2 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
3 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License, version 2, as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
19 #include <linux/mman.h>
20 #include <linux/kvm_host.h>
22 #include <linux/hugetlb.h>
23 #include <trace/events/kvm.h>
24 #include <asm/pgalloc.h>
25 #include <asm/cacheflush.h>
26 #include <asm/kvm_arm.h>
27 #include <asm/kvm_mmu.h>
28 #include <asm/kvm_mmio.h>
29 #include <asm/kvm_asm.h>
30 #include <asm/kvm_emulate.h>
34 extern char __hyp_idmap_text_start
[], __hyp_idmap_text_end
[];
36 static pgd_t
*boot_hyp_pgd
;
37 static pgd_t
*hyp_pgd
;
38 static pgd_t
*merged_hyp_pgd
;
39 static DEFINE_MUTEX(kvm_hyp_pgd_mutex
);
41 static unsigned long hyp_idmap_start
;
42 static unsigned long hyp_idmap_end
;
43 static phys_addr_t hyp_idmap_vector
;
45 #define hyp_pgd_order get_order(PTRS_PER_PGD * sizeof(pgd_t))
47 #define kvm_pmd_huge(_x) (pmd_huge(_x) || pmd_trans_huge(_x))
48 #define kvm_pud_huge(_x) pud_huge(_x)
50 #define KVM_S2PTE_FLAG_IS_IOMAP (1UL << 0)
51 #define KVM_S2_FLAG_LOGGING_ACTIVE (1UL << 1)
53 static bool memslot_is_logging(struct kvm_memory_slot
*memslot
)
55 return memslot
->dirty_bitmap
&& !(memslot
->flags
& KVM_MEM_READONLY
);
59 * kvm_flush_remote_tlbs() - flush all VM TLB entries for v7/8
60 * @kvm: pointer to kvm structure.
62 * Interface to HYP function to flush all VM TLB entries
64 void kvm_flush_remote_tlbs(struct kvm
*kvm
)
66 kvm_call_hyp(__kvm_tlb_flush_vmid
, kvm
);
69 static void kvm_tlb_flush_vmid_ipa(struct kvm
*kvm
, phys_addr_t ipa
)
72 * This function also gets called when dealing with HYP page
73 * tables. As HYP doesn't have an associated struct kvm (and
74 * the HYP page tables are fairly static), we don't do
78 kvm_call_hyp(__kvm_tlb_flush_vmid_ipa
, kvm
, ipa
);
82 * D-Cache management functions. They take the page table entries by
83 * value, as they are flushing the cache using the kernel mapping (or
86 static void kvm_flush_dcache_pte(pte_t pte
)
88 __kvm_flush_dcache_pte(pte
);
91 static void kvm_flush_dcache_pmd(pmd_t pmd
)
93 __kvm_flush_dcache_pmd(pmd
);
96 static void kvm_flush_dcache_pud(pud_t pud
)
98 __kvm_flush_dcache_pud(pud
);
102 * stage2_dissolve_pmd() - clear and flush huge PMD entry
103 * @kvm: pointer to kvm structure.
105 * @pmd: pmd pointer for IPA
107 * Function clears a PMD entry, flushes addr 1st and 2nd stage TLBs. Marks all
108 * pages in the range dirty.
110 static void stage2_dissolve_pmd(struct kvm
*kvm
, phys_addr_t addr
, pmd_t
*pmd
)
112 if (!kvm_pmd_huge(*pmd
))
116 kvm_tlb_flush_vmid_ipa(kvm
, addr
);
117 put_page(virt_to_page(pmd
));
120 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache
*cache
,
125 BUG_ON(max
> KVM_NR_MEM_OBJS
);
126 if (cache
->nobjs
>= min
)
128 while (cache
->nobjs
< max
) {
129 page
= (void *)__get_free_page(PGALLOC_GFP
);
132 cache
->objects
[cache
->nobjs
++] = page
;
137 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache
*mc
)
140 free_page((unsigned long)mc
->objects
[--mc
->nobjs
]);
143 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache
*mc
)
147 BUG_ON(!mc
|| !mc
->nobjs
);
148 p
= mc
->objects
[--mc
->nobjs
];
152 static void clear_pgd_entry(struct kvm
*kvm
, pgd_t
*pgd
, phys_addr_t addr
)
154 pud_t
*pud_table __maybe_unused
= pud_offset(pgd
, 0);
156 kvm_tlb_flush_vmid_ipa(kvm
, addr
);
157 pud_free(NULL
, pud_table
);
158 put_page(virt_to_page(pgd
));
161 static void clear_pud_entry(struct kvm
*kvm
, pud_t
*pud
, phys_addr_t addr
)
163 pmd_t
*pmd_table
= pmd_offset(pud
, 0);
164 VM_BUG_ON(pud_huge(*pud
));
166 kvm_tlb_flush_vmid_ipa(kvm
, addr
);
167 pmd_free(NULL
, pmd_table
);
168 put_page(virt_to_page(pud
));
171 static void clear_pmd_entry(struct kvm
*kvm
, pmd_t
*pmd
, phys_addr_t addr
)
173 pte_t
*pte_table
= pte_offset_kernel(pmd
, 0);
174 VM_BUG_ON(kvm_pmd_huge(*pmd
));
176 kvm_tlb_flush_vmid_ipa(kvm
, addr
);
177 pte_free_kernel(NULL
, pte_table
);
178 put_page(virt_to_page(pmd
));
182 * Unmapping vs dcache management:
184 * If a guest maps certain memory pages as uncached, all writes will
185 * bypass the data cache and go directly to RAM. However, the CPUs
186 * can still speculate reads (not writes) and fill cache lines with
189 * Those cache lines will be *clean* cache lines though, so a
190 * clean+invalidate operation is equivalent to an invalidate
191 * operation, because no cache lines are marked dirty.
193 * Those clean cache lines could be filled prior to an uncached write
194 * by the guest, and the cache coherent IO subsystem would therefore
195 * end up writing old data to disk.
197 * This is why right after unmapping a page/section and invalidating
198 * the corresponding TLBs, we call kvm_flush_dcache_p*() to make sure
199 * the IO subsystem will never hit in the cache.
201 static void unmap_ptes(struct kvm
*kvm
, pmd_t
*pmd
,
202 phys_addr_t addr
, phys_addr_t end
)
204 phys_addr_t start_addr
= addr
;
205 pte_t
*pte
, *start_pte
;
207 start_pte
= pte
= pte_offset_kernel(pmd
, addr
);
209 if (!pte_none(*pte
)) {
210 pte_t old_pte
= *pte
;
212 kvm_set_pte(pte
, __pte(0));
213 kvm_tlb_flush_vmid_ipa(kvm
, addr
);
215 /* No need to invalidate the cache for device mappings */
216 if ((pte_val(old_pte
) & PAGE_S2_DEVICE
) != PAGE_S2_DEVICE
)
217 kvm_flush_dcache_pte(old_pte
);
219 put_page(virt_to_page(pte
));
221 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
223 if (kvm_pte_table_empty(kvm
, start_pte
))
224 clear_pmd_entry(kvm
, pmd
, start_addr
);
227 static void unmap_pmds(struct kvm
*kvm
, pud_t
*pud
,
228 phys_addr_t addr
, phys_addr_t end
)
230 phys_addr_t next
, start_addr
= addr
;
231 pmd_t
*pmd
, *start_pmd
;
233 start_pmd
= pmd
= pmd_offset(pud
, addr
);
235 next
= kvm_pmd_addr_end(addr
, end
);
236 if (!pmd_none(*pmd
)) {
237 if (kvm_pmd_huge(*pmd
)) {
238 pmd_t old_pmd
= *pmd
;
241 kvm_tlb_flush_vmid_ipa(kvm
, addr
);
243 kvm_flush_dcache_pmd(old_pmd
);
245 put_page(virt_to_page(pmd
));
247 unmap_ptes(kvm
, pmd
, addr
, next
);
250 } while (pmd
++, addr
= next
, addr
!= end
);
252 if (kvm_pmd_table_empty(kvm
, start_pmd
))
253 clear_pud_entry(kvm
, pud
, start_addr
);
256 static void unmap_puds(struct kvm
*kvm
, pgd_t
*pgd
,
257 phys_addr_t addr
, phys_addr_t end
)
259 phys_addr_t next
, start_addr
= addr
;
260 pud_t
*pud
, *start_pud
;
262 start_pud
= pud
= pud_offset(pgd
, addr
);
264 next
= kvm_pud_addr_end(addr
, end
);
265 if (!pud_none(*pud
)) {
266 if (pud_huge(*pud
)) {
267 pud_t old_pud
= *pud
;
270 kvm_tlb_flush_vmid_ipa(kvm
, addr
);
272 kvm_flush_dcache_pud(old_pud
);
274 put_page(virt_to_page(pud
));
276 unmap_pmds(kvm
, pud
, addr
, next
);
279 } while (pud
++, addr
= next
, addr
!= end
);
281 if (kvm_pud_table_empty(kvm
, start_pud
))
282 clear_pgd_entry(kvm
, pgd
, start_addr
);
286 static void unmap_range(struct kvm
*kvm
, pgd_t
*pgdp
,
287 phys_addr_t start
, u64 size
)
290 phys_addr_t addr
= start
, end
= start
+ size
;
293 pgd
= pgdp
+ kvm_pgd_index(addr
);
295 next
= kvm_pgd_addr_end(addr
, end
);
297 unmap_puds(kvm
, pgd
, addr
, next
);
298 } while (pgd
++, addr
= next
, addr
!= end
);
301 static void stage2_flush_ptes(struct kvm
*kvm
, pmd_t
*pmd
,
302 phys_addr_t addr
, phys_addr_t end
)
306 pte
= pte_offset_kernel(pmd
, addr
);
308 if (!pte_none(*pte
) &&
309 (pte_val(*pte
) & PAGE_S2_DEVICE
) != PAGE_S2_DEVICE
)
310 kvm_flush_dcache_pte(*pte
);
311 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
314 static void stage2_flush_pmds(struct kvm
*kvm
, pud_t
*pud
,
315 phys_addr_t addr
, phys_addr_t end
)
320 pmd
= pmd_offset(pud
, addr
);
322 next
= kvm_pmd_addr_end(addr
, end
);
323 if (!pmd_none(*pmd
)) {
324 if (kvm_pmd_huge(*pmd
))
325 kvm_flush_dcache_pmd(*pmd
);
327 stage2_flush_ptes(kvm
, pmd
, addr
, next
);
329 } while (pmd
++, addr
= next
, addr
!= end
);
332 static void stage2_flush_puds(struct kvm
*kvm
, pgd_t
*pgd
,
333 phys_addr_t addr
, phys_addr_t end
)
338 pud
= pud_offset(pgd
, addr
);
340 next
= kvm_pud_addr_end(addr
, end
);
341 if (!pud_none(*pud
)) {
343 kvm_flush_dcache_pud(*pud
);
345 stage2_flush_pmds(kvm
, pud
, addr
, next
);
347 } while (pud
++, addr
= next
, addr
!= end
);
350 static void stage2_flush_memslot(struct kvm
*kvm
,
351 struct kvm_memory_slot
*memslot
)
353 phys_addr_t addr
= memslot
->base_gfn
<< PAGE_SHIFT
;
354 phys_addr_t end
= addr
+ PAGE_SIZE
* memslot
->npages
;
358 pgd
= kvm
->arch
.pgd
+ kvm_pgd_index(addr
);
360 next
= kvm_pgd_addr_end(addr
, end
);
361 stage2_flush_puds(kvm
, pgd
, addr
, next
);
362 } while (pgd
++, addr
= next
, addr
!= end
);
366 * stage2_flush_vm - Invalidate cache for pages mapped in stage 2
367 * @kvm: The struct kvm pointer
369 * Go through the stage 2 page tables and invalidate any cache lines
370 * backing memory already mapped to the VM.
372 static void stage2_flush_vm(struct kvm
*kvm
)
374 struct kvm_memslots
*slots
;
375 struct kvm_memory_slot
*memslot
;
378 idx
= srcu_read_lock(&kvm
->srcu
);
379 spin_lock(&kvm
->mmu_lock
);
381 slots
= kvm_memslots(kvm
);
382 kvm_for_each_memslot(memslot
, slots
)
383 stage2_flush_memslot(kvm
, memslot
);
385 spin_unlock(&kvm
->mmu_lock
);
386 srcu_read_unlock(&kvm
->srcu
, idx
);
390 * free_boot_hyp_pgd - free HYP boot page tables
392 * Free the HYP boot page tables. The bounce page is also freed.
394 void free_boot_hyp_pgd(void)
396 mutex_lock(&kvm_hyp_pgd_mutex
);
399 unmap_range(NULL
, boot_hyp_pgd
, hyp_idmap_start
, PAGE_SIZE
);
400 unmap_range(NULL
, boot_hyp_pgd
, TRAMPOLINE_VA
, PAGE_SIZE
);
401 free_pages((unsigned long)boot_hyp_pgd
, hyp_pgd_order
);
406 unmap_range(NULL
, hyp_pgd
, TRAMPOLINE_VA
, PAGE_SIZE
);
408 mutex_unlock(&kvm_hyp_pgd_mutex
);
412 * free_hyp_pgds - free Hyp-mode page tables
414 * Assumes hyp_pgd is a page table used strictly in Hyp-mode and
415 * therefore contains either mappings in the kernel memory area (above
416 * PAGE_OFFSET), or device mappings in the vmalloc range (from
417 * VMALLOC_START to VMALLOC_END).
419 * boot_hyp_pgd should only map two pages for the init code.
421 void free_hyp_pgds(void)
427 mutex_lock(&kvm_hyp_pgd_mutex
);
430 for (addr
= PAGE_OFFSET
; virt_addr_valid(addr
); addr
+= PGDIR_SIZE
)
431 unmap_range(NULL
, hyp_pgd
, KERN_TO_HYP(addr
), PGDIR_SIZE
);
432 for (addr
= VMALLOC_START
; is_vmalloc_addr((void*)addr
); addr
+= PGDIR_SIZE
)
433 unmap_range(NULL
, hyp_pgd
, KERN_TO_HYP(addr
), PGDIR_SIZE
);
435 free_pages((unsigned long)hyp_pgd
, hyp_pgd_order
);
438 if (merged_hyp_pgd
) {
439 clear_page(merged_hyp_pgd
);
440 free_page((unsigned long)merged_hyp_pgd
);
441 merged_hyp_pgd
= NULL
;
444 mutex_unlock(&kvm_hyp_pgd_mutex
);
447 static void create_hyp_pte_mappings(pmd_t
*pmd
, unsigned long start
,
448 unsigned long end
, unsigned long pfn
,
456 pte
= pte_offset_kernel(pmd
, addr
);
457 kvm_set_pte(pte
, pfn_pte(pfn
, prot
));
458 get_page(virt_to_page(pte
));
459 kvm_flush_dcache_to_poc(pte
, sizeof(*pte
));
461 } while (addr
+= PAGE_SIZE
, addr
!= end
);
464 static int create_hyp_pmd_mappings(pud_t
*pud
, unsigned long start
,
465 unsigned long end
, unsigned long pfn
,
470 unsigned long addr
, next
;
474 pmd
= pmd_offset(pud
, addr
);
476 BUG_ON(pmd_sect(*pmd
));
478 if (pmd_none(*pmd
)) {
479 pte
= pte_alloc_one_kernel(NULL
, addr
);
481 kvm_err("Cannot allocate Hyp pte\n");
484 pmd_populate_kernel(NULL
, pmd
, pte
);
485 get_page(virt_to_page(pmd
));
486 kvm_flush_dcache_to_poc(pmd
, sizeof(*pmd
));
489 next
= pmd_addr_end(addr
, end
);
491 create_hyp_pte_mappings(pmd
, addr
, next
, pfn
, prot
);
492 pfn
+= (next
- addr
) >> PAGE_SHIFT
;
493 } while (addr
= next
, addr
!= end
);
498 static int create_hyp_pud_mappings(pgd_t
*pgd
, unsigned long start
,
499 unsigned long end
, unsigned long pfn
,
504 unsigned long addr
, next
;
509 pud
= pud_offset(pgd
, addr
);
511 if (pud_none_or_clear_bad(pud
)) {
512 pmd
= pmd_alloc_one(NULL
, addr
);
514 kvm_err("Cannot allocate Hyp pmd\n");
517 pud_populate(NULL
, pud
, pmd
);
518 get_page(virt_to_page(pud
));
519 kvm_flush_dcache_to_poc(pud
, sizeof(*pud
));
522 next
= pud_addr_end(addr
, end
);
523 ret
= create_hyp_pmd_mappings(pud
, addr
, next
, pfn
, prot
);
526 pfn
+= (next
- addr
) >> PAGE_SHIFT
;
527 } while (addr
= next
, addr
!= end
);
532 static int __create_hyp_mappings(pgd_t
*pgdp
,
533 unsigned long start
, unsigned long end
,
534 unsigned long pfn
, pgprot_t prot
)
538 unsigned long addr
, next
;
541 mutex_lock(&kvm_hyp_pgd_mutex
);
542 addr
= start
& PAGE_MASK
;
543 end
= PAGE_ALIGN(end
);
545 pgd
= pgdp
+ pgd_index(addr
);
547 if (pgd_none(*pgd
)) {
548 pud
= pud_alloc_one(NULL
, addr
);
550 kvm_err("Cannot allocate Hyp pud\n");
554 pgd_populate(NULL
, pgd
, pud
);
555 get_page(virt_to_page(pgd
));
556 kvm_flush_dcache_to_poc(pgd
, sizeof(*pgd
));
559 next
= pgd_addr_end(addr
, end
);
560 err
= create_hyp_pud_mappings(pgd
, addr
, next
, pfn
, prot
);
563 pfn
+= (next
- addr
) >> PAGE_SHIFT
;
564 } while (addr
= next
, addr
!= end
);
566 mutex_unlock(&kvm_hyp_pgd_mutex
);
570 static phys_addr_t
kvm_kaddr_to_phys(void *kaddr
)
572 if (!is_vmalloc_addr(kaddr
)) {
573 BUG_ON(!virt_addr_valid(kaddr
));
576 return page_to_phys(vmalloc_to_page(kaddr
)) +
577 offset_in_page(kaddr
);
582 * create_hyp_mappings - duplicate a kernel virtual address range in Hyp mode
583 * @from: The virtual kernel start address of the range
584 * @to: The virtual kernel end address of the range (exclusive)
586 * The same virtual address as the kernel virtual address is also used
587 * in Hyp-mode mapping (modulo HYP_PAGE_OFFSET) to the same underlying
590 int create_hyp_mappings(void *from
, void *to
)
592 phys_addr_t phys_addr
;
593 unsigned long virt_addr
;
594 unsigned long start
= KERN_TO_HYP((unsigned long)from
);
595 unsigned long end
= KERN_TO_HYP((unsigned long)to
);
597 start
= start
& PAGE_MASK
;
598 end
= PAGE_ALIGN(end
);
600 for (virt_addr
= start
; virt_addr
< end
; virt_addr
+= PAGE_SIZE
) {
603 phys_addr
= kvm_kaddr_to_phys(from
+ virt_addr
- start
);
604 err
= __create_hyp_mappings(hyp_pgd
, virt_addr
,
605 virt_addr
+ PAGE_SIZE
,
606 __phys_to_pfn(phys_addr
),
616 * create_hyp_io_mappings - duplicate a kernel IO mapping into Hyp mode
617 * @from: The kernel start VA of the range
618 * @to: The kernel end VA of the range (exclusive)
619 * @phys_addr: The physical start address which gets mapped
621 * The resulting HYP VA is the same as the kernel VA, modulo
624 int create_hyp_io_mappings(void *from
, void *to
, phys_addr_t phys_addr
)
626 unsigned long start
= KERN_TO_HYP((unsigned long)from
);
627 unsigned long end
= KERN_TO_HYP((unsigned long)to
);
629 /* Check for a valid kernel IO mapping */
630 if (!is_vmalloc_addr(from
) || !is_vmalloc_addr(to
- 1))
633 return __create_hyp_mappings(hyp_pgd
, start
, end
,
634 __phys_to_pfn(phys_addr
), PAGE_HYP_DEVICE
);
637 /* Free the HW pgd, one page at a time */
638 static void kvm_free_hwpgd(void *hwpgd
)
640 free_pages_exact(hwpgd
, kvm_get_hwpgd_size());
643 /* Allocate the HW PGD, making sure that each page gets its own refcount */
644 static void *kvm_alloc_hwpgd(void)
646 unsigned int size
= kvm_get_hwpgd_size();
648 return alloc_pages_exact(size
, GFP_KERNEL
| __GFP_ZERO
);
652 * kvm_alloc_stage2_pgd - allocate level-1 table for stage-2 translation.
653 * @kvm: The KVM struct pointer for the VM.
655 * Allocates the 1st level table only of size defined by S2_PGD_ORDER (can
656 * support either full 40-bit input addresses or limited to 32-bit input
657 * addresses). Clears the allocated pages.
659 * Note we don't need locking here as this is only called when the VM is
660 * created, which can only be done once.
662 int kvm_alloc_stage2_pgd(struct kvm
*kvm
)
667 if (kvm
->arch
.pgd
!= NULL
) {
668 kvm_err("kvm_arch already initialized?\n");
672 hwpgd
= kvm_alloc_hwpgd();
676 /* When the kernel uses more levels of page tables than the
677 * guest, we allocate a fake PGD and pre-populate it to point
678 * to the next-level page table, which will be the real
679 * initial page table pointed to by the VTTBR.
681 * When KVM_PREALLOC_LEVEL==2, we allocate a single page for
682 * the PMD and the kernel will use folded pud.
683 * When KVM_PREALLOC_LEVEL==1, we allocate 2 consecutive PUD
686 if (KVM_PREALLOC_LEVEL
> 0) {
690 * Allocate fake pgd for the page table manipulation macros to
691 * work. This is not used by the hardware and we have no
692 * alignment requirement for this allocation.
694 pgd
= kmalloc(PTRS_PER_S2_PGD
* sizeof(pgd_t
),
695 GFP_KERNEL
| __GFP_ZERO
);
698 kvm_free_hwpgd(hwpgd
);
702 /* Plug the HW PGD into the fake one. */
703 for (i
= 0; i
< PTRS_PER_S2_PGD
; i
++) {
704 if (KVM_PREALLOC_LEVEL
== 1)
705 pgd_populate(NULL
, pgd
+ i
,
706 (pud_t
*)hwpgd
+ i
* PTRS_PER_PUD
);
707 else if (KVM_PREALLOC_LEVEL
== 2)
708 pud_populate(NULL
, pud_offset(pgd
, 0) + i
,
709 (pmd_t
*)hwpgd
+ i
* PTRS_PER_PMD
);
713 * Allocate actual first-level Stage-2 page table used by the
714 * hardware for Stage-2 page table walks.
716 pgd
= (pgd_t
*)hwpgd
;
725 * unmap_stage2_range -- Clear stage2 page table entries to unmap a range
726 * @kvm: The VM pointer
727 * @start: The intermediate physical base address of the range to unmap
728 * @size: The size of the area to unmap
730 * Clear a range of stage-2 mappings, lowering the various ref-counts. Must
731 * be called while holding mmu_lock (unless for freeing the stage2 pgd before
732 * destroying the VM), otherwise another faulting VCPU may come in and mess
733 * with things behind our backs.
735 static void unmap_stage2_range(struct kvm
*kvm
, phys_addr_t start
, u64 size
)
737 unmap_range(kvm
, kvm
->arch
.pgd
, start
, size
);
740 static void stage2_unmap_memslot(struct kvm
*kvm
,
741 struct kvm_memory_slot
*memslot
)
743 hva_t hva
= memslot
->userspace_addr
;
744 phys_addr_t addr
= memslot
->base_gfn
<< PAGE_SHIFT
;
745 phys_addr_t size
= PAGE_SIZE
* memslot
->npages
;
746 hva_t reg_end
= hva
+ size
;
749 * A memory region could potentially cover multiple VMAs, and any holes
750 * between them, so iterate over all of them to find out if we should
753 * +--------------------------------------------+
754 * +---------------+----------------+ +----------------+
755 * | : VMA 1 | VMA 2 | | VMA 3 : |
756 * +---------------+----------------+ +----------------+
758 * +--------------------------------------------+
761 struct vm_area_struct
*vma
= find_vma(current
->mm
, hva
);
762 hva_t vm_start
, vm_end
;
764 if (!vma
|| vma
->vm_start
>= reg_end
)
768 * Take the intersection of this VMA with the memory region
770 vm_start
= max(hva
, vma
->vm_start
);
771 vm_end
= min(reg_end
, vma
->vm_end
);
773 if (!(vma
->vm_flags
& VM_PFNMAP
)) {
774 gpa_t gpa
= addr
+ (vm_start
- memslot
->userspace_addr
);
775 unmap_stage2_range(kvm
, gpa
, vm_end
- vm_start
);
778 } while (hva
< reg_end
);
782 * stage2_unmap_vm - Unmap Stage-2 RAM mappings
783 * @kvm: The struct kvm pointer
785 * Go through the memregions and unmap any reguler RAM
786 * backing memory already mapped to the VM.
788 void stage2_unmap_vm(struct kvm
*kvm
)
790 struct kvm_memslots
*slots
;
791 struct kvm_memory_slot
*memslot
;
794 idx
= srcu_read_lock(&kvm
->srcu
);
795 spin_lock(&kvm
->mmu_lock
);
797 slots
= kvm_memslots(kvm
);
798 kvm_for_each_memslot(memslot
, slots
)
799 stage2_unmap_memslot(kvm
, memslot
);
801 spin_unlock(&kvm
->mmu_lock
);
802 srcu_read_unlock(&kvm
->srcu
, idx
);
806 * kvm_free_stage2_pgd - free all stage-2 tables
807 * @kvm: The KVM struct pointer for the VM.
809 * Walks the level-1 page table pointed to by kvm->arch.pgd and frees all
810 * underlying level-2 and level-3 tables before freeing the actual level-1 table
811 * and setting the struct pointer to NULL.
813 * Note we don't need locking here as this is only called when the VM is
814 * destroyed, which can only be done once.
816 void kvm_free_stage2_pgd(struct kvm
*kvm
)
818 if (kvm
->arch
.pgd
== NULL
)
821 unmap_stage2_range(kvm
, 0, KVM_PHYS_SIZE
);
822 kvm_free_hwpgd(kvm_get_hwpgd(kvm
));
823 if (KVM_PREALLOC_LEVEL
> 0)
824 kfree(kvm
->arch
.pgd
);
826 kvm
->arch
.pgd
= NULL
;
829 static pud_t
*stage2_get_pud(struct kvm
*kvm
, struct kvm_mmu_memory_cache
*cache
,
835 pgd
= kvm
->arch
.pgd
+ kvm_pgd_index(addr
);
836 if (WARN_ON(pgd_none(*pgd
))) {
839 pud
= mmu_memory_cache_alloc(cache
);
840 pgd_populate(NULL
, pgd
, pud
);
841 get_page(virt_to_page(pgd
));
844 return pud_offset(pgd
, addr
);
847 static pmd_t
*stage2_get_pmd(struct kvm
*kvm
, struct kvm_mmu_memory_cache
*cache
,
853 pud
= stage2_get_pud(kvm
, cache
, addr
);
854 if (pud_none(*pud
)) {
857 pmd
= mmu_memory_cache_alloc(cache
);
858 pud_populate(NULL
, pud
, pmd
);
859 get_page(virt_to_page(pud
));
862 return pmd_offset(pud
, addr
);
865 static int stage2_set_pmd_huge(struct kvm
*kvm
, struct kvm_mmu_memory_cache
866 *cache
, phys_addr_t addr
, const pmd_t
*new_pmd
)
870 pmd
= stage2_get_pmd(kvm
, cache
, addr
);
874 * Mapping in huge pages should only happen through a fault. If a
875 * page is merged into a transparent huge page, the individual
876 * subpages of that huge page should be unmapped through MMU
877 * notifiers before we get here.
879 * Merging of CompoundPages is not supported; they should become
880 * splitting first, unmapped, merged, and mapped back in on-demand.
882 VM_BUG_ON(pmd_present(*pmd
) && pmd_pfn(*pmd
) != pmd_pfn(*new_pmd
));
885 kvm_set_pmd(pmd
, *new_pmd
);
886 if (pmd_present(old_pmd
))
887 kvm_tlb_flush_vmid_ipa(kvm
, addr
);
889 get_page(virt_to_page(pmd
));
893 static int stage2_set_pte(struct kvm
*kvm
, struct kvm_mmu_memory_cache
*cache
,
894 phys_addr_t addr
, const pte_t
*new_pte
,
899 bool iomap
= flags
& KVM_S2PTE_FLAG_IS_IOMAP
;
900 bool logging_active
= flags
& KVM_S2_FLAG_LOGGING_ACTIVE
;
902 VM_BUG_ON(logging_active
&& !cache
);
904 /* Create stage-2 page table mapping - Levels 0 and 1 */
905 pmd
= stage2_get_pmd(kvm
, cache
, addr
);
908 * Ignore calls from kvm_set_spte_hva for unallocated
915 * While dirty page logging - dissolve huge PMD, then continue on to
919 stage2_dissolve_pmd(kvm
, addr
, pmd
);
921 /* Create stage-2 page mappings - Level 2 */
922 if (pmd_none(*pmd
)) {
924 return 0; /* ignore calls from kvm_set_spte_hva */
925 pte
= mmu_memory_cache_alloc(cache
);
927 pmd_populate_kernel(NULL
, pmd
, pte
);
928 get_page(virt_to_page(pmd
));
931 pte
= pte_offset_kernel(pmd
, addr
);
933 if (iomap
&& pte_present(*pte
))
936 /* Create 2nd stage page table mapping - Level 3 */
938 kvm_set_pte(pte
, *new_pte
);
939 if (pte_present(old_pte
))
940 kvm_tlb_flush_vmid_ipa(kvm
, addr
);
942 get_page(virt_to_page(pte
));
948 * kvm_phys_addr_ioremap - map a device range to guest IPA
950 * @kvm: The KVM pointer
951 * @guest_ipa: The IPA at which to insert the mapping
952 * @pa: The physical address of the device
953 * @size: The size of the mapping
955 int kvm_phys_addr_ioremap(struct kvm
*kvm
, phys_addr_t guest_ipa
,
956 phys_addr_t pa
, unsigned long size
, bool writable
)
958 phys_addr_t addr
, end
;
961 struct kvm_mmu_memory_cache cache
= { 0, };
963 end
= (guest_ipa
+ size
+ PAGE_SIZE
- 1) & PAGE_MASK
;
964 pfn
= __phys_to_pfn(pa
);
966 for (addr
= guest_ipa
; addr
< end
; addr
+= PAGE_SIZE
) {
967 pte_t pte
= pfn_pte(pfn
, PAGE_S2_DEVICE
);
970 kvm_set_s2pte_writable(&pte
);
972 ret
= mmu_topup_memory_cache(&cache
, KVM_MMU_CACHE_MIN_PAGES
,
976 spin_lock(&kvm
->mmu_lock
);
977 ret
= stage2_set_pte(kvm
, &cache
, addr
, &pte
,
978 KVM_S2PTE_FLAG_IS_IOMAP
);
979 spin_unlock(&kvm
->mmu_lock
);
987 mmu_free_memory_cache(&cache
);
991 static bool transparent_hugepage_adjust(pfn_t
*pfnp
, phys_addr_t
*ipap
)
994 gfn_t gfn
= *ipap
>> PAGE_SHIFT
;
996 if (PageTransCompound(pfn_to_page(pfn
))) {
999 * The address we faulted on is backed by a transparent huge
1000 * page. However, because we map the compound huge page and
1001 * not the individual tail page, we need to transfer the
1002 * refcount to the head page. We have to be careful that the
1003 * THP doesn't start to split while we are adjusting the
1006 * We are sure this doesn't happen, because mmu_notifier_retry
1007 * was successful and we are holding the mmu_lock, so if this
1008 * THP is trying to split, it will be blocked in the mmu
1009 * notifier before touching any of the pages, specifically
1010 * before being able to call __split_huge_page_refcount().
1012 * We can therefore safely transfer the refcount from PG_tail
1013 * to PG_head and switch the pfn from a tail page to the head
1016 mask
= PTRS_PER_PMD
- 1;
1017 VM_BUG_ON((gfn
& mask
) != (pfn
& mask
));
1020 kvm_release_pfn_clean(pfn
);
1032 static bool kvm_is_write_fault(struct kvm_vcpu
*vcpu
)
1034 if (kvm_vcpu_trap_is_iabt(vcpu
))
1037 return kvm_vcpu_dabt_iswrite(vcpu
);
1040 static bool kvm_is_device_pfn(unsigned long pfn
)
1042 return !pfn_valid(pfn
);
1046 * stage2_wp_ptes - write protect PMD range
1047 * @pmd: pointer to pmd entry
1048 * @addr: range start address
1049 * @end: range end address
1051 static void stage2_wp_ptes(pmd_t
*pmd
, phys_addr_t addr
, phys_addr_t end
)
1055 pte
= pte_offset_kernel(pmd
, addr
);
1057 if (!pte_none(*pte
)) {
1058 if (!kvm_s2pte_readonly(pte
))
1059 kvm_set_s2pte_readonly(pte
);
1061 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
1065 * stage2_wp_pmds - write protect PUD range
1066 * @pud: pointer to pud entry
1067 * @addr: range start address
1068 * @end: range end address
1070 static void stage2_wp_pmds(pud_t
*pud
, phys_addr_t addr
, phys_addr_t end
)
1075 pmd
= pmd_offset(pud
, addr
);
1078 next
= kvm_pmd_addr_end(addr
, end
);
1079 if (!pmd_none(*pmd
)) {
1080 if (kvm_pmd_huge(*pmd
)) {
1081 if (!kvm_s2pmd_readonly(pmd
))
1082 kvm_set_s2pmd_readonly(pmd
);
1084 stage2_wp_ptes(pmd
, addr
, next
);
1087 } while (pmd
++, addr
= next
, addr
!= end
);
1091 * stage2_wp_puds - write protect PGD range
1092 * @pgd: pointer to pgd entry
1093 * @addr: range start address
1094 * @end: range end address
1096 * Process PUD entries, for a huge PUD we cause a panic.
1098 static void stage2_wp_puds(pgd_t
*pgd
, phys_addr_t addr
, phys_addr_t end
)
1103 pud
= pud_offset(pgd
, addr
);
1105 next
= kvm_pud_addr_end(addr
, end
);
1106 if (!pud_none(*pud
)) {
1107 /* TODO:PUD not supported, revisit later if supported */
1108 BUG_ON(kvm_pud_huge(*pud
));
1109 stage2_wp_pmds(pud
, addr
, next
);
1111 } while (pud
++, addr
= next
, addr
!= end
);
1115 * stage2_wp_range() - write protect stage2 memory region range
1116 * @kvm: The KVM pointer
1117 * @addr: Start address of range
1118 * @end: End address of range
1120 static void stage2_wp_range(struct kvm
*kvm
, phys_addr_t addr
, phys_addr_t end
)
1125 pgd
= kvm
->arch
.pgd
+ kvm_pgd_index(addr
);
1128 * Release kvm_mmu_lock periodically if the memory region is
1129 * large. Otherwise, we may see kernel panics with
1130 * CONFIG_DETECT_HUNG_TASK, CONFIG_LOCKUP_DETECTOR,
1131 * CONFIG_LOCKDEP. Additionally, holding the lock too long
1132 * will also starve other vCPUs.
1134 if (need_resched() || spin_needbreak(&kvm
->mmu_lock
))
1135 cond_resched_lock(&kvm
->mmu_lock
);
1137 next
= kvm_pgd_addr_end(addr
, end
);
1138 if (pgd_present(*pgd
))
1139 stage2_wp_puds(pgd
, addr
, next
);
1140 } while (pgd
++, addr
= next
, addr
!= end
);
1144 * kvm_mmu_wp_memory_region() - write protect stage 2 entries for memory slot
1145 * @kvm: The KVM pointer
1146 * @slot: The memory slot to write protect
1148 * Called to start logging dirty pages after memory region
1149 * KVM_MEM_LOG_DIRTY_PAGES operation is called. After this function returns
1150 * all present PMD and PTEs are write protected in the memory region.
1151 * Afterwards read of dirty page log can be called.
1153 * Acquires kvm_mmu_lock. Called with kvm->slots_lock mutex acquired,
1154 * serializing operations for VM memory regions.
1156 void kvm_mmu_wp_memory_region(struct kvm
*kvm
, int slot
)
1158 struct kvm_memslots
*slots
= kvm_memslots(kvm
);
1159 struct kvm_memory_slot
*memslot
= id_to_memslot(slots
, slot
);
1160 phys_addr_t start
= memslot
->base_gfn
<< PAGE_SHIFT
;
1161 phys_addr_t end
= (memslot
->base_gfn
+ memslot
->npages
) << PAGE_SHIFT
;
1163 spin_lock(&kvm
->mmu_lock
);
1164 stage2_wp_range(kvm
, start
, end
);
1165 spin_unlock(&kvm
->mmu_lock
);
1166 kvm_flush_remote_tlbs(kvm
);
1170 * kvm_mmu_write_protect_pt_masked() - write protect dirty pages
1171 * @kvm: The KVM pointer
1172 * @slot: The memory slot associated with mask
1173 * @gfn_offset: The gfn offset in memory slot
1174 * @mask: The mask of dirty pages at offset 'gfn_offset' in this memory
1175 * slot to be write protected
1177 * Walks bits set in mask write protects the associated pte's. Caller must
1178 * acquire kvm_mmu_lock.
1180 static void kvm_mmu_write_protect_pt_masked(struct kvm
*kvm
,
1181 struct kvm_memory_slot
*slot
,
1182 gfn_t gfn_offset
, unsigned long mask
)
1184 phys_addr_t base_gfn
= slot
->base_gfn
+ gfn_offset
;
1185 phys_addr_t start
= (base_gfn
+ __ffs(mask
)) << PAGE_SHIFT
;
1186 phys_addr_t end
= (base_gfn
+ __fls(mask
) + 1) << PAGE_SHIFT
;
1188 stage2_wp_range(kvm
, start
, end
);
1192 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1195 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1196 * enable dirty logging for them.
1198 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm
*kvm
,
1199 struct kvm_memory_slot
*slot
,
1200 gfn_t gfn_offset
, unsigned long mask
)
1202 kvm_mmu_write_protect_pt_masked(kvm
, slot
, gfn_offset
, mask
);
1205 static void coherent_cache_guest_page(struct kvm_vcpu
*vcpu
, pfn_t pfn
,
1206 unsigned long size
, bool uncached
)
1208 __coherent_cache_guest_page(vcpu
, pfn
, size
, uncached
);
1211 static int user_mem_abort(struct kvm_vcpu
*vcpu
, phys_addr_t fault_ipa
,
1212 struct kvm_memory_slot
*memslot
, unsigned long hva
,
1213 unsigned long fault_status
)
1216 bool write_fault
, writable
, hugetlb
= false, force_pte
= false;
1217 unsigned long mmu_seq
;
1218 gfn_t gfn
= fault_ipa
>> PAGE_SHIFT
;
1219 struct kvm
*kvm
= vcpu
->kvm
;
1220 struct kvm_mmu_memory_cache
*memcache
= &vcpu
->arch
.mmu_page_cache
;
1221 struct vm_area_struct
*vma
;
1223 pgprot_t mem_type
= PAGE_S2
;
1224 bool fault_ipa_uncached
;
1225 bool logging_active
= memslot_is_logging(memslot
);
1226 unsigned long flags
= 0;
1228 write_fault
= kvm_is_write_fault(vcpu
);
1229 if (fault_status
== FSC_PERM
&& !write_fault
) {
1230 kvm_err("Unexpected L2 read permission error\n");
1234 /* Let's check if we will get back a huge page backed by hugetlbfs */
1235 down_read(¤t
->mm
->mmap_sem
);
1236 vma
= find_vma_intersection(current
->mm
, hva
, hva
+ 1);
1237 if (unlikely(!vma
)) {
1238 kvm_err("Failed to find VMA for hva 0x%lx\n", hva
);
1239 up_read(¤t
->mm
->mmap_sem
);
1243 if (is_vm_hugetlb_page(vma
) && !logging_active
) {
1245 gfn
= (fault_ipa
& PMD_MASK
) >> PAGE_SHIFT
;
1248 * Pages belonging to memslots that don't have the same
1249 * alignment for userspace and IPA cannot be mapped using
1250 * block descriptors even if the pages belong to a THP for
1251 * the process, because the stage-2 block descriptor will
1252 * cover more than a single THP and we loose atomicity for
1253 * unmapping, updates, and splits of the THP or other pages
1254 * in the stage-2 block range.
1256 if ((memslot
->userspace_addr
& ~PMD_MASK
) !=
1257 ((memslot
->base_gfn
<< PAGE_SHIFT
) & ~PMD_MASK
))
1260 up_read(¤t
->mm
->mmap_sem
);
1262 /* We need minimum second+third level pages */
1263 ret
= mmu_topup_memory_cache(memcache
, KVM_MMU_CACHE_MIN_PAGES
,
1268 mmu_seq
= vcpu
->kvm
->mmu_notifier_seq
;
1270 * Ensure the read of mmu_notifier_seq happens before we call
1271 * gfn_to_pfn_prot (which calls get_user_pages), so that we don't risk
1272 * the page we just got a reference to gets unmapped before we have a
1273 * chance to grab the mmu_lock, which ensure that if the page gets
1274 * unmapped afterwards, the call to kvm_unmap_hva will take it away
1275 * from us again properly. This smp_rmb() interacts with the smp_wmb()
1276 * in kvm_mmu_notifier_invalidate_<page|range_end>.
1280 pfn
= gfn_to_pfn_prot(kvm
, gfn
, write_fault
, &writable
);
1281 if (is_error_pfn(pfn
))
1284 if (kvm_is_device_pfn(pfn
)) {
1285 mem_type
= PAGE_S2_DEVICE
;
1286 flags
|= KVM_S2PTE_FLAG_IS_IOMAP
;
1287 } else if (logging_active
) {
1289 * Faults on pages in a memslot with logging enabled
1290 * should not be mapped with huge pages (it introduces churn
1291 * and performance degradation), so force a pte mapping.
1294 flags
|= KVM_S2_FLAG_LOGGING_ACTIVE
;
1297 * Only actually map the page as writable if this was a write
1304 spin_lock(&kvm
->mmu_lock
);
1305 if (mmu_notifier_retry(kvm
, mmu_seq
))
1308 if (!hugetlb
&& !force_pte
)
1309 hugetlb
= transparent_hugepage_adjust(&pfn
, &fault_ipa
);
1311 fault_ipa_uncached
= memslot
->flags
& KVM_MEMSLOT_INCOHERENT
;
1314 pmd_t new_pmd
= pfn_pmd(pfn
, mem_type
);
1315 new_pmd
= pmd_mkhuge(new_pmd
);
1317 kvm_set_s2pmd_writable(&new_pmd
);
1318 kvm_set_pfn_dirty(pfn
);
1320 coherent_cache_guest_page(vcpu
, pfn
, PMD_SIZE
, fault_ipa_uncached
);
1321 ret
= stage2_set_pmd_huge(kvm
, memcache
, fault_ipa
, &new_pmd
);
1323 pte_t new_pte
= pfn_pte(pfn
, mem_type
);
1326 kvm_set_s2pte_writable(&new_pte
);
1327 kvm_set_pfn_dirty(pfn
);
1328 mark_page_dirty(kvm
, gfn
);
1330 coherent_cache_guest_page(vcpu
, pfn
, PAGE_SIZE
, fault_ipa_uncached
);
1331 ret
= stage2_set_pte(kvm
, memcache
, fault_ipa
, &new_pte
, flags
);
1335 spin_unlock(&kvm
->mmu_lock
);
1336 kvm_set_pfn_accessed(pfn
);
1337 kvm_release_pfn_clean(pfn
);
1342 * Resolve the access fault by making the page young again.
1343 * Note that because the faulting entry is guaranteed not to be
1344 * cached in the TLB, we don't need to invalidate anything.
1346 static void handle_access_fault(struct kvm_vcpu
*vcpu
, phys_addr_t fault_ipa
)
1351 bool pfn_valid
= false;
1353 trace_kvm_access_fault(fault_ipa
);
1355 spin_lock(&vcpu
->kvm
->mmu_lock
);
1357 pmd
= stage2_get_pmd(vcpu
->kvm
, NULL
, fault_ipa
);
1358 if (!pmd
|| pmd_none(*pmd
)) /* Nothing there */
1361 if (kvm_pmd_huge(*pmd
)) { /* THP, HugeTLB */
1362 *pmd
= pmd_mkyoung(*pmd
);
1363 pfn
= pmd_pfn(*pmd
);
1368 pte
= pte_offset_kernel(pmd
, fault_ipa
);
1369 if (pte_none(*pte
)) /* Nothing there either */
1372 *pte
= pte_mkyoung(*pte
); /* Just a page... */
1373 pfn
= pte_pfn(*pte
);
1376 spin_unlock(&vcpu
->kvm
->mmu_lock
);
1378 kvm_set_pfn_accessed(pfn
);
1382 * kvm_handle_guest_abort - handles all 2nd stage aborts
1383 * @vcpu: the VCPU pointer
1384 * @run: the kvm_run structure
1386 * Any abort that gets to the host is almost guaranteed to be caused by a
1387 * missing second stage translation table entry, which can mean that either the
1388 * guest simply needs more memory and we must allocate an appropriate page or it
1389 * can mean that the guest tried to access I/O memory, which is emulated by user
1390 * space. The distinction is based on the IPA causing the fault and whether this
1391 * memory region has been registered as standard RAM by user space.
1393 int kvm_handle_guest_abort(struct kvm_vcpu
*vcpu
, struct kvm_run
*run
)
1395 unsigned long fault_status
;
1396 phys_addr_t fault_ipa
;
1397 struct kvm_memory_slot
*memslot
;
1399 bool is_iabt
, write_fault
, writable
;
1403 is_iabt
= kvm_vcpu_trap_is_iabt(vcpu
);
1404 fault_ipa
= kvm_vcpu_get_fault_ipa(vcpu
);
1406 trace_kvm_guest_fault(*vcpu_pc(vcpu
), kvm_vcpu_get_hsr(vcpu
),
1407 kvm_vcpu_get_hfar(vcpu
), fault_ipa
);
1409 /* Check the stage-2 fault is trans. fault or write fault */
1410 fault_status
= kvm_vcpu_trap_get_fault_type(vcpu
);
1411 if (fault_status
!= FSC_FAULT
&& fault_status
!= FSC_PERM
&&
1412 fault_status
!= FSC_ACCESS
) {
1413 kvm_err("Unsupported FSC: EC=%#x xFSC=%#lx ESR_EL2=%#lx\n",
1414 kvm_vcpu_trap_get_class(vcpu
),
1415 (unsigned long)kvm_vcpu_trap_get_fault(vcpu
),
1416 (unsigned long)kvm_vcpu_get_hsr(vcpu
));
1420 idx
= srcu_read_lock(&vcpu
->kvm
->srcu
);
1422 gfn
= fault_ipa
>> PAGE_SHIFT
;
1423 memslot
= gfn_to_memslot(vcpu
->kvm
, gfn
);
1424 hva
= gfn_to_hva_memslot_prot(memslot
, gfn
, &writable
);
1425 write_fault
= kvm_is_write_fault(vcpu
);
1426 if (kvm_is_error_hva(hva
) || (write_fault
&& !writable
)) {
1428 /* Prefetch Abort on I/O address */
1429 kvm_inject_pabt(vcpu
, kvm_vcpu_get_hfar(vcpu
));
1435 * The IPA is reported as [MAX:12], so we need to
1436 * complement it with the bottom 12 bits from the
1437 * faulting VA. This is always 12 bits, irrespective
1440 fault_ipa
|= kvm_vcpu_get_hfar(vcpu
) & ((1 << 12) - 1);
1441 ret
= io_mem_abort(vcpu
, run
, fault_ipa
);
1445 /* Userspace should not be able to register out-of-bounds IPAs */
1446 VM_BUG_ON(fault_ipa
>= KVM_PHYS_SIZE
);
1448 if (fault_status
== FSC_ACCESS
) {
1449 handle_access_fault(vcpu
, fault_ipa
);
1454 ret
= user_mem_abort(vcpu
, fault_ipa
, memslot
, hva
, fault_status
);
1458 srcu_read_unlock(&vcpu
->kvm
->srcu
, idx
);
1462 static int handle_hva_to_gpa(struct kvm
*kvm
,
1463 unsigned long start
,
1465 int (*handler
)(struct kvm
*kvm
,
1466 gpa_t gpa
, void *data
),
1469 struct kvm_memslots
*slots
;
1470 struct kvm_memory_slot
*memslot
;
1473 slots
= kvm_memslots(kvm
);
1475 /* we only care about the pages that the guest sees */
1476 kvm_for_each_memslot(memslot
, slots
) {
1477 unsigned long hva_start
, hva_end
;
1480 hva_start
= max(start
, memslot
->userspace_addr
);
1481 hva_end
= min(end
, memslot
->userspace_addr
+
1482 (memslot
->npages
<< PAGE_SHIFT
));
1483 if (hva_start
>= hva_end
)
1487 * {gfn(page) | page intersects with [hva_start, hva_end)} =
1488 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
1490 gfn
= hva_to_gfn_memslot(hva_start
, memslot
);
1491 gfn_end
= hva_to_gfn_memslot(hva_end
+ PAGE_SIZE
- 1, memslot
);
1493 for (; gfn
< gfn_end
; ++gfn
) {
1494 gpa_t gpa
= gfn
<< PAGE_SHIFT
;
1495 ret
|= handler(kvm
, gpa
, data
);
1502 static int kvm_unmap_hva_handler(struct kvm
*kvm
, gpa_t gpa
, void *data
)
1504 unmap_stage2_range(kvm
, gpa
, PAGE_SIZE
);
1508 int kvm_unmap_hva(struct kvm
*kvm
, unsigned long hva
)
1510 unsigned long end
= hva
+ PAGE_SIZE
;
1515 trace_kvm_unmap_hva(hva
);
1516 handle_hva_to_gpa(kvm
, hva
, end
, &kvm_unmap_hva_handler
, NULL
);
1520 int kvm_unmap_hva_range(struct kvm
*kvm
,
1521 unsigned long start
, unsigned long end
)
1526 trace_kvm_unmap_hva_range(start
, end
);
1527 handle_hva_to_gpa(kvm
, start
, end
, &kvm_unmap_hva_handler
, NULL
);
1531 static int kvm_set_spte_handler(struct kvm
*kvm
, gpa_t gpa
, void *data
)
1533 pte_t
*pte
= (pte_t
*)data
;
1536 * We can always call stage2_set_pte with KVM_S2PTE_FLAG_LOGGING_ACTIVE
1537 * flag clear because MMU notifiers will have unmapped a huge PMD before
1538 * calling ->change_pte() (which in turn calls kvm_set_spte_hva()) and
1539 * therefore stage2_set_pte() never needs to clear out a huge PMD
1540 * through this calling path.
1542 stage2_set_pte(kvm
, NULL
, gpa
, pte
, 0);
1547 void kvm_set_spte_hva(struct kvm
*kvm
, unsigned long hva
, pte_t pte
)
1549 unsigned long end
= hva
+ PAGE_SIZE
;
1555 trace_kvm_set_spte_hva(hva
);
1556 stage2_pte
= pfn_pte(pte_pfn(pte
), PAGE_S2
);
1557 handle_hva_to_gpa(kvm
, hva
, end
, &kvm_set_spte_handler
, &stage2_pte
);
1560 static int kvm_age_hva_handler(struct kvm
*kvm
, gpa_t gpa
, void *data
)
1565 pmd
= stage2_get_pmd(kvm
, NULL
, gpa
);
1566 if (!pmd
|| pmd_none(*pmd
)) /* Nothing there */
1569 if (kvm_pmd_huge(*pmd
)) { /* THP, HugeTLB */
1570 if (pmd_young(*pmd
)) {
1571 *pmd
= pmd_mkold(*pmd
);
1578 pte
= pte_offset_kernel(pmd
, gpa
);
1582 if (pte_young(*pte
)) {
1583 *pte
= pte_mkold(*pte
); /* Just a page... */
1590 static int kvm_test_age_hva_handler(struct kvm
*kvm
, gpa_t gpa
, void *data
)
1595 pmd
= stage2_get_pmd(kvm
, NULL
, gpa
);
1596 if (!pmd
|| pmd_none(*pmd
)) /* Nothing there */
1599 if (kvm_pmd_huge(*pmd
)) /* THP, HugeTLB */
1600 return pmd_young(*pmd
);
1602 pte
= pte_offset_kernel(pmd
, gpa
);
1603 if (!pte_none(*pte
)) /* Just a page... */
1604 return pte_young(*pte
);
1609 int kvm_age_hva(struct kvm
*kvm
, unsigned long start
, unsigned long end
)
1611 trace_kvm_age_hva(start
, end
);
1612 return handle_hva_to_gpa(kvm
, start
, end
, kvm_age_hva_handler
, NULL
);
1615 int kvm_test_age_hva(struct kvm
*kvm
, unsigned long hva
)
1617 trace_kvm_test_age_hva(hva
);
1618 return handle_hva_to_gpa(kvm
, hva
, hva
, kvm_test_age_hva_handler
, NULL
);
1621 void kvm_mmu_free_memory_caches(struct kvm_vcpu
*vcpu
)
1623 mmu_free_memory_cache(&vcpu
->arch
.mmu_page_cache
);
1626 phys_addr_t
kvm_mmu_get_httbr(void)
1628 if (__kvm_cpu_uses_extended_idmap())
1629 return virt_to_phys(merged_hyp_pgd
);
1631 return virt_to_phys(hyp_pgd
);
1634 phys_addr_t
kvm_mmu_get_boot_httbr(void)
1636 if (__kvm_cpu_uses_extended_idmap())
1637 return virt_to_phys(merged_hyp_pgd
);
1639 return virt_to_phys(boot_hyp_pgd
);
1642 phys_addr_t
kvm_get_idmap_vector(void)
1644 return hyp_idmap_vector
;
1647 int kvm_mmu_init(void)
1651 hyp_idmap_start
= kvm_virt_to_phys(__hyp_idmap_text_start
);
1652 hyp_idmap_end
= kvm_virt_to_phys(__hyp_idmap_text_end
);
1653 hyp_idmap_vector
= kvm_virt_to_phys(__kvm_hyp_init
);
1656 * We rely on the linker script to ensure at build time that the HYP
1657 * init code does not cross a page boundary.
1659 BUG_ON((hyp_idmap_start
^ (hyp_idmap_end
- 1)) & PAGE_MASK
);
1661 hyp_pgd
= (pgd_t
*)__get_free_pages(GFP_KERNEL
| __GFP_ZERO
, hyp_pgd_order
);
1662 boot_hyp_pgd
= (pgd_t
*)__get_free_pages(GFP_KERNEL
| __GFP_ZERO
, hyp_pgd_order
);
1664 if (!hyp_pgd
|| !boot_hyp_pgd
) {
1665 kvm_err("Hyp mode PGD not allocated\n");
1670 /* Create the idmap in the boot page tables */
1671 err
= __create_hyp_mappings(boot_hyp_pgd
,
1672 hyp_idmap_start
, hyp_idmap_end
,
1673 __phys_to_pfn(hyp_idmap_start
),
1677 kvm_err("Failed to idmap %lx-%lx\n",
1678 hyp_idmap_start
, hyp_idmap_end
);
1682 if (__kvm_cpu_uses_extended_idmap()) {
1683 merged_hyp_pgd
= (pgd_t
*)__get_free_page(GFP_KERNEL
| __GFP_ZERO
);
1684 if (!merged_hyp_pgd
) {
1685 kvm_err("Failed to allocate extra HYP pgd\n");
1688 __kvm_extend_hypmap(boot_hyp_pgd
, hyp_pgd
, merged_hyp_pgd
,
1693 /* Map the very same page at the trampoline VA */
1694 err
= __create_hyp_mappings(boot_hyp_pgd
,
1695 TRAMPOLINE_VA
, TRAMPOLINE_VA
+ PAGE_SIZE
,
1696 __phys_to_pfn(hyp_idmap_start
),
1699 kvm_err("Failed to map trampoline @%lx into boot HYP pgd\n",
1704 /* Map the same page again into the runtime page tables */
1705 err
= __create_hyp_mappings(hyp_pgd
,
1706 TRAMPOLINE_VA
, TRAMPOLINE_VA
+ PAGE_SIZE
,
1707 __phys_to_pfn(hyp_idmap_start
),
1710 kvm_err("Failed to map trampoline @%lx into runtime HYP pgd\n",
1721 void kvm_arch_commit_memory_region(struct kvm
*kvm
,
1722 const struct kvm_userspace_memory_region
*mem
,
1723 const struct kvm_memory_slot
*old
,
1724 const struct kvm_memory_slot
*new,
1725 enum kvm_mr_change change
)
1728 * At this point memslot has been committed and there is an
1729 * allocated dirty_bitmap[], dirty pages will be be tracked while the
1730 * memory slot is write protected.
1732 if (change
!= KVM_MR_DELETE
&& mem
->flags
& KVM_MEM_LOG_DIRTY_PAGES
)
1733 kvm_mmu_wp_memory_region(kvm
, mem
->slot
);
1736 int kvm_arch_prepare_memory_region(struct kvm
*kvm
,
1737 struct kvm_memory_slot
*memslot
,
1738 const struct kvm_userspace_memory_region
*mem
,
1739 enum kvm_mr_change change
)
1741 hva_t hva
= mem
->userspace_addr
;
1742 hva_t reg_end
= hva
+ mem
->memory_size
;
1743 bool writable
= !(mem
->flags
& KVM_MEM_READONLY
);
1746 if (change
!= KVM_MR_CREATE
&& change
!= KVM_MR_MOVE
&&
1747 change
!= KVM_MR_FLAGS_ONLY
)
1751 * Prevent userspace from creating a memory region outside of the IPA
1752 * space addressable by the KVM guest IPA space.
1754 if (memslot
->base_gfn
+ memslot
->npages
>=
1755 (KVM_PHYS_SIZE
>> PAGE_SHIFT
))
1759 * A memory region could potentially cover multiple VMAs, and any holes
1760 * between them, so iterate over all of them to find out if we can map
1761 * any of them right now.
1763 * +--------------------------------------------+
1764 * +---------------+----------------+ +----------------+
1765 * | : VMA 1 | VMA 2 | | VMA 3 : |
1766 * +---------------+----------------+ +----------------+
1768 * +--------------------------------------------+
1771 struct vm_area_struct
*vma
= find_vma(current
->mm
, hva
);
1772 hva_t vm_start
, vm_end
;
1774 if (!vma
|| vma
->vm_start
>= reg_end
)
1778 * Mapping a read-only VMA is only allowed if the
1779 * memory region is configured as read-only.
1781 if (writable
&& !(vma
->vm_flags
& VM_WRITE
)) {
1787 * Take the intersection of this VMA with the memory region
1789 vm_start
= max(hva
, vma
->vm_start
);
1790 vm_end
= min(reg_end
, vma
->vm_end
);
1792 if (vma
->vm_flags
& VM_PFNMAP
) {
1793 gpa_t gpa
= mem
->guest_phys_addr
+
1794 (vm_start
- mem
->userspace_addr
);
1795 phys_addr_t pa
= (vma
->vm_pgoff
<< PAGE_SHIFT
) +
1796 vm_start
- vma
->vm_start
;
1798 /* IO region dirty page logging not allowed */
1799 if (memslot
->flags
& KVM_MEM_LOG_DIRTY_PAGES
)
1802 ret
= kvm_phys_addr_ioremap(kvm
, gpa
, pa
,
1809 } while (hva
< reg_end
);
1811 if (change
== KVM_MR_FLAGS_ONLY
)
1814 spin_lock(&kvm
->mmu_lock
);
1816 unmap_stage2_range(kvm
, mem
->guest_phys_addr
, mem
->memory_size
);
1818 stage2_flush_memslot(kvm
, memslot
);
1819 spin_unlock(&kvm
->mmu_lock
);
1823 void kvm_arch_free_memslot(struct kvm
*kvm
, struct kvm_memory_slot
*free
,
1824 struct kvm_memory_slot
*dont
)
1828 int kvm_arch_create_memslot(struct kvm
*kvm
, struct kvm_memory_slot
*slot
,
1829 unsigned long npages
)
1832 * Readonly memslots are not incoherent with the caches by definition,
1833 * but in practice, they are used mostly to emulate ROMs or NOR flashes
1834 * that the guest may consider devices and hence map as uncached.
1835 * To prevent incoherency issues in these cases, tag all readonly
1836 * regions as incoherent.
1838 if (slot
->flags
& KVM_MEM_READONLY
)
1839 slot
->flags
|= KVM_MEMSLOT_INCOHERENT
;
1843 void kvm_arch_memslots_updated(struct kvm
*kvm
, struct kvm_memslots
*slots
)
1847 void kvm_arch_flush_shadow_all(struct kvm
*kvm
)
1851 void kvm_arch_flush_shadow_memslot(struct kvm
*kvm
,
1852 struct kvm_memory_slot
*slot
)
1854 gpa_t gpa
= slot
->base_gfn
<< PAGE_SHIFT
;
1855 phys_addr_t size
= slot
->npages
<< PAGE_SHIFT
;
1857 spin_lock(&kvm
->mmu_lock
);
1858 unmap_stage2_range(kvm
, gpa
, size
);
1859 spin_unlock(&kvm
->mmu_lock
);
1863 * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
1866 * - S/W ops are local to a CPU (not broadcast)
1867 * - We have line migration behind our back (speculation)
1868 * - System caches don't support S/W at all (damn!)
1870 * In the face of the above, the best we can do is to try and convert
1871 * S/W ops to VA ops. Because the guest is not allowed to infer the
1872 * S/W to PA mapping, it can only use S/W to nuke the whole cache,
1873 * which is a rather good thing for us.
1875 * Also, it is only used when turning caches on/off ("The expected
1876 * usage of the cache maintenance instructions that operate by set/way
1877 * is associated with the cache maintenance instructions associated
1878 * with the powerdown and powerup of caches, if this is required by
1879 * the implementation.").
1881 * We use the following policy:
1883 * - If we trap a S/W operation, we enable VM trapping to detect
1884 * caches being turned on/off, and do a full clean.
1886 * - We flush the caches on both caches being turned on and off.
1888 * - Once the caches are enabled, we stop trapping VM ops.
1890 void kvm_set_way_flush(struct kvm_vcpu
*vcpu
)
1892 unsigned long hcr
= vcpu_get_hcr(vcpu
);
1895 * If this is the first time we do a S/W operation
1896 * (i.e. HCR_TVM not set) flush the whole memory, and set the
1899 * Otherwise, rely on the VM trapping to wait for the MMU +
1900 * Caches to be turned off. At that point, we'll be able to
1901 * clean the caches again.
1903 if (!(hcr
& HCR_TVM
)) {
1904 trace_kvm_set_way_flush(*vcpu_pc(vcpu
),
1905 vcpu_has_cache_enabled(vcpu
));
1906 stage2_flush_vm(vcpu
->kvm
);
1907 vcpu_set_hcr(vcpu
, hcr
| HCR_TVM
);
1911 void kvm_toggle_cache(struct kvm_vcpu
*vcpu
, bool was_enabled
)
1913 bool now_enabled
= vcpu_has_cache_enabled(vcpu
);
1916 * If switching the MMU+caches on, need to invalidate the caches.
1917 * If switching it off, need to clean the caches.
1918 * Clean + invalidate does the trick always.
1920 if (now_enabled
!= was_enabled
)
1921 stage2_flush_vm(vcpu
->kvm
);
1923 /* Caches are now on, stop trapping VM ops (until a S/W op) */
1925 vcpu_set_hcr(vcpu
, vcpu_get_hcr(vcpu
) & ~HCR_TVM
);
1927 trace_kvm_toggle_cache(*vcpu_pc(vcpu
), was_enabled
, now_enabled
);