
2259 const struct tcp_sock *tp = tcp_sk(sk);
2260 struct sk_buff *skb;
2262 if (tp->retrans_out)
2263 return true;
2265 skb = tcp_rtx_queue_head(sk);
2266 if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2267 return true;
2269 return false;
2272 static void DBGUNDO(struct sock *sk, const char *msg)
2274 #if FASTRETRANS_DEBUG > 1
2275 struct tcp_sock *tp = tcp_sk(sk);
2276 struct inet_sock *inet = inet_sk(sk);
2278 if (sk->sk_family == AF_INET) {
2279 pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2280 msg,
2281 &inet->inet_daddr, ntohs(inet->inet_dport),
2282 tp->snd_cwnd, tcp_left_out(tp),
2283 tp->snd_ssthresh, tp->prior_ssthresh,
2284 tp->packets_out);
2286 #if IS_ENABLED(CONFIG_IPV6)
2287 else if (sk->sk_family == AF_INET6) {
2288 pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2289 msg,
2290 &sk->sk_v6_daddr, ntohs(inet->inet_dport),
2291 tp->snd_cwnd, tcp_left_out(tp),
2292 tp->snd_ssthresh, tp->prior_ssthresh,
2293 tp->packets_out);
2295 #endif
2296 #endif
2299 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss)
2301 struct tcp_sock *tp = tcp_sk(sk);
2303 if (unmark_loss) {
2304 struct sk_buff *skb;
2306 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2307 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2309 tp->lost_out = 0;
2310 tcp_clear_all_retrans_hints(tp);
2313 if (tp->prior_ssthresh) {
2314 const struct inet_connection_sock *icsk = inet_csk(sk);
2316 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2318 if (tp->prior_ssthresh > tp->snd_ssthresh) {
2319 tp->snd_ssthresh = tp->prior_ssthresh;
2320 tcp_ecn_withdraw_cwr(tp);
2323 tp->snd_cwnd_stamp = tcp_jiffies32;
2324 tp->undo_marker = 0;
2325 tp->rack.advanced = 1; /* Force RACK to re-exam losses */
2328 static inline bool tcp_may_undo(const struct tcp_sock *tp)
2330 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2333 /* People celebrate: "We love our President!" */
2334 static bool tcp_try_undo_recovery(struct sock *sk)
2336 struct tcp_sock *tp = tcp_sk(sk);
2338 if (tcp_may_undo(tp)) {
2339 int mib_idx;
2341 /* Happy end! We did not retransmit anything
2342 * or our original transmission succeeded.
2344 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2345 tcp_undo_cwnd_reduction(sk, false);
2346 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2347 mib_idx = LINUX_MIB_TCPLOSSUNDO;
2348 else
2349 mib_idx = LINUX_MIB_TCPFULLUNDO;
2351 NET_INC_STATS(sock_net(sk), mib_idx);
2352 } else if (tp->rack.reo_wnd_persist) {
2353 tp->rack.reo_wnd_persist--;
2355 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2356 /* Hold old state until something *above* high_seq
2357 * is ACKed. For Reno it is MUST to prevent false
2358 * fast retransmits (RFC2582). SACK TCP is safe. */
2359 if (!tcp_any_retrans_done(sk))
2360 tp->retrans_stamp = 0;
2361 return true;
2363 tcp_set_ca_state(sk, TCP_CA_Open);
2364 tp->is_sack_reneg = 0;
2365 return false;
2368 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2369 static bool tcp_try_undo_dsack(struct sock *sk)
2371 struct tcp_sock *tp = tcp_sk(sk);
2373 if (tp->undo_marker && !tp->undo_retrans) {
2374 tp->rack.reo_wnd_persist = min(TCP_RACK_RECOVERY_THRESH,
2375 tp->rack.reo_wnd_persist + 1);
2376 DBGUNDO(sk, "D-SACK");
2377 tcp_undo_cwnd_reduction(sk, false);
2378 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2379 return true;
2381 return false;
2384 /* Undo during loss recovery after partial ACK or using F-RTO. */
2385 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
2387 struct tcp_sock *tp = tcp_sk(sk);
2389 if (frto_undo || tcp_may_undo(tp)) {
2390 tcp_undo_cwnd_reduction(sk, true);
2392 DBGUNDO(sk, "partial loss");
2393 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2394 if (frto_undo)
2395 NET_INC_STATS(sock_net(sk),
2396 LINUX_MIB_TCPSPURIOUSRTOS);
2397 inet_csk(sk)->icsk_retransmits = 0;
2398 if (frto_undo || tcp_is_sack(tp)) {
2399 tcp_set_ca_state(sk, TCP_CA_Open);
2400 tp->is_sack_reneg = 0;
2402 return true;
2404 return false;
2407 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937.
2408 * It computes the number of packets to send (sndcnt) based on packets newly
2409 * delivered:
2410 * 1) If the packets in flight is larger than ssthresh, PRR spreads the
2411 * cwnd reductions across a full RTT.
2412 * 2) Otherwise PRR uses packet conservation to send as much as delivered.
2413 * But when the retransmits are acked without further losses, PRR
2414 * slow starts cwnd up to ssthresh to speed up the recovery.
2416 static void tcp_init_cwnd_reduction(struct sock *sk)
2418 struct tcp_sock *tp = tcp_sk(sk);
2420 tp->high_seq = tp->snd_nxt;
2421 tp->tlp_high_seq = 0;
2422 tp->snd_cwnd_cnt = 0;
2423 tp->prior_cwnd = tp->snd_cwnd;
2424 tp->prr_delivered = 0;
2425 tp->prr_out = 0;
2426 tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
2427 tcp_ecn_queue_cwr(tp);
2430 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int flag)
2432 struct tcp_sock *tp = tcp_sk(sk);
2433 int sndcnt = 0;
2434 int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2436 if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd))
2437 return;
2439 tp->prr_delivered += newly_acked_sacked;
2440 if (delta < 0) {
2441 u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
2442 tp->prior_cwnd - 1;
2443 sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
2444 } else if ((flag & FLAG_RETRANS_DATA_ACKED) &&
2445 !(flag & FLAG_LOST_RETRANS)) {
2446 sndcnt = min_t(int, delta,
2447 max_t(int, tp->prr_delivered - tp->prr_out,
2448 newly_acked_sacked) + 1);
2449 } else {
2450 sndcnt = min(delta, newly_acked_sacked);
2452 /* Force a fast retransmit upon entering fast recovery */
2453 sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1));
2454 tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
2457 static inline void tcp_end_cwnd_reduction(struct sock *sk)
2459 struct tcp_sock *tp = tcp_sk(sk);
2461 if (inet_csk(sk)->icsk_ca_ops->cong_control)
2462 return;
2464 /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2465 if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH &&
2466 (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || tp->undo_marker)) {
2467 tp->snd_cwnd = tp->snd_ssthresh;
2468 tp->snd_cwnd_stamp = tcp_jiffies32;
2470 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2473 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
2474 void tcp_enter_cwr(struct sock *sk)
2476 struct tcp_sock *tp = tcp_sk(sk);
2478 tp->prior_ssthresh = 0;
2479 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2480 tp->undo_marker = 0;
2481 tcp_init_cwnd_reduction(sk);
2482 tcp_set_ca_state(sk, TCP_CA_CWR);
2485 EXPORT_SYMBOL(tcp_enter_cwr);
2487 static void tcp_try_keep_open(struct sock *sk)
2489 struct tcp_sock *tp = tcp_sk(sk);
2490 int state = TCP_CA_Open;
2492 if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2493 state = TCP_CA_Disorder;
2495 if (inet_csk(sk)->icsk_ca_state != state) {
2496 tcp_set_ca_state(sk, state);
2497 tp->high_seq = tp->snd_nxt;
2501 static void tcp_try_to_open(struct sock *sk, int flag)
2503 struct tcp_sock *tp = tcp_sk(sk);
2505 tcp_verify_left_out(tp);
2507 if (!tcp_any_retrans_done(sk))
2508 tp->retrans_stamp = 0;
2510 if (flag & FLAG_ECE)
2511 tcp_enter_cwr(sk);
2513 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2514 tcp_try_keep_open(sk);
2518 static void tcp_mtup_probe_failed(struct sock *sk)
2520 struct inet_connection_sock *icsk = inet_csk(sk);
2522 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2523 icsk->icsk_mtup.probe_size = 0;
2524 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL);
2527 static void tcp_mtup_probe_success(struct sock *sk)
2529 struct tcp_sock *tp = tcp_sk(sk);
2530 struct inet_connection_sock *icsk = inet_csk(sk);
2532 /* FIXME: breaks with very large cwnd */
2533 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2534 tp->snd_cwnd = tp->snd_cwnd *
2535 tcp_mss_to_mtu(sk, tp->mss_cache) /
2536 icsk->icsk_mtup.probe_size;
2537 tp->snd_cwnd_cnt = 0;
2538 tp->snd_cwnd_stamp = tcp_jiffies32;
2539 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2541 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2542 icsk->icsk_mtup.probe_size = 0;
2543 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2544 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS);
2547 /* Do a simple retransmit without using the backoff mechanisms in
2548 * tcp_timer. This is used for path mtu discovery.
2549 * The socket is already locked here.
2551 void tcp_simple_retransmit(struct sock *sk)
2553 const struct inet_connection_sock *icsk = inet_csk(sk);
2554 struct tcp_sock *tp = tcp_sk(sk);
2555 struct sk_buff *skb;
2556 unsigned int mss = tcp_current_mss(sk);
2558 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2559 if (tcp_skb_seglen(skb) > mss &&
2560 !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2561 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2562 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2563 tp->retrans_out -= tcp_skb_pcount(skb);
2565 tcp_skb_mark_lost_uncond_verify(tp, skb);
2569 tcp_clear_retrans_hints_partial(tp);
2571 if (!tp->lost_out)
2572 return;
2574 if (tcp_is_reno(tp))
2575 tcp_limit_reno_sacked(tp);
2577 tcp_verify_left_out(tp);
2579 /* Don't muck with the congestion window here.
2580 * Reason is that we do not increase amount of _data_
2581 * in network, but units changed and effective
2582 * cwnd/ssthresh really reduced now.
2584 if (icsk->icsk_ca_state != TCP_CA_Loss) {
2585 tp->high_seq = tp->snd_nxt;
2586 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2587 tp->prior_ssthresh = 0;
2588 tp->undo_marker = 0;
2589 tcp_set_ca_state(sk, TCP_CA_Loss);
2591 tcp_xmit_retransmit_queue(sk);
2593 EXPORT_SYMBOL(tcp_simple_retransmit);
2595 void tcp_enter_recovery(struct sock *sk, bool ece_ack)
2597 struct tcp_sock *tp = tcp_sk(sk);
2598 int mib_idx;
2600 if (tcp_is_reno(tp))
2601 mib_idx = LINUX_MIB_TCPRENORECOVERY;
2602 else
2603 mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2605 NET_INC_STATS(sock_net(sk), mib_idx);
2607 tp->prior_ssthresh = 0;
2608 tcp_init_undo(tp);
2610 if (!tcp_in_cwnd_reduction(sk)) {
2611 if (!ece_ack)
2612 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2613 tcp_init_cwnd_reduction(sk);
2615 tcp_set_ca_state(sk, TCP_CA_Recovery);
2618 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
2619 * recovered or spurious. Otherwise retransmits more on partial ACKs.
2621 static void tcp_process_loss(struct sock *sk, int flag, bool is_dupack,
2622 int *rexmit)
2624 struct tcp_sock *tp = tcp_sk(sk);
2625 bool recovered = !before(tp->snd_una, tp->high_seq);
2627 if ((flag & FLAG_SND_UNA_ADVANCED) &&
2628 tcp_try_undo_loss(sk, false))
2629 return;
2631 /* The ACK (s)acks some never-retransmitted data meaning not all
2632 * the data packets before the timeout were lost. Therefore we
2633 * undo the congestion window and state. This is essentially
2634 * the operation in F-RTO (RFC5682 section 3.1 step 3.b). Since
2635 * a retransmitted skb is permantly marked, we can apply such an
2636 * operation even if F-RTO was not used.
2638 if ((flag & FLAG_ORIG_SACK_ACKED) &&
2639 tcp_try_undo_loss(sk, tp->undo_marker))
2640 return;
2642 if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
2643 if (after(tp->snd_nxt, tp->high_seq)) {
2644 if (flag & FLAG_DATA_SACKED || is_dupack)
2645 tp->frto = 0; /* Step 3.a. loss was real */
2646 } else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
2647 tp->high_seq = tp->snd_nxt;
2648 /* Step 2.b. Try send new data (but deferred until cwnd
2649 * is updated in tcp_ack()). Otherwise fall back to
2650 * the conventional recovery.
2652 if (!tcp_write_queue_empty(sk) &&
2653 after(tcp_wnd_end(tp), tp->snd_nxt)) {
2654 *rexmit = REXMIT_NEW;
2655 return;
2657 tp->frto = 0;
2661 if (recovered) {
2662 /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
2663 tcp_try_undo_recovery(sk);
2664 return;
2666 if (tcp_is_reno(tp)) {
2667 /* A Reno DUPACK means new data in F-RTO step 2.b above are
2668 * delivered. Lower inflight to clock out (re)tranmissions.
2670 if (after(tp->snd_nxt, tp->high_seq) && is_dupack)
2671 tcp_add_reno_sack(sk);
2672 else if (flag & FLAG_SND_UNA_ADVANCED)
2673 tcp_reset_reno_sack(tp);
2675 *rexmit = REXMIT_LOST;
2678 /* Undo during fast recovery after partial ACK. */
2679 static bool tcp_try_undo_partial(struct sock *sk, u32 prior_snd_una)
2681 struct tcp_sock *tp = tcp_sk(sk);
2683 if (tp->undo_marker && tcp_packet_delayed(tp)) {
2684 /* Plain luck! Hole if filled with delayed
2685 * packet, rather than with a retransmit. Check reordering.
2687 tcp_check_sack_reordering(sk, prior_snd_una, 1);
2689 /* We are getting evidence that the reordering degree is higher
2690 * than we realized. If there are no retransmits out then we
2691 * can undo. Otherwise we clock out new packets but do not
2692 * mark more packets lost or retransmit more.
2694 if (tp->retrans_out)
2695 return true;
2697 if (!tcp_any_retrans_done(sk))
2698 tp->retrans_stamp = 0;
2700 DBGUNDO(sk, "partial recovery");
2701 tcp_undo_cwnd_reduction(sk, true);
2702 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2703 tcp_try_keep_open(sk);
2704 return true;
2706 return false;
2709 static void tcp_rack_identify_loss(struct sock *sk, int *ack_flag)
2711 struct tcp_sock *tp = tcp_sk(sk);
2713 /* Use RACK to detect loss */
2714 if (sock_net(sk)->ipv4.sysctl_tcp_recovery & TCP_RACK_LOSS_DETECTION) {
2715 u32 prior_retrans = tp->retrans_out;
2717 tcp_rack_mark_lost(sk);
2718 if (prior_retrans > tp->retrans_out)
2719 *ack_flag |= FLAG_LOST_RETRANS;
2723 static bool tcp_force_fast_retransmit(struct sock *sk)
2725 struct tcp_sock *tp = tcp_sk(sk);
2727 return after(tcp_highest_sack_seq(tp),
2728 tp->snd_una + tp->reordering * tp->mss_cache);
2731 /* Process an event, which can update packets-in-flight not trivially.
2732 * Main goal of this function is to calculate new estimate for left_out,
2733 * taking into account both packets sitting in receiver's buffer and
2734 * packets lost by network.
2736 * Besides that it updates the congestion state when packet loss or ECN
2737 * is detected. But it does not reduce the cwnd, it is done by the
2738 * congestion control later.
2740 * It does _not_ decide what to send, it is made in function
2741 * tcp_xmit_retransmit_queue().
2743 static void tcp_fastretrans_alert(struct sock *sk, const u32 prior_snd_una,
2744 bool is_dupack, int *ack_flag, int *rexmit)
2746 struct inet_connection_sock *icsk = inet_csk(sk);
2747 struct tcp_sock *tp = tcp_sk(sk);
2748 int fast_rexmit = 0, flag = *ack_flag;
2749 bool do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
2750 tcp_force_fast_retransmit(sk));
2752 if (!tp->packets_out && tp->sacked_out)
2753 tp->sacked_out = 0;
2755 /* Now state machine starts.
2756 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2757 if (flag & FLAG_ECE)
2758 tp->prior_ssthresh = 0;
2760 /* B. In all the states check for reneging SACKs. */
2761 if (tcp_check_sack_reneging(sk, flag))
2762 return;
2764 /* C. Check consistency of the current state. */
2765 tcp_verify_left_out(tp);
2767 /* D. Check state exit conditions. State can be terminated
2768 * when high_seq is ACKed. */
2769 if (icsk->icsk_ca_state == TCP_CA_Open) {
2770 WARN_ON(tp->retrans_out != 0);
2771 tp->retrans_stamp = 0;
2772 } else if (!before(tp->snd_una, tp->high_seq)) {
2773 switch (icsk->icsk_ca_state) {
2774 case TCP_CA_CWR:
2775 /* CWR is to be held something *above* high_seq
2776 * is ACKed for CWR bit to reach receiver. */
2777 if (tp->snd_una != tp->high_seq) {
2778 tcp_end_cwnd_reduction(sk);
2779 tcp_set_ca_state(sk, TCP_CA_Open);
2781 break;
2783 case TCP_CA_Recovery:
2784 if (tcp_is_reno(tp))
2785 tcp_reset_reno_sack(tp);
2786 if (tcp_try_undo_recovery(sk))
2787 return;
2788 tcp_end_cwnd_reduction(sk);
2789 break;
2793 /* E. Process state. */
2794 switch (icsk->icsk_ca_state) {
2795 case TCP_CA_Recovery:
2796 if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2797 if (tcp_is_reno(tp) && is_dupack)
2798 tcp_add_reno_sack(sk);
2799 } else {
2800 if (tcp_try_undo_partial(sk, prior_snd_una))
2801 return;
2802 /* Partial ACK arrived. Force fast retransmit. */
2803 do_lost = tcp_is_reno(tp) ||
2804 tcp_force_fast_retransmit(sk);
2806 if (tcp_try_undo_dsack(sk)) {
2807 tcp_try_keep_open(sk);
2808 return;
2810 tcp_rack_identify_loss(sk, ack_flag);
2811 break;
2812 case TCP_CA_Loss:
2813 tcp_process_loss(sk, flag, is_dupack, rexmit);
2814 tcp_rack_identify_loss(sk, ack_flag);
2815 if (!(icsk->icsk_ca_state == TCP_CA_Open ||
2816 (*ack_flag & FLAG_LOST_RETRANS)))
2817 return;
2818 /* Change state if cwnd is undone or retransmits are lost */
2819 /* fall through */
2820 default:
2821 if (tcp_is_reno(tp)) {
2822 if (flag & FLAG_SND_UNA_ADVANCED)
2823 tcp_reset_reno_sack(tp);
2824 if (is_dupack)
2825 tcp_add_reno_sack(sk);
2828 if (icsk->icsk_ca_state <= TCP_CA_Disorder)
2829 tcp_try_undo_dsack(sk);
2831 tcp_rack_identify_loss(sk, ack_flag);
2832 if (!tcp_time_to_recover(sk, flag)) {
2833 tcp_try_to_open(sk, flag);
2834 return;
2837 /* MTU probe failure: don't reduce cwnd */
2838 if (icsk->icsk_ca_state < TCP_CA_CWR &&
2839 icsk->icsk_mtup.probe_size &&
2840 tp->snd_una == tp->mtu_probe.probe_seq_start) {
2841 tcp_mtup_probe_failed(sk);
2842 /* Restores the reduction we did in tcp_mtup_probe() */
2843 tp->snd_cwnd++;
2844 tcp_simple_retransmit(sk);
2845 return;
2848 /* Otherwise enter Recovery state */
2849 tcp_enter_recovery(sk, (flag & FLAG_ECE));
2850 fast_rexmit = 1;
2853 if (do_lost)
2854 tcp_update_scoreboard(sk, fast_rexmit);
2855 *rexmit = REXMIT_LOST;
2858 static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us, const int flag)
2860 u32 wlen = sock_net(sk)->ipv4.sysctl_tcp_min_rtt_wlen * HZ;
2861 struct tcp_sock *tp = tcp_sk(sk);
2863 if ((flag & FLAG_ACK_MAYBE_DELAYED) && rtt_us > tcp_min_rtt(tp)) {
2864 /* If the remote keeps returning delayed ACKs, eventually
2865 * the min filter would pick it up and overestimate the
2866 * prop. delay when it expires. Skip suspected delayed ACKs.
2868 return;
2870 minmax_running_min(&tp->rtt_min, wlen, tcp_jiffies32,
2871 rtt_us ? : jiffies_to_usecs(1));
2874 static bool tcp_ack_update_rtt(struct sock *sk, const int flag,
2875 long seq_rtt_us, long sack_rtt_us,
2876 long ca_rtt_us, struct rate_sample *rs)
2878 const struct tcp_sock *tp = tcp_sk(sk);
2880 /* Prefer RTT measured from ACK's timing to TS-ECR. This is because
2881 * broken middle-boxes or peers may corrupt TS-ECR fields. But
2882 * Karn's algorithm forbids taking RTT if some retransmitted data
2883 * is acked (RFC6298).
2885 if (seq_rtt_us < 0)
2886 seq_rtt_us = sack_rtt_us;
2888 /* RTTM Rule: A TSecr value received in a segment is used to
2889 * update the averaged RTT measurement only if the segment
2890 * acknowledges some new data, i.e., only if it advances the
2891 * left edge of the send window.
2892 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2894 if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2895 flag & FLAG_ACKED) {
2896 u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
2897 u32 delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
2899 seq_rtt_us = ca_rtt_us = delta_us;
2901 rs->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet (or -1) */
2902 if (seq_rtt_us < 0)
2903 return false;
2905 /* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is
2906 * always taken together with ACK, SACK, or TS-opts. Any negative
2907 * values will be skipped with the seq_rtt_us < 0 check above.
2909 tcp_update_rtt_min(sk, ca_rtt_us, flag);
2910 tcp_rtt_estimator(sk, seq_rtt_us);
2911 tcp_set_rto(sk);
2913 /* RFC6298: only reset backoff on valid RTT measurement. */
2914 inet_csk(sk)->icsk_backoff = 0;
2915 return true;
2918 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
2919 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req)
2921 struct rate_sample rs;
2922 long rtt_us = -1L;
2924 if (req && !req->num_retrans && tcp_rsk(req)->snt_synack)
2925 rtt_us = tcp_stamp_us_delta(tcp_clock_us(), tcp_rsk(req)->snt_synack);
2927 tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us, &rs);
2931 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked)
2933 const struct inet_connection_sock *icsk = inet_csk(sk);
2935 icsk->icsk_ca_ops->cong_avoid(sk, ack, acked);
2936 tcp_sk(sk)->snd_cwnd_stamp = tcp_jiffies32;
2939 /* Restart timer after forward progress on connection.
2940 * RFC2988 recommends to restart timer to now+rto.
2942 void tcp_rearm_rto(struct sock *sk)
2944 const struct inet_connection_sock *icsk = inet_csk(sk);
2945 struct tcp_sock *tp = tcp_sk(sk);
2947 /* If the retrans timer is currently being used by Fast Open
2948 * for SYN-ACK retrans purpose, stay put.
2950 if (tp->fastopen_rsk)
2951 return;
2953 if (!tp->packets_out) {
2954 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
2955 } else {
2956 u32 rto = inet_csk(sk)->icsk_rto;
2957 /* Offset the time elapsed after installing regular RTO */
2958 if (icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT ||
2959 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
2960 s64 delta_us = tcp_rto_delta_us(sk);
2961 /* delta_us may not be positive if the socket is locked
2962 * when the retrans timer fires and is rescheduled.
2964 rto = usecs_to_jiffies(max_t(int, delta_us, 1));
2966 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
2967 TCP_RTO_MAX);
2971 /* Try to schedule a loss probe; if that doesn't work, then schedule an RTO. */
2972 static void tcp_set_xmit_timer(struct sock *sk)
2974 if (!tcp_schedule_loss_probe(sk, true))
2975 tcp_rearm_rto(sk);
2978 /* If we get here, the whole TSO packet has not been acked. */
2979 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
2981 struct tcp_sock *tp = tcp_sk(sk);
2982 u32 packets_acked;
2984 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
2986 packets_acked = tcp_skb_pcount(skb);
2987 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
2988 return 0;
2989 packets_acked -= tcp_skb_pcount(skb);
2991 if (packets_acked) {
2992 BUG_ON(tcp_skb_pcount(skb) == 0);
2993 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
2996 return packets_acked;
2999 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb,
3000 u32 prior_snd_una)
3002 const struct skb_shared_info *shinfo;
3004 /* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */
3005 if (likely(!TCP_SKB_CB(skb)->txstamp_ack))
3006 return;
3008 shinfo = skb_shinfo(skb);
3009 if (!before(shinfo->tskey, prior_snd_una) &&
3010 before(shinfo->tskey, tcp_sk(sk)->snd_una)) {
3011 tcp_skb_tsorted_save(skb) {
3012 __skb_tstamp_tx(skb, NULL, sk, SCM_TSTAMP_ACK);
3013 } tcp_skb_tsorted_restore(skb);
3017 /* Remove acknowledged frames from the retransmission queue. If our packet
3018 * is before the ack sequence we can discard it as it's confirmed to have
3019 * arrived at the other end.
3021 static int tcp_clean_rtx_queue(struct sock *sk, u32 prior_fack,
3022 u32 prior_snd_una,
3023 struct tcp_sacktag_state *sack)
3025 const struct inet_connection_sock *icsk = inet_csk(sk);
3026 u64 first_ackt, last_ackt;
3027 struct tcp_sock *tp = tcp_sk(sk);
3028 u32 prior_sacked = tp->sacked_out;
3029 u32 reord = tp->snd_nxt; /* lowest acked un-retx un-sacked seq */
3030 struct sk_buff *skb, *next;
3031 bool fully_acked = true;
3032 long sack_rtt_us = -1L;
3033 long seq_rtt_us = -1L;
3034 long ca_rtt_us = -1L;
3035 u32 pkts_acked = 0;
3036 u32 last_in_flight = 0;
3037 bool rtt_update;
3038 int flag = 0;
3040 first_ackt = 0;
3042 for (skb = skb_rb_first(&sk->tcp_rtx_queue); skb; skb = next) {
3043 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3044 const u32 start_seq = scb->seq;
3045 u8 sacked = scb->sacked;
3046 u32 acked_pcount;
3048 tcp_ack_tstamp(sk, skb, prior_snd_una);
3050 /* Determine how many packets and what bytes were acked, tso and else */
3051 if (after(scb->end_seq, tp->snd_una)) {
3052 if (tcp_skb_pcount(skb) == 1 ||
3053 !after(tp->snd_una, scb->seq))
3054 break;
3056 acked_pcount = tcp_tso_acked(sk, skb);
3057 if (!acked_pcount)
3058 break;
3059 fully_acked = false;
3060 } else {
3061 acked_pcount = tcp_skb_pcount(skb);
3064 if (unlikely(sacked & TCPCB_RETRANS)) {
3065 if (sacked & TCPCB_SACKED_RETRANS)
3066 tp->retrans_out -= acked_pcount;
3067 flag |= FLAG_RETRANS_DATA_ACKED;
3068 } else if (!(sacked & TCPCB_SACKED_ACKED)) {
3069 last_ackt = skb->skb_mstamp;
3070 WARN_ON_ONCE(last_ackt == 0);
3071 if (!first_ackt)
3072 first_ackt = last_ackt;
3074 last_in_flight = TCP_SKB_CB(skb)->tx.in_flight;
3075 if (before(start_seq, reord))
3076 reord = start_seq;
3077 if (!after(scb->end_seq, tp->high_seq))
3078 flag |= FLAG_ORIG_SACK_ACKED;
3081 if (sacked & TCPCB_SACKED_ACKED) {
3082 tp->sacked_out -= acked_pcount;
3083 } else if (tcp_is_sack(tp)) {
3084 tp->delivered += acked_pcount;
3085 if (!tcp_skb_spurious_retrans(tp, skb))
3086 tcp_rack_advance(tp, sacked, scb->end_seq,
3087 skb->skb_mstamp);
3089 if (sacked & TCPCB_LOST)
3090 tp->lost_out -= acked_pcount;
3092 tp->packets_out -= acked_pcount;
3093 pkts_acked += acked_pcount;
3094 tcp_rate_skb_delivered(sk, skb, sack->rate);
3096 /* Initial outgoing SYN's get put onto the write_queue
3097 * just like anything else we transmit. It is not
3098 * true data, and if we misinform our callers that
3099 * this ACK acks real data, we will erroneously exit
3100 * connection startup slow start one packet too
3101 * quickly. This is severely frowned upon behavior.
3103 if (likely(!(scb->tcp_flags & TCPHDR_SYN))) {
3104 flag |= FLAG_DATA_ACKED;
3105 } else {
3106 flag |= FLAG_SYN_ACKED;
3107 tp->retrans_stamp = 0;
3110 if (!fully_acked)
3111 break;
3113 next = skb_rb_next(skb);
3114 if (unlikely(skb == tp->retransmit_skb_hint))
3115 tp->retransmit_skb_hint = NULL;
3116 if (unlikely(skb == tp->lost_skb_hint))
3117 tp->lost_skb_hint = NULL;
3118 tcp_rtx_queue_unlink_and_free(skb, sk);
3121 if (!skb)
3122 tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
3124 if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3125 tp->snd_up = tp->snd_una;
3127 if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3128 flag |= FLAG_SACK_RENEGING;
3130 if (likely(first_ackt) && !(flag & FLAG_RETRANS_DATA_ACKED)) {
3131 seq_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, first_ackt);
3132 ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, last_ackt);
3134 if (pkts_acked == 1 && last_in_flight < tp->mss_cache &&
3135 last_in_flight && !prior_sacked && fully_acked &&
3136 sack->rate->prior_delivered + 1 == tp->delivered &&
3137 !(flag & (FLAG_CA_ALERT | FLAG_SYN_ACKED))) {
3138 /* Conservatively mark a delayed ACK. It's typically
3139 * from a lone runt packet over the round trip to
3140 * a receiver w/o out-of-order or CE events.
3142 flag |= FLAG_ACK_MAYBE_DELAYED;
3145 if (sack->first_sackt) {
3146 sack_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->first_sackt);
3147 ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->last_sackt);
3149 rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us,
3150 ca_rtt_us, sack->rate);
3152 if (flag & FLAG_ACKED) {
3153 flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */
3154 if (unlikely(icsk->icsk_mtup.probe_size &&
3155 !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3156 tcp_mtup_probe_success(sk);
3159 if (tcp_is_reno(tp)) {
3160 tcp_remove_reno_sacks(sk, pkts_acked);
3161 } else {
3162 int delta;
3164 /* Non-retransmitted hole got filled? That's reordering */
3165 if (before(reord, prior_fack))
3166 tcp_check_sack_reordering(sk, reord, 0);
3168 delta = prior_sacked - tp->sacked_out;
3169 tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3171 } else if (skb && rtt_update && sack_rtt_us >= 0 &&
3172 sack_rtt_us > tcp_stamp_us_delta(tp->tcp_mstamp, skb->skb_mstamp)) {
3173 /* Do not re-arm RTO if the sack RTT is measured from data sent
3174 * after when the head was last (re)transmitted. Otherwise the
3175 * timeout may continue to extend in loss recovery.
3177 flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */
3180 if (icsk->icsk_ca_ops->pkts_acked) {
3181 struct ack_sample sample = { .pkts_acked = pkts_acked,
3182 .rtt_us = sack->rate->rtt_us,
3183 .in_flight = last_in_flight };
3185 icsk->icsk_ca_ops->pkts_acked(sk, &sample);
3188 #if FASTRETRANS_DEBUG > 0
3189 WARN_ON((int)tp->sacked_out < 0);
3190 WARN_ON((int)tp->lost_out < 0);
3191 WARN_ON((int)tp->retrans_out < 0);
3192 if (!tp->packets_out && tcp_is_sack(tp)) {
3193 icsk = inet_csk(sk);
3194 if (tp->lost_out) {
3195 pr_debug("Leak l=%u %d\n",
3196 tp->lost_out, icsk->icsk_ca_state);
3197 tp->lost_out = 0;
3199 if (tp->sacked_out) {
3200 pr_debug("Leak s=%u %d\n",
3201 tp->sacked_out, icsk->icsk_ca_state);
3202 tp->sacked_out = 0;
3204 if (tp->retrans_out) {
3205 pr_debug("Leak r=%u %d\n",
3206 tp->retrans_out, icsk->icsk_ca_state);
3207 tp->retrans_out = 0;
3210 #endif
3211 return flag;
3214 static void tcp_ack_probe(struct sock *sk)
3216 struct inet_connection_sock *icsk = inet_csk(sk);
3217 struct sk_buff *head = tcp_send_head(sk);
3218 const struct tcp_sock *tp = tcp_sk(sk);
3220 /* Was it a usable window open? */
3221 if (!head)
3222 return;
3223 if (!after(TCP_SKB_CB(head)->end_seq, tcp_wnd_end(tp))) {
3224 icsk->icsk_backoff = 0;
3225 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3226 /* Socket must be waked up by subsequent tcp_data_snd_check().
3227 * This function is not for random using!
3229 } else {
3230 unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX);
3232 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3233 when, TCP_RTO_MAX);
3237 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
3239 return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3240 inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3243 /* Decide wheather to run the increase function of congestion control. */
3244 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3246 /* If reordering is high then always grow cwnd whenever data is
3247 * delivered regardless of its ordering. Otherwise stay conservative
3248 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
3249 * new SACK or ECE mark may first advance cwnd here and later reduce
3250 * cwnd in tcp_fastretrans_alert() based on more states.
3252 if (tcp_sk(sk)->reordering > sock_net(sk)->ipv4.sysctl_tcp_reordering)
3253 return flag & FLAG_FORWARD_PROGRESS;
3255 return flag & FLAG_DATA_ACKED;
3258 /* The "ultimate" congestion control function that aims to replace the rigid
3259 * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction).
3260 * It's called toward the end of processing an ACK with precise rate
3261 * information. All transmission or retransmission are delayed afterwards.
3263 static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked,
3264 int flag, const struct rate_sample *rs)
3266 const struct inet_connection_sock *icsk = inet_csk(sk);
3268 if (icsk->icsk_ca_ops->cong_control) {
3269 icsk->icsk_ca_ops->cong_control(sk, rs);
3270 return;
3273 if (tcp_in_cwnd_reduction(sk)) {
3274 /* Reduce cwnd if state mandates */
3275 tcp_cwnd_reduction(sk, acked_sacked, flag);
3276 } else if (tcp_may_raise_cwnd(sk, flag)) {
3277 /* Advance cwnd if state allows */
3278 tcp_cong_avoid(sk, ack, acked_sacked);
3280 tcp_update_pacing_rate(sk);
3283 /* Check that window update is acceptable.
3284 * The function assumes that snd_una<=ack<=snd_next.
3286 static inline bool tcp_may_update_window(const struct tcp_sock *tp,
3287 const u32 ack, const u32 ack_seq,
3288 const u32 nwin)
3290 return after(ack, tp->snd_una) ||
3291 after(ack_seq, tp->snd_wl1) ||
3292 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3295 /* If we update tp->snd_una, also update tp->bytes_acked */
3296 static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack)
3298 u32 delta = ack - tp->snd_una;
3300 sock_owned_by_me((struct sock *)tp);
3301 tp->bytes_acked += delta;
3302 tp->snd_una = ack;
3305 /* If we update tp->rcv_nxt, also update tp->bytes_received */
3306 static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq)
3308 u32 delta = seq - tp->rcv_nxt;
3310 sock_owned_by_me((struct sock *)tp);
3311 tp->bytes_received += delta;
3312 tp->rcv_nxt = seq;
3315 /* Update our send window.
3317 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3318 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3320 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3321 u32 ack_seq)
3323 struct tcp_sock *tp = tcp_sk(sk);
3324 int flag = 0;
3325 u32 nwin = ntohs(tcp_hdr(skb)->window);
3327 if (likely(!tcp_hdr(skb)->syn))
3328 nwin <<= tp->rx_opt.snd_wscale;
3330 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3331 flag |= FLAG_WIN_UPDATE;
3332 tcp_update_wl(tp, ack_seq);
3334 if (tp->snd_wnd != nwin) {
3335 tp->snd_wnd = nwin;
3337 /* Note, it is the only place, where
3338 * fast path is recovered for sending TCP.
3340 tp->pred_flags = 0;
3341 tcp_fast_path_check(sk);
3343 if (!tcp_write_queue_empty(sk))
3344 tcp_slow_start_after_idle_check(sk);
3346 if (nwin > tp->max_window) {
3347 tp->max_window = nwin;
3348 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3353 tcp_snd_una_update(tp, ack);
3355 return flag;
3358 static bool __tcp_oow_rate_limited(struct net *net, int mib_idx,
3359 u32 *last_oow_ack_time)
3361 if (*last_oow_ack_time) {
3362 s32 elapsed = (s32)(tcp_jiffies32 - *last_oow_ack_time);
3364 if (0 <= elapsed && elapsed < net->ipv4.sysctl_tcp_invalid_ratelimit) {
3365 NET_INC_STATS(net, mib_idx);
3366 return true; /* rate-limited: don't send yet! */
3370 *last_oow_ack_time = tcp_jiffies32;
3372 return false; /* not rate-limited: go ahead, send dupack now! */
3375 /* Return true if we're currently rate-limiting out-of-window ACKs and
3376 * thus shouldn't send a dupack right now. We rate-limit dupacks in
3377 * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS
3378 * attacks that send repeated SYNs or ACKs for the same connection. To
3379 * do this, we do not send a duplicate SYNACK or ACK if the remote
3380 * endpoint is sending out-of-window SYNs or pure ACKs at a high rate.
3382 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
3383 int mib_idx, u32 *last_oow_ack_time)
3385 /* Data packets without SYNs are not likely part of an ACK loop. */
3386 if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) &&
3387 !tcp_hdr(skb)->syn)
3388 return false;
3390 return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time);
3393 /* RFC 5961 7 [ACK Throttling] */
3394 static void tcp_send_challenge_ack(struct sock *sk, const struct sk_buff *skb)
3396 /* unprotected vars, we dont care of overwrites */
3397 static u32 challenge_timestamp;
3398 static unsigned int challenge_count;
3399 struct tcp_sock *tp = tcp_sk(sk);
3400 struct net *net = sock_net(sk);
3401 u32 count, now;
3403 /* First check our per-socket dupack rate limit. */
3404 if (__tcp_oow_rate_limited(net,
3405 LINUX_MIB_TCPACKSKIPPEDCHALLENGE,
3406 &tp->last_oow_ack_time))
3407 return;
3409 /* Then check host-wide RFC 5961 rate limit. */
3410 now = jiffies / HZ;
3411 if (now != challenge_timestamp) {
3412 u32 ack_limit = net->ipv4.sysctl_tcp_challenge_ack_limit;
3413 u32 half = (ack_limit + 1) >> 1;
3415 challenge_timestamp = now;
3416 WRITE_ONCE(challenge_count, half + prandom_u32_max(ack_limit));
3418 count = READ_ONCE(challenge_count);
3419 if (count > 0) {
3420 WRITE_ONCE(challenge_count, count - 1);
3421 NET_INC_STATS(net, LINUX_MIB_TCPCHALLENGEACK);
3422 tcp_send_ack(sk);
3426 static void tcp_store_ts_recent(struct tcp_sock *tp)
3428 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3429 tp->rx_opt.ts_recent_stamp = get_seconds();
3432 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3434 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3435 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
3436 * extra check below makes sure this can only happen
3437 * for pure ACK frames. -DaveM
3439 * Not only, also it occurs for expired timestamps.
3442 if (tcp_paws_check(&tp->rx_opt, 0))
3443 tcp_store_ts_recent(tp);
3447 /* This routine deals with acks during a TLP episode.
3448 * We mark the end of a TLP episode on receiving TLP dupack or when
3449 * ack is after tlp_high_seq.
3450 * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe.
3452 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
3454 struct tcp_sock *tp = tcp_sk(sk);
3456 if (before(ack, tp->tlp_high_seq))
3457 return;
3459 if (flag & FLAG_DSACKING_ACK) {
3460 /* This DSACK means original and TLP probe arrived; no loss */
3461 tp->tlp_high_seq = 0;
3462 } else if (after(ack, tp->tlp_high_seq)) {
3463 /* ACK advances: there was a loss, so reduce cwnd. Reset
3464 * tlp_high_seq in tcp_init_cwnd_reduction()
3466 tcp_init_cwnd_reduction(sk);
3467 tcp_set_ca_state(sk, TCP_CA_CWR);
3468 tcp_end_cwnd_reduction(sk);
3469 tcp_try_keep_open(sk);
3470 NET_INC_STATS(sock_net(sk),
3471 LINUX_MIB_TCPLOSSPROBERECOVERY);
3472 } else if (!(flag & (FLAG_SND_UNA_ADVANCED |
3473 FLAG_NOT_DUP | FLAG_DATA_SACKED))) {
3474 /* Pure dupack: original and TLP probe arrived; no loss */
3475 tp->tlp_high_seq = 0;
3479 static inline void tcp_in_ack_event(struct sock *sk, u32 flags)
3481 const struct inet_connection_sock *icsk = inet_csk(sk);
3483 if (icsk->icsk_ca_ops->in_ack_event)
3484 icsk->icsk_ca_ops->in_ack_event(sk, flags);
3487 /* Congestion control has updated the cwnd already. So if we're in
3488 * loss recovery then now we do any new sends (for FRTO) or
3489 * retransmits (for CA_Loss or CA_recovery) that make sense.
3491 static void tcp_xmit_recovery(struct sock *sk, int rexmit)
3493 struct tcp_sock *tp = tcp_sk(sk);
3495 if (rexmit == REXMIT_NONE)
3496 return;
3498 if (unlikely(rexmit == 2)) {
3499 __tcp_push_pending_frames(sk, tcp_current_mss(sk),
3500 TCP_NAGLE_OFF);
3501 if (after(tp->snd_nxt, tp->high_seq))
3502 return;
3503 tp->frto = 0;
3505 tcp_xmit_retransmit_queue(sk);
3508 /* This routine deals with incoming acks, but not outgoing ones. */
3509 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3511 struct inet_connection_sock *icsk = inet_csk(sk);
3512 struct tcp_sock *tp = tcp_sk(sk);
3513 struct tcp_sacktag_state sack_state;
3514 struct rate_sample rs = { .prior_delivered = 0 };
3515 u32 prior_snd_una = tp->snd_una;
3516 bool is_sack_reneg = tp->is_sack_reneg;
3517 u32 ack_seq = TCP_SKB_CB(skb)->seq;
3518 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3519 bool is_dupack = false;
3520 int prior_packets = tp->packets_out;
3521 u32 delivered = tp->delivered;
3522 u32 lost = tp->lost;
3523 int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */
3524 u32 prior_fack;
3526 sack_state.first_sackt = 0;
3527 sack_state.rate = &rs;
3529 /* We very likely will need to access rtx queue. */
3530 prefetch(sk->tcp_rtx_queue.rb_node);
3532 /* If the ack is older than previous acks
3533 * then we can probably ignore it.
3535 if (before(ack, prior_snd_una)) {
3536 /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3537 if (before(ack, prior_snd_una - tp->max_window)) {
3538 if (!(flag & FLAG_NO_CHALLENGE_ACK))
3539 tcp_send_challenge_ack(sk, skb);
3540 return -1;
3542 goto old_ack;
3545 /* If the ack includes data we haven't sent yet, discard
3546 * this segment (RFC793 Section 3.9).
3548 if (after(ack, tp->snd_nxt))
3549 goto invalid_ack;
3551 if (after(ack, prior_snd_una)) {
3552 flag |= FLAG_SND_UNA_ADVANCED;
3553 icsk->icsk_retransmits = 0;
3556 prior_fack = tcp_is_sack(tp) ? tcp_highest_sack_seq(tp) : tp->snd_una;
3557 rs.prior_in_flight = tcp_packets_in_flight(tp);
3559 /* ts_recent update must be made after we are sure that the packet
3560 * is in window.
3562 if (flag & FLAG_UPDATE_TS_RECENT)
3563 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
3565 if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3566 /* Window is constant, pure forward advance.
3567 * No more checks are required.
3568 * Note, we use the fact that SND.UNA>=SND.WL2.
3570 tcp_update_wl(tp, ack_seq);
3571 tcp_snd_una_update(tp, ack);
3572 flag |= FLAG_WIN_UPDATE;
3574 tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE);
3576 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS);
3577 } else {
3578 u32 ack_ev_flags = CA_ACK_SLOWPATH;
3580 if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3581 flag |= FLAG_DATA;
3582 else
3583 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3585 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3587 if (TCP_SKB_CB(skb)->sacked)
3588 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3589 &sack_state);
3591 if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) {
3592 flag |= FLAG_ECE;
3593 ack_ev_flags |= CA_ACK_ECE;
3596 if (flag & FLAG_WIN_UPDATE)
3597 ack_ev_flags |= CA_ACK_WIN_UPDATE;
3599 tcp_in_ack_event(sk, ack_ev_flags);
3602 /* We passed data and got it acked, remove any soft error
3603 * log. Something worked...
3605 sk->sk_err_soft = 0;
3606 icsk->icsk_probes_out = 0;
3607 tp->rcv_tstamp = tcp_jiffies32;
3608 if (!prior_packets)
3609 goto no_queue;
3611 /* See if we can take anything off of the retransmit queue. */
3612 flag |= tcp_clean_rtx_queue(sk, prior_fack, prior_snd_una, &sack_state);
3614 tcp_rack_update_reo_wnd(sk, &rs);
3616 if (tp->tlp_high_seq)
3617 tcp_process_tlp_ack(sk, ack, flag);
3618 /* If needed, reset TLP/RTO timer; RACK may later override this. */
3619 if (flag & FLAG_SET_XMIT_TIMER)
3620 tcp_set_xmit_timer(sk);
3622 if (tcp_ack_is_dubious(sk, flag)) {
3623 is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
3624 tcp_fastretrans_alert(sk, prior_snd_una, is_dupack, &flag,
3625 &rexmit);
3628 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3629 sk_dst_confirm(sk);
3631 delivered = tp->delivered - delivered; /* freshly ACKed or SACKed */
3632 lost = tp->lost - lost; /* freshly marked lost */
3633 rs.is_ack_delayed = !!(flag & FLAG_ACK_MAYBE_DELAYED);
3634 tcp_rate_gen(sk, delivered, lost, is_sack_reneg, sack_state.rate);
3635 tcp_cong_control(sk, ack, delivered, flag, sack_state.rate);
3636 tcp_xmit_recovery(sk, rexmit);
3637 return 1;
3639 no_queue:
3640 /* If data was DSACKed, see if we can undo a cwnd reduction. */
3641 if (flag & FLAG_DSACKING_ACK)
3642 tcp_fastretrans_alert(sk, prior_snd_una, is_dupack, &flag,
3643 &rexmit);
3644 /* If this ack opens up a zero window, clear backoff. It was
3645 * being used to time the probes, and is probably far higher than
3646 * it needs to be for normal retransmission.
3648 tcp_ack_probe(sk);
3650 if (tp->tlp_high_seq)
3651 tcp_process_tlp_ack(sk, ack, flag);
3652 return 1;
3654 invalid_ack:
3655 SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3656 return -1;
3658 old_ack:
3659 /* If data was SACKed, tag it and see if we should send more data.
3660 * If data was DSACKed, see if we can undo a cwnd reduction.
3662 if (TCP_SKB_CB(skb)->sacked) {
3663 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3664 &sack_state);
3665 tcp_fastretrans_alert(sk, prior_snd_una, is_dupack, &flag,
3666 &rexmit);
3667 tcp_xmit_recovery(sk, rexmit);
3670 SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3671 return 0;
3674 static void tcp_parse_fastopen_option(int len, const unsigned char *cookie,
3675 bool syn, struct tcp_fastopen_cookie *foc,
3676 bool exp_opt)
3678 /* Valid only in SYN or SYN-ACK with an even length. */
3679 if (!foc || !syn || len < 0 || (len & 1))
3680 return;
3682 if (len >= TCP_FASTOPEN_COOKIE_MIN &&
3683 len <= TCP_FASTOPEN_COOKIE_MAX)
3684 memcpy(foc->val, cookie, len);
3685 else if (len != 0)
3686 len = -1;
3687 foc->len = len;
3688 foc->exp = exp_opt;
3691 static void smc_parse_options(const struct tcphdr *th,
3692 struct tcp_options_received *opt_rx,
3693 const unsigned char *ptr,
3694 int opsize)
3696 #if IS_ENABLED(CONFIG_SMC)
3697 if (static_branch_unlikely(&tcp_have_smc)) {
3698 if (th->syn && !(opsize & 1) &&
3699 opsize >= TCPOLEN_EXP_SMC_BASE &&
3700 get_unaligned_be32(ptr) == TCPOPT_SMC_MAGIC)
3701 opt_rx->smc_ok = 1;
3703 #endif
3706 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3707 * But, this can also be called on packets in the established flow when
3708 * the fast version below fails.
3710 void tcp_parse_options(const struct net *net,
3711 const struct sk_buff *skb,
3712 struct tcp_options_received *opt_rx, int estab,
3713 struct tcp_fastopen_cookie *foc)
3715 const unsigned char *ptr;
3716 const struct tcphdr *th = tcp_hdr(skb);
3717 int length = (th->doff * 4) - sizeof(struct tcphdr);
3719 ptr = (const unsigned char *)(th + 1);
3720 opt_rx->saw_tstamp = 0;
3722 while (length > 0) {
3723 int opcode = *ptr++;
3724 int opsize;
3726 switch (opcode) {
3727 case TCPOPT_EOL:
3728 return;
3729 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
3730 length--;
3731 continue;
3732 default:
3733 opsize = *ptr++;
3734 if (opsize < 2) /* "silly options" */
3735 return;
3736 if (opsize > length)
3737 return; /* don't parse partial options */
3738 switch (opcode) {
3739 case TCPOPT_MSS:
3740 if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3741 u16 in_mss = get_unaligned_be16(ptr);
3742 if (in_mss) {
3743 if (opt_rx->user_mss &&
3744 opt_rx->user_mss < in_mss)
3745 in_mss = opt_rx->user_mss;
3746 opt_rx->mss_clamp = in_mss;
3749 break;
3750 case TCPOPT_WINDOW:
3751 if (opsize == TCPOLEN_WINDOW && th->syn &&
3752 !estab && net->ipv4.sysctl_tcp_window_scaling) {
3753 __u8 snd_wscale = *(__u8 *)ptr;
3754 opt_rx->wscale_ok = 1;
3755 if (snd_wscale > TCP_MAX_WSCALE) {
3756 net_info_ratelimited("%s: Illegal window scaling value %d > %u received\n",
3757 __func__,
3758 snd_wscale,
3759 TCP_MAX_WSCALE);
3760 snd_wscale = TCP_MAX_WSCALE;
3762 opt_rx->snd_wscale = snd_wscale;
3764 break;
3765 case TCPOPT_TIMESTAMP:
3766 if ((opsize == TCPOLEN_TIMESTAMP) &&
3767 ((estab && opt_rx->tstamp_ok) ||
3768 (!estab && net->ipv4.sysctl_tcp_timestamps))) {
3769 opt_rx->saw_tstamp = 1;
3770 opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3771 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3773 break;
3774 case TCPOPT_SACK_PERM:
3775 if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3776 !estab && net->ipv4.sysctl_tcp_sack) {
3777 opt_rx->sack_ok = TCP_SACK_SEEN;
3778 tcp_sack_reset(opt_rx);
3780 break;
3782 case TCPOPT_SACK:
3783 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3784 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3785 opt_rx->sack_ok) {
3786 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3788 break;
3789 #ifdef CONFIG_TCP_MD5SIG
3790 case TCPOPT_MD5SIG:
3792 * The MD5 Hash has already been
3793 * checked (see tcp_v{4,6}_do_rcv()).
3795 break;
3796 #endif
3797 case TCPOPT_FASTOPEN:
3798 tcp_parse_fastopen_option(
3799 opsize - TCPOLEN_FASTOPEN_BASE,
3800 ptr, th->syn, foc, false);
3801 break;
3803 case TCPOPT_EXP:
3804 /* Fast Open option shares code 254 using a
3805 * 16 bits magic number.
3807 if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE &&
3808 get_unaligned_be16(ptr) ==
3809 TCPOPT_FASTOPEN_MAGIC)
3810 tcp_parse_fastopen_option(opsize -
3811 TCPOLEN_EXP_FASTOPEN_BASE,
3812 ptr + 2, th->syn, foc, true);
3813 else
3814 smc_parse_options(th, opt_rx, ptr,
3815 opsize);
3816 break;
3819 ptr += opsize-2;
3820 length -= opsize;
3824 EXPORT_SYMBOL(tcp_parse_options);
3826 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
3828 const __be32 *ptr = (const __be32 *)(th + 1);
3830 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3831 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3832 tp->rx_opt.saw_tstamp = 1;
3833 ++ptr;
3834 tp->rx_opt.rcv_tsval = ntohl(*ptr);
3835 ++ptr;
3836 if (*ptr)
3837 tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
3838 else
3839 tp->rx_opt.rcv_tsecr = 0;
3840 return true;
3842 return false;
3845 /* Fast parse options. This hopes to only see timestamps.
3846 * If it is wrong it falls back on tcp_parse_options().
3848 static bool tcp_fast_parse_options(const struct net *net,
3849 const struct sk_buff *skb,
3850 const struct tcphdr *th, struct tcp_sock *tp)
3852 /* In the spirit of fast parsing, compare doff directly to constant
3853 * values. Because equality is used, short doff can be ignored here.
3855 if (th->doff == (sizeof(*th) / 4)) {
3856 tp->rx_opt.saw_tstamp = 0;
3857 return false;
3858 } else if (tp->rx_opt.tstamp_ok &&
3859 th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
3860 if (tcp_parse_aligned_timestamp(tp, th))
3861 return true;
3864 tcp_parse_options(net, skb, &tp->rx_opt, 1, NULL);
3865 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
3866 tp->rx_opt.rcv_tsecr -= tp->tsoffset;
3868 return true;
3871 #ifdef CONFIG_TCP_MD5SIG
3873 * Parse MD5 Signature option
3875 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
3877 int length = (th->doff << 2) - sizeof(*th);
3878 const u8 *ptr = (const u8 *)(th + 1);
3880 /* If the TCP option is too short, we can short cut */
3881 if (length < TCPOLEN_MD5SIG)
3882 return NULL;
3884 while (length > 0) {
3885 int opcode = *ptr++;
3886 int opsize;
3888 switch (opcode) {
3889 case TCPOPT_EOL:
3890 return NULL;
3891 case TCPOPT_NOP:
3892 length--;
3893 continue;
3894 default:
3895 opsize = *ptr++;
3896 if (opsize < 2 || opsize > length)
3897 return NULL;
3898 if (opcode == TCPOPT_MD5SIG)
3899 return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
3901 ptr += opsize - 2;
3902 length -= opsize;
3904 return NULL;
3906 EXPORT_SYMBOL(tcp_parse_md5sig_option);
3907 #endif
3909 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3911 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3912 * it can pass through stack. So, the following predicate verifies that
3913 * this segment is not used for anything but congestion avoidance or
3914 * fast retransmit. Moreover, we even are able to eliminate most of such
3915 * second order effects, if we apply some small "replay" window (~RTO)
3916 * to timestamp space.
3918 * All these measures still do not guarantee that we reject wrapped ACKs
3919 * on networks with high bandwidth, when sequence space is recycled fastly,
3920 * but it guarantees that such events will be very rare and do not affect
3921 * connection seriously. This doesn't look nice, but alas, PAWS is really
3922 * buggy extension.
3924 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3925 * states that events when retransmit arrives after original data are rare.
3926 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3927 * the biggest problem on large power networks even with minor reordering.
3928 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3929 * up to bandwidth of 18Gigabit/sec. 8) ]
3932 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
3934 const struct tcp_sock *tp = tcp_sk(sk);
3935 const struct tcphdr *th = tcp_hdr(skb);
3936 u32 seq = TCP_SKB_CB(skb)->seq;
3937 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3939 return (/* 1. Pure ACK with correct sequence number. */
3940 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3942 /* 2. ... and duplicate ACK. */
3943 ack == tp->snd_una &&
3945 /* 3. ... and does not update window. */
3946 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
3948 /* 4. ... and sits in replay window. */
3949 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
3952 static inline bool tcp_paws_discard(const struct sock *sk,
3953 const struct sk_buff *skb)
3955 const struct tcp_sock *tp = tcp_sk(sk);
3957 return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
3958 !tcp_disordered_ack(sk, skb);
3961 /* Check segment sequence number for validity.
3963 * Segment controls are considered valid, if the segment
3964 * fits to the window after truncation to the window. Acceptability
3965 * of data (and SYN, FIN, of course) is checked separately.
3966 * See tcp_data_queue(), for example.
3968 * Also, controls (RST is main one) are accepted using RCV.WUP instead
3969 * of RCV.NXT. Peer still did not advance his SND.UNA when we
3970 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
3971 * (borrowed from freebsd)
3974 static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
3976 return !before(end_seq, tp->rcv_wup) &&
3977 !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
3980 /* When we get a reset we do this. */
3981 void tcp_reset(struct sock *sk)
3983 trace_tcp_receive_reset(sk);
3985 /* We want the right error as BSD sees it (and indeed as we do). */
3986 switch (sk->sk_state) {
3987 case TCP_SYN_SENT:
3988 sk->sk_err = ECONNREFUSED;
3989 break;
3990 case TCP_CLOSE_WAIT:
3991 sk->sk_err = EPIPE;
3992 break;
3993 case TCP_CLOSE:
3994 return;
3995 default:
3996 sk->sk_err = ECONNRESET;
3998 /* This barrier is coupled with smp_rmb() in tcp_poll() */
3999 smp_wmb();
4001 tcp_done(sk);
4003 if (!sock_flag(sk, SOCK_DEAD))
4004 sk->sk_error_report(sk);
4008 * Process the FIN bit. This now behaves as it is supposed to work
4009 * and the FIN takes effect when it is validly part of sequence
4010 * space. Not before when we get holes.
4012 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4013 * (and thence onto LAST-ACK and finally, CLOSE, we never enter
4014 * TIME-WAIT)
4016 * If we are in FINWAIT-1, a received FIN indicates simultaneous
4017 * close and we go into CLOSING (and later onto TIME-WAIT)
4019 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4021 void tcp_fin(struct sock *sk)
4023 struct tcp_sock *tp = tcp_sk(sk);
4025 inet_csk_schedule_ack(sk);
4027 sk->sk_shutdown |= RCV_SHUTDOWN;
4028 sock_set_flag(sk, SOCK_DONE);
4030 switch (sk->sk_state) {
4031 case TCP_SYN_RECV:
4032 case TCP_ESTABLISHED:
4033 /* Move to CLOSE_WAIT */
4034 tcp_set_state(sk, TCP_CLOSE_WAIT);
4035 inet_csk(sk)->icsk_ack.pingpong = 1;
4036 break;
4038 case TCP_CLOSE_WAIT:
4039 case TCP_CLOSING:
4040 /* Received a retransmission of the FIN, do
4041 * nothing.
4043 break;
4044 case TCP_LAST_ACK:
4045 /* RFC793: Remain in the LAST-ACK state. */
4046 break;
4048 case TCP_FIN_WAIT1:
4049 /* This case occurs when a simultaneous close
4050 * happens, we must ack the received FIN and
4051 * enter the CLOSING state.
4053 tcp_send_ack(sk);
4054 tcp_set_state(sk, TCP_CLOSING);
4055 break;
4056 case TCP_FIN_WAIT2:
4057 /* Received a FIN -- send ACK and enter TIME_WAIT. */
4058 tcp_send_ack(sk);
4059 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4060 break;
4061 default:
4062 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
4063 * cases we should never reach this piece of code.
4065 pr_err("%s: Impossible, sk->sk_state=%d\n",
4066 __func__, sk->sk_state);
4067 break;
4070 /* It _is_ possible, that we have something out-of-order _after_ FIN.
4071 * Probably, we should reset in this case. For now drop them.
4073 skb_rbtree_purge(&tp->out_of_order_queue);
4074 if (tcp_is_sack(tp))
4075 tcp_sack_reset(&tp->rx_opt);
4076 sk_mem_reclaim(sk);
4078 if (!sock_flag(sk, SOCK_DEAD)) {
4079 sk->sk_state_change(sk);
4081 /* Do not send POLL_HUP for half duplex close. */
4082 if (sk->sk_shutdown == SHUTDOWN_MASK ||
4083 sk->sk_state == TCP_CLOSE)
4084 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4085 else
4086 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4090 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4091 u32 end_seq)
4093 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4094 if (before(seq, sp->start_seq))
4095 sp->start_seq = seq;
4096 if (after(end_seq, sp->end_seq))
4097 sp->end_seq = end_seq;
4098 return true;
4100 return false;
4103 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4105 struct tcp_sock *tp = tcp_sk(sk);
4107 if (tcp_is_sack(tp) && sock_net(sk)->ipv4.sysctl_tcp_dsack) {
4108 int mib_idx;
4110 if (before(seq, tp->rcv_nxt))
4111 mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4112 else
4113 mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4115 NET_INC_STATS(sock_net(sk), mib_idx);
4117 tp->rx_opt.dsack = 1;
4118 tp->duplicate_sack[0].start_seq = seq;
4119 tp->duplicate_sack[0].end_seq = end_seq;
4123 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4125 struct tcp_sock *tp = tcp_sk(sk);
4127 if (!tp->rx_opt.dsack)
4128 tcp_dsack_set(sk, seq, end_seq);
4129 else
4130 tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4133 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
4135 struct tcp_sock *tp = tcp_sk(sk);
4137 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4138 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4139 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4140 tcp_enter_quickack_mode(sk);
4142 if (tcp_is_sack(tp) && sock_net(sk)->ipv4.sysctl_tcp_dsack) {
4143 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4145 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4146 end_seq = tp->rcv_nxt;
4147 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4151 tcp_send_ack(sk);
4154 /* These routines update the SACK block as out-of-order packets arrive or
4155 * in-order packets close up the sequence space.
4157 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4159 int this_sack;
4160 struct tcp_sack_block *sp = &tp->selective_acks[0];
4161 struct tcp_sack_block *swalk = sp + 1;
4163 /* See if the recent change to the first SACK eats into
4164 * or hits the sequence space of other SACK blocks, if so coalesce.
4166 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4167 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4168 int i;
4170 /* Zap SWALK, by moving every further SACK up by one slot.
4171 * Decrease num_sacks.
4173 tp->rx_opt.num_sacks--;
4174 for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4175 sp[i] = sp[i + 1];
4176 continue;
4178 this_sack++, swalk++;
4182 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4184 struct tcp_sock *tp = tcp_sk(sk);
4185 struct tcp_sack_block *sp = &tp->selective_acks[0];
4186 int cur_sacks = tp->rx_opt.num_sacks;
4187 int this_sack;
4189 if (!cur_sacks)
4190 goto new_sack;
4192 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4193 if (tcp_sack_extend(sp, seq, end_seq)) {
4194 /* Rotate this_sack to the first one. */
4195 for (; this_sack > 0; this_sack--, sp--)
4196 swap(*sp, *(sp - 1));
4197 if (cur_sacks > 1)
4198 tcp_sack_maybe_coalesce(tp);
4199 return;
4203 /* Could not find an adjacent existing SACK, build a new one,
4204 * put it at the front, and shift everyone else down. We
4205 * always know there is at least one SACK present already here.
4207 * If the sack array is full, forget about the last one.
4209 if (this_sack >= TCP_NUM_SACKS) {
4210 this_sack--;
4211 tp->rx_opt.num_sacks--;
4212 sp--;
4214 for (; this_sack > 0; this_sack--, sp--)
4215 *sp = *(sp - 1);
4217 new_sack:
4218 /* Build the new head SACK, and we're done. */
4219 sp->start_seq = seq;
4220 sp->end_seq = end_seq;
4221 tp->rx_opt.num_sacks++;
4224 /* RCV.NXT advances, some SACKs should be eaten. */
4226 static void tcp_sack_remove(struct tcp_sock *tp)
4228 struct tcp_sack_block *sp = &tp->selective_acks[0];
4229 int num_sacks = tp->rx_opt.num_sacks;
4230 int this_sack;
4232 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4233 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4234 tp->rx_opt.num_sacks = 0;
4235 return;
4238 for (this_sack = 0; this_sack < num_sacks;) {
4239 /* Check if the start of the sack is covered by RCV.NXT. */
4240 if (!before(tp->rcv_nxt, sp->start_seq)) {
4241 int i;
4243 /* RCV.NXT must cover all the block! */
4244 WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4246 /* Zap this SACK, by moving forward any other SACKS. */
4247 for (i = this_sack+1; i < num_sacks; i++)
4248 tp->selective_acks[i-1] = tp->selective_acks[i];
4249 num_sacks--;
4250 continue;
4252 this_sack++;
4253 sp++;
4255 tp->rx_opt.num_sacks = num_sacks;
4259 * tcp_try_coalesce - try to merge skb to prior one
4260 * @sk: socket
4261 * @dest: destination queue
4262 * @to: prior buffer
4263 * @from: buffer to add in queue
4264 * @fragstolen: pointer to boolean
4266 * Before queueing skb @from after @to, try to merge them
4267 * to reduce overall memory use and queue lengths, if cost is small.
4268 * Packets in ofo or receive queues can stay a long time.
4269 * Better try to coalesce them right now to avoid future collapses.
4270 * Returns true if caller should free @from instead of queueing it
4272 static bool tcp_try_coalesce(struct sock *sk,
4273 struct sk_buff *to,
4274 struct sk_buff *from,
4275 bool *fragstolen)
4277 int delta;
4279 *fragstolen = false;
4281 /* Its possible this segment overlaps with prior segment in queue */
4282 if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
4283 return false;
4285 if (!skb_try_coalesce(to, from, fragstolen, &delta))
4286 return false;
4288 atomic_add(delta, &sk->sk_rmem_alloc);
4289 sk_mem_charge(sk, delta);
4290 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
4291 TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
4292 TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
4293 TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags;
4295 if (TCP_SKB_CB(from)->has_rxtstamp) {
4296 TCP_SKB_CB(to)->has_rxtstamp = true;
4297 to->tstamp = from->tstamp;
4300 return true;
4303 static void tcp_drop(struct sock *sk, struct sk_buff *skb)
4305 sk_drops_add(sk, skb);
4306 __kfree_skb(skb);
4309 /* This one checks to see if we can put data from the
4310 * out_of_order queue into the receive_queue.
4312 static void tcp_ofo_queue(struct sock *sk)
4314 struct tcp_sock *tp = tcp_sk(sk);
4315 __u32 dsack_high = tp->rcv_nxt;
4316 bool fin, fragstolen, eaten;
4317 struct sk_buff *skb, *tail;
4318 struct rb_node *p;
4320 p = rb_first(&tp->out_of_order_queue);
4321 while (p) {
4322 skb = rb_to_skb(p);
4323 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4324 break;
4326 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4327 __u32 dsack = dsack_high;
4328 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4329 dsack_high = TCP_SKB_CB(skb)->end_seq;
4330 tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4332 p = rb_next(p);
4333 rb_erase(&skb->rbnode, &tp->out_of_order_queue);
4335 if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) {
4336 SOCK_DEBUG(sk, "ofo packet was already received\n");
4337 tcp_drop(sk, skb);
4338 continue;
4340 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
4341 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4342 TCP_SKB_CB(skb)->end_seq);
4344 tail = skb_peek_tail(&sk->sk_receive_queue);
4345 eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen);
4346 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4347 fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
4348 if (!eaten)
4349 __skb_queue_tail(&sk->sk_receive_queue, skb);
4350 else
4351 kfree_skb_partial(skb, fragstolen);
4353 if (unlikely(fin)) {
4354 tcp_fin(sk);
4355 /* tcp_fin() purges tp->out_of_order_queue,
4356 * so we must end this loop right now.
4358 break;
4363 static bool tcp_prune_ofo_queue(struct sock *sk);
4364 static int tcp_prune_queue(struct sock *sk);
4366 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
4367 unsigned int size)
4369 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4370 !sk_rmem_schedule(sk, skb, size)) {
4372 if (tcp_prune_queue(sk) < 0)
4373 return -1;
4375 while (!sk_rmem_schedule(sk, skb, size)) {
4376 if (!tcp_prune_ofo_queue(sk))
4377 return -1;
4380 return 0;
4383 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
4385 struct tcp_sock *tp = tcp_sk(sk);
4386 struct rb_node **p, *parent;
4387 struct sk_buff *skb1;
4388 u32 seq, end_seq;
4389 bool fragstolen;
4391 tcp_ecn_check_ce(tp, skb);
4393 if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
4394 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP);
4395 tcp_drop(sk, skb);
4396 return;
4399 /* Disable header prediction. */
4400 tp->pred_flags = 0;
4401 inet_csk_schedule_ack(sk);
4403 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
4404 seq = TCP_SKB_CB(skb)->seq;
4405 end_seq = TCP_SKB_CB(skb)->end_seq;
4406 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4407 tp->rcv_nxt, seq, end_seq);
4409 p = &tp->out_of_order_queue.rb_node;
4410 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4411 /* Initial out of order segment, build 1 SACK. */
4412 if (tcp_is_sack(tp)) {
4413 tp->rx_opt.num_sacks = 1;
4414 tp->selective_acks[0].start_seq = seq;
4415 tp->selective_acks[0].end_seq = end_seq;
4417 rb_link_node(&skb->rbnode, NULL, p);
4418 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4419 tp->ooo_last_skb = skb;
4420 goto end;
4423 /* In the typical case, we are adding an skb to the end of the list.
4424 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
4426 if (tcp_try_coalesce(sk, tp->ooo_last_skb,
4427 skb, &fragstolen)) {
4428 coalesce_done:
4429 tcp_grow_window(sk, skb);
4430 kfree_skb_partial(skb, fragstolen);
4431 skb = NULL;
4432 goto add_sack;
4434 /* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
4435 if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) {
4436 parent = &tp->ooo_last_skb->rbnode;
4437 p = &parent->rb_right;
4438 goto insert;
4441 /* Find place to insert this segment. Handle overlaps on the way. */
4442 parent = NULL;
4443 while (*p) {
4444 parent = *p;
4445 skb1 = rb_to_skb(parent);
4446 if (before(seq, TCP_SKB_CB(skb1)->seq)) {
4447 p = &parent->rb_left;
4448 continue;
4450 if (before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4451 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4452 /* All the bits are present. Drop. */
4453 NET_INC_STATS(sock_net(sk),
4454 LINUX_MIB_TCPOFOMERGE);
4455 __kfree_skb(skb);
4456 skb = NULL;
4457 tcp_dsack_set(sk, seq, end_seq);
4458 goto add_sack;
4460 if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4461 /* Partial overlap. */
4462 tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq);
4463 } else {
4464 /* skb's seq == skb1's seq and skb covers skb1.
4465 * Replace skb1 with skb.
4467 rb_replace_node(&skb1->rbnode, &skb->rbnode,
4468 &tp->out_of_order_queue);
4469 tcp_dsack_extend(sk,
4470 TCP_SKB_CB(skb1)->seq,
4471 TCP_SKB_CB(skb1)->end_seq);
4472 NET_INC_STATS(sock_net(sk),
4473 LINUX_MIB_TCPOFOMERGE);
4474 __kfree_skb(skb1);
4475 goto merge_right;
4477 } else if (tcp_try_coalesce(sk, skb1,
4478 skb, &fragstolen)) {
4479 goto coalesce_done;
4481 p = &parent->rb_right;
4483 insert:
4484 /* Insert segment into RB tree. */
4485 rb_link_node(&skb->rbnode, parent, p);
4486 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4488 merge_right:
4489 /* Remove other segments covered by skb. */
4490 while ((skb1 = skb_rb_next(skb)) != NULL) {
4491 if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4492 break;
4493 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4494 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4495 end_seq);
4496 break;
4498 rb_erase(&skb1->rbnode, &tp->out_of_order_queue);
4499 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4500 TCP_SKB_CB(skb1)->end_seq);
4501 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4502 tcp_drop(sk, skb1);
4504 /* If there is no skb after us, we are the last_skb ! */
4505 if (!skb1)
4506 tp->ooo_last_skb = skb;
4508 add_sack:
4509 if (tcp_is_sack(tp))
4510 tcp_sack_new_ofo_skb(sk, seq, end_seq);
4511 end:
4512 if (skb) {
4513 tcp_grow_window(sk, skb);
4514 skb_condense(skb);
4515 skb_set_owner_r(skb, sk);
4519 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, int hdrlen,
4520 bool *fragstolen)
4522 int eaten;
4523 struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
4525 __skb_pull(skb, hdrlen);
4526 eaten = (tail &&
4527 tcp_try_coalesce(sk, tail,
4528 skb, fragstolen)) ? 1 : 0;
4529 tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq);
4530 if (!eaten) {
4531 __skb_queue_tail(&sk->sk_receive_queue, skb);
4532 skb_set_owner_r(skb, sk);
4534 return eaten;
4537 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
4539 struct sk_buff *skb;
4540 int err = -ENOMEM;
4541 int data_len = 0;
4542 bool fragstolen;
4544 if (size == 0)
4545 return 0;
4547 if (size > PAGE_SIZE) {
4548 int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS);
4550 data_len = npages << PAGE_SHIFT;
4551 size = data_len + (size & ~PAGE_MASK);
4553 skb = alloc_skb_with_frags(size - data_len, data_len,
4554 PAGE_ALLOC_COSTLY_ORDER,
4555 &err, sk->sk_allocation);
4556 if (!skb)
4557 goto err;
4559 skb_put(skb, size - data_len);
4560 skb->data_len = data_len;
4561 skb->len = size;
4563 if (tcp_try_rmem_schedule(sk, skb, skb->truesize))
4564 goto err_free;
4566 err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size);
4567 if (err)
4568 goto err_free;
4570 TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
4571 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
4572 TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
4574 if (tcp_queue_rcv(sk, skb, 0, &fragstolen)) {
4575 WARN_ON_ONCE(fragstolen); /* should not happen */
4576 __kfree_skb(skb);
4578 return size;
4580 err_free:
4581 kfree_skb(skb);
4582 err:
4583 return err;
4587 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4589 struct tcp_sock *tp = tcp_sk(sk);
4590 bool fragstolen;
4591 int eaten;
4593 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
4594 __kfree_skb(skb);
4595 return;
4597 skb_dst_drop(skb);
4598 __skb_pull(skb, tcp_hdr(skb)->doff * 4);
4600 tcp_ecn_accept_cwr(tp, skb);
4602 tp->rx_opt.dsack = 0;
4604 /* Queue data for delivery to the user.
4605 * Packets in sequence go to the receive queue.
4606 * Out of sequence packets to the out_of_order_queue.
4608 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4609 if (tcp_receive_window(tp) == 0)
4610 goto out_of_window;
4612 /* Ok. In sequence. In window. */
4613 queue_and_out:
4614 if (skb_queue_len(&sk->sk_receive_queue) == 0)
4615 sk_forced_mem_schedule(sk, skb->truesize);
4616 else if (tcp_try_rmem_schedule(sk, skb, skb->truesize))
4617 goto drop;
4619 eaten = tcp_queue_rcv(sk, skb, 0, &fragstolen);
4620 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4621 if (skb->len)
4622 tcp_event_data_recv(sk, skb);
4623 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
4624 tcp_fin(sk);
4626 if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4627 tcp_ofo_queue(sk);
4629 /* RFC2581. 4.2. SHOULD send immediate ACK, when
4630 * gap in queue is filled.
4632 if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
4633 inet_csk(sk)->icsk_ack.pingpong = 0;
4636 if (tp->rx_opt.num_sacks)
4637 tcp_sack_remove(tp);
4639 tcp_fast_path_check(sk);
4641 if (eaten > 0)
4642 kfree_skb_partial(skb, fragstolen);
4643 if (!sock_flag(sk, SOCK_DEAD))
4644 sk->sk_data_ready(sk);
4645 return;
4648 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4649 /* A retransmit, 2nd most common case. Force an immediate ack. */
4650 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4651 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4653 out_of_window:
4654 tcp_enter_quickack_mode(sk);
4655 inet_csk_schedule_ack(sk);
4656 drop:
4657 tcp_drop(sk, skb);
4658 return;
4661 /* Out of window. F.e. zero window probe. */
4662 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4663 goto out_of_window;
4665 tcp_enter_quickack_mode(sk);
4667 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4668 /* Partial packet, seq < rcv_next < end_seq */
4669 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
4670 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4671 TCP_SKB_CB(skb)->end_seq);
4673 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4675 /* If window is closed, drop tail of packet. But after
4676 * remembering D-SACK for its head made in previous line.
4678 if (!tcp_receive_window(tp))
4679 goto out_of_window;
4680 goto queue_and_out;
4683 tcp_data_queue_ofo(sk, skb);
4686 static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list)
4688 if (list)
4689 return !skb_queue_is_last(list, skb) ? skb->next : NULL;
4691 return skb_rb_next(skb);
4694 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4695 struct sk_buff_head *list,
4696 struct rb_root *root)
4698 struct sk_buff *next = tcp_skb_next(skb, list);
4700 if (list)
4701 __skb_unlink(skb, list);
4702 else
4703 rb_erase(&skb->rbnode, root);
4705 __kfree_skb(skb);
4706 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4708 return next;
4711 /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */
4712 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb)
4714 struct rb_node **p = &root->rb_node;
4715 struct rb_node *parent = NULL;
4716 struct sk_buff *skb1;
4718 while (*p) {
4719 parent = *p;
4720 skb1 = rb_to_skb(parent);
4721 if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq))
4722 p = &parent->rb_left;
4723 else
4724 p = &parent->rb_right;
4726 rb_link_node(&skb->rbnode, parent, p);
4727 rb_insert_color(&skb->rbnode, root);
4730 /* Collapse contiguous sequence of skbs head..tail with
4731 * sequence numbers start..end.
4733 * If tail is NULL, this means until the end of the queue.
4735 * Segments with FIN/SYN are not collapsed (only because this
4736 * simplifies code)
4738 static void
4739 tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root,
4740 struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end)
4742 struct sk_buff *skb = head, *n;
4743 struct sk_buff_head tmp;
4744 bool end_of_skbs;
4746 /* First, check that queue is collapsible and find
4747 * the point where collapsing can be useful.
4749 restart:
4750 for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) {
4751 n = tcp_skb_next(skb, list);
4753 /* No new bits? It is possible on ofo queue. */
4754 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4755 skb = tcp_collapse_one(sk, skb, list, root);
4756 if (!skb)
4757 break;
4758 goto restart;
4761 /* The first skb to collapse is:
4762 * - not SYN/FIN and
4763 * - bloated or contains data before "start" or
4764 * overlaps to the next one.
4766 if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) &&
4767 (tcp_win_from_space(sk, skb->truesize) > skb->len ||
4768 before(TCP_SKB_CB(skb)->seq, start))) {
4769 end_of_skbs = false;
4770 break;
4773 if (n && n != tail &&
4774 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) {
4775 end_of_skbs = false;
4776 break;
4779 /* Decided to skip this, advance start seq. */
4780 start = TCP_SKB_CB(skb)->end_seq;
4782 if (end_of_skbs ||
4783 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
4784 return;
4786 __skb_queue_head_init(&tmp);
4788 while (before(start, end)) {
4789 int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start);
4790 struct sk_buff *nskb;
4792 nskb = alloc_skb(copy, GFP_ATOMIC);
4793 if (!nskb)
4794 break;
4796 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4797 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4798 if (list)
4799 __skb_queue_before(list, skb, nskb);
4800 else
4801 __skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */
4802 skb_set_owner_r(nskb, sk);
4804 /* Copy data, releasing collapsed skbs. */
4805 while (copy > 0) {
4806 int offset = start - TCP_SKB_CB(skb)->seq;
4807 int size = TCP_SKB_CB(skb)->end_seq - start;
4809 BUG_ON(offset < 0);
4810 if (size > 0) {
4811 size = min(copy, size);
4812 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4813 BUG();
4814 TCP_SKB_CB(nskb)->end_seq += size;
4815 copy -= size;
4816 start += size;
4818 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4819 skb = tcp_collapse_one(sk, skb, list, root);
4820 if (!skb ||
4821 skb == tail ||
4822 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
4823 goto end;
4827 end:
4828 skb_queue_walk_safe(&tmp, skb, n)
4829 tcp_rbtree_insert(root, skb);
4832 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4833 * and tcp_collapse() them until all the queue is collapsed.
4835 static void tcp_collapse_ofo_queue(struct sock *sk)
4837 struct tcp_sock *tp = tcp_sk(sk);
4838 struct sk_buff *skb, *head;
4839 u32 start, end;
4841 skb = skb_rb_first(&tp->out_of_order_queue);
4842 new_range:
4843 if (!skb) {
4844 tp->ooo_last_skb = skb_rb_last(&tp->out_of_order_queue);
4845 return;
4847 start = TCP_SKB_CB(skb)->seq;
4848 end = TCP_SKB_CB(skb)->end_seq;
4850 for (head = skb;;) {
4851 skb = skb_rb_next(skb);
4853 /* Range is terminated when we see a gap or when
4854 * we are at the queue end.
4856 if (!skb ||
4857 after(TCP_SKB_CB(skb)->seq, end) ||
4858 before(TCP_SKB_CB(skb)->end_seq, start)) {
4859 tcp_collapse(sk, NULL, &tp->out_of_order_queue,
4860 head, skb, start, end);
4861 goto new_range;
4864 if (unlikely(before(TCP_SKB_CB(skb)->seq, start)))
4865 start = TCP_SKB_CB(skb)->seq;
4866 if (after(TCP_SKB_CB(skb)->end_seq, end))
4867 end = TCP_SKB_CB(skb)->end_seq;
4872 * Clean the out-of-order queue to make room.
4873 * We drop high sequences packets to :
4874 * 1) Let a chance for holes to be filled.
4875 * 2) not add too big latencies if thousands of packets sit there.
4876 * (But if application shrinks SO_RCVBUF, we could still end up
4877 * freeing whole queue here)
4879 * Return true if queue has shrunk.
4881 static bool tcp_prune_ofo_queue(struct sock *sk)
4883 struct tcp_sock *tp = tcp_sk(sk);
4884 struct rb_node *node, *prev;
4886 if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
4887 return false;
4889 NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED);
4890 node = &tp->ooo_last_skb->rbnode;
4891 do {
4892 prev = rb_prev(node);
4893 rb_erase(node, &tp->out_of_order_queue);
4894 tcp_drop(sk, rb_to_skb(node));
4895 sk_mem_reclaim(sk);
4896 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf &&
4897 !tcp_under_memory_pressure(sk))
4898 break;
4899 node = prev;
4900 } while (node);
4901 tp->ooo_last_skb = rb_to_skb(prev);
4903 /* Reset SACK state. A conforming SACK implementation will
4904 * do the same at a timeout based retransmit. When a connection
4905 * is in a sad state like this, we care only about integrity
4906 * of the connection not performance.
4908 if (tp->rx_opt.sack_ok)
4909 tcp_sack_reset(&tp->rx_opt);
4910 return true;
4913 /* Reduce allocated memory if we can, trying to get
4914 * the socket within its memory limits again.
4916 * Return less than zero if we should start dropping frames
4917 * until the socket owning process reads some of the data
4918 * to stabilize the situation.
4920 static int tcp_prune_queue(struct sock *sk)
4922 struct tcp_sock *tp = tcp_sk(sk);
4924 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4926 NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED);
4928 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4929 tcp_clamp_window(sk);
4930 else if (tcp_under_memory_pressure(sk))
4931 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
4933 tcp_collapse_ofo_queue(sk);
4934 if (!skb_queue_empty(&sk->sk_receive_queue))
4935 tcp_collapse(sk, &sk->sk_receive_queue, NULL,
4936 skb_peek(&sk->sk_receive_queue),
4937 NULL,
4938 tp->copied_seq, tp->rcv_nxt);
4939 sk_mem_reclaim(sk);
4941 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4942 return 0;
4944 /* Collapsing did not help, destructive actions follow.
4945 * This must not ever occur. */
4947 tcp_prune_ofo_queue(sk);
4949 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4950 return 0;
4952 /* If we are really being abused, tell the caller to silently
4953 * drop receive data on the floor. It will get retransmitted
4954 * and hopefully then we'll have sufficient space.
4956 NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED);
4958 /* Massive buffer overcommit. */
4959 tp->pred_flags = 0;
4960 return -1;
4963 static bool tcp_should_expand_sndbuf(const struct sock *sk)
4965 const struct tcp_sock *tp = tcp_sk(sk);
4967 /* If the user specified a specific send buffer setting, do
4968 * not modify it.
4970 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
4971 return false;
4973 /* If we are under global TCP memory pressure, do not expand. */
4974 if (tcp_under_memory_pressure(sk))
4975 return false;
4977 /* If we are under soft global TCP memory pressure, do not expand. */
4978 if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
4979 return false;
4981 /* If we filled the congestion window, do not expand. */
4982 if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
4983 return false;
4985 return true;
4988 /* When incoming ACK allowed to free some skb from write_queue,
4989 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
4990 * on the exit from tcp input handler.
4992 * PROBLEM: sndbuf expansion does not work well with largesend.
4994 static void tcp_new_space(struct sock *sk)
4996 struct tcp_sock *tp = tcp_sk(sk);
4998 if (tcp_should_expand_sndbuf(sk)) {
4999 tcp_sndbuf_expand(sk);
5000 tp->snd_cwnd_stamp = tcp_jiffies32;
5003 sk->sk_write_space(sk);
5006 static void tcp_check_space(struct sock *sk)
5008 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
5009 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
5010 /* pairs with tcp_poll() */
5011 smp_mb();
5012 if (sk->sk_socket &&
5013 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
5014 tcp_new_space(sk);
5015 if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
5016 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
5021 static inline void tcp_data_snd_check(struct sock *sk)
5023 tcp_push_pending_frames(sk);
5024 tcp_check_space(sk);
5028 * Check if sending an ack is needed.
5030 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
5032 struct tcp_sock *tp = tcp_sk(sk);
5034 /* More than one full frame received... */
5035 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
5036 /* ... and right edge of window advances far enough.
5037 * (tcp_recvmsg() will send ACK otherwise). Or...
5039 __tcp_select_window(sk) >= tp->rcv_wnd) ||
5040 /* We ACK each frame or... */
5041 tcp_in_quickack_mode(sk) ||
5042 /* We have out of order data. */
5043 (ofo_possible && !RB_EMPTY_ROOT(&tp->out_of_order_queue))) {
5044 /* Then ack it now */
5045 tcp_send_ack(sk);
5046 } else {
5047 /* Else, send delayed ack. */
5048 tcp_send_delayed_ack(sk);
5052 static inline void tcp_ack_snd_check(struct sock *sk)
5054 if (!inet_csk_ack_scheduled(sk)) {
5055 /* We sent a data segment already. */
5056 return;
5058 __tcp_ack_snd_check(sk, 1);
5062 * This routine is only called when we have urgent data
5063 * signaled. Its the 'slow' part of tcp_urg. It could be
5064 * moved inline now as tcp_urg is only called from one
5065 * place. We handle URGent data wrong. We have to - as
5066 * BSD still doesn't use the correction from RFC961.
5067 * For 1003.1g we should support a new option TCP_STDURG to permit
5068 * either form (or just set the sysctl tcp_stdurg).
5071 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
5073 struct tcp_sock *tp = tcp_sk(sk);
5074 u32 ptr = ntohs(th->urg_ptr);
5076 if (ptr && !sock_net(sk)->ipv4.sysctl_tcp_stdurg)
5077 ptr--;
5078 ptr += ntohl(th->seq);
5080 /* Ignore urgent data that we've already seen and read. */
5081 if (after(tp->copied_seq, ptr))
5082 return;
5084 /* Do not replay urg ptr.
5086 * NOTE: interesting situation not covered by specs.
5087 * Misbehaving sender may send urg ptr, pointing to segment,
5088 * which we already have in ofo queue. We are not able to fetch
5089 * such data and will stay in TCP_URG_NOTYET until will be eaten
5090 * by recvmsg(). Seems, we are not obliged to handle such wicked
5091 * situations. But it is worth to think about possibility of some
5092 * DoSes using some hypothetical application level deadlock.
5094 if (before(ptr, tp->rcv_nxt))
5095 return;
5097 /* Do we already have a newer (or duplicate) urgent pointer? */
5098 if (tp->urg_data && !after(ptr, tp->urg_seq))
5099 return;
5101 /* Tell the world about our new urgent pointer. */
5102 sk_send_sigurg(sk);
5104 /* We may be adding urgent data when the last byte read was
5105 * urgent. To do this requires some care. We cannot just ignore
5106 * tp->copied_seq since we would read the last urgent byte again
5107 * as data, nor can we alter copied_seq until this data arrives
5108 * or we break the semantics of SIOCATMARK (and thus sockatmark())
5110 * NOTE. Double Dutch. Rendering to plain English: author of comment
5111 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
5112 * and expect that both A and B disappear from stream. This is _wrong_.
5113 * Though this happens in BSD with high probability, this is occasional.
5114 * Any application relying on this is buggy. Note also, that fix "works"
5115 * only in this artificial test. Insert some normal data between A and B and we will
5116 * decline of BSD again. Verdict: it is better to remove to trap
5117 * buggy users.
5119 if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5120 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5121 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5122 tp->copied_seq++;
5123 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5124 __skb_unlink(skb, &sk->sk_receive_queue);
5125 __kfree_skb(skb);
5129 tp->urg_data = TCP_URG_NOTYET;
5130 tp->urg_seq = ptr;
5132 /* Disable header prediction. */
5133 tp->pred_flags = 0;
5136 /* This is the 'fast' part of urgent handling. */
5137 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
5139 struct tcp_sock *tp = tcp_sk(sk);
5141 /* Check if we get a new urgent pointer - normally not. */
5142 if (th->urg)
5143 tcp_check_urg(sk, th);
5145 /* Do we wait for any urgent data? - normally not... */
5146 if (tp->urg_data == TCP_URG_NOTYET) {
5147 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5148 th->syn;
5150 /* Is the urgent pointer pointing into this packet? */
5151 if (ptr < skb->len) {
5152 u8 tmp;
5153 if (skb_copy_bits(skb, ptr, &tmp, 1))
5154 BUG();
5155 tp->urg_data = TCP_URG_VALID | tmp;
5156 if (!sock_flag(sk, SOCK_DEAD))
5157 sk->sk_data_ready(sk);
5162 /* Accept RST for rcv_nxt - 1 after a FIN.
5163 * When tcp connections are abruptly terminated from Mac OSX (via ^C), a
5164 * FIN is sent followed by a RST packet. The RST is sent with the same
5165 * sequence number as the FIN, and thus according to RFC 5961 a challenge
5166 * ACK should be sent. However, Mac OSX rate limits replies to challenge
5167 * ACKs on the closed socket. In addition middleboxes can drop either the
5168 * challenge ACK or a subsequent RST.
5170 static bool tcp_reset_check(const struct sock *sk, const struct sk_buff *skb)
5172 struct tcp_sock *tp = tcp_sk(sk);
5174 return unlikely(TCP_SKB_CB(skb)->seq == (tp->rcv_nxt - 1) &&
5175 (1 << sk->sk_state) & (TCPF_CLOSE_WAIT | TCPF_LAST_ACK |
5176 TCPF_CLOSING));
5179 /* Does PAWS and seqno based validation of an incoming segment, flags will
5180 * play significant role here.
5182 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5183 const struct tcphdr *th, int syn_inerr)
5185 struct tcp_sock *tp = tcp_sk(sk);
5186 bool rst_seq_match = false;
5188 /* RFC1323: H1. Apply PAWS check first. */
5189 if (tcp_fast_parse_options(sock_net(sk), skb, th, tp) &&
5190 tp->rx_opt.saw_tstamp &&
5191 tcp_paws_discard(sk, skb)) {
5192 if (!th->rst) {
5193 NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5194 if (!tcp_oow_rate_limited(sock_net(sk), skb,
5195 LINUX_MIB_TCPACKSKIPPEDPAWS,
5196 &tp->last_oow_ack_time))
5197 tcp_send_dupack(sk, skb);
5198 goto discard;
5200 /* Reset is accepted even if it did not pass PAWS. */
5203 /* Step 1: check sequence number */
5204 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5205 /* RFC793, page 37: "In all states except SYN-SENT, all reset
5206 * (RST) segments are validated by checking their SEQ-fields."
5207 * And page 69: "If an incoming segment is not acceptable,
5208 * an acknowledgment should be sent in reply (unless the RST
5209 * bit is set, if so drop the segment and return)".
5211 if (!th->rst) {
5212 if (th->syn)
5213 goto syn_challenge;
5214 if (!tcp_oow_rate_limited(sock_net(sk), skb,
5215 LINUX_MIB_TCPACKSKIPPEDSEQ,
5216 &tp->last_oow_ack_time))
5217 tcp_send_dupack(sk, skb);
5218 } else if (tcp_reset_check(sk, skb)) {
5219 tcp_reset(sk);
5221 goto discard;
5224 /* Step 2: check RST bit */
5225 if (th->rst) {
5226 /* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a
5227 * FIN and SACK too if available):
5228 * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or
5229 * the right-most SACK block,
5230 * then
5231 * RESET the connection
5232 * else
5233 * Send a challenge ACK
5235 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt ||
5236 tcp_reset_check(sk, skb)) {
5237 rst_seq_match = true;
5238 } else if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) {
5239 struct tcp_sack_block *sp = &tp->selective_acks[0];
5240 int max_sack = sp[0].end_seq;
5241 int this_sack;
5243 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;
5244 ++this_sack) {
5245 max_sack = after(sp[this_sack].end_seq,
5246 max_sack) ?
5247 sp[this_sack].end_seq : max_sack;
5250 if (TCP_SKB_CB(skb)->seq == max_sack)
5251 rst_seq_match = true;
5254 if (rst_seq_match)
5255 tcp_reset(sk);
5256 else {
5257 /* Disable TFO if RST is out-of-order
5258 * and no data has been received
5259 * for current active TFO socket
5261 if (tp->syn_fastopen && !tp->data_segs_in &&
5262 sk->sk_state == TCP_ESTABLISHED)
5263 tcp_fastopen_active_disable(sk);
5264 tcp_send_challenge_ack(sk, skb);
5266 goto discard;
5269 /* step 3: check security and precedence [ignored] */
5271 /* step 4: Check for a SYN
5272 * RFC 5961 4.2 : Send a challenge ack
5274 if (th->syn) {
5275 syn_challenge:
5276 if (syn_inerr)
5277 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5278 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
5279 tcp_send_challenge_ack(sk, skb);
5280 goto discard;
5283 return true;
5285 discard:
5286 tcp_drop(sk, skb);
5287 return false;
5291 * TCP receive function for the ESTABLISHED state.
5293 * It is split into a fast path and a slow path. The fast path is
5294 * disabled when:
5295 * - A zero window was announced from us - zero window probing
5296 * is only handled properly in the slow path.
5297 * - Out of order segments arrived.
5298 * - Urgent data is expected.
5299 * - There is no buffer space left
5300 * - Unexpected TCP flags/window values/header lengths are received
5301 * (detected by checking the TCP header against pred_flags)
5302 * - Data is sent in both directions. Fast path only supports pure senders
5303 * or pure receivers (this means either the sequence number or the ack
5304 * value must stay constant)
5305 * - Unexpected TCP option.
5307 * When these conditions are not satisfied it drops into a standard
5308 * receive procedure patterned after RFC793 to handle all cases.
5309 * The first three cases are guaranteed by proper pred_flags setting,
5310 * the rest is checked inline. Fast processing is turned on in
5311 * tcp_data_queue when everything is OK.
5313 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
5314 const struct tcphdr *th)
5316 unsigned int len = skb->len;
5317 struct tcp_sock *tp = tcp_sk(sk);
5319 /* TCP congestion window tracking */
5320 trace_tcp_probe(sk, skb);
5322 tcp_mstamp_refresh(tp);
5323 if (unlikely(!sk->sk_rx_dst))
5324 inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
5326 * Header prediction.
5327 * The code loosely follows the one in the famous
5328 * "30 instruction TCP receive" Van Jacobson mail.
5330 * Van's trick is to deposit buffers into socket queue
5331 * on a device interrupt, to call tcp_recv function
5332 * on the receive process context and checksum and copy
5333 * the buffer to user space. smart...
5335 * Our current scheme is not silly either but we take the
5336 * extra cost of the net_bh soft interrupt processing...
5337 * We do checksum and copy also but from device to kernel.
5340 tp->rx_opt.saw_tstamp = 0;
5342 /* pred_flags is 0xS?10 << 16 + snd_wnd
5343 * if header_prediction is to be made
5344 * 'S' will always be tp->tcp_header_len >> 2
5345 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
5346 * turn it off (when there are holes in the receive
5347 * space for instance)
5348 * PSH flag is ignored.
5351 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5352 TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5353 !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5354 int tcp_header_len = tp->tcp_header_len;
5356 /* Timestamp header prediction: tcp_header_len
5357 * is automatically equal to th->doff*4 due to pred_flags
5358 * match.
5361 /* Check timestamp */
5362 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5363 /* No? Slow path! */
5364 if (!tcp_parse_aligned_timestamp(tp, th))
5365 goto slow_path;
5367 /* If PAWS failed, check it more carefully in slow path */
5368 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5369 goto slow_path;
5371 /* DO NOT update ts_recent here, if checksum fails
5372 * and timestamp was corrupted part, it will result
5373 * in a hung connection since we will drop all
5374 * future packets due to the PAWS test.
5378 if (len <= tcp_header_len) {
5379 /* Bulk data transfer: sender */
5380 if (len == tcp_header_len) {
5381 /* Predicted packet is in window by definition.
5382 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5383 * Hence, check seq<=rcv_wup reduces to:
5385 if (tcp_header_len ==
5386 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5387 tp->rcv_nxt == tp->rcv_wup)
5388 tcp_store_ts_recent(tp);
5390 /* We know that such packets are checksummed
5391 * on entry.
5393 tcp_ack(sk, skb, 0);
5394 __kfree_skb(skb);
5395 tcp_data_snd_check(sk);
5396 return;
5397 } else { /* Header too small */
5398 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5399 goto discard;
5401 } else {
5402 int eaten = 0;
5403 bool fragstolen = false;
5405 if (tcp_checksum_complete(skb))
5406 goto csum_error;
5408 if ((int)skb->truesize > sk->sk_forward_alloc)
5409 goto step5;
5411 /* Predicted packet is in window by definition.
5412 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5413 * Hence, check seq<=rcv_wup reduces to:
5415 if (tcp_header_len ==
5416 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5417 tp->rcv_nxt == tp->rcv_wup)
5418 tcp_store_ts_recent(tp);
5420 tcp_rcv_rtt_measure_ts(sk, skb);
5422 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS);
5424 /* Bulk data transfer: receiver */
5425 eaten = tcp_queue_rcv(sk, skb, tcp_header_len,
5426 &fragstolen);
5428 tcp_event_data_recv(sk, skb);
5430 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5431 /* Well, only one small jumplet in fast path... */
5432 tcp_ack(sk, skb, FLAG_DATA);
5433 tcp_data_snd_check(sk);
5434 if (!inet_csk_ack_scheduled(sk))
5435 goto no_ack;
5438 __tcp_ack_snd_check(sk, 0);
5439 no_ack:
5440 if (eaten)
5441 kfree_skb_partial(skb, fragstolen);
5442 sk->sk_data_ready(sk);
5443 return;
5447 slow_path:
5448 if (len < (th->doff << 2) || tcp_checksum_complete(skb))
5449 goto csum_error;
5451 if (!th->ack && !th->rst && !th->syn)
5452 goto discard;
5455 * Standard slow path.
5458 if (!tcp_validate_incoming(sk, skb, th, 1))
5459 return;
5461 step5:
5462 if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0)
5463 goto discard;
5465 tcp_rcv_rtt_measure_ts(sk, skb);
5467 /* Process urgent data. */
5468 tcp_urg(sk, skb, th);
5470 /* step 7: process the segment text */
5471 tcp_data_queue(sk, skb);
5473 tcp_data_snd_check(sk);
5474 tcp_ack_snd_check(sk);
5475 return;
5477 csum_error:
5478 TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
5479 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5481 discard:
5482 tcp_drop(sk, skb);
5484 EXPORT_SYMBOL(tcp_rcv_established);
5486 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
5488 struct tcp_sock *tp = tcp_sk(sk);
5489 struct inet_connection_sock *icsk = inet_csk(sk);
5491 tcp_set_state(sk, TCP_ESTABLISHED);
5492 icsk->icsk_ack.lrcvtime = tcp_jiffies32;
5494 if (skb) {
5495 icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
5496 security_inet_conn_established(sk, skb);
5499 tcp_init_transfer(sk, BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB);
5501 /* Prevent spurious tcp_cwnd_restart() on first data
5502 * packet.
5504 tp->lsndtime = tcp_jiffies32;
5506 if (sock_flag(sk, SOCK_KEEPOPEN))
5507 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5509 if (!tp->rx_opt.snd_wscale)
5510 __tcp_fast_path_on(tp, tp->snd_wnd);
5511 else
5512 tp->pred_flags = 0;
5515 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
5516 struct tcp_fastopen_cookie *cookie)
5518 struct tcp_sock *tp = tcp_sk(sk);
5519 struct sk_buff *data = tp->syn_data ? tcp_rtx_queue_head(sk) : NULL;
5520 u16 mss = tp->rx_opt.mss_clamp, try_exp = 0;
5521 bool syn_drop = false;
5523 if (mss == tp->rx_opt.user_mss) {
5524 struct tcp_options_received opt;
5526 /* Get original SYNACK MSS value if user MSS sets mss_clamp */
5527 tcp_clear_options(&opt);
5528 opt.user_mss = opt.mss_clamp = 0;
5529 tcp_parse_options(sock_net(sk), synack, &opt, 0, NULL);
5530 mss = opt.mss_clamp;
5533 if (!tp->syn_fastopen) {
5534 /* Ignore an unsolicited cookie */
5535 cookie->len = -1;
5536 } else if (tp->total_retrans) {
5537 /* SYN timed out and the SYN-ACK neither has a cookie nor
5538 * acknowledges data. Presumably the remote received only
5539 * the retransmitted (regular) SYNs: either the original
5540 * SYN-data or the corresponding SYN-ACK was dropped.
5542 syn_drop = (cookie->len < 0 && data);
5543 } else if (cookie->len < 0 && !tp->syn_data) {
5544 /* We requested a cookie but didn't get it. If we did not use
5545 * the (old) exp opt format then try so next time (try_exp=1).
5546 * Otherwise we go back to use the RFC7413 opt (try_exp=2).
5548 try_exp = tp->syn_fastopen_exp ? 2 : 1;
5551 tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp);
5553 if (data) { /* Retransmit unacked data in SYN */
5554 skb_rbtree_walk_from(data) {
5555 if (__tcp_retransmit_skb(sk, data, 1))
5556 break;
5558 tcp_rearm_rto(sk);
5559 NET_INC_STATS(sock_net(sk),
5560 LINUX_MIB_TCPFASTOPENACTIVEFAIL);
5561 return true;
5563 tp->syn_data_acked = tp->syn_data;
5564 if (tp->syn_data_acked)
5565 NET_INC_STATS(sock_net(sk),
5566 LINUX_MIB_TCPFASTOPENACTIVE);
5568 tcp_fastopen_add_skb(sk, synack);
5570 return false;
5573 static void smc_check_reset_syn(struct tcp_sock *tp)
5575 #if IS_ENABLED(CONFIG_SMC)
5576 if (static_branch_unlikely(&tcp_have_smc)) {
5577 if (tp->syn_smc && !tp->rx_opt.smc_ok)
5578 tp->syn_smc = 0;
5580 #endif
5583 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5584 const struct tcphdr *th)
5586 struct inet_connection_sock *icsk = inet_csk(sk);
5587 struct tcp_sock *tp = tcp_sk(sk);
5588 struct tcp_fastopen_cookie foc = { .len = -1 };
5589 int saved_clamp = tp->rx_opt.mss_clamp;
5590 bool fastopen_fail;
5592 tcp_parse_options(sock_net(sk), skb, &tp->rx_opt, 0, &foc);
5593 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
5594 tp->rx_opt.rcv_tsecr -= tp->tsoffset;
5596 if (th->ack) {
5597 /* rfc793:
5598 * "If the state is SYN-SENT then
5599 * first check the ACK bit
5600 * If the ACK bit is set
5601 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5602 * a reset (unless the RST bit is set, if so drop
5603 * the segment and return)"
5605 if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
5606 after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt))
5607 goto reset_and_undo;
5609 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5610 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5611 tcp_time_stamp(tp))) {
5612 NET_INC_STATS(sock_net(sk),
5613 LINUX_MIB_PAWSACTIVEREJECTED);
5614 goto reset_and_undo;
5617 /* Now ACK is acceptable.
5619 * "If the RST bit is set
5620 * If the ACK was acceptable then signal the user "error:
5621 * connection reset", drop the segment, enter CLOSED state,
5622 * delete TCB, and return."
5625 if (th->rst) {
5626 tcp_reset(sk);
5627 goto discard;
5630 /* rfc793:
5631 * "fifth, if neither of the SYN or RST bits is set then
5632 * drop the segment and return."
5634 * See note below!
5635 * --ANK(990513)
5637 if (!th->syn)
5638 goto discard_and_undo;
5640 /* rfc793:
5641 * "If the SYN bit is on ...
5642 * are acceptable then ...
5643 * (our SYN has been ACKed), change the connection
5644 * state to ESTABLISHED..."
5647 tcp_ecn_rcv_synack(tp, th);
5649 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5650 tcp_ack(sk, skb, FLAG_SLOWPATH);
5652 /* Ok.. it's good. Set up sequence numbers and
5653 * move to established.
5655 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5656 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5658 /* RFC1323: The window in SYN & SYN/ACK segments is
5659 * never scaled.
5661 tp->snd_wnd = ntohs(th->window);
5663 if (!tp->rx_opt.wscale_ok) {
5664 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5665 tp->window_clamp = min(tp->window_clamp, 65535U);
5668 if (tp->rx_opt.saw_tstamp) {
5669 tp->rx_opt.tstamp_ok = 1;
5670 tp->tcp_header_len =
5671 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5672 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5673 tcp_store_ts_recent(tp);
5674 } else {
5675 tp->tcp_header_len = sizeof(struct tcphdr);
5678 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5679 tcp_initialize_rcv_mss(sk);
5681 /* Remember, tcp_poll() does not lock socket!
5682 * Change state from SYN-SENT only after copied_seq
5683 * is initialized. */
5684 tp->copied_seq = tp->rcv_nxt;
5686 smc_check_reset_syn(tp);
5688 smp_mb();
5690 tcp_finish_connect(sk, skb);
5692 fastopen_fail = (tp->syn_fastopen || tp->syn_data) &&
5693 tcp_rcv_fastopen_synack(sk, skb, &foc);
5695 if (!sock_flag(sk, SOCK_DEAD)) {
5696 sk->sk_state_change(sk);
5697 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5699 if (fastopen_fail)
5700 return -1;
5701 if (sk->sk_write_pending ||
5702 icsk->icsk_accept_queue.rskq_defer_accept ||
5703 icsk->icsk_ack.pingpong) {
5704 /* Save one ACK. Data will be ready after
5705 * several ticks, if write_pending is set.
5707 * It may be deleted, but with this feature tcpdumps
5708 * look so _wonderfully_ clever, that I was not able
5709 * to stand against the temptation 8) --ANK
5711 inet_csk_schedule_ack(sk);
5712 tcp_enter_quickack_mode(sk);
5713 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5714 TCP_DELACK_MAX, TCP_RTO_MAX);
5716 discard:
5717 tcp_drop(sk, skb);
5718 return 0;
5719 } else {
5720 tcp_send_ack(sk);
5722 return -1;
5725 /* No ACK in the segment */
5727 if (th->rst) {
5728 /* rfc793:
5729 * "If the RST bit is set
5731 * Otherwise (no ACK) drop the segment and return."
5734 goto discard_and_undo;
5737 /* PAWS check. */
5738 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5739 tcp_paws_reject(&tp->rx_opt, 0))
5740 goto discard_and_undo;
5742 if (th->syn) {
5743 /* We see SYN without ACK. It is attempt of
5744 * simultaneous connect with crossed SYNs.
5745 * Particularly, it can be connect to self.
5747 tcp_set_state(sk, TCP_SYN_RECV);
5749 if (tp->rx_opt.saw_tstamp) {
5750 tp->rx_opt.tstamp_ok = 1;
5751 tcp_store_ts_recent(tp);
5752 tp->tcp_header_len =
5753 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5754 } else {
5755 tp->tcp_header_len = sizeof(struct tcphdr);
5758 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5759 tp->copied_seq = tp->rcv_nxt;
5760 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5762 /* RFC1323: The window in SYN & SYN/ACK segments is
5763 * never scaled.
5765 tp->snd_wnd = ntohs(th->window);
5766 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
5767 tp->max_window = tp->snd_wnd;
5769 tcp_ecn_rcv_syn(tp, th);
5771 tcp_mtup_init(sk);
5772 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5773 tcp_initialize_rcv_mss(sk);
5775 tcp_send_synack(sk);
5776 #if 0
5777 /* Note, we could accept data and URG from this segment.
5778 * There are no obstacles to make this (except that we must
5779 * either change tcp_recvmsg() to prevent it from returning data
5780 * before 3WHS completes per RFC793, or employ TCP Fast Open).
5782 * However, if we ignore data in ACKless segments sometimes,
5783 * we have no reasons to accept it sometimes.
5784 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5785 * is not flawless. So, discard packet for sanity.
5786 * Uncomment this return to process the data.
5788 return -1;
5789 #else
5790 goto discard;
5791 #endif
5793 /* "fifth, if neither of the SYN or RST bits is set then
5794 * drop the segment and return."
5797 discard_and_undo:
5798 tcp_clear_options(&tp->rx_opt);
5799 tp->rx_opt.mss_clamp = saved_clamp;
5800 goto discard;
5802 reset_and_undo:
5803 tcp_clear_options(&tp->rx_opt);
5804 tp->rx_opt.mss_clamp = saved_clamp;
5805 return 1;
5809 * This function implements the receiving procedure of RFC 793 for
5810 * all states except ESTABLISHED and TIME_WAIT.
5811 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5812 * address independent.
5815 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb)
5817 struct tcp_sock *tp = tcp_sk(sk);
5818 struct inet_connection_sock *icsk = inet_csk(sk);
5819 const struct tcphdr *th = tcp_hdr(skb);
5820 struct request_sock *req;
5821 int queued = 0;
5822 bool acceptable;
5824 switch (sk->sk_state) {
5825 case TCP_CLOSE:
5826 goto discard;
5828 case TCP_LISTEN:
5829 if (th->ack)
5830 return 1;
5832 if (th->rst)
5833 goto discard;
5835 if (th->syn) {
5836 if (th->fin)
5837 goto discard;
5838 /* It is possible that we process SYN packets from backlog,
5839 * so we need to make sure to disable BH right there.
5841 local_bh_disable();
5842 acceptable = icsk->icsk_af_ops->conn_request(sk, skb) >= 0;
5843 local_bh_enable();
5845 if (!acceptable)
5846 return 1;
5847 consume_skb(skb);
5848 return 0;
5850 goto discard;
5852 case TCP_SYN_SENT:
5853 tp->rx_opt.saw_tstamp = 0;
5854 tcp_mstamp_refresh(tp);
5855 queued = tcp_rcv_synsent_state_process(sk, skb, th);
5856 if (queued >= 0)
5857 return queued;
5859 /* Do step6 onward by hand. */
5860 tcp_urg(sk, skb, th);
5861 __kfree_skb(skb);
5862 tcp_data_snd_check(sk);
5863 return 0;
5866 tcp_mstamp_refresh(tp);
5867 tp->rx_opt.saw_tstamp = 0;
5868 req = tp->fastopen_rsk;
5869 if (req) {
5870 WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
5871 sk->sk_state != TCP_FIN_WAIT1);
5873 if (!tcp_check_req(sk, skb, req, true))
5874 goto discard;
5877 if (!th->ack && !th->rst && !th->syn)
5878 goto discard;
5880 if (!tcp_validate_incoming(sk, skb, th, 0))
5881 return 0;
5883 /* step 5: check the ACK field */
5884 acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH |
5885 FLAG_UPDATE_TS_RECENT |
5886 FLAG_NO_CHALLENGE_ACK) > 0;
5888 if (!acceptable) {
5889 if (sk->sk_state == TCP_SYN_RECV)
5890 return 1; /* send one RST */
5891 tcp_send_challenge_ack(sk, skb);
5892 goto discard;
5894 switch (sk->sk_state) {
5895 case TCP_SYN_RECV:
5896 if (!tp->srtt_us)
5897 tcp_synack_rtt_meas(sk, req);
5899 /* Once we leave TCP_SYN_RECV, we no longer need req
5900 * so release it.
5902 if (req) {
5903 inet_csk(sk)->icsk_retransmits = 0;
5904 reqsk_fastopen_remove(sk, req, false);
5905 /* Re-arm the timer because data may have been sent out.
5906 * This is similar to the regular data transmission case
5907 * when new data has just been ack'ed.
5909 * (TFO) - we could try to be more aggressive and
5910 * retransmitting any data sooner based on when they
5911 * are sent out.
5913 tcp_rearm_rto(sk);
5914 } else {
5915 tcp_init_transfer(sk, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB);
5916 tp->copied_seq = tp->rcv_nxt;
5918 smp_mb();
5919 tcp_set_state(sk, TCP_ESTABLISHED);
5920 sk->sk_state_change(sk);
5922 /* Note, that this wakeup is only for marginal crossed SYN case.
5923 * Passively open sockets are not waked up, because
5924 * sk->sk_sleep == NULL and sk->sk_socket == NULL.
5926 if (sk->sk_socket)
5927 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5929 tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
5930 tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
5931 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5933 if (tp->rx_opt.tstamp_ok)
5934 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5936 if (!inet_csk(sk)->icsk_ca_ops->cong_control)
5937 tcp_update_pacing_rate(sk);
5939 /* Prevent spurious tcp_cwnd_restart() on first data packet */
5940 tp->lsndtime = tcp_jiffies32;
5942 tcp_initialize_rcv_mss(sk);
5943 tcp_fast_path_on(tp);
5944 break;
5946 case TCP_FIN_WAIT1: {
5947 int tmo;
5949 /* If we enter the TCP_FIN_WAIT1 state and we are a
5950 * Fast Open socket and this is the first acceptable
5951 * ACK we have received, this would have acknowledged
5952 * our SYNACK so stop the SYNACK timer.
5954 if (req) {
5955 /* We no longer need the request sock. */
5956 reqsk_fastopen_remove(sk, req, false);
5957 tcp_rearm_rto(sk);
5959 if (tp->snd_una != tp->write_seq)
5960 break;
5962 tcp_set_state(sk, TCP_FIN_WAIT2);
5963 sk->sk_shutdown |= SEND_SHUTDOWN;
5965 sk_dst_confirm(sk);
5967 if (!sock_flag(sk, SOCK_DEAD)) {
5968 /* Wake up lingering close() */
5969 sk->sk_state_change(sk);
5970 break;
5973 if (tp->linger2 < 0) {
5974 tcp_done(sk);
5975 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5976 return 1;
5978 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5979 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
5980 /* Receive out of order FIN after close() */
5981 if (tp->syn_fastopen && th->fin)
5982 tcp_fastopen_active_disable(sk);
5983 tcp_done(sk);
5984 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5985 return 1;
5988 tmo = tcp_fin_time(sk);
5989 if (tmo > TCP_TIMEWAIT_LEN) {
5990 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
5991 } else if (th->fin || sock_owned_by_user(sk)) {
5992 /* Bad case. We could lose such FIN otherwise.
5993 * It is not a big problem, but it looks confusing
5994 * and not so rare event. We still can lose it now,
5995 * if it spins in bh_lock_sock(), but it is really
5996 * marginal case.
5998 inet_csk_reset_keepalive_timer(sk, tmo);
5999 } else {
6000 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
6001 goto discard;
6003 break;
6006 case TCP_CLOSING:
6007 if (tp->snd_una == tp->write_seq) {
6008 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
6009 goto discard;
6011 break;
6013 case TCP_LAST_ACK:
6014 if (tp->snd_una == tp->write_seq) {
6015 tcp_update_metrics(sk);
6016 tcp_done(sk);
6017 goto discard;
6019 break;
6022 /* step 6: check the URG bit */
6023 tcp_urg(sk, skb, th);
6025 /* step 7: process the segment text */
6026 switch (sk->sk_state) {
6027 case TCP_CLOSE_WAIT:
6028 case TCP_CLOSING:
6029 case TCP_LAST_ACK:
6030 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
6031 break;
6032 /* fall through */
6033 case TCP_FIN_WAIT1:
6034 case TCP_FIN_WAIT2:
6035 /* RFC 793 says to queue data in these states,
6036 * RFC 1122 says we MUST send a reset.
6037 * BSD 4.4 also does reset.
6039 if (sk->sk_shutdown & RCV_SHUTDOWN) {
6040 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6041 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6042 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6043 tcp_reset(sk);
6044 return 1;
6047 /* Fall through */
6048 case TCP_ESTABLISHED:
6049 tcp_data_queue(sk, skb);
6050 queued = 1;
6051 break;
6054 /* tcp_data could move socket to TIME-WAIT */
6055 if (sk->sk_state != TCP_CLOSE) {
6056 tcp_data_snd_check(sk);
6057 tcp_ack_snd_check(sk);
6060 if (!queued) {
6061 discard:
6062 tcp_drop(sk, skb);
6064 return 0;
6066 EXPORT_SYMBOL(tcp_rcv_state_process);
6068 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family)
6070 struct inet_request_sock *ireq = inet_rsk(req);
6072 if (family == AF_INET)
6073 net_dbg_ratelimited("drop open request from %pI4/%u\n",
6074 &ireq->ir_rmt_addr, port);
6075 #if IS_ENABLED(CONFIG_IPV6)
6076 else if (family == AF_INET6)
6077 net_dbg_ratelimited("drop open request from %pI6/%u\n",
6078 &ireq->ir_v6_rmt_addr, port);
6079 #endif
6082 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
6084 * If we receive a SYN packet with these bits set, it means a
6085 * network is playing bad games with TOS bits. In order to
6086 * avoid possible false congestion notifications, we disable
6087 * TCP ECN negotiation.
6089 * Exception: tcp_ca wants ECN. This is required for DCTCP
6090 * congestion control: Linux DCTCP asserts ECT on all packets,
6091 * including SYN, which is most optimal solution; however,
6092 * others, such as FreeBSD do not.
6094 static void tcp_ecn_create_request(struct request_sock *req,
6095 const struct sk_buff *skb,
6096 const struct sock *listen_sk,
6097 const struct dst_entry *dst)
6099 const struct tcphdr *th = tcp_hdr(skb);
6100 const struct net *net = sock_net(listen_sk);
6101 bool th_ecn = th->ece && th->cwr;
6102 bool ect, ecn_ok;
6103 u32 ecn_ok_dst;
6105 if (!th_ecn)
6106 return;
6108 ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield);
6109 ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK);
6110 ecn_ok = net->ipv4.sysctl_tcp_ecn || ecn_ok_dst;
6112 if ((!ect && ecn_ok) || tcp_ca_needs_ecn(listen_sk) ||
6113 (ecn_ok_dst & DST_FEATURE_ECN_CA) ||
6114 tcp_bpf_ca_needs_ecn((struct sock *)req))
6115 inet_rsk(req)->ecn_ok = 1;
6118 static void tcp_openreq_init(struct request_sock *req,
6119 const struct tcp_options_received *rx_opt,
6120 struct sk_buff *skb, const struct sock *sk)
6122 struct inet_request_sock *ireq = inet_rsk(req);
6124 req->rsk_rcv_wnd = 0; /* So that tcp_send_synack() knows! */
6125 req->cookie_ts = 0;
6126 tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq;
6127 tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
6128 tcp_rsk(req)->snt_synack = tcp_clock_us();
6129 tcp_rsk(req)->last_oow_ack_time = 0;
6130 req->mss = rx_opt->mss_clamp;
6131 req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0;
6132 ireq->tstamp_ok = rx_opt->tstamp_ok;
6133 ireq->sack_ok = rx_opt->sack_ok;
6134 ireq->snd_wscale = rx_opt->snd_wscale;
6135 ireq->wscale_ok = rx_opt->wscale_ok;
6136 ireq->acked = 0;
6137 ireq->ecn_ok = 0;
6138 ireq->ir_rmt_port = tcp_hdr(skb)->source;
6139 ireq->ir_num = ntohs(tcp_hdr(skb)->dest);
6140 ireq->ir_mark = inet_request_mark(sk, skb);
6141 #if IS_ENABLED(CONFIG_SMC)
6142 ireq->smc_ok = rx_opt->smc_ok;
6143 #endif
6146 struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops,
6147 struct sock *sk_listener,
6148 bool attach_listener)
6150 struct request_sock *req = reqsk_alloc(ops, sk_listener,
6151 attach_listener);
6153 if (req) {
6154 struct inet_request_sock *ireq = inet_rsk(req);
6156 ireq->ireq_opt = NULL;
6157 #if IS_ENABLED(CONFIG_IPV6)
6158 ireq->pktopts = NULL;
6159 #endif
6160 atomic64_set(&ireq->ir_cookie, 0);
6161 ireq->ireq_state = TCP_NEW_SYN_RECV;
6162 write_pnet(&ireq->ireq_net, sock_net(sk_listener));
6163 ireq->ireq_family = sk_listener->sk_family;
6166 return req;
6168 EXPORT_SYMBOL(inet_reqsk_alloc);
6171 * Return true if a syncookie should be sent
6173 static bool tcp_syn_flood_action(const struct sock *sk,
6174 const struct sk_buff *skb,
6175 const char *proto)
6177 struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
6178 const char *msg = "Dropping request";
6179 bool want_cookie = false;
6180 struct net *net = sock_net(sk);
6182 #ifdef CONFIG_SYN_COOKIES
6183 if (net->ipv4.sysctl_tcp_syncookies) {
6184 msg = "Sending cookies";
6185 want_cookie = true;
6186 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
6187 } else
6188 #endif
6189 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
6191 if (!queue->synflood_warned &&
6192 net->ipv4.sysctl_tcp_syncookies != 2 &&
6193 xchg(&queue->synflood_warned, 1) == 0)
6194 pr_info("%s: Possible SYN flooding on port %d. %s. Check SNMP counters.\n",
6195 proto, ntohs(tcp_hdr(skb)->dest), msg);
6197 return want_cookie;
6200 static void tcp_reqsk_record_syn(const struct sock *sk,
6201 struct request_sock *req,
6202 const struct sk_buff *skb)
6204 if (tcp_sk(sk)->save_syn) {
6205 u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb);
6206 u32 *copy;
6208 copy = kmalloc(len + sizeof(u32), GFP_ATOMIC);
6209 if (copy) {
6210 copy[0] = len;
6211 memcpy(&copy[1], skb_network_header(skb), len);
6212 req->saved_syn = copy;
6217 int tcp_conn_request(struct request_sock_ops *rsk_ops,
6218 const struct tcp_request_sock_ops *af_ops,
6219 struct sock *sk, struct sk_buff *skb)
6221 struct tcp_fastopen_cookie foc = { .len = -1 };
6222 __u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn;
6223 struct tcp_options_received tmp_opt;
6224 struct tcp_sock *tp = tcp_sk(sk);
6225 struct net *net = sock_net(sk);
6226 struct sock *fastopen_sk = NULL;
6227 struct request_sock *req;
6228 bool want_cookie = false;
6229 struct dst_entry *dst;
6230 struct flowi fl;
6232 /* TW buckets are converted to open requests without
6233 * limitations, they conserve resources and peer is
6234 * evidently real one.
6236 if ((net->ipv4.sysctl_tcp_syncookies == 2 ||
6237 inet_csk_reqsk_queue_is_full(sk)) && !isn) {
6238 want_cookie = tcp_syn_flood_action(sk, skb, rsk_ops->slab_name);
6239 if (!want_cookie)
6240 goto drop;
6243 if (sk_acceptq_is_full(sk)) {
6244 NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
6245 goto drop;
6248 req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie);
6249 if (!req)
6250 goto drop;
6252 tcp_rsk(req)->af_specific = af_ops;
6253 tcp_rsk(req)->ts_off = 0;
6255 tcp_clear_options(&tmp_opt);
6256 tmp_opt.mss_clamp = af_ops->mss_clamp;
6257 tmp_opt.user_mss = tp->rx_opt.user_mss;
6258 tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0,
6259 want_cookie ? NULL : &foc);
6261 if (want_cookie && !tmp_opt.saw_tstamp)
6262 tcp_clear_options(&tmp_opt);
6264 tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
6265 tcp_openreq_init(req, &tmp_opt, skb, sk);
6266 inet_rsk(req)->no_srccheck = inet_sk(sk)->transparent;
6268 /* Note: tcp_v6_init_req() might override ir_iif for link locals */
6269 inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb);
6271 af_ops->init_req(req, sk, skb);
6273 if (security_inet_conn_request(sk, skb, req))
6274 goto drop_and_free;
6276 if (tmp_opt.tstamp_ok)
6277 tcp_rsk(req)->ts_off = af_ops->init_ts_off(net, skb);
6279 dst = af_ops->route_req(sk, &fl, req);
6280 if (!dst)
6281 goto drop_and_free;
6283 if (!want_cookie && !isn) {
6284 /* Kill the following clause, if you dislike this way. */
6285 if (!net->ipv4.sysctl_tcp_syncookies &&
6286 (net->ipv4.sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
6287 (net->ipv4.sysctl_max_syn_backlog >> 2)) &&
6288 !tcp_peer_is_proven(req, dst)) {
6289 /* Without syncookies last quarter of
6290 * backlog is filled with destinations,
6291 * proven to be alive.
6292 * It means that we continue to communicate
6293 * to destinations, already remembered
6294 * to the moment of synflood.
6296 pr_drop_req(req, ntohs(tcp_hdr(skb)->source),
6297 rsk_ops->family);
6298 goto drop_and_release;
6301 isn = af_ops->init_seq(skb);
6304 tcp_ecn_create_request(req, skb, sk, dst);
6306 if (want_cookie) {
6307 isn = cookie_init_sequence(af_ops, sk, skb, &req->mss);
6308 req->cookie_ts = tmp_opt.tstamp_ok;
6309 if (!tmp_opt.tstamp_ok)
6310 inet_rsk(req)->ecn_ok = 0;
6313 tcp_rsk(req)->snt_isn = isn;
6314 tcp_rsk(req)->txhash = net_tx_rndhash();
6315 tcp_openreq_init_rwin(req, sk, dst);
6316 if (!want_cookie) {
6317 tcp_reqsk_record_syn(sk, req, skb);
6318 fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst);
6320 if (fastopen_sk) {
6321 af_ops->send_synack(fastopen_sk, dst, &fl, req,
6322 &foc, TCP_SYNACK_FASTOPEN);
6323 /* Add the child socket directly into the accept queue */
6324 inet_csk_reqsk_queue_add(sk, req, fastopen_sk);
6325 sk->sk_data_ready(sk);
6326 bh_unlock_sock(fastopen_sk);
6327 sock_put(fastopen_sk);
6328 } else {
6329 tcp_rsk(req)->tfo_listener = false;
6330 if (!want_cookie)
6331 inet_csk_reqsk_queue_hash_add(sk, req,
6332 tcp_timeout_init((struct sock *)req));
6333 af_ops->send_synack(sk, dst, &fl, req, &foc,
6334 !want_cookie ? TCP_SYNACK_NORMAL :
6335 TCP_SYNACK_COOKIE);
6336 if (want_cookie) {
6337 reqsk_free(req);
6338 return 0;
6341 reqsk_put(req);
6342 return 0;
6344 drop_and_release:
6345 dst_release(dst);
6346 drop_and_free:
6347 reqsk_free(req);
6348 drop:
6349 tcp_listendrop(sk);
6350 return 0;
6352 EXPORT_SYMBOL(tcp_conn_request);