wlcore: Add RX_BA_WIN_SIZE_CHANGE_EVENT event
[linux/fpc-iii.git] / fs / ext4 / inode.c
blobccae64dad40c9740469021da944add0053b39f80
1 /*
2 * linux/fs/ext4/inode.c
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
9 * from
11 * linux/fs/minix/inode.c
13 * Copyright (C) 1991, 1992 Linus Torvalds
15 * 64-bit file support on 64-bit platforms by Jakub Jelinek
16 * (jj@sunsite.ms.mff.cuni.cz)
18 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/highuid.h>
24 #include <linux/pagemap.h>
25 #include <linux/dax.h>
26 #include <linux/quotaops.h>
27 #include <linux/string.h>
28 #include <linux/buffer_head.h>
29 #include <linux/writeback.h>
30 #include <linux/pagevec.h>
31 #include <linux/mpage.h>
32 #include <linux/namei.h>
33 #include <linux/uio.h>
34 #include <linux/bio.h>
35 #include <linux/workqueue.h>
36 #include <linux/kernel.h>
37 #include <linux/printk.h>
38 #include <linux/slab.h>
39 #include <linux/bitops.h>
41 #include "ext4_jbd2.h"
42 #include "xattr.h"
43 #include "acl.h"
44 #include "truncate.h"
46 #include <trace/events/ext4.h>
48 #define MPAGE_DA_EXTENT_TAIL 0x01
50 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
51 struct ext4_inode_info *ei)
53 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
54 __u32 csum;
55 __u16 dummy_csum = 0;
56 int offset = offsetof(struct ext4_inode, i_checksum_lo);
57 unsigned int csum_size = sizeof(dummy_csum);
59 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
60 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
61 offset += csum_size;
62 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
63 EXT4_GOOD_OLD_INODE_SIZE - offset);
65 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
66 offset = offsetof(struct ext4_inode, i_checksum_hi);
67 csum = ext4_chksum(sbi, csum, (__u8 *)raw +
68 EXT4_GOOD_OLD_INODE_SIZE,
69 offset - EXT4_GOOD_OLD_INODE_SIZE);
70 if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
71 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
72 csum_size);
73 offset += csum_size;
75 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
76 EXT4_INODE_SIZE(inode->i_sb) - offset);
79 return csum;
82 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
83 struct ext4_inode_info *ei)
85 __u32 provided, calculated;
87 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
88 cpu_to_le32(EXT4_OS_LINUX) ||
89 !ext4_has_metadata_csum(inode->i_sb))
90 return 1;
92 provided = le16_to_cpu(raw->i_checksum_lo);
93 calculated = ext4_inode_csum(inode, raw, ei);
94 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
95 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
96 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
97 else
98 calculated &= 0xFFFF;
100 return provided == calculated;
103 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
104 struct ext4_inode_info *ei)
106 __u32 csum;
108 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
109 cpu_to_le32(EXT4_OS_LINUX) ||
110 !ext4_has_metadata_csum(inode->i_sb))
111 return;
113 csum = ext4_inode_csum(inode, raw, ei);
114 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
115 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
116 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
117 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
120 static inline int ext4_begin_ordered_truncate(struct inode *inode,
121 loff_t new_size)
123 trace_ext4_begin_ordered_truncate(inode, new_size);
125 * If jinode is zero, then we never opened the file for
126 * writing, so there's no need to call
127 * jbd2_journal_begin_ordered_truncate() since there's no
128 * outstanding writes we need to flush.
130 if (!EXT4_I(inode)->jinode)
131 return 0;
132 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
133 EXT4_I(inode)->jinode,
134 new_size);
137 static void ext4_invalidatepage(struct page *page, unsigned int offset,
138 unsigned int length);
139 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
140 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
141 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
142 int pextents);
145 * Test whether an inode is a fast symlink.
147 int ext4_inode_is_fast_symlink(struct inode *inode)
149 int ea_blocks = EXT4_I(inode)->i_file_acl ?
150 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
152 if (ext4_has_inline_data(inode))
153 return 0;
155 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
159 * Restart the transaction associated with *handle. This does a commit,
160 * so before we call here everything must be consistently dirtied against
161 * this transaction.
163 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
164 int nblocks)
166 int ret;
169 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this
170 * moment, get_block can be called only for blocks inside i_size since
171 * page cache has been already dropped and writes are blocked by
172 * i_mutex. So we can safely drop the i_data_sem here.
174 BUG_ON(EXT4_JOURNAL(inode) == NULL);
175 jbd_debug(2, "restarting handle %p\n", handle);
176 up_write(&EXT4_I(inode)->i_data_sem);
177 ret = ext4_journal_restart(handle, nblocks);
178 down_write(&EXT4_I(inode)->i_data_sem);
179 ext4_discard_preallocations(inode);
181 return ret;
185 * Called at the last iput() if i_nlink is zero.
187 void ext4_evict_inode(struct inode *inode)
189 handle_t *handle;
190 int err;
192 trace_ext4_evict_inode(inode);
194 if (inode->i_nlink) {
196 * When journalling data dirty buffers are tracked only in the
197 * journal. So although mm thinks everything is clean and
198 * ready for reaping the inode might still have some pages to
199 * write in the running transaction or waiting to be
200 * checkpointed. Thus calling jbd2_journal_invalidatepage()
201 * (via truncate_inode_pages()) to discard these buffers can
202 * cause data loss. Also even if we did not discard these
203 * buffers, we would have no way to find them after the inode
204 * is reaped and thus user could see stale data if he tries to
205 * read them before the transaction is checkpointed. So be
206 * careful and force everything to disk here... We use
207 * ei->i_datasync_tid to store the newest transaction
208 * containing inode's data.
210 * Note that directories do not have this problem because they
211 * don't use page cache.
213 if (inode->i_ino != EXT4_JOURNAL_INO &&
214 ext4_should_journal_data(inode) &&
215 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode))) {
216 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
217 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
219 jbd2_complete_transaction(journal, commit_tid);
220 filemap_write_and_wait(&inode->i_data);
222 truncate_inode_pages_final(&inode->i_data);
224 WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
225 goto no_delete;
228 if (is_bad_inode(inode))
229 goto no_delete;
230 dquot_initialize(inode);
232 if (ext4_should_order_data(inode))
233 ext4_begin_ordered_truncate(inode, 0);
234 truncate_inode_pages_final(&inode->i_data);
236 WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
239 * Protect us against freezing - iput() caller didn't have to have any
240 * protection against it
242 sb_start_intwrite(inode->i_sb);
243 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
244 ext4_blocks_for_truncate(inode)+3);
245 if (IS_ERR(handle)) {
246 ext4_std_error(inode->i_sb, PTR_ERR(handle));
248 * If we're going to skip the normal cleanup, we still need to
249 * make sure that the in-core orphan linked list is properly
250 * cleaned up.
252 ext4_orphan_del(NULL, inode);
253 sb_end_intwrite(inode->i_sb);
254 goto no_delete;
257 if (IS_SYNC(inode))
258 ext4_handle_sync(handle);
259 inode->i_size = 0;
260 err = ext4_mark_inode_dirty(handle, inode);
261 if (err) {
262 ext4_warning(inode->i_sb,
263 "couldn't mark inode dirty (err %d)", err);
264 goto stop_handle;
266 if (inode->i_blocks)
267 ext4_truncate(inode);
270 * ext4_ext_truncate() doesn't reserve any slop when it
271 * restarts journal transactions; therefore there may not be
272 * enough credits left in the handle to remove the inode from
273 * the orphan list and set the dtime field.
275 if (!ext4_handle_has_enough_credits(handle, 3)) {
276 err = ext4_journal_extend(handle, 3);
277 if (err > 0)
278 err = ext4_journal_restart(handle, 3);
279 if (err != 0) {
280 ext4_warning(inode->i_sb,
281 "couldn't extend journal (err %d)", err);
282 stop_handle:
283 ext4_journal_stop(handle);
284 ext4_orphan_del(NULL, inode);
285 sb_end_intwrite(inode->i_sb);
286 goto no_delete;
291 * Kill off the orphan record which ext4_truncate created.
292 * AKPM: I think this can be inside the above `if'.
293 * Note that ext4_orphan_del() has to be able to cope with the
294 * deletion of a non-existent orphan - this is because we don't
295 * know if ext4_truncate() actually created an orphan record.
296 * (Well, we could do this if we need to, but heck - it works)
298 ext4_orphan_del(handle, inode);
299 EXT4_I(inode)->i_dtime = get_seconds();
302 * One subtle ordering requirement: if anything has gone wrong
303 * (transaction abort, IO errors, whatever), then we can still
304 * do these next steps (the fs will already have been marked as
305 * having errors), but we can't free the inode if the mark_dirty
306 * fails.
308 if (ext4_mark_inode_dirty(handle, inode))
309 /* If that failed, just do the required in-core inode clear. */
310 ext4_clear_inode(inode);
311 else
312 ext4_free_inode(handle, inode);
313 ext4_journal_stop(handle);
314 sb_end_intwrite(inode->i_sb);
315 return;
316 no_delete:
317 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */
320 #ifdef CONFIG_QUOTA
321 qsize_t *ext4_get_reserved_space(struct inode *inode)
323 return &EXT4_I(inode)->i_reserved_quota;
325 #endif
328 * Called with i_data_sem down, which is important since we can call
329 * ext4_discard_preallocations() from here.
331 void ext4_da_update_reserve_space(struct inode *inode,
332 int used, int quota_claim)
334 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
335 struct ext4_inode_info *ei = EXT4_I(inode);
337 spin_lock(&ei->i_block_reservation_lock);
338 trace_ext4_da_update_reserve_space(inode, used, quota_claim);
339 if (unlikely(used > ei->i_reserved_data_blocks)) {
340 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
341 "with only %d reserved data blocks",
342 __func__, inode->i_ino, used,
343 ei->i_reserved_data_blocks);
344 WARN_ON(1);
345 used = ei->i_reserved_data_blocks;
348 /* Update per-inode reservations */
349 ei->i_reserved_data_blocks -= used;
350 percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
352 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
354 /* Update quota subsystem for data blocks */
355 if (quota_claim)
356 dquot_claim_block(inode, EXT4_C2B(sbi, used));
357 else {
359 * We did fallocate with an offset that is already delayed
360 * allocated. So on delayed allocated writeback we should
361 * not re-claim the quota for fallocated blocks.
363 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
367 * If we have done all the pending block allocations and if
368 * there aren't any writers on the inode, we can discard the
369 * inode's preallocations.
371 if ((ei->i_reserved_data_blocks == 0) &&
372 (atomic_read(&inode->i_writecount) == 0))
373 ext4_discard_preallocations(inode);
376 static int __check_block_validity(struct inode *inode, const char *func,
377 unsigned int line,
378 struct ext4_map_blocks *map)
380 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
381 map->m_len)) {
382 ext4_error_inode(inode, func, line, map->m_pblk,
383 "lblock %lu mapped to illegal pblock "
384 "(length %d)", (unsigned long) map->m_lblk,
385 map->m_len);
386 return -EFSCORRUPTED;
388 return 0;
391 #define check_block_validity(inode, map) \
392 __check_block_validity((inode), __func__, __LINE__, (map))
394 #ifdef ES_AGGRESSIVE_TEST
395 static void ext4_map_blocks_es_recheck(handle_t *handle,
396 struct inode *inode,
397 struct ext4_map_blocks *es_map,
398 struct ext4_map_blocks *map,
399 int flags)
401 int retval;
403 map->m_flags = 0;
405 * There is a race window that the result is not the same.
406 * e.g. xfstests #223 when dioread_nolock enables. The reason
407 * is that we lookup a block mapping in extent status tree with
408 * out taking i_data_sem. So at the time the unwritten extent
409 * could be converted.
411 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
412 down_read(&EXT4_I(inode)->i_data_sem);
413 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
414 retval = ext4_ext_map_blocks(handle, inode, map, flags &
415 EXT4_GET_BLOCKS_KEEP_SIZE);
416 } else {
417 retval = ext4_ind_map_blocks(handle, inode, map, flags &
418 EXT4_GET_BLOCKS_KEEP_SIZE);
420 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
421 up_read((&EXT4_I(inode)->i_data_sem));
424 * We don't check m_len because extent will be collpased in status
425 * tree. So the m_len might not equal.
427 if (es_map->m_lblk != map->m_lblk ||
428 es_map->m_flags != map->m_flags ||
429 es_map->m_pblk != map->m_pblk) {
430 printk("ES cache assertion failed for inode: %lu "
431 "es_cached ex [%d/%d/%llu/%x] != "
432 "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
433 inode->i_ino, es_map->m_lblk, es_map->m_len,
434 es_map->m_pblk, es_map->m_flags, map->m_lblk,
435 map->m_len, map->m_pblk, map->m_flags,
436 retval, flags);
439 #endif /* ES_AGGRESSIVE_TEST */
442 * The ext4_map_blocks() function tries to look up the requested blocks,
443 * and returns if the blocks are already mapped.
445 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
446 * and store the allocated blocks in the result buffer head and mark it
447 * mapped.
449 * If file type is extents based, it will call ext4_ext_map_blocks(),
450 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
451 * based files
453 * On success, it returns the number of blocks being mapped or allocated.
454 * if create==0 and the blocks are pre-allocated and unwritten block,
455 * the result buffer head is unmapped. If the create ==1, it will make sure
456 * the buffer head is mapped.
458 * It returns 0 if plain look up failed (blocks have not been allocated), in
459 * that case, buffer head is unmapped
461 * It returns the error in case of allocation failure.
463 int ext4_map_blocks(handle_t *handle, struct inode *inode,
464 struct ext4_map_blocks *map, int flags)
466 struct extent_status es;
467 int retval;
468 int ret = 0;
469 #ifdef ES_AGGRESSIVE_TEST
470 struct ext4_map_blocks orig_map;
472 memcpy(&orig_map, map, sizeof(*map));
473 #endif
475 map->m_flags = 0;
476 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
477 "logical block %lu\n", inode->i_ino, flags, map->m_len,
478 (unsigned long) map->m_lblk);
481 * ext4_map_blocks returns an int, and m_len is an unsigned int
483 if (unlikely(map->m_len > INT_MAX))
484 map->m_len = INT_MAX;
486 /* We can handle the block number less than EXT_MAX_BLOCKS */
487 if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
488 return -EFSCORRUPTED;
490 /* Lookup extent status tree firstly */
491 if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
492 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
493 map->m_pblk = ext4_es_pblock(&es) +
494 map->m_lblk - es.es_lblk;
495 map->m_flags |= ext4_es_is_written(&es) ?
496 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
497 retval = es.es_len - (map->m_lblk - es.es_lblk);
498 if (retval > map->m_len)
499 retval = map->m_len;
500 map->m_len = retval;
501 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
502 retval = 0;
503 } else {
504 BUG_ON(1);
506 #ifdef ES_AGGRESSIVE_TEST
507 ext4_map_blocks_es_recheck(handle, inode, map,
508 &orig_map, flags);
509 #endif
510 goto found;
514 * Try to see if we can get the block without requesting a new
515 * file system block.
517 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
518 down_read(&EXT4_I(inode)->i_data_sem);
519 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
520 retval = ext4_ext_map_blocks(handle, inode, map, flags &
521 EXT4_GET_BLOCKS_KEEP_SIZE);
522 } else {
523 retval = ext4_ind_map_blocks(handle, inode, map, flags &
524 EXT4_GET_BLOCKS_KEEP_SIZE);
526 if (retval > 0) {
527 unsigned int status;
529 if (unlikely(retval != map->m_len)) {
530 ext4_warning(inode->i_sb,
531 "ES len assertion failed for inode "
532 "%lu: retval %d != map->m_len %d",
533 inode->i_ino, retval, map->m_len);
534 WARN_ON(1);
537 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
538 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
539 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
540 !(status & EXTENT_STATUS_WRITTEN) &&
541 ext4_find_delalloc_range(inode, map->m_lblk,
542 map->m_lblk + map->m_len - 1))
543 status |= EXTENT_STATUS_DELAYED;
544 ret = ext4_es_insert_extent(inode, map->m_lblk,
545 map->m_len, map->m_pblk, status);
546 if (ret < 0)
547 retval = ret;
549 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
550 up_read((&EXT4_I(inode)->i_data_sem));
552 found:
553 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
554 ret = check_block_validity(inode, map);
555 if (ret != 0)
556 return ret;
559 /* If it is only a block(s) look up */
560 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
561 return retval;
564 * Returns if the blocks have already allocated
566 * Note that if blocks have been preallocated
567 * ext4_ext_get_block() returns the create = 0
568 * with buffer head unmapped.
570 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
572 * If we need to convert extent to unwritten
573 * we continue and do the actual work in
574 * ext4_ext_map_blocks()
576 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
577 return retval;
580 * Here we clear m_flags because after allocating an new extent,
581 * it will be set again.
583 map->m_flags &= ~EXT4_MAP_FLAGS;
586 * New blocks allocate and/or writing to unwritten extent
587 * will possibly result in updating i_data, so we take
588 * the write lock of i_data_sem, and call get_block()
589 * with create == 1 flag.
591 down_write(&EXT4_I(inode)->i_data_sem);
594 * We need to check for EXT4 here because migrate
595 * could have changed the inode type in between
597 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
598 retval = ext4_ext_map_blocks(handle, inode, map, flags);
599 } else {
600 retval = ext4_ind_map_blocks(handle, inode, map, flags);
602 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
604 * We allocated new blocks which will result in
605 * i_data's format changing. Force the migrate
606 * to fail by clearing migrate flags
608 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
612 * Update reserved blocks/metadata blocks after successful
613 * block allocation which had been deferred till now. We don't
614 * support fallocate for non extent files. So we can update
615 * reserve space here.
617 if ((retval > 0) &&
618 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
619 ext4_da_update_reserve_space(inode, retval, 1);
622 if (retval > 0) {
623 unsigned int status;
625 if (unlikely(retval != map->m_len)) {
626 ext4_warning(inode->i_sb,
627 "ES len assertion failed for inode "
628 "%lu: retval %d != map->m_len %d",
629 inode->i_ino, retval, map->m_len);
630 WARN_ON(1);
634 * If the extent has been zeroed out, we don't need to update
635 * extent status tree.
637 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
638 ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
639 if (ext4_es_is_written(&es))
640 goto has_zeroout;
642 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
643 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
644 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
645 !(status & EXTENT_STATUS_WRITTEN) &&
646 ext4_find_delalloc_range(inode, map->m_lblk,
647 map->m_lblk + map->m_len - 1))
648 status |= EXTENT_STATUS_DELAYED;
649 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
650 map->m_pblk, status);
651 if (ret < 0)
652 retval = ret;
655 has_zeroout:
656 up_write((&EXT4_I(inode)->i_data_sem));
657 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
658 ret = check_block_validity(inode, map);
659 if (ret != 0)
660 return ret;
662 return retval;
666 * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
667 * we have to be careful as someone else may be manipulating b_state as well.
669 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
671 unsigned long old_state;
672 unsigned long new_state;
674 flags &= EXT4_MAP_FLAGS;
676 /* Dummy buffer_head? Set non-atomically. */
677 if (!bh->b_page) {
678 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
679 return;
682 * Someone else may be modifying b_state. Be careful! This is ugly but
683 * once we get rid of using bh as a container for mapping information
684 * to pass to / from get_block functions, this can go away.
686 do {
687 old_state = READ_ONCE(bh->b_state);
688 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
689 } while (unlikely(
690 cmpxchg(&bh->b_state, old_state, new_state) != old_state));
693 /* Maximum number of blocks we map for direct IO at once. */
694 #define DIO_MAX_BLOCKS 4096
696 static int _ext4_get_block(struct inode *inode, sector_t iblock,
697 struct buffer_head *bh, int flags)
699 handle_t *handle = ext4_journal_current_handle();
700 struct ext4_map_blocks map;
701 int ret = 0, started = 0;
702 int dio_credits;
704 if (ext4_has_inline_data(inode))
705 return -ERANGE;
707 map.m_lblk = iblock;
708 map.m_len = bh->b_size >> inode->i_blkbits;
710 if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) {
711 /* Direct IO write... */
712 if (map.m_len > DIO_MAX_BLOCKS)
713 map.m_len = DIO_MAX_BLOCKS;
714 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
715 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
716 dio_credits);
717 if (IS_ERR(handle)) {
718 ret = PTR_ERR(handle);
719 return ret;
721 started = 1;
724 ret = ext4_map_blocks(handle, inode, &map, flags);
725 if (ret > 0) {
726 ext4_io_end_t *io_end = ext4_inode_aio(inode);
728 map_bh(bh, inode->i_sb, map.m_pblk);
729 ext4_update_bh_state(bh, map.m_flags);
730 if (IS_DAX(inode) && buffer_unwritten(bh)) {
732 * dgc: I suspect unwritten conversion on ext4+DAX is
733 * fundamentally broken here when there are concurrent
734 * read/write in progress on this inode.
736 WARN_ON_ONCE(io_end);
737 bh->b_assoc_map = inode->i_mapping;
738 bh->b_private = (void *)(unsigned long)iblock;
740 if (io_end && io_end->flag & EXT4_IO_END_UNWRITTEN)
741 set_buffer_defer_completion(bh);
742 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
743 ret = 0;
745 if (started)
746 ext4_journal_stop(handle);
747 return ret;
750 int ext4_get_block(struct inode *inode, sector_t iblock,
751 struct buffer_head *bh, int create)
753 return _ext4_get_block(inode, iblock, bh,
754 create ? EXT4_GET_BLOCKS_CREATE : 0);
758 * `handle' can be NULL if create is zero
760 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
761 ext4_lblk_t block, int map_flags)
763 struct ext4_map_blocks map;
764 struct buffer_head *bh;
765 int create = map_flags & EXT4_GET_BLOCKS_CREATE;
766 int err;
768 J_ASSERT(handle != NULL || create == 0);
770 map.m_lblk = block;
771 map.m_len = 1;
772 err = ext4_map_blocks(handle, inode, &map, map_flags);
774 if (err == 0)
775 return create ? ERR_PTR(-ENOSPC) : NULL;
776 if (err < 0)
777 return ERR_PTR(err);
779 bh = sb_getblk(inode->i_sb, map.m_pblk);
780 if (unlikely(!bh))
781 return ERR_PTR(-ENOMEM);
782 if (map.m_flags & EXT4_MAP_NEW) {
783 J_ASSERT(create != 0);
784 J_ASSERT(handle != NULL);
787 * Now that we do not always journal data, we should
788 * keep in mind whether this should always journal the
789 * new buffer as metadata. For now, regular file
790 * writes use ext4_get_block instead, so it's not a
791 * problem.
793 lock_buffer(bh);
794 BUFFER_TRACE(bh, "call get_create_access");
795 err = ext4_journal_get_create_access(handle, bh);
796 if (unlikely(err)) {
797 unlock_buffer(bh);
798 goto errout;
800 if (!buffer_uptodate(bh)) {
801 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
802 set_buffer_uptodate(bh);
804 unlock_buffer(bh);
805 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
806 err = ext4_handle_dirty_metadata(handle, inode, bh);
807 if (unlikely(err))
808 goto errout;
809 } else
810 BUFFER_TRACE(bh, "not a new buffer");
811 return bh;
812 errout:
813 brelse(bh);
814 return ERR_PTR(err);
817 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
818 ext4_lblk_t block, int map_flags)
820 struct buffer_head *bh;
822 bh = ext4_getblk(handle, inode, block, map_flags);
823 if (IS_ERR(bh))
824 return bh;
825 if (!bh || buffer_uptodate(bh))
826 return bh;
827 ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
828 wait_on_buffer(bh);
829 if (buffer_uptodate(bh))
830 return bh;
831 put_bh(bh);
832 return ERR_PTR(-EIO);
835 int ext4_walk_page_buffers(handle_t *handle,
836 struct buffer_head *head,
837 unsigned from,
838 unsigned to,
839 int *partial,
840 int (*fn)(handle_t *handle,
841 struct buffer_head *bh))
843 struct buffer_head *bh;
844 unsigned block_start, block_end;
845 unsigned blocksize = head->b_size;
846 int err, ret = 0;
847 struct buffer_head *next;
849 for (bh = head, block_start = 0;
850 ret == 0 && (bh != head || !block_start);
851 block_start = block_end, bh = next) {
852 next = bh->b_this_page;
853 block_end = block_start + blocksize;
854 if (block_end <= from || block_start >= to) {
855 if (partial && !buffer_uptodate(bh))
856 *partial = 1;
857 continue;
859 err = (*fn)(handle, bh);
860 if (!ret)
861 ret = err;
863 return ret;
867 * To preserve ordering, it is essential that the hole instantiation and
868 * the data write be encapsulated in a single transaction. We cannot
869 * close off a transaction and start a new one between the ext4_get_block()
870 * and the commit_write(). So doing the jbd2_journal_start at the start of
871 * prepare_write() is the right place.
873 * Also, this function can nest inside ext4_writepage(). In that case, we
874 * *know* that ext4_writepage() has generated enough buffer credits to do the
875 * whole page. So we won't block on the journal in that case, which is good,
876 * because the caller may be PF_MEMALLOC.
878 * By accident, ext4 can be reentered when a transaction is open via
879 * quota file writes. If we were to commit the transaction while thus
880 * reentered, there can be a deadlock - we would be holding a quota
881 * lock, and the commit would never complete if another thread had a
882 * transaction open and was blocking on the quota lock - a ranking
883 * violation.
885 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
886 * will _not_ run commit under these circumstances because handle->h_ref
887 * is elevated. We'll still have enough credits for the tiny quotafile
888 * write.
890 int do_journal_get_write_access(handle_t *handle,
891 struct buffer_head *bh)
893 int dirty = buffer_dirty(bh);
894 int ret;
896 if (!buffer_mapped(bh) || buffer_freed(bh))
897 return 0;
899 * __block_write_begin() could have dirtied some buffers. Clean
900 * the dirty bit as jbd2_journal_get_write_access() could complain
901 * otherwise about fs integrity issues. Setting of the dirty bit
902 * by __block_write_begin() isn't a real problem here as we clear
903 * the bit before releasing a page lock and thus writeback cannot
904 * ever write the buffer.
906 if (dirty)
907 clear_buffer_dirty(bh);
908 BUFFER_TRACE(bh, "get write access");
909 ret = ext4_journal_get_write_access(handle, bh);
910 if (!ret && dirty)
911 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
912 return ret;
915 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
916 struct buffer_head *bh_result, int create);
918 #ifdef CONFIG_EXT4_FS_ENCRYPTION
919 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
920 get_block_t *get_block)
922 unsigned from = pos & (PAGE_CACHE_SIZE - 1);
923 unsigned to = from + len;
924 struct inode *inode = page->mapping->host;
925 unsigned block_start, block_end;
926 sector_t block;
927 int err = 0;
928 unsigned blocksize = inode->i_sb->s_blocksize;
929 unsigned bbits;
930 struct buffer_head *bh, *head, *wait[2], **wait_bh = wait;
931 bool decrypt = false;
933 BUG_ON(!PageLocked(page));
934 BUG_ON(from > PAGE_CACHE_SIZE);
935 BUG_ON(to > PAGE_CACHE_SIZE);
936 BUG_ON(from > to);
938 if (!page_has_buffers(page))
939 create_empty_buffers(page, blocksize, 0);
940 head = page_buffers(page);
941 bbits = ilog2(blocksize);
942 block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
944 for (bh = head, block_start = 0; bh != head || !block_start;
945 block++, block_start = block_end, bh = bh->b_this_page) {
946 block_end = block_start + blocksize;
947 if (block_end <= from || block_start >= to) {
948 if (PageUptodate(page)) {
949 if (!buffer_uptodate(bh))
950 set_buffer_uptodate(bh);
952 continue;
954 if (buffer_new(bh))
955 clear_buffer_new(bh);
956 if (!buffer_mapped(bh)) {
957 WARN_ON(bh->b_size != blocksize);
958 err = get_block(inode, block, bh, 1);
959 if (err)
960 break;
961 if (buffer_new(bh)) {
962 unmap_underlying_metadata(bh->b_bdev,
963 bh->b_blocknr);
964 if (PageUptodate(page)) {
965 clear_buffer_new(bh);
966 set_buffer_uptodate(bh);
967 mark_buffer_dirty(bh);
968 continue;
970 if (block_end > to || block_start < from)
971 zero_user_segments(page, to, block_end,
972 block_start, from);
973 continue;
976 if (PageUptodate(page)) {
977 if (!buffer_uptodate(bh))
978 set_buffer_uptodate(bh);
979 continue;
981 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
982 !buffer_unwritten(bh) &&
983 (block_start < from || block_end > to)) {
984 ll_rw_block(READ, 1, &bh);
985 *wait_bh++ = bh;
986 decrypt = ext4_encrypted_inode(inode) &&
987 S_ISREG(inode->i_mode);
991 * If we issued read requests, let them complete.
993 while (wait_bh > wait) {
994 wait_on_buffer(*--wait_bh);
995 if (!buffer_uptodate(*wait_bh))
996 err = -EIO;
998 if (unlikely(err))
999 page_zero_new_buffers(page, from, to);
1000 else if (decrypt)
1001 err = ext4_decrypt(page);
1002 return err;
1004 #endif
1006 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1007 loff_t pos, unsigned len, unsigned flags,
1008 struct page **pagep, void **fsdata)
1010 struct inode *inode = mapping->host;
1011 int ret, needed_blocks;
1012 handle_t *handle;
1013 int retries = 0;
1014 struct page *page;
1015 pgoff_t index;
1016 unsigned from, to;
1018 trace_ext4_write_begin(inode, pos, len, flags);
1020 * Reserve one block more for addition to orphan list in case
1021 * we allocate blocks but write fails for some reason
1023 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1024 index = pos >> PAGE_CACHE_SHIFT;
1025 from = pos & (PAGE_CACHE_SIZE - 1);
1026 to = from + len;
1028 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1029 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1030 flags, pagep);
1031 if (ret < 0)
1032 return ret;
1033 if (ret == 1)
1034 return 0;
1038 * grab_cache_page_write_begin() can take a long time if the
1039 * system is thrashing due to memory pressure, or if the page
1040 * is being written back. So grab it first before we start
1041 * the transaction handle. This also allows us to allocate
1042 * the page (if needed) without using GFP_NOFS.
1044 retry_grab:
1045 page = grab_cache_page_write_begin(mapping, index, flags);
1046 if (!page)
1047 return -ENOMEM;
1048 unlock_page(page);
1050 retry_journal:
1051 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1052 if (IS_ERR(handle)) {
1053 page_cache_release(page);
1054 return PTR_ERR(handle);
1057 lock_page(page);
1058 if (page->mapping != mapping) {
1059 /* The page got truncated from under us */
1060 unlock_page(page);
1061 page_cache_release(page);
1062 ext4_journal_stop(handle);
1063 goto retry_grab;
1065 /* In case writeback began while the page was unlocked */
1066 wait_for_stable_page(page);
1068 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1069 if (ext4_should_dioread_nolock(inode))
1070 ret = ext4_block_write_begin(page, pos, len,
1071 ext4_get_block_write);
1072 else
1073 ret = ext4_block_write_begin(page, pos, len,
1074 ext4_get_block);
1075 #else
1076 if (ext4_should_dioread_nolock(inode))
1077 ret = __block_write_begin(page, pos, len, ext4_get_block_write);
1078 else
1079 ret = __block_write_begin(page, pos, len, ext4_get_block);
1080 #endif
1081 if (!ret && ext4_should_journal_data(inode)) {
1082 ret = ext4_walk_page_buffers(handle, page_buffers(page),
1083 from, to, NULL,
1084 do_journal_get_write_access);
1087 if (ret) {
1088 unlock_page(page);
1090 * __block_write_begin may have instantiated a few blocks
1091 * outside i_size. Trim these off again. Don't need
1092 * i_size_read because we hold i_mutex.
1094 * Add inode to orphan list in case we crash before
1095 * truncate finishes
1097 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1098 ext4_orphan_add(handle, inode);
1100 ext4_journal_stop(handle);
1101 if (pos + len > inode->i_size) {
1102 ext4_truncate_failed_write(inode);
1104 * If truncate failed early the inode might
1105 * still be on the orphan list; we need to
1106 * make sure the inode is removed from the
1107 * orphan list in that case.
1109 if (inode->i_nlink)
1110 ext4_orphan_del(NULL, inode);
1113 if (ret == -ENOSPC &&
1114 ext4_should_retry_alloc(inode->i_sb, &retries))
1115 goto retry_journal;
1116 page_cache_release(page);
1117 return ret;
1119 *pagep = page;
1120 return ret;
1123 /* For write_end() in data=journal mode */
1124 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1126 int ret;
1127 if (!buffer_mapped(bh) || buffer_freed(bh))
1128 return 0;
1129 set_buffer_uptodate(bh);
1130 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1131 clear_buffer_meta(bh);
1132 clear_buffer_prio(bh);
1133 return ret;
1137 * We need to pick up the new inode size which generic_commit_write gave us
1138 * `file' can be NULL - eg, when called from page_symlink().
1140 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1141 * buffers are managed internally.
1143 static int ext4_write_end(struct file *file,
1144 struct address_space *mapping,
1145 loff_t pos, unsigned len, unsigned copied,
1146 struct page *page, void *fsdata)
1148 handle_t *handle = ext4_journal_current_handle();
1149 struct inode *inode = mapping->host;
1150 loff_t old_size = inode->i_size;
1151 int ret = 0, ret2;
1152 int i_size_changed = 0;
1154 trace_ext4_write_end(inode, pos, len, copied);
1155 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) {
1156 ret = ext4_jbd2_file_inode(handle, inode);
1157 if (ret) {
1158 unlock_page(page);
1159 page_cache_release(page);
1160 goto errout;
1164 if (ext4_has_inline_data(inode)) {
1165 ret = ext4_write_inline_data_end(inode, pos, len,
1166 copied, page);
1167 if (ret < 0) {
1168 unlock_page(page);
1169 put_page(page);
1170 goto errout;
1172 copied = ret;
1173 } else
1174 copied = block_write_end(file, mapping, pos,
1175 len, copied, page, fsdata);
1177 * it's important to update i_size while still holding page lock:
1178 * page writeout could otherwise come in and zero beyond i_size.
1180 i_size_changed = ext4_update_inode_size(inode, pos + copied);
1181 unlock_page(page);
1182 page_cache_release(page);
1184 if (old_size < pos)
1185 pagecache_isize_extended(inode, old_size, pos);
1187 * Don't mark the inode dirty under page lock. First, it unnecessarily
1188 * makes the holding time of page lock longer. Second, it forces lock
1189 * ordering of page lock and transaction start for journaling
1190 * filesystems.
1192 if (i_size_changed)
1193 ext4_mark_inode_dirty(handle, inode);
1195 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1196 /* if we have allocated more blocks and copied
1197 * less. We will have blocks allocated outside
1198 * inode->i_size. So truncate them
1200 ext4_orphan_add(handle, inode);
1201 errout:
1202 ret2 = ext4_journal_stop(handle);
1203 if (!ret)
1204 ret = ret2;
1206 if (pos + len > inode->i_size) {
1207 ext4_truncate_failed_write(inode);
1209 * If truncate failed early the inode might still be
1210 * on the orphan list; we need to make sure the inode
1211 * is removed from the orphan list in that case.
1213 if (inode->i_nlink)
1214 ext4_orphan_del(NULL, inode);
1217 return ret ? ret : copied;
1221 * This is a private version of page_zero_new_buffers() which doesn't
1222 * set the buffer to be dirty, since in data=journalled mode we need
1223 * to call ext4_handle_dirty_metadata() instead.
1225 static void ext4_journalled_zero_new_buffers(handle_t *handle,
1226 struct page *page,
1227 unsigned from, unsigned to)
1229 unsigned int block_start = 0, block_end;
1230 struct buffer_head *head, *bh;
1232 bh = head = page_buffers(page);
1233 do {
1234 block_end = block_start + bh->b_size;
1235 if (buffer_new(bh)) {
1236 if (block_end > from && block_start < to) {
1237 if (!PageUptodate(page)) {
1238 unsigned start, size;
1240 start = max(from, block_start);
1241 size = min(to, block_end) - start;
1243 zero_user(page, start, size);
1244 write_end_fn(handle, bh);
1246 clear_buffer_new(bh);
1249 block_start = block_end;
1250 bh = bh->b_this_page;
1251 } while (bh != head);
1254 static int ext4_journalled_write_end(struct file *file,
1255 struct address_space *mapping,
1256 loff_t pos, unsigned len, unsigned copied,
1257 struct page *page, void *fsdata)
1259 handle_t *handle = ext4_journal_current_handle();
1260 struct inode *inode = mapping->host;
1261 loff_t old_size = inode->i_size;
1262 int ret = 0, ret2;
1263 int partial = 0;
1264 unsigned from, to;
1265 int size_changed = 0;
1267 trace_ext4_journalled_write_end(inode, pos, len, copied);
1268 from = pos & (PAGE_CACHE_SIZE - 1);
1269 to = from + len;
1271 BUG_ON(!ext4_handle_valid(handle));
1273 if (ext4_has_inline_data(inode)) {
1274 ret = ext4_write_inline_data_end(inode, pos, len,
1275 copied, page);
1276 if (ret < 0) {
1277 unlock_page(page);
1278 put_page(page);
1279 goto errout;
1281 copied = ret;
1282 } else if (unlikely(copied < len) && !PageUptodate(page)) {
1283 copied = 0;
1284 ext4_journalled_zero_new_buffers(handle, page, from, to);
1285 } else {
1286 if (unlikely(copied < len))
1287 ext4_journalled_zero_new_buffers(handle, page,
1288 from + copied, to);
1289 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1290 from + copied, &partial,
1291 write_end_fn);
1292 if (!partial)
1293 SetPageUptodate(page);
1295 size_changed = ext4_update_inode_size(inode, pos + copied);
1296 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1297 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1298 unlock_page(page);
1299 page_cache_release(page);
1301 if (old_size < pos)
1302 pagecache_isize_extended(inode, old_size, pos);
1304 if (size_changed) {
1305 ret2 = ext4_mark_inode_dirty(handle, inode);
1306 if (!ret)
1307 ret = ret2;
1310 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1311 /* if we have allocated more blocks and copied
1312 * less. We will have blocks allocated outside
1313 * inode->i_size. So truncate them
1315 ext4_orphan_add(handle, inode);
1317 errout:
1318 ret2 = ext4_journal_stop(handle);
1319 if (!ret)
1320 ret = ret2;
1321 if (pos + len > inode->i_size) {
1322 ext4_truncate_failed_write(inode);
1324 * If truncate failed early the inode might still be
1325 * on the orphan list; we need to make sure the inode
1326 * is removed from the orphan list in that case.
1328 if (inode->i_nlink)
1329 ext4_orphan_del(NULL, inode);
1332 return ret ? ret : copied;
1336 * Reserve space for a single cluster
1338 static int ext4_da_reserve_space(struct inode *inode)
1340 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1341 struct ext4_inode_info *ei = EXT4_I(inode);
1342 int ret;
1345 * We will charge metadata quota at writeout time; this saves
1346 * us from metadata over-estimation, though we may go over by
1347 * a small amount in the end. Here we just reserve for data.
1349 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1350 if (ret)
1351 return ret;
1353 spin_lock(&ei->i_block_reservation_lock);
1354 if (ext4_claim_free_clusters(sbi, 1, 0)) {
1355 spin_unlock(&ei->i_block_reservation_lock);
1356 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1357 return -ENOSPC;
1359 ei->i_reserved_data_blocks++;
1360 trace_ext4_da_reserve_space(inode);
1361 spin_unlock(&ei->i_block_reservation_lock);
1363 return 0; /* success */
1366 static void ext4_da_release_space(struct inode *inode, int to_free)
1368 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1369 struct ext4_inode_info *ei = EXT4_I(inode);
1371 if (!to_free)
1372 return; /* Nothing to release, exit */
1374 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1376 trace_ext4_da_release_space(inode, to_free);
1377 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1379 * if there aren't enough reserved blocks, then the
1380 * counter is messed up somewhere. Since this
1381 * function is called from invalidate page, it's
1382 * harmless to return without any action.
1384 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1385 "ino %lu, to_free %d with only %d reserved "
1386 "data blocks", inode->i_ino, to_free,
1387 ei->i_reserved_data_blocks);
1388 WARN_ON(1);
1389 to_free = ei->i_reserved_data_blocks;
1391 ei->i_reserved_data_blocks -= to_free;
1393 /* update fs dirty data blocks counter */
1394 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1396 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1398 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1401 static void ext4_da_page_release_reservation(struct page *page,
1402 unsigned int offset,
1403 unsigned int length)
1405 int to_release = 0, contiguous_blks = 0;
1406 struct buffer_head *head, *bh;
1407 unsigned int curr_off = 0;
1408 struct inode *inode = page->mapping->host;
1409 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1410 unsigned int stop = offset + length;
1411 int num_clusters;
1412 ext4_fsblk_t lblk;
1414 BUG_ON(stop > PAGE_CACHE_SIZE || stop < length);
1416 head = page_buffers(page);
1417 bh = head;
1418 do {
1419 unsigned int next_off = curr_off + bh->b_size;
1421 if (next_off > stop)
1422 break;
1424 if ((offset <= curr_off) && (buffer_delay(bh))) {
1425 to_release++;
1426 contiguous_blks++;
1427 clear_buffer_delay(bh);
1428 } else if (contiguous_blks) {
1429 lblk = page->index <<
1430 (PAGE_CACHE_SHIFT - inode->i_blkbits);
1431 lblk += (curr_off >> inode->i_blkbits) -
1432 contiguous_blks;
1433 ext4_es_remove_extent(inode, lblk, contiguous_blks);
1434 contiguous_blks = 0;
1436 curr_off = next_off;
1437 } while ((bh = bh->b_this_page) != head);
1439 if (contiguous_blks) {
1440 lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1441 lblk += (curr_off >> inode->i_blkbits) - contiguous_blks;
1442 ext4_es_remove_extent(inode, lblk, contiguous_blks);
1445 /* If we have released all the blocks belonging to a cluster, then we
1446 * need to release the reserved space for that cluster. */
1447 num_clusters = EXT4_NUM_B2C(sbi, to_release);
1448 while (num_clusters > 0) {
1449 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1450 ((num_clusters - 1) << sbi->s_cluster_bits);
1451 if (sbi->s_cluster_ratio == 1 ||
1452 !ext4_find_delalloc_cluster(inode, lblk))
1453 ext4_da_release_space(inode, 1);
1455 num_clusters--;
1460 * Delayed allocation stuff
1463 struct mpage_da_data {
1464 struct inode *inode;
1465 struct writeback_control *wbc;
1467 pgoff_t first_page; /* The first page to write */
1468 pgoff_t next_page; /* Current page to examine */
1469 pgoff_t last_page; /* Last page to examine */
1471 * Extent to map - this can be after first_page because that can be
1472 * fully mapped. We somewhat abuse m_flags to store whether the extent
1473 * is delalloc or unwritten.
1475 struct ext4_map_blocks map;
1476 struct ext4_io_submit io_submit; /* IO submission data */
1479 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1480 bool invalidate)
1482 int nr_pages, i;
1483 pgoff_t index, end;
1484 struct pagevec pvec;
1485 struct inode *inode = mpd->inode;
1486 struct address_space *mapping = inode->i_mapping;
1488 /* This is necessary when next_page == 0. */
1489 if (mpd->first_page >= mpd->next_page)
1490 return;
1492 index = mpd->first_page;
1493 end = mpd->next_page - 1;
1494 if (invalidate) {
1495 ext4_lblk_t start, last;
1496 start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1497 last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1498 ext4_es_remove_extent(inode, start, last - start + 1);
1501 pagevec_init(&pvec, 0);
1502 while (index <= end) {
1503 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1504 if (nr_pages == 0)
1505 break;
1506 for (i = 0; i < nr_pages; i++) {
1507 struct page *page = pvec.pages[i];
1508 if (page->index > end)
1509 break;
1510 BUG_ON(!PageLocked(page));
1511 BUG_ON(PageWriteback(page));
1512 if (invalidate) {
1513 block_invalidatepage(page, 0, PAGE_CACHE_SIZE);
1514 ClearPageUptodate(page);
1516 unlock_page(page);
1518 index = pvec.pages[nr_pages - 1]->index + 1;
1519 pagevec_release(&pvec);
1523 static void ext4_print_free_blocks(struct inode *inode)
1525 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1526 struct super_block *sb = inode->i_sb;
1527 struct ext4_inode_info *ei = EXT4_I(inode);
1529 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1530 EXT4_C2B(EXT4_SB(inode->i_sb),
1531 ext4_count_free_clusters(sb)));
1532 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1533 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1534 (long long) EXT4_C2B(EXT4_SB(sb),
1535 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1536 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1537 (long long) EXT4_C2B(EXT4_SB(sb),
1538 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1539 ext4_msg(sb, KERN_CRIT, "Block reservation details");
1540 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1541 ei->i_reserved_data_blocks);
1542 return;
1545 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1547 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1551 * This function is grabs code from the very beginning of
1552 * ext4_map_blocks, but assumes that the caller is from delayed write
1553 * time. This function looks up the requested blocks and sets the
1554 * buffer delay bit under the protection of i_data_sem.
1556 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1557 struct ext4_map_blocks *map,
1558 struct buffer_head *bh)
1560 struct extent_status es;
1561 int retval;
1562 sector_t invalid_block = ~((sector_t) 0xffff);
1563 #ifdef ES_AGGRESSIVE_TEST
1564 struct ext4_map_blocks orig_map;
1566 memcpy(&orig_map, map, sizeof(*map));
1567 #endif
1569 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1570 invalid_block = ~0;
1572 map->m_flags = 0;
1573 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1574 "logical block %lu\n", inode->i_ino, map->m_len,
1575 (unsigned long) map->m_lblk);
1577 /* Lookup extent status tree firstly */
1578 if (ext4_es_lookup_extent(inode, iblock, &es)) {
1579 if (ext4_es_is_hole(&es)) {
1580 retval = 0;
1581 down_read(&EXT4_I(inode)->i_data_sem);
1582 goto add_delayed;
1586 * Delayed extent could be allocated by fallocate.
1587 * So we need to check it.
1589 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1590 map_bh(bh, inode->i_sb, invalid_block);
1591 set_buffer_new(bh);
1592 set_buffer_delay(bh);
1593 return 0;
1596 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1597 retval = es.es_len - (iblock - es.es_lblk);
1598 if (retval > map->m_len)
1599 retval = map->m_len;
1600 map->m_len = retval;
1601 if (ext4_es_is_written(&es))
1602 map->m_flags |= EXT4_MAP_MAPPED;
1603 else if (ext4_es_is_unwritten(&es))
1604 map->m_flags |= EXT4_MAP_UNWRITTEN;
1605 else
1606 BUG_ON(1);
1608 #ifdef ES_AGGRESSIVE_TEST
1609 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1610 #endif
1611 return retval;
1615 * Try to see if we can get the block without requesting a new
1616 * file system block.
1618 down_read(&EXT4_I(inode)->i_data_sem);
1619 if (ext4_has_inline_data(inode))
1620 retval = 0;
1621 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1622 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1623 else
1624 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1626 add_delayed:
1627 if (retval == 0) {
1628 int ret;
1630 * XXX: __block_prepare_write() unmaps passed block,
1631 * is it OK?
1634 * If the block was allocated from previously allocated cluster,
1635 * then we don't need to reserve it again. However we still need
1636 * to reserve metadata for every block we're going to write.
1638 if (EXT4_SB(inode->i_sb)->s_cluster_ratio == 1 ||
1639 !ext4_find_delalloc_cluster(inode, map->m_lblk)) {
1640 ret = ext4_da_reserve_space(inode);
1641 if (ret) {
1642 /* not enough space to reserve */
1643 retval = ret;
1644 goto out_unlock;
1648 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1649 ~0, EXTENT_STATUS_DELAYED);
1650 if (ret) {
1651 retval = ret;
1652 goto out_unlock;
1655 map_bh(bh, inode->i_sb, invalid_block);
1656 set_buffer_new(bh);
1657 set_buffer_delay(bh);
1658 } else if (retval > 0) {
1659 int ret;
1660 unsigned int status;
1662 if (unlikely(retval != map->m_len)) {
1663 ext4_warning(inode->i_sb,
1664 "ES len assertion failed for inode "
1665 "%lu: retval %d != map->m_len %d",
1666 inode->i_ino, retval, map->m_len);
1667 WARN_ON(1);
1670 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1671 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1672 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1673 map->m_pblk, status);
1674 if (ret != 0)
1675 retval = ret;
1678 out_unlock:
1679 up_read((&EXT4_I(inode)->i_data_sem));
1681 return retval;
1685 * This is a special get_block_t callback which is used by
1686 * ext4_da_write_begin(). It will either return mapped block or
1687 * reserve space for a single block.
1689 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1690 * We also have b_blocknr = -1 and b_bdev initialized properly
1692 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1693 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1694 * initialized properly.
1696 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1697 struct buffer_head *bh, int create)
1699 struct ext4_map_blocks map;
1700 int ret = 0;
1702 BUG_ON(create == 0);
1703 BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1705 map.m_lblk = iblock;
1706 map.m_len = 1;
1709 * first, we need to know whether the block is allocated already
1710 * preallocated blocks are unmapped but should treated
1711 * the same as allocated blocks.
1713 ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1714 if (ret <= 0)
1715 return ret;
1717 map_bh(bh, inode->i_sb, map.m_pblk);
1718 ext4_update_bh_state(bh, map.m_flags);
1720 if (buffer_unwritten(bh)) {
1721 /* A delayed write to unwritten bh should be marked
1722 * new and mapped. Mapped ensures that we don't do
1723 * get_block multiple times when we write to the same
1724 * offset and new ensures that we do proper zero out
1725 * for partial write.
1727 set_buffer_new(bh);
1728 set_buffer_mapped(bh);
1730 return 0;
1733 static int bget_one(handle_t *handle, struct buffer_head *bh)
1735 get_bh(bh);
1736 return 0;
1739 static int bput_one(handle_t *handle, struct buffer_head *bh)
1741 put_bh(bh);
1742 return 0;
1745 static int __ext4_journalled_writepage(struct page *page,
1746 unsigned int len)
1748 struct address_space *mapping = page->mapping;
1749 struct inode *inode = mapping->host;
1750 struct buffer_head *page_bufs = NULL;
1751 handle_t *handle = NULL;
1752 int ret = 0, err = 0;
1753 int inline_data = ext4_has_inline_data(inode);
1754 struct buffer_head *inode_bh = NULL;
1756 ClearPageChecked(page);
1758 if (inline_data) {
1759 BUG_ON(page->index != 0);
1760 BUG_ON(len > ext4_get_max_inline_size(inode));
1761 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1762 if (inode_bh == NULL)
1763 goto out;
1764 } else {
1765 page_bufs = page_buffers(page);
1766 if (!page_bufs) {
1767 BUG();
1768 goto out;
1770 ext4_walk_page_buffers(handle, page_bufs, 0, len,
1771 NULL, bget_one);
1774 * We need to release the page lock before we start the
1775 * journal, so grab a reference so the page won't disappear
1776 * out from under us.
1778 get_page(page);
1779 unlock_page(page);
1781 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1782 ext4_writepage_trans_blocks(inode));
1783 if (IS_ERR(handle)) {
1784 ret = PTR_ERR(handle);
1785 put_page(page);
1786 goto out_no_pagelock;
1788 BUG_ON(!ext4_handle_valid(handle));
1790 lock_page(page);
1791 put_page(page);
1792 if (page->mapping != mapping) {
1793 /* The page got truncated from under us */
1794 ext4_journal_stop(handle);
1795 ret = 0;
1796 goto out;
1799 if (inline_data) {
1800 BUFFER_TRACE(inode_bh, "get write access");
1801 ret = ext4_journal_get_write_access(handle, inode_bh);
1803 err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
1805 } else {
1806 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1807 do_journal_get_write_access);
1809 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1810 write_end_fn);
1812 if (ret == 0)
1813 ret = err;
1814 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1815 err = ext4_journal_stop(handle);
1816 if (!ret)
1817 ret = err;
1819 if (!ext4_has_inline_data(inode))
1820 ext4_walk_page_buffers(NULL, page_bufs, 0, len,
1821 NULL, bput_one);
1822 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1823 out:
1824 unlock_page(page);
1825 out_no_pagelock:
1826 brelse(inode_bh);
1827 return ret;
1831 * Note that we don't need to start a transaction unless we're journaling data
1832 * because we should have holes filled from ext4_page_mkwrite(). We even don't
1833 * need to file the inode to the transaction's list in ordered mode because if
1834 * we are writing back data added by write(), the inode is already there and if
1835 * we are writing back data modified via mmap(), no one guarantees in which
1836 * transaction the data will hit the disk. In case we are journaling data, we
1837 * cannot start transaction directly because transaction start ranks above page
1838 * lock so we have to do some magic.
1840 * This function can get called via...
1841 * - ext4_writepages after taking page lock (have journal handle)
1842 * - journal_submit_inode_data_buffers (no journal handle)
1843 * - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1844 * - grab_page_cache when doing write_begin (have journal handle)
1846 * We don't do any block allocation in this function. If we have page with
1847 * multiple blocks we need to write those buffer_heads that are mapped. This
1848 * is important for mmaped based write. So if we do with blocksize 1K
1849 * truncate(f, 1024);
1850 * a = mmap(f, 0, 4096);
1851 * a[0] = 'a';
1852 * truncate(f, 4096);
1853 * we have in the page first buffer_head mapped via page_mkwrite call back
1854 * but other buffer_heads would be unmapped but dirty (dirty done via the
1855 * do_wp_page). So writepage should write the first block. If we modify
1856 * the mmap area beyond 1024 we will again get a page_fault and the
1857 * page_mkwrite callback will do the block allocation and mark the
1858 * buffer_heads mapped.
1860 * We redirty the page if we have any buffer_heads that is either delay or
1861 * unwritten in the page.
1863 * We can get recursively called as show below.
1865 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1866 * ext4_writepage()
1868 * But since we don't do any block allocation we should not deadlock.
1869 * Page also have the dirty flag cleared so we don't get recurive page_lock.
1871 static int ext4_writepage(struct page *page,
1872 struct writeback_control *wbc)
1874 int ret = 0;
1875 loff_t size;
1876 unsigned int len;
1877 struct buffer_head *page_bufs = NULL;
1878 struct inode *inode = page->mapping->host;
1879 struct ext4_io_submit io_submit;
1880 bool keep_towrite = false;
1882 trace_ext4_writepage(page);
1883 size = i_size_read(inode);
1884 if (page->index == size >> PAGE_CACHE_SHIFT)
1885 len = size & ~PAGE_CACHE_MASK;
1886 else
1887 len = PAGE_CACHE_SIZE;
1889 page_bufs = page_buffers(page);
1891 * We cannot do block allocation or other extent handling in this
1892 * function. If there are buffers needing that, we have to redirty
1893 * the page. But we may reach here when we do a journal commit via
1894 * journal_submit_inode_data_buffers() and in that case we must write
1895 * allocated buffers to achieve data=ordered mode guarantees.
1897 * Also, if there is only one buffer per page (the fs block
1898 * size == the page size), if one buffer needs block
1899 * allocation or needs to modify the extent tree to clear the
1900 * unwritten flag, we know that the page can't be written at
1901 * all, so we might as well refuse the write immediately.
1902 * Unfortunately if the block size != page size, we can't as
1903 * easily detect this case using ext4_walk_page_buffers(), but
1904 * for the extremely common case, this is an optimization that
1905 * skips a useless round trip through ext4_bio_write_page().
1907 if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
1908 ext4_bh_delay_or_unwritten)) {
1909 redirty_page_for_writepage(wbc, page);
1910 if ((current->flags & PF_MEMALLOC) ||
1911 (inode->i_sb->s_blocksize == PAGE_CACHE_SIZE)) {
1913 * For memory cleaning there's no point in writing only
1914 * some buffers. So just bail out. Warn if we came here
1915 * from direct reclaim.
1917 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
1918 == PF_MEMALLOC);
1919 unlock_page(page);
1920 return 0;
1922 keep_towrite = true;
1925 if (PageChecked(page) && ext4_should_journal_data(inode))
1927 * It's mmapped pagecache. Add buffers and journal it. There
1928 * doesn't seem much point in redirtying the page here.
1930 return __ext4_journalled_writepage(page, len);
1932 ext4_io_submit_init(&io_submit, wbc);
1933 io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
1934 if (!io_submit.io_end) {
1935 redirty_page_for_writepage(wbc, page);
1936 unlock_page(page);
1937 return -ENOMEM;
1939 ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
1940 ext4_io_submit(&io_submit);
1941 /* Drop io_end reference we got from init */
1942 ext4_put_io_end_defer(io_submit.io_end);
1943 return ret;
1946 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
1948 int len;
1949 loff_t size = i_size_read(mpd->inode);
1950 int err;
1952 BUG_ON(page->index != mpd->first_page);
1953 if (page->index == size >> PAGE_CACHE_SHIFT)
1954 len = size & ~PAGE_CACHE_MASK;
1955 else
1956 len = PAGE_CACHE_SIZE;
1957 clear_page_dirty_for_io(page);
1958 err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
1959 if (!err)
1960 mpd->wbc->nr_to_write--;
1961 mpd->first_page++;
1963 return err;
1966 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
1969 * mballoc gives us at most this number of blocks...
1970 * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
1971 * The rest of mballoc seems to handle chunks up to full group size.
1973 #define MAX_WRITEPAGES_EXTENT_LEN 2048
1976 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
1978 * @mpd - extent of blocks
1979 * @lblk - logical number of the block in the file
1980 * @bh - buffer head we want to add to the extent
1982 * The function is used to collect contig. blocks in the same state. If the
1983 * buffer doesn't require mapping for writeback and we haven't started the
1984 * extent of buffers to map yet, the function returns 'true' immediately - the
1985 * caller can write the buffer right away. Otherwise the function returns true
1986 * if the block has been added to the extent, false if the block couldn't be
1987 * added.
1989 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
1990 struct buffer_head *bh)
1992 struct ext4_map_blocks *map = &mpd->map;
1994 /* Buffer that doesn't need mapping for writeback? */
1995 if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
1996 (!buffer_delay(bh) && !buffer_unwritten(bh))) {
1997 /* So far no extent to map => we write the buffer right away */
1998 if (map->m_len == 0)
1999 return true;
2000 return false;
2003 /* First block in the extent? */
2004 if (map->m_len == 0) {
2005 map->m_lblk = lblk;
2006 map->m_len = 1;
2007 map->m_flags = bh->b_state & BH_FLAGS;
2008 return true;
2011 /* Don't go larger than mballoc is willing to allocate */
2012 if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
2013 return false;
2015 /* Can we merge the block to our big extent? */
2016 if (lblk == map->m_lblk + map->m_len &&
2017 (bh->b_state & BH_FLAGS) == map->m_flags) {
2018 map->m_len++;
2019 return true;
2021 return false;
2025 * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2027 * @mpd - extent of blocks for mapping
2028 * @head - the first buffer in the page
2029 * @bh - buffer we should start processing from
2030 * @lblk - logical number of the block in the file corresponding to @bh
2032 * Walk through page buffers from @bh upto @head (exclusive) and either submit
2033 * the page for IO if all buffers in this page were mapped and there's no
2034 * accumulated extent of buffers to map or add buffers in the page to the
2035 * extent of buffers to map. The function returns 1 if the caller can continue
2036 * by processing the next page, 0 if it should stop adding buffers to the
2037 * extent to map because we cannot extend it anymore. It can also return value
2038 * < 0 in case of error during IO submission.
2040 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2041 struct buffer_head *head,
2042 struct buffer_head *bh,
2043 ext4_lblk_t lblk)
2045 struct inode *inode = mpd->inode;
2046 int err;
2047 ext4_lblk_t blocks = (i_size_read(inode) + (1 << inode->i_blkbits) - 1)
2048 >> inode->i_blkbits;
2050 do {
2051 BUG_ON(buffer_locked(bh));
2053 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2054 /* Found extent to map? */
2055 if (mpd->map.m_len)
2056 return 0;
2057 /* Everything mapped so far and we hit EOF */
2058 break;
2060 } while (lblk++, (bh = bh->b_this_page) != head);
2061 /* So far everything mapped? Submit the page for IO. */
2062 if (mpd->map.m_len == 0) {
2063 err = mpage_submit_page(mpd, head->b_page);
2064 if (err < 0)
2065 return err;
2067 return lblk < blocks;
2071 * mpage_map_buffers - update buffers corresponding to changed extent and
2072 * submit fully mapped pages for IO
2074 * @mpd - description of extent to map, on return next extent to map
2076 * Scan buffers corresponding to changed extent (we expect corresponding pages
2077 * to be already locked) and update buffer state according to new extent state.
2078 * We map delalloc buffers to their physical location, clear unwritten bits,
2079 * and mark buffers as uninit when we perform writes to unwritten extents
2080 * and do extent conversion after IO is finished. If the last page is not fully
2081 * mapped, we update @map to the next extent in the last page that needs
2082 * mapping. Otherwise we submit the page for IO.
2084 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2086 struct pagevec pvec;
2087 int nr_pages, i;
2088 struct inode *inode = mpd->inode;
2089 struct buffer_head *head, *bh;
2090 int bpp_bits = PAGE_CACHE_SHIFT - inode->i_blkbits;
2091 pgoff_t start, end;
2092 ext4_lblk_t lblk;
2093 sector_t pblock;
2094 int err;
2096 start = mpd->map.m_lblk >> bpp_bits;
2097 end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2098 lblk = start << bpp_bits;
2099 pblock = mpd->map.m_pblk;
2101 pagevec_init(&pvec, 0);
2102 while (start <= end) {
2103 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, start,
2104 PAGEVEC_SIZE);
2105 if (nr_pages == 0)
2106 break;
2107 for (i = 0; i < nr_pages; i++) {
2108 struct page *page = pvec.pages[i];
2110 if (page->index > end)
2111 break;
2112 /* Up to 'end' pages must be contiguous */
2113 BUG_ON(page->index != start);
2114 bh = head = page_buffers(page);
2115 do {
2116 if (lblk < mpd->map.m_lblk)
2117 continue;
2118 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2120 * Buffer after end of mapped extent.
2121 * Find next buffer in the page to map.
2123 mpd->map.m_len = 0;
2124 mpd->map.m_flags = 0;
2126 * FIXME: If dioread_nolock supports
2127 * blocksize < pagesize, we need to make
2128 * sure we add size mapped so far to
2129 * io_end->size as the following call
2130 * can submit the page for IO.
2132 err = mpage_process_page_bufs(mpd, head,
2133 bh, lblk);
2134 pagevec_release(&pvec);
2135 if (err > 0)
2136 err = 0;
2137 return err;
2139 if (buffer_delay(bh)) {
2140 clear_buffer_delay(bh);
2141 bh->b_blocknr = pblock++;
2143 clear_buffer_unwritten(bh);
2144 } while (lblk++, (bh = bh->b_this_page) != head);
2147 * FIXME: This is going to break if dioread_nolock
2148 * supports blocksize < pagesize as we will try to
2149 * convert potentially unmapped parts of inode.
2151 mpd->io_submit.io_end->size += PAGE_CACHE_SIZE;
2152 /* Page fully mapped - let IO run! */
2153 err = mpage_submit_page(mpd, page);
2154 if (err < 0) {
2155 pagevec_release(&pvec);
2156 return err;
2158 start++;
2160 pagevec_release(&pvec);
2162 /* Extent fully mapped and matches with page boundary. We are done. */
2163 mpd->map.m_len = 0;
2164 mpd->map.m_flags = 0;
2165 return 0;
2168 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2170 struct inode *inode = mpd->inode;
2171 struct ext4_map_blocks *map = &mpd->map;
2172 int get_blocks_flags;
2173 int err, dioread_nolock;
2175 trace_ext4_da_write_pages_extent(inode, map);
2177 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2178 * to convert an unwritten extent to be initialized (in the case
2179 * where we have written into one or more preallocated blocks). It is
2180 * possible that we're going to need more metadata blocks than
2181 * previously reserved. However we must not fail because we're in
2182 * writeback and there is nothing we can do about it so it might result
2183 * in data loss. So use reserved blocks to allocate metadata if
2184 * possible.
2186 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2187 * the blocks in question are delalloc blocks. This indicates
2188 * that the blocks and quotas has already been checked when
2189 * the data was copied into the page cache.
2191 get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2192 EXT4_GET_BLOCKS_METADATA_NOFAIL;
2193 dioread_nolock = ext4_should_dioread_nolock(inode);
2194 if (dioread_nolock)
2195 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2196 if (map->m_flags & (1 << BH_Delay))
2197 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2199 err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2200 if (err < 0)
2201 return err;
2202 if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2203 if (!mpd->io_submit.io_end->handle &&
2204 ext4_handle_valid(handle)) {
2205 mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2206 handle->h_rsv_handle = NULL;
2208 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2211 BUG_ON(map->m_len == 0);
2212 if (map->m_flags & EXT4_MAP_NEW) {
2213 struct block_device *bdev = inode->i_sb->s_bdev;
2214 int i;
2216 for (i = 0; i < map->m_len; i++)
2217 unmap_underlying_metadata(bdev, map->m_pblk + i);
2219 return 0;
2223 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2224 * mpd->len and submit pages underlying it for IO
2226 * @handle - handle for journal operations
2227 * @mpd - extent to map
2228 * @give_up_on_write - we set this to true iff there is a fatal error and there
2229 * is no hope of writing the data. The caller should discard
2230 * dirty pages to avoid infinite loops.
2232 * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2233 * delayed, blocks are allocated, if it is unwritten, we may need to convert
2234 * them to initialized or split the described range from larger unwritten
2235 * extent. Note that we need not map all the described range since allocation
2236 * can return less blocks or the range is covered by more unwritten extents. We
2237 * cannot map more because we are limited by reserved transaction credits. On
2238 * the other hand we always make sure that the last touched page is fully
2239 * mapped so that it can be written out (and thus forward progress is
2240 * guaranteed). After mapping we submit all mapped pages for IO.
2242 static int mpage_map_and_submit_extent(handle_t *handle,
2243 struct mpage_da_data *mpd,
2244 bool *give_up_on_write)
2246 struct inode *inode = mpd->inode;
2247 struct ext4_map_blocks *map = &mpd->map;
2248 int err;
2249 loff_t disksize;
2250 int progress = 0;
2252 mpd->io_submit.io_end->offset =
2253 ((loff_t)map->m_lblk) << inode->i_blkbits;
2254 do {
2255 err = mpage_map_one_extent(handle, mpd);
2256 if (err < 0) {
2257 struct super_block *sb = inode->i_sb;
2259 if (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2260 goto invalidate_dirty_pages;
2262 * Let the uper layers retry transient errors.
2263 * In the case of ENOSPC, if ext4_count_free_blocks()
2264 * is non-zero, a commit should free up blocks.
2266 if ((err == -ENOMEM) ||
2267 (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2268 if (progress)
2269 goto update_disksize;
2270 return err;
2272 ext4_msg(sb, KERN_CRIT,
2273 "Delayed block allocation failed for "
2274 "inode %lu at logical offset %llu with"
2275 " max blocks %u with error %d",
2276 inode->i_ino,
2277 (unsigned long long)map->m_lblk,
2278 (unsigned)map->m_len, -err);
2279 ext4_msg(sb, KERN_CRIT,
2280 "This should not happen!! Data will "
2281 "be lost\n");
2282 if (err == -ENOSPC)
2283 ext4_print_free_blocks(inode);
2284 invalidate_dirty_pages:
2285 *give_up_on_write = true;
2286 return err;
2288 progress = 1;
2290 * Update buffer state, submit mapped pages, and get us new
2291 * extent to map
2293 err = mpage_map_and_submit_buffers(mpd);
2294 if (err < 0)
2295 goto update_disksize;
2296 } while (map->m_len);
2298 update_disksize:
2300 * Update on-disk size after IO is submitted. Races with
2301 * truncate are avoided by checking i_size under i_data_sem.
2303 disksize = ((loff_t)mpd->first_page) << PAGE_CACHE_SHIFT;
2304 if (disksize > EXT4_I(inode)->i_disksize) {
2305 int err2;
2306 loff_t i_size;
2308 down_write(&EXT4_I(inode)->i_data_sem);
2309 i_size = i_size_read(inode);
2310 if (disksize > i_size)
2311 disksize = i_size;
2312 if (disksize > EXT4_I(inode)->i_disksize)
2313 EXT4_I(inode)->i_disksize = disksize;
2314 err2 = ext4_mark_inode_dirty(handle, inode);
2315 up_write(&EXT4_I(inode)->i_data_sem);
2316 if (err2)
2317 ext4_error(inode->i_sb,
2318 "Failed to mark inode %lu dirty",
2319 inode->i_ino);
2320 if (!err)
2321 err = err2;
2323 return err;
2327 * Calculate the total number of credits to reserve for one writepages
2328 * iteration. This is called from ext4_writepages(). We map an extent of
2329 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2330 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2331 * bpp - 1 blocks in bpp different extents.
2333 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2335 int bpp = ext4_journal_blocks_per_page(inode);
2337 return ext4_meta_trans_blocks(inode,
2338 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2342 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2343 * and underlying extent to map
2345 * @mpd - where to look for pages
2347 * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2348 * IO immediately. When we find a page which isn't mapped we start accumulating
2349 * extent of buffers underlying these pages that needs mapping (formed by
2350 * either delayed or unwritten buffers). We also lock the pages containing
2351 * these buffers. The extent found is returned in @mpd structure (starting at
2352 * mpd->lblk with length mpd->len blocks).
2354 * Note that this function can attach bios to one io_end structure which are
2355 * neither logically nor physically contiguous. Although it may seem as an
2356 * unnecessary complication, it is actually inevitable in blocksize < pagesize
2357 * case as we need to track IO to all buffers underlying a page in one io_end.
2359 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2361 struct address_space *mapping = mpd->inode->i_mapping;
2362 struct pagevec pvec;
2363 unsigned int nr_pages;
2364 long left = mpd->wbc->nr_to_write;
2365 pgoff_t index = mpd->first_page;
2366 pgoff_t end = mpd->last_page;
2367 int tag;
2368 int i, err = 0;
2369 int blkbits = mpd->inode->i_blkbits;
2370 ext4_lblk_t lblk;
2371 struct buffer_head *head;
2373 if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2374 tag = PAGECACHE_TAG_TOWRITE;
2375 else
2376 tag = PAGECACHE_TAG_DIRTY;
2378 pagevec_init(&pvec, 0);
2379 mpd->map.m_len = 0;
2380 mpd->next_page = index;
2381 while (index <= end) {
2382 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2383 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2384 if (nr_pages == 0)
2385 goto out;
2387 for (i = 0; i < nr_pages; i++) {
2388 struct page *page = pvec.pages[i];
2391 * At this point, the page may be truncated or
2392 * invalidated (changing page->mapping to NULL), or
2393 * even swizzled back from swapper_space to tmpfs file
2394 * mapping. However, page->index will not change
2395 * because we have a reference on the page.
2397 if (page->index > end)
2398 goto out;
2401 * Accumulated enough dirty pages? This doesn't apply
2402 * to WB_SYNC_ALL mode. For integrity sync we have to
2403 * keep going because someone may be concurrently
2404 * dirtying pages, and we might have synced a lot of
2405 * newly appeared dirty pages, but have not synced all
2406 * of the old dirty pages.
2408 if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2409 goto out;
2411 /* If we can't merge this page, we are done. */
2412 if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2413 goto out;
2415 lock_page(page);
2417 * If the page is no longer dirty, or its mapping no
2418 * longer corresponds to inode we are writing (which
2419 * means it has been truncated or invalidated), or the
2420 * page is already under writeback and we are not doing
2421 * a data integrity writeback, skip the page
2423 if (!PageDirty(page) ||
2424 (PageWriteback(page) &&
2425 (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2426 unlikely(page->mapping != mapping)) {
2427 unlock_page(page);
2428 continue;
2431 wait_on_page_writeback(page);
2432 BUG_ON(PageWriteback(page));
2434 if (mpd->map.m_len == 0)
2435 mpd->first_page = page->index;
2436 mpd->next_page = page->index + 1;
2437 /* Add all dirty buffers to mpd */
2438 lblk = ((ext4_lblk_t)page->index) <<
2439 (PAGE_CACHE_SHIFT - blkbits);
2440 head = page_buffers(page);
2441 err = mpage_process_page_bufs(mpd, head, head, lblk);
2442 if (err <= 0)
2443 goto out;
2444 err = 0;
2445 left--;
2447 pagevec_release(&pvec);
2448 cond_resched();
2450 return 0;
2451 out:
2452 pagevec_release(&pvec);
2453 return err;
2456 static int __writepage(struct page *page, struct writeback_control *wbc,
2457 void *data)
2459 struct address_space *mapping = data;
2460 int ret = ext4_writepage(page, wbc);
2461 mapping_set_error(mapping, ret);
2462 return ret;
2465 static int ext4_writepages(struct address_space *mapping,
2466 struct writeback_control *wbc)
2468 pgoff_t writeback_index = 0;
2469 long nr_to_write = wbc->nr_to_write;
2470 int range_whole = 0;
2471 int cycled = 1;
2472 handle_t *handle = NULL;
2473 struct mpage_da_data mpd;
2474 struct inode *inode = mapping->host;
2475 int needed_blocks, rsv_blocks = 0, ret = 0;
2476 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2477 bool done;
2478 struct blk_plug plug;
2479 bool give_up_on_write = false;
2481 trace_ext4_writepages(inode, wbc);
2484 * No pages to write? This is mainly a kludge to avoid starting
2485 * a transaction for special inodes like journal inode on last iput()
2486 * because that could violate lock ordering on umount
2488 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2489 goto out_writepages;
2491 if (ext4_should_journal_data(inode)) {
2492 struct blk_plug plug;
2494 blk_start_plug(&plug);
2495 ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2496 blk_finish_plug(&plug);
2497 goto out_writepages;
2501 * If the filesystem has aborted, it is read-only, so return
2502 * right away instead of dumping stack traces later on that
2503 * will obscure the real source of the problem. We test
2504 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2505 * the latter could be true if the filesystem is mounted
2506 * read-only, and in that case, ext4_writepages should
2507 * *never* be called, so if that ever happens, we would want
2508 * the stack trace.
2510 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2511 ret = -EROFS;
2512 goto out_writepages;
2515 if (ext4_should_dioread_nolock(inode)) {
2517 * We may need to convert up to one extent per block in
2518 * the page and we may dirty the inode.
2520 rsv_blocks = 1 + (PAGE_CACHE_SIZE >> inode->i_blkbits);
2524 * If we have inline data and arrive here, it means that
2525 * we will soon create the block for the 1st page, so
2526 * we'd better clear the inline data here.
2528 if (ext4_has_inline_data(inode)) {
2529 /* Just inode will be modified... */
2530 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2531 if (IS_ERR(handle)) {
2532 ret = PTR_ERR(handle);
2533 goto out_writepages;
2535 BUG_ON(ext4_test_inode_state(inode,
2536 EXT4_STATE_MAY_INLINE_DATA));
2537 ext4_destroy_inline_data(handle, inode);
2538 ext4_journal_stop(handle);
2541 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2542 range_whole = 1;
2544 if (wbc->range_cyclic) {
2545 writeback_index = mapping->writeback_index;
2546 if (writeback_index)
2547 cycled = 0;
2548 mpd.first_page = writeback_index;
2549 mpd.last_page = -1;
2550 } else {
2551 mpd.first_page = wbc->range_start >> PAGE_CACHE_SHIFT;
2552 mpd.last_page = wbc->range_end >> PAGE_CACHE_SHIFT;
2555 mpd.inode = inode;
2556 mpd.wbc = wbc;
2557 ext4_io_submit_init(&mpd.io_submit, wbc);
2558 retry:
2559 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2560 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2561 done = false;
2562 blk_start_plug(&plug);
2563 while (!done && mpd.first_page <= mpd.last_page) {
2564 /* For each extent of pages we use new io_end */
2565 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2566 if (!mpd.io_submit.io_end) {
2567 ret = -ENOMEM;
2568 break;
2572 * We have two constraints: We find one extent to map and we
2573 * must always write out whole page (makes a difference when
2574 * blocksize < pagesize) so that we don't block on IO when we
2575 * try to write out the rest of the page. Journalled mode is
2576 * not supported by delalloc.
2578 BUG_ON(ext4_should_journal_data(inode));
2579 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2581 /* start a new transaction */
2582 handle = ext4_journal_start_with_reserve(inode,
2583 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2584 if (IS_ERR(handle)) {
2585 ret = PTR_ERR(handle);
2586 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2587 "%ld pages, ino %lu; err %d", __func__,
2588 wbc->nr_to_write, inode->i_ino, ret);
2589 /* Release allocated io_end */
2590 ext4_put_io_end(mpd.io_submit.io_end);
2591 break;
2594 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2595 ret = mpage_prepare_extent_to_map(&mpd);
2596 if (!ret) {
2597 if (mpd.map.m_len)
2598 ret = mpage_map_and_submit_extent(handle, &mpd,
2599 &give_up_on_write);
2600 else {
2602 * We scanned the whole range (or exhausted
2603 * nr_to_write), submitted what was mapped and
2604 * didn't find anything needing mapping. We are
2605 * done.
2607 done = true;
2611 * Caution: If the handle is synchronous,
2612 * ext4_journal_stop() can wait for transaction commit
2613 * to finish which may depend on writeback of pages to
2614 * complete or on page lock to be released. In that
2615 * case, we have to wait until after after we have
2616 * submitted all the IO, released page locks we hold,
2617 * and dropped io_end reference (for extent conversion
2618 * to be able to complete) before stopping the handle.
2620 if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2621 ext4_journal_stop(handle);
2622 handle = NULL;
2624 /* Submit prepared bio */
2625 ext4_io_submit(&mpd.io_submit);
2626 /* Unlock pages we didn't use */
2627 mpage_release_unused_pages(&mpd, give_up_on_write);
2629 * Drop our io_end reference we got from init. We have
2630 * to be careful and use deferred io_end finishing if
2631 * we are still holding the transaction as we can
2632 * release the last reference to io_end which may end
2633 * up doing unwritten extent conversion.
2635 if (handle) {
2636 ext4_put_io_end_defer(mpd.io_submit.io_end);
2637 ext4_journal_stop(handle);
2638 } else
2639 ext4_put_io_end(mpd.io_submit.io_end);
2641 if (ret == -ENOSPC && sbi->s_journal) {
2643 * Commit the transaction which would
2644 * free blocks released in the transaction
2645 * and try again
2647 jbd2_journal_force_commit_nested(sbi->s_journal);
2648 ret = 0;
2649 continue;
2651 /* Fatal error - ENOMEM, EIO... */
2652 if (ret)
2653 break;
2655 blk_finish_plug(&plug);
2656 if (!ret && !cycled && wbc->nr_to_write > 0) {
2657 cycled = 1;
2658 mpd.last_page = writeback_index - 1;
2659 mpd.first_page = 0;
2660 goto retry;
2663 /* Update index */
2664 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2666 * Set the writeback_index so that range_cyclic
2667 * mode will write it back later
2669 mapping->writeback_index = mpd.first_page;
2671 out_writepages:
2672 trace_ext4_writepages_result(inode, wbc, ret,
2673 nr_to_write - wbc->nr_to_write);
2674 return ret;
2677 static int ext4_nonda_switch(struct super_block *sb)
2679 s64 free_clusters, dirty_clusters;
2680 struct ext4_sb_info *sbi = EXT4_SB(sb);
2683 * switch to non delalloc mode if we are running low
2684 * on free block. The free block accounting via percpu
2685 * counters can get slightly wrong with percpu_counter_batch getting
2686 * accumulated on each CPU without updating global counters
2687 * Delalloc need an accurate free block accounting. So switch
2688 * to non delalloc when we are near to error range.
2690 free_clusters =
2691 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2692 dirty_clusters =
2693 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2695 * Start pushing delalloc when 1/2 of free blocks are dirty.
2697 if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2698 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2700 if (2 * free_clusters < 3 * dirty_clusters ||
2701 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2703 * free block count is less than 150% of dirty blocks
2704 * or free blocks is less than watermark
2706 return 1;
2708 return 0;
2711 /* We always reserve for an inode update; the superblock could be there too */
2712 static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
2714 if (likely(ext4_has_feature_large_file(inode->i_sb)))
2715 return 1;
2717 if (pos + len <= 0x7fffffffULL)
2718 return 1;
2720 /* We might need to update the superblock to set LARGE_FILE */
2721 return 2;
2724 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2725 loff_t pos, unsigned len, unsigned flags,
2726 struct page **pagep, void **fsdata)
2728 int ret, retries = 0;
2729 struct page *page;
2730 pgoff_t index;
2731 struct inode *inode = mapping->host;
2732 handle_t *handle;
2734 index = pos >> PAGE_CACHE_SHIFT;
2736 if (ext4_nonda_switch(inode->i_sb)) {
2737 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2738 return ext4_write_begin(file, mapping, pos,
2739 len, flags, pagep, fsdata);
2741 *fsdata = (void *)0;
2742 trace_ext4_da_write_begin(inode, pos, len, flags);
2744 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2745 ret = ext4_da_write_inline_data_begin(mapping, inode,
2746 pos, len, flags,
2747 pagep, fsdata);
2748 if (ret < 0)
2749 return ret;
2750 if (ret == 1)
2751 return 0;
2755 * grab_cache_page_write_begin() can take a long time if the
2756 * system is thrashing due to memory pressure, or if the page
2757 * is being written back. So grab it first before we start
2758 * the transaction handle. This also allows us to allocate
2759 * the page (if needed) without using GFP_NOFS.
2761 retry_grab:
2762 page = grab_cache_page_write_begin(mapping, index, flags);
2763 if (!page)
2764 return -ENOMEM;
2765 unlock_page(page);
2768 * With delayed allocation, we don't log the i_disksize update
2769 * if there is delayed block allocation. But we still need
2770 * to journalling the i_disksize update if writes to the end
2771 * of file which has an already mapped buffer.
2773 retry_journal:
2774 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2775 ext4_da_write_credits(inode, pos, len));
2776 if (IS_ERR(handle)) {
2777 page_cache_release(page);
2778 return PTR_ERR(handle);
2781 lock_page(page);
2782 if (page->mapping != mapping) {
2783 /* The page got truncated from under us */
2784 unlock_page(page);
2785 page_cache_release(page);
2786 ext4_journal_stop(handle);
2787 goto retry_grab;
2789 /* In case writeback began while the page was unlocked */
2790 wait_for_stable_page(page);
2792 #ifdef CONFIG_EXT4_FS_ENCRYPTION
2793 ret = ext4_block_write_begin(page, pos, len,
2794 ext4_da_get_block_prep);
2795 #else
2796 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2797 #endif
2798 if (ret < 0) {
2799 unlock_page(page);
2800 ext4_journal_stop(handle);
2802 * block_write_begin may have instantiated a few blocks
2803 * outside i_size. Trim these off again. Don't need
2804 * i_size_read because we hold i_mutex.
2806 if (pos + len > inode->i_size)
2807 ext4_truncate_failed_write(inode);
2809 if (ret == -ENOSPC &&
2810 ext4_should_retry_alloc(inode->i_sb, &retries))
2811 goto retry_journal;
2813 page_cache_release(page);
2814 return ret;
2817 *pagep = page;
2818 return ret;
2822 * Check if we should update i_disksize
2823 * when write to the end of file but not require block allocation
2825 static int ext4_da_should_update_i_disksize(struct page *page,
2826 unsigned long offset)
2828 struct buffer_head *bh;
2829 struct inode *inode = page->mapping->host;
2830 unsigned int idx;
2831 int i;
2833 bh = page_buffers(page);
2834 idx = offset >> inode->i_blkbits;
2836 for (i = 0; i < idx; i++)
2837 bh = bh->b_this_page;
2839 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2840 return 0;
2841 return 1;
2844 static int ext4_da_write_end(struct file *file,
2845 struct address_space *mapping,
2846 loff_t pos, unsigned len, unsigned copied,
2847 struct page *page, void *fsdata)
2849 struct inode *inode = mapping->host;
2850 int ret = 0, ret2;
2851 handle_t *handle = ext4_journal_current_handle();
2852 loff_t new_i_size;
2853 unsigned long start, end;
2854 int write_mode = (int)(unsigned long)fsdata;
2856 if (write_mode == FALL_BACK_TO_NONDELALLOC)
2857 return ext4_write_end(file, mapping, pos,
2858 len, copied, page, fsdata);
2860 trace_ext4_da_write_end(inode, pos, len, copied);
2861 start = pos & (PAGE_CACHE_SIZE - 1);
2862 end = start + copied - 1;
2865 * generic_write_end() will run mark_inode_dirty() if i_size
2866 * changes. So let's piggyback the i_disksize mark_inode_dirty
2867 * into that.
2869 new_i_size = pos + copied;
2870 if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
2871 if (ext4_has_inline_data(inode) ||
2872 ext4_da_should_update_i_disksize(page, end)) {
2873 ext4_update_i_disksize(inode, new_i_size);
2874 /* We need to mark inode dirty even if
2875 * new_i_size is less that inode->i_size
2876 * bu greater than i_disksize.(hint delalloc)
2878 ext4_mark_inode_dirty(handle, inode);
2882 if (write_mode != CONVERT_INLINE_DATA &&
2883 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
2884 ext4_has_inline_data(inode))
2885 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
2886 page);
2887 else
2888 ret2 = generic_write_end(file, mapping, pos, len, copied,
2889 page, fsdata);
2891 copied = ret2;
2892 if (ret2 < 0)
2893 ret = ret2;
2894 ret2 = ext4_journal_stop(handle);
2895 if (!ret)
2896 ret = ret2;
2898 return ret ? ret : copied;
2901 static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
2902 unsigned int length)
2905 * Drop reserved blocks
2907 BUG_ON(!PageLocked(page));
2908 if (!page_has_buffers(page))
2909 goto out;
2911 ext4_da_page_release_reservation(page, offset, length);
2913 out:
2914 ext4_invalidatepage(page, offset, length);
2916 return;
2920 * Force all delayed allocation blocks to be allocated for a given inode.
2922 int ext4_alloc_da_blocks(struct inode *inode)
2924 trace_ext4_alloc_da_blocks(inode);
2926 if (!EXT4_I(inode)->i_reserved_data_blocks)
2927 return 0;
2930 * We do something simple for now. The filemap_flush() will
2931 * also start triggering a write of the data blocks, which is
2932 * not strictly speaking necessary (and for users of
2933 * laptop_mode, not even desirable). However, to do otherwise
2934 * would require replicating code paths in:
2936 * ext4_writepages() ->
2937 * write_cache_pages() ---> (via passed in callback function)
2938 * __mpage_da_writepage() -->
2939 * mpage_add_bh_to_extent()
2940 * mpage_da_map_blocks()
2942 * The problem is that write_cache_pages(), located in
2943 * mm/page-writeback.c, marks pages clean in preparation for
2944 * doing I/O, which is not desirable if we're not planning on
2945 * doing I/O at all.
2947 * We could call write_cache_pages(), and then redirty all of
2948 * the pages by calling redirty_page_for_writepage() but that
2949 * would be ugly in the extreme. So instead we would need to
2950 * replicate parts of the code in the above functions,
2951 * simplifying them because we wouldn't actually intend to
2952 * write out the pages, but rather only collect contiguous
2953 * logical block extents, call the multi-block allocator, and
2954 * then update the buffer heads with the block allocations.
2956 * For now, though, we'll cheat by calling filemap_flush(),
2957 * which will map the blocks, and start the I/O, but not
2958 * actually wait for the I/O to complete.
2960 return filemap_flush(inode->i_mapping);
2964 * bmap() is special. It gets used by applications such as lilo and by
2965 * the swapper to find the on-disk block of a specific piece of data.
2967 * Naturally, this is dangerous if the block concerned is still in the
2968 * journal. If somebody makes a swapfile on an ext4 data-journaling
2969 * filesystem and enables swap, then they may get a nasty shock when the
2970 * data getting swapped to that swapfile suddenly gets overwritten by
2971 * the original zero's written out previously to the journal and
2972 * awaiting writeback in the kernel's buffer cache.
2974 * So, if we see any bmap calls here on a modified, data-journaled file,
2975 * take extra steps to flush any blocks which might be in the cache.
2977 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2979 struct inode *inode = mapping->host;
2980 journal_t *journal;
2981 int err;
2984 * We can get here for an inline file via the FIBMAP ioctl
2986 if (ext4_has_inline_data(inode))
2987 return 0;
2989 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2990 test_opt(inode->i_sb, DELALLOC)) {
2992 * With delalloc we want to sync the file
2993 * so that we can make sure we allocate
2994 * blocks for file
2996 filemap_write_and_wait(mapping);
2999 if (EXT4_JOURNAL(inode) &&
3000 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3002 * This is a REALLY heavyweight approach, but the use of
3003 * bmap on dirty files is expected to be extremely rare:
3004 * only if we run lilo or swapon on a freshly made file
3005 * do we expect this to happen.
3007 * (bmap requires CAP_SYS_RAWIO so this does not
3008 * represent an unprivileged user DOS attack --- we'd be
3009 * in trouble if mortal users could trigger this path at
3010 * will.)
3012 * NB. EXT4_STATE_JDATA is not set on files other than
3013 * regular files. If somebody wants to bmap a directory
3014 * or symlink and gets confused because the buffer
3015 * hasn't yet been flushed to disk, they deserve
3016 * everything they get.
3019 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3020 journal = EXT4_JOURNAL(inode);
3021 jbd2_journal_lock_updates(journal);
3022 err = jbd2_journal_flush(journal);
3023 jbd2_journal_unlock_updates(journal);
3025 if (err)
3026 return 0;
3029 return generic_block_bmap(mapping, block, ext4_get_block);
3032 static int ext4_readpage(struct file *file, struct page *page)
3034 int ret = -EAGAIN;
3035 struct inode *inode = page->mapping->host;
3037 trace_ext4_readpage(page);
3039 if (ext4_has_inline_data(inode))
3040 ret = ext4_readpage_inline(inode, page);
3042 if (ret == -EAGAIN)
3043 return ext4_mpage_readpages(page->mapping, NULL, page, 1);
3045 return ret;
3048 static int
3049 ext4_readpages(struct file *file, struct address_space *mapping,
3050 struct list_head *pages, unsigned nr_pages)
3052 struct inode *inode = mapping->host;
3054 /* If the file has inline data, no need to do readpages. */
3055 if (ext4_has_inline_data(inode))
3056 return 0;
3058 return ext4_mpage_readpages(mapping, pages, NULL, nr_pages);
3061 static void ext4_invalidatepage(struct page *page, unsigned int offset,
3062 unsigned int length)
3064 trace_ext4_invalidatepage(page, offset, length);
3066 /* No journalling happens on data buffers when this function is used */
3067 WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
3069 block_invalidatepage(page, offset, length);
3072 static int __ext4_journalled_invalidatepage(struct page *page,
3073 unsigned int offset,
3074 unsigned int length)
3076 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3078 trace_ext4_journalled_invalidatepage(page, offset, length);
3081 * If it's a full truncate we just forget about the pending dirtying
3083 if (offset == 0 && length == PAGE_CACHE_SIZE)
3084 ClearPageChecked(page);
3086 return jbd2_journal_invalidatepage(journal, page, offset, length);
3089 /* Wrapper for aops... */
3090 static void ext4_journalled_invalidatepage(struct page *page,
3091 unsigned int offset,
3092 unsigned int length)
3094 WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
3097 static int ext4_releasepage(struct page *page, gfp_t wait)
3099 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3101 trace_ext4_releasepage(page);
3103 /* Page has dirty journalled data -> cannot release */
3104 if (PageChecked(page))
3105 return 0;
3106 if (journal)
3107 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3108 else
3109 return try_to_free_buffers(page);
3113 * ext4_get_block used when preparing for a DIO write or buffer write.
3114 * We allocate an uinitialized extent if blocks haven't been allocated.
3115 * The extent will be converted to initialized after the IO is complete.
3117 int ext4_get_block_write(struct inode *inode, sector_t iblock,
3118 struct buffer_head *bh_result, int create)
3120 ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
3121 inode->i_ino, create);
3122 return _ext4_get_block(inode, iblock, bh_result,
3123 EXT4_GET_BLOCKS_IO_CREATE_EXT);
3126 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
3127 struct buffer_head *bh_result, int create)
3129 ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n",
3130 inode->i_ino, create);
3131 return _ext4_get_block(inode, iblock, bh_result,
3132 EXT4_GET_BLOCKS_NO_LOCK);
3135 int ext4_get_block_dax(struct inode *inode, sector_t iblock,
3136 struct buffer_head *bh_result, int create)
3138 int flags = EXT4_GET_BLOCKS_PRE_IO | EXT4_GET_BLOCKS_UNWRIT_EXT;
3139 if (create)
3140 flags |= EXT4_GET_BLOCKS_CREATE;
3141 ext4_debug("ext4_get_block_dax: inode %lu, create flag %d\n",
3142 inode->i_ino, create);
3143 return _ext4_get_block(inode, iblock, bh_result, flags);
3146 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3147 ssize_t size, void *private)
3149 ext4_io_end_t *io_end = iocb->private;
3151 /* if not async direct IO just return */
3152 if (!io_end)
3153 return;
3155 ext_debug("ext4_end_io_dio(): io_end 0x%p "
3156 "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3157 iocb->private, io_end->inode->i_ino, iocb, offset,
3158 size);
3160 iocb->private = NULL;
3161 io_end->offset = offset;
3162 io_end->size = size;
3163 ext4_put_io_end(io_end);
3167 * For ext4 extent files, ext4 will do direct-io write to holes,
3168 * preallocated extents, and those write extend the file, no need to
3169 * fall back to buffered IO.
3171 * For holes, we fallocate those blocks, mark them as unwritten
3172 * If those blocks were preallocated, we mark sure they are split, but
3173 * still keep the range to write as unwritten.
3175 * The unwritten extents will be converted to written when DIO is completed.
3176 * For async direct IO, since the IO may still pending when return, we
3177 * set up an end_io call back function, which will do the conversion
3178 * when async direct IO completed.
3180 * If the O_DIRECT write will extend the file then add this inode to the
3181 * orphan list. So recovery will truncate it back to the original size
3182 * if the machine crashes during the write.
3185 static ssize_t ext4_ext_direct_IO(struct kiocb *iocb, struct iov_iter *iter,
3186 loff_t offset)
3188 struct file *file = iocb->ki_filp;
3189 struct inode *inode = file->f_mapping->host;
3190 ssize_t ret;
3191 size_t count = iov_iter_count(iter);
3192 int overwrite = 0;
3193 get_block_t *get_block_func = NULL;
3194 int dio_flags = 0;
3195 loff_t final_size = offset + count;
3196 ext4_io_end_t *io_end = NULL;
3198 /* Use the old path for reads and writes beyond i_size. */
3199 if (iov_iter_rw(iter) != WRITE || final_size > inode->i_size)
3200 return ext4_ind_direct_IO(iocb, iter, offset);
3202 BUG_ON(iocb->private == NULL);
3205 * Make all waiters for direct IO properly wait also for extent
3206 * conversion. This also disallows race between truncate() and
3207 * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
3209 if (iov_iter_rw(iter) == WRITE)
3210 inode_dio_begin(inode);
3212 /* If we do a overwrite dio, i_mutex locking can be released */
3213 overwrite = *((int *)iocb->private);
3215 if (overwrite) {
3216 down_read(&EXT4_I(inode)->i_data_sem);
3217 mutex_unlock(&inode->i_mutex);
3221 * We could direct write to holes and fallocate.
3223 * Allocated blocks to fill the hole are marked as
3224 * unwritten to prevent parallel buffered read to expose
3225 * the stale data before DIO complete the data IO.
3227 * As to previously fallocated extents, ext4 get_block will
3228 * just simply mark the buffer mapped but still keep the
3229 * extents unwritten.
3231 * For non AIO case, we will convert those unwritten extents
3232 * to written after return back from blockdev_direct_IO.
3234 * For async DIO, the conversion needs to be deferred when the
3235 * IO is completed. The ext4 end_io callback function will be
3236 * called to take care of the conversion work. Here for async
3237 * case, we allocate an io_end structure to hook to the iocb.
3239 iocb->private = NULL;
3240 ext4_inode_aio_set(inode, NULL);
3241 if (!is_sync_kiocb(iocb)) {
3242 io_end = ext4_init_io_end(inode, GFP_NOFS);
3243 if (!io_end) {
3244 ret = -ENOMEM;
3245 goto retake_lock;
3248 * Grab reference for DIO. Will be dropped in ext4_end_io_dio()
3250 iocb->private = ext4_get_io_end(io_end);
3252 * we save the io structure for current async direct
3253 * IO, so that later ext4_map_blocks() could flag the
3254 * io structure whether there is a unwritten extents
3255 * needs to be converted when IO is completed.
3257 ext4_inode_aio_set(inode, io_end);
3260 if (overwrite) {
3261 get_block_func = ext4_get_block_write_nolock;
3262 } else {
3263 get_block_func = ext4_get_block_write;
3264 dio_flags = DIO_LOCKING;
3266 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3267 BUG_ON(ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode));
3268 #endif
3269 if (IS_DAX(inode))
3270 ret = dax_do_io(iocb, inode, iter, offset, get_block_func,
3271 ext4_end_io_dio, dio_flags);
3272 else
3273 ret = __blockdev_direct_IO(iocb, inode,
3274 inode->i_sb->s_bdev, iter, offset,
3275 get_block_func,
3276 ext4_end_io_dio, NULL, dio_flags);
3279 * Put our reference to io_end. This can free the io_end structure e.g.
3280 * in sync IO case or in case of error. It can even perform extent
3281 * conversion if all bios we submitted finished before we got here.
3282 * Note that in that case iocb->private can be already set to NULL
3283 * here.
3285 if (io_end) {
3286 ext4_inode_aio_set(inode, NULL);
3287 ext4_put_io_end(io_end);
3289 * When no IO was submitted ext4_end_io_dio() was not
3290 * called so we have to put iocb's reference.
3292 if (ret <= 0 && ret != -EIOCBQUEUED && iocb->private) {
3293 WARN_ON(iocb->private != io_end);
3294 WARN_ON(io_end->flag & EXT4_IO_END_UNWRITTEN);
3295 ext4_put_io_end(io_end);
3296 iocb->private = NULL;
3299 if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3300 EXT4_STATE_DIO_UNWRITTEN)) {
3301 int err;
3303 * for non AIO case, since the IO is already
3304 * completed, we could do the conversion right here
3306 err = ext4_convert_unwritten_extents(NULL, inode,
3307 offset, ret);
3308 if (err < 0)
3309 ret = err;
3310 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3313 retake_lock:
3314 if (iov_iter_rw(iter) == WRITE)
3315 inode_dio_end(inode);
3316 /* take i_mutex locking again if we do a ovewrite dio */
3317 if (overwrite) {
3318 up_read(&EXT4_I(inode)->i_data_sem);
3319 mutex_lock(&inode->i_mutex);
3322 return ret;
3325 static ssize_t ext4_direct_IO(struct kiocb *iocb, struct iov_iter *iter,
3326 loff_t offset)
3328 struct file *file = iocb->ki_filp;
3329 struct inode *inode = file->f_mapping->host;
3330 size_t count = iov_iter_count(iter);
3331 ssize_t ret;
3333 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3334 if (ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode))
3335 return 0;
3336 #endif
3339 * If we are doing data journalling we don't support O_DIRECT
3341 if (ext4_should_journal_data(inode))
3342 return 0;
3344 /* Let buffer I/O handle the inline data case. */
3345 if (ext4_has_inline_data(inode))
3346 return 0;
3348 trace_ext4_direct_IO_enter(inode, offset, count, iov_iter_rw(iter));
3349 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3350 ret = ext4_ext_direct_IO(iocb, iter, offset);
3351 else
3352 ret = ext4_ind_direct_IO(iocb, iter, offset);
3353 trace_ext4_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), ret);
3354 return ret;
3358 * Pages can be marked dirty completely asynchronously from ext4's journalling
3359 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3360 * much here because ->set_page_dirty is called under VFS locks. The page is
3361 * not necessarily locked.
3363 * We cannot just dirty the page and leave attached buffers clean, because the
3364 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3365 * or jbddirty because all the journalling code will explode.
3367 * So what we do is to mark the page "pending dirty" and next time writepage
3368 * is called, propagate that into the buffers appropriately.
3370 static int ext4_journalled_set_page_dirty(struct page *page)
3372 SetPageChecked(page);
3373 return __set_page_dirty_nobuffers(page);
3376 static const struct address_space_operations ext4_aops = {
3377 .readpage = ext4_readpage,
3378 .readpages = ext4_readpages,
3379 .writepage = ext4_writepage,
3380 .writepages = ext4_writepages,
3381 .write_begin = ext4_write_begin,
3382 .write_end = ext4_write_end,
3383 .bmap = ext4_bmap,
3384 .invalidatepage = ext4_invalidatepage,
3385 .releasepage = ext4_releasepage,
3386 .direct_IO = ext4_direct_IO,
3387 .migratepage = buffer_migrate_page,
3388 .is_partially_uptodate = block_is_partially_uptodate,
3389 .error_remove_page = generic_error_remove_page,
3392 static const struct address_space_operations ext4_journalled_aops = {
3393 .readpage = ext4_readpage,
3394 .readpages = ext4_readpages,
3395 .writepage = ext4_writepage,
3396 .writepages = ext4_writepages,
3397 .write_begin = ext4_write_begin,
3398 .write_end = ext4_journalled_write_end,
3399 .set_page_dirty = ext4_journalled_set_page_dirty,
3400 .bmap = ext4_bmap,
3401 .invalidatepage = ext4_journalled_invalidatepage,
3402 .releasepage = ext4_releasepage,
3403 .direct_IO = ext4_direct_IO,
3404 .is_partially_uptodate = block_is_partially_uptodate,
3405 .error_remove_page = generic_error_remove_page,
3408 static const struct address_space_operations ext4_da_aops = {
3409 .readpage = ext4_readpage,
3410 .readpages = ext4_readpages,
3411 .writepage = ext4_writepage,
3412 .writepages = ext4_writepages,
3413 .write_begin = ext4_da_write_begin,
3414 .write_end = ext4_da_write_end,
3415 .bmap = ext4_bmap,
3416 .invalidatepage = ext4_da_invalidatepage,
3417 .releasepage = ext4_releasepage,
3418 .direct_IO = ext4_direct_IO,
3419 .migratepage = buffer_migrate_page,
3420 .is_partially_uptodate = block_is_partially_uptodate,
3421 .error_remove_page = generic_error_remove_page,
3424 void ext4_set_aops(struct inode *inode)
3426 switch (ext4_inode_journal_mode(inode)) {
3427 case EXT4_INODE_ORDERED_DATA_MODE:
3428 ext4_set_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3429 break;
3430 case EXT4_INODE_WRITEBACK_DATA_MODE:
3431 ext4_clear_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3432 break;
3433 case EXT4_INODE_JOURNAL_DATA_MODE:
3434 inode->i_mapping->a_ops = &ext4_journalled_aops;
3435 return;
3436 default:
3437 BUG();
3439 if (test_opt(inode->i_sb, DELALLOC))
3440 inode->i_mapping->a_ops = &ext4_da_aops;
3441 else
3442 inode->i_mapping->a_ops = &ext4_aops;
3445 static int __ext4_block_zero_page_range(handle_t *handle,
3446 struct address_space *mapping, loff_t from, loff_t length)
3448 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3449 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3450 unsigned blocksize, pos;
3451 ext4_lblk_t iblock;
3452 struct inode *inode = mapping->host;
3453 struct buffer_head *bh;
3454 struct page *page;
3455 int err = 0;
3457 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3458 mapping_gfp_constraint(mapping, ~__GFP_FS));
3459 if (!page)
3460 return -ENOMEM;
3462 blocksize = inode->i_sb->s_blocksize;
3464 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3466 if (!page_has_buffers(page))
3467 create_empty_buffers(page, blocksize, 0);
3469 /* Find the buffer that contains "offset" */
3470 bh = page_buffers(page);
3471 pos = blocksize;
3472 while (offset >= pos) {
3473 bh = bh->b_this_page;
3474 iblock++;
3475 pos += blocksize;
3477 if (buffer_freed(bh)) {
3478 BUFFER_TRACE(bh, "freed: skip");
3479 goto unlock;
3481 if (!buffer_mapped(bh)) {
3482 BUFFER_TRACE(bh, "unmapped");
3483 ext4_get_block(inode, iblock, bh, 0);
3484 /* unmapped? It's a hole - nothing to do */
3485 if (!buffer_mapped(bh)) {
3486 BUFFER_TRACE(bh, "still unmapped");
3487 goto unlock;
3491 /* Ok, it's mapped. Make sure it's up-to-date */
3492 if (PageUptodate(page))
3493 set_buffer_uptodate(bh);
3495 if (!buffer_uptodate(bh)) {
3496 err = -EIO;
3497 ll_rw_block(READ, 1, &bh);
3498 wait_on_buffer(bh);
3499 /* Uhhuh. Read error. Complain and punt. */
3500 if (!buffer_uptodate(bh))
3501 goto unlock;
3502 if (S_ISREG(inode->i_mode) &&
3503 ext4_encrypted_inode(inode)) {
3504 /* We expect the key to be set. */
3505 BUG_ON(!ext4_has_encryption_key(inode));
3506 BUG_ON(blocksize != PAGE_CACHE_SIZE);
3507 WARN_ON_ONCE(ext4_decrypt(page));
3510 if (ext4_should_journal_data(inode)) {
3511 BUFFER_TRACE(bh, "get write access");
3512 err = ext4_journal_get_write_access(handle, bh);
3513 if (err)
3514 goto unlock;
3516 zero_user(page, offset, length);
3517 BUFFER_TRACE(bh, "zeroed end of block");
3519 if (ext4_should_journal_data(inode)) {
3520 err = ext4_handle_dirty_metadata(handle, inode, bh);
3521 } else {
3522 err = 0;
3523 mark_buffer_dirty(bh);
3524 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE))
3525 err = ext4_jbd2_file_inode(handle, inode);
3528 unlock:
3529 unlock_page(page);
3530 page_cache_release(page);
3531 return err;
3535 * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3536 * starting from file offset 'from'. The range to be zero'd must
3537 * be contained with in one block. If the specified range exceeds
3538 * the end of the block it will be shortened to end of the block
3539 * that cooresponds to 'from'
3541 static int ext4_block_zero_page_range(handle_t *handle,
3542 struct address_space *mapping, loff_t from, loff_t length)
3544 struct inode *inode = mapping->host;
3545 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3546 unsigned blocksize = inode->i_sb->s_blocksize;
3547 unsigned max = blocksize - (offset & (blocksize - 1));
3550 * correct length if it does not fall between
3551 * 'from' and the end of the block
3553 if (length > max || length < 0)
3554 length = max;
3556 if (IS_DAX(inode))
3557 return dax_zero_page_range(inode, from, length, ext4_get_block);
3558 return __ext4_block_zero_page_range(handle, mapping, from, length);
3562 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3563 * up to the end of the block which corresponds to `from'.
3564 * This required during truncate. We need to physically zero the tail end
3565 * of that block so it doesn't yield old data if the file is later grown.
3567 static int ext4_block_truncate_page(handle_t *handle,
3568 struct address_space *mapping, loff_t from)
3570 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3571 unsigned length;
3572 unsigned blocksize;
3573 struct inode *inode = mapping->host;
3575 /* If we are processing an encrypted inode during orphan list handling */
3576 if (ext4_encrypted_inode(inode) && !ext4_has_encryption_key(inode))
3577 return 0;
3579 blocksize = inode->i_sb->s_blocksize;
3580 length = blocksize - (offset & (blocksize - 1));
3582 return ext4_block_zero_page_range(handle, mapping, from, length);
3585 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3586 loff_t lstart, loff_t length)
3588 struct super_block *sb = inode->i_sb;
3589 struct address_space *mapping = inode->i_mapping;
3590 unsigned partial_start, partial_end;
3591 ext4_fsblk_t start, end;
3592 loff_t byte_end = (lstart + length - 1);
3593 int err = 0;
3595 partial_start = lstart & (sb->s_blocksize - 1);
3596 partial_end = byte_end & (sb->s_blocksize - 1);
3598 start = lstart >> sb->s_blocksize_bits;
3599 end = byte_end >> sb->s_blocksize_bits;
3601 /* Handle partial zero within the single block */
3602 if (start == end &&
3603 (partial_start || (partial_end != sb->s_blocksize - 1))) {
3604 err = ext4_block_zero_page_range(handle, mapping,
3605 lstart, length);
3606 return err;
3608 /* Handle partial zero out on the start of the range */
3609 if (partial_start) {
3610 err = ext4_block_zero_page_range(handle, mapping,
3611 lstart, sb->s_blocksize);
3612 if (err)
3613 return err;
3615 /* Handle partial zero out on the end of the range */
3616 if (partial_end != sb->s_blocksize - 1)
3617 err = ext4_block_zero_page_range(handle, mapping,
3618 byte_end - partial_end,
3619 partial_end + 1);
3620 return err;
3623 int ext4_can_truncate(struct inode *inode)
3625 if (S_ISREG(inode->i_mode))
3626 return 1;
3627 if (S_ISDIR(inode->i_mode))
3628 return 1;
3629 if (S_ISLNK(inode->i_mode))
3630 return !ext4_inode_is_fast_symlink(inode);
3631 return 0;
3635 * We have to make sure i_disksize gets properly updated before we truncate
3636 * page cache due to hole punching or zero range. Otherwise i_disksize update
3637 * can get lost as it may have been postponed to submission of writeback but
3638 * that will never happen after we truncate page cache.
3640 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
3641 loff_t len)
3643 handle_t *handle;
3644 loff_t size = i_size_read(inode);
3646 WARN_ON(!mutex_is_locked(&inode->i_mutex));
3647 if (offset > size || offset + len < size)
3648 return 0;
3650 if (EXT4_I(inode)->i_disksize >= size)
3651 return 0;
3653 handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
3654 if (IS_ERR(handle))
3655 return PTR_ERR(handle);
3656 ext4_update_i_disksize(inode, size);
3657 ext4_mark_inode_dirty(handle, inode);
3658 ext4_journal_stop(handle);
3660 return 0;
3664 * ext4_punch_hole: punches a hole in a file by releasing the blocks
3665 * associated with the given offset and length
3667 * @inode: File inode
3668 * @offset: The offset where the hole will begin
3669 * @len: The length of the hole
3671 * Returns: 0 on success or negative on failure
3674 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
3676 struct super_block *sb = inode->i_sb;
3677 ext4_lblk_t first_block, stop_block;
3678 struct address_space *mapping = inode->i_mapping;
3679 loff_t first_block_offset, last_block_offset;
3680 handle_t *handle;
3681 unsigned int credits;
3682 int ret = 0;
3684 if (!S_ISREG(inode->i_mode))
3685 return -EOPNOTSUPP;
3687 trace_ext4_punch_hole(inode, offset, length, 0);
3690 * Write out all dirty pages to avoid race conditions
3691 * Then release them.
3693 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3694 ret = filemap_write_and_wait_range(mapping, offset,
3695 offset + length - 1);
3696 if (ret)
3697 return ret;
3700 mutex_lock(&inode->i_mutex);
3702 /* No need to punch hole beyond i_size */
3703 if (offset >= inode->i_size)
3704 goto out_mutex;
3707 * If the hole extends beyond i_size, set the hole
3708 * to end after the page that contains i_size
3710 if (offset + length > inode->i_size) {
3711 length = inode->i_size +
3712 PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) -
3713 offset;
3716 if (offset & (sb->s_blocksize - 1) ||
3717 (offset + length) & (sb->s_blocksize - 1)) {
3719 * Attach jinode to inode for jbd2 if we do any zeroing of
3720 * partial block
3722 ret = ext4_inode_attach_jinode(inode);
3723 if (ret < 0)
3724 goto out_mutex;
3728 /* Wait all existing dio workers, newcomers will block on i_mutex */
3729 ext4_inode_block_unlocked_dio(inode);
3730 inode_dio_wait(inode);
3733 * Prevent page faults from reinstantiating pages we have released from
3734 * page cache.
3736 down_write(&EXT4_I(inode)->i_mmap_sem);
3737 first_block_offset = round_up(offset, sb->s_blocksize);
3738 last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
3740 /* Now release the pages and zero block aligned part of pages*/
3741 if (last_block_offset > first_block_offset) {
3742 ret = ext4_update_disksize_before_punch(inode, offset, length);
3743 if (ret)
3744 goto out_dio;
3745 truncate_pagecache_range(inode, first_block_offset,
3746 last_block_offset);
3749 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3750 credits = ext4_writepage_trans_blocks(inode);
3751 else
3752 credits = ext4_blocks_for_truncate(inode);
3753 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3754 if (IS_ERR(handle)) {
3755 ret = PTR_ERR(handle);
3756 ext4_std_error(sb, ret);
3757 goto out_dio;
3760 ret = ext4_zero_partial_blocks(handle, inode, offset,
3761 length);
3762 if (ret)
3763 goto out_stop;
3765 first_block = (offset + sb->s_blocksize - 1) >>
3766 EXT4_BLOCK_SIZE_BITS(sb);
3767 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
3769 /* If there are no blocks to remove, return now */
3770 if (first_block >= stop_block)
3771 goto out_stop;
3773 down_write(&EXT4_I(inode)->i_data_sem);
3774 ext4_discard_preallocations(inode);
3776 ret = ext4_es_remove_extent(inode, first_block,
3777 stop_block - first_block);
3778 if (ret) {
3779 up_write(&EXT4_I(inode)->i_data_sem);
3780 goto out_stop;
3783 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3784 ret = ext4_ext_remove_space(inode, first_block,
3785 stop_block - 1);
3786 else
3787 ret = ext4_ind_remove_space(handle, inode, first_block,
3788 stop_block);
3790 up_write(&EXT4_I(inode)->i_data_sem);
3791 if (IS_SYNC(inode))
3792 ext4_handle_sync(handle);
3794 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3795 ext4_mark_inode_dirty(handle, inode);
3796 out_stop:
3797 ext4_journal_stop(handle);
3798 out_dio:
3799 up_write(&EXT4_I(inode)->i_mmap_sem);
3800 ext4_inode_resume_unlocked_dio(inode);
3801 out_mutex:
3802 mutex_unlock(&inode->i_mutex);
3803 return ret;
3806 int ext4_inode_attach_jinode(struct inode *inode)
3808 struct ext4_inode_info *ei = EXT4_I(inode);
3809 struct jbd2_inode *jinode;
3811 if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
3812 return 0;
3814 jinode = jbd2_alloc_inode(GFP_KERNEL);
3815 spin_lock(&inode->i_lock);
3816 if (!ei->jinode) {
3817 if (!jinode) {
3818 spin_unlock(&inode->i_lock);
3819 return -ENOMEM;
3821 ei->jinode = jinode;
3822 jbd2_journal_init_jbd_inode(ei->jinode, inode);
3823 jinode = NULL;
3825 spin_unlock(&inode->i_lock);
3826 if (unlikely(jinode != NULL))
3827 jbd2_free_inode(jinode);
3828 return 0;
3832 * ext4_truncate()
3834 * We block out ext4_get_block() block instantiations across the entire
3835 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3836 * simultaneously on behalf of the same inode.
3838 * As we work through the truncate and commit bits of it to the journal there
3839 * is one core, guiding principle: the file's tree must always be consistent on
3840 * disk. We must be able to restart the truncate after a crash.
3842 * The file's tree may be transiently inconsistent in memory (although it
3843 * probably isn't), but whenever we close off and commit a journal transaction,
3844 * the contents of (the filesystem + the journal) must be consistent and
3845 * restartable. It's pretty simple, really: bottom up, right to left (although
3846 * left-to-right works OK too).
3848 * Note that at recovery time, journal replay occurs *before* the restart of
3849 * truncate against the orphan inode list.
3851 * The committed inode has the new, desired i_size (which is the same as
3852 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
3853 * that this inode's truncate did not complete and it will again call
3854 * ext4_truncate() to have another go. So there will be instantiated blocks
3855 * to the right of the truncation point in a crashed ext4 filesystem. But
3856 * that's fine - as long as they are linked from the inode, the post-crash
3857 * ext4_truncate() run will find them and release them.
3859 void ext4_truncate(struct inode *inode)
3861 struct ext4_inode_info *ei = EXT4_I(inode);
3862 unsigned int credits;
3863 handle_t *handle;
3864 struct address_space *mapping = inode->i_mapping;
3867 * There is a possibility that we're either freeing the inode
3868 * or it's a completely new inode. In those cases we might not
3869 * have i_mutex locked because it's not necessary.
3871 if (!(inode->i_state & (I_NEW|I_FREEING)))
3872 WARN_ON(!mutex_is_locked(&inode->i_mutex));
3873 trace_ext4_truncate_enter(inode);
3875 if (!ext4_can_truncate(inode))
3876 return;
3878 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3880 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3881 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3883 if (ext4_has_inline_data(inode)) {
3884 int has_inline = 1;
3886 ext4_inline_data_truncate(inode, &has_inline);
3887 if (has_inline)
3888 return;
3891 /* If we zero-out tail of the page, we have to create jinode for jbd2 */
3892 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
3893 if (ext4_inode_attach_jinode(inode) < 0)
3894 return;
3897 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3898 credits = ext4_writepage_trans_blocks(inode);
3899 else
3900 credits = ext4_blocks_for_truncate(inode);
3902 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3903 if (IS_ERR(handle)) {
3904 ext4_std_error(inode->i_sb, PTR_ERR(handle));
3905 return;
3908 if (inode->i_size & (inode->i_sb->s_blocksize - 1))
3909 ext4_block_truncate_page(handle, mapping, inode->i_size);
3912 * We add the inode to the orphan list, so that if this
3913 * truncate spans multiple transactions, and we crash, we will
3914 * resume the truncate when the filesystem recovers. It also
3915 * marks the inode dirty, to catch the new size.
3917 * Implication: the file must always be in a sane, consistent
3918 * truncatable state while each transaction commits.
3920 if (ext4_orphan_add(handle, inode))
3921 goto out_stop;
3923 down_write(&EXT4_I(inode)->i_data_sem);
3925 ext4_discard_preallocations(inode);
3927 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3928 ext4_ext_truncate(handle, inode);
3929 else
3930 ext4_ind_truncate(handle, inode);
3932 up_write(&ei->i_data_sem);
3934 if (IS_SYNC(inode))
3935 ext4_handle_sync(handle);
3937 out_stop:
3939 * If this was a simple ftruncate() and the file will remain alive,
3940 * then we need to clear up the orphan record which we created above.
3941 * However, if this was a real unlink then we were called by
3942 * ext4_evict_inode(), and we allow that function to clean up the
3943 * orphan info for us.
3945 if (inode->i_nlink)
3946 ext4_orphan_del(handle, inode);
3948 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3949 ext4_mark_inode_dirty(handle, inode);
3950 ext4_journal_stop(handle);
3952 trace_ext4_truncate_exit(inode);
3956 * ext4_get_inode_loc returns with an extra refcount against the inode's
3957 * underlying buffer_head on success. If 'in_mem' is true, we have all
3958 * data in memory that is needed to recreate the on-disk version of this
3959 * inode.
3961 static int __ext4_get_inode_loc(struct inode *inode,
3962 struct ext4_iloc *iloc, int in_mem)
3964 struct ext4_group_desc *gdp;
3965 struct buffer_head *bh;
3966 struct super_block *sb = inode->i_sb;
3967 ext4_fsblk_t block;
3968 int inodes_per_block, inode_offset;
3970 iloc->bh = NULL;
3971 if (!ext4_valid_inum(sb, inode->i_ino))
3972 return -EFSCORRUPTED;
3974 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3975 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3976 if (!gdp)
3977 return -EIO;
3980 * Figure out the offset within the block group inode table
3982 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
3983 inode_offset = ((inode->i_ino - 1) %
3984 EXT4_INODES_PER_GROUP(sb));
3985 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3986 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3988 bh = sb_getblk(sb, block);
3989 if (unlikely(!bh))
3990 return -ENOMEM;
3991 if (!buffer_uptodate(bh)) {
3992 lock_buffer(bh);
3995 * If the buffer has the write error flag, we have failed
3996 * to write out another inode in the same block. In this
3997 * case, we don't have to read the block because we may
3998 * read the old inode data successfully.
4000 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4001 set_buffer_uptodate(bh);
4003 if (buffer_uptodate(bh)) {
4004 /* someone brought it uptodate while we waited */
4005 unlock_buffer(bh);
4006 goto has_buffer;
4010 * If we have all information of the inode in memory and this
4011 * is the only valid inode in the block, we need not read the
4012 * block.
4014 if (in_mem) {
4015 struct buffer_head *bitmap_bh;
4016 int i, start;
4018 start = inode_offset & ~(inodes_per_block - 1);
4020 /* Is the inode bitmap in cache? */
4021 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4022 if (unlikely(!bitmap_bh))
4023 goto make_io;
4026 * If the inode bitmap isn't in cache then the
4027 * optimisation may end up performing two reads instead
4028 * of one, so skip it.
4030 if (!buffer_uptodate(bitmap_bh)) {
4031 brelse(bitmap_bh);
4032 goto make_io;
4034 for (i = start; i < start + inodes_per_block; i++) {
4035 if (i == inode_offset)
4036 continue;
4037 if (ext4_test_bit(i, bitmap_bh->b_data))
4038 break;
4040 brelse(bitmap_bh);
4041 if (i == start + inodes_per_block) {
4042 /* all other inodes are free, so skip I/O */
4043 memset(bh->b_data, 0, bh->b_size);
4044 set_buffer_uptodate(bh);
4045 unlock_buffer(bh);
4046 goto has_buffer;
4050 make_io:
4052 * If we need to do any I/O, try to pre-readahead extra
4053 * blocks from the inode table.
4055 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4056 ext4_fsblk_t b, end, table;
4057 unsigned num;
4058 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4060 table = ext4_inode_table(sb, gdp);
4061 /* s_inode_readahead_blks is always a power of 2 */
4062 b = block & ~((ext4_fsblk_t) ra_blks - 1);
4063 if (table > b)
4064 b = table;
4065 end = b + ra_blks;
4066 num = EXT4_INODES_PER_GROUP(sb);
4067 if (ext4_has_group_desc_csum(sb))
4068 num -= ext4_itable_unused_count(sb, gdp);
4069 table += num / inodes_per_block;
4070 if (end > table)
4071 end = table;
4072 while (b <= end)
4073 sb_breadahead(sb, b++);
4077 * There are other valid inodes in the buffer, this inode
4078 * has in-inode xattrs, or we don't have this inode in memory.
4079 * Read the block from disk.
4081 trace_ext4_load_inode(inode);
4082 get_bh(bh);
4083 bh->b_end_io = end_buffer_read_sync;
4084 submit_bh(READ | REQ_META | REQ_PRIO, bh);
4085 wait_on_buffer(bh);
4086 if (!buffer_uptodate(bh)) {
4087 EXT4_ERROR_INODE_BLOCK(inode, block,
4088 "unable to read itable block");
4089 brelse(bh);
4090 return -EIO;
4093 has_buffer:
4094 iloc->bh = bh;
4095 return 0;
4098 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4100 /* We have all inode data except xattrs in memory here. */
4101 return __ext4_get_inode_loc(inode, iloc,
4102 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4105 void ext4_set_inode_flags(struct inode *inode)
4107 unsigned int flags = EXT4_I(inode)->i_flags;
4108 unsigned int new_fl = 0;
4110 if (flags & EXT4_SYNC_FL)
4111 new_fl |= S_SYNC;
4112 if (flags & EXT4_APPEND_FL)
4113 new_fl |= S_APPEND;
4114 if (flags & EXT4_IMMUTABLE_FL)
4115 new_fl |= S_IMMUTABLE;
4116 if (flags & EXT4_NOATIME_FL)
4117 new_fl |= S_NOATIME;
4118 if (flags & EXT4_DIRSYNC_FL)
4119 new_fl |= S_DIRSYNC;
4120 if (test_opt(inode->i_sb, DAX))
4121 new_fl |= S_DAX;
4122 inode_set_flags(inode, new_fl,
4123 S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX);
4126 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4127 void ext4_get_inode_flags(struct ext4_inode_info *ei)
4129 unsigned int vfs_fl;
4130 unsigned long old_fl, new_fl;
4132 do {
4133 vfs_fl = ei->vfs_inode.i_flags;
4134 old_fl = ei->i_flags;
4135 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4136 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
4137 EXT4_DIRSYNC_FL);
4138 if (vfs_fl & S_SYNC)
4139 new_fl |= EXT4_SYNC_FL;
4140 if (vfs_fl & S_APPEND)
4141 new_fl |= EXT4_APPEND_FL;
4142 if (vfs_fl & S_IMMUTABLE)
4143 new_fl |= EXT4_IMMUTABLE_FL;
4144 if (vfs_fl & S_NOATIME)
4145 new_fl |= EXT4_NOATIME_FL;
4146 if (vfs_fl & S_DIRSYNC)
4147 new_fl |= EXT4_DIRSYNC_FL;
4148 } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
4151 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4152 struct ext4_inode_info *ei)
4154 blkcnt_t i_blocks ;
4155 struct inode *inode = &(ei->vfs_inode);
4156 struct super_block *sb = inode->i_sb;
4158 if (ext4_has_feature_huge_file(sb)) {
4159 /* we are using combined 48 bit field */
4160 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4161 le32_to_cpu(raw_inode->i_blocks_lo);
4162 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4163 /* i_blocks represent file system block size */
4164 return i_blocks << (inode->i_blkbits - 9);
4165 } else {
4166 return i_blocks;
4168 } else {
4169 return le32_to_cpu(raw_inode->i_blocks_lo);
4173 static inline void ext4_iget_extra_inode(struct inode *inode,
4174 struct ext4_inode *raw_inode,
4175 struct ext4_inode_info *ei)
4177 __le32 *magic = (void *)raw_inode +
4178 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4179 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4180 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4181 ext4_find_inline_data_nolock(inode);
4182 } else
4183 EXT4_I(inode)->i_inline_off = 0;
4186 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4188 struct ext4_iloc iloc;
4189 struct ext4_inode *raw_inode;
4190 struct ext4_inode_info *ei;
4191 struct inode *inode;
4192 journal_t *journal = EXT4_SB(sb)->s_journal;
4193 long ret;
4194 loff_t size;
4195 int block;
4196 uid_t i_uid;
4197 gid_t i_gid;
4199 inode = iget_locked(sb, ino);
4200 if (!inode)
4201 return ERR_PTR(-ENOMEM);
4202 if (!(inode->i_state & I_NEW))
4203 return inode;
4205 ei = EXT4_I(inode);
4206 iloc.bh = NULL;
4208 ret = __ext4_get_inode_loc(inode, &iloc, 0);
4209 if (ret < 0)
4210 goto bad_inode;
4211 raw_inode = ext4_raw_inode(&iloc);
4213 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4214 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4215 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4216 EXT4_INODE_SIZE(inode->i_sb)) {
4217 EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
4218 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
4219 EXT4_INODE_SIZE(inode->i_sb));
4220 ret = -EFSCORRUPTED;
4221 goto bad_inode;
4223 } else
4224 ei->i_extra_isize = 0;
4226 /* Precompute checksum seed for inode metadata */
4227 if (ext4_has_metadata_csum(sb)) {
4228 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4229 __u32 csum;
4230 __le32 inum = cpu_to_le32(inode->i_ino);
4231 __le32 gen = raw_inode->i_generation;
4232 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4233 sizeof(inum));
4234 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4235 sizeof(gen));
4238 if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4239 EXT4_ERROR_INODE(inode, "checksum invalid");
4240 ret = -EFSBADCRC;
4241 goto bad_inode;
4244 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4245 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4246 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4247 if (!(test_opt(inode->i_sb, NO_UID32))) {
4248 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4249 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4251 i_uid_write(inode, i_uid);
4252 i_gid_write(inode, i_gid);
4253 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4255 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
4256 ei->i_inline_off = 0;
4257 ei->i_dir_start_lookup = 0;
4258 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4259 /* We now have enough fields to check if the inode was active or not.
4260 * This is needed because nfsd might try to access dead inodes
4261 * the test is that same one that e2fsck uses
4262 * NeilBrown 1999oct15
4264 if (inode->i_nlink == 0) {
4265 if ((inode->i_mode == 0 ||
4266 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4267 ino != EXT4_BOOT_LOADER_INO) {
4268 /* this inode is deleted */
4269 ret = -ESTALE;
4270 goto bad_inode;
4272 /* The only unlinked inodes we let through here have
4273 * valid i_mode and are being read by the orphan
4274 * recovery code: that's fine, we're about to complete
4275 * the process of deleting those.
4276 * OR it is the EXT4_BOOT_LOADER_INO which is
4277 * not initialized on a new filesystem. */
4279 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4280 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4281 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4282 if (ext4_has_feature_64bit(sb))
4283 ei->i_file_acl |=
4284 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4285 inode->i_size = ext4_isize(raw_inode);
4286 if ((size = i_size_read(inode)) < 0) {
4287 EXT4_ERROR_INODE(inode, "bad i_size value: %lld", size);
4288 ret = -EFSCORRUPTED;
4289 goto bad_inode;
4291 ei->i_disksize = inode->i_size;
4292 #ifdef CONFIG_QUOTA
4293 ei->i_reserved_quota = 0;
4294 #endif
4295 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4296 ei->i_block_group = iloc.block_group;
4297 ei->i_last_alloc_group = ~0;
4299 * NOTE! The in-memory inode i_data array is in little-endian order
4300 * even on big-endian machines: we do NOT byteswap the block numbers!
4302 for (block = 0; block < EXT4_N_BLOCKS; block++)
4303 ei->i_data[block] = raw_inode->i_block[block];
4304 INIT_LIST_HEAD(&ei->i_orphan);
4307 * Set transaction id's of transactions that have to be committed
4308 * to finish f[data]sync. We set them to currently running transaction
4309 * as we cannot be sure that the inode or some of its metadata isn't
4310 * part of the transaction - the inode could have been reclaimed and
4311 * now it is reread from disk.
4313 if (journal) {
4314 transaction_t *transaction;
4315 tid_t tid;
4317 read_lock(&journal->j_state_lock);
4318 if (journal->j_running_transaction)
4319 transaction = journal->j_running_transaction;
4320 else
4321 transaction = journal->j_committing_transaction;
4322 if (transaction)
4323 tid = transaction->t_tid;
4324 else
4325 tid = journal->j_commit_sequence;
4326 read_unlock(&journal->j_state_lock);
4327 ei->i_sync_tid = tid;
4328 ei->i_datasync_tid = tid;
4331 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4332 if (ei->i_extra_isize == 0) {
4333 /* The extra space is currently unused. Use it. */
4334 ei->i_extra_isize = sizeof(struct ext4_inode) -
4335 EXT4_GOOD_OLD_INODE_SIZE;
4336 } else {
4337 ext4_iget_extra_inode(inode, raw_inode, ei);
4341 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4342 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4343 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4344 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4346 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4347 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4348 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4349 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4350 inode->i_version |=
4351 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4355 ret = 0;
4356 if (ei->i_file_acl &&
4357 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4358 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4359 ei->i_file_acl);
4360 ret = -EFSCORRUPTED;
4361 goto bad_inode;
4362 } else if (!ext4_has_inline_data(inode)) {
4363 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4364 if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4365 (S_ISLNK(inode->i_mode) &&
4366 !ext4_inode_is_fast_symlink(inode))))
4367 /* Validate extent which is part of inode */
4368 ret = ext4_ext_check_inode(inode);
4369 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4370 (S_ISLNK(inode->i_mode) &&
4371 !ext4_inode_is_fast_symlink(inode))) {
4372 /* Validate block references which are part of inode */
4373 ret = ext4_ind_check_inode(inode);
4376 if (ret)
4377 goto bad_inode;
4379 if (S_ISREG(inode->i_mode)) {
4380 inode->i_op = &ext4_file_inode_operations;
4381 inode->i_fop = &ext4_file_operations;
4382 ext4_set_aops(inode);
4383 } else if (S_ISDIR(inode->i_mode)) {
4384 inode->i_op = &ext4_dir_inode_operations;
4385 inode->i_fop = &ext4_dir_operations;
4386 } else if (S_ISLNK(inode->i_mode)) {
4387 if (ext4_encrypted_inode(inode)) {
4388 inode->i_op = &ext4_encrypted_symlink_inode_operations;
4389 ext4_set_aops(inode);
4390 } else if (ext4_inode_is_fast_symlink(inode)) {
4391 inode->i_link = (char *)ei->i_data;
4392 inode->i_op = &ext4_fast_symlink_inode_operations;
4393 nd_terminate_link(ei->i_data, inode->i_size,
4394 sizeof(ei->i_data) - 1);
4395 } else {
4396 inode->i_op = &ext4_symlink_inode_operations;
4397 ext4_set_aops(inode);
4399 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4400 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4401 inode->i_op = &ext4_special_inode_operations;
4402 if (raw_inode->i_block[0])
4403 init_special_inode(inode, inode->i_mode,
4404 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4405 else
4406 init_special_inode(inode, inode->i_mode,
4407 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4408 } else if (ino == EXT4_BOOT_LOADER_INO) {
4409 make_bad_inode(inode);
4410 } else {
4411 ret = -EFSCORRUPTED;
4412 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
4413 goto bad_inode;
4415 brelse(iloc.bh);
4416 ext4_set_inode_flags(inode);
4417 unlock_new_inode(inode);
4418 return inode;
4420 bad_inode:
4421 brelse(iloc.bh);
4422 iget_failed(inode);
4423 return ERR_PTR(ret);
4426 struct inode *ext4_iget_normal(struct super_block *sb, unsigned long ino)
4428 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
4429 return ERR_PTR(-EFSCORRUPTED);
4430 return ext4_iget(sb, ino);
4433 static int ext4_inode_blocks_set(handle_t *handle,
4434 struct ext4_inode *raw_inode,
4435 struct ext4_inode_info *ei)
4437 struct inode *inode = &(ei->vfs_inode);
4438 u64 i_blocks = inode->i_blocks;
4439 struct super_block *sb = inode->i_sb;
4441 if (i_blocks <= ~0U) {
4443 * i_blocks can be represented in a 32 bit variable
4444 * as multiple of 512 bytes
4446 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4447 raw_inode->i_blocks_high = 0;
4448 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4449 return 0;
4451 if (!ext4_has_feature_huge_file(sb))
4452 return -EFBIG;
4454 if (i_blocks <= 0xffffffffffffULL) {
4456 * i_blocks can be represented in a 48 bit variable
4457 * as multiple of 512 bytes
4459 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4460 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4461 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4462 } else {
4463 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4464 /* i_block is stored in file system block size */
4465 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4466 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4467 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4469 return 0;
4472 struct other_inode {
4473 unsigned long orig_ino;
4474 struct ext4_inode *raw_inode;
4477 static int other_inode_match(struct inode * inode, unsigned long ino,
4478 void *data)
4480 struct other_inode *oi = (struct other_inode *) data;
4482 if ((inode->i_ino != ino) ||
4483 (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4484 I_DIRTY_SYNC | I_DIRTY_DATASYNC)) ||
4485 ((inode->i_state & I_DIRTY_TIME) == 0))
4486 return 0;
4487 spin_lock(&inode->i_lock);
4488 if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4489 I_DIRTY_SYNC | I_DIRTY_DATASYNC)) == 0) &&
4490 (inode->i_state & I_DIRTY_TIME)) {
4491 struct ext4_inode_info *ei = EXT4_I(inode);
4493 inode->i_state &= ~(I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED);
4494 spin_unlock(&inode->i_lock);
4496 spin_lock(&ei->i_raw_lock);
4497 EXT4_INODE_SET_XTIME(i_ctime, inode, oi->raw_inode);
4498 EXT4_INODE_SET_XTIME(i_mtime, inode, oi->raw_inode);
4499 EXT4_INODE_SET_XTIME(i_atime, inode, oi->raw_inode);
4500 ext4_inode_csum_set(inode, oi->raw_inode, ei);
4501 spin_unlock(&ei->i_raw_lock);
4502 trace_ext4_other_inode_update_time(inode, oi->orig_ino);
4503 return -1;
4505 spin_unlock(&inode->i_lock);
4506 return -1;
4510 * Opportunistically update the other time fields for other inodes in
4511 * the same inode table block.
4513 static void ext4_update_other_inodes_time(struct super_block *sb,
4514 unsigned long orig_ino, char *buf)
4516 struct other_inode oi;
4517 unsigned long ino;
4518 int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4519 int inode_size = EXT4_INODE_SIZE(sb);
4521 oi.orig_ino = orig_ino;
4523 * Calculate the first inode in the inode table block. Inode
4524 * numbers are one-based. That is, the first inode in a block
4525 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
4527 ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
4528 for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
4529 if (ino == orig_ino)
4530 continue;
4531 oi.raw_inode = (struct ext4_inode *) buf;
4532 (void) find_inode_nowait(sb, ino, other_inode_match, &oi);
4537 * Post the struct inode info into an on-disk inode location in the
4538 * buffer-cache. This gobbles the caller's reference to the
4539 * buffer_head in the inode location struct.
4541 * The caller must have write access to iloc->bh.
4543 static int ext4_do_update_inode(handle_t *handle,
4544 struct inode *inode,
4545 struct ext4_iloc *iloc)
4547 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4548 struct ext4_inode_info *ei = EXT4_I(inode);
4549 struct buffer_head *bh = iloc->bh;
4550 struct super_block *sb = inode->i_sb;
4551 int err = 0, rc, block;
4552 int need_datasync = 0, set_large_file = 0;
4553 uid_t i_uid;
4554 gid_t i_gid;
4556 spin_lock(&ei->i_raw_lock);
4558 /* For fields not tracked in the in-memory inode,
4559 * initialise them to zero for new inodes. */
4560 if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4561 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4563 ext4_get_inode_flags(ei);
4564 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4565 i_uid = i_uid_read(inode);
4566 i_gid = i_gid_read(inode);
4567 if (!(test_opt(inode->i_sb, NO_UID32))) {
4568 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4569 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4571 * Fix up interoperability with old kernels. Otherwise, old inodes get
4572 * re-used with the upper 16 bits of the uid/gid intact
4574 if (ei->i_dtime && list_empty(&ei->i_orphan)) {
4575 raw_inode->i_uid_high = 0;
4576 raw_inode->i_gid_high = 0;
4577 } else {
4578 raw_inode->i_uid_high =
4579 cpu_to_le16(high_16_bits(i_uid));
4580 raw_inode->i_gid_high =
4581 cpu_to_le16(high_16_bits(i_gid));
4583 } else {
4584 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4585 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4586 raw_inode->i_uid_high = 0;
4587 raw_inode->i_gid_high = 0;
4589 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4591 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4592 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4593 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4594 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4596 err = ext4_inode_blocks_set(handle, raw_inode, ei);
4597 if (err) {
4598 spin_unlock(&ei->i_raw_lock);
4599 goto out_brelse;
4601 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4602 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4603 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
4604 raw_inode->i_file_acl_high =
4605 cpu_to_le16(ei->i_file_acl >> 32);
4606 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4607 if (ei->i_disksize != ext4_isize(raw_inode)) {
4608 ext4_isize_set(raw_inode, ei->i_disksize);
4609 need_datasync = 1;
4611 if (ei->i_disksize > 0x7fffffffULL) {
4612 if (!ext4_has_feature_large_file(sb) ||
4613 EXT4_SB(sb)->s_es->s_rev_level ==
4614 cpu_to_le32(EXT4_GOOD_OLD_REV))
4615 set_large_file = 1;
4617 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4618 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4619 if (old_valid_dev(inode->i_rdev)) {
4620 raw_inode->i_block[0] =
4621 cpu_to_le32(old_encode_dev(inode->i_rdev));
4622 raw_inode->i_block[1] = 0;
4623 } else {
4624 raw_inode->i_block[0] = 0;
4625 raw_inode->i_block[1] =
4626 cpu_to_le32(new_encode_dev(inode->i_rdev));
4627 raw_inode->i_block[2] = 0;
4629 } else if (!ext4_has_inline_data(inode)) {
4630 for (block = 0; block < EXT4_N_BLOCKS; block++)
4631 raw_inode->i_block[block] = ei->i_data[block];
4634 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4635 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4636 if (ei->i_extra_isize) {
4637 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4638 raw_inode->i_version_hi =
4639 cpu_to_le32(inode->i_version >> 32);
4640 raw_inode->i_extra_isize =
4641 cpu_to_le16(ei->i_extra_isize);
4644 ext4_inode_csum_set(inode, raw_inode, ei);
4645 spin_unlock(&ei->i_raw_lock);
4646 if (inode->i_sb->s_flags & MS_LAZYTIME)
4647 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
4648 bh->b_data);
4650 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4651 rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4652 if (!err)
4653 err = rc;
4654 ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4655 if (set_large_file) {
4656 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
4657 err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
4658 if (err)
4659 goto out_brelse;
4660 ext4_update_dynamic_rev(sb);
4661 ext4_set_feature_large_file(sb);
4662 ext4_handle_sync(handle);
4663 err = ext4_handle_dirty_super(handle, sb);
4665 ext4_update_inode_fsync_trans(handle, inode, need_datasync);
4666 out_brelse:
4667 brelse(bh);
4668 ext4_std_error(inode->i_sb, err);
4669 return err;
4673 * ext4_write_inode()
4675 * We are called from a few places:
4677 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
4678 * Here, there will be no transaction running. We wait for any running
4679 * transaction to commit.
4681 * - Within flush work (sys_sync(), kupdate and such).
4682 * We wait on commit, if told to.
4684 * - Within iput_final() -> write_inode_now()
4685 * We wait on commit, if told to.
4687 * In all cases it is actually safe for us to return without doing anything,
4688 * because the inode has been copied into a raw inode buffer in
4689 * ext4_mark_inode_dirty(). This is a correctness thing for WB_SYNC_ALL
4690 * writeback.
4692 * Note that we are absolutely dependent upon all inode dirtiers doing the
4693 * right thing: they *must* call mark_inode_dirty() after dirtying info in
4694 * which we are interested.
4696 * It would be a bug for them to not do this. The code:
4698 * mark_inode_dirty(inode)
4699 * stuff();
4700 * inode->i_size = expr;
4702 * is in error because write_inode() could occur while `stuff()' is running,
4703 * and the new i_size will be lost. Plus the inode will no longer be on the
4704 * superblock's dirty inode list.
4706 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4708 int err;
4710 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC))
4711 return 0;
4713 if (EXT4_SB(inode->i_sb)->s_journal) {
4714 if (ext4_journal_current_handle()) {
4715 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4716 dump_stack();
4717 return -EIO;
4721 * No need to force transaction in WB_SYNC_NONE mode. Also
4722 * ext4_sync_fs() will force the commit after everything is
4723 * written.
4725 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
4726 return 0;
4728 err = ext4_force_commit(inode->i_sb);
4729 } else {
4730 struct ext4_iloc iloc;
4732 err = __ext4_get_inode_loc(inode, &iloc, 0);
4733 if (err)
4734 return err;
4736 * sync(2) will flush the whole buffer cache. No need to do
4737 * it here separately for each inode.
4739 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
4740 sync_dirty_buffer(iloc.bh);
4741 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4742 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4743 "IO error syncing inode");
4744 err = -EIO;
4746 brelse(iloc.bh);
4748 return err;
4752 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
4753 * buffers that are attached to a page stradding i_size and are undergoing
4754 * commit. In that case we have to wait for commit to finish and try again.
4756 static void ext4_wait_for_tail_page_commit(struct inode *inode)
4758 struct page *page;
4759 unsigned offset;
4760 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
4761 tid_t commit_tid = 0;
4762 int ret;
4764 offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
4766 * All buffers in the last page remain valid? Then there's nothing to
4767 * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE ==
4768 * blocksize case
4770 if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits))
4771 return;
4772 while (1) {
4773 page = find_lock_page(inode->i_mapping,
4774 inode->i_size >> PAGE_CACHE_SHIFT);
4775 if (!page)
4776 return;
4777 ret = __ext4_journalled_invalidatepage(page, offset,
4778 PAGE_CACHE_SIZE - offset);
4779 unlock_page(page);
4780 page_cache_release(page);
4781 if (ret != -EBUSY)
4782 return;
4783 commit_tid = 0;
4784 read_lock(&journal->j_state_lock);
4785 if (journal->j_committing_transaction)
4786 commit_tid = journal->j_committing_transaction->t_tid;
4787 read_unlock(&journal->j_state_lock);
4788 if (commit_tid)
4789 jbd2_log_wait_commit(journal, commit_tid);
4794 * ext4_setattr()
4796 * Called from notify_change.
4798 * We want to trap VFS attempts to truncate the file as soon as
4799 * possible. In particular, we want to make sure that when the VFS
4800 * shrinks i_size, we put the inode on the orphan list and modify
4801 * i_disksize immediately, so that during the subsequent flushing of
4802 * dirty pages and freeing of disk blocks, we can guarantee that any
4803 * commit will leave the blocks being flushed in an unused state on
4804 * disk. (On recovery, the inode will get truncated and the blocks will
4805 * be freed, so we have a strong guarantee that no future commit will
4806 * leave these blocks visible to the user.)
4808 * Another thing we have to assure is that if we are in ordered mode
4809 * and inode is still attached to the committing transaction, we must
4810 * we start writeout of all the dirty pages which are being truncated.
4811 * This way we are sure that all the data written in the previous
4812 * transaction are already on disk (truncate waits for pages under
4813 * writeback).
4815 * Called with inode->i_mutex down.
4817 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4819 struct inode *inode = d_inode(dentry);
4820 int error, rc = 0;
4821 int orphan = 0;
4822 const unsigned int ia_valid = attr->ia_valid;
4824 error = inode_change_ok(inode, attr);
4825 if (error)
4826 return error;
4828 if (is_quota_modification(inode, attr)) {
4829 error = dquot_initialize(inode);
4830 if (error)
4831 return error;
4833 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
4834 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
4835 handle_t *handle;
4837 /* (user+group)*(old+new) structure, inode write (sb,
4838 * inode block, ? - but truncate inode update has it) */
4839 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
4840 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
4841 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
4842 if (IS_ERR(handle)) {
4843 error = PTR_ERR(handle);
4844 goto err_out;
4846 error = dquot_transfer(inode, attr);
4847 if (error) {
4848 ext4_journal_stop(handle);
4849 return error;
4851 /* Update corresponding info in inode so that everything is in
4852 * one transaction */
4853 if (attr->ia_valid & ATTR_UID)
4854 inode->i_uid = attr->ia_uid;
4855 if (attr->ia_valid & ATTR_GID)
4856 inode->i_gid = attr->ia_gid;
4857 error = ext4_mark_inode_dirty(handle, inode);
4858 ext4_journal_stop(handle);
4861 if (attr->ia_valid & ATTR_SIZE) {
4862 handle_t *handle;
4863 loff_t oldsize = inode->i_size;
4864 int shrink = (attr->ia_size <= inode->i_size);
4866 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4867 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4869 if (attr->ia_size > sbi->s_bitmap_maxbytes)
4870 return -EFBIG;
4872 if (!S_ISREG(inode->i_mode))
4873 return -EINVAL;
4875 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
4876 inode_inc_iversion(inode);
4878 if (ext4_should_order_data(inode) &&
4879 (attr->ia_size < inode->i_size)) {
4880 error = ext4_begin_ordered_truncate(inode,
4881 attr->ia_size);
4882 if (error)
4883 goto err_out;
4885 if (attr->ia_size != inode->i_size) {
4886 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
4887 if (IS_ERR(handle)) {
4888 error = PTR_ERR(handle);
4889 goto err_out;
4891 if (ext4_handle_valid(handle) && shrink) {
4892 error = ext4_orphan_add(handle, inode);
4893 orphan = 1;
4896 * Update c/mtime on truncate up, ext4_truncate() will
4897 * update c/mtime in shrink case below
4899 if (!shrink) {
4900 inode->i_mtime = ext4_current_time(inode);
4901 inode->i_ctime = inode->i_mtime;
4903 down_write(&EXT4_I(inode)->i_data_sem);
4904 EXT4_I(inode)->i_disksize = attr->ia_size;
4905 rc = ext4_mark_inode_dirty(handle, inode);
4906 if (!error)
4907 error = rc;
4909 * We have to update i_size under i_data_sem together
4910 * with i_disksize to avoid races with writeback code
4911 * running ext4_wb_update_i_disksize().
4913 if (!error)
4914 i_size_write(inode, attr->ia_size);
4915 up_write(&EXT4_I(inode)->i_data_sem);
4916 ext4_journal_stop(handle);
4917 if (error) {
4918 if (orphan)
4919 ext4_orphan_del(NULL, inode);
4920 goto err_out;
4923 if (!shrink)
4924 pagecache_isize_extended(inode, oldsize, inode->i_size);
4927 * Blocks are going to be removed from the inode. Wait
4928 * for dio in flight. Temporarily disable
4929 * dioread_nolock to prevent livelock.
4931 if (orphan) {
4932 if (!ext4_should_journal_data(inode)) {
4933 ext4_inode_block_unlocked_dio(inode);
4934 inode_dio_wait(inode);
4935 ext4_inode_resume_unlocked_dio(inode);
4936 } else
4937 ext4_wait_for_tail_page_commit(inode);
4939 down_write(&EXT4_I(inode)->i_mmap_sem);
4941 * Truncate pagecache after we've waited for commit
4942 * in data=journal mode to make pages freeable.
4944 truncate_pagecache(inode, inode->i_size);
4945 if (shrink)
4946 ext4_truncate(inode);
4947 up_write(&EXT4_I(inode)->i_mmap_sem);
4950 if (!rc) {
4951 setattr_copy(inode, attr);
4952 mark_inode_dirty(inode);
4956 * If the call to ext4_truncate failed to get a transaction handle at
4957 * all, we need to clean up the in-core orphan list manually.
4959 if (orphan && inode->i_nlink)
4960 ext4_orphan_del(NULL, inode);
4962 if (!rc && (ia_valid & ATTR_MODE))
4963 rc = posix_acl_chmod(inode, inode->i_mode);
4965 err_out:
4966 ext4_std_error(inode->i_sb, error);
4967 if (!error)
4968 error = rc;
4969 return error;
4972 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4973 struct kstat *stat)
4975 struct inode *inode;
4976 unsigned long long delalloc_blocks;
4978 inode = d_inode(dentry);
4979 generic_fillattr(inode, stat);
4982 * If there is inline data in the inode, the inode will normally not
4983 * have data blocks allocated (it may have an external xattr block).
4984 * Report at least one sector for such files, so tools like tar, rsync,
4985 * others doen't incorrectly think the file is completely sparse.
4987 if (unlikely(ext4_has_inline_data(inode)))
4988 stat->blocks += (stat->size + 511) >> 9;
4991 * We can't update i_blocks if the block allocation is delayed
4992 * otherwise in the case of system crash before the real block
4993 * allocation is done, we will have i_blocks inconsistent with
4994 * on-disk file blocks.
4995 * We always keep i_blocks updated together with real
4996 * allocation. But to not confuse with user, stat
4997 * will return the blocks that include the delayed allocation
4998 * blocks for this file.
5000 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5001 EXT4_I(inode)->i_reserved_data_blocks);
5002 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
5003 return 0;
5006 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5007 int pextents)
5009 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5010 return ext4_ind_trans_blocks(inode, lblocks);
5011 return ext4_ext_index_trans_blocks(inode, pextents);
5015 * Account for index blocks, block groups bitmaps and block group
5016 * descriptor blocks if modify datablocks and index blocks
5017 * worse case, the indexs blocks spread over different block groups
5019 * If datablocks are discontiguous, they are possible to spread over
5020 * different block groups too. If they are contiguous, with flexbg,
5021 * they could still across block group boundary.
5023 * Also account for superblock, inode, quota and xattr blocks
5025 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5026 int pextents)
5028 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5029 int gdpblocks;
5030 int idxblocks;
5031 int ret = 0;
5034 * How many index blocks need to touch to map @lblocks logical blocks
5035 * to @pextents physical extents?
5037 idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5039 ret = idxblocks;
5042 * Now let's see how many group bitmaps and group descriptors need
5043 * to account
5045 groups = idxblocks + pextents;
5046 gdpblocks = groups;
5047 if (groups > ngroups)
5048 groups = ngroups;
5049 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5050 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5052 /* bitmaps and block group descriptor blocks */
5053 ret += groups + gdpblocks;
5055 /* Blocks for super block, inode, quota and xattr blocks */
5056 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5058 return ret;
5062 * Calculate the total number of credits to reserve to fit
5063 * the modification of a single pages into a single transaction,
5064 * which may include multiple chunks of block allocations.
5066 * This could be called via ext4_write_begin()
5068 * We need to consider the worse case, when
5069 * one new block per extent.
5071 int ext4_writepage_trans_blocks(struct inode *inode)
5073 int bpp = ext4_journal_blocks_per_page(inode);
5074 int ret;
5076 ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5078 /* Account for data blocks for journalled mode */
5079 if (ext4_should_journal_data(inode))
5080 ret += bpp;
5081 return ret;
5085 * Calculate the journal credits for a chunk of data modification.
5087 * This is called from DIO, fallocate or whoever calling
5088 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5090 * journal buffers for data blocks are not included here, as DIO
5091 * and fallocate do no need to journal data buffers.
5093 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5095 return ext4_meta_trans_blocks(inode, nrblocks, 1);
5099 * The caller must have previously called ext4_reserve_inode_write().
5100 * Give this, we know that the caller already has write access to iloc->bh.
5102 int ext4_mark_iloc_dirty(handle_t *handle,
5103 struct inode *inode, struct ext4_iloc *iloc)
5105 int err = 0;
5107 if (IS_I_VERSION(inode))
5108 inode_inc_iversion(inode);
5110 /* the do_update_inode consumes one bh->b_count */
5111 get_bh(iloc->bh);
5113 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5114 err = ext4_do_update_inode(handle, inode, iloc);
5115 put_bh(iloc->bh);
5116 return err;
5120 * On success, We end up with an outstanding reference count against
5121 * iloc->bh. This _must_ be cleaned up later.
5125 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5126 struct ext4_iloc *iloc)
5128 int err;
5130 err = ext4_get_inode_loc(inode, iloc);
5131 if (!err) {
5132 BUFFER_TRACE(iloc->bh, "get_write_access");
5133 err = ext4_journal_get_write_access(handle, iloc->bh);
5134 if (err) {
5135 brelse(iloc->bh);
5136 iloc->bh = NULL;
5139 ext4_std_error(inode->i_sb, err);
5140 return err;
5144 * Expand an inode by new_extra_isize bytes.
5145 * Returns 0 on success or negative error number on failure.
5147 static int ext4_expand_extra_isize(struct inode *inode,
5148 unsigned int new_extra_isize,
5149 struct ext4_iloc iloc,
5150 handle_t *handle)
5152 struct ext4_inode *raw_inode;
5153 struct ext4_xattr_ibody_header *header;
5155 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
5156 return 0;
5158 raw_inode = ext4_raw_inode(&iloc);
5160 header = IHDR(inode, raw_inode);
5162 /* No extended attributes present */
5163 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5164 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5165 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
5166 new_extra_isize);
5167 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5168 return 0;
5171 /* try to expand with EAs present */
5172 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5173 raw_inode, handle);
5177 * What we do here is to mark the in-core inode as clean with respect to inode
5178 * dirtiness (it may still be data-dirty).
5179 * This means that the in-core inode may be reaped by prune_icache
5180 * without having to perform any I/O. This is a very good thing,
5181 * because *any* task may call prune_icache - even ones which
5182 * have a transaction open against a different journal.
5184 * Is this cheating? Not really. Sure, we haven't written the
5185 * inode out, but prune_icache isn't a user-visible syncing function.
5186 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5187 * we start and wait on commits.
5189 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5191 struct ext4_iloc iloc;
5192 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5193 static unsigned int mnt_count;
5194 int err, ret;
5196 might_sleep();
5197 trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5198 err = ext4_reserve_inode_write(handle, inode, &iloc);
5199 if (err)
5200 return err;
5201 if (ext4_handle_valid(handle) &&
5202 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5203 !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5205 * We need extra buffer credits since we may write into EA block
5206 * with this same handle. If journal_extend fails, then it will
5207 * only result in a minor loss of functionality for that inode.
5208 * If this is felt to be critical, then e2fsck should be run to
5209 * force a large enough s_min_extra_isize.
5211 if ((jbd2_journal_extend(handle,
5212 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5213 ret = ext4_expand_extra_isize(inode,
5214 sbi->s_want_extra_isize,
5215 iloc, handle);
5216 if (ret) {
5217 if (mnt_count !=
5218 le16_to_cpu(sbi->s_es->s_mnt_count)) {
5219 ext4_warning(inode->i_sb,
5220 "Unable to expand inode %lu. Delete"
5221 " some EAs or run e2fsck.",
5222 inode->i_ino);
5223 mnt_count =
5224 le16_to_cpu(sbi->s_es->s_mnt_count);
5229 return ext4_mark_iloc_dirty(handle, inode, &iloc);
5233 * ext4_dirty_inode() is called from __mark_inode_dirty()
5235 * We're really interested in the case where a file is being extended.
5236 * i_size has been changed by generic_commit_write() and we thus need
5237 * to include the updated inode in the current transaction.
5239 * Also, dquot_alloc_block() will always dirty the inode when blocks
5240 * are allocated to the file.
5242 * If the inode is marked synchronous, we don't honour that here - doing
5243 * so would cause a commit on atime updates, which we don't bother doing.
5244 * We handle synchronous inodes at the highest possible level.
5246 * If only the I_DIRTY_TIME flag is set, we can skip everything. If
5247 * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need
5248 * to copy into the on-disk inode structure are the timestamp files.
5250 void ext4_dirty_inode(struct inode *inode, int flags)
5252 handle_t *handle;
5254 if (flags == I_DIRTY_TIME)
5255 return;
5256 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
5257 if (IS_ERR(handle))
5258 goto out;
5260 ext4_mark_inode_dirty(handle, inode);
5262 ext4_journal_stop(handle);
5263 out:
5264 return;
5267 #if 0
5269 * Bind an inode's backing buffer_head into this transaction, to prevent
5270 * it from being flushed to disk early. Unlike
5271 * ext4_reserve_inode_write, this leaves behind no bh reference and
5272 * returns no iloc structure, so the caller needs to repeat the iloc
5273 * lookup to mark the inode dirty later.
5275 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5277 struct ext4_iloc iloc;
5279 int err = 0;
5280 if (handle) {
5281 err = ext4_get_inode_loc(inode, &iloc);
5282 if (!err) {
5283 BUFFER_TRACE(iloc.bh, "get_write_access");
5284 err = jbd2_journal_get_write_access(handle, iloc.bh);
5285 if (!err)
5286 err = ext4_handle_dirty_metadata(handle,
5287 NULL,
5288 iloc.bh);
5289 brelse(iloc.bh);
5292 ext4_std_error(inode->i_sb, err);
5293 return err;
5295 #endif
5297 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5299 journal_t *journal;
5300 handle_t *handle;
5301 int err;
5304 * We have to be very careful here: changing a data block's
5305 * journaling status dynamically is dangerous. If we write a
5306 * data block to the journal, change the status and then delete
5307 * that block, we risk forgetting to revoke the old log record
5308 * from the journal and so a subsequent replay can corrupt data.
5309 * So, first we make sure that the journal is empty and that
5310 * nobody is changing anything.
5313 journal = EXT4_JOURNAL(inode);
5314 if (!journal)
5315 return 0;
5316 if (is_journal_aborted(journal))
5317 return -EROFS;
5318 /* We have to allocate physical blocks for delalloc blocks
5319 * before flushing journal. otherwise delalloc blocks can not
5320 * be allocated any more. even more truncate on delalloc blocks
5321 * could trigger BUG by flushing delalloc blocks in journal.
5322 * There is no delalloc block in non-journal data mode.
5324 if (val && test_opt(inode->i_sb, DELALLOC)) {
5325 err = ext4_alloc_da_blocks(inode);
5326 if (err < 0)
5327 return err;
5330 /* Wait for all existing dio workers */
5331 ext4_inode_block_unlocked_dio(inode);
5332 inode_dio_wait(inode);
5334 jbd2_journal_lock_updates(journal);
5337 * OK, there are no updates running now, and all cached data is
5338 * synced to disk. We are now in a completely consistent state
5339 * which doesn't have anything in the journal, and we know that
5340 * no filesystem updates are running, so it is safe to modify
5341 * the inode's in-core data-journaling state flag now.
5344 if (val)
5345 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5346 else {
5347 err = jbd2_journal_flush(journal);
5348 if (err < 0) {
5349 jbd2_journal_unlock_updates(journal);
5350 ext4_inode_resume_unlocked_dio(inode);
5351 return err;
5353 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5355 ext4_set_aops(inode);
5357 jbd2_journal_unlock_updates(journal);
5358 ext4_inode_resume_unlocked_dio(inode);
5360 /* Finally we can mark the inode as dirty. */
5362 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
5363 if (IS_ERR(handle))
5364 return PTR_ERR(handle);
5366 err = ext4_mark_inode_dirty(handle, inode);
5367 ext4_handle_sync(handle);
5368 ext4_journal_stop(handle);
5369 ext4_std_error(inode->i_sb, err);
5371 return err;
5374 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5376 return !buffer_mapped(bh);
5379 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5381 struct page *page = vmf->page;
5382 loff_t size;
5383 unsigned long len;
5384 int ret;
5385 struct file *file = vma->vm_file;
5386 struct inode *inode = file_inode(file);
5387 struct address_space *mapping = inode->i_mapping;
5388 handle_t *handle;
5389 get_block_t *get_block;
5390 int retries = 0;
5392 sb_start_pagefault(inode->i_sb);
5393 file_update_time(vma->vm_file);
5395 down_read(&EXT4_I(inode)->i_mmap_sem);
5397 ret = ext4_convert_inline_data(inode);
5398 if (ret)
5399 goto out_ret;
5401 /* Delalloc case is easy... */
5402 if (test_opt(inode->i_sb, DELALLOC) &&
5403 !ext4_should_journal_data(inode) &&
5404 !ext4_nonda_switch(inode->i_sb)) {
5405 do {
5406 ret = block_page_mkwrite(vma, vmf,
5407 ext4_da_get_block_prep);
5408 } while (ret == -ENOSPC &&
5409 ext4_should_retry_alloc(inode->i_sb, &retries));
5410 goto out_ret;
5413 lock_page(page);
5414 size = i_size_read(inode);
5415 /* Page got truncated from under us? */
5416 if (page->mapping != mapping || page_offset(page) > size) {
5417 unlock_page(page);
5418 ret = VM_FAULT_NOPAGE;
5419 goto out;
5422 if (page->index == size >> PAGE_CACHE_SHIFT)
5423 len = size & ~PAGE_CACHE_MASK;
5424 else
5425 len = PAGE_CACHE_SIZE;
5427 * Return if we have all the buffers mapped. This avoids the need to do
5428 * journal_start/journal_stop which can block and take a long time
5430 if (page_has_buffers(page)) {
5431 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5432 0, len, NULL,
5433 ext4_bh_unmapped)) {
5434 /* Wait so that we don't change page under IO */
5435 wait_for_stable_page(page);
5436 ret = VM_FAULT_LOCKED;
5437 goto out;
5440 unlock_page(page);
5441 /* OK, we need to fill the hole... */
5442 if (ext4_should_dioread_nolock(inode))
5443 get_block = ext4_get_block_write;
5444 else
5445 get_block = ext4_get_block;
5446 retry_alloc:
5447 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5448 ext4_writepage_trans_blocks(inode));
5449 if (IS_ERR(handle)) {
5450 ret = VM_FAULT_SIGBUS;
5451 goto out;
5453 ret = block_page_mkwrite(vma, vmf, get_block);
5454 if (!ret && ext4_should_journal_data(inode)) {
5455 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
5456 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
5457 unlock_page(page);
5458 ret = VM_FAULT_SIGBUS;
5459 ext4_journal_stop(handle);
5460 goto out;
5462 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5464 ext4_journal_stop(handle);
5465 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5466 goto retry_alloc;
5467 out_ret:
5468 ret = block_page_mkwrite_return(ret);
5469 out:
5470 up_read(&EXT4_I(inode)->i_mmap_sem);
5471 sb_end_pagefault(inode->i_sb);
5472 return ret;
5475 int ext4_filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
5477 struct inode *inode = file_inode(vma->vm_file);
5478 int err;
5480 down_read(&EXT4_I(inode)->i_mmap_sem);
5481 err = filemap_fault(vma, vmf);
5482 up_read(&EXT4_I(inode)->i_mmap_sem);
5484 return err;