2 * zsmalloc memory allocator
4 * Copyright (C) 2011 Nitin Gupta
5 * Copyright (C) 2012, 2013 Minchan Kim
7 * This code is released using a dual license strategy: BSD/GPL
8 * You can choose the license that better fits your requirements.
10 * Released under the terms of 3-clause BSD License
11 * Released under the terms of GNU General Public License Version 2.0
15 * Following is how we use various fields and flags of underlying
16 * struct page(s) to form a zspage.
18 * Usage of struct page fields:
19 * page->first_page: points to the first component (0-order) page
20 * page->index (union with page->freelist): offset of the first object
21 * starting in this page. For the first page, this is
22 * always 0, so we use this field (aka freelist) to point
23 * to the first free object in zspage.
24 * page->lru: links together all component pages (except the first page)
27 * For _first_ page only:
29 * page->private (union with page->first_page): refers to the
30 * component page after the first page
31 * If the page is first_page for huge object, it stores handle.
32 * Look at size_class->huge.
33 * page->freelist: points to the first free object in zspage.
34 * Free objects are linked together using in-place
36 * page->objects: maximum number of objects we can store in this
37 * zspage (class->zspage_order * PAGE_SIZE / class->size)
38 * page->lru: links together first pages of various zspages.
39 * Basically forming list of zspages in a fullness group.
40 * page->mapping: class index and fullness group of the zspage
42 * Usage of struct page flags:
43 * PG_private: identifies the first component page
44 * PG_private2: identifies the last component page
48 #include <linux/module.h>
49 #include <linux/kernel.h>
50 #include <linux/sched.h>
51 #include <linux/bitops.h>
52 #include <linux/errno.h>
53 #include <linux/highmem.h>
54 #include <linux/string.h>
55 #include <linux/slab.h>
56 #include <asm/tlbflush.h>
57 #include <asm/pgtable.h>
58 #include <linux/cpumask.h>
59 #include <linux/cpu.h>
60 #include <linux/vmalloc.h>
61 #include <linux/hardirq.h>
62 #include <linux/spinlock.h>
63 #include <linux/types.h>
64 #include <linux/debugfs.h>
65 #include <linux/zsmalloc.h>
66 #include <linux/zpool.h>
69 * This must be power of 2 and greater than of equal to sizeof(link_free).
70 * These two conditions ensure that any 'struct link_free' itself doesn't
71 * span more than 1 page which avoids complex case of mapping 2 pages simply
72 * to restore link_free pointer values.
77 * A single 'zspage' is composed of up to 2^N discontiguous 0-order (single)
78 * pages. ZS_MAX_ZSPAGE_ORDER defines upper limit on N.
80 #define ZS_MAX_ZSPAGE_ORDER 2
81 #define ZS_MAX_PAGES_PER_ZSPAGE (_AC(1, UL) << ZS_MAX_ZSPAGE_ORDER)
83 #define ZS_HANDLE_SIZE (sizeof(unsigned long))
86 * Object location (<PFN>, <obj_idx>) is encoded as
87 * as single (unsigned long) handle value.
89 * Note that object index <obj_idx> is relative to system
90 * page <PFN> it is stored in, so for each sub-page belonging
91 * to a zspage, obj_idx starts with 0.
93 * This is made more complicated by various memory models and PAE.
96 #ifndef MAX_PHYSMEM_BITS
97 #ifdef CONFIG_HIGHMEM64G
98 #define MAX_PHYSMEM_BITS 36
99 #else /* !CONFIG_HIGHMEM64G */
101 * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just
104 #define MAX_PHYSMEM_BITS BITS_PER_LONG
107 #define _PFN_BITS (MAX_PHYSMEM_BITS - PAGE_SHIFT)
110 * Memory for allocating for handle keeps object position by
111 * encoding <page, obj_idx> and the encoded value has a room
112 * in least bit(ie, look at obj_to_location).
113 * We use the bit to synchronize between object access by
114 * user and migration.
116 #define HANDLE_PIN_BIT 0
119 * Head in allocated object should have OBJ_ALLOCATED_TAG
120 * to identify the object was allocated or not.
121 * It's okay to add the status bit in the least bit because
122 * header keeps handle which is 4byte-aligned address so we
123 * have room for two bit at least.
125 #define OBJ_ALLOCATED_TAG 1
126 #define OBJ_TAG_BITS 1
127 #define OBJ_INDEX_BITS (BITS_PER_LONG - _PFN_BITS - OBJ_TAG_BITS)
128 #define OBJ_INDEX_MASK ((_AC(1, UL) << OBJ_INDEX_BITS) - 1)
130 #define MAX(a, b) ((a) >= (b) ? (a) : (b))
131 /* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */
132 #define ZS_MIN_ALLOC_SIZE \
133 MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
134 /* each chunk includes extra space to keep handle */
135 #define ZS_MAX_ALLOC_SIZE PAGE_SIZE
138 * On systems with 4K page size, this gives 255 size classes! There is a
140 * - Large number of size classes is potentially wasteful as free page are
141 * spread across these classes
142 * - Small number of size classes causes large internal fragmentation
143 * - Probably its better to use specific size classes (empirically
144 * determined). NOTE: all those class sizes must be set as multiple of
145 * ZS_ALIGN to make sure link_free itself never has to span 2 pages.
147 * ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN
150 #define ZS_SIZE_CLASS_DELTA (PAGE_SIZE >> 8)
153 * We do not maintain any list for completely empty or full pages
155 enum fullness_group
{
158 _ZS_NR_FULLNESS_GROUPS
,
172 #ifdef CONFIG_ZSMALLOC_STAT
174 static struct dentry
*zs_stat_root
;
176 struct zs_size_stat
{
177 unsigned long objs
[NR_ZS_STAT_TYPE
];
183 * number of size_classes
185 static int zs_size_classes
;
188 * We assign a page to ZS_ALMOST_EMPTY fullness group when:
190 * n = number of allocated objects
191 * N = total number of objects zspage can store
192 * f = fullness_threshold_frac
194 * Similarly, we assign zspage to:
195 * ZS_ALMOST_FULL when n > N / f
196 * ZS_EMPTY when n == 0
197 * ZS_FULL when n == N
199 * (see: fix_fullness_group())
201 static const int fullness_threshold_frac
= 4;
205 * Size of objects stored in this class. Must be multiple
211 /* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */
212 int pages_per_zspage
;
213 /* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */
216 #ifdef CONFIG_ZSMALLOC_STAT
217 struct zs_size_stat stats
;
222 struct page
*fullness_list
[_ZS_NR_FULLNESS_GROUPS
];
226 * Placed within free objects to form a singly linked list.
227 * For every zspage, first_page->freelist gives head of this list.
229 * This must be power of 2 and less than or equal to ZS_ALIGN
234 * Position of next free chunk (encodes <PFN, obj_idx>)
235 * It's valid for non-allocated object
239 * Handle of allocated object.
241 unsigned long handle
;
248 struct size_class
**size_class
;
249 struct kmem_cache
*handle_cachep
;
251 gfp_t flags
; /* allocation flags used when growing pool */
252 atomic_long_t pages_allocated
;
254 #ifdef CONFIG_ZSMALLOC_STAT
255 struct dentry
*stat_dentry
;
260 * A zspage's class index and fullness group
261 * are encoded in its (first)page->mapping
263 #define CLASS_IDX_BITS 28
264 #define FULLNESS_BITS 4
265 #define CLASS_IDX_MASK ((1 << CLASS_IDX_BITS) - 1)
266 #define FULLNESS_MASK ((1 << FULLNESS_BITS) - 1)
268 struct mapping_area
{
269 #ifdef CONFIG_PGTABLE_MAPPING
270 struct vm_struct
*vm
; /* vm area for mapping object that span pages */
272 char *vm_buf
; /* copy buffer for objects that span pages */
274 char *vm_addr
; /* address of kmap_atomic()'ed pages */
275 enum zs_mapmode vm_mm
; /* mapping mode */
279 static int create_handle_cache(struct zs_pool
*pool
)
281 pool
->handle_cachep
= kmem_cache_create("zs_handle", ZS_HANDLE_SIZE
,
283 return pool
->handle_cachep
? 0 : 1;
286 static void destroy_handle_cache(struct zs_pool
*pool
)
288 if (pool
->handle_cachep
)
289 kmem_cache_destroy(pool
->handle_cachep
);
292 static unsigned long alloc_handle(struct zs_pool
*pool
)
294 return (unsigned long)kmem_cache_alloc(pool
->handle_cachep
,
295 pool
->flags
& ~__GFP_HIGHMEM
);
298 static void free_handle(struct zs_pool
*pool
, unsigned long handle
)
300 kmem_cache_free(pool
->handle_cachep
, (void *)handle
);
303 static void record_obj(unsigned long handle
, unsigned long obj
)
305 *(unsigned long *)handle
= obj
;
312 static void *zs_zpool_create(char *name
, gfp_t gfp
, struct zpool_ops
*zpool_ops
,
315 return zs_create_pool(name
, gfp
);
318 static void zs_zpool_destroy(void *pool
)
320 zs_destroy_pool(pool
);
323 static int zs_zpool_malloc(void *pool
, size_t size
, gfp_t gfp
,
324 unsigned long *handle
)
326 *handle
= zs_malloc(pool
, size
);
327 return *handle
? 0 : -1;
329 static void zs_zpool_free(void *pool
, unsigned long handle
)
331 zs_free(pool
, handle
);
334 static int zs_zpool_shrink(void *pool
, unsigned int pages
,
335 unsigned int *reclaimed
)
340 static void *zs_zpool_map(void *pool
, unsigned long handle
,
341 enum zpool_mapmode mm
)
343 enum zs_mapmode zs_mm
;
352 case ZPOOL_MM_RW
: /* fallthru */
358 return zs_map_object(pool
, handle
, zs_mm
);
360 static void zs_zpool_unmap(void *pool
, unsigned long handle
)
362 zs_unmap_object(pool
, handle
);
365 static u64
zs_zpool_total_size(void *pool
)
367 return zs_get_total_pages(pool
) << PAGE_SHIFT
;
370 static struct zpool_driver zs_zpool_driver
= {
372 .owner
= THIS_MODULE
,
373 .create
= zs_zpool_create
,
374 .destroy
= zs_zpool_destroy
,
375 .malloc
= zs_zpool_malloc
,
376 .free
= zs_zpool_free
,
377 .shrink
= zs_zpool_shrink
,
379 .unmap
= zs_zpool_unmap
,
380 .total_size
= zs_zpool_total_size
,
383 MODULE_ALIAS("zpool-zsmalloc");
384 #endif /* CONFIG_ZPOOL */
386 static unsigned int get_maxobj_per_zspage(int size
, int pages_per_zspage
)
388 return pages_per_zspage
* PAGE_SIZE
/ size
;
391 /* per-cpu VM mapping areas for zspage accesses that cross page boundaries */
392 static DEFINE_PER_CPU(struct mapping_area
, zs_map_area
);
394 static int is_first_page(struct page
*page
)
396 return PagePrivate(page
);
399 static int is_last_page(struct page
*page
)
401 return PagePrivate2(page
);
404 static void get_zspage_mapping(struct page
*page
, unsigned int *class_idx
,
405 enum fullness_group
*fullness
)
408 BUG_ON(!is_first_page(page
));
410 m
= (unsigned long)page
->mapping
;
411 *fullness
= m
& FULLNESS_MASK
;
412 *class_idx
= (m
>> FULLNESS_BITS
) & CLASS_IDX_MASK
;
415 static void set_zspage_mapping(struct page
*page
, unsigned int class_idx
,
416 enum fullness_group fullness
)
419 BUG_ON(!is_first_page(page
));
421 m
= ((class_idx
& CLASS_IDX_MASK
) << FULLNESS_BITS
) |
422 (fullness
& FULLNESS_MASK
);
423 page
->mapping
= (struct address_space
*)m
;
427 * zsmalloc divides the pool into various size classes where each
428 * class maintains a list of zspages where each zspage is divided
429 * into equal sized chunks. Each allocation falls into one of these
430 * classes depending on its size. This function returns index of the
431 * size class which has chunk size big enough to hold the give size.
433 static int get_size_class_index(int size
)
437 if (likely(size
> ZS_MIN_ALLOC_SIZE
))
438 idx
= DIV_ROUND_UP(size
- ZS_MIN_ALLOC_SIZE
,
439 ZS_SIZE_CLASS_DELTA
);
441 return min(zs_size_classes
- 1, idx
);
444 #ifdef CONFIG_ZSMALLOC_STAT
446 static inline void zs_stat_inc(struct size_class
*class,
447 enum zs_stat_type type
, unsigned long cnt
)
449 class->stats
.objs
[type
] += cnt
;
452 static inline void zs_stat_dec(struct size_class
*class,
453 enum zs_stat_type type
, unsigned long cnt
)
455 class->stats
.objs
[type
] -= cnt
;
458 static inline unsigned long zs_stat_get(struct size_class
*class,
459 enum zs_stat_type type
)
461 return class->stats
.objs
[type
];
464 static int __init
zs_stat_init(void)
466 if (!debugfs_initialized())
469 zs_stat_root
= debugfs_create_dir("zsmalloc", NULL
);
476 static void __exit
zs_stat_exit(void)
478 debugfs_remove_recursive(zs_stat_root
);
481 static int zs_stats_size_show(struct seq_file
*s
, void *v
)
484 struct zs_pool
*pool
= s
->private;
485 struct size_class
*class;
487 unsigned long class_almost_full
, class_almost_empty
;
488 unsigned long obj_allocated
, obj_used
, pages_used
;
489 unsigned long total_class_almost_full
= 0, total_class_almost_empty
= 0;
490 unsigned long total_objs
= 0, total_used_objs
= 0, total_pages
= 0;
492 seq_printf(s
, " %5s %5s %11s %12s %13s %10s %10s %16s\n",
493 "class", "size", "almost_full", "almost_empty",
494 "obj_allocated", "obj_used", "pages_used",
497 for (i
= 0; i
< zs_size_classes
; i
++) {
498 class = pool
->size_class
[i
];
500 if (class->index
!= i
)
503 spin_lock(&class->lock
);
504 class_almost_full
= zs_stat_get(class, CLASS_ALMOST_FULL
);
505 class_almost_empty
= zs_stat_get(class, CLASS_ALMOST_EMPTY
);
506 obj_allocated
= zs_stat_get(class, OBJ_ALLOCATED
);
507 obj_used
= zs_stat_get(class, OBJ_USED
);
508 spin_unlock(&class->lock
);
510 objs_per_zspage
= get_maxobj_per_zspage(class->size
,
511 class->pages_per_zspage
);
512 pages_used
= obj_allocated
/ objs_per_zspage
*
513 class->pages_per_zspage
;
515 seq_printf(s
, " %5u %5u %11lu %12lu %13lu %10lu %10lu %16d\n",
516 i
, class->size
, class_almost_full
, class_almost_empty
,
517 obj_allocated
, obj_used
, pages_used
,
518 class->pages_per_zspage
);
520 total_class_almost_full
+= class_almost_full
;
521 total_class_almost_empty
+= class_almost_empty
;
522 total_objs
+= obj_allocated
;
523 total_used_objs
+= obj_used
;
524 total_pages
+= pages_used
;
528 seq_printf(s
, " %5s %5s %11lu %12lu %13lu %10lu %10lu\n",
529 "Total", "", total_class_almost_full
,
530 total_class_almost_empty
, total_objs
,
531 total_used_objs
, total_pages
);
536 static int zs_stats_size_open(struct inode
*inode
, struct file
*file
)
538 return single_open(file
, zs_stats_size_show
, inode
->i_private
);
541 static const struct file_operations zs_stat_size_ops
= {
542 .open
= zs_stats_size_open
,
545 .release
= single_release
,
548 static int zs_pool_stat_create(char *name
, struct zs_pool
*pool
)
550 struct dentry
*entry
;
555 entry
= debugfs_create_dir(name
, zs_stat_root
);
557 pr_warn("debugfs dir <%s> creation failed\n", name
);
560 pool
->stat_dentry
= entry
;
562 entry
= debugfs_create_file("classes", S_IFREG
| S_IRUGO
,
563 pool
->stat_dentry
, pool
, &zs_stat_size_ops
);
565 pr_warn("%s: debugfs file entry <%s> creation failed\n",
573 static void zs_pool_stat_destroy(struct zs_pool
*pool
)
575 debugfs_remove_recursive(pool
->stat_dentry
);
578 #else /* CONFIG_ZSMALLOC_STAT */
580 static inline void zs_stat_inc(struct size_class
*class,
581 enum zs_stat_type type
, unsigned long cnt
)
585 static inline void zs_stat_dec(struct size_class
*class,
586 enum zs_stat_type type
, unsigned long cnt
)
590 static inline unsigned long zs_stat_get(struct size_class
*class,
591 enum zs_stat_type type
)
596 static int __init
zs_stat_init(void)
601 static void __exit
zs_stat_exit(void)
605 static inline int zs_pool_stat_create(char *name
, struct zs_pool
*pool
)
610 static inline void zs_pool_stat_destroy(struct zs_pool
*pool
)
618 * For each size class, zspages are divided into different groups
619 * depending on how "full" they are. This was done so that we could
620 * easily find empty or nearly empty zspages when we try to shrink
621 * the pool (not yet implemented). This function returns fullness
622 * status of the given page.
624 static enum fullness_group
get_fullness_group(struct page
*page
)
626 int inuse
, max_objects
;
627 enum fullness_group fg
;
628 BUG_ON(!is_first_page(page
));
631 max_objects
= page
->objects
;
635 else if (inuse
== max_objects
)
637 else if (inuse
<= 3 * max_objects
/ fullness_threshold_frac
)
638 fg
= ZS_ALMOST_EMPTY
;
646 * Each size class maintains various freelists and zspages are assigned
647 * to one of these freelists based on the number of live objects they
648 * have. This functions inserts the given zspage into the freelist
649 * identified by <class, fullness_group>.
651 static void insert_zspage(struct page
*page
, struct size_class
*class,
652 enum fullness_group fullness
)
656 BUG_ON(!is_first_page(page
));
658 if (fullness
>= _ZS_NR_FULLNESS_GROUPS
)
661 head
= &class->fullness_list
[fullness
];
663 list_add_tail(&page
->lru
, &(*head
)->lru
);
666 zs_stat_inc(class, fullness
== ZS_ALMOST_EMPTY
?
667 CLASS_ALMOST_EMPTY
: CLASS_ALMOST_FULL
, 1);
671 * This function removes the given zspage from the freelist identified
672 * by <class, fullness_group>.
674 static void remove_zspage(struct page
*page
, struct size_class
*class,
675 enum fullness_group fullness
)
679 BUG_ON(!is_first_page(page
));
681 if (fullness
>= _ZS_NR_FULLNESS_GROUPS
)
684 head
= &class->fullness_list
[fullness
];
686 if (list_empty(&(*head
)->lru
))
688 else if (*head
== page
)
689 *head
= (struct page
*)list_entry((*head
)->lru
.next
,
692 list_del_init(&page
->lru
);
693 zs_stat_dec(class, fullness
== ZS_ALMOST_EMPTY
?
694 CLASS_ALMOST_EMPTY
: CLASS_ALMOST_FULL
, 1);
698 * Each size class maintains zspages in different fullness groups depending
699 * on the number of live objects they contain. When allocating or freeing
700 * objects, the fullness status of the page can change, say, from ALMOST_FULL
701 * to ALMOST_EMPTY when freeing an object. This function checks if such
702 * a status change has occurred for the given page and accordingly moves the
703 * page from the freelist of the old fullness group to that of the new
706 static enum fullness_group
fix_fullness_group(struct size_class
*class,
710 enum fullness_group currfg
, newfg
;
712 BUG_ON(!is_first_page(page
));
714 get_zspage_mapping(page
, &class_idx
, &currfg
);
715 newfg
= get_fullness_group(page
);
719 remove_zspage(page
, class, currfg
);
720 insert_zspage(page
, class, newfg
);
721 set_zspage_mapping(page
, class_idx
, newfg
);
728 * We have to decide on how many pages to link together
729 * to form a zspage for each size class. This is important
730 * to reduce wastage due to unusable space left at end of
731 * each zspage which is given as:
732 * wastage = Zp % class_size
733 * usage = Zp - wastage
734 * where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ...
736 * For example, for size class of 3/8 * PAGE_SIZE, we should
737 * link together 3 PAGE_SIZE sized pages to form a zspage
738 * since then we can perfectly fit in 8 such objects.
740 static int get_pages_per_zspage(int class_size
)
742 int i
, max_usedpc
= 0;
743 /* zspage order which gives maximum used size per KB */
744 int max_usedpc_order
= 1;
746 for (i
= 1; i
<= ZS_MAX_PAGES_PER_ZSPAGE
; i
++) {
750 zspage_size
= i
* PAGE_SIZE
;
751 waste
= zspage_size
% class_size
;
752 usedpc
= (zspage_size
- waste
) * 100 / zspage_size
;
754 if (usedpc
> max_usedpc
) {
756 max_usedpc_order
= i
;
760 return max_usedpc_order
;
764 * A single 'zspage' is composed of many system pages which are
765 * linked together using fields in struct page. This function finds
766 * the first/head page, given any component page of a zspage.
768 static struct page
*get_first_page(struct page
*page
)
770 if (is_first_page(page
))
773 return page
->first_page
;
776 static struct page
*get_next_page(struct page
*page
)
780 if (is_last_page(page
))
782 else if (is_first_page(page
))
783 next
= (struct page
*)page_private(page
);
785 next
= list_entry(page
->lru
.next
, struct page
, lru
);
791 * Encode <page, obj_idx> as a single handle value.
792 * We use the least bit of handle for tagging.
794 static void *location_to_obj(struct page
*page
, unsigned long obj_idx
)
803 obj
= page_to_pfn(page
) << OBJ_INDEX_BITS
;
804 obj
|= ((obj_idx
) & OBJ_INDEX_MASK
);
805 obj
<<= OBJ_TAG_BITS
;
811 * Decode <page, obj_idx> pair from the given object handle. We adjust the
812 * decoded obj_idx back to its original value since it was adjusted in
815 static void obj_to_location(unsigned long obj
, struct page
**page
,
816 unsigned long *obj_idx
)
818 obj
>>= OBJ_TAG_BITS
;
819 *page
= pfn_to_page(obj
>> OBJ_INDEX_BITS
);
820 *obj_idx
= (obj
& OBJ_INDEX_MASK
);
823 static unsigned long handle_to_obj(unsigned long handle
)
825 return *(unsigned long *)handle
;
828 static unsigned long obj_to_head(struct size_class
*class, struct page
*page
,
832 VM_BUG_ON(!is_first_page(page
));
833 return *(unsigned long *)page_private(page
);
835 return *(unsigned long *)obj
;
838 static unsigned long obj_idx_to_offset(struct page
*page
,
839 unsigned long obj_idx
, int class_size
)
841 unsigned long off
= 0;
843 if (!is_first_page(page
))
846 return off
+ obj_idx
* class_size
;
849 static inline int trypin_tag(unsigned long handle
)
851 unsigned long *ptr
= (unsigned long *)handle
;
853 return !test_and_set_bit_lock(HANDLE_PIN_BIT
, ptr
);
856 static void pin_tag(unsigned long handle
)
858 while (!trypin_tag(handle
));
861 static void unpin_tag(unsigned long handle
)
863 unsigned long *ptr
= (unsigned long *)handle
;
865 clear_bit_unlock(HANDLE_PIN_BIT
, ptr
);
868 static void reset_page(struct page
*page
)
870 clear_bit(PG_private
, &page
->flags
);
871 clear_bit(PG_private_2
, &page
->flags
);
872 set_page_private(page
, 0);
873 page
->mapping
= NULL
;
874 page
->freelist
= NULL
;
875 page_mapcount_reset(page
);
878 static void free_zspage(struct page
*first_page
)
880 struct page
*nextp
, *tmp
, *head_extra
;
882 BUG_ON(!is_first_page(first_page
));
883 BUG_ON(first_page
->inuse
);
885 head_extra
= (struct page
*)page_private(first_page
);
887 reset_page(first_page
);
888 __free_page(first_page
);
890 /* zspage with only 1 system page */
894 list_for_each_entry_safe(nextp
, tmp
, &head_extra
->lru
, lru
) {
895 list_del(&nextp
->lru
);
899 reset_page(head_extra
);
900 __free_page(head_extra
);
903 /* Initialize a newly allocated zspage */
904 static void init_zspage(struct page
*first_page
, struct size_class
*class)
906 unsigned long off
= 0;
907 struct page
*page
= first_page
;
909 BUG_ON(!is_first_page(first_page
));
911 struct page
*next_page
;
912 struct link_free
*link
;
917 * page->index stores offset of first object starting
918 * in the page. For the first page, this is always 0,
919 * so we use first_page->index (aka ->freelist) to store
920 * head of corresponding zspage's freelist.
922 if (page
!= first_page
)
925 vaddr
= kmap_atomic(page
);
926 link
= (struct link_free
*)vaddr
+ off
/ sizeof(*link
);
928 while ((off
+= class->size
) < PAGE_SIZE
) {
929 link
->next
= location_to_obj(page
, i
++);
930 link
+= class->size
/ sizeof(*link
);
934 * We now come to the last (full or partial) object on this
935 * page, which must point to the first object on the next
938 next_page
= get_next_page(page
);
939 link
->next
= location_to_obj(next_page
, 0);
940 kunmap_atomic(vaddr
);
947 * Allocate a zspage for the given size class
949 static struct page
*alloc_zspage(struct size_class
*class, gfp_t flags
)
952 struct page
*first_page
= NULL
, *uninitialized_var(prev_page
);
955 * Allocate individual pages and link them together as:
956 * 1. first page->private = first sub-page
957 * 2. all sub-pages are linked together using page->lru
958 * 3. each sub-page is linked to the first page using page->first_page
960 * For each size class, First/Head pages are linked together using
961 * page->lru. Also, we set PG_private to identify the first page
962 * (i.e. no other sub-page has this flag set) and PG_private_2 to
963 * identify the last page.
966 for (i
= 0; i
< class->pages_per_zspage
; i
++) {
969 page
= alloc_page(flags
);
973 INIT_LIST_HEAD(&page
->lru
);
974 if (i
== 0) { /* first page */
975 SetPagePrivate(page
);
976 set_page_private(page
, 0);
978 first_page
->inuse
= 0;
981 set_page_private(first_page
, (unsigned long)page
);
983 page
->first_page
= first_page
;
985 list_add(&page
->lru
, &prev_page
->lru
);
986 if (i
== class->pages_per_zspage
- 1) /* last page */
987 SetPagePrivate2(page
);
991 init_zspage(first_page
, class);
993 first_page
->freelist
= location_to_obj(first_page
, 0);
994 /* Maximum number of objects we can store in this zspage */
995 first_page
->objects
= class->pages_per_zspage
* PAGE_SIZE
/ class->size
;
997 error
= 0; /* Success */
1000 if (unlikely(error
) && first_page
) {
1001 free_zspage(first_page
);
1008 static struct page
*find_get_zspage(struct size_class
*class)
1013 for (i
= 0; i
< _ZS_NR_FULLNESS_GROUPS
; i
++) {
1014 page
= class->fullness_list
[i
];
1022 #ifdef CONFIG_PGTABLE_MAPPING
1023 static inline int __zs_cpu_up(struct mapping_area
*area
)
1026 * Make sure we don't leak memory if a cpu UP notification
1027 * and zs_init() race and both call zs_cpu_up() on the same cpu
1031 area
->vm
= alloc_vm_area(PAGE_SIZE
* 2, NULL
);
1037 static inline void __zs_cpu_down(struct mapping_area
*area
)
1040 free_vm_area(area
->vm
);
1044 static inline void *__zs_map_object(struct mapping_area
*area
,
1045 struct page
*pages
[2], int off
, int size
)
1047 BUG_ON(map_vm_area(area
->vm
, PAGE_KERNEL
, pages
));
1048 area
->vm_addr
= area
->vm
->addr
;
1049 return area
->vm_addr
+ off
;
1052 static inline void __zs_unmap_object(struct mapping_area
*area
,
1053 struct page
*pages
[2], int off
, int size
)
1055 unsigned long addr
= (unsigned long)area
->vm_addr
;
1057 unmap_kernel_range(addr
, PAGE_SIZE
* 2);
1060 #else /* CONFIG_PGTABLE_MAPPING */
1062 static inline int __zs_cpu_up(struct mapping_area
*area
)
1065 * Make sure we don't leak memory if a cpu UP notification
1066 * and zs_init() race and both call zs_cpu_up() on the same cpu
1070 area
->vm_buf
= kmalloc(ZS_MAX_ALLOC_SIZE
, GFP_KERNEL
);
1076 static inline void __zs_cpu_down(struct mapping_area
*area
)
1078 kfree(area
->vm_buf
);
1079 area
->vm_buf
= NULL
;
1082 static void *__zs_map_object(struct mapping_area
*area
,
1083 struct page
*pages
[2], int off
, int size
)
1087 char *buf
= area
->vm_buf
;
1089 /* disable page faults to match kmap_atomic() return conditions */
1090 pagefault_disable();
1092 /* no read fastpath */
1093 if (area
->vm_mm
== ZS_MM_WO
)
1096 sizes
[0] = PAGE_SIZE
- off
;
1097 sizes
[1] = size
- sizes
[0];
1099 /* copy object to per-cpu buffer */
1100 addr
= kmap_atomic(pages
[0]);
1101 memcpy(buf
, addr
+ off
, sizes
[0]);
1102 kunmap_atomic(addr
);
1103 addr
= kmap_atomic(pages
[1]);
1104 memcpy(buf
+ sizes
[0], addr
, sizes
[1]);
1105 kunmap_atomic(addr
);
1107 return area
->vm_buf
;
1110 static void __zs_unmap_object(struct mapping_area
*area
,
1111 struct page
*pages
[2], int off
, int size
)
1117 /* no write fastpath */
1118 if (area
->vm_mm
== ZS_MM_RO
)
1123 buf
= buf
+ ZS_HANDLE_SIZE
;
1124 size
-= ZS_HANDLE_SIZE
;
1125 off
+= ZS_HANDLE_SIZE
;
1128 sizes
[0] = PAGE_SIZE
- off
;
1129 sizes
[1] = size
- sizes
[0];
1131 /* copy per-cpu buffer to object */
1132 addr
= kmap_atomic(pages
[0]);
1133 memcpy(addr
+ off
, buf
, sizes
[0]);
1134 kunmap_atomic(addr
);
1135 addr
= kmap_atomic(pages
[1]);
1136 memcpy(addr
, buf
+ sizes
[0], sizes
[1]);
1137 kunmap_atomic(addr
);
1140 /* enable page faults to match kunmap_atomic() return conditions */
1144 #endif /* CONFIG_PGTABLE_MAPPING */
1146 static int zs_cpu_notifier(struct notifier_block
*nb
, unsigned long action
,
1149 int ret
, cpu
= (long)pcpu
;
1150 struct mapping_area
*area
;
1153 case CPU_UP_PREPARE
:
1154 area
= &per_cpu(zs_map_area
, cpu
);
1155 ret
= __zs_cpu_up(area
);
1157 return notifier_from_errno(ret
);
1160 case CPU_UP_CANCELED
:
1161 area
= &per_cpu(zs_map_area
, cpu
);
1162 __zs_cpu_down(area
);
1169 static struct notifier_block zs_cpu_nb
= {
1170 .notifier_call
= zs_cpu_notifier
1173 static int zs_register_cpu_notifier(void)
1175 int cpu
, uninitialized_var(ret
);
1177 cpu_notifier_register_begin();
1179 __register_cpu_notifier(&zs_cpu_nb
);
1180 for_each_online_cpu(cpu
) {
1181 ret
= zs_cpu_notifier(NULL
, CPU_UP_PREPARE
, (void *)(long)cpu
);
1182 if (notifier_to_errno(ret
))
1186 cpu_notifier_register_done();
1187 return notifier_to_errno(ret
);
1190 static void zs_unregister_cpu_notifier(void)
1194 cpu_notifier_register_begin();
1196 for_each_online_cpu(cpu
)
1197 zs_cpu_notifier(NULL
, CPU_DEAD
, (void *)(long)cpu
);
1198 __unregister_cpu_notifier(&zs_cpu_nb
);
1200 cpu_notifier_register_done();
1203 static void init_zs_size_classes(void)
1207 nr
= (ZS_MAX_ALLOC_SIZE
- ZS_MIN_ALLOC_SIZE
) / ZS_SIZE_CLASS_DELTA
+ 1;
1208 if ((ZS_MAX_ALLOC_SIZE
- ZS_MIN_ALLOC_SIZE
) % ZS_SIZE_CLASS_DELTA
)
1211 zs_size_classes
= nr
;
1214 static bool can_merge(struct size_class
*prev
, int size
, int pages_per_zspage
)
1216 if (prev
->pages_per_zspage
!= pages_per_zspage
)
1219 if (get_maxobj_per_zspage(prev
->size
, prev
->pages_per_zspage
)
1220 != get_maxobj_per_zspage(size
, pages_per_zspage
))
1226 static bool zspage_full(struct page
*page
)
1228 BUG_ON(!is_first_page(page
));
1230 return page
->inuse
== page
->objects
;
1233 unsigned long zs_get_total_pages(struct zs_pool
*pool
)
1235 return atomic_long_read(&pool
->pages_allocated
);
1237 EXPORT_SYMBOL_GPL(zs_get_total_pages
);
1240 * zs_map_object - get address of allocated object from handle.
1241 * @pool: pool from which the object was allocated
1242 * @handle: handle returned from zs_malloc
1244 * Before using an object allocated from zs_malloc, it must be mapped using
1245 * this function. When done with the object, it must be unmapped using
1248 * Only one object can be mapped per cpu at a time. There is no protection
1249 * against nested mappings.
1251 * This function returns with preemption and page faults disabled.
1253 void *zs_map_object(struct zs_pool
*pool
, unsigned long handle
,
1257 unsigned long obj
, obj_idx
, off
;
1259 unsigned int class_idx
;
1260 enum fullness_group fg
;
1261 struct size_class
*class;
1262 struct mapping_area
*area
;
1263 struct page
*pages
[2];
1269 * Because we use per-cpu mapping areas shared among the
1270 * pools/users, we can't allow mapping in interrupt context
1271 * because it can corrupt another users mappings.
1273 BUG_ON(in_interrupt());
1275 /* From now on, migration cannot move the object */
1278 obj
= handle_to_obj(handle
);
1279 obj_to_location(obj
, &page
, &obj_idx
);
1280 get_zspage_mapping(get_first_page(page
), &class_idx
, &fg
);
1281 class = pool
->size_class
[class_idx
];
1282 off
= obj_idx_to_offset(page
, obj_idx
, class->size
);
1284 area
= &get_cpu_var(zs_map_area
);
1286 if (off
+ class->size
<= PAGE_SIZE
) {
1287 /* this object is contained entirely within a page */
1288 area
->vm_addr
= kmap_atomic(page
);
1289 ret
= area
->vm_addr
+ off
;
1293 /* this object spans two pages */
1295 pages
[1] = get_next_page(page
);
1298 ret
= __zs_map_object(area
, pages
, off
, class->size
);
1301 ret
+= ZS_HANDLE_SIZE
;
1305 EXPORT_SYMBOL_GPL(zs_map_object
);
1307 void zs_unmap_object(struct zs_pool
*pool
, unsigned long handle
)
1310 unsigned long obj
, obj_idx
, off
;
1312 unsigned int class_idx
;
1313 enum fullness_group fg
;
1314 struct size_class
*class;
1315 struct mapping_area
*area
;
1319 obj
= handle_to_obj(handle
);
1320 obj_to_location(obj
, &page
, &obj_idx
);
1321 get_zspage_mapping(get_first_page(page
), &class_idx
, &fg
);
1322 class = pool
->size_class
[class_idx
];
1323 off
= obj_idx_to_offset(page
, obj_idx
, class->size
);
1325 area
= this_cpu_ptr(&zs_map_area
);
1326 if (off
+ class->size
<= PAGE_SIZE
)
1327 kunmap_atomic(area
->vm_addr
);
1329 struct page
*pages
[2];
1332 pages
[1] = get_next_page(page
);
1335 __zs_unmap_object(area
, pages
, off
, class->size
);
1337 put_cpu_var(zs_map_area
);
1340 EXPORT_SYMBOL_GPL(zs_unmap_object
);
1342 static unsigned long obj_malloc(struct page
*first_page
,
1343 struct size_class
*class, unsigned long handle
)
1346 struct link_free
*link
;
1348 struct page
*m_page
;
1349 unsigned long m_objidx
, m_offset
;
1352 handle
|= OBJ_ALLOCATED_TAG
;
1353 obj
= (unsigned long)first_page
->freelist
;
1354 obj_to_location(obj
, &m_page
, &m_objidx
);
1355 m_offset
= obj_idx_to_offset(m_page
, m_objidx
, class->size
);
1357 vaddr
= kmap_atomic(m_page
);
1358 link
= (struct link_free
*)vaddr
+ m_offset
/ sizeof(*link
);
1359 first_page
->freelist
= link
->next
;
1361 /* record handle in the header of allocated chunk */
1362 link
->handle
= handle
;
1364 /* record handle in first_page->private */
1365 set_page_private(first_page
, handle
);
1366 kunmap_atomic(vaddr
);
1367 first_page
->inuse
++;
1368 zs_stat_inc(class, OBJ_USED
, 1);
1375 * zs_malloc - Allocate block of given size from pool.
1376 * @pool: pool to allocate from
1377 * @size: size of block to allocate
1379 * On success, handle to the allocated object is returned,
1381 * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
1383 unsigned long zs_malloc(struct zs_pool
*pool
, size_t size
)
1385 unsigned long handle
, obj
;
1386 struct size_class
*class;
1387 struct page
*first_page
;
1389 if (unlikely(!size
|| size
> ZS_MAX_ALLOC_SIZE
))
1392 handle
= alloc_handle(pool
);
1396 /* extra space in chunk to keep the handle */
1397 size
+= ZS_HANDLE_SIZE
;
1398 class = pool
->size_class
[get_size_class_index(size
)];
1400 spin_lock(&class->lock
);
1401 first_page
= find_get_zspage(class);
1404 spin_unlock(&class->lock
);
1405 first_page
= alloc_zspage(class, pool
->flags
);
1406 if (unlikely(!first_page
)) {
1407 free_handle(pool
, handle
);
1411 set_zspage_mapping(first_page
, class->index
, ZS_EMPTY
);
1412 atomic_long_add(class->pages_per_zspage
,
1413 &pool
->pages_allocated
);
1415 spin_lock(&class->lock
);
1416 zs_stat_inc(class, OBJ_ALLOCATED
, get_maxobj_per_zspage(
1417 class->size
, class->pages_per_zspage
));
1420 obj
= obj_malloc(first_page
, class, handle
);
1421 /* Now move the zspage to another fullness group, if required */
1422 fix_fullness_group(class, first_page
);
1423 record_obj(handle
, obj
);
1424 spin_unlock(&class->lock
);
1428 EXPORT_SYMBOL_GPL(zs_malloc
);
1430 static void obj_free(struct zs_pool
*pool
, struct size_class
*class,
1433 struct link_free
*link
;
1434 struct page
*first_page
, *f_page
;
1435 unsigned long f_objidx
, f_offset
;
1438 enum fullness_group fullness
;
1442 obj
&= ~OBJ_ALLOCATED_TAG
;
1443 obj_to_location(obj
, &f_page
, &f_objidx
);
1444 first_page
= get_first_page(f_page
);
1446 get_zspage_mapping(first_page
, &class_idx
, &fullness
);
1447 f_offset
= obj_idx_to_offset(f_page
, f_objidx
, class->size
);
1449 vaddr
= kmap_atomic(f_page
);
1451 /* Insert this object in containing zspage's freelist */
1452 link
= (struct link_free
*)(vaddr
+ f_offset
);
1453 link
->next
= first_page
->freelist
;
1455 set_page_private(first_page
, 0);
1456 kunmap_atomic(vaddr
);
1457 first_page
->freelist
= (void *)obj
;
1458 first_page
->inuse
--;
1459 zs_stat_dec(class, OBJ_USED
, 1);
1462 void zs_free(struct zs_pool
*pool
, unsigned long handle
)
1464 struct page
*first_page
, *f_page
;
1465 unsigned long obj
, f_objidx
;
1467 struct size_class
*class;
1468 enum fullness_group fullness
;
1470 if (unlikely(!handle
))
1474 obj
= handle_to_obj(handle
);
1475 obj_to_location(obj
, &f_page
, &f_objidx
);
1476 first_page
= get_first_page(f_page
);
1478 get_zspage_mapping(first_page
, &class_idx
, &fullness
);
1479 class = pool
->size_class
[class_idx
];
1481 spin_lock(&class->lock
);
1482 obj_free(pool
, class, obj
);
1483 fullness
= fix_fullness_group(class, first_page
);
1484 if (fullness
== ZS_EMPTY
) {
1485 zs_stat_dec(class, OBJ_ALLOCATED
, get_maxobj_per_zspage(
1486 class->size
, class->pages_per_zspage
));
1487 atomic_long_sub(class->pages_per_zspage
,
1488 &pool
->pages_allocated
);
1489 free_zspage(first_page
);
1491 spin_unlock(&class->lock
);
1494 free_handle(pool
, handle
);
1496 EXPORT_SYMBOL_GPL(zs_free
);
1498 static void zs_object_copy(unsigned long src
, unsigned long dst
,
1499 struct size_class
*class)
1501 struct page
*s_page
, *d_page
;
1502 unsigned long s_objidx
, d_objidx
;
1503 unsigned long s_off
, d_off
;
1504 void *s_addr
, *d_addr
;
1505 int s_size
, d_size
, size
;
1508 s_size
= d_size
= class->size
;
1510 obj_to_location(src
, &s_page
, &s_objidx
);
1511 obj_to_location(dst
, &d_page
, &d_objidx
);
1513 s_off
= obj_idx_to_offset(s_page
, s_objidx
, class->size
);
1514 d_off
= obj_idx_to_offset(d_page
, d_objidx
, class->size
);
1516 if (s_off
+ class->size
> PAGE_SIZE
)
1517 s_size
= PAGE_SIZE
- s_off
;
1519 if (d_off
+ class->size
> PAGE_SIZE
)
1520 d_size
= PAGE_SIZE
- d_off
;
1522 s_addr
= kmap_atomic(s_page
);
1523 d_addr
= kmap_atomic(d_page
);
1526 size
= min(s_size
, d_size
);
1527 memcpy(d_addr
+ d_off
, s_addr
+ s_off
, size
);
1530 if (written
== class->size
)
1538 if (s_off
>= PAGE_SIZE
) {
1539 kunmap_atomic(d_addr
);
1540 kunmap_atomic(s_addr
);
1541 s_page
= get_next_page(s_page
);
1543 s_addr
= kmap_atomic(s_page
);
1544 d_addr
= kmap_atomic(d_page
);
1545 s_size
= class->size
- written
;
1549 if (d_off
>= PAGE_SIZE
) {
1550 kunmap_atomic(d_addr
);
1551 d_page
= get_next_page(d_page
);
1553 d_addr
= kmap_atomic(d_page
);
1554 d_size
= class->size
- written
;
1559 kunmap_atomic(d_addr
);
1560 kunmap_atomic(s_addr
);
1564 * Find alloced object in zspage from index object and
1567 static unsigned long find_alloced_obj(struct page
*page
, int index
,
1568 struct size_class
*class)
1572 unsigned long handle
= 0;
1573 void *addr
= kmap_atomic(page
);
1575 if (!is_first_page(page
))
1576 offset
= page
->index
;
1577 offset
+= class->size
* index
;
1579 while (offset
< PAGE_SIZE
) {
1580 head
= obj_to_head(class, page
, addr
+ offset
);
1581 if (head
& OBJ_ALLOCATED_TAG
) {
1582 handle
= head
& ~OBJ_ALLOCATED_TAG
;
1583 if (trypin_tag(handle
))
1588 offset
+= class->size
;
1592 kunmap_atomic(addr
);
1596 struct zs_compact_control
{
1597 /* Source page for migration which could be a subpage of zspage. */
1598 struct page
*s_page
;
1599 /* Destination page for migration which should be a first page
1601 struct page
*d_page
;
1602 /* Starting object index within @s_page which used for live object
1603 * in the subpage. */
1605 /* how many of objects are migrated */
1609 static int migrate_zspage(struct zs_pool
*pool
, struct size_class
*class,
1610 struct zs_compact_control
*cc
)
1612 unsigned long used_obj
, free_obj
;
1613 unsigned long handle
;
1614 struct page
*s_page
= cc
->s_page
;
1615 struct page
*d_page
= cc
->d_page
;
1616 unsigned long index
= cc
->index
;
1617 int nr_migrated
= 0;
1621 handle
= find_alloced_obj(s_page
, index
, class);
1623 s_page
= get_next_page(s_page
);
1630 /* Stop if there is no more space */
1631 if (zspage_full(d_page
)) {
1637 used_obj
= handle_to_obj(handle
);
1638 free_obj
= obj_malloc(d_page
, class, handle
);
1639 zs_object_copy(used_obj
, free_obj
, class);
1641 record_obj(handle
, free_obj
);
1643 obj_free(pool
, class, used_obj
);
1647 /* Remember last position in this iteration */
1648 cc
->s_page
= s_page
;
1650 cc
->nr_migrated
= nr_migrated
;
1655 static struct page
*alloc_target_page(struct size_class
*class)
1660 for (i
= 0; i
< _ZS_NR_FULLNESS_GROUPS
; i
++) {
1661 page
= class->fullness_list
[i
];
1663 remove_zspage(page
, class, i
);
1671 static void putback_zspage(struct zs_pool
*pool
, struct size_class
*class,
1672 struct page
*first_page
)
1674 enum fullness_group fullness
;
1676 BUG_ON(!is_first_page(first_page
));
1678 fullness
= get_fullness_group(first_page
);
1679 insert_zspage(first_page
, class, fullness
);
1680 set_zspage_mapping(first_page
, class->index
, fullness
);
1682 if (fullness
== ZS_EMPTY
) {
1683 zs_stat_dec(class, OBJ_ALLOCATED
, get_maxobj_per_zspage(
1684 class->size
, class->pages_per_zspage
));
1685 atomic_long_sub(class->pages_per_zspage
,
1686 &pool
->pages_allocated
);
1688 free_zspage(first_page
);
1692 static struct page
*isolate_source_page(struct size_class
*class)
1696 page
= class->fullness_list
[ZS_ALMOST_EMPTY
];
1698 remove_zspage(page
, class, ZS_ALMOST_EMPTY
);
1703 static unsigned long __zs_compact(struct zs_pool
*pool
,
1704 struct size_class
*class)
1707 struct zs_compact_control cc
;
1708 struct page
*src_page
;
1709 struct page
*dst_page
= NULL
;
1710 unsigned long nr_total_migrated
= 0;
1712 spin_lock(&class->lock
);
1713 while ((src_page
= isolate_source_page(class))) {
1715 BUG_ON(!is_first_page(src_page
));
1717 /* The goal is to migrate all live objects in source page */
1718 nr_to_migrate
= src_page
->inuse
;
1720 cc
.s_page
= src_page
;
1722 while ((dst_page
= alloc_target_page(class))) {
1723 cc
.d_page
= dst_page
;
1725 * If there is no more space in dst_page, try to
1726 * allocate another zspage.
1728 if (!migrate_zspage(pool
, class, &cc
))
1731 putback_zspage(pool
, class, dst_page
);
1732 nr_total_migrated
+= cc
.nr_migrated
;
1733 nr_to_migrate
-= cc
.nr_migrated
;
1736 /* Stop if we couldn't find slot */
1737 if (dst_page
== NULL
)
1740 putback_zspage(pool
, class, dst_page
);
1741 putback_zspage(pool
, class, src_page
);
1742 spin_unlock(&class->lock
);
1743 nr_total_migrated
+= cc
.nr_migrated
;
1745 spin_lock(&class->lock
);
1749 putback_zspage(pool
, class, src_page
);
1751 spin_unlock(&class->lock
);
1753 return nr_total_migrated
;
1756 unsigned long zs_compact(struct zs_pool
*pool
)
1759 unsigned long nr_migrated
= 0;
1760 struct size_class
*class;
1762 for (i
= zs_size_classes
- 1; i
>= 0; i
--) {
1763 class = pool
->size_class
[i
];
1766 if (class->index
!= i
)
1768 nr_migrated
+= __zs_compact(pool
, class);
1773 EXPORT_SYMBOL_GPL(zs_compact
);
1776 * zs_create_pool - Creates an allocation pool to work from.
1777 * @flags: allocation flags used to allocate pool metadata
1779 * This function must be called before anything when using
1780 * the zsmalloc allocator.
1782 * On success, a pointer to the newly created pool is returned,
1785 struct zs_pool
*zs_create_pool(char *name
, gfp_t flags
)
1788 struct zs_pool
*pool
;
1789 struct size_class
*prev_class
= NULL
;
1791 pool
= kzalloc(sizeof(*pool
), GFP_KERNEL
);
1795 pool
->size_class
= kcalloc(zs_size_classes
, sizeof(struct size_class
*),
1797 if (!pool
->size_class
) {
1802 pool
->name
= kstrdup(name
, GFP_KERNEL
);
1806 if (create_handle_cache(pool
))
1810 * Iterate reversly, because, size of size_class that we want to use
1811 * for merging should be larger or equal to current size.
1813 for (i
= zs_size_classes
- 1; i
>= 0; i
--) {
1815 int pages_per_zspage
;
1816 struct size_class
*class;
1818 size
= ZS_MIN_ALLOC_SIZE
+ i
* ZS_SIZE_CLASS_DELTA
;
1819 if (size
> ZS_MAX_ALLOC_SIZE
)
1820 size
= ZS_MAX_ALLOC_SIZE
;
1821 pages_per_zspage
= get_pages_per_zspage(size
);
1824 * size_class is used for normal zsmalloc operation such
1825 * as alloc/free for that size. Although it is natural that we
1826 * have one size_class for each size, there is a chance that we
1827 * can get more memory utilization if we use one size_class for
1828 * many different sizes whose size_class have same
1829 * characteristics. So, we makes size_class point to
1830 * previous size_class if possible.
1833 if (can_merge(prev_class
, size
, pages_per_zspage
)) {
1834 pool
->size_class
[i
] = prev_class
;
1839 class = kzalloc(sizeof(struct size_class
), GFP_KERNEL
);
1845 class->pages_per_zspage
= pages_per_zspage
;
1846 if (pages_per_zspage
== 1 &&
1847 get_maxobj_per_zspage(size
, pages_per_zspage
) == 1)
1849 spin_lock_init(&class->lock
);
1850 pool
->size_class
[i
] = class;
1855 pool
->flags
= flags
;
1857 if (zs_pool_stat_create(name
, pool
))
1863 zs_destroy_pool(pool
);
1866 EXPORT_SYMBOL_GPL(zs_create_pool
);
1868 void zs_destroy_pool(struct zs_pool
*pool
)
1872 zs_pool_stat_destroy(pool
);
1874 for (i
= 0; i
< zs_size_classes
; i
++) {
1876 struct size_class
*class = pool
->size_class
[i
];
1881 if (class->index
!= i
)
1884 for (fg
= 0; fg
< _ZS_NR_FULLNESS_GROUPS
; fg
++) {
1885 if (class->fullness_list
[fg
]) {
1886 pr_info("Freeing non-empty class with size %db, fullness group %d\n",
1893 destroy_handle_cache(pool
);
1894 kfree(pool
->size_class
);
1898 EXPORT_SYMBOL_GPL(zs_destroy_pool
);
1900 static int __init
zs_init(void)
1902 int ret
= zs_register_cpu_notifier();
1907 init_zs_size_classes();
1910 zpool_register_driver(&zs_zpool_driver
);
1913 ret
= zs_stat_init();
1915 pr_err("zs stat initialization failed\n");
1922 zpool_unregister_driver(&zs_zpool_driver
);
1925 zs_unregister_cpu_notifier();
1930 static void __exit
zs_exit(void)
1933 zpool_unregister_driver(&zs_zpool_driver
);
1935 zs_unregister_cpu_notifier();
1940 module_init(zs_init
);
1941 module_exit(zs_exit
);
1943 MODULE_LICENSE("Dual BSD/GPL");
1944 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");