Merge tag 'pm+acpi-4.2-rc5' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael...
[linux/fpc-iii.git] / mm / zsmalloc.c
blob0a7f81aa2249c2c9925cceadd4737ec8c88bf259
1 /*
2 * zsmalloc memory allocator
4 * Copyright (C) 2011 Nitin Gupta
5 * Copyright (C) 2012, 2013 Minchan Kim
7 * This code is released using a dual license strategy: BSD/GPL
8 * You can choose the license that better fits your requirements.
10 * Released under the terms of 3-clause BSD License
11 * Released under the terms of GNU General Public License Version 2.0
15 * Following is how we use various fields and flags of underlying
16 * struct page(s) to form a zspage.
18 * Usage of struct page fields:
19 * page->first_page: points to the first component (0-order) page
20 * page->index (union with page->freelist): offset of the first object
21 * starting in this page. For the first page, this is
22 * always 0, so we use this field (aka freelist) to point
23 * to the first free object in zspage.
24 * page->lru: links together all component pages (except the first page)
25 * of a zspage
27 * For _first_ page only:
29 * page->private (union with page->first_page): refers to the
30 * component page after the first page
31 * If the page is first_page for huge object, it stores handle.
32 * Look at size_class->huge.
33 * page->freelist: points to the first free object in zspage.
34 * Free objects are linked together using in-place
35 * metadata.
36 * page->objects: maximum number of objects we can store in this
37 * zspage (class->zspage_order * PAGE_SIZE / class->size)
38 * page->lru: links together first pages of various zspages.
39 * Basically forming list of zspages in a fullness group.
40 * page->mapping: class index and fullness group of the zspage
42 * Usage of struct page flags:
43 * PG_private: identifies the first component page
44 * PG_private2: identifies the last component page
48 #include <linux/module.h>
49 #include <linux/kernel.h>
50 #include <linux/sched.h>
51 #include <linux/bitops.h>
52 #include <linux/errno.h>
53 #include <linux/highmem.h>
54 #include <linux/string.h>
55 #include <linux/slab.h>
56 #include <asm/tlbflush.h>
57 #include <asm/pgtable.h>
58 #include <linux/cpumask.h>
59 #include <linux/cpu.h>
60 #include <linux/vmalloc.h>
61 #include <linux/hardirq.h>
62 #include <linux/spinlock.h>
63 #include <linux/types.h>
64 #include <linux/debugfs.h>
65 #include <linux/zsmalloc.h>
66 #include <linux/zpool.h>
69 * This must be power of 2 and greater than of equal to sizeof(link_free).
70 * These two conditions ensure that any 'struct link_free' itself doesn't
71 * span more than 1 page which avoids complex case of mapping 2 pages simply
72 * to restore link_free pointer values.
74 #define ZS_ALIGN 8
77 * A single 'zspage' is composed of up to 2^N discontiguous 0-order (single)
78 * pages. ZS_MAX_ZSPAGE_ORDER defines upper limit on N.
80 #define ZS_MAX_ZSPAGE_ORDER 2
81 #define ZS_MAX_PAGES_PER_ZSPAGE (_AC(1, UL) << ZS_MAX_ZSPAGE_ORDER)
83 #define ZS_HANDLE_SIZE (sizeof(unsigned long))
86 * Object location (<PFN>, <obj_idx>) is encoded as
87 * as single (unsigned long) handle value.
89 * Note that object index <obj_idx> is relative to system
90 * page <PFN> it is stored in, so for each sub-page belonging
91 * to a zspage, obj_idx starts with 0.
93 * This is made more complicated by various memory models and PAE.
96 #ifndef MAX_PHYSMEM_BITS
97 #ifdef CONFIG_HIGHMEM64G
98 #define MAX_PHYSMEM_BITS 36
99 #else /* !CONFIG_HIGHMEM64G */
101 * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just
102 * be PAGE_SHIFT
104 #define MAX_PHYSMEM_BITS BITS_PER_LONG
105 #endif
106 #endif
107 #define _PFN_BITS (MAX_PHYSMEM_BITS - PAGE_SHIFT)
110 * Memory for allocating for handle keeps object position by
111 * encoding <page, obj_idx> and the encoded value has a room
112 * in least bit(ie, look at obj_to_location).
113 * We use the bit to synchronize between object access by
114 * user and migration.
116 #define HANDLE_PIN_BIT 0
119 * Head in allocated object should have OBJ_ALLOCATED_TAG
120 * to identify the object was allocated or not.
121 * It's okay to add the status bit in the least bit because
122 * header keeps handle which is 4byte-aligned address so we
123 * have room for two bit at least.
125 #define OBJ_ALLOCATED_TAG 1
126 #define OBJ_TAG_BITS 1
127 #define OBJ_INDEX_BITS (BITS_PER_LONG - _PFN_BITS - OBJ_TAG_BITS)
128 #define OBJ_INDEX_MASK ((_AC(1, UL) << OBJ_INDEX_BITS) - 1)
130 #define MAX(a, b) ((a) >= (b) ? (a) : (b))
131 /* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */
132 #define ZS_MIN_ALLOC_SIZE \
133 MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
134 /* each chunk includes extra space to keep handle */
135 #define ZS_MAX_ALLOC_SIZE PAGE_SIZE
138 * On systems with 4K page size, this gives 255 size classes! There is a
139 * trader-off here:
140 * - Large number of size classes is potentially wasteful as free page are
141 * spread across these classes
142 * - Small number of size classes causes large internal fragmentation
143 * - Probably its better to use specific size classes (empirically
144 * determined). NOTE: all those class sizes must be set as multiple of
145 * ZS_ALIGN to make sure link_free itself never has to span 2 pages.
147 * ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN
148 * (reason above)
150 #define ZS_SIZE_CLASS_DELTA (PAGE_SIZE >> 8)
153 * We do not maintain any list for completely empty or full pages
155 enum fullness_group {
156 ZS_ALMOST_FULL,
157 ZS_ALMOST_EMPTY,
158 _ZS_NR_FULLNESS_GROUPS,
160 ZS_EMPTY,
161 ZS_FULL
164 enum zs_stat_type {
165 OBJ_ALLOCATED,
166 OBJ_USED,
167 CLASS_ALMOST_FULL,
168 CLASS_ALMOST_EMPTY,
169 NR_ZS_STAT_TYPE,
172 #ifdef CONFIG_ZSMALLOC_STAT
174 static struct dentry *zs_stat_root;
176 struct zs_size_stat {
177 unsigned long objs[NR_ZS_STAT_TYPE];
180 #endif
183 * number of size_classes
185 static int zs_size_classes;
188 * We assign a page to ZS_ALMOST_EMPTY fullness group when:
189 * n <= N / f, where
190 * n = number of allocated objects
191 * N = total number of objects zspage can store
192 * f = fullness_threshold_frac
194 * Similarly, we assign zspage to:
195 * ZS_ALMOST_FULL when n > N / f
196 * ZS_EMPTY when n == 0
197 * ZS_FULL when n == N
199 * (see: fix_fullness_group())
201 static const int fullness_threshold_frac = 4;
203 struct size_class {
205 * Size of objects stored in this class. Must be multiple
206 * of ZS_ALIGN.
208 int size;
209 unsigned int index;
211 /* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */
212 int pages_per_zspage;
213 /* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */
214 bool huge;
216 #ifdef CONFIG_ZSMALLOC_STAT
217 struct zs_size_stat stats;
218 #endif
220 spinlock_t lock;
222 struct page *fullness_list[_ZS_NR_FULLNESS_GROUPS];
226 * Placed within free objects to form a singly linked list.
227 * For every zspage, first_page->freelist gives head of this list.
229 * This must be power of 2 and less than or equal to ZS_ALIGN
231 struct link_free {
232 union {
234 * Position of next free chunk (encodes <PFN, obj_idx>)
235 * It's valid for non-allocated object
237 void *next;
239 * Handle of allocated object.
241 unsigned long handle;
245 struct zs_pool {
246 char *name;
248 struct size_class **size_class;
249 struct kmem_cache *handle_cachep;
251 gfp_t flags; /* allocation flags used when growing pool */
252 atomic_long_t pages_allocated;
254 #ifdef CONFIG_ZSMALLOC_STAT
255 struct dentry *stat_dentry;
256 #endif
260 * A zspage's class index and fullness group
261 * are encoded in its (first)page->mapping
263 #define CLASS_IDX_BITS 28
264 #define FULLNESS_BITS 4
265 #define CLASS_IDX_MASK ((1 << CLASS_IDX_BITS) - 1)
266 #define FULLNESS_MASK ((1 << FULLNESS_BITS) - 1)
268 struct mapping_area {
269 #ifdef CONFIG_PGTABLE_MAPPING
270 struct vm_struct *vm; /* vm area for mapping object that span pages */
271 #else
272 char *vm_buf; /* copy buffer for objects that span pages */
273 #endif
274 char *vm_addr; /* address of kmap_atomic()'ed pages */
275 enum zs_mapmode vm_mm; /* mapping mode */
276 bool huge;
279 static int create_handle_cache(struct zs_pool *pool)
281 pool->handle_cachep = kmem_cache_create("zs_handle", ZS_HANDLE_SIZE,
282 0, 0, NULL);
283 return pool->handle_cachep ? 0 : 1;
286 static void destroy_handle_cache(struct zs_pool *pool)
288 if (pool->handle_cachep)
289 kmem_cache_destroy(pool->handle_cachep);
292 static unsigned long alloc_handle(struct zs_pool *pool)
294 return (unsigned long)kmem_cache_alloc(pool->handle_cachep,
295 pool->flags & ~__GFP_HIGHMEM);
298 static void free_handle(struct zs_pool *pool, unsigned long handle)
300 kmem_cache_free(pool->handle_cachep, (void *)handle);
303 static void record_obj(unsigned long handle, unsigned long obj)
305 *(unsigned long *)handle = obj;
308 /* zpool driver */
310 #ifdef CONFIG_ZPOOL
312 static void *zs_zpool_create(char *name, gfp_t gfp, struct zpool_ops *zpool_ops,
313 struct zpool *zpool)
315 return zs_create_pool(name, gfp);
318 static void zs_zpool_destroy(void *pool)
320 zs_destroy_pool(pool);
323 static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp,
324 unsigned long *handle)
326 *handle = zs_malloc(pool, size);
327 return *handle ? 0 : -1;
329 static void zs_zpool_free(void *pool, unsigned long handle)
331 zs_free(pool, handle);
334 static int zs_zpool_shrink(void *pool, unsigned int pages,
335 unsigned int *reclaimed)
337 return -EINVAL;
340 static void *zs_zpool_map(void *pool, unsigned long handle,
341 enum zpool_mapmode mm)
343 enum zs_mapmode zs_mm;
345 switch (mm) {
346 case ZPOOL_MM_RO:
347 zs_mm = ZS_MM_RO;
348 break;
349 case ZPOOL_MM_WO:
350 zs_mm = ZS_MM_WO;
351 break;
352 case ZPOOL_MM_RW: /* fallthru */
353 default:
354 zs_mm = ZS_MM_RW;
355 break;
358 return zs_map_object(pool, handle, zs_mm);
360 static void zs_zpool_unmap(void *pool, unsigned long handle)
362 zs_unmap_object(pool, handle);
365 static u64 zs_zpool_total_size(void *pool)
367 return zs_get_total_pages(pool) << PAGE_SHIFT;
370 static struct zpool_driver zs_zpool_driver = {
371 .type = "zsmalloc",
372 .owner = THIS_MODULE,
373 .create = zs_zpool_create,
374 .destroy = zs_zpool_destroy,
375 .malloc = zs_zpool_malloc,
376 .free = zs_zpool_free,
377 .shrink = zs_zpool_shrink,
378 .map = zs_zpool_map,
379 .unmap = zs_zpool_unmap,
380 .total_size = zs_zpool_total_size,
383 MODULE_ALIAS("zpool-zsmalloc");
384 #endif /* CONFIG_ZPOOL */
386 static unsigned int get_maxobj_per_zspage(int size, int pages_per_zspage)
388 return pages_per_zspage * PAGE_SIZE / size;
391 /* per-cpu VM mapping areas for zspage accesses that cross page boundaries */
392 static DEFINE_PER_CPU(struct mapping_area, zs_map_area);
394 static int is_first_page(struct page *page)
396 return PagePrivate(page);
399 static int is_last_page(struct page *page)
401 return PagePrivate2(page);
404 static void get_zspage_mapping(struct page *page, unsigned int *class_idx,
405 enum fullness_group *fullness)
407 unsigned long m;
408 BUG_ON(!is_first_page(page));
410 m = (unsigned long)page->mapping;
411 *fullness = m & FULLNESS_MASK;
412 *class_idx = (m >> FULLNESS_BITS) & CLASS_IDX_MASK;
415 static void set_zspage_mapping(struct page *page, unsigned int class_idx,
416 enum fullness_group fullness)
418 unsigned long m;
419 BUG_ON(!is_first_page(page));
421 m = ((class_idx & CLASS_IDX_MASK) << FULLNESS_BITS) |
422 (fullness & FULLNESS_MASK);
423 page->mapping = (struct address_space *)m;
427 * zsmalloc divides the pool into various size classes where each
428 * class maintains a list of zspages where each zspage is divided
429 * into equal sized chunks. Each allocation falls into one of these
430 * classes depending on its size. This function returns index of the
431 * size class which has chunk size big enough to hold the give size.
433 static int get_size_class_index(int size)
435 int idx = 0;
437 if (likely(size > ZS_MIN_ALLOC_SIZE))
438 idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE,
439 ZS_SIZE_CLASS_DELTA);
441 return min(zs_size_classes - 1, idx);
444 #ifdef CONFIG_ZSMALLOC_STAT
446 static inline void zs_stat_inc(struct size_class *class,
447 enum zs_stat_type type, unsigned long cnt)
449 class->stats.objs[type] += cnt;
452 static inline void zs_stat_dec(struct size_class *class,
453 enum zs_stat_type type, unsigned long cnt)
455 class->stats.objs[type] -= cnt;
458 static inline unsigned long zs_stat_get(struct size_class *class,
459 enum zs_stat_type type)
461 return class->stats.objs[type];
464 static int __init zs_stat_init(void)
466 if (!debugfs_initialized())
467 return -ENODEV;
469 zs_stat_root = debugfs_create_dir("zsmalloc", NULL);
470 if (!zs_stat_root)
471 return -ENOMEM;
473 return 0;
476 static void __exit zs_stat_exit(void)
478 debugfs_remove_recursive(zs_stat_root);
481 static int zs_stats_size_show(struct seq_file *s, void *v)
483 int i;
484 struct zs_pool *pool = s->private;
485 struct size_class *class;
486 int objs_per_zspage;
487 unsigned long class_almost_full, class_almost_empty;
488 unsigned long obj_allocated, obj_used, pages_used;
489 unsigned long total_class_almost_full = 0, total_class_almost_empty = 0;
490 unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0;
492 seq_printf(s, " %5s %5s %11s %12s %13s %10s %10s %16s\n",
493 "class", "size", "almost_full", "almost_empty",
494 "obj_allocated", "obj_used", "pages_used",
495 "pages_per_zspage");
497 for (i = 0; i < zs_size_classes; i++) {
498 class = pool->size_class[i];
500 if (class->index != i)
501 continue;
503 spin_lock(&class->lock);
504 class_almost_full = zs_stat_get(class, CLASS_ALMOST_FULL);
505 class_almost_empty = zs_stat_get(class, CLASS_ALMOST_EMPTY);
506 obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
507 obj_used = zs_stat_get(class, OBJ_USED);
508 spin_unlock(&class->lock);
510 objs_per_zspage = get_maxobj_per_zspage(class->size,
511 class->pages_per_zspage);
512 pages_used = obj_allocated / objs_per_zspage *
513 class->pages_per_zspage;
515 seq_printf(s, " %5u %5u %11lu %12lu %13lu %10lu %10lu %16d\n",
516 i, class->size, class_almost_full, class_almost_empty,
517 obj_allocated, obj_used, pages_used,
518 class->pages_per_zspage);
520 total_class_almost_full += class_almost_full;
521 total_class_almost_empty += class_almost_empty;
522 total_objs += obj_allocated;
523 total_used_objs += obj_used;
524 total_pages += pages_used;
527 seq_puts(s, "\n");
528 seq_printf(s, " %5s %5s %11lu %12lu %13lu %10lu %10lu\n",
529 "Total", "", total_class_almost_full,
530 total_class_almost_empty, total_objs,
531 total_used_objs, total_pages);
533 return 0;
536 static int zs_stats_size_open(struct inode *inode, struct file *file)
538 return single_open(file, zs_stats_size_show, inode->i_private);
541 static const struct file_operations zs_stat_size_ops = {
542 .open = zs_stats_size_open,
543 .read = seq_read,
544 .llseek = seq_lseek,
545 .release = single_release,
548 static int zs_pool_stat_create(char *name, struct zs_pool *pool)
550 struct dentry *entry;
552 if (!zs_stat_root)
553 return -ENODEV;
555 entry = debugfs_create_dir(name, zs_stat_root);
556 if (!entry) {
557 pr_warn("debugfs dir <%s> creation failed\n", name);
558 return -ENOMEM;
560 pool->stat_dentry = entry;
562 entry = debugfs_create_file("classes", S_IFREG | S_IRUGO,
563 pool->stat_dentry, pool, &zs_stat_size_ops);
564 if (!entry) {
565 pr_warn("%s: debugfs file entry <%s> creation failed\n",
566 name, "classes");
567 return -ENOMEM;
570 return 0;
573 static void zs_pool_stat_destroy(struct zs_pool *pool)
575 debugfs_remove_recursive(pool->stat_dentry);
578 #else /* CONFIG_ZSMALLOC_STAT */
580 static inline void zs_stat_inc(struct size_class *class,
581 enum zs_stat_type type, unsigned long cnt)
585 static inline void zs_stat_dec(struct size_class *class,
586 enum zs_stat_type type, unsigned long cnt)
590 static inline unsigned long zs_stat_get(struct size_class *class,
591 enum zs_stat_type type)
593 return 0;
596 static int __init zs_stat_init(void)
598 return 0;
601 static void __exit zs_stat_exit(void)
605 static inline int zs_pool_stat_create(char *name, struct zs_pool *pool)
607 return 0;
610 static inline void zs_pool_stat_destroy(struct zs_pool *pool)
614 #endif
618 * For each size class, zspages are divided into different groups
619 * depending on how "full" they are. This was done so that we could
620 * easily find empty or nearly empty zspages when we try to shrink
621 * the pool (not yet implemented). This function returns fullness
622 * status of the given page.
624 static enum fullness_group get_fullness_group(struct page *page)
626 int inuse, max_objects;
627 enum fullness_group fg;
628 BUG_ON(!is_first_page(page));
630 inuse = page->inuse;
631 max_objects = page->objects;
633 if (inuse == 0)
634 fg = ZS_EMPTY;
635 else if (inuse == max_objects)
636 fg = ZS_FULL;
637 else if (inuse <= 3 * max_objects / fullness_threshold_frac)
638 fg = ZS_ALMOST_EMPTY;
639 else
640 fg = ZS_ALMOST_FULL;
642 return fg;
646 * Each size class maintains various freelists and zspages are assigned
647 * to one of these freelists based on the number of live objects they
648 * have. This functions inserts the given zspage into the freelist
649 * identified by <class, fullness_group>.
651 static void insert_zspage(struct page *page, struct size_class *class,
652 enum fullness_group fullness)
654 struct page **head;
656 BUG_ON(!is_first_page(page));
658 if (fullness >= _ZS_NR_FULLNESS_GROUPS)
659 return;
661 head = &class->fullness_list[fullness];
662 if (*head)
663 list_add_tail(&page->lru, &(*head)->lru);
665 *head = page;
666 zs_stat_inc(class, fullness == ZS_ALMOST_EMPTY ?
667 CLASS_ALMOST_EMPTY : CLASS_ALMOST_FULL, 1);
671 * This function removes the given zspage from the freelist identified
672 * by <class, fullness_group>.
674 static void remove_zspage(struct page *page, struct size_class *class,
675 enum fullness_group fullness)
677 struct page **head;
679 BUG_ON(!is_first_page(page));
681 if (fullness >= _ZS_NR_FULLNESS_GROUPS)
682 return;
684 head = &class->fullness_list[fullness];
685 BUG_ON(!*head);
686 if (list_empty(&(*head)->lru))
687 *head = NULL;
688 else if (*head == page)
689 *head = (struct page *)list_entry((*head)->lru.next,
690 struct page, lru);
692 list_del_init(&page->lru);
693 zs_stat_dec(class, fullness == ZS_ALMOST_EMPTY ?
694 CLASS_ALMOST_EMPTY : CLASS_ALMOST_FULL, 1);
698 * Each size class maintains zspages in different fullness groups depending
699 * on the number of live objects they contain. When allocating or freeing
700 * objects, the fullness status of the page can change, say, from ALMOST_FULL
701 * to ALMOST_EMPTY when freeing an object. This function checks if such
702 * a status change has occurred for the given page and accordingly moves the
703 * page from the freelist of the old fullness group to that of the new
704 * fullness group.
706 static enum fullness_group fix_fullness_group(struct size_class *class,
707 struct page *page)
709 int class_idx;
710 enum fullness_group currfg, newfg;
712 BUG_ON(!is_first_page(page));
714 get_zspage_mapping(page, &class_idx, &currfg);
715 newfg = get_fullness_group(page);
716 if (newfg == currfg)
717 goto out;
719 remove_zspage(page, class, currfg);
720 insert_zspage(page, class, newfg);
721 set_zspage_mapping(page, class_idx, newfg);
723 out:
724 return newfg;
728 * We have to decide on how many pages to link together
729 * to form a zspage for each size class. This is important
730 * to reduce wastage due to unusable space left at end of
731 * each zspage which is given as:
732 * wastage = Zp % class_size
733 * usage = Zp - wastage
734 * where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ...
736 * For example, for size class of 3/8 * PAGE_SIZE, we should
737 * link together 3 PAGE_SIZE sized pages to form a zspage
738 * since then we can perfectly fit in 8 such objects.
740 static int get_pages_per_zspage(int class_size)
742 int i, max_usedpc = 0;
743 /* zspage order which gives maximum used size per KB */
744 int max_usedpc_order = 1;
746 for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) {
747 int zspage_size;
748 int waste, usedpc;
750 zspage_size = i * PAGE_SIZE;
751 waste = zspage_size % class_size;
752 usedpc = (zspage_size - waste) * 100 / zspage_size;
754 if (usedpc > max_usedpc) {
755 max_usedpc = usedpc;
756 max_usedpc_order = i;
760 return max_usedpc_order;
764 * A single 'zspage' is composed of many system pages which are
765 * linked together using fields in struct page. This function finds
766 * the first/head page, given any component page of a zspage.
768 static struct page *get_first_page(struct page *page)
770 if (is_first_page(page))
771 return page;
772 else
773 return page->first_page;
776 static struct page *get_next_page(struct page *page)
778 struct page *next;
780 if (is_last_page(page))
781 next = NULL;
782 else if (is_first_page(page))
783 next = (struct page *)page_private(page);
784 else
785 next = list_entry(page->lru.next, struct page, lru);
787 return next;
791 * Encode <page, obj_idx> as a single handle value.
792 * We use the least bit of handle for tagging.
794 static void *location_to_obj(struct page *page, unsigned long obj_idx)
796 unsigned long obj;
798 if (!page) {
799 BUG_ON(obj_idx);
800 return NULL;
803 obj = page_to_pfn(page) << OBJ_INDEX_BITS;
804 obj |= ((obj_idx) & OBJ_INDEX_MASK);
805 obj <<= OBJ_TAG_BITS;
807 return (void *)obj;
811 * Decode <page, obj_idx> pair from the given object handle. We adjust the
812 * decoded obj_idx back to its original value since it was adjusted in
813 * location_to_obj().
815 static void obj_to_location(unsigned long obj, struct page **page,
816 unsigned long *obj_idx)
818 obj >>= OBJ_TAG_BITS;
819 *page = pfn_to_page(obj >> OBJ_INDEX_BITS);
820 *obj_idx = (obj & OBJ_INDEX_MASK);
823 static unsigned long handle_to_obj(unsigned long handle)
825 return *(unsigned long *)handle;
828 static unsigned long obj_to_head(struct size_class *class, struct page *page,
829 void *obj)
831 if (class->huge) {
832 VM_BUG_ON(!is_first_page(page));
833 return *(unsigned long *)page_private(page);
834 } else
835 return *(unsigned long *)obj;
838 static unsigned long obj_idx_to_offset(struct page *page,
839 unsigned long obj_idx, int class_size)
841 unsigned long off = 0;
843 if (!is_first_page(page))
844 off = page->index;
846 return off + obj_idx * class_size;
849 static inline int trypin_tag(unsigned long handle)
851 unsigned long *ptr = (unsigned long *)handle;
853 return !test_and_set_bit_lock(HANDLE_PIN_BIT, ptr);
856 static void pin_tag(unsigned long handle)
858 while (!trypin_tag(handle));
861 static void unpin_tag(unsigned long handle)
863 unsigned long *ptr = (unsigned long *)handle;
865 clear_bit_unlock(HANDLE_PIN_BIT, ptr);
868 static void reset_page(struct page *page)
870 clear_bit(PG_private, &page->flags);
871 clear_bit(PG_private_2, &page->flags);
872 set_page_private(page, 0);
873 page->mapping = NULL;
874 page->freelist = NULL;
875 page_mapcount_reset(page);
878 static void free_zspage(struct page *first_page)
880 struct page *nextp, *tmp, *head_extra;
882 BUG_ON(!is_first_page(first_page));
883 BUG_ON(first_page->inuse);
885 head_extra = (struct page *)page_private(first_page);
887 reset_page(first_page);
888 __free_page(first_page);
890 /* zspage with only 1 system page */
891 if (!head_extra)
892 return;
894 list_for_each_entry_safe(nextp, tmp, &head_extra->lru, lru) {
895 list_del(&nextp->lru);
896 reset_page(nextp);
897 __free_page(nextp);
899 reset_page(head_extra);
900 __free_page(head_extra);
903 /* Initialize a newly allocated zspage */
904 static void init_zspage(struct page *first_page, struct size_class *class)
906 unsigned long off = 0;
907 struct page *page = first_page;
909 BUG_ON(!is_first_page(first_page));
910 while (page) {
911 struct page *next_page;
912 struct link_free *link;
913 unsigned int i = 1;
914 void *vaddr;
917 * page->index stores offset of first object starting
918 * in the page. For the first page, this is always 0,
919 * so we use first_page->index (aka ->freelist) to store
920 * head of corresponding zspage's freelist.
922 if (page != first_page)
923 page->index = off;
925 vaddr = kmap_atomic(page);
926 link = (struct link_free *)vaddr + off / sizeof(*link);
928 while ((off += class->size) < PAGE_SIZE) {
929 link->next = location_to_obj(page, i++);
930 link += class->size / sizeof(*link);
934 * We now come to the last (full or partial) object on this
935 * page, which must point to the first object on the next
936 * page (if present)
938 next_page = get_next_page(page);
939 link->next = location_to_obj(next_page, 0);
940 kunmap_atomic(vaddr);
941 page = next_page;
942 off %= PAGE_SIZE;
947 * Allocate a zspage for the given size class
949 static struct page *alloc_zspage(struct size_class *class, gfp_t flags)
951 int i, error;
952 struct page *first_page = NULL, *uninitialized_var(prev_page);
955 * Allocate individual pages and link them together as:
956 * 1. first page->private = first sub-page
957 * 2. all sub-pages are linked together using page->lru
958 * 3. each sub-page is linked to the first page using page->first_page
960 * For each size class, First/Head pages are linked together using
961 * page->lru. Also, we set PG_private to identify the first page
962 * (i.e. no other sub-page has this flag set) and PG_private_2 to
963 * identify the last page.
965 error = -ENOMEM;
966 for (i = 0; i < class->pages_per_zspage; i++) {
967 struct page *page;
969 page = alloc_page(flags);
970 if (!page)
971 goto cleanup;
973 INIT_LIST_HEAD(&page->lru);
974 if (i == 0) { /* first page */
975 SetPagePrivate(page);
976 set_page_private(page, 0);
977 first_page = page;
978 first_page->inuse = 0;
980 if (i == 1)
981 set_page_private(first_page, (unsigned long)page);
982 if (i >= 1)
983 page->first_page = first_page;
984 if (i >= 2)
985 list_add(&page->lru, &prev_page->lru);
986 if (i == class->pages_per_zspage - 1) /* last page */
987 SetPagePrivate2(page);
988 prev_page = page;
991 init_zspage(first_page, class);
993 first_page->freelist = location_to_obj(first_page, 0);
994 /* Maximum number of objects we can store in this zspage */
995 first_page->objects = class->pages_per_zspage * PAGE_SIZE / class->size;
997 error = 0; /* Success */
999 cleanup:
1000 if (unlikely(error) && first_page) {
1001 free_zspage(first_page);
1002 first_page = NULL;
1005 return first_page;
1008 static struct page *find_get_zspage(struct size_class *class)
1010 int i;
1011 struct page *page;
1013 for (i = 0; i < _ZS_NR_FULLNESS_GROUPS; i++) {
1014 page = class->fullness_list[i];
1015 if (page)
1016 break;
1019 return page;
1022 #ifdef CONFIG_PGTABLE_MAPPING
1023 static inline int __zs_cpu_up(struct mapping_area *area)
1026 * Make sure we don't leak memory if a cpu UP notification
1027 * and zs_init() race and both call zs_cpu_up() on the same cpu
1029 if (area->vm)
1030 return 0;
1031 area->vm = alloc_vm_area(PAGE_SIZE * 2, NULL);
1032 if (!area->vm)
1033 return -ENOMEM;
1034 return 0;
1037 static inline void __zs_cpu_down(struct mapping_area *area)
1039 if (area->vm)
1040 free_vm_area(area->vm);
1041 area->vm = NULL;
1044 static inline void *__zs_map_object(struct mapping_area *area,
1045 struct page *pages[2], int off, int size)
1047 BUG_ON(map_vm_area(area->vm, PAGE_KERNEL, pages));
1048 area->vm_addr = area->vm->addr;
1049 return area->vm_addr + off;
1052 static inline void __zs_unmap_object(struct mapping_area *area,
1053 struct page *pages[2], int off, int size)
1055 unsigned long addr = (unsigned long)area->vm_addr;
1057 unmap_kernel_range(addr, PAGE_SIZE * 2);
1060 #else /* CONFIG_PGTABLE_MAPPING */
1062 static inline int __zs_cpu_up(struct mapping_area *area)
1065 * Make sure we don't leak memory if a cpu UP notification
1066 * and zs_init() race and both call zs_cpu_up() on the same cpu
1068 if (area->vm_buf)
1069 return 0;
1070 area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL);
1071 if (!area->vm_buf)
1072 return -ENOMEM;
1073 return 0;
1076 static inline void __zs_cpu_down(struct mapping_area *area)
1078 kfree(area->vm_buf);
1079 area->vm_buf = NULL;
1082 static void *__zs_map_object(struct mapping_area *area,
1083 struct page *pages[2], int off, int size)
1085 int sizes[2];
1086 void *addr;
1087 char *buf = area->vm_buf;
1089 /* disable page faults to match kmap_atomic() return conditions */
1090 pagefault_disable();
1092 /* no read fastpath */
1093 if (area->vm_mm == ZS_MM_WO)
1094 goto out;
1096 sizes[0] = PAGE_SIZE - off;
1097 sizes[1] = size - sizes[0];
1099 /* copy object to per-cpu buffer */
1100 addr = kmap_atomic(pages[0]);
1101 memcpy(buf, addr + off, sizes[0]);
1102 kunmap_atomic(addr);
1103 addr = kmap_atomic(pages[1]);
1104 memcpy(buf + sizes[0], addr, sizes[1]);
1105 kunmap_atomic(addr);
1106 out:
1107 return area->vm_buf;
1110 static void __zs_unmap_object(struct mapping_area *area,
1111 struct page *pages[2], int off, int size)
1113 int sizes[2];
1114 void *addr;
1115 char *buf;
1117 /* no write fastpath */
1118 if (area->vm_mm == ZS_MM_RO)
1119 goto out;
1121 buf = area->vm_buf;
1122 if (!area->huge) {
1123 buf = buf + ZS_HANDLE_SIZE;
1124 size -= ZS_HANDLE_SIZE;
1125 off += ZS_HANDLE_SIZE;
1128 sizes[0] = PAGE_SIZE - off;
1129 sizes[1] = size - sizes[0];
1131 /* copy per-cpu buffer to object */
1132 addr = kmap_atomic(pages[0]);
1133 memcpy(addr + off, buf, sizes[0]);
1134 kunmap_atomic(addr);
1135 addr = kmap_atomic(pages[1]);
1136 memcpy(addr, buf + sizes[0], sizes[1]);
1137 kunmap_atomic(addr);
1139 out:
1140 /* enable page faults to match kunmap_atomic() return conditions */
1141 pagefault_enable();
1144 #endif /* CONFIG_PGTABLE_MAPPING */
1146 static int zs_cpu_notifier(struct notifier_block *nb, unsigned long action,
1147 void *pcpu)
1149 int ret, cpu = (long)pcpu;
1150 struct mapping_area *area;
1152 switch (action) {
1153 case CPU_UP_PREPARE:
1154 area = &per_cpu(zs_map_area, cpu);
1155 ret = __zs_cpu_up(area);
1156 if (ret)
1157 return notifier_from_errno(ret);
1158 break;
1159 case CPU_DEAD:
1160 case CPU_UP_CANCELED:
1161 area = &per_cpu(zs_map_area, cpu);
1162 __zs_cpu_down(area);
1163 break;
1166 return NOTIFY_OK;
1169 static struct notifier_block zs_cpu_nb = {
1170 .notifier_call = zs_cpu_notifier
1173 static int zs_register_cpu_notifier(void)
1175 int cpu, uninitialized_var(ret);
1177 cpu_notifier_register_begin();
1179 __register_cpu_notifier(&zs_cpu_nb);
1180 for_each_online_cpu(cpu) {
1181 ret = zs_cpu_notifier(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
1182 if (notifier_to_errno(ret))
1183 break;
1186 cpu_notifier_register_done();
1187 return notifier_to_errno(ret);
1190 static void zs_unregister_cpu_notifier(void)
1192 int cpu;
1194 cpu_notifier_register_begin();
1196 for_each_online_cpu(cpu)
1197 zs_cpu_notifier(NULL, CPU_DEAD, (void *)(long)cpu);
1198 __unregister_cpu_notifier(&zs_cpu_nb);
1200 cpu_notifier_register_done();
1203 static void init_zs_size_classes(void)
1205 int nr;
1207 nr = (ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE) / ZS_SIZE_CLASS_DELTA + 1;
1208 if ((ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE) % ZS_SIZE_CLASS_DELTA)
1209 nr += 1;
1211 zs_size_classes = nr;
1214 static bool can_merge(struct size_class *prev, int size, int pages_per_zspage)
1216 if (prev->pages_per_zspage != pages_per_zspage)
1217 return false;
1219 if (get_maxobj_per_zspage(prev->size, prev->pages_per_zspage)
1220 != get_maxobj_per_zspage(size, pages_per_zspage))
1221 return false;
1223 return true;
1226 static bool zspage_full(struct page *page)
1228 BUG_ON(!is_first_page(page));
1230 return page->inuse == page->objects;
1233 unsigned long zs_get_total_pages(struct zs_pool *pool)
1235 return atomic_long_read(&pool->pages_allocated);
1237 EXPORT_SYMBOL_GPL(zs_get_total_pages);
1240 * zs_map_object - get address of allocated object from handle.
1241 * @pool: pool from which the object was allocated
1242 * @handle: handle returned from zs_malloc
1244 * Before using an object allocated from zs_malloc, it must be mapped using
1245 * this function. When done with the object, it must be unmapped using
1246 * zs_unmap_object.
1248 * Only one object can be mapped per cpu at a time. There is no protection
1249 * against nested mappings.
1251 * This function returns with preemption and page faults disabled.
1253 void *zs_map_object(struct zs_pool *pool, unsigned long handle,
1254 enum zs_mapmode mm)
1256 struct page *page;
1257 unsigned long obj, obj_idx, off;
1259 unsigned int class_idx;
1260 enum fullness_group fg;
1261 struct size_class *class;
1262 struct mapping_area *area;
1263 struct page *pages[2];
1264 void *ret;
1266 BUG_ON(!handle);
1269 * Because we use per-cpu mapping areas shared among the
1270 * pools/users, we can't allow mapping in interrupt context
1271 * because it can corrupt another users mappings.
1273 BUG_ON(in_interrupt());
1275 /* From now on, migration cannot move the object */
1276 pin_tag(handle);
1278 obj = handle_to_obj(handle);
1279 obj_to_location(obj, &page, &obj_idx);
1280 get_zspage_mapping(get_first_page(page), &class_idx, &fg);
1281 class = pool->size_class[class_idx];
1282 off = obj_idx_to_offset(page, obj_idx, class->size);
1284 area = &get_cpu_var(zs_map_area);
1285 area->vm_mm = mm;
1286 if (off + class->size <= PAGE_SIZE) {
1287 /* this object is contained entirely within a page */
1288 area->vm_addr = kmap_atomic(page);
1289 ret = area->vm_addr + off;
1290 goto out;
1293 /* this object spans two pages */
1294 pages[0] = page;
1295 pages[1] = get_next_page(page);
1296 BUG_ON(!pages[1]);
1298 ret = __zs_map_object(area, pages, off, class->size);
1299 out:
1300 if (!class->huge)
1301 ret += ZS_HANDLE_SIZE;
1303 return ret;
1305 EXPORT_SYMBOL_GPL(zs_map_object);
1307 void zs_unmap_object(struct zs_pool *pool, unsigned long handle)
1309 struct page *page;
1310 unsigned long obj, obj_idx, off;
1312 unsigned int class_idx;
1313 enum fullness_group fg;
1314 struct size_class *class;
1315 struct mapping_area *area;
1317 BUG_ON(!handle);
1319 obj = handle_to_obj(handle);
1320 obj_to_location(obj, &page, &obj_idx);
1321 get_zspage_mapping(get_first_page(page), &class_idx, &fg);
1322 class = pool->size_class[class_idx];
1323 off = obj_idx_to_offset(page, obj_idx, class->size);
1325 area = this_cpu_ptr(&zs_map_area);
1326 if (off + class->size <= PAGE_SIZE)
1327 kunmap_atomic(area->vm_addr);
1328 else {
1329 struct page *pages[2];
1331 pages[0] = page;
1332 pages[1] = get_next_page(page);
1333 BUG_ON(!pages[1]);
1335 __zs_unmap_object(area, pages, off, class->size);
1337 put_cpu_var(zs_map_area);
1338 unpin_tag(handle);
1340 EXPORT_SYMBOL_GPL(zs_unmap_object);
1342 static unsigned long obj_malloc(struct page *first_page,
1343 struct size_class *class, unsigned long handle)
1345 unsigned long obj;
1346 struct link_free *link;
1348 struct page *m_page;
1349 unsigned long m_objidx, m_offset;
1350 void *vaddr;
1352 handle |= OBJ_ALLOCATED_TAG;
1353 obj = (unsigned long)first_page->freelist;
1354 obj_to_location(obj, &m_page, &m_objidx);
1355 m_offset = obj_idx_to_offset(m_page, m_objidx, class->size);
1357 vaddr = kmap_atomic(m_page);
1358 link = (struct link_free *)vaddr + m_offset / sizeof(*link);
1359 first_page->freelist = link->next;
1360 if (!class->huge)
1361 /* record handle in the header of allocated chunk */
1362 link->handle = handle;
1363 else
1364 /* record handle in first_page->private */
1365 set_page_private(first_page, handle);
1366 kunmap_atomic(vaddr);
1367 first_page->inuse++;
1368 zs_stat_inc(class, OBJ_USED, 1);
1370 return obj;
1375 * zs_malloc - Allocate block of given size from pool.
1376 * @pool: pool to allocate from
1377 * @size: size of block to allocate
1379 * On success, handle to the allocated object is returned,
1380 * otherwise 0.
1381 * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
1383 unsigned long zs_malloc(struct zs_pool *pool, size_t size)
1385 unsigned long handle, obj;
1386 struct size_class *class;
1387 struct page *first_page;
1389 if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE))
1390 return 0;
1392 handle = alloc_handle(pool);
1393 if (!handle)
1394 return 0;
1396 /* extra space in chunk to keep the handle */
1397 size += ZS_HANDLE_SIZE;
1398 class = pool->size_class[get_size_class_index(size)];
1400 spin_lock(&class->lock);
1401 first_page = find_get_zspage(class);
1403 if (!first_page) {
1404 spin_unlock(&class->lock);
1405 first_page = alloc_zspage(class, pool->flags);
1406 if (unlikely(!first_page)) {
1407 free_handle(pool, handle);
1408 return 0;
1411 set_zspage_mapping(first_page, class->index, ZS_EMPTY);
1412 atomic_long_add(class->pages_per_zspage,
1413 &pool->pages_allocated);
1415 spin_lock(&class->lock);
1416 zs_stat_inc(class, OBJ_ALLOCATED, get_maxobj_per_zspage(
1417 class->size, class->pages_per_zspage));
1420 obj = obj_malloc(first_page, class, handle);
1421 /* Now move the zspage to another fullness group, if required */
1422 fix_fullness_group(class, first_page);
1423 record_obj(handle, obj);
1424 spin_unlock(&class->lock);
1426 return handle;
1428 EXPORT_SYMBOL_GPL(zs_malloc);
1430 static void obj_free(struct zs_pool *pool, struct size_class *class,
1431 unsigned long obj)
1433 struct link_free *link;
1434 struct page *first_page, *f_page;
1435 unsigned long f_objidx, f_offset;
1436 void *vaddr;
1437 int class_idx;
1438 enum fullness_group fullness;
1440 BUG_ON(!obj);
1442 obj &= ~OBJ_ALLOCATED_TAG;
1443 obj_to_location(obj, &f_page, &f_objidx);
1444 first_page = get_first_page(f_page);
1446 get_zspage_mapping(first_page, &class_idx, &fullness);
1447 f_offset = obj_idx_to_offset(f_page, f_objidx, class->size);
1449 vaddr = kmap_atomic(f_page);
1451 /* Insert this object in containing zspage's freelist */
1452 link = (struct link_free *)(vaddr + f_offset);
1453 link->next = first_page->freelist;
1454 if (class->huge)
1455 set_page_private(first_page, 0);
1456 kunmap_atomic(vaddr);
1457 first_page->freelist = (void *)obj;
1458 first_page->inuse--;
1459 zs_stat_dec(class, OBJ_USED, 1);
1462 void zs_free(struct zs_pool *pool, unsigned long handle)
1464 struct page *first_page, *f_page;
1465 unsigned long obj, f_objidx;
1466 int class_idx;
1467 struct size_class *class;
1468 enum fullness_group fullness;
1470 if (unlikely(!handle))
1471 return;
1473 pin_tag(handle);
1474 obj = handle_to_obj(handle);
1475 obj_to_location(obj, &f_page, &f_objidx);
1476 first_page = get_first_page(f_page);
1478 get_zspage_mapping(first_page, &class_idx, &fullness);
1479 class = pool->size_class[class_idx];
1481 spin_lock(&class->lock);
1482 obj_free(pool, class, obj);
1483 fullness = fix_fullness_group(class, first_page);
1484 if (fullness == ZS_EMPTY) {
1485 zs_stat_dec(class, OBJ_ALLOCATED, get_maxobj_per_zspage(
1486 class->size, class->pages_per_zspage));
1487 atomic_long_sub(class->pages_per_zspage,
1488 &pool->pages_allocated);
1489 free_zspage(first_page);
1491 spin_unlock(&class->lock);
1492 unpin_tag(handle);
1494 free_handle(pool, handle);
1496 EXPORT_SYMBOL_GPL(zs_free);
1498 static void zs_object_copy(unsigned long src, unsigned long dst,
1499 struct size_class *class)
1501 struct page *s_page, *d_page;
1502 unsigned long s_objidx, d_objidx;
1503 unsigned long s_off, d_off;
1504 void *s_addr, *d_addr;
1505 int s_size, d_size, size;
1506 int written = 0;
1508 s_size = d_size = class->size;
1510 obj_to_location(src, &s_page, &s_objidx);
1511 obj_to_location(dst, &d_page, &d_objidx);
1513 s_off = obj_idx_to_offset(s_page, s_objidx, class->size);
1514 d_off = obj_idx_to_offset(d_page, d_objidx, class->size);
1516 if (s_off + class->size > PAGE_SIZE)
1517 s_size = PAGE_SIZE - s_off;
1519 if (d_off + class->size > PAGE_SIZE)
1520 d_size = PAGE_SIZE - d_off;
1522 s_addr = kmap_atomic(s_page);
1523 d_addr = kmap_atomic(d_page);
1525 while (1) {
1526 size = min(s_size, d_size);
1527 memcpy(d_addr + d_off, s_addr + s_off, size);
1528 written += size;
1530 if (written == class->size)
1531 break;
1533 s_off += size;
1534 s_size -= size;
1535 d_off += size;
1536 d_size -= size;
1538 if (s_off >= PAGE_SIZE) {
1539 kunmap_atomic(d_addr);
1540 kunmap_atomic(s_addr);
1541 s_page = get_next_page(s_page);
1542 BUG_ON(!s_page);
1543 s_addr = kmap_atomic(s_page);
1544 d_addr = kmap_atomic(d_page);
1545 s_size = class->size - written;
1546 s_off = 0;
1549 if (d_off >= PAGE_SIZE) {
1550 kunmap_atomic(d_addr);
1551 d_page = get_next_page(d_page);
1552 BUG_ON(!d_page);
1553 d_addr = kmap_atomic(d_page);
1554 d_size = class->size - written;
1555 d_off = 0;
1559 kunmap_atomic(d_addr);
1560 kunmap_atomic(s_addr);
1564 * Find alloced object in zspage from index object and
1565 * return handle.
1567 static unsigned long find_alloced_obj(struct page *page, int index,
1568 struct size_class *class)
1570 unsigned long head;
1571 int offset = 0;
1572 unsigned long handle = 0;
1573 void *addr = kmap_atomic(page);
1575 if (!is_first_page(page))
1576 offset = page->index;
1577 offset += class->size * index;
1579 while (offset < PAGE_SIZE) {
1580 head = obj_to_head(class, page, addr + offset);
1581 if (head & OBJ_ALLOCATED_TAG) {
1582 handle = head & ~OBJ_ALLOCATED_TAG;
1583 if (trypin_tag(handle))
1584 break;
1585 handle = 0;
1588 offset += class->size;
1589 index++;
1592 kunmap_atomic(addr);
1593 return handle;
1596 struct zs_compact_control {
1597 /* Source page for migration which could be a subpage of zspage. */
1598 struct page *s_page;
1599 /* Destination page for migration which should be a first page
1600 * of zspage. */
1601 struct page *d_page;
1602 /* Starting object index within @s_page which used for live object
1603 * in the subpage. */
1604 int index;
1605 /* how many of objects are migrated */
1606 int nr_migrated;
1609 static int migrate_zspage(struct zs_pool *pool, struct size_class *class,
1610 struct zs_compact_control *cc)
1612 unsigned long used_obj, free_obj;
1613 unsigned long handle;
1614 struct page *s_page = cc->s_page;
1615 struct page *d_page = cc->d_page;
1616 unsigned long index = cc->index;
1617 int nr_migrated = 0;
1618 int ret = 0;
1620 while (1) {
1621 handle = find_alloced_obj(s_page, index, class);
1622 if (!handle) {
1623 s_page = get_next_page(s_page);
1624 if (!s_page)
1625 break;
1626 index = 0;
1627 continue;
1630 /* Stop if there is no more space */
1631 if (zspage_full(d_page)) {
1632 unpin_tag(handle);
1633 ret = -ENOMEM;
1634 break;
1637 used_obj = handle_to_obj(handle);
1638 free_obj = obj_malloc(d_page, class, handle);
1639 zs_object_copy(used_obj, free_obj, class);
1640 index++;
1641 record_obj(handle, free_obj);
1642 unpin_tag(handle);
1643 obj_free(pool, class, used_obj);
1644 nr_migrated++;
1647 /* Remember last position in this iteration */
1648 cc->s_page = s_page;
1649 cc->index = index;
1650 cc->nr_migrated = nr_migrated;
1652 return ret;
1655 static struct page *alloc_target_page(struct size_class *class)
1657 int i;
1658 struct page *page;
1660 for (i = 0; i < _ZS_NR_FULLNESS_GROUPS; i++) {
1661 page = class->fullness_list[i];
1662 if (page) {
1663 remove_zspage(page, class, i);
1664 break;
1668 return page;
1671 static void putback_zspage(struct zs_pool *pool, struct size_class *class,
1672 struct page *first_page)
1674 enum fullness_group fullness;
1676 BUG_ON(!is_first_page(first_page));
1678 fullness = get_fullness_group(first_page);
1679 insert_zspage(first_page, class, fullness);
1680 set_zspage_mapping(first_page, class->index, fullness);
1682 if (fullness == ZS_EMPTY) {
1683 zs_stat_dec(class, OBJ_ALLOCATED, get_maxobj_per_zspage(
1684 class->size, class->pages_per_zspage));
1685 atomic_long_sub(class->pages_per_zspage,
1686 &pool->pages_allocated);
1688 free_zspage(first_page);
1692 static struct page *isolate_source_page(struct size_class *class)
1694 struct page *page;
1696 page = class->fullness_list[ZS_ALMOST_EMPTY];
1697 if (page)
1698 remove_zspage(page, class, ZS_ALMOST_EMPTY);
1700 return page;
1703 static unsigned long __zs_compact(struct zs_pool *pool,
1704 struct size_class *class)
1706 int nr_to_migrate;
1707 struct zs_compact_control cc;
1708 struct page *src_page;
1709 struct page *dst_page = NULL;
1710 unsigned long nr_total_migrated = 0;
1712 spin_lock(&class->lock);
1713 while ((src_page = isolate_source_page(class))) {
1715 BUG_ON(!is_first_page(src_page));
1717 /* The goal is to migrate all live objects in source page */
1718 nr_to_migrate = src_page->inuse;
1719 cc.index = 0;
1720 cc.s_page = src_page;
1722 while ((dst_page = alloc_target_page(class))) {
1723 cc.d_page = dst_page;
1725 * If there is no more space in dst_page, try to
1726 * allocate another zspage.
1728 if (!migrate_zspage(pool, class, &cc))
1729 break;
1731 putback_zspage(pool, class, dst_page);
1732 nr_total_migrated += cc.nr_migrated;
1733 nr_to_migrate -= cc.nr_migrated;
1736 /* Stop if we couldn't find slot */
1737 if (dst_page == NULL)
1738 break;
1740 putback_zspage(pool, class, dst_page);
1741 putback_zspage(pool, class, src_page);
1742 spin_unlock(&class->lock);
1743 nr_total_migrated += cc.nr_migrated;
1744 cond_resched();
1745 spin_lock(&class->lock);
1748 if (src_page)
1749 putback_zspage(pool, class, src_page);
1751 spin_unlock(&class->lock);
1753 return nr_total_migrated;
1756 unsigned long zs_compact(struct zs_pool *pool)
1758 int i;
1759 unsigned long nr_migrated = 0;
1760 struct size_class *class;
1762 for (i = zs_size_classes - 1; i >= 0; i--) {
1763 class = pool->size_class[i];
1764 if (!class)
1765 continue;
1766 if (class->index != i)
1767 continue;
1768 nr_migrated += __zs_compact(pool, class);
1771 return nr_migrated;
1773 EXPORT_SYMBOL_GPL(zs_compact);
1776 * zs_create_pool - Creates an allocation pool to work from.
1777 * @flags: allocation flags used to allocate pool metadata
1779 * This function must be called before anything when using
1780 * the zsmalloc allocator.
1782 * On success, a pointer to the newly created pool is returned,
1783 * otherwise NULL.
1785 struct zs_pool *zs_create_pool(char *name, gfp_t flags)
1787 int i;
1788 struct zs_pool *pool;
1789 struct size_class *prev_class = NULL;
1791 pool = kzalloc(sizeof(*pool), GFP_KERNEL);
1792 if (!pool)
1793 return NULL;
1795 pool->size_class = kcalloc(zs_size_classes, sizeof(struct size_class *),
1796 GFP_KERNEL);
1797 if (!pool->size_class) {
1798 kfree(pool);
1799 return NULL;
1802 pool->name = kstrdup(name, GFP_KERNEL);
1803 if (!pool->name)
1804 goto err;
1806 if (create_handle_cache(pool))
1807 goto err;
1810 * Iterate reversly, because, size of size_class that we want to use
1811 * for merging should be larger or equal to current size.
1813 for (i = zs_size_classes - 1; i >= 0; i--) {
1814 int size;
1815 int pages_per_zspage;
1816 struct size_class *class;
1818 size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA;
1819 if (size > ZS_MAX_ALLOC_SIZE)
1820 size = ZS_MAX_ALLOC_SIZE;
1821 pages_per_zspage = get_pages_per_zspage(size);
1824 * size_class is used for normal zsmalloc operation such
1825 * as alloc/free for that size. Although it is natural that we
1826 * have one size_class for each size, there is a chance that we
1827 * can get more memory utilization if we use one size_class for
1828 * many different sizes whose size_class have same
1829 * characteristics. So, we makes size_class point to
1830 * previous size_class if possible.
1832 if (prev_class) {
1833 if (can_merge(prev_class, size, pages_per_zspage)) {
1834 pool->size_class[i] = prev_class;
1835 continue;
1839 class = kzalloc(sizeof(struct size_class), GFP_KERNEL);
1840 if (!class)
1841 goto err;
1843 class->size = size;
1844 class->index = i;
1845 class->pages_per_zspage = pages_per_zspage;
1846 if (pages_per_zspage == 1 &&
1847 get_maxobj_per_zspage(size, pages_per_zspage) == 1)
1848 class->huge = true;
1849 spin_lock_init(&class->lock);
1850 pool->size_class[i] = class;
1852 prev_class = class;
1855 pool->flags = flags;
1857 if (zs_pool_stat_create(name, pool))
1858 goto err;
1860 return pool;
1862 err:
1863 zs_destroy_pool(pool);
1864 return NULL;
1866 EXPORT_SYMBOL_GPL(zs_create_pool);
1868 void zs_destroy_pool(struct zs_pool *pool)
1870 int i;
1872 zs_pool_stat_destroy(pool);
1874 for (i = 0; i < zs_size_classes; i++) {
1875 int fg;
1876 struct size_class *class = pool->size_class[i];
1878 if (!class)
1879 continue;
1881 if (class->index != i)
1882 continue;
1884 for (fg = 0; fg < _ZS_NR_FULLNESS_GROUPS; fg++) {
1885 if (class->fullness_list[fg]) {
1886 pr_info("Freeing non-empty class with size %db, fullness group %d\n",
1887 class->size, fg);
1890 kfree(class);
1893 destroy_handle_cache(pool);
1894 kfree(pool->size_class);
1895 kfree(pool->name);
1896 kfree(pool);
1898 EXPORT_SYMBOL_GPL(zs_destroy_pool);
1900 static int __init zs_init(void)
1902 int ret = zs_register_cpu_notifier();
1904 if (ret)
1905 goto notifier_fail;
1907 init_zs_size_classes();
1909 #ifdef CONFIG_ZPOOL
1910 zpool_register_driver(&zs_zpool_driver);
1911 #endif
1913 ret = zs_stat_init();
1914 if (ret) {
1915 pr_err("zs stat initialization failed\n");
1916 goto stat_fail;
1918 return 0;
1920 stat_fail:
1921 #ifdef CONFIG_ZPOOL
1922 zpool_unregister_driver(&zs_zpool_driver);
1923 #endif
1924 notifier_fail:
1925 zs_unregister_cpu_notifier();
1927 return ret;
1930 static void __exit zs_exit(void)
1932 #ifdef CONFIG_ZPOOL
1933 zpool_unregister_driver(&zs_zpool_driver);
1934 #endif
1935 zs_unregister_cpu_notifier();
1937 zs_stat_exit();
1940 module_init(zs_init);
1941 module_exit(zs_exit);
1943 MODULE_LICENSE("Dual BSD/GPL");
1944 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");