1 /* Common capabilities, needed by capability.o.
3 * This program is free software; you can redistribute it and/or modify
4 * it under the terms of the GNU General Public License as published by
5 * the Free Software Foundation; either version 2 of the License, or
6 * (at your option) any later version.
10 #include <linux/capability.h>
11 #include <linux/audit.h>
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/kernel.h>
15 #include <linux/lsm_hooks.h>
16 #include <linux/file.h>
18 #include <linux/mman.h>
19 #include <linux/pagemap.h>
20 #include <linux/swap.h>
21 #include <linux/skbuff.h>
22 #include <linux/netlink.h>
23 #include <linux/ptrace.h>
24 #include <linux/xattr.h>
25 #include <linux/hugetlb.h>
26 #include <linux/mount.h>
27 #include <linux/sched.h>
28 #include <linux/prctl.h>
29 #include <linux/securebits.h>
30 #include <linux/user_namespace.h>
31 #include <linux/binfmts.h>
32 #include <linux/personality.h>
35 * If a non-root user executes a setuid-root binary in
36 * !secure(SECURE_NOROOT) mode, then we raise capabilities.
37 * However if fE is also set, then the intent is for only
38 * the file capabilities to be applied, and the setuid-root
39 * bit is left on either to change the uid (plausible) or
40 * to get full privilege on a kernel without file capabilities
41 * support. So in that case we do not raise capabilities.
43 * Warn if that happens, once per boot.
45 static void warn_setuid_and_fcaps_mixed(const char *fname
)
49 printk(KERN_INFO
"warning: `%s' has both setuid-root and"
50 " effective capabilities. Therefore not raising all"
51 " capabilities.\n", fname
);
57 * cap_capable - Determine whether a task has a particular effective capability
58 * @cred: The credentials to use
59 * @ns: The user namespace in which we need the capability
60 * @cap: The capability to check for
61 * @audit: Whether to write an audit message or not
63 * Determine whether the nominated task has the specified capability amongst
64 * its effective set, returning 0 if it does, -ve if it does not.
66 * NOTE WELL: cap_has_capability() cannot be used like the kernel's capable()
67 * and has_capability() functions. That is, it has the reverse semantics:
68 * cap_has_capability() returns 0 when a task has a capability, but the
69 * kernel's capable() and has_capability() returns 1 for this case.
71 int cap_capable(const struct cred
*cred
, struct user_namespace
*targ_ns
,
74 struct user_namespace
*ns
= targ_ns
;
76 /* See if cred has the capability in the target user namespace
77 * by examining the target user namespace and all of the target
78 * user namespace's parents.
81 /* Do we have the necessary capabilities? */
82 if (ns
== cred
->user_ns
)
83 return cap_raised(cred
->cap_effective
, cap
) ? 0 : -EPERM
;
85 /* Have we tried all of the parent namespaces? */
86 if (ns
== &init_user_ns
)
90 * The owner of the user namespace in the parent of the
91 * user namespace has all caps.
93 if ((ns
->parent
== cred
->user_ns
) && uid_eq(ns
->owner
, cred
->euid
))
97 * If you have a capability in a parent user ns, then you have
98 * it over all children user namespaces as well.
103 /* We never get here */
107 * cap_settime - Determine whether the current process may set the system clock
108 * @ts: The time to set
109 * @tz: The timezone to set
111 * Determine whether the current process may set the system clock and timezone
112 * information, returning 0 if permission granted, -ve if denied.
114 int cap_settime(const struct timespec
*ts
, const struct timezone
*tz
)
116 if (!capable(CAP_SYS_TIME
))
122 * cap_ptrace_access_check - Determine whether the current process may access
124 * @child: The process to be accessed
125 * @mode: The mode of attachment.
127 * If we are in the same or an ancestor user_ns and have all the target
128 * task's capabilities, then ptrace access is allowed.
129 * If we have the ptrace capability to the target user_ns, then ptrace
133 * Determine whether a process may access another, returning 0 if permission
134 * granted, -ve if denied.
136 int cap_ptrace_access_check(struct task_struct
*child
, unsigned int mode
)
139 const struct cred
*cred
, *child_cred
;
142 cred
= current_cred();
143 child_cred
= __task_cred(child
);
144 if (cred
->user_ns
== child_cred
->user_ns
&&
145 cap_issubset(child_cred
->cap_permitted
, cred
->cap_permitted
))
147 if (ns_capable(child_cred
->user_ns
, CAP_SYS_PTRACE
))
156 * cap_ptrace_traceme - Determine whether another process may trace the current
157 * @parent: The task proposed to be the tracer
159 * If parent is in the same or an ancestor user_ns and has all current's
160 * capabilities, then ptrace access is allowed.
161 * If parent has the ptrace capability to current's user_ns, then ptrace
165 * Determine whether the nominated task is permitted to trace the current
166 * process, returning 0 if permission is granted, -ve if denied.
168 int cap_ptrace_traceme(struct task_struct
*parent
)
171 const struct cred
*cred
, *child_cred
;
174 cred
= __task_cred(parent
);
175 child_cred
= current_cred();
176 if (cred
->user_ns
== child_cred
->user_ns
&&
177 cap_issubset(child_cred
->cap_permitted
, cred
->cap_permitted
))
179 if (has_ns_capability(parent
, child_cred
->user_ns
, CAP_SYS_PTRACE
))
188 * cap_capget - Retrieve a task's capability sets
189 * @target: The task from which to retrieve the capability sets
190 * @effective: The place to record the effective set
191 * @inheritable: The place to record the inheritable set
192 * @permitted: The place to record the permitted set
194 * This function retrieves the capabilities of the nominated task and returns
195 * them to the caller.
197 int cap_capget(struct task_struct
*target
, kernel_cap_t
*effective
,
198 kernel_cap_t
*inheritable
, kernel_cap_t
*permitted
)
200 const struct cred
*cred
;
202 /* Derived from kernel/capability.c:sys_capget. */
204 cred
= __task_cred(target
);
205 *effective
= cred
->cap_effective
;
206 *inheritable
= cred
->cap_inheritable
;
207 *permitted
= cred
->cap_permitted
;
213 * Determine whether the inheritable capabilities are limited to the old
214 * permitted set. Returns 1 if they are limited, 0 if they are not.
216 static inline int cap_inh_is_capped(void)
219 /* they are so limited unless the current task has the CAP_SETPCAP
222 if (cap_capable(current_cred(), current_cred()->user_ns
,
223 CAP_SETPCAP
, SECURITY_CAP_AUDIT
) == 0)
229 * cap_capset - Validate and apply proposed changes to current's capabilities
230 * @new: The proposed new credentials; alterations should be made here
231 * @old: The current task's current credentials
232 * @effective: A pointer to the proposed new effective capabilities set
233 * @inheritable: A pointer to the proposed new inheritable capabilities set
234 * @permitted: A pointer to the proposed new permitted capabilities set
236 * This function validates and applies a proposed mass change to the current
237 * process's capability sets. The changes are made to the proposed new
238 * credentials, and assuming no error, will be committed by the caller of LSM.
240 int cap_capset(struct cred
*new,
241 const struct cred
*old
,
242 const kernel_cap_t
*effective
,
243 const kernel_cap_t
*inheritable
,
244 const kernel_cap_t
*permitted
)
246 if (cap_inh_is_capped() &&
247 !cap_issubset(*inheritable
,
248 cap_combine(old
->cap_inheritable
,
249 old
->cap_permitted
)))
250 /* incapable of using this inheritable set */
253 if (!cap_issubset(*inheritable
,
254 cap_combine(old
->cap_inheritable
,
256 /* no new pI capabilities outside bounding set */
259 /* verify restrictions on target's new Permitted set */
260 if (!cap_issubset(*permitted
, old
->cap_permitted
))
263 /* verify the _new_Effective_ is a subset of the _new_Permitted_ */
264 if (!cap_issubset(*effective
, *permitted
))
267 new->cap_effective
= *effective
;
268 new->cap_inheritable
= *inheritable
;
269 new->cap_permitted
= *permitted
;
274 * Clear proposed capability sets for execve().
276 static inline void bprm_clear_caps(struct linux_binprm
*bprm
)
278 cap_clear(bprm
->cred
->cap_permitted
);
279 bprm
->cap_effective
= false;
283 * cap_inode_need_killpriv - Determine if inode change affects privileges
284 * @dentry: The inode/dentry in being changed with change marked ATTR_KILL_PRIV
286 * Determine if an inode having a change applied that's marked ATTR_KILL_PRIV
287 * affects the security markings on that inode, and if it is, should
288 * inode_killpriv() be invoked or the change rejected?
290 * Returns 0 if granted; +ve if granted, but inode_killpriv() is required; and
291 * -ve to deny the change.
293 int cap_inode_need_killpriv(struct dentry
*dentry
)
295 struct inode
*inode
= d_backing_inode(dentry
);
298 if (!inode
->i_op
->getxattr
)
301 error
= inode
->i_op
->getxattr(dentry
, XATTR_NAME_CAPS
, NULL
, 0);
308 * cap_inode_killpriv - Erase the security markings on an inode
309 * @dentry: The inode/dentry to alter
311 * Erase the privilege-enhancing security markings on an inode.
313 * Returns 0 if successful, -ve on error.
315 int cap_inode_killpriv(struct dentry
*dentry
)
317 struct inode
*inode
= d_backing_inode(dentry
);
319 if (!inode
->i_op
->removexattr
)
322 return inode
->i_op
->removexattr(dentry
, XATTR_NAME_CAPS
);
326 * Calculate the new process capability sets from the capability sets attached
329 static inline int bprm_caps_from_vfs_caps(struct cpu_vfs_cap_data
*caps
,
330 struct linux_binprm
*bprm
,
334 struct cred
*new = bprm
->cred
;
338 if (caps
->magic_etc
& VFS_CAP_FLAGS_EFFECTIVE
)
341 if (caps
->magic_etc
& VFS_CAP_REVISION_MASK
)
344 CAP_FOR_EACH_U32(i
) {
345 __u32 permitted
= caps
->permitted
.cap
[i
];
346 __u32 inheritable
= caps
->inheritable
.cap
[i
];
349 * pP' = (X & fP) | (pI & fI)
351 new->cap_permitted
.cap
[i
] =
352 (new->cap_bset
.cap
[i
] & permitted
) |
353 (new->cap_inheritable
.cap
[i
] & inheritable
);
355 if (permitted
& ~new->cap_permitted
.cap
[i
])
356 /* insufficient to execute correctly */
361 * For legacy apps, with no internal support for recognizing they
362 * do not have enough capabilities, we return an error if they are
363 * missing some "forced" (aka file-permitted) capabilities.
365 return *effective
? ret
: 0;
369 * Extract the on-exec-apply capability sets for an executable file.
371 int get_vfs_caps_from_disk(const struct dentry
*dentry
, struct cpu_vfs_cap_data
*cpu_caps
)
373 struct inode
*inode
= d_backing_inode(dentry
);
377 struct vfs_cap_data caps
;
379 memset(cpu_caps
, 0, sizeof(struct cpu_vfs_cap_data
));
381 if (!inode
|| !inode
->i_op
->getxattr
)
384 size
= inode
->i_op
->getxattr((struct dentry
*)dentry
, XATTR_NAME_CAPS
, &caps
,
386 if (size
== -ENODATA
|| size
== -EOPNOTSUPP
)
387 /* no data, that's ok */
392 if (size
< sizeof(magic_etc
))
395 cpu_caps
->magic_etc
= magic_etc
= le32_to_cpu(caps
.magic_etc
);
397 switch (magic_etc
& VFS_CAP_REVISION_MASK
) {
398 case VFS_CAP_REVISION_1
:
399 if (size
!= XATTR_CAPS_SZ_1
)
401 tocopy
= VFS_CAP_U32_1
;
403 case VFS_CAP_REVISION_2
:
404 if (size
!= XATTR_CAPS_SZ_2
)
406 tocopy
= VFS_CAP_U32_2
;
412 CAP_FOR_EACH_U32(i
) {
415 cpu_caps
->permitted
.cap
[i
] = le32_to_cpu(caps
.data
[i
].permitted
);
416 cpu_caps
->inheritable
.cap
[i
] = le32_to_cpu(caps
.data
[i
].inheritable
);
419 cpu_caps
->permitted
.cap
[CAP_LAST_U32
] &= CAP_LAST_U32_VALID_MASK
;
420 cpu_caps
->inheritable
.cap
[CAP_LAST_U32
] &= CAP_LAST_U32_VALID_MASK
;
426 * Attempt to get the on-exec apply capability sets for an executable file from
427 * its xattrs and, if present, apply them to the proposed credentials being
428 * constructed by execve().
430 static int get_file_caps(struct linux_binprm
*bprm
, bool *effective
, bool *has_cap
)
433 struct cpu_vfs_cap_data vcaps
;
435 bprm_clear_caps(bprm
);
437 if (!file_caps_enabled
)
440 if (bprm
->file
->f_path
.mnt
->mnt_flags
& MNT_NOSUID
)
443 rc
= get_vfs_caps_from_disk(bprm
->file
->f_path
.dentry
, &vcaps
);
446 printk(KERN_NOTICE
"%s: get_vfs_caps_from_disk returned %d for %s\n",
447 __func__
, rc
, bprm
->filename
);
448 else if (rc
== -ENODATA
)
453 rc
= bprm_caps_from_vfs_caps(&vcaps
, bprm
, effective
, has_cap
);
455 printk(KERN_NOTICE
"%s: cap_from_disk returned %d for %s\n",
456 __func__
, rc
, bprm
->filename
);
460 bprm_clear_caps(bprm
);
466 * cap_bprm_set_creds - Set up the proposed credentials for execve().
467 * @bprm: The execution parameters, including the proposed creds
469 * Set up the proposed credentials for a new execution context being
470 * constructed by execve(). The proposed creds in @bprm->cred is altered,
471 * which won't take effect immediately. Returns 0 if successful, -ve on error.
473 int cap_bprm_set_creds(struct linux_binprm
*bprm
)
475 const struct cred
*old
= current_cred();
476 struct cred
*new = bprm
->cred
;
477 bool effective
, has_cap
= false;
482 ret
= get_file_caps(bprm
, &effective
, &has_cap
);
486 root_uid
= make_kuid(new->user_ns
, 0);
488 if (!issecure(SECURE_NOROOT
)) {
490 * If the legacy file capability is set, then don't set privs
491 * for a setuid root binary run by a non-root user. Do set it
492 * for a root user just to cause least surprise to an admin.
494 if (has_cap
&& !uid_eq(new->uid
, root_uid
) && uid_eq(new->euid
, root_uid
)) {
495 warn_setuid_and_fcaps_mixed(bprm
->filename
);
499 * To support inheritance of root-permissions and suid-root
500 * executables under compatibility mode, we override the
501 * capability sets for the file.
503 * If only the real uid is 0, we do not set the effective bit.
505 if (uid_eq(new->euid
, root_uid
) || uid_eq(new->uid
, root_uid
)) {
506 /* pP' = (cap_bset & ~0) | (pI & ~0) */
507 new->cap_permitted
= cap_combine(old
->cap_bset
,
508 old
->cap_inheritable
);
510 if (uid_eq(new->euid
, root_uid
))
515 /* if we have fs caps, clear dangerous personality flags */
516 if (!cap_issubset(new->cap_permitted
, old
->cap_permitted
))
517 bprm
->per_clear
|= PER_CLEAR_ON_SETID
;
520 /* Don't let someone trace a set[ug]id/setpcap binary with the revised
521 * credentials unless they have the appropriate permit.
523 * In addition, if NO_NEW_PRIVS, then ensure we get no new privs.
525 if ((!uid_eq(new->euid
, old
->uid
) ||
526 !gid_eq(new->egid
, old
->gid
) ||
527 !cap_issubset(new->cap_permitted
, old
->cap_permitted
)) &&
528 bprm
->unsafe
& ~LSM_UNSAFE_PTRACE_CAP
) {
529 /* downgrade; they get no more than they had, and maybe less */
530 if (!capable(CAP_SETUID
) ||
531 (bprm
->unsafe
& LSM_UNSAFE_NO_NEW_PRIVS
)) {
532 new->euid
= new->uid
;
533 new->egid
= new->gid
;
535 new->cap_permitted
= cap_intersect(new->cap_permitted
,
539 new->suid
= new->fsuid
= new->euid
;
540 new->sgid
= new->fsgid
= new->egid
;
543 new->cap_effective
= new->cap_permitted
;
545 cap_clear(new->cap_effective
);
546 bprm
->cap_effective
= effective
;
549 * Audit candidate if current->cap_effective is set
551 * We do not bother to audit if 3 things are true:
552 * 1) cap_effective has all caps
554 * 3) root is supposed to have all caps (SECURE_NOROOT)
555 * Since this is just a normal root execing a process.
557 * Number 1 above might fail if you don't have a full bset, but I think
558 * that is interesting information to audit.
560 if (!cap_isclear(new->cap_effective
)) {
561 if (!cap_issubset(CAP_FULL_SET
, new->cap_effective
) ||
562 !uid_eq(new->euid
, root_uid
) || !uid_eq(new->uid
, root_uid
) ||
563 issecure(SECURE_NOROOT
)) {
564 ret
= audit_log_bprm_fcaps(bprm
, new, old
);
570 new->securebits
&= ~issecure_mask(SECURE_KEEP_CAPS
);
575 * cap_bprm_secureexec - Determine whether a secure execution is required
576 * @bprm: The execution parameters
578 * Determine whether a secure execution is required, return 1 if it is, and 0
581 * The credentials have been committed by this point, and so are no longer
582 * available through @bprm->cred.
584 int cap_bprm_secureexec(struct linux_binprm
*bprm
)
586 const struct cred
*cred
= current_cred();
587 kuid_t root_uid
= make_kuid(cred
->user_ns
, 0);
589 if (!uid_eq(cred
->uid
, root_uid
)) {
590 if (bprm
->cap_effective
)
592 if (!cap_isclear(cred
->cap_permitted
))
596 return (!uid_eq(cred
->euid
, cred
->uid
) ||
597 !gid_eq(cred
->egid
, cred
->gid
));
601 * cap_inode_setxattr - Determine whether an xattr may be altered
602 * @dentry: The inode/dentry being altered
603 * @name: The name of the xattr to be changed
604 * @value: The value that the xattr will be changed to
605 * @size: The size of value
606 * @flags: The replacement flag
608 * Determine whether an xattr may be altered or set on an inode, returning 0 if
609 * permission is granted, -ve if denied.
611 * This is used to make sure security xattrs don't get updated or set by those
612 * who aren't privileged to do so.
614 int cap_inode_setxattr(struct dentry
*dentry
, const char *name
,
615 const void *value
, size_t size
, int flags
)
617 if (!strcmp(name
, XATTR_NAME_CAPS
)) {
618 if (!capable(CAP_SETFCAP
))
623 if (!strncmp(name
, XATTR_SECURITY_PREFIX
,
624 sizeof(XATTR_SECURITY_PREFIX
) - 1) &&
625 !capable(CAP_SYS_ADMIN
))
631 * cap_inode_removexattr - Determine whether an xattr may be removed
632 * @dentry: The inode/dentry being altered
633 * @name: The name of the xattr to be changed
635 * Determine whether an xattr may be removed from an inode, returning 0 if
636 * permission is granted, -ve if denied.
638 * This is used to make sure security xattrs don't get removed by those who
639 * aren't privileged to remove them.
641 int cap_inode_removexattr(struct dentry
*dentry
, const char *name
)
643 if (!strcmp(name
, XATTR_NAME_CAPS
)) {
644 if (!capable(CAP_SETFCAP
))
649 if (!strncmp(name
, XATTR_SECURITY_PREFIX
,
650 sizeof(XATTR_SECURITY_PREFIX
) - 1) &&
651 !capable(CAP_SYS_ADMIN
))
657 * cap_emulate_setxuid() fixes the effective / permitted capabilities of
658 * a process after a call to setuid, setreuid, or setresuid.
660 * 1) When set*uiding _from_ one of {r,e,s}uid == 0 _to_ all of
661 * {r,e,s}uid != 0, the permitted and effective capabilities are
664 * 2) When set*uiding _from_ euid == 0 _to_ euid != 0, the effective
665 * capabilities of the process are cleared.
667 * 3) When set*uiding _from_ euid != 0 _to_ euid == 0, the effective
668 * capabilities are set to the permitted capabilities.
670 * fsuid is handled elsewhere. fsuid == 0 and {r,e,s}uid!= 0 should
675 * cevans - New behaviour, Oct '99
676 * A process may, via prctl(), elect to keep its capabilities when it
677 * calls setuid() and switches away from uid==0. Both permitted and
678 * effective sets will be retained.
679 * Without this change, it was impossible for a daemon to drop only some
680 * of its privilege. The call to setuid(!=0) would drop all privileges!
681 * Keeping uid 0 is not an option because uid 0 owns too many vital
683 * Thanks to Olaf Kirch and Peter Benie for spotting this.
685 static inline void cap_emulate_setxuid(struct cred
*new, const struct cred
*old
)
687 kuid_t root_uid
= make_kuid(old
->user_ns
, 0);
689 if ((uid_eq(old
->uid
, root_uid
) ||
690 uid_eq(old
->euid
, root_uid
) ||
691 uid_eq(old
->suid
, root_uid
)) &&
692 (!uid_eq(new->uid
, root_uid
) &&
693 !uid_eq(new->euid
, root_uid
) &&
694 !uid_eq(new->suid
, root_uid
)) &&
695 !issecure(SECURE_KEEP_CAPS
)) {
696 cap_clear(new->cap_permitted
);
697 cap_clear(new->cap_effective
);
699 if (uid_eq(old
->euid
, root_uid
) && !uid_eq(new->euid
, root_uid
))
700 cap_clear(new->cap_effective
);
701 if (!uid_eq(old
->euid
, root_uid
) && uid_eq(new->euid
, root_uid
))
702 new->cap_effective
= new->cap_permitted
;
706 * cap_task_fix_setuid - Fix up the results of setuid() call
707 * @new: The proposed credentials
708 * @old: The current task's current credentials
709 * @flags: Indications of what has changed
711 * Fix up the results of setuid() call before the credential changes are
712 * actually applied, returning 0 to grant the changes, -ve to deny them.
714 int cap_task_fix_setuid(struct cred
*new, const struct cred
*old
, int flags
)
720 /* juggle the capabilities to follow [RES]UID changes unless
721 * otherwise suppressed */
722 if (!issecure(SECURE_NO_SETUID_FIXUP
))
723 cap_emulate_setxuid(new, old
);
727 /* juggle the capabilties to follow FSUID changes, unless
728 * otherwise suppressed
730 * FIXME - is fsuser used for all CAP_FS_MASK capabilities?
731 * if not, we might be a bit too harsh here.
733 if (!issecure(SECURE_NO_SETUID_FIXUP
)) {
734 kuid_t root_uid
= make_kuid(old
->user_ns
, 0);
735 if (uid_eq(old
->fsuid
, root_uid
) && !uid_eq(new->fsuid
, root_uid
))
737 cap_drop_fs_set(new->cap_effective
);
739 if (!uid_eq(old
->fsuid
, root_uid
) && uid_eq(new->fsuid
, root_uid
))
741 cap_raise_fs_set(new->cap_effective
,
754 * Rationale: code calling task_setscheduler, task_setioprio, and
755 * task_setnice, assumes that
756 * . if capable(cap_sys_nice), then those actions should be allowed
757 * . if not capable(cap_sys_nice), but acting on your own processes,
758 * then those actions should be allowed
759 * This is insufficient now since you can call code without suid, but
760 * yet with increased caps.
761 * So we check for increased caps on the target process.
763 static int cap_safe_nice(struct task_struct
*p
)
765 int is_subset
, ret
= 0;
768 is_subset
= cap_issubset(__task_cred(p
)->cap_permitted
,
769 current_cred()->cap_permitted
);
770 if (!is_subset
&& !ns_capable(__task_cred(p
)->user_ns
, CAP_SYS_NICE
))
778 * cap_task_setscheduler - Detemine if scheduler policy change is permitted
779 * @p: The task to affect
781 * Detemine if the requested scheduler policy change is permitted for the
782 * specified task, returning 0 if permission is granted, -ve if denied.
784 int cap_task_setscheduler(struct task_struct
*p
)
786 return cap_safe_nice(p
);
790 * cap_task_ioprio - Detemine if I/O priority change is permitted
791 * @p: The task to affect
792 * @ioprio: The I/O priority to set
794 * Detemine if the requested I/O priority change is permitted for the specified
795 * task, returning 0 if permission is granted, -ve if denied.
797 int cap_task_setioprio(struct task_struct
*p
, int ioprio
)
799 return cap_safe_nice(p
);
803 * cap_task_ioprio - Detemine if task priority change is permitted
804 * @p: The task to affect
805 * @nice: The nice value to set
807 * Detemine if the requested task priority change is permitted for the
808 * specified task, returning 0 if permission is granted, -ve if denied.
810 int cap_task_setnice(struct task_struct
*p
, int nice
)
812 return cap_safe_nice(p
);
816 * Implement PR_CAPBSET_DROP. Attempt to remove the specified capability from
817 * the current task's bounding set. Returns 0 on success, -ve on error.
819 static int cap_prctl_drop(unsigned long cap
)
823 if (!ns_capable(current_user_ns(), CAP_SETPCAP
))
828 new = prepare_creds();
831 cap_lower(new->cap_bset
, cap
);
832 return commit_creds(new);
836 * cap_task_prctl - Implement process control functions for this security module
837 * @option: The process control function requested
838 * @arg2, @arg3, @arg4, @arg5: The argument data for this function
840 * Allow process control functions (sys_prctl()) to alter capabilities; may
841 * also deny access to other functions not otherwise implemented here.
843 * Returns 0 or +ve on success, -ENOSYS if this function is not implemented
844 * here, other -ve on error. If -ENOSYS is returned, sys_prctl() and other LSM
845 * modules will consider performing the function.
847 int cap_task_prctl(int option
, unsigned long arg2
, unsigned long arg3
,
848 unsigned long arg4
, unsigned long arg5
)
850 const struct cred
*old
= current_cred();
854 case PR_CAPBSET_READ
:
855 if (!cap_valid(arg2
))
857 return !!cap_raised(old
->cap_bset
, arg2
);
859 case PR_CAPBSET_DROP
:
860 return cap_prctl_drop(arg2
);
863 * The next four prctl's remain to assist with transitioning a
864 * system from legacy UID=0 based privilege (when filesystem
865 * capabilities are not in use) to a system using filesystem
866 * capabilities only - as the POSIX.1e draft intended.
870 * PR_SET_SECUREBITS =
871 * issecure_mask(SECURE_KEEP_CAPS_LOCKED)
872 * | issecure_mask(SECURE_NOROOT)
873 * | issecure_mask(SECURE_NOROOT_LOCKED)
874 * | issecure_mask(SECURE_NO_SETUID_FIXUP)
875 * | issecure_mask(SECURE_NO_SETUID_FIXUP_LOCKED)
877 * will ensure that the current process and all of its
878 * children will be locked into a pure
879 * capability-based-privilege environment.
881 case PR_SET_SECUREBITS
:
882 if ((((old
->securebits
& SECURE_ALL_LOCKS
) >> 1)
883 & (old
->securebits
^ arg2
)) /*[1]*/
884 || ((old
->securebits
& SECURE_ALL_LOCKS
& ~arg2
)) /*[2]*/
885 || (arg2
& ~(SECURE_ALL_LOCKS
| SECURE_ALL_BITS
)) /*[3]*/
886 || (cap_capable(current_cred(),
887 current_cred()->user_ns
, CAP_SETPCAP
,
888 SECURITY_CAP_AUDIT
) != 0) /*[4]*/
890 * [1] no changing of bits that are locked
891 * [2] no unlocking of locks
892 * [3] no setting of unsupported bits
893 * [4] doing anything requires privilege (go read about
894 * the "sendmail capabilities bug")
897 /* cannot change a locked bit */
900 new = prepare_creds();
903 new->securebits
= arg2
;
904 return commit_creds(new);
906 case PR_GET_SECUREBITS
:
907 return old
->securebits
;
909 case PR_GET_KEEPCAPS
:
910 return !!issecure(SECURE_KEEP_CAPS
);
912 case PR_SET_KEEPCAPS
:
913 if (arg2
> 1) /* Note, we rely on arg2 being unsigned here */
915 if (issecure(SECURE_KEEP_CAPS_LOCKED
))
918 new = prepare_creds();
922 new->securebits
|= issecure_mask(SECURE_KEEP_CAPS
);
924 new->securebits
&= ~issecure_mask(SECURE_KEEP_CAPS
);
925 return commit_creds(new);
928 /* No functionality available - continue with default */
934 * cap_vm_enough_memory - Determine whether a new virtual mapping is permitted
935 * @mm: The VM space in which the new mapping is to be made
936 * @pages: The size of the mapping
938 * Determine whether the allocation of a new virtual mapping by the current
939 * task is permitted, returning 1 if permission is granted, 0 if not.
941 int cap_vm_enough_memory(struct mm_struct
*mm
, long pages
)
943 int cap_sys_admin
= 0;
945 if (cap_capable(current_cred(), &init_user_ns
, CAP_SYS_ADMIN
,
946 SECURITY_CAP_NOAUDIT
) == 0)
948 return cap_sys_admin
;
952 * cap_mmap_addr - check if able to map given addr
953 * @addr: address attempting to be mapped
955 * If the process is attempting to map memory below dac_mmap_min_addr they need
956 * CAP_SYS_RAWIO. The other parameters to this function are unused by the
957 * capability security module. Returns 0 if this mapping should be allowed
960 int cap_mmap_addr(unsigned long addr
)
964 if (addr
< dac_mmap_min_addr
) {
965 ret
= cap_capable(current_cred(), &init_user_ns
, CAP_SYS_RAWIO
,
967 /* set PF_SUPERPRIV if it turns out we allow the low mmap */
969 current
->flags
|= PF_SUPERPRIV
;
974 int cap_mmap_file(struct file
*file
, unsigned long reqprot
,
975 unsigned long prot
, unsigned long flags
)
980 #ifdef CONFIG_SECURITY
982 struct security_hook_list capability_hooks
[] = {
983 LSM_HOOK_INIT(capable
, cap_capable
),
984 LSM_HOOK_INIT(settime
, cap_settime
),
985 LSM_HOOK_INIT(ptrace_access_check
, cap_ptrace_access_check
),
986 LSM_HOOK_INIT(ptrace_traceme
, cap_ptrace_traceme
),
987 LSM_HOOK_INIT(capget
, cap_capget
),
988 LSM_HOOK_INIT(capset
, cap_capset
),
989 LSM_HOOK_INIT(bprm_set_creds
, cap_bprm_set_creds
),
990 LSM_HOOK_INIT(bprm_secureexec
, cap_bprm_secureexec
),
991 LSM_HOOK_INIT(inode_need_killpriv
, cap_inode_need_killpriv
),
992 LSM_HOOK_INIT(inode_killpriv
, cap_inode_killpriv
),
993 LSM_HOOK_INIT(mmap_addr
, cap_mmap_addr
),
994 LSM_HOOK_INIT(mmap_file
, cap_mmap_file
),
995 LSM_HOOK_INIT(task_fix_setuid
, cap_task_fix_setuid
),
996 LSM_HOOK_INIT(task_prctl
, cap_task_prctl
),
997 LSM_HOOK_INIT(task_setscheduler
, cap_task_setscheduler
),
998 LSM_HOOK_INIT(task_setioprio
, cap_task_setioprio
),
999 LSM_HOOK_INIT(task_setnice
, cap_task_setnice
),
1000 LSM_HOOK_INIT(vm_enough_memory
, cap_vm_enough_memory
),
1003 void __init
capability_add_hooks(void)
1005 security_add_hooks(capability_hooks
, ARRAY_SIZE(capability_hooks
));
1008 #endif /* CONFIG_SECURITY */