2 * linux/fs/ext4/crypto.c
4 * Copyright (C) 2015, Google, Inc.
6 * This contains encryption functions for ext4
8 * Written by Michael Halcrow, 2014.
10 * Filename encryption additions
11 * Uday Savagaonkar, 2014
12 * Encryption policy handling additions
13 * Ildar Muslukhov, 2014
15 * This has not yet undergone a rigorous security audit.
17 * The usage of AES-XTS should conform to recommendations in NIST
18 * Special Publication 800-38E and IEEE P1619/D16.
21 #include <crypto/hash.h>
22 #include <crypto/sha.h>
23 #include <keys/user-type.h>
24 #include <keys/encrypted-type.h>
25 #include <linux/crypto.h>
26 #include <linux/ecryptfs.h>
27 #include <linux/gfp.h>
28 #include <linux/kernel.h>
29 #include <linux/key.h>
30 #include <linux/list.h>
31 #include <linux/mempool.h>
32 #include <linux/module.h>
33 #include <linux/mutex.h>
34 #include <linux/random.h>
35 #include <linux/scatterlist.h>
36 #include <linux/spinlock_types.h>
37 #include <linux/namei.h>
39 #include "ext4_extents.h"
42 /* Encryption added and removed here! (L: */
44 static unsigned int num_prealloc_crypto_pages
= 32;
45 static unsigned int num_prealloc_crypto_ctxs
= 128;
47 module_param(num_prealloc_crypto_pages
, uint
, 0444);
48 MODULE_PARM_DESC(num_prealloc_crypto_pages
,
49 "Number of crypto pages to preallocate");
50 module_param(num_prealloc_crypto_ctxs
, uint
, 0444);
51 MODULE_PARM_DESC(num_prealloc_crypto_ctxs
,
52 "Number of crypto contexts to preallocate");
54 static mempool_t
*ext4_bounce_page_pool
;
56 static LIST_HEAD(ext4_free_crypto_ctxs
);
57 static DEFINE_SPINLOCK(ext4_crypto_ctx_lock
);
59 static struct kmem_cache
*ext4_crypto_ctx_cachep
;
60 struct kmem_cache
*ext4_crypt_info_cachep
;
63 * ext4_release_crypto_ctx() - Releases an encryption context
64 * @ctx: The encryption context to release.
66 * If the encryption context was allocated from the pre-allocated pool, returns
67 * it to that pool. Else, frees it.
69 * If there's a bounce page in the context, this frees that.
71 void ext4_release_crypto_ctx(struct ext4_crypto_ctx
*ctx
)
75 if (ctx
->flags
& EXT4_WRITE_PATH_FL
&& ctx
->w
.bounce_page
)
76 mempool_free(ctx
->w
.bounce_page
, ext4_bounce_page_pool
);
77 ctx
->w
.bounce_page
= NULL
;
78 ctx
->w
.control_page
= NULL
;
79 if (ctx
->flags
& EXT4_CTX_REQUIRES_FREE_ENCRYPT_FL
) {
80 kmem_cache_free(ext4_crypto_ctx_cachep
, ctx
);
82 spin_lock_irqsave(&ext4_crypto_ctx_lock
, flags
);
83 list_add(&ctx
->free_list
, &ext4_free_crypto_ctxs
);
84 spin_unlock_irqrestore(&ext4_crypto_ctx_lock
, flags
);
89 * ext4_get_crypto_ctx() - Gets an encryption context
90 * @inode: The inode for which we are doing the crypto
92 * Allocates and initializes an encryption context.
94 * Return: An allocated and initialized encryption context on success; error
95 * value or NULL otherwise.
97 struct ext4_crypto_ctx
*ext4_get_crypto_ctx(struct inode
*inode
)
99 struct ext4_crypto_ctx
*ctx
= NULL
;
102 struct ext4_crypt_info
*ci
= EXT4_I(inode
)->i_crypt_info
;
105 return ERR_PTR(-ENOKEY
);
108 * We first try getting the ctx from a free list because in
109 * the common case the ctx will have an allocated and
110 * initialized crypto tfm, so it's probably a worthwhile
111 * optimization. For the bounce page, we first try getting it
112 * from the kernel allocator because that's just about as fast
113 * as getting it from a list and because a cache of free pages
114 * should generally be a "last resort" option for a filesystem
115 * to be able to do its job.
117 spin_lock_irqsave(&ext4_crypto_ctx_lock
, flags
);
118 ctx
= list_first_entry_or_null(&ext4_free_crypto_ctxs
,
119 struct ext4_crypto_ctx
, free_list
);
121 list_del(&ctx
->free_list
);
122 spin_unlock_irqrestore(&ext4_crypto_ctx_lock
, flags
);
124 ctx
= kmem_cache_zalloc(ext4_crypto_ctx_cachep
, GFP_NOFS
);
129 ctx
->flags
|= EXT4_CTX_REQUIRES_FREE_ENCRYPT_FL
;
131 ctx
->flags
&= ~EXT4_CTX_REQUIRES_FREE_ENCRYPT_FL
;
133 ctx
->flags
&= ~EXT4_WRITE_PATH_FL
;
137 if (!IS_ERR_OR_NULL(ctx
))
138 ext4_release_crypto_ctx(ctx
);
144 struct workqueue_struct
*ext4_read_workqueue
;
145 static DEFINE_MUTEX(crypto_init
);
148 * ext4_exit_crypto() - Shutdown the ext4 encryption system
150 void ext4_exit_crypto(void)
152 struct ext4_crypto_ctx
*pos
, *n
;
154 list_for_each_entry_safe(pos
, n
, &ext4_free_crypto_ctxs
, free_list
)
155 kmem_cache_free(ext4_crypto_ctx_cachep
, pos
);
156 INIT_LIST_HEAD(&ext4_free_crypto_ctxs
);
157 if (ext4_bounce_page_pool
)
158 mempool_destroy(ext4_bounce_page_pool
);
159 ext4_bounce_page_pool
= NULL
;
160 if (ext4_read_workqueue
)
161 destroy_workqueue(ext4_read_workqueue
);
162 ext4_read_workqueue
= NULL
;
163 if (ext4_crypto_ctx_cachep
)
164 kmem_cache_destroy(ext4_crypto_ctx_cachep
);
165 ext4_crypto_ctx_cachep
= NULL
;
166 if (ext4_crypt_info_cachep
)
167 kmem_cache_destroy(ext4_crypt_info_cachep
);
168 ext4_crypt_info_cachep
= NULL
;
172 * ext4_init_crypto() - Set up for ext4 encryption.
174 * We only call this when we start accessing encrypted files, since it
175 * results in memory getting allocated that wouldn't otherwise be used.
177 * Return: Zero on success, non-zero otherwise.
179 int ext4_init_crypto(void)
181 int i
, res
= -ENOMEM
;
183 mutex_lock(&crypto_init
);
184 if (ext4_read_workqueue
)
185 goto already_initialized
;
186 ext4_read_workqueue
= alloc_workqueue("ext4_crypto", WQ_HIGHPRI
, 0);
187 if (!ext4_read_workqueue
)
190 ext4_crypto_ctx_cachep
= KMEM_CACHE(ext4_crypto_ctx
,
191 SLAB_RECLAIM_ACCOUNT
);
192 if (!ext4_crypto_ctx_cachep
)
195 ext4_crypt_info_cachep
= KMEM_CACHE(ext4_crypt_info
,
196 SLAB_RECLAIM_ACCOUNT
);
197 if (!ext4_crypt_info_cachep
)
200 for (i
= 0; i
< num_prealloc_crypto_ctxs
; i
++) {
201 struct ext4_crypto_ctx
*ctx
;
203 ctx
= kmem_cache_zalloc(ext4_crypto_ctx_cachep
, GFP_NOFS
);
208 list_add(&ctx
->free_list
, &ext4_free_crypto_ctxs
);
211 ext4_bounce_page_pool
=
212 mempool_create_page_pool(num_prealloc_crypto_pages
, 0);
213 if (!ext4_bounce_page_pool
) {
218 mutex_unlock(&crypto_init
);
222 mutex_unlock(&crypto_init
);
226 void ext4_restore_control_page(struct page
*data_page
)
228 struct ext4_crypto_ctx
*ctx
=
229 (struct ext4_crypto_ctx
*)page_private(data_page
);
231 set_page_private(data_page
, (unsigned long)NULL
);
232 ClearPagePrivate(data_page
);
233 unlock_page(data_page
);
234 ext4_release_crypto_ctx(ctx
);
238 * ext4_crypt_complete() - The completion callback for page encryption
239 * @req: The asynchronous encryption request context
240 * @res: The result of the encryption operation
242 static void ext4_crypt_complete(struct crypto_async_request
*req
, int res
)
244 struct ext4_completion_result
*ecr
= req
->data
;
246 if (res
== -EINPROGRESS
)
249 complete(&ecr
->completion
);
257 static int ext4_page_crypto(struct inode
*inode
,
260 struct page
*src_page
,
261 struct page
*dest_page
)
264 u8 xts_tweak
[EXT4_XTS_TWEAK_SIZE
];
265 struct ablkcipher_request
*req
= NULL
;
266 DECLARE_EXT4_COMPLETION_RESULT(ecr
);
267 struct scatterlist dst
, src
;
268 struct ext4_crypt_info
*ci
= EXT4_I(inode
)->i_crypt_info
;
269 struct crypto_ablkcipher
*tfm
= ci
->ci_ctfm
;
272 req
= ablkcipher_request_alloc(tfm
, GFP_NOFS
);
274 printk_ratelimited(KERN_ERR
275 "%s: crypto_request_alloc() failed\n",
279 ablkcipher_request_set_callback(
280 req
, CRYPTO_TFM_REQ_MAY_BACKLOG
| CRYPTO_TFM_REQ_MAY_SLEEP
,
281 ext4_crypt_complete
, &ecr
);
283 BUILD_BUG_ON(EXT4_XTS_TWEAK_SIZE
< sizeof(index
));
284 memcpy(xts_tweak
, &index
, sizeof(index
));
285 memset(&xts_tweak
[sizeof(index
)], 0,
286 EXT4_XTS_TWEAK_SIZE
- sizeof(index
));
288 sg_init_table(&dst
, 1);
289 sg_set_page(&dst
, dest_page
, PAGE_CACHE_SIZE
, 0);
290 sg_init_table(&src
, 1);
291 sg_set_page(&src
, src_page
, PAGE_CACHE_SIZE
, 0);
292 ablkcipher_request_set_crypt(req
, &src
, &dst
, PAGE_CACHE_SIZE
,
294 if (rw
== EXT4_DECRYPT
)
295 res
= crypto_ablkcipher_decrypt(req
);
297 res
= crypto_ablkcipher_encrypt(req
);
298 if (res
== -EINPROGRESS
|| res
== -EBUSY
) {
299 wait_for_completion(&ecr
.completion
);
302 ablkcipher_request_free(req
);
306 "%s: crypto_ablkcipher_encrypt() returned %d\n",
313 static struct page
*alloc_bounce_page(struct ext4_crypto_ctx
*ctx
)
315 ctx
->w
.bounce_page
= mempool_alloc(ext4_bounce_page_pool
, GFP_NOWAIT
);
316 if (ctx
->w
.bounce_page
== NULL
)
317 return ERR_PTR(-ENOMEM
);
318 ctx
->flags
|= EXT4_WRITE_PATH_FL
;
319 return ctx
->w
.bounce_page
;
323 * ext4_encrypt() - Encrypts a page
324 * @inode: The inode for which the encryption should take place
325 * @plaintext_page: The page to encrypt. Must be locked.
327 * Allocates a ciphertext page and encrypts plaintext_page into it using the ctx
328 * encryption context.
330 * Called on the page write path. The caller must call
331 * ext4_restore_control_page() on the returned ciphertext page to
332 * release the bounce buffer and the encryption context.
334 * Return: An allocated page with the encrypted content on success. Else, an
335 * error value or NULL.
337 struct page
*ext4_encrypt(struct inode
*inode
,
338 struct page
*plaintext_page
)
340 struct ext4_crypto_ctx
*ctx
;
341 struct page
*ciphertext_page
= NULL
;
344 BUG_ON(!PageLocked(plaintext_page
));
346 ctx
= ext4_get_crypto_ctx(inode
);
348 return (struct page
*) ctx
;
350 /* The encryption operation will require a bounce page. */
351 ciphertext_page
= alloc_bounce_page(ctx
);
352 if (IS_ERR(ciphertext_page
))
354 ctx
->w
.control_page
= plaintext_page
;
355 err
= ext4_page_crypto(inode
, EXT4_ENCRYPT
, plaintext_page
->index
,
356 plaintext_page
, ciphertext_page
);
358 ciphertext_page
= ERR_PTR(err
);
360 ext4_release_crypto_ctx(ctx
);
361 return ciphertext_page
;
363 SetPagePrivate(ciphertext_page
);
364 set_page_private(ciphertext_page
, (unsigned long)ctx
);
365 lock_page(ciphertext_page
);
366 return ciphertext_page
;
370 * ext4_decrypt() - Decrypts a page in-place
371 * @ctx: The encryption context.
372 * @page: The page to decrypt. Must be locked.
374 * Decrypts page in-place using the ctx encryption context.
376 * Called from the read completion callback.
378 * Return: Zero on success, non-zero otherwise.
380 int ext4_decrypt(struct page
*page
)
382 BUG_ON(!PageLocked(page
));
384 return ext4_page_crypto(page
->mapping
->host
,
385 EXT4_DECRYPT
, page
->index
, page
, page
);
388 int ext4_encrypted_zeroout(struct inode
*inode
, struct ext4_extent
*ex
)
390 struct ext4_crypto_ctx
*ctx
;
391 struct page
*ciphertext_page
= NULL
;
393 ext4_lblk_t lblk
= le32_to_cpu(ex
->ee_block
);
394 ext4_fsblk_t pblk
= ext4_ext_pblock(ex
);
395 unsigned int len
= ext4_ext_get_actual_len(ex
);
399 ext4_msg(inode
->i_sb
, KERN_CRIT
,
400 "ext4_encrypted_zeroout ino %lu lblk %u len %u",
401 (unsigned long) inode
->i_ino
, lblk
, len
);
404 BUG_ON(inode
->i_sb
->s_blocksize
!= PAGE_CACHE_SIZE
);
406 ctx
= ext4_get_crypto_ctx(inode
);
410 ciphertext_page
= alloc_bounce_page(ctx
);
411 if (IS_ERR(ciphertext_page
)) {
412 err
= PTR_ERR(ciphertext_page
);
417 err
= ext4_page_crypto(inode
, EXT4_ENCRYPT
, lblk
,
418 ZERO_PAGE(0), ciphertext_page
);
422 bio
= bio_alloc(GFP_KERNEL
, 1);
427 bio
->bi_bdev
= inode
->i_sb
->s_bdev
;
428 bio
->bi_iter
.bi_sector
=
429 pblk
<< (inode
->i_sb
->s_blocksize_bits
- 9);
430 ret
= bio_add_page(bio
, ciphertext_page
,
431 inode
->i_sb
->s_blocksize
, 0);
432 if (ret
!= inode
->i_sb
->s_blocksize
) {
433 /* should never happen! */
434 ext4_msg(inode
->i_sb
, KERN_ERR
,
435 "bio_add_page failed: %d", ret
);
441 err
= submit_bio_wait(WRITE
, bio
);
442 if ((err
== 0) && bio
->bi_error
)
451 ext4_release_crypto_ctx(ctx
);
455 bool ext4_valid_contents_enc_mode(uint32_t mode
)
457 return (mode
== EXT4_ENCRYPTION_MODE_AES_256_XTS
);
461 * ext4_validate_encryption_key_size() - Validate the encryption key size
462 * @mode: The key mode.
463 * @size: The key size to validate.
465 * Return: The validated key size for @mode. Zero if invalid.
467 uint32_t ext4_validate_encryption_key_size(uint32_t mode
, uint32_t size
)
469 if (size
== ext4_encryption_key_size(mode
))
475 * Validate dentries for encrypted directories to make sure we aren't
476 * potentially caching stale data after a key has been added or
479 static int ext4_d_revalidate(struct dentry
*dentry
, unsigned int flags
)
482 struct ext4_crypt_info
*ci
;
483 int dir_has_key
, cached_with_key
;
485 if (flags
& LOOKUP_RCU
)
488 dir
= dget_parent(dentry
);
489 if (!ext4_encrypted_inode(d_inode(dir
))) {
493 ci
= EXT4_I(d_inode(dir
))->i_crypt_info
;
495 /* this should eventually be an flag in d_flags */
496 cached_with_key
= dentry
->d_fsdata
!= NULL
;
497 dir_has_key
= (ci
!= NULL
);
501 * If the dentry was cached without the key, and it is a
502 * negative dentry, it might be a valid name. We can't check
503 * if the key has since been made available due to locking
504 * reasons, so we fail the validation so ext4_lookup() can do
507 * We also fail the validation if the dentry was created with
508 * the key present, but we no longer have the key, or vice versa.
510 if ((!cached_with_key
&& d_is_negative(dentry
)) ||
511 (!cached_with_key
&& dir_has_key
) ||
512 (cached_with_key
&& !dir_has_key
)) {
513 #if 0 /* Revalidation debug */
515 char *cp
= simple_dname(dentry
, buf
, sizeof(buf
));
519 pr_err("revalidate: %s %p %d %d %d\n", cp
, dentry
->d_fsdata
,
520 cached_with_key
, d_is_negative(dentry
),
528 const struct dentry_operations ext4_encrypted_d_ops
= {
529 .d_revalidate
= ext4_d_revalidate
,