wlcore: Add RX_BA_WIN_SIZE_CHANGE_EVENT event
[linux/fpc-iii.git] / fs / exec.c
blob3a6de10d38918db2dca9e3d0067b7bc0b456875f
1 /*
2 * linux/fs/exec.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
7 /*
8 * #!-checking implemented by tytso.
9 */
11 * Demand-loading implemented 01.12.91 - no need to read anything but
12 * the header into memory. The inode of the executable is put into
13 * "current->executable", and page faults do the actual loading. Clean.
15 * Once more I can proudly say that linux stood up to being changed: it
16 * was less than 2 hours work to get demand-loading completely implemented.
18 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead,
19 * current->executable is only used by the procfs. This allows a dispatch
20 * table to check for several different types of binary formats. We keep
21 * trying until we recognize the file or we run out of supported binary
22 * formats.
25 #include <linux/slab.h>
26 #include <linux/file.h>
27 #include <linux/fdtable.h>
28 #include <linux/mm.h>
29 #include <linux/vmacache.h>
30 #include <linux/stat.h>
31 #include <linux/fcntl.h>
32 #include <linux/swap.h>
33 #include <linux/string.h>
34 #include <linux/init.h>
35 #include <linux/pagemap.h>
36 #include <linux/perf_event.h>
37 #include <linux/highmem.h>
38 #include <linux/spinlock.h>
39 #include <linux/key.h>
40 #include <linux/personality.h>
41 #include <linux/binfmts.h>
42 #include <linux/utsname.h>
43 #include <linux/pid_namespace.h>
44 #include <linux/module.h>
45 #include <linux/namei.h>
46 #include <linux/mount.h>
47 #include <linux/security.h>
48 #include <linux/syscalls.h>
49 #include <linux/tsacct_kern.h>
50 #include <linux/cn_proc.h>
51 #include <linux/audit.h>
52 #include <linux/tracehook.h>
53 #include <linux/kmod.h>
54 #include <linux/fsnotify.h>
55 #include <linux/fs_struct.h>
56 #include <linux/pipe_fs_i.h>
57 #include <linux/oom.h>
58 #include <linux/compat.h>
59 #include <linux/user_namespace.h>
61 #include <asm/uaccess.h>
62 #include <asm/mmu_context.h>
63 #include <asm/tlb.h>
65 #include <trace/events/task.h>
66 #include "internal.h"
68 #include <trace/events/sched.h>
70 int suid_dumpable = 0;
72 static LIST_HEAD(formats);
73 static DEFINE_RWLOCK(binfmt_lock);
75 void __register_binfmt(struct linux_binfmt * fmt, int insert)
77 BUG_ON(!fmt);
78 if (WARN_ON(!fmt->load_binary))
79 return;
80 write_lock(&binfmt_lock);
81 insert ? list_add(&fmt->lh, &formats) :
82 list_add_tail(&fmt->lh, &formats);
83 write_unlock(&binfmt_lock);
86 EXPORT_SYMBOL(__register_binfmt);
88 void unregister_binfmt(struct linux_binfmt * fmt)
90 write_lock(&binfmt_lock);
91 list_del(&fmt->lh);
92 write_unlock(&binfmt_lock);
95 EXPORT_SYMBOL(unregister_binfmt);
97 static inline void put_binfmt(struct linux_binfmt * fmt)
99 module_put(fmt->module);
102 bool path_noexec(const struct path *path)
104 return (path->mnt->mnt_flags & MNT_NOEXEC) ||
105 (path->mnt->mnt_sb->s_iflags & SB_I_NOEXEC);
108 #ifdef CONFIG_USELIB
110 * Note that a shared library must be both readable and executable due to
111 * security reasons.
113 * Also note that we take the address to load from from the file itself.
115 SYSCALL_DEFINE1(uselib, const char __user *, library)
117 struct linux_binfmt *fmt;
118 struct file *file;
119 struct filename *tmp = getname(library);
120 int error = PTR_ERR(tmp);
121 static const struct open_flags uselib_flags = {
122 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
123 .acc_mode = MAY_READ | MAY_EXEC | MAY_OPEN,
124 .intent = LOOKUP_OPEN,
125 .lookup_flags = LOOKUP_FOLLOW,
128 if (IS_ERR(tmp))
129 goto out;
131 file = do_filp_open(AT_FDCWD, tmp, &uselib_flags);
132 putname(tmp);
133 error = PTR_ERR(file);
134 if (IS_ERR(file))
135 goto out;
137 error = -EINVAL;
138 if (!S_ISREG(file_inode(file)->i_mode))
139 goto exit;
141 error = -EACCES;
142 if (path_noexec(&file->f_path))
143 goto exit;
145 fsnotify_open(file);
147 error = -ENOEXEC;
149 read_lock(&binfmt_lock);
150 list_for_each_entry(fmt, &formats, lh) {
151 if (!fmt->load_shlib)
152 continue;
153 if (!try_module_get(fmt->module))
154 continue;
155 read_unlock(&binfmt_lock);
156 error = fmt->load_shlib(file);
157 read_lock(&binfmt_lock);
158 put_binfmt(fmt);
159 if (error != -ENOEXEC)
160 break;
162 read_unlock(&binfmt_lock);
163 exit:
164 fput(file);
165 out:
166 return error;
168 #endif /* #ifdef CONFIG_USELIB */
170 #ifdef CONFIG_MMU
172 * The nascent bprm->mm is not visible until exec_mmap() but it can
173 * use a lot of memory, account these pages in current->mm temporary
174 * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
175 * change the counter back via acct_arg_size(0).
177 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
179 struct mm_struct *mm = current->mm;
180 long diff = (long)(pages - bprm->vma_pages);
182 if (!mm || !diff)
183 return;
185 bprm->vma_pages = pages;
186 add_mm_counter(mm, MM_ANONPAGES, diff);
189 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
190 int write)
192 struct page *page;
193 int ret;
195 #ifdef CONFIG_STACK_GROWSUP
196 if (write) {
197 ret = expand_downwards(bprm->vma, pos);
198 if (ret < 0)
199 return NULL;
201 #endif
202 ret = get_user_pages(current, bprm->mm, pos,
203 1, write, 1, &page, NULL);
204 if (ret <= 0)
205 return NULL;
207 if (write) {
208 unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start;
209 struct rlimit *rlim;
211 acct_arg_size(bprm, size / PAGE_SIZE);
214 * We've historically supported up to 32 pages (ARG_MAX)
215 * of argument strings even with small stacks
217 if (size <= ARG_MAX)
218 return page;
221 * Limit to 1/4-th the stack size for the argv+env strings.
222 * This ensures that:
223 * - the remaining binfmt code will not run out of stack space,
224 * - the program will have a reasonable amount of stack left
225 * to work from.
227 rlim = current->signal->rlim;
228 if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur) / 4) {
229 put_page(page);
230 return NULL;
234 return page;
237 static void put_arg_page(struct page *page)
239 put_page(page);
242 static void free_arg_page(struct linux_binprm *bprm, int i)
246 static void free_arg_pages(struct linux_binprm *bprm)
250 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
251 struct page *page)
253 flush_cache_page(bprm->vma, pos, page_to_pfn(page));
256 static int __bprm_mm_init(struct linux_binprm *bprm)
258 int err;
259 struct vm_area_struct *vma = NULL;
260 struct mm_struct *mm = bprm->mm;
262 bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
263 if (!vma)
264 return -ENOMEM;
266 down_write(&mm->mmap_sem);
267 vma->vm_mm = mm;
270 * Place the stack at the largest stack address the architecture
271 * supports. Later, we'll move this to an appropriate place. We don't
272 * use STACK_TOP because that can depend on attributes which aren't
273 * configured yet.
275 BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
276 vma->vm_end = STACK_TOP_MAX;
277 vma->vm_start = vma->vm_end - PAGE_SIZE;
278 vma->vm_flags = VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP;
279 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
280 INIT_LIST_HEAD(&vma->anon_vma_chain);
282 err = insert_vm_struct(mm, vma);
283 if (err)
284 goto err;
286 mm->stack_vm = mm->total_vm = 1;
287 arch_bprm_mm_init(mm, vma);
288 up_write(&mm->mmap_sem);
289 bprm->p = vma->vm_end - sizeof(void *);
290 return 0;
291 err:
292 up_write(&mm->mmap_sem);
293 bprm->vma = NULL;
294 kmem_cache_free(vm_area_cachep, vma);
295 return err;
298 static bool valid_arg_len(struct linux_binprm *bprm, long len)
300 return len <= MAX_ARG_STRLEN;
303 #else
305 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
309 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
310 int write)
312 struct page *page;
314 page = bprm->page[pos / PAGE_SIZE];
315 if (!page && write) {
316 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
317 if (!page)
318 return NULL;
319 bprm->page[pos / PAGE_SIZE] = page;
322 return page;
325 static void put_arg_page(struct page *page)
329 static void free_arg_page(struct linux_binprm *bprm, int i)
331 if (bprm->page[i]) {
332 __free_page(bprm->page[i]);
333 bprm->page[i] = NULL;
337 static void free_arg_pages(struct linux_binprm *bprm)
339 int i;
341 for (i = 0; i < MAX_ARG_PAGES; i++)
342 free_arg_page(bprm, i);
345 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
346 struct page *page)
350 static int __bprm_mm_init(struct linux_binprm *bprm)
352 bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
353 return 0;
356 static bool valid_arg_len(struct linux_binprm *bprm, long len)
358 return len <= bprm->p;
361 #endif /* CONFIG_MMU */
364 * Create a new mm_struct and populate it with a temporary stack
365 * vm_area_struct. We don't have enough context at this point to set the stack
366 * flags, permissions, and offset, so we use temporary values. We'll update
367 * them later in setup_arg_pages().
369 static int bprm_mm_init(struct linux_binprm *bprm)
371 int err;
372 struct mm_struct *mm = NULL;
374 bprm->mm = mm = mm_alloc();
375 err = -ENOMEM;
376 if (!mm)
377 goto err;
379 err = __bprm_mm_init(bprm);
380 if (err)
381 goto err;
383 return 0;
385 err:
386 if (mm) {
387 bprm->mm = NULL;
388 mmdrop(mm);
391 return err;
394 struct user_arg_ptr {
395 #ifdef CONFIG_COMPAT
396 bool is_compat;
397 #endif
398 union {
399 const char __user *const __user *native;
400 #ifdef CONFIG_COMPAT
401 const compat_uptr_t __user *compat;
402 #endif
403 } ptr;
406 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr)
408 const char __user *native;
410 #ifdef CONFIG_COMPAT
411 if (unlikely(argv.is_compat)) {
412 compat_uptr_t compat;
414 if (get_user(compat, argv.ptr.compat + nr))
415 return ERR_PTR(-EFAULT);
417 return compat_ptr(compat);
419 #endif
421 if (get_user(native, argv.ptr.native + nr))
422 return ERR_PTR(-EFAULT);
424 return native;
428 * count() counts the number of strings in array ARGV.
430 static int count(struct user_arg_ptr argv, int max)
432 int i = 0;
434 if (argv.ptr.native != NULL) {
435 for (;;) {
436 const char __user *p = get_user_arg_ptr(argv, i);
438 if (!p)
439 break;
441 if (IS_ERR(p))
442 return -EFAULT;
444 if (i >= max)
445 return -E2BIG;
446 ++i;
448 if (fatal_signal_pending(current))
449 return -ERESTARTNOHAND;
450 cond_resched();
453 return i;
457 * 'copy_strings()' copies argument/environment strings from the old
458 * processes's memory to the new process's stack. The call to get_user_pages()
459 * ensures the destination page is created and not swapped out.
461 static int copy_strings(int argc, struct user_arg_ptr argv,
462 struct linux_binprm *bprm)
464 struct page *kmapped_page = NULL;
465 char *kaddr = NULL;
466 unsigned long kpos = 0;
467 int ret;
469 while (argc-- > 0) {
470 const char __user *str;
471 int len;
472 unsigned long pos;
474 ret = -EFAULT;
475 str = get_user_arg_ptr(argv, argc);
476 if (IS_ERR(str))
477 goto out;
479 len = strnlen_user(str, MAX_ARG_STRLEN);
480 if (!len)
481 goto out;
483 ret = -E2BIG;
484 if (!valid_arg_len(bprm, len))
485 goto out;
487 /* We're going to work our way backwords. */
488 pos = bprm->p;
489 str += len;
490 bprm->p -= len;
492 while (len > 0) {
493 int offset, bytes_to_copy;
495 if (fatal_signal_pending(current)) {
496 ret = -ERESTARTNOHAND;
497 goto out;
499 cond_resched();
501 offset = pos % PAGE_SIZE;
502 if (offset == 0)
503 offset = PAGE_SIZE;
505 bytes_to_copy = offset;
506 if (bytes_to_copy > len)
507 bytes_to_copy = len;
509 offset -= bytes_to_copy;
510 pos -= bytes_to_copy;
511 str -= bytes_to_copy;
512 len -= bytes_to_copy;
514 if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
515 struct page *page;
517 page = get_arg_page(bprm, pos, 1);
518 if (!page) {
519 ret = -E2BIG;
520 goto out;
523 if (kmapped_page) {
524 flush_kernel_dcache_page(kmapped_page);
525 kunmap(kmapped_page);
526 put_arg_page(kmapped_page);
528 kmapped_page = page;
529 kaddr = kmap(kmapped_page);
530 kpos = pos & PAGE_MASK;
531 flush_arg_page(bprm, kpos, kmapped_page);
533 if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
534 ret = -EFAULT;
535 goto out;
539 ret = 0;
540 out:
541 if (kmapped_page) {
542 flush_kernel_dcache_page(kmapped_page);
543 kunmap(kmapped_page);
544 put_arg_page(kmapped_page);
546 return ret;
550 * Like copy_strings, but get argv and its values from kernel memory.
552 int copy_strings_kernel(int argc, const char *const *__argv,
553 struct linux_binprm *bprm)
555 int r;
556 mm_segment_t oldfs = get_fs();
557 struct user_arg_ptr argv = {
558 .ptr.native = (const char __user *const __user *)__argv,
561 set_fs(KERNEL_DS);
562 r = copy_strings(argc, argv, bprm);
563 set_fs(oldfs);
565 return r;
567 EXPORT_SYMBOL(copy_strings_kernel);
569 #ifdef CONFIG_MMU
572 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once
573 * the binfmt code determines where the new stack should reside, we shift it to
574 * its final location. The process proceeds as follows:
576 * 1) Use shift to calculate the new vma endpoints.
577 * 2) Extend vma to cover both the old and new ranges. This ensures the
578 * arguments passed to subsequent functions are consistent.
579 * 3) Move vma's page tables to the new range.
580 * 4) Free up any cleared pgd range.
581 * 5) Shrink the vma to cover only the new range.
583 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
585 struct mm_struct *mm = vma->vm_mm;
586 unsigned long old_start = vma->vm_start;
587 unsigned long old_end = vma->vm_end;
588 unsigned long length = old_end - old_start;
589 unsigned long new_start = old_start - shift;
590 unsigned long new_end = old_end - shift;
591 struct mmu_gather tlb;
593 BUG_ON(new_start > new_end);
596 * ensure there are no vmas between where we want to go
597 * and where we are
599 if (vma != find_vma(mm, new_start))
600 return -EFAULT;
603 * cover the whole range: [new_start, old_end)
605 if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL))
606 return -ENOMEM;
609 * move the page tables downwards, on failure we rely on
610 * process cleanup to remove whatever mess we made.
612 if (length != move_page_tables(vma, old_start,
613 vma, new_start, length, false))
614 return -ENOMEM;
616 lru_add_drain();
617 tlb_gather_mmu(&tlb, mm, old_start, old_end);
618 if (new_end > old_start) {
620 * when the old and new regions overlap clear from new_end.
622 free_pgd_range(&tlb, new_end, old_end, new_end,
623 vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
624 } else {
626 * otherwise, clean from old_start; this is done to not touch
627 * the address space in [new_end, old_start) some architectures
628 * have constraints on va-space that make this illegal (IA64) -
629 * for the others its just a little faster.
631 free_pgd_range(&tlb, old_start, old_end, new_end,
632 vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
634 tlb_finish_mmu(&tlb, old_start, old_end);
637 * Shrink the vma to just the new range. Always succeeds.
639 vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
641 return 0;
645 * Finalizes the stack vm_area_struct. The flags and permissions are updated,
646 * the stack is optionally relocated, and some extra space is added.
648 int setup_arg_pages(struct linux_binprm *bprm,
649 unsigned long stack_top,
650 int executable_stack)
652 unsigned long ret;
653 unsigned long stack_shift;
654 struct mm_struct *mm = current->mm;
655 struct vm_area_struct *vma = bprm->vma;
656 struct vm_area_struct *prev = NULL;
657 unsigned long vm_flags;
658 unsigned long stack_base;
659 unsigned long stack_size;
660 unsigned long stack_expand;
661 unsigned long rlim_stack;
663 #ifdef CONFIG_STACK_GROWSUP
664 /* Limit stack size */
665 stack_base = rlimit_max(RLIMIT_STACK);
666 if (stack_base > STACK_SIZE_MAX)
667 stack_base = STACK_SIZE_MAX;
669 /* Add space for stack randomization. */
670 stack_base += (STACK_RND_MASK << PAGE_SHIFT);
672 /* Make sure we didn't let the argument array grow too large. */
673 if (vma->vm_end - vma->vm_start > stack_base)
674 return -ENOMEM;
676 stack_base = PAGE_ALIGN(stack_top - stack_base);
678 stack_shift = vma->vm_start - stack_base;
679 mm->arg_start = bprm->p - stack_shift;
680 bprm->p = vma->vm_end - stack_shift;
681 #else
682 stack_top = arch_align_stack(stack_top);
683 stack_top = PAGE_ALIGN(stack_top);
685 if (unlikely(stack_top < mmap_min_addr) ||
686 unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
687 return -ENOMEM;
689 stack_shift = vma->vm_end - stack_top;
691 bprm->p -= stack_shift;
692 mm->arg_start = bprm->p;
693 #endif
695 if (bprm->loader)
696 bprm->loader -= stack_shift;
697 bprm->exec -= stack_shift;
699 down_write(&mm->mmap_sem);
700 vm_flags = VM_STACK_FLAGS;
703 * Adjust stack execute permissions; explicitly enable for
704 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
705 * (arch default) otherwise.
707 if (unlikely(executable_stack == EXSTACK_ENABLE_X))
708 vm_flags |= VM_EXEC;
709 else if (executable_stack == EXSTACK_DISABLE_X)
710 vm_flags &= ~VM_EXEC;
711 vm_flags |= mm->def_flags;
712 vm_flags |= VM_STACK_INCOMPLETE_SETUP;
714 ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
715 vm_flags);
716 if (ret)
717 goto out_unlock;
718 BUG_ON(prev != vma);
720 /* Move stack pages down in memory. */
721 if (stack_shift) {
722 ret = shift_arg_pages(vma, stack_shift);
723 if (ret)
724 goto out_unlock;
727 /* mprotect_fixup is overkill to remove the temporary stack flags */
728 vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP;
730 stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
731 stack_size = vma->vm_end - vma->vm_start;
733 * Align this down to a page boundary as expand_stack
734 * will align it up.
736 rlim_stack = rlimit(RLIMIT_STACK) & PAGE_MASK;
737 #ifdef CONFIG_STACK_GROWSUP
738 if (stack_size + stack_expand > rlim_stack)
739 stack_base = vma->vm_start + rlim_stack;
740 else
741 stack_base = vma->vm_end + stack_expand;
742 #else
743 if (stack_size + stack_expand > rlim_stack)
744 stack_base = vma->vm_end - rlim_stack;
745 else
746 stack_base = vma->vm_start - stack_expand;
747 #endif
748 current->mm->start_stack = bprm->p;
749 ret = expand_stack(vma, stack_base);
750 if (ret)
751 ret = -EFAULT;
753 out_unlock:
754 up_write(&mm->mmap_sem);
755 return ret;
757 EXPORT_SYMBOL(setup_arg_pages);
759 #endif /* CONFIG_MMU */
761 static struct file *do_open_execat(int fd, struct filename *name, int flags)
763 struct file *file;
764 int err;
765 struct open_flags open_exec_flags = {
766 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
767 .acc_mode = MAY_EXEC | MAY_OPEN,
768 .intent = LOOKUP_OPEN,
769 .lookup_flags = LOOKUP_FOLLOW,
772 if ((flags & ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH)) != 0)
773 return ERR_PTR(-EINVAL);
774 if (flags & AT_SYMLINK_NOFOLLOW)
775 open_exec_flags.lookup_flags &= ~LOOKUP_FOLLOW;
776 if (flags & AT_EMPTY_PATH)
777 open_exec_flags.lookup_flags |= LOOKUP_EMPTY;
779 file = do_filp_open(fd, name, &open_exec_flags);
780 if (IS_ERR(file))
781 goto out;
783 err = -EACCES;
784 if (!S_ISREG(file_inode(file)->i_mode))
785 goto exit;
787 if (path_noexec(&file->f_path))
788 goto exit;
790 err = deny_write_access(file);
791 if (err)
792 goto exit;
794 if (name->name[0] != '\0')
795 fsnotify_open(file);
797 out:
798 return file;
800 exit:
801 fput(file);
802 return ERR_PTR(err);
805 struct file *open_exec(const char *name)
807 struct filename *filename = getname_kernel(name);
808 struct file *f = ERR_CAST(filename);
810 if (!IS_ERR(filename)) {
811 f = do_open_execat(AT_FDCWD, filename, 0);
812 putname(filename);
814 return f;
816 EXPORT_SYMBOL(open_exec);
818 int kernel_read(struct file *file, loff_t offset,
819 char *addr, unsigned long count)
821 mm_segment_t old_fs;
822 loff_t pos = offset;
823 int result;
825 old_fs = get_fs();
826 set_fs(get_ds());
827 /* The cast to a user pointer is valid due to the set_fs() */
828 result = vfs_read(file, (void __user *)addr, count, &pos);
829 set_fs(old_fs);
830 return result;
833 EXPORT_SYMBOL(kernel_read);
835 ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len)
837 ssize_t res = vfs_read(file, (void __user *)addr, len, &pos);
838 if (res > 0)
839 flush_icache_range(addr, addr + len);
840 return res;
842 EXPORT_SYMBOL(read_code);
844 static int exec_mmap(struct mm_struct *mm)
846 struct task_struct *tsk;
847 struct mm_struct *old_mm, *active_mm;
849 /* Notify parent that we're no longer interested in the old VM */
850 tsk = current;
851 old_mm = current->mm;
852 mm_release(tsk, old_mm);
854 if (old_mm) {
855 sync_mm_rss(old_mm);
857 * Make sure that if there is a core dump in progress
858 * for the old mm, we get out and die instead of going
859 * through with the exec. We must hold mmap_sem around
860 * checking core_state and changing tsk->mm.
862 down_read(&old_mm->mmap_sem);
863 if (unlikely(old_mm->core_state)) {
864 up_read(&old_mm->mmap_sem);
865 return -EINTR;
868 task_lock(tsk);
869 active_mm = tsk->active_mm;
870 tsk->mm = mm;
871 tsk->active_mm = mm;
872 activate_mm(active_mm, mm);
873 tsk->mm->vmacache_seqnum = 0;
874 vmacache_flush(tsk);
875 task_unlock(tsk);
876 if (old_mm) {
877 up_read(&old_mm->mmap_sem);
878 BUG_ON(active_mm != old_mm);
879 setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm);
880 mm_update_next_owner(old_mm);
881 mmput(old_mm);
882 return 0;
884 mmdrop(active_mm);
885 return 0;
889 * This function makes sure the current process has its own signal table,
890 * so that flush_signal_handlers can later reset the handlers without
891 * disturbing other processes. (Other processes might share the signal
892 * table via the CLONE_SIGHAND option to clone().)
894 static int de_thread(struct task_struct *tsk)
896 struct signal_struct *sig = tsk->signal;
897 struct sighand_struct *oldsighand = tsk->sighand;
898 spinlock_t *lock = &oldsighand->siglock;
900 if (thread_group_empty(tsk))
901 goto no_thread_group;
904 * Kill all other threads in the thread group.
906 spin_lock_irq(lock);
907 if (signal_group_exit(sig)) {
909 * Another group action in progress, just
910 * return so that the signal is processed.
912 spin_unlock_irq(lock);
913 return -EAGAIN;
916 sig->group_exit_task = tsk;
917 sig->notify_count = zap_other_threads(tsk);
918 if (!thread_group_leader(tsk))
919 sig->notify_count--;
921 while (sig->notify_count) {
922 __set_current_state(TASK_KILLABLE);
923 spin_unlock_irq(lock);
924 schedule();
925 if (unlikely(__fatal_signal_pending(tsk)))
926 goto killed;
927 spin_lock_irq(lock);
929 spin_unlock_irq(lock);
932 * At this point all other threads have exited, all we have to
933 * do is to wait for the thread group leader to become inactive,
934 * and to assume its PID:
936 if (!thread_group_leader(tsk)) {
937 struct task_struct *leader = tsk->group_leader;
939 for (;;) {
940 threadgroup_change_begin(tsk);
941 write_lock_irq(&tasklist_lock);
943 * Do this under tasklist_lock to ensure that
944 * exit_notify() can't miss ->group_exit_task
946 sig->notify_count = -1;
947 if (likely(leader->exit_state))
948 break;
949 __set_current_state(TASK_KILLABLE);
950 write_unlock_irq(&tasklist_lock);
951 threadgroup_change_end(tsk);
952 schedule();
953 if (unlikely(__fatal_signal_pending(tsk)))
954 goto killed;
958 * The only record we have of the real-time age of a
959 * process, regardless of execs it's done, is start_time.
960 * All the past CPU time is accumulated in signal_struct
961 * from sister threads now dead. But in this non-leader
962 * exec, nothing survives from the original leader thread,
963 * whose birth marks the true age of this process now.
964 * When we take on its identity by switching to its PID, we
965 * also take its birthdate (always earlier than our own).
967 tsk->start_time = leader->start_time;
968 tsk->real_start_time = leader->real_start_time;
970 BUG_ON(!same_thread_group(leader, tsk));
971 BUG_ON(has_group_leader_pid(tsk));
973 * An exec() starts a new thread group with the
974 * TGID of the previous thread group. Rehash the
975 * two threads with a switched PID, and release
976 * the former thread group leader:
979 /* Become a process group leader with the old leader's pid.
980 * The old leader becomes a thread of the this thread group.
981 * Note: The old leader also uses this pid until release_task
982 * is called. Odd but simple and correct.
984 tsk->pid = leader->pid;
985 change_pid(tsk, PIDTYPE_PID, task_pid(leader));
986 transfer_pid(leader, tsk, PIDTYPE_PGID);
987 transfer_pid(leader, tsk, PIDTYPE_SID);
989 list_replace_rcu(&leader->tasks, &tsk->tasks);
990 list_replace_init(&leader->sibling, &tsk->sibling);
992 tsk->group_leader = tsk;
993 leader->group_leader = tsk;
995 tsk->exit_signal = SIGCHLD;
996 leader->exit_signal = -1;
998 BUG_ON(leader->exit_state != EXIT_ZOMBIE);
999 leader->exit_state = EXIT_DEAD;
1002 * We are going to release_task()->ptrace_unlink() silently,
1003 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
1004 * the tracer wont't block again waiting for this thread.
1006 if (unlikely(leader->ptrace))
1007 __wake_up_parent(leader, leader->parent);
1008 write_unlock_irq(&tasklist_lock);
1009 threadgroup_change_end(tsk);
1011 release_task(leader);
1014 sig->group_exit_task = NULL;
1015 sig->notify_count = 0;
1017 no_thread_group:
1018 /* we have changed execution domain */
1019 tsk->exit_signal = SIGCHLD;
1021 exit_itimers(sig);
1022 flush_itimer_signals();
1024 if (atomic_read(&oldsighand->count) != 1) {
1025 struct sighand_struct *newsighand;
1027 * This ->sighand is shared with the CLONE_SIGHAND
1028 * but not CLONE_THREAD task, switch to the new one.
1030 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1031 if (!newsighand)
1032 return -ENOMEM;
1034 atomic_set(&newsighand->count, 1);
1035 memcpy(newsighand->action, oldsighand->action,
1036 sizeof(newsighand->action));
1038 write_lock_irq(&tasklist_lock);
1039 spin_lock(&oldsighand->siglock);
1040 rcu_assign_pointer(tsk->sighand, newsighand);
1041 spin_unlock(&oldsighand->siglock);
1042 write_unlock_irq(&tasklist_lock);
1044 __cleanup_sighand(oldsighand);
1047 BUG_ON(!thread_group_leader(tsk));
1048 return 0;
1050 killed:
1051 /* protects against exit_notify() and __exit_signal() */
1052 read_lock(&tasklist_lock);
1053 sig->group_exit_task = NULL;
1054 sig->notify_count = 0;
1055 read_unlock(&tasklist_lock);
1056 return -EAGAIN;
1059 char *get_task_comm(char *buf, struct task_struct *tsk)
1061 /* buf must be at least sizeof(tsk->comm) in size */
1062 task_lock(tsk);
1063 strncpy(buf, tsk->comm, sizeof(tsk->comm));
1064 task_unlock(tsk);
1065 return buf;
1067 EXPORT_SYMBOL_GPL(get_task_comm);
1070 * These functions flushes out all traces of the currently running executable
1071 * so that a new one can be started
1074 void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec)
1076 task_lock(tsk);
1077 trace_task_rename(tsk, buf);
1078 strlcpy(tsk->comm, buf, sizeof(tsk->comm));
1079 task_unlock(tsk);
1080 perf_event_comm(tsk, exec);
1083 int flush_old_exec(struct linux_binprm * bprm)
1085 int retval;
1088 * Make sure we have a private signal table and that
1089 * we are unassociated from the previous thread group.
1091 retval = de_thread(current);
1092 if (retval)
1093 goto out;
1096 * Must be called _before_ exec_mmap() as bprm->mm is
1097 * not visibile until then. This also enables the update
1098 * to be lockless.
1100 set_mm_exe_file(bprm->mm, bprm->file);
1103 * Release all of the old mmap stuff
1105 acct_arg_size(bprm, 0);
1106 retval = exec_mmap(bprm->mm);
1107 if (retval)
1108 goto out;
1110 bprm->mm = NULL; /* We're using it now */
1112 set_fs(USER_DS);
1113 current->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC | PF_KTHREAD |
1114 PF_NOFREEZE | PF_NO_SETAFFINITY);
1115 flush_thread();
1116 current->personality &= ~bprm->per_clear;
1119 * We have to apply CLOEXEC before we change whether the process is
1120 * dumpable (in setup_new_exec) to avoid a race with a process in userspace
1121 * trying to access the should-be-closed file descriptors of a process
1122 * undergoing exec(2).
1124 do_close_on_exec(current->files);
1125 return 0;
1127 out:
1128 return retval;
1130 EXPORT_SYMBOL(flush_old_exec);
1132 void would_dump(struct linux_binprm *bprm, struct file *file)
1134 struct inode *inode = file_inode(file);
1135 if (inode_permission(inode, MAY_READ) < 0) {
1136 struct user_namespace *old, *user_ns;
1137 bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
1139 /* Ensure mm->user_ns contains the executable */
1140 user_ns = old = bprm->mm->user_ns;
1141 while ((user_ns != &init_user_ns) &&
1142 !privileged_wrt_inode_uidgid(user_ns, inode))
1143 user_ns = user_ns->parent;
1145 if (old != user_ns) {
1146 bprm->mm->user_ns = get_user_ns(user_ns);
1147 put_user_ns(old);
1151 EXPORT_SYMBOL(would_dump);
1153 void setup_new_exec(struct linux_binprm * bprm)
1155 arch_pick_mmap_layout(current->mm);
1157 /* This is the point of no return */
1158 current->sas_ss_sp = current->sas_ss_size = 0;
1160 if (uid_eq(current_euid(), current_uid()) && gid_eq(current_egid(), current_gid()))
1161 set_dumpable(current->mm, SUID_DUMP_USER);
1162 else
1163 set_dumpable(current->mm, suid_dumpable);
1165 perf_event_exec();
1166 __set_task_comm(current, kbasename(bprm->filename), true);
1168 /* Set the new mm task size. We have to do that late because it may
1169 * depend on TIF_32BIT which is only updated in flush_thread() on
1170 * some architectures like powerpc
1172 current->mm->task_size = TASK_SIZE;
1174 /* install the new credentials */
1175 if (!uid_eq(bprm->cred->uid, current_euid()) ||
1176 !gid_eq(bprm->cred->gid, current_egid())) {
1177 current->pdeath_signal = 0;
1178 } else {
1179 if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP)
1180 set_dumpable(current->mm, suid_dumpable);
1183 /* An exec changes our domain. We are no longer part of the thread
1184 group */
1185 current->self_exec_id++;
1186 flush_signal_handlers(current, 0);
1188 EXPORT_SYMBOL(setup_new_exec);
1191 * Prepare credentials and lock ->cred_guard_mutex.
1192 * install_exec_creds() commits the new creds and drops the lock.
1193 * Or, if exec fails before, free_bprm() should release ->cred and
1194 * and unlock.
1196 int prepare_bprm_creds(struct linux_binprm *bprm)
1198 if (mutex_lock_interruptible(&current->signal->cred_guard_mutex))
1199 return -ERESTARTNOINTR;
1201 bprm->cred = prepare_exec_creds();
1202 if (likely(bprm->cred))
1203 return 0;
1205 mutex_unlock(&current->signal->cred_guard_mutex);
1206 return -ENOMEM;
1209 static void free_bprm(struct linux_binprm *bprm)
1211 free_arg_pages(bprm);
1212 if (bprm->cred) {
1213 mutex_unlock(&current->signal->cred_guard_mutex);
1214 abort_creds(bprm->cred);
1216 if (bprm->file) {
1217 allow_write_access(bprm->file);
1218 fput(bprm->file);
1220 /* If a binfmt changed the interp, free it. */
1221 if (bprm->interp != bprm->filename)
1222 kfree(bprm->interp);
1223 kfree(bprm);
1226 int bprm_change_interp(char *interp, struct linux_binprm *bprm)
1228 /* If a binfmt changed the interp, free it first. */
1229 if (bprm->interp != bprm->filename)
1230 kfree(bprm->interp);
1231 bprm->interp = kstrdup(interp, GFP_KERNEL);
1232 if (!bprm->interp)
1233 return -ENOMEM;
1234 return 0;
1236 EXPORT_SYMBOL(bprm_change_interp);
1239 * install the new credentials for this executable
1241 void install_exec_creds(struct linux_binprm *bprm)
1243 security_bprm_committing_creds(bprm);
1245 commit_creds(bprm->cred);
1246 bprm->cred = NULL;
1249 * Disable monitoring for regular users
1250 * when executing setuid binaries. Must
1251 * wait until new credentials are committed
1252 * by commit_creds() above
1254 if (get_dumpable(current->mm) != SUID_DUMP_USER)
1255 perf_event_exit_task(current);
1257 * cred_guard_mutex must be held at least to this point to prevent
1258 * ptrace_attach() from altering our determination of the task's
1259 * credentials; any time after this it may be unlocked.
1261 security_bprm_committed_creds(bprm);
1262 mutex_unlock(&current->signal->cred_guard_mutex);
1264 EXPORT_SYMBOL(install_exec_creds);
1267 * determine how safe it is to execute the proposed program
1268 * - the caller must hold ->cred_guard_mutex to protect against
1269 * PTRACE_ATTACH or seccomp thread-sync
1271 static void check_unsafe_exec(struct linux_binprm *bprm)
1273 struct task_struct *p = current, *t;
1274 unsigned n_fs;
1276 if (p->ptrace) {
1277 if (ptracer_capable(p, current_user_ns()))
1278 bprm->unsafe |= LSM_UNSAFE_PTRACE_CAP;
1279 else
1280 bprm->unsafe |= LSM_UNSAFE_PTRACE;
1284 * This isn't strictly necessary, but it makes it harder for LSMs to
1285 * mess up.
1287 if (task_no_new_privs(current))
1288 bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS;
1290 t = p;
1291 n_fs = 1;
1292 spin_lock(&p->fs->lock);
1293 rcu_read_lock();
1294 while_each_thread(p, t) {
1295 if (t->fs == p->fs)
1296 n_fs++;
1298 rcu_read_unlock();
1300 if (p->fs->users > n_fs)
1301 bprm->unsafe |= LSM_UNSAFE_SHARE;
1302 else
1303 p->fs->in_exec = 1;
1304 spin_unlock(&p->fs->lock);
1307 static void bprm_fill_uid(struct linux_binprm *bprm)
1309 struct inode *inode;
1310 unsigned int mode;
1311 kuid_t uid;
1312 kgid_t gid;
1314 /* clear any previous set[ug]id data from a previous binary */
1315 bprm->cred->euid = current_euid();
1316 bprm->cred->egid = current_egid();
1318 if (bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)
1319 return;
1321 if (task_no_new_privs(current))
1322 return;
1324 inode = file_inode(bprm->file);
1325 mode = READ_ONCE(inode->i_mode);
1326 if (!(mode & (S_ISUID|S_ISGID)))
1327 return;
1329 /* Be careful if suid/sgid is set */
1330 mutex_lock(&inode->i_mutex);
1332 /* reload atomically mode/uid/gid now that lock held */
1333 mode = inode->i_mode;
1334 uid = inode->i_uid;
1335 gid = inode->i_gid;
1336 mutex_unlock(&inode->i_mutex);
1338 /* We ignore suid/sgid if there are no mappings for them in the ns */
1339 if (!kuid_has_mapping(bprm->cred->user_ns, uid) ||
1340 !kgid_has_mapping(bprm->cred->user_ns, gid))
1341 return;
1343 if (mode & S_ISUID) {
1344 bprm->per_clear |= PER_CLEAR_ON_SETID;
1345 bprm->cred->euid = uid;
1348 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1349 bprm->per_clear |= PER_CLEAR_ON_SETID;
1350 bprm->cred->egid = gid;
1355 * Fill the binprm structure from the inode.
1356 * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1358 * This may be called multiple times for binary chains (scripts for example).
1360 int prepare_binprm(struct linux_binprm *bprm)
1362 int retval;
1364 bprm_fill_uid(bprm);
1366 /* fill in binprm security blob */
1367 retval = security_bprm_set_creds(bprm);
1368 if (retval)
1369 return retval;
1370 bprm->cred_prepared = 1;
1372 memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1373 return kernel_read(bprm->file, 0, bprm->buf, BINPRM_BUF_SIZE);
1376 EXPORT_SYMBOL(prepare_binprm);
1379 * Arguments are '\0' separated strings found at the location bprm->p
1380 * points to; chop off the first by relocating brpm->p to right after
1381 * the first '\0' encountered.
1383 int remove_arg_zero(struct linux_binprm *bprm)
1385 int ret = 0;
1386 unsigned long offset;
1387 char *kaddr;
1388 struct page *page;
1390 if (!bprm->argc)
1391 return 0;
1393 do {
1394 offset = bprm->p & ~PAGE_MASK;
1395 page = get_arg_page(bprm, bprm->p, 0);
1396 if (!page) {
1397 ret = -EFAULT;
1398 goto out;
1400 kaddr = kmap_atomic(page);
1402 for (; offset < PAGE_SIZE && kaddr[offset];
1403 offset++, bprm->p++)
1406 kunmap_atomic(kaddr);
1407 put_arg_page(page);
1409 if (offset == PAGE_SIZE)
1410 free_arg_page(bprm, (bprm->p >> PAGE_SHIFT) - 1);
1411 } while (offset == PAGE_SIZE);
1413 bprm->p++;
1414 bprm->argc--;
1415 ret = 0;
1417 out:
1418 return ret;
1420 EXPORT_SYMBOL(remove_arg_zero);
1422 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1424 * cycle the list of binary formats handler, until one recognizes the image
1426 int search_binary_handler(struct linux_binprm *bprm)
1428 bool need_retry = IS_ENABLED(CONFIG_MODULES);
1429 struct linux_binfmt *fmt;
1430 int retval;
1432 /* This allows 4 levels of binfmt rewrites before failing hard. */
1433 if (bprm->recursion_depth > 5)
1434 return -ELOOP;
1436 retval = security_bprm_check(bprm);
1437 if (retval)
1438 return retval;
1440 retval = -ENOENT;
1441 retry:
1442 read_lock(&binfmt_lock);
1443 list_for_each_entry(fmt, &formats, lh) {
1444 if (!try_module_get(fmt->module))
1445 continue;
1446 read_unlock(&binfmt_lock);
1447 bprm->recursion_depth++;
1448 retval = fmt->load_binary(bprm);
1449 read_lock(&binfmt_lock);
1450 put_binfmt(fmt);
1451 bprm->recursion_depth--;
1452 if (retval < 0 && !bprm->mm) {
1453 /* we got to flush_old_exec() and failed after it */
1454 read_unlock(&binfmt_lock);
1455 force_sigsegv(SIGSEGV, current);
1456 return retval;
1458 if (retval != -ENOEXEC || !bprm->file) {
1459 read_unlock(&binfmt_lock);
1460 return retval;
1463 read_unlock(&binfmt_lock);
1465 if (need_retry) {
1466 if (printable(bprm->buf[0]) && printable(bprm->buf[1]) &&
1467 printable(bprm->buf[2]) && printable(bprm->buf[3]))
1468 return retval;
1469 if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0)
1470 return retval;
1471 need_retry = false;
1472 goto retry;
1475 return retval;
1477 EXPORT_SYMBOL(search_binary_handler);
1479 static int exec_binprm(struct linux_binprm *bprm)
1481 pid_t old_pid, old_vpid;
1482 int ret;
1484 /* Need to fetch pid before load_binary changes it */
1485 old_pid = current->pid;
1486 rcu_read_lock();
1487 old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent));
1488 rcu_read_unlock();
1490 ret = search_binary_handler(bprm);
1491 if (ret >= 0) {
1492 audit_bprm(bprm);
1493 trace_sched_process_exec(current, old_pid, bprm);
1494 ptrace_event(PTRACE_EVENT_EXEC, old_vpid);
1495 proc_exec_connector(current);
1498 return ret;
1502 * sys_execve() executes a new program.
1504 static int do_execveat_common(int fd, struct filename *filename,
1505 struct user_arg_ptr argv,
1506 struct user_arg_ptr envp,
1507 int flags)
1509 char *pathbuf = NULL;
1510 struct linux_binprm *bprm;
1511 struct file *file;
1512 struct files_struct *displaced;
1513 int retval;
1515 if (IS_ERR(filename))
1516 return PTR_ERR(filename);
1519 * We move the actual failure in case of RLIMIT_NPROC excess from
1520 * set*uid() to execve() because too many poorly written programs
1521 * don't check setuid() return code. Here we additionally recheck
1522 * whether NPROC limit is still exceeded.
1524 if ((current->flags & PF_NPROC_EXCEEDED) &&
1525 atomic_read(&current_user()->processes) > rlimit(RLIMIT_NPROC)) {
1526 retval = -EAGAIN;
1527 goto out_ret;
1530 /* We're below the limit (still or again), so we don't want to make
1531 * further execve() calls fail. */
1532 current->flags &= ~PF_NPROC_EXCEEDED;
1534 retval = unshare_files(&displaced);
1535 if (retval)
1536 goto out_ret;
1538 retval = -ENOMEM;
1539 bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1540 if (!bprm)
1541 goto out_files;
1543 retval = prepare_bprm_creds(bprm);
1544 if (retval)
1545 goto out_free;
1547 check_unsafe_exec(bprm);
1548 current->in_execve = 1;
1550 file = do_open_execat(fd, filename, flags);
1551 retval = PTR_ERR(file);
1552 if (IS_ERR(file))
1553 goto out_unmark;
1555 sched_exec();
1557 bprm->file = file;
1558 if (fd == AT_FDCWD || filename->name[0] == '/') {
1559 bprm->filename = filename->name;
1560 } else {
1561 if (filename->name[0] == '\0')
1562 pathbuf = kasprintf(GFP_TEMPORARY, "/dev/fd/%d", fd);
1563 else
1564 pathbuf = kasprintf(GFP_TEMPORARY, "/dev/fd/%d/%s",
1565 fd, filename->name);
1566 if (!pathbuf) {
1567 retval = -ENOMEM;
1568 goto out_unmark;
1571 * Record that a name derived from an O_CLOEXEC fd will be
1572 * inaccessible after exec. Relies on having exclusive access to
1573 * current->files (due to unshare_files above).
1575 if (close_on_exec(fd, rcu_dereference_raw(current->files->fdt)))
1576 bprm->interp_flags |= BINPRM_FLAGS_PATH_INACCESSIBLE;
1577 bprm->filename = pathbuf;
1579 bprm->interp = bprm->filename;
1581 retval = bprm_mm_init(bprm);
1582 if (retval)
1583 goto out_unmark;
1585 bprm->argc = count(argv, MAX_ARG_STRINGS);
1586 if ((retval = bprm->argc) < 0)
1587 goto out;
1589 bprm->envc = count(envp, MAX_ARG_STRINGS);
1590 if ((retval = bprm->envc) < 0)
1591 goto out;
1593 retval = prepare_binprm(bprm);
1594 if (retval < 0)
1595 goto out;
1597 retval = copy_strings_kernel(1, &bprm->filename, bprm);
1598 if (retval < 0)
1599 goto out;
1601 bprm->exec = bprm->p;
1602 retval = copy_strings(bprm->envc, envp, bprm);
1603 if (retval < 0)
1604 goto out;
1606 retval = copy_strings(bprm->argc, argv, bprm);
1607 if (retval < 0)
1608 goto out;
1610 would_dump(bprm, bprm->file);
1612 retval = exec_binprm(bprm);
1613 if (retval < 0)
1614 goto out;
1616 /* execve succeeded */
1617 current->fs->in_exec = 0;
1618 current->in_execve = 0;
1619 acct_update_integrals(current);
1620 task_numa_free(current);
1621 free_bprm(bprm);
1622 kfree(pathbuf);
1623 putname(filename);
1624 if (displaced)
1625 put_files_struct(displaced);
1626 return retval;
1628 out:
1629 if (bprm->mm) {
1630 acct_arg_size(bprm, 0);
1631 mmput(bprm->mm);
1634 out_unmark:
1635 current->fs->in_exec = 0;
1636 current->in_execve = 0;
1638 out_free:
1639 free_bprm(bprm);
1640 kfree(pathbuf);
1642 out_files:
1643 if (displaced)
1644 reset_files_struct(displaced);
1645 out_ret:
1646 putname(filename);
1647 return retval;
1650 int do_execve(struct filename *filename,
1651 const char __user *const __user *__argv,
1652 const char __user *const __user *__envp)
1654 struct user_arg_ptr argv = { .ptr.native = __argv };
1655 struct user_arg_ptr envp = { .ptr.native = __envp };
1656 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
1659 int do_execveat(int fd, struct filename *filename,
1660 const char __user *const __user *__argv,
1661 const char __user *const __user *__envp,
1662 int flags)
1664 struct user_arg_ptr argv = { .ptr.native = __argv };
1665 struct user_arg_ptr envp = { .ptr.native = __envp };
1667 return do_execveat_common(fd, filename, argv, envp, flags);
1670 #ifdef CONFIG_COMPAT
1671 static int compat_do_execve(struct filename *filename,
1672 const compat_uptr_t __user *__argv,
1673 const compat_uptr_t __user *__envp)
1675 struct user_arg_ptr argv = {
1676 .is_compat = true,
1677 .ptr.compat = __argv,
1679 struct user_arg_ptr envp = {
1680 .is_compat = true,
1681 .ptr.compat = __envp,
1683 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
1686 static int compat_do_execveat(int fd, struct filename *filename,
1687 const compat_uptr_t __user *__argv,
1688 const compat_uptr_t __user *__envp,
1689 int flags)
1691 struct user_arg_ptr argv = {
1692 .is_compat = true,
1693 .ptr.compat = __argv,
1695 struct user_arg_ptr envp = {
1696 .is_compat = true,
1697 .ptr.compat = __envp,
1699 return do_execveat_common(fd, filename, argv, envp, flags);
1701 #endif
1703 void set_binfmt(struct linux_binfmt *new)
1705 struct mm_struct *mm = current->mm;
1707 if (mm->binfmt)
1708 module_put(mm->binfmt->module);
1710 mm->binfmt = new;
1711 if (new)
1712 __module_get(new->module);
1714 EXPORT_SYMBOL(set_binfmt);
1717 * set_dumpable stores three-value SUID_DUMP_* into mm->flags.
1719 void set_dumpable(struct mm_struct *mm, int value)
1721 unsigned long old, new;
1723 if (WARN_ON((unsigned)value > SUID_DUMP_ROOT))
1724 return;
1726 do {
1727 old = ACCESS_ONCE(mm->flags);
1728 new = (old & ~MMF_DUMPABLE_MASK) | value;
1729 } while (cmpxchg(&mm->flags, old, new) != old);
1732 SYSCALL_DEFINE3(execve,
1733 const char __user *, filename,
1734 const char __user *const __user *, argv,
1735 const char __user *const __user *, envp)
1737 return do_execve(getname(filename), argv, envp);
1740 SYSCALL_DEFINE5(execveat,
1741 int, fd, const char __user *, filename,
1742 const char __user *const __user *, argv,
1743 const char __user *const __user *, envp,
1744 int, flags)
1746 int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
1748 return do_execveat(fd,
1749 getname_flags(filename, lookup_flags, NULL),
1750 argv, envp, flags);
1753 #ifdef CONFIG_COMPAT
1754 COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename,
1755 const compat_uptr_t __user *, argv,
1756 const compat_uptr_t __user *, envp)
1758 return compat_do_execve(getname(filename), argv, envp);
1761 COMPAT_SYSCALL_DEFINE5(execveat, int, fd,
1762 const char __user *, filename,
1763 const compat_uptr_t __user *, argv,
1764 const compat_uptr_t __user *, envp,
1765 int, flags)
1767 int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
1769 return compat_do_execveat(fd,
1770 getname_flags(filename, lookup_flags, NULL),
1771 argv, envp, flags);
1773 #endif