wlcore: Add RX_BA_WIN_SIZE_CHANGE_EVENT event
[linux/fpc-iii.git] / fs / namespace.c
blobf26d18d69712111859ad0d2631002d42c9317777
1 /*
2 * linux/fs/namespace.c
4 * (C) Copyright Al Viro 2000, 2001
5 * Released under GPL v2.
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
8 * Heavily rewritten.
9 */
11 #include <linux/syscalls.h>
12 #include <linux/export.h>
13 #include <linux/capability.h>
14 #include <linux/mnt_namespace.h>
15 #include <linux/user_namespace.h>
16 #include <linux/namei.h>
17 #include <linux/security.h>
18 #include <linux/idr.h>
19 #include <linux/init.h> /* init_rootfs */
20 #include <linux/fs_struct.h> /* get_fs_root et.al. */
21 #include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
22 #include <linux/uaccess.h>
23 #include <linux/proc_ns.h>
24 #include <linux/magic.h>
25 #include <linux/bootmem.h>
26 #include <linux/task_work.h>
27 #include "pnode.h"
28 #include "internal.h"
30 /* Maximum number of mounts in a mount namespace */
31 unsigned int sysctl_mount_max __read_mostly = 100000;
33 static unsigned int m_hash_mask __read_mostly;
34 static unsigned int m_hash_shift __read_mostly;
35 static unsigned int mp_hash_mask __read_mostly;
36 static unsigned int mp_hash_shift __read_mostly;
38 static __initdata unsigned long mhash_entries;
39 static int __init set_mhash_entries(char *str)
41 if (!str)
42 return 0;
43 mhash_entries = simple_strtoul(str, &str, 0);
44 return 1;
46 __setup("mhash_entries=", set_mhash_entries);
48 static __initdata unsigned long mphash_entries;
49 static int __init set_mphash_entries(char *str)
51 if (!str)
52 return 0;
53 mphash_entries = simple_strtoul(str, &str, 0);
54 return 1;
56 __setup("mphash_entries=", set_mphash_entries);
58 static u64 event;
59 static DEFINE_IDA(mnt_id_ida);
60 static DEFINE_IDA(mnt_group_ida);
61 static DEFINE_SPINLOCK(mnt_id_lock);
62 static int mnt_id_start = 0;
63 static int mnt_group_start = 1;
65 static struct hlist_head *mount_hashtable __read_mostly;
66 static struct hlist_head *mountpoint_hashtable __read_mostly;
67 static struct kmem_cache *mnt_cache __read_mostly;
68 static DECLARE_RWSEM(namespace_sem);
70 /* /sys/fs */
71 struct kobject *fs_kobj;
72 EXPORT_SYMBOL_GPL(fs_kobj);
75 * vfsmount lock may be taken for read to prevent changes to the
76 * vfsmount hash, ie. during mountpoint lookups or walking back
77 * up the tree.
79 * It should be taken for write in all cases where the vfsmount
80 * tree or hash is modified or when a vfsmount structure is modified.
82 __cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
84 static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
86 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
87 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
88 tmp = tmp + (tmp >> m_hash_shift);
89 return &mount_hashtable[tmp & m_hash_mask];
92 static inline struct hlist_head *mp_hash(struct dentry *dentry)
94 unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
95 tmp = tmp + (tmp >> mp_hash_shift);
96 return &mountpoint_hashtable[tmp & mp_hash_mask];
100 * allocation is serialized by namespace_sem, but we need the spinlock to
101 * serialize with freeing.
103 static int mnt_alloc_id(struct mount *mnt)
105 int res;
107 retry:
108 ida_pre_get(&mnt_id_ida, GFP_KERNEL);
109 spin_lock(&mnt_id_lock);
110 res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
111 if (!res)
112 mnt_id_start = mnt->mnt_id + 1;
113 spin_unlock(&mnt_id_lock);
114 if (res == -EAGAIN)
115 goto retry;
117 return res;
120 static void mnt_free_id(struct mount *mnt)
122 int id = mnt->mnt_id;
123 spin_lock(&mnt_id_lock);
124 ida_remove(&mnt_id_ida, id);
125 if (mnt_id_start > id)
126 mnt_id_start = id;
127 spin_unlock(&mnt_id_lock);
131 * Allocate a new peer group ID
133 * mnt_group_ida is protected by namespace_sem
135 static int mnt_alloc_group_id(struct mount *mnt)
137 int res;
139 if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
140 return -ENOMEM;
142 res = ida_get_new_above(&mnt_group_ida,
143 mnt_group_start,
144 &mnt->mnt_group_id);
145 if (!res)
146 mnt_group_start = mnt->mnt_group_id + 1;
148 return res;
152 * Release a peer group ID
154 void mnt_release_group_id(struct mount *mnt)
156 int id = mnt->mnt_group_id;
157 ida_remove(&mnt_group_ida, id);
158 if (mnt_group_start > id)
159 mnt_group_start = id;
160 mnt->mnt_group_id = 0;
164 * vfsmount lock must be held for read
166 static inline void mnt_add_count(struct mount *mnt, int n)
168 #ifdef CONFIG_SMP
169 this_cpu_add(mnt->mnt_pcp->mnt_count, n);
170 #else
171 preempt_disable();
172 mnt->mnt_count += n;
173 preempt_enable();
174 #endif
178 * vfsmount lock must be held for write
180 unsigned int mnt_get_count(struct mount *mnt)
182 #ifdef CONFIG_SMP
183 unsigned int count = 0;
184 int cpu;
186 for_each_possible_cpu(cpu) {
187 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
190 return count;
191 #else
192 return mnt->mnt_count;
193 #endif
196 static void drop_mountpoint(struct fs_pin *p)
198 struct mount *m = container_of(p, struct mount, mnt_umount);
199 dput(m->mnt_ex_mountpoint);
200 pin_remove(p);
201 mntput(&m->mnt);
204 static struct mount *alloc_vfsmnt(const char *name)
206 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
207 if (mnt) {
208 int err;
210 err = mnt_alloc_id(mnt);
211 if (err)
212 goto out_free_cache;
214 if (name) {
215 mnt->mnt_devname = kstrdup_const(name, GFP_KERNEL);
216 if (!mnt->mnt_devname)
217 goto out_free_id;
220 #ifdef CONFIG_SMP
221 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
222 if (!mnt->mnt_pcp)
223 goto out_free_devname;
225 this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
226 #else
227 mnt->mnt_count = 1;
228 mnt->mnt_writers = 0;
229 #endif
231 INIT_HLIST_NODE(&mnt->mnt_hash);
232 INIT_LIST_HEAD(&mnt->mnt_child);
233 INIT_LIST_HEAD(&mnt->mnt_mounts);
234 INIT_LIST_HEAD(&mnt->mnt_list);
235 INIT_LIST_HEAD(&mnt->mnt_expire);
236 INIT_LIST_HEAD(&mnt->mnt_share);
237 INIT_LIST_HEAD(&mnt->mnt_slave_list);
238 INIT_LIST_HEAD(&mnt->mnt_slave);
239 INIT_HLIST_NODE(&mnt->mnt_mp_list);
240 #ifdef CONFIG_FSNOTIFY
241 INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks);
242 #endif
243 init_fs_pin(&mnt->mnt_umount, drop_mountpoint);
245 return mnt;
247 #ifdef CONFIG_SMP
248 out_free_devname:
249 kfree_const(mnt->mnt_devname);
250 #endif
251 out_free_id:
252 mnt_free_id(mnt);
253 out_free_cache:
254 kmem_cache_free(mnt_cache, mnt);
255 return NULL;
259 * Most r/o checks on a fs are for operations that take
260 * discrete amounts of time, like a write() or unlink().
261 * We must keep track of when those operations start
262 * (for permission checks) and when they end, so that
263 * we can determine when writes are able to occur to
264 * a filesystem.
267 * __mnt_is_readonly: check whether a mount is read-only
268 * @mnt: the mount to check for its write status
270 * This shouldn't be used directly ouside of the VFS.
271 * It does not guarantee that the filesystem will stay
272 * r/w, just that it is right *now*. This can not and
273 * should not be used in place of IS_RDONLY(inode).
274 * mnt_want/drop_write() will _keep_ the filesystem
275 * r/w.
277 int __mnt_is_readonly(struct vfsmount *mnt)
279 if (mnt->mnt_flags & MNT_READONLY)
280 return 1;
281 if (mnt->mnt_sb->s_flags & MS_RDONLY)
282 return 1;
283 return 0;
285 EXPORT_SYMBOL_GPL(__mnt_is_readonly);
287 static inline void mnt_inc_writers(struct mount *mnt)
289 #ifdef CONFIG_SMP
290 this_cpu_inc(mnt->mnt_pcp->mnt_writers);
291 #else
292 mnt->mnt_writers++;
293 #endif
296 static inline void mnt_dec_writers(struct mount *mnt)
298 #ifdef CONFIG_SMP
299 this_cpu_dec(mnt->mnt_pcp->mnt_writers);
300 #else
301 mnt->mnt_writers--;
302 #endif
305 static unsigned int mnt_get_writers(struct mount *mnt)
307 #ifdef CONFIG_SMP
308 unsigned int count = 0;
309 int cpu;
311 for_each_possible_cpu(cpu) {
312 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
315 return count;
316 #else
317 return mnt->mnt_writers;
318 #endif
321 static int mnt_is_readonly(struct vfsmount *mnt)
323 if (mnt->mnt_sb->s_readonly_remount)
324 return 1;
325 /* Order wrt setting s_flags/s_readonly_remount in do_remount() */
326 smp_rmb();
327 return __mnt_is_readonly(mnt);
331 * Most r/o & frozen checks on a fs are for operations that take discrete
332 * amounts of time, like a write() or unlink(). We must keep track of when
333 * those operations start (for permission checks) and when they end, so that we
334 * can determine when writes are able to occur to a filesystem.
337 * __mnt_want_write - get write access to a mount without freeze protection
338 * @m: the mount on which to take a write
340 * This tells the low-level filesystem that a write is about to be performed to
341 * it, and makes sure that writes are allowed (mnt it read-write) before
342 * returning success. This operation does not protect against filesystem being
343 * frozen. When the write operation is finished, __mnt_drop_write() must be
344 * called. This is effectively a refcount.
346 int __mnt_want_write(struct vfsmount *m)
348 struct mount *mnt = real_mount(m);
349 int ret = 0;
351 preempt_disable();
352 mnt_inc_writers(mnt);
354 * The store to mnt_inc_writers must be visible before we pass
355 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
356 * incremented count after it has set MNT_WRITE_HOLD.
358 smp_mb();
359 while (ACCESS_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
360 cpu_relax();
362 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
363 * be set to match its requirements. So we must not load that until
364 * MNT_WRITE_HOLD is cleared.
366 smp_rmb();
367 if (mnt_is_readonly(m)) {
368 mnt_dec_writers(mnt);
369 ret = -EROFS;
371 preempt_enable();
373 return ret;
377 * mnt_want_write - get write access to a mount
378 * @m: the mount on which to take a write
380 * This tells the low-level filesystem that a write is about to be performed to
381 * it, and makes sure that writes are allowed (mount is read-write, filesystem
382 * is not frozen) before returning success. When the write operation is
383 * finished, mnt_drop_write() must be called. This is effectively a refcount.
385 int mnt_want_write(struct vfsmount *m)
387 int ret;
389 sb_start_write(m->mnt_sb);
390 ret = __mnt_want_write(m);
391 if (ret)
392 sb_end_write(m->mnt_sb);
393 return ret;
395 EXPORT_SYMBOL_GPL(mnt_want_write);
398 * mnt_clone_write - get write access to a mount
399 * @mnt: the mount on which to take a write
401 * This is effectively like mnt_want_write, except
402 * it must only be used to take an extra write reference
403 * on a mountpoint that we already know has a write reference
404 * on it. This allows some optimisation.
406 * After finished, mnt_drop_write must be called as usual to
407 * drop the reference.
409 int mnt_clone_write(struct vfsmount *mnt)
411 /* superblock may be r/o */
412 if (__mnt_is_readonly(mnt))
413 return -EROFS;
414 preempt_disable();
415 mnt_inc_writers(real_mount(mnt));
416 preempt_enable();
417 return 0;
419 EXPORT_SYMBOL_GPL(mnt_clone_write);
422 * __mnt_want_write_file - get write access to a file's mount
423 * @file: the file who's mount on which to take a write
425 * This is like __mnt_want_write, but it takes a file and can
426 * do some optimisations if the file is open for write already
428 int __mnt_want_write_file(struct file *file)
430 if (!(file->f_mode & FMODE_WRITER))
431 return __mnt_want_write(file->f_path.mnt);
432 else
433 return mnt_clone_write(file->f_path.mnt);
437 * mnt_want_write_file - get write access to a file's mount
438 * @file: the file who's mount on which to take a write
440 * This is like mnt_want_write, but it takes a file and can
441 * do some optimisations if the file is open for write already
443 int mnt_want_write_file(struct file *file)
445 int ret;
447 sb_start_write(file->f_path.mnt->mnt_sb);
448 ret = __mnt_want_write_file(file);
449 if (ret)
450 sb_end_write(file->f_path.mnt->mnt_sb);
451 return ret;
453 EXPORT_SYMBOL_GPL(mnt_want_write_file);
456 * __mnt_drop_write - give up write access to a mount
457 * @mnt: the mount on which to give up write access
459 * Tells the low-level filesystem that we are done
460 * performing writes to it. Must be matched with
461 * __mnt_want_write() call above.
463 void __mnt_drop_write(struct vfsmount *mnt)
465 preempt_disable();
466 mnt_dec_writers(real_mount(mnt));
467 preempt_enable();
471 * mnt_drop_write - give up write access to a mount
472 * @mnt: the mount on which to give up write access
474 * Tells the low-level filesystem that we are done performing writes to it and
475 * also allows filesystem to be frozen again. Must be matched with
476 * mnt_want_write() call above.
478 void mnt_drop_write(struct vfsmount *mnt)
480 __mnt_drop_write(mnt);
481 sb_end_write(mnt->mnt_sb);
483 EXPORT_SYMBOL_GPL(mnt_drop_write);
485 void __mnt_drop_write_file(struct file *file)
487 __mnt_drop_write(file->f_path.mnt);
490 void mnt_drop_write_file(struct file *file)
492 mnt_drop_write(file->f_path.mnt);
494 EXPORT_SYMBOL(mnt_drop_write_file);
496 static int mnt_make_readonly(struct mount *mnt)
498 int ret = 0;
500 lock_mount_hash();
501 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
503 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
504 * should be visible before we do.
506 smp_mb();
509 * With writers on hold, if this value is zero, then there are
510 * definitely no active writers (although held writers may subsequently
511 * increment the count, they'll have to wait, and decrement it after
512 * seeing MNT_READONLY).
514 * It is OK to have counter incremented on one CPU and decremented on
515 * another: the sum will add up correctly. The danger would be when we
516 * sum up each counter, if we read a counter before it is incremented,
517 * but then read another CPU's count which it has been subsequently
518 * decremented from -- we would see more decrements than we should.
519 * MNT_WRITE_HOLD protects against this scenario, because
520 * mnt_want_write first increments count, then smp_mb, then spins on
521 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
522 * we're counting up here.
524 if (mnt_get_writers(mnt) > 0)
525 ret = -EBUSY;
526 else
527 mnt->mnt.mnt_flags |= MNT_READONLY;
529 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
530 * that become unheld will see MNT_READONLY.
532 smp_wmb();
533 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
534 unlock_mount_hash();
535 return ret;
538 static void __mnt_unmake_readonly(struct mount *mnt)
540 lock_mount_hash();
541 mnt->mnt.mnt_flags &= ~MNT_READONLY;
542 unlock_mount_hash();
545 int sb_prepare_remount_readonly(struct super_block *sb)
547 struct mount *mnt;
548 int err = 0;
550 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */
551 if (atomic_long_read(&sb->s_remove_count))
552 return -EBUSY;
554 lock_mount_hash();
555 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
556 if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
557 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
558 smp_mb();
559 if (mnt_get_writers(mnt) > 0) {
560 err = -EBUSY;
561 break;
565 if (!err && atomic_long_read(&sb->s_remove_count))
566 err = -EBUSY;
568 if (!err) {
569 sb->s_readonly_remount = 1;
570 smp_wmb();
572 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
573 if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
574 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
576 unlock_mount_hash();
578 return err;
581 static void free_vfsmnt(struct mount *mnt)
583 kfree_const(mnt->mnt_devname);
584 #ifdef CONFIG_SMP
585 free_percpu(mnt->mnt_pcp);
586 #endif
587 kmem_cache_free(mnt_cache, mnt);
590 static void delayed_free_vfsmnt(struct rcu_head *head)
592 free_vfsmnt(container_of(head, struct mount, mnt_rcu));
595 /* call under rcu_read_lock */
596 int __legitimize_mnt(struct vfsmount *bastard, unsigned seq)
598 struct mount *mnt;
599 if (read_seqretry(&mount_lock, seq))
600 return 1;
601 if (bastard == NULL)
602 return 0;
603 mnt = real_mount(bastard);
604 mnt_add_count(mnt, 1);
605 if (likely(!read_seqretry(&mount_lock, seq)))
606 return 0;
607 if (bastard->mnt_flags & MNT_SYNC_UMOUNT) {
608 mnt_add_count(mnt, -1);
609 return 1;
611 return -1;
614 /* call under rcu_read_lock */
615 bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
617 int res = __legitimize_mnt(bastard, seq);
618 if (likely(!res))
619 return true;
620 if (unlikely(res < 0)) {
621 rcu_read_unlock();
622 mntput(bastard);
623 rcu_read_lock();
625 return false;
629 * find the first mount at @dentry on vfsmount @mnt.
630 * call under rcu_read_lock()
632 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
634 struct hlist_head *head = m_hash(mnt, dentry);
635 struct mount *p;
637 hlist_for_each_entry_rcu(p, head, mnt_hash)
638 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
639 return p;
640 return NULL;
644 * lookup_mnt - Return the first child mount mounted at path
646 * "First" means first mounted chronologically. If you create the
647 * following mounts:
649 * mount /dev/sda1 /mnt
650 * mount /dev/sda2 /mnt
651 * mount /dev/sda3 /mnt
653 * Then lookup_mnt() on the base /mnt dentry in the root mount will
654 * return successively the root dentry and vfsmount of /dev/sda1, then
655 * /dev/sda2, then /dev/sda3, then NULL.
657 * lookup_mnt takes a reference to the found vfsmount.
659 struct vfsmount *lookup_mnt(struct path *path)
661 struct mount *child_mnt;
662 struct vfsmount *m;
663 unsigned seq;
665 rcu_read_lock();
666 do {
667 seq = read_seqbegin(&mount_lock);
668 child_mnt = __lookup_mnt(path->mnt, path->dentry);
669 m = child_mnt ? &child_mnt->mnt : NULL;
670 } while (!legitimize_mnt(m, seq));
671 rcu_read_unlock();
672 return m;
676 * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
677 * current mount namespace.
679 * The common case is dentries are not mountpoints at all and that
680 * test is handled inline. For the slow case when we are actually
681 * dealing with a mountpoint of some kind, walk through all of the
682 * mounts in the current mount namespace and test to see if the dentry
683 * is a mountpoint.
685 * The mount_hashtable is not usable in the context because we
686 * need to identify all mounts that may be in the current mount
687 * namespace not just a mount that happens to have some specified
688 * parent mount.
690 bool __is_local_mountpoint(struct dentry *dentry)
692 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
693 struct mount *mnt;
694 bool is_covered = false;
696 if (!d_mountpoint(dentry))
697 goto out;
699 down_read(&namespace_sem);
700 list_for_each_entry(mnt, &ns->list, mnt_list) {
701 is_covered = (mnt->mnt_mountpoint == dentry);
702 if (is_covered)
703 break;
705 up_read(&namespace_sem);
706 out:
707 return is_covered;
710 static struct mountpoint *lookup_mountpoint(struct dentry *dentry)
712 struct hlist_head *chain = mp_hash(dentry);
713 struct mountpoint *mp;
715 hlist_for_each_entry(mp, chain, m_hash) {
716 if (mp->m_dentry == dentry) {
717 /* might be worth a WARN_ON() */
718 if (d_unlinked(dentry))
719 return ERR_PTR(-ENOENT);
720 mp->m_count++;
721 return mp;
724 return NULL;
727 static struct mountpoint *get_mountpoint(struct dentry *dentry)
729 struct mountpoint *mp, *new = NULL;
730 int ret;
732 if (d_mountpoint(dentry)) {
733 mountpoint:
734 read_seqlock_excl(&mount_lock);
735 mp = lookup_mountpoint(dentry);
736 read_sequnlock_excl(&mount_lock);
737 if (mp)
738 goto done;
741 if (!new)
742 new = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
743 if (!new)
744 return ERR_PTR(-ENOMEM);
747 /* Exactly one processes may set d_mounted */
748 ret = d_set_mounted(dentry);
750 /* Someone else set d_mounted? */
751 if (ret == -EBUSY)
752 goto mountpoint;
754 /* The dentry is not available as a mountpoint? */
755 mp = ERR_PTR(ret);
756 if (ret)
757 goto done;
759 /* Add the new mountpoint to the hash table */
760 read_seqlock_excl(&mount_lock);
761 new->m_dentry = dentry;
762 new->m_count = 1;
763 hlist_add_head(&new->m_hash, mp_hash(dentry));
764 INIT_HLIST_HEAD(&new->m_list);
765 read_sequnlock_excl(&mount_lock);
767 mp = new;
768 new = NULL;
769 done:
770 kfree(new);
771 return mp;
774 static void put_mountpoint(struct mountpoint *mp)
776 if (!--mp->m_count) {
777 struct dentry *dentry = mp->m_dentry;
778 BUG_ON(!hlist_empty(&mp->m_list));
779 spin_lock(&dentry->d_lock);
780 dentry->d_flags &= ~DCACHE_MOUNTED;
781 spin_unlock(&dentry->d_lock);
782 hlist_del(&mp->m_hash);
783 kfree(mp);
787 static inline int check_mnt(struct mount *mnt)
789 return mnt->mnt_ns == current->nsproxy->mnt_ns;
793 * vfsmount lock must be held for write
795 static void touch_mnt_namespace(struct mnt_namespace *ns)
797 if (ns) {
798 ns->event = ++event;
799 wake_up_interruptible(&ns->poll);
804 * vfsmount lock must be held for write
806 static void __touch_mnt_namespace(struct mnt_namespace *ns)
808 if (ns && ns->event != event) {
809 ns->event = event;
810 wake_up_interruptible(&ns->poll);
815 * vfsmount lock must be held for write
817 static void unhash_mnt(struct mount *mnt)
819 mnt->mnt_parent = mnt;
820 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
821 list_del_init(&mnt->mnt_child);
822 hlist_del_init_rcu(&mnt->mnt_hash);
823 hlist_del_init(&mnt->mnt_mp_list);
824 put_mountpoint(mnt->mnt_mp);
825 mnt->mnt_mp = NULL;
829 * vfsmount lock must be held for write
831 static void detach_mnt(struct mount *mnt, struct path *old_path)
833 old_path->dentry = mnt->mnt_mountpoint;
834 old_path->mnt = &mnt->mnt_parent->mnt;
835 unhash_mnt(mnt);
839 * vfsmount lock must be held for write
841 static void umount_mnt(struct mount *mnt)
843 /* old mountpoint will be dropped when we can do that */
844 mnt->mnt_ex_mountpoint = mnt->mnt_mountpoint;
845 unhash_mnt(mnt);
849 * vfsmount lock must be held for write
851 void mnt_set_mountpoint(struct mount *mnt,
852 struct mountpoint *mp,
853 struct mount *child_mnt)
855 mp->m_count++;
856 mnt_add_count(mnt, 1); /* essentially, that's mntget */
857 child_mnt->mnt_mountpoint = dget(mp->m_dentry);
858 child_mnt->mnt_parent = mnt;
859 child_mnt->mnt_mp = mp;
860 hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list);
863 static void __attach_mnt(struct mount *mnt, struct mount *parent)
865 hlist_add_head_rcu(&mnt->mnt_hash,
866 m_hash(&parent->mnt, mnt->mnt_mountpoint));
867 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
871 * vfsmount lock must be held for write
873 static void attach_mnt(struct mount *mnt,
874 struct mount *parent,
875 struct mountpoint *mp)
877 mnt_set_mountpoint(parent, mp, mnt);
878 __attach_mnt(mnt, parent);
881 void mnt_change_mountpoint(struct mount *parent, struct mountpoint *mp, struct mount *mnt)
883 struct mountpoint *old_mp = mnt->mnt_mp;
884 struct dentry *old_mountpoint = mnt->mnt_mountpoint;
885 struct mount *old_parent = mnt->mnt_parent;
887 list_del_init(&mnt->mnt_child);
888 hlist_del_init(&mnt->mnt_mp_list);
889 hlist_del_init_rcu(&mnt->mnt_hash);
891 attach_mnt(mnt, parent, mp);
893 put_mountpoint(old_mp);
896 * Safely avoid even the suggestion this code might sleep or
897 * lock the mount hash by taking advantage of the knowledge that
898 * mnt_change_mountpoint will not release the final reference
899 * to a mountpoint.
901 * During mounting, the mount passed in as the parent mount will
902 * continue to use the old mountpoint and during unmounting, the
903 * old mountpoint will continue to exist until namespace_unlock,
904 * which happens well after mnt_change_mountpoint.
906 spin_lock(&old_mountpoint->d_lock);
907 old_mountpoint->d_lockref.count--;
908 spin_unlock(&old_mountpoint->d_lock);
910 mnt_add_count(old_parent, -1);
914 * vfsmount lock must be held for write
916 static void commit_tree(struct mount *mnt)
918 struct mount *parent = mnt->mnt_parent;
919 struct mount *m;
920 LIST_HEAD(head);
921 struct mnt_namespace *n = parent->mnt_ns;
923 BUG_ON(parent == mnt);
925 list_add_tail(&head, &mnt->mnt_list);
926 list_for_each_entry(m, &head, mnt_list)
927 m->mnt_ns = n;
929 list_splice(&head, n->list.prev);
931 n->mounts += n->pending_mounts;
932 n->pending_mounts = 0;
934 __attach_mnt(mnt, parent);
935 touch_mnt_namespace(n);
938 static struct mount *next_mnt(struct mount *p, struct mount *root)
940 struct list_head *next = p->mnt_mounts.next;
941 if (next == &p->mnt_mounts) {
942 while (1) {
943 if (p == root)
944 return NULL;
945 next = p->mnt_child.next;
946 if (next != &p->mnt_parent->mnt_mounts)
947 break;
948 p = p->mnt_parent;
951 return list_entry(next, struct mount, mnt_child);
954 static struct mount *skip_mnt_tree(struct mount *p)
956 struct list_head *prev = p->mnt_mounts.prev;
957 while (prev != &p->mnt_mounts) {
958 p = list_entry(prev, struct mount, mnt_child);
959 prev = p->mnt_mounts.prev;
961 return p;
964 struct vfsmount *
965 vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
967 struct mount *mnt;
968 struct dentry *root;
970 if (!type)
971 return ERR_PTR(-ENODEV);
973 mnt = alloc_vfsmnt(name);
974 if (!mnt)
975 return ERR_PTR(-ENOMEM);
977 if (flags & MS_KERNMOUNT)
978 mnt->mnt.mnt_flags = MNT_INTERNAL;
980 root = mount_fs(type, flags, name, data);
981 if (IS_ERR(root)) {
982 mnt_free_id(mnt);
983 free_vfsmnt(mnt);
984 return ERR_CAST(root);
987 mnt->mnt.mnt_root = root;
988 mnt->mnt.mnt_sb = root->d_sb;
989 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
990 mnt->mnt_parent = mnt;
991 lock_mount_hash();
992 list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts);
993 unlock_mount_hash();
994 return &mnt->mnt;
996 EXPORT_SYMBOL_GPL(vfs_kern_mount);
998 static struct mount *clone_mnt(struct mount *old, struct dentry *root,
999 int flag)
1001 struct super_block *sb = old->mnt.mnt_sb;
1002 struct mount *mnt;
1003 int err;
1005 mnt = alloc_vfsmnt(old->mnt_devname);
1006 if (!mnt)
1007 return ERR_PTR(-ENOMEM);
1009 if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
1010 mnt->mnt_group_id = 0; /* not a peer of original */
1011 else
1012 mnt->mnt_group_id = old->mnt_group_id;
1014 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
1015 err = mnt_alloc_group_id(mnt);
1016 if (err)
1017 goto out_free;
1020 mnt->mnt.mnt_flags = old->mnt.mnt_flags & ~(MNT_WRITE_HOLD|MNT_MARKED);
1021 /* Don't allow unprivileged users to change mount flags */
1022 if (flag & CL_UNPRIVILEGED) {
1023 mnt->mnt.mnt_flags |= MNT_LOCK_ATIME;
1025 if (mnt->mnt.mnt_flags & MNT_READONLY)
1026 mnt->mnt.mnt_flags |= MNT_LOCK_READONLY;
1028 if (mnt->mnt.mnt_flags & MNT_NODEV)
1029 mnt->mnt.mnt_flags |= MNT_LOCK_NODEV;
1031 if (mnt->mnt.mnt_flags & MNT_NOSUID)
1032 mnt->mnt.mnt_flags |= MNT_LOCK_NOSUID;
1034 if (mnt->mnt.mnt_flags & MNT_NOEXEC)
1035 mnt->mnt.mnt_flags |= MNT_LOCK_NOEXEC;
1038 /* Don't allow unprivileged users to reveal what is under a mount */
1039 if ((flag & CL_UNPRIVILEGED) &&
1040 (!(flag & CL_EXPIRE) || list_empty(&old->mnt_expire)))
1041 mnt->mnt.mnt_flags |= MNT_LOCKED;
1043 atomic_inc(&sb->s_active);
1044 mnt->mnt.mnt_sb = sb;
1045 mnt->mnt.mnt_root = dget(root);
1046 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1047 mnt->mnt_parent = mnt;
1048 lock_mount_hash();
1049 list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
1050 unlock_mount_hash();
1052 if ((flag & CL_SLAVE) ||
1053 ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
1054 list_add(&mnt->mnt_slave, &old->mnt_slave_list);
1055 mnt->mnt_master = old;
1056 CLEAR_MNT_SHARED(mnt);
1057 } else if (!(flag & CL_PRIVATE)) {
1058 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
1059 list_add(&mnt->mnt_share, &old->mnt_share);
1060 if (IS_MNT_SLAVE(old))
1061 list_add(&mnt->mnt_slave, &old->mnt_slave);
1062 mnt->mnt_master = old->mnt_master;
1064 if (flag & CL_MAKE_SHARED)
1065 set_mnt_shared(mnt);
1067 /* stick the duplicate mount on the same expiry list
1068 * as the original if that was on one */
1069 if (flag & CL_EXPIRE) {
1070 if (!list_empty(&old->mnt_expire))
1071 list_add(&mnt->mnt_expire, &old->mnt_expire);
1074 return mnt;
1076 out_free:
1077 mnt_free_id(mnt);
1078 free_vfsmnt(mnt);
1079 return ERR_PTR(err);
1082 static void cleanup_mnt(struct mount *mnt)
1085 * This probably indicates that somebody messed
1086 * up a mnt_want/drop_write() pair. If this
1087 * happens, the filesystem was probably unable
1088 * to make r/w->r/o transitions.
1091 * The locking used to deal with mnt_count decrement provides barriers,
1092 * so mnt_get_writers() below is safe.
1094 WARN_ON(mnt_get_writers(mnt));
1095 if (unlikely(mnt->mnt_pins.first))
1096 mnt_pin_kill(mnt);
1097 fsnotify_vfsmount_delete(&mnt->mnt);
1098 dput(mnt->mnt.mnt_root);
1099 deactivate_super(mnt->mnt.mnt_sb);
1100 mnt_free_id(mnt);
1101 call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
1104 static void __cleanup_mnt(struct rcu_head *head)
1106 cleanup_mnt(container_of(head, struct mount, mnt_rcu));
1109 static LLIST_HEAD(delayed_mntput_list);
1110 static void delayed_mntput(struct work_struct *unused)
1112 struct llist_node *node = llist_del_all(&delayed_mntput_list);
1113 struct llist_node *next;
1115 for (; node; node = next) {
1116 next = llist_next(node);
1117 cleanup_mnt(llist_entry(node, struct mount, mnt_llist));
1120 static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput);
1122 static void mntput_no_expire(struct mount *mnt)
1124 rcu_read_lock();
1125 mnt_add_count(mnt, -1);
1126 if (likely(mnt->mnt_ns)) { /* shouldn't be the last one */
1127 rcu_read_unlock();
1128 return;
1130 lock_mount_hash();
1131 if (mnt_get_count(mnt)) {
1132 rcu_read_unlock();
1133 unlock_mount_hash();
1134 return;
1136 if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
1137 rcu_read_unlock();
1138 unlock_mount_hash();
1139 return;
1141 mnt->mnt.mnt_flags |= MNT_DOOMED;
1142 rcu_read_unlock();
1144 list_del(&mnt->mnt_instance);
1146 if (unlikely(!list_empty(&mnt->mnt_mounts))) {
1147 struct mount *p, *tmp;
1148 list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts, mnt_child) {
1149 umount_mnt(p);
1152 unlock_mount_hash();
1154 if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) {
1155 struct task_struct *task = current;
1156 if (likely(!(task->flags & PF_KTHREAD))) {
1157 init_task_work(&mnt->mnt_rcu, __cleanup_mnt);
1158 if (!task_work_add(task, &mnt->mnt_rcu, true))
1159 return;
1161 if (llist_add(&mnt->mnt_llist, &delayed_mntput_list))
1162 schedule_delayed_work(&delayed_mntput_work, 1);
1163 return;
1165 cleanup_mnt(mnt);
1168 void mntput(struct vfsmount *mnt)
1170 if (mnt) {
1171 struct mount *m = real_mount(mnt);
1172 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
1173 if (unlikely(m->mnt_expiry_mark))
1174 m->mnt_expiry_mark = 0;
1175 mntput_no_expire(m);
1178 EXPORT_SYMBOL(mntput);
1180 struct vfsmount *mntget(struct vfsmount *mnt)
1182 if (mnt)
1183 mnt_add_count(real_mount(mnt), 1);
1184 return mnt;
1186 EXPORT_SYMBOL(mntget);
1188 struct vfsmount *mnt_clone_internal(struct path *path)
1190 struct mount *p;
1191 p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE);
1192 if (IS_ERR(p))
1193 return ERR_CAST(p);
1194 p->mnt.mnt_flags |= MNT_INTERNAL;
1195 return &p->mnt;
1198 static inline void mangle(struct seq_file *m, const char *s)
1200 seq_escape(m, s, " \t\n\\");
1204 * Simple .show_options callback for filesystems which don't want to
1205 * implement more complex mount option showing.
1207 * See also save_mount_options().
1209 int generic_show_options(struct seq_file *m, struct dentry *root)
1211 const char *options;
1213 rcu_read_lock();
1214 options = rcu_dereference(root->d_sb->s_options);
1216 if (options != NULL && options[0]) {
1217 seq_putc(m, ',');
1218 mangle(m, options);
1220 rcu_read_unlock();
1222 return 0;
1224 EXPORT_SYMBOL(generic_show_options);
1227 * If filesystem uses generic_show_options(), this function should be
1228 * called from the fill_super() callback.
1230 * The .remount_fs callback usually needs to be handled in a special
1231 * way, to make sure, that previous options are not overwritten if the
1232 * remount fails.
1234 * Also note, that if the filesystem's .remount_fs function doesn't
1235 * reset all options to their default value, but changes only newly
1236 * given options, then the displayed options will not reflect reality
1237 * any more.
1239 void save_mount_options(struct super_block *sb, char *options)
1241 BUG_ON(sb->s_options);
1242 rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL));
1244 EXPORT_SYMBOL(save_mount_options);
1246 void replace_mount_options(struct super_block *sb, char *options)
1248 char *old = sb->s_options;
1249 rcu_assign_pointer(sb->s_options, options);
1250 if (old) {
1251 synchronize_rcu();
1252 kfree(old);
1255 EXPORT_SYMBOL(replace_mount_options);
1257 #ifdef CONFIG_PROC_FS
1258 /* iterator; we want it to have access to namespace_sem, thus here... */
1259 static void *m_start(struct seq_file *m, loff_t *pos)
1261 struct proc_mounts *p = m->private;
1263 down_read(&namespace_sem);
1264 if (p->cached_event == p->ns->event) {
1265 void *v = p->cached_mount;
1266 if (*pos == p->cached_index)
1267 return v;
1268 if (*pos == p->cached_index + 1) {
1269 v = seq_list_next(v, &p->ns->list, &p->cached_index);
1270 return p->cached_mount = v;
1274 p->cached_event = p->ns->event;
1275 p->cached_mount = seq_list_start(&p->ns->list, *pos);
1276 p->cached_index = *pos;
1277 return p->cached_mount;
1280 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1282 struct proc_mounts *p = m->private;
1284 p->cached_mount = seq_list_next(v, &p->ns->list, pos);
1285 p->cached_index = *pos;
1286 return p->cached_mount;
1289 static void m_stop(struct seq_file *m, void *v)
1291 up_read(&namespace_sem);
1294 static int m_show(struct seq_file *m, void *v)
1296 struct proc_mounts *p = m->private;
1297 struct mount *r = list_entry(v, struct mount, mnt_list);
1298 return p->show(m, &r->mnt);
1301 const struct seq_operations mounts_op = {
1302 .start = m_start,
1303 .next = m_next,
1304 .stop = m_stop,
1305 .show = m_show,
1307 #endif /* CONFIG_PROC_FS */
1310 * may_umount_tree - check if a mount tree is busy
1311 * @mnt: root of mount tree
1313 * This is called to check if a tree of mounts has any
1314 * open files, pwds, chroots or sub mounts that are
1315 * busy.
1317 int may_umount_tree(struct vfsmount *m)
1319 struct mount *mnt = real_mount(m);
1320 int actual_refs = 0;
1321 int minimum_refs = 0;
1322 struct mount *p;
1323 BUG_ON(!m);
1325 /* write lock needed for mnt_get_count */
1326 lock_mount_hash();
1327 for (p = mnt; p; p = next_mnt(p, mnt)) {
1328 actual_refs += mnt_get_count(p);
1329 minimum_refs += 2;
1331 unlock_mount_hash();
1333 if (actual_refs > minimum_refs)
1334 return 0;
1336 return 1;
1339 EXPORT_SYMBOL(may_umount_tree);
1342 * may_umount - check if a mount point is busy
1343 * @mnt: root of mount
1345 * This is called to check if a mount point has any
1346 * open files, pwds, chroots or sub mounts. If the
1347 * mount has sub mounts this will return busy
1348 * regardless of whether the sub mounts are busy.
1350 * Doesn't take quota and stuff into account. IOW, in some cases it will
1351 * give false negatives. The main reason why it's here is that we need
1352 * a non-destructive way to look for easily umountable filesystems.
1354 int may_umount(struct vfsmount *mnt)
1356 int ret = 1;
1357 down_read(&namespace_sem);
1358 lock_mount_hash();
1359 if (propagate_mount_busy(real_mount(mnt), 2))
1360 ret = 0;
1361 unlock_mount_hash();
1362 up_read(&namespace_sem);
1363 return ret;
1366 EXPORT_SYMBOL(may_umount);
1368 static HLIST_HEAD(unmounted); /* protected by namespace_sem */
1370 static void namespace_unlock(void)
1372 struct hlist_head head;
1374 hlist_move_list(&unmounted, &head);
1376 up_write(&namespace_sem);
1378 if (likely(hlist_empty(&head)))
1379 return;
1381 synchronize_rcu();
1383 group_pin_kill(&head);
1386 static inline void namespace_lock(void)
1388 down_write(&namespace_sem);
1391 enum umount_tree_flags {
1392 UMOUNT_SYNC = 1,
1393 UMOUNT_PROPAGATE = 2,
1394 UMOUNT_CONNECTED = 4,
1397 static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how)
1399 /* Leaving mounts connected is only valid for lazy umounts */
1400 if (how & UMOUNT_SYNC)
1401 return true;
1403 /* A mount without a parent has nothing to be connected to */
1404 if (!mnt_has_parent(mnt))
1405 return true;
1407 /* Because the reference counting rules change when mounts are
1408 * unmounted and connected, umounted mounts may not be
1409 * connected to mounted mounts.
1411 if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT))
1412 return true;
1414 /* Has it been requested that the mount remain connected? */
1415 if (how & UMOUNT_CONNECTED)
1416 return false;
1418 /* Is the mount locked such that it needs to remain connected? */
1419 if (IS_MNT_LOCKED(mnt))
1420 return false;
1422 /* By default disconnect the mount */
1423 return true;
1427 * mount_lock must be held
1428 * namespace_sem must be held for write
1430 static void umount_tree(struct mount *mnt, enum umount_tree_flags how)
1432 LIST_HEAD(tmp_list);
1433 struct mount *p;
1435 if (how & UMOUNT_PROPAGATE)
1436 propagate_mount_unlock(mnt);
1438 /* Gather the mounts to umount */
1439 for (p = mnt; p; p = next_mnt(p, mnt)) {
1440 p->mnt.mnt_flags |= MNT_UMOUNT;
1441 list_move(&p->mnt_list, &tmp_list);
1444 /* Hide the mounts from mnt_mounts */
1445 list_for_each_entry(p, &tmp_list, mnt_list) {
1446 list_del_init(&p->mnt_child);
1449 /* Add propogated mounts to the tmp_list */
1450 if (how & UMOUNT_PROPAGATE)
1451 propagate_umount(&tmp_list);
1453 while (!list_empty(&tmp_list)) {
1454 struct mnt_namespace *ns;
1455 bool disconnect;
1456 p = list_first_entry(&tmp_list, struct mount, mnt_list);
1457 list_del_init(&p->mnt_expire);
1458 list_del_init(&p->mnt_list);
1459 ns = p->mnt_ns;
1460 if (ns) {
1461 ns->mounts--;
1462 __touch_mnt_namespace(ns);
1464 p->mnt_ns = NULL;
1465 if (how & UMOUNT_SYNC)
1466 p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
1468 disconnect = disconnect_mount(p, how);
1470 pin_insert_group(&p->mnt_umount, &p->mnt_parent->mnt,
1471 disconnect ? &unmounted : NULL);
1472 if (mnt_has_parent(p)) {
1473 mnt_add_count(p->mnt_parent, -1);
1474 if (!disconnect) {
1475 /* Don't forget about p */
1476 list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts);
1477 } else {
1478 umount_mnt(p);
1481 change_mnt_propagation(p, MS_PRIVATE);
1485 static void shrink_submounts(struct mount *mnt);
1487 static int do_umount(struct mount *mnt, int flags)
1489 struct super_block *sb = mnt->mnt.mnt_sb;
1490 int retval;
1492 retval = security_sb_umount(&mnt->mnt, flags);
1493 if (retval)
1494 return retval;
1497 * Allow userspace to request a mountpoint be expired rather than
1498 * unmounting unconditionally. Unmount only happens if:
1499 * (1) the mark is already set (the mark is cleared by mntput())
1500 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1502 if (flags & MNT_EXPIRE) {
1503 if (&mnt->mnt == current->fs->root.mnt ||
1504 flags & (MNT_FORCE | MNT_DETACH))
1505 return -EINVAL;
1508 * probably don't strictly need the lock here if we examined
1509 * all race cases, but it's a slowpath.
1511 lock_mount_hash();
1512 if (mnt_get_count(mnt) != 2) {
1513 unlock_mount_hash();
1514 return -EBUSY;
1516 unlock_mount_hash();
1518 if (!xchg(&mnt->mnt_expiry_mark, 1))
1519 return -EAGAIN;
1523 * If we may have to abort operations to get out of this
1524 * mount, and they will themselves hold resources we must
1525 * allow the fs to do things. In the Unix tradition of
1526 * 'Gee thats tricky lets do it in userspace' the umount_begin
1527 * might fail to complete on the first run through as other tasks
1528 * must return, and the like. Thats for the mount program to worry
1529 * about for the moment.
1532 if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1533 sb->s_op->umount_begin(sb);
1537 * No sense to grab the lock for this test, but test itself looks
1538 * somewhat bogus. Suggestions for better replacement?
1539 * Ho-hum... In principle, we might treat that as umount + switch
1540 * to rootfs. GC would eventually take care of the old vfsmount.
1541 * Actually it makes sense, especially if rootfs would contain a
1542 * /reboot - static binary that would close all descriptors and
1543 * call reboot(9). Then init(8) could umount root and exec /reboot.
1545 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1547 * Special case for "unmounting" root ...
1548 * we just try to remount it readonly.
1550 if (!capable(CAP_SYS_ADMIN))
1551 return -EPERM;
1552 down_write(&sb->s_umount);
1553 if (!(sb->s_flags & MS_RDONLY))
1554 retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
1555 up_write(&sb->s_umount);
1556 return retval;
1559 namespace_lock();
1560 lock_mount_hash();
1561 event++;
1563 if (flags & MNT_DETACH) {
1564 if (!list_empty(&mnt->mnt_list))
1565 umount_tree(mnt, UMOUNT_PROPAGATE);
1566 retval = 0;
1567 } else {
1568 shrink_submounts(mnt);
1569 retval = -EBUSY;
1570 if (!propagate_mount_busy(mnt, 2)) {
1571 if (!list_empty(&mnt->mnt_list))
1572 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
1573 retval = 0;
1576 unlock_mount_hash();
1577 namespace_unlock();
1578 return retval;
1582 * __detach_mounts - lazily unmount all mounts on the specified dentry
1584 * During unlink, rmdir, and d_drop it is possible to loose the path
1585 * to an existing mountpoint, and wind up leaking the mount.
1586 * detach_mounts allows lazily unmounting those mounts instead of
1587 * leaking them.
1589 * The caller may hold dentry->d_inode->i_mutex.
1591 void __detach_mounts(struct dentry *dentry)
1593 struct mountpoint *mp;
1594 struct mount *mnt;
1596 namespace_lock();
1597 lock_mount_hash();
1598 mp = lookup_mountpoint(dentry);
1599 if (IS_ERR_OR_NULL(mp))
1600 goto out_unlock;
1602 event++;
1603 while (!hlist_empty(&mp->m_list)) {
1604 mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list);
1605 if (mnt->mnt.mnt_flags & MNT_UMOUNT) {
1606 hlist_add_head(&mnt->mnt_umount.s_list, &unmounted);
1607 umount_mnt(mnt);
1609 else umount_tree(mnt, UMOUNT_CONNECTED);
1611 put_mountpoint(mp);
1612 out_unlock:
1613 unlock_mount_hash();
1614 namespace_unlock();
1618 * Is the caller allowed to modify his namespace?
1620 static inline bool may_mount(void)
1622 return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1626 * Now umount can handle mount points as well as block devices.
1627 * This is important for filesystems which use unnamed block devices.
1629 * We now support a flag for forced unmount like the other 'big iron'
1630 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1633 SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1635 struct path path;
1636 struct mount *mnt;
1637 int retval;
1638 int lookup_flags = 0;
1640 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1641 return -EINVAL;
1643 if (!may_mount())
1644 return -EPERM;
1646 if (!(flags & UMOUNT_NOFOLLOW))
1647 lookup_flags |= LOOKUP_FOLLOW;
1649 retval = user_path_mountpoint_at(AT_FDCWD, name, lookup_flags, &path);
1650 if (retval)
1651 goto out;
1652 mnt = real_mount(path.mnt);
1653 retval = -EINVAL;
1654 if (path.dentry != path.mnt->mnt_root)
1655 goto dput_and_out;
1656 if (!check_mnt(mnt))
1657 goto dput_and_out;
1658 if (mnt->mnt.mnt_flags & MNT_LOCKED)
1659 goto dput_and_out;
1660 retval = -EPERM;
1661 if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN))
1662 goto dput_and_out;
1664 retval = do_umount(mnt, flags);
1665 dput_and_out:
1666 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
1667 dput(path.dentry);
1668 mntput_no_expire(mnt);
1669 out:
1670 return retval;
1673 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
1676 * The 2.0 compatible umount. No flags.
1678 SYSCALL_DEFINE1(oldumount, char __user *, name)
1680 return sys_umount(name, 0);
1683 #endif
1685 static bool is_mnt_ns_file(struct dentry *dentry)
1687 /* Is this a proxy for a mount namespace? */
1688 return dentry->d_op == &ns_dentry_operations &&
1689 dentry->d_fsdata == &mntns_operations;
1692 struct mnt_namespace *to_mnt_ns(struct ns_common *ns)
1694 return container_of(ns, struct mnt_namespace, ns);
1697 static bool mnt_ns_loop(struct dentry *dentry)
1699 /* Could bind mounting the mount namespace inode cause a
1700 * mount namespace loop?
1702 struct mnt_namespace *mnt_ns;
1703 if (!is_mnt_ns_file(dentry))
1704 return false;
1706 mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode));
1707 return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
1710 struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
1711 int flag)
1713 struct mount *res, *p, *q, *r, *parent;
1715 if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt))
1716 return ERR_PTR(-EINVAL);
1718 if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
1719 return ERR_PTR(-EINVAL);
1721 res = q = clone_mnt(mnt, dentry, flag);
1722 if (IS_ERR(q))
1723 return q;
1725 q->mnt_mountpoint = mnt->mnt_mountpoint;
1727 p = mnt;
1728 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
1729 struct mount *s;
1730 if (!is_subdir(r->mnt_mountpoint, dentry))
1731 continue;
1733 for (s = r; s; s = next_mnt(s, r)) {
1734 if (!(flag & CL_COPY_UNBINDABLE) &&
1735 IS_MNT_UNBINDABLE(s)) {
1736 s = skip_mnt_tree(s);
1737 continue;
1739 if (!(flag & CL_COPY_MNT_NS_FILE) &&
1740 is_mnt_ns_file(s->mnt.mnt_root)) {
1741 s = skip_mnt_tree(s);
1742 continue;
1744 while (p != s->mnt_parent) {
1745 p = p->mnt_parent;
1746 q = q->mnt_parent;
1748 p = s;
1749 parent = q;
1750 q = clone_mnt(p, p->mnt.mnt_root, flag);
1751 if (IS_ERR(q))
1752 goto out;
1753 lock_mount_hash();
1754 list_add_tail(&q->mnt_list, &res->mnt_list);
1755 attach_mnt(q, parent, p->mnt_mp);
1756 unlock_mount_hash();
1759 return res;
1760 out:
1761 if (res) {
1762 lock_mount_hash();
1763 umount_tree(res, UMOUNT_SYNC);
1764 unlock_mount_hash();
1766 return q;
1769 /* Caller should check returned pointer for errors */
1771 struct vfsmount *collect_mounts(struct path *path)
1773 struct mount *tree;
1774 namespace_lock();
1775 if (!check_mnt(real_mount(path->mnt)))
1776 tree = ERR_PTR(-EINVAL);
1777 else
1778 tree = copy_tree(real_mount(path->mnt), path->dentry,
1779 CL_COPY_ALL | CL_PRIVATE);
1780 namespace_unlock();
1781 if (IS_ERR(tree))
1782 return ERR_CAST(tree);
1783 return &tree->mnt;
1786 void drop_collected_mounts(struct vfsmount *mnt)
1788 namespace_lock();
1789 lock_mount_hash();
1790 umount_tree(real_mount(mnt), UMOUNT_SYNC);
1791 unlock_mount_hash();
1792 namespace_unlock();
1796 * clone_private_mount - create a private clone of a path
1798 * This creates a new vfsmount, which will be the clone of @path. The new will
1799 * not be attached anywhere in the namespace and will be private (i.e. changes
1800 * to the originating mount won't be propagated into this).
1802 * Release with mntput().
1804 struct vfsmount *clone_private_mount(struct path *path)
1806 struct mount *old_mnt = real_mount(path->mnt);
1807 struct mount *new_mnt;
1809 if (IS_MNT_UNBINDABLE(old_mnt))
1810 return ERR_PTR(-EINVAL);
1812 down_read(&namespace_sem);
1813 new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE);
1814 up_read(&namespace_sem);
1815 if (IS_ERR(new_mnt))
1816 return ERR_CAST(new_mnt);
1818 return &new_mnt->mnt;
1820 EXPORT_SYMBOL_GPL(clone_private_mount);
1822 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1823 struct vfsmount *root)
1825 struct mount *mnt;
1826 int res = f(root, arg);
1827 if (res)
1828 return res;
1829 list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
1830 res = f(&mnt->mnt, arg);
1831 if (res)
1832 return res;
1834 return 0;
1837 static void cleanup_group_ids(struct mount *mnt, struct mount *end)
1839 struct mount *p;
1841 for (p = mnt; p != end; p = next_mnt(p, mnt)) {
1842 if (p->mnt_group_id && !IS_MNT_SHARED(p))
1843 mnt_release_group_id(p);
1847 static int invent_group_ids(struct mount *mnt, bool recurse)
1849 struct mount *p;
1851 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
1852 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
1853 int err = mnt_alloc_group_id(p);
1854 if (err) {
1855 cleanup_group_ids(mnt, p);
1856 return err;
1861 return 0;
1864 int count_mounts(struct mnt_namespace *ns, struct mount *mnt)
1866 unsigned int max = READ_ONCE(sysctl_mount_max);
1867 unsigned int mounts = 0, old, pending, sum;
1868 struct mount *p;
1870 for (p = mnt; p; p = next_mnt(p, mnt))
1871 mounts++;
1873 old = ns->mounts;
1874 pending = ns->pending_mounts;
1875 sum = old + pending;
1876 if ((old > sum) ||
1877 (pending > sum) ||
1878 (max < sum) ||
1879 (mounts > (max - sum)))
1880 return -ENOSPC;
1882 ns->pending_mounts = pending + mounts;
1883 return 0;
1887 * @source_mnt : mount tree to be attached
1888 * @nd : place the mount tree @source_mnt is attached
1889 * @parent_nd : if non-null, detach the source_mnt from its parent and
1890 * store the parent mount and mountpoint dentry.
1891 * (done when source_mnt is moved)
1893 * NOTE: in the table below explains the semantics when a source mount
1894 * of a given type is attached to a destination mount of a given type.
1895 * ---------------------------------------------------------------------------
1896 * | BIND MOUNT OPERATION |
1897 * |**************************************************************************
1898 * | source-->| shared | private | slave | unbindable |
1899 * | dest | | | | |
1900 * | | | | | | |
1901 * | v | | | | |
1902 * |**************************************************************************
1903 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
1904 * | | | | | |
1905 * |non-shared| shared (+) | private | slave (*) | invalid |
1906 * ***************************************************************************
1907 * A bind operation clones the source mount and mounts the clone on the
1908 * destination mount.
1910 * (++) the cloned mount is propagated to all the mounts in the propagation
1911 * tree of the destination mount and the cloned mount is added to
1912 * the peer group of the source mount.
1913 * (+) the cloned mount is created under the destination mount and is marked
1914 * as shared. The cloned mount is added to the peer group of the source
1915 * mount.
1916 * (+++) the mount is propagated to all the mounts in the propagation tree
1917 * of the destination mount and the cloned mount is made slave
1918 * of the same master as that of the source mount. The cloned mount
1919 * is marked as 'shared and slave'.
1920 * (*) the cloned mount is made a slave of the same master as that of the
1921 * source mount.
1923 * ---------------------------------------------------------------------------
1924 * | MOVE MOUNT OPERATION |
1925 * |**************************************************************************
1926 * | source-->| shared | private | slave | unbindable |
1927 * | dest | | | | |
1928 * | | | | | | |
1929 * | v | | | | |
1930 * |**************************************************************************
1931 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
1932 * | | | | | |
1933 * |non-shared| shared (+*) | private | slave (*) | unbindable |
1934 * ***************************************************************************
1936 * (+) the mount is moved to the destination. And is then propagated to
1937 * all the mounts in the propagation tree of the destination mount.
1938 * (+*) the mount is moved to the destination.
1939 * (+++) the mount is moved to the destination and is then propagated to
1940 * all the mounts belonging to the destination mount's propagation tree.
1941 * the mount is marked as 'shared and slave'.
1942 * (*) the mount continues to be a slave at the new location.
1944 * if the source mount is a tree, the operations explained above is
1945 * applied to each mount in the tree.
1946 * Must be called without spinlocks held, since this function can sleep
1947 * in allocations.
1949 static int attach_recursive_mnt(struct mount *source_mnt,
1950 struct mount *dest_mnt,
1951 struct mountpoint *dest_mp,
1952 struct path *parent_path)
1954 HLIST_HEAD(tree_list);
1955 struct mnt_namespace *ns = dest_mnt->mnt_ns;
1956 struct mountpoint *smp;
1957 struct mount *child, *p;
1958 struct hlist_node *n;
1959 int err;
1961 /* Preallocate a mountpoint in case the new mounts need
1962 * to be tucked under other mounts.
1964 smp = get_mountpoint(source_mnt->mnt.mnt_root);
1965 if (IS_ERR(smp))
1966 return PTR_ERR(smp);
1968 /* Is there space to add these mounts to the mount namespace? */
1969 if (!parent_path) {
1970 err = count_mounts(ns, source_mnt);
1971 if (err)
1972 goto out;
1975 if (IS_MNT_SHARED(dest_mnt)) {
1976 err = invent_group_ids(source_mnt, true);
1977 if (err)
1978 goto out;
1979 err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
1980 lock_mount_hash();
1981 if (err)
1982 goto out_cleanup_ids;
1983 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
1984 set_mnt_shared(p);
1985 } else {
1986 lock_mount_hash();
1988 if (parent_path) {
1989 detach_mnt(source_mnt, parent_path);
1990 attach_mnt(source_mnt, dest_mnt, dest_mp);
1991 touch_mnt_namespace(source_mnt->mnt_ns);
1992 } else {
1993 mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
1994 commit_tree(source_mnt);
1997 hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
1998 struct mount *q;
1999 hlist_del_init(&child->mnt_hash);
2000 q = __lookup_mnt(&child->mnt_parent->mnt,
2001 child->mnt_mountpoint);
2002 if (q)
2003 mnt_change_mountpoint(child, smp, q);
2004 commit_tree(child);
2006 put_mountpoint(smp);
2007 unlock_mount_hash();
2009 return 0;
2011 out_cleanup_ids:
2012 while (!hlist_empty(&tree_list)) {
2013 child = hlist_entry(tree_list.first, struct mount, mnt_hash);
2014 child->mnt_parent->mnt_ns->pending_mounts = 0;
2015 umount_tree(child, UMOUNT_SYNC);
2017 unlock_mount_hash();
2018 cleanup_group_ids(source_mnt, NULL);
2019 out:
2020 ns->pending_mounts = 0;
2022 read_seqlock_excl(&mount_lock);
2023 put_mountpoint(smp);
2024 read_sequnlock_excl(&mount_lock);
2026 return err;
2029 static struct mountpoint *lock_mount(struct path *path)
2031 struct vfsmount *mnt;
2032 struct dentry *dentry = path->dentry;
2033 retry:
2034 mutex_lock(&dentry->d_inode->i_mutex);
2035 if (unlikely(cant_mount(dentry))) {
2036 mutex_unlock(&dentry->d_inode->i_mutex);
2037 return ERR_PTR(-ENOENT);
2039 namespace_lock();
2040 mnt = lookup_mnt(path);
2041 if (likely(!mnt)) {
2042 struct mountpoint *mp = get_mountpoint(dentry);
2043 if (IS_ERR(mp)) {
2044 namespace_unlock();
2045 mutex_unlock(&dentry->d_inode->i_mutex);
2046 return mp;
2048 return mp;
2050 namespace_unlock();
2051 mutex_unlock(&path->dentry->d_inode->i_mutex);
2052 path_put(path);
2053 path->mnt = mnt;
2054 dentry = path->dentry = dget(mnt->mnt_root);
2055 goto retry;
2058 static void unlock_mount(struct mountpoint *where)
2060 struct dentry *dentry = where->m_dentry;
2062 read_seqlock_excl(&mount_lock);
2063 put_mountpoint(where);
2064 read_sequnlock_excl(&mount_lock);
2066 namespace_unlock();
2067 mutex_unlock(&dentry->d_inode->i_mutex);
2070 static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
2072 if (mnt->mnt.mnt_sb->s_flags & MS_NOUSER)
2073 return -EINVAL;
2075 if (d_is_dir(mp->m_dentry) !=
2076 d_is_dir(mnt->mnt.mnt_root))
2077 return -ENOTDIR;
2079 return attach_recursive_mnt(mnt, p, mp, NULL);
2083 * Sanity check the flags to change_mnt_propagation.
2086 static int flags_to_propagation_type(int flags)
2088 int type = flags & ~(MS_REC | MS_SILENT);
2090 /* Fail if any non-propagation flags are set */
2091 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2092 return 0;
2093 /* Only one propagation flag should be set */
2094 if (!is_power_of_2(type))
2095 return 0;
2096 return type;
2100 * recursively change the type of the mountpoint.
2102 static int do_change_type(struct path *path, int flag)
2104 struct mount *m;
2105 struct mount *mnt = real_mount(path->mnt);
2106 int recurse = flag & MS_REC;
2107 int type;
2108 int err = 0;
2110 if (path->dentry != path->mnt->mnt_root)
2111 return -EINVAL;
2113 type = flags_to_propagation_type(flag);
2114 if (!type)
2115 return -EINVAL;
2117 namespace_lock();
2118 if (type == MS_SHARED) {
2119 err = invent_group_ids(mnt, recurse);
2120 if (err)
2121 goto out_unlock;
2124 lock_mount_hash();
2125 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
2126 change_mnt_propagation(m, type);
2127 unlock_mount_hash();
2129 out_unlock:
2130 namespace_unlock();
2131 return err;
2134 static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
2136 struct mount *child;
2137 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
2138 if (!is_subdir(child->mnt_mountpoint, dentry))
2139 continue;
2141 if (child->mnt.mnt_flags & MNT_LOCKED)
2142 return true;
2144 return false;
2148 * do loopback mount.
2150 static int do_loopback(struct path *path, const char *old_name,
2151 int recurse)
2153 struct path old_path;
2154 struct mount *mnt = NULL, *old, *parent;
2155 struct mountpoint *mp;
2156 int err;
2157 if (!old_name || !*old_name)
2158 return -EINVAL;
2159 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
2160 if (err)
2161 return err;
2163 err = -EINVAL;
2164 if (mnt_ns_loop(old_path.dentry))
2165 goto out;
2167 mp = lock_mount(path);
2168 err = PTR_ERR(mp);
2169 if (IS_ERR(mp))
2170 goto out;
2172 old = real_mount(old_path.mnt);
2173 parent = real_mount(path->mnt);
2175 err = -EINVAL;
2176 if (IS_MNT_UNBINDABLE(old))
2177 goto out2;
2179 if (!check_mnt(parent))
2180 goto out2;
2182 if (!check_mnt(old) && old_path.dentry->d_op != &ns_dentry_operations)
2183 goto out2;
2185 if (!recurse && has_locked_children(old, old_path.dentry))
2186 goto out2;
2188 if (recurse)
2189 mnt = copy_tree(old, old_path.dentry, CL_COPY_MNT_NS_FILE);
2190 else
2191 mnt = clone_mnt(old, old_path.dentry, 0);
2193 if (IS_ERR(mnt)) {
2194 err = PTR_ERR(mnt);
2195 goto out2;
2198 mnt->mnt.mnt_flags &= ~MNT_LOCKED;
2200 err = graft_tree(mnt, parent, mp);
2201 if (err) {
2202 lock_mount_hash();
2203 umount_tree(mnt, UMOUNT_SYNC);
2204 unlock_mount_hash();
2206 out2:
2207 unlock_mount(mp);
2208 out:
2209 path_put(&old_path);
2210 return err;
2213 static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
2215 int error = 0;
2216 int readonly_request = 0;
2218 if (ms_flags & MS_RDONLY)
2219 readonly_request = 1;
2220 if (readonly_request == __mnt_is_readonly(mnt))
2221 return 0;
2223 if (readonly_request)
2224 error = mnt_make_readonly(real_mount(mnt));
2225 else
2226 __mnt_unmake_readonly(real_mount(mnt));
2227 return error;
2231 * change filesystem flags. dir should be a physical root of filesystem.
2232 * If you've mounted a non-root directory somewhere and want to do remount
2233 * on it - tough luck.
2235 static int do_remount(struct path *path, int flags, int mnt_flags,
2236 void *data)
2238 int err;
2239 struct super_block *sb = path->mnt->mnt_sb;
2240 struct mount *mnt = real_mount(path->mnt);
2242 if (!check_mnt(mnt))
2243 return -EINVAL;
2245 if (path->dentry != path->mnt->mnt_root)
2246 return -EINVAL;
2248 /* Don't allow changing of locked mnt flags.
2250 * No locks need to be held here while testing the various
2251 * MNT_LOCK flags because those flags can never be cleared
2252 * once they are set.
2254 if ((mnt->mnt.mnt_flags & MNT_LOCK_READONLY) &&
2255 !(mnt_flags & MNT_READONLY)) {
2256 return -EPERM;
2258 if ((mnt->mnt.mnt_flags & MNT_LOCK_NODEV) &&
2259 !(mnt_flags & MNT_NODEV)) {
2260 /* Was the nodev implicitly added in mount? */
2261 if ((mnt->mnt_ns->user_ns != &init_user_ns) &&
2262 !(sb->s_type->fs_flags & FS_USERNS_DEV_MOUNT)) {
2263 mnt_flags |= MNT_NODEV;
2264 } else {
2265 return -EPERM;
2268 if ((mnt->mnt.mnt_flags & MNT_LOCK_NOSUID) &&
2269 !(mnt_flags & MNT_NOSUID)) {
2270 return -EPERM;
2272 if ((mnt->mnt.mnt_flags & MNT_LOCK_NOEXEC) &&
2273 !(mnt_flags & MNT_NOEXEC)) {
2274 return -EPERM;
2276 if ((mnt->mnt.mnt_flags & MNT_LOCK_ATIME) &&
2277 ((mnt->mnt.mnt_flags & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK))) {
2278 return -EPERM;
2281 err = security_sb_remount(sb, data);
2282 if (err)
2283 return err;
2285 down_write(&sb->s_umount);
2286 if (flags & MS_BIND)
2287 err = change_mount_flags(path->mnt, flags);
2288 else if (!capable(CAP_SYS_ADMIN))
2289 err = -EPERM;
2290 else
2291 err = do_remount_sb(sb, flags, data, 0);
2292 if (!err) {
2293 lock_mount_hash();
2294 mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
2295 mnt->mnt.mnt_flags = mnt_flags;
2296 touch_mnt_namespace(mnt->mnt_ns);
2297 unlock_mount_hash();
2299 up_write(&sb->s_umount);
2300 return err;
2303 static inline int tree_contains_unbindable(struct mount *mnt)
2305 struct mount *p;
2306 for (p = mnt; p; p = next_mnt(p, mnt)) {
2307 if (IS_MNT_UNBINDABLE(p))
2308 return 1;
2310 return 0;
2313 static int do_move_mount(struct path *path, const char *old_name)
2315 struct path old_path, parent_path;
2316 struct mount *p;
2317 struct mount *old;
2318 struct mountpoint *mp;
2319 int err;
2320 if (!old_name || !*old_name)
2321 return -EINVAL;
2322 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
2323 if (err)
2324 return err;
2326 mp = lock_mount(path);
2327 err = PTR_ERR(mp);
2328 if (IS_ERR(mp))
2329 goto out;
2331 old = real_mount(old_path.mnt);
2332 p = real_mount(path->mnt);
2334 err = -EINVAL;
2335 if (!check_mnt(p) || !check_mnt(old))
2336 goto out1;
2338 if (old->mnt.mnt_flags & MNT_LOCKED)
2339 goto out1;
2341 err = -EINVAL;
2342 if (old_path.dentry != old_path.mnt->mnt_root)
2343 goto out1;
2345 if (!mnt_has_parent(old))
2346 goto out1;
2348 if (d_is_dir(path->dentry) !=
2349 d_is_dir(old_path.dentry))
2350 goto out1;
2352 * Don't move a mount residing in a shared parent.
2354 if (IS_MNT_SHARED(old->mnt_parent))
2355 goto out1;
2357 * Don't move a mount tree containing unbindable mounts to a destination
2358 * mount which is shared.
2360 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
2361 goto out1;
2362 err = -ELOOP;
2363 for (; mnt_has_parent(p); p = p->mnt_parent)
2364 if (p == old)
2365 goto out1;
2367 err = attach_recursive_mnt(old, real_mount(path->mnt), mp, &parent_path);
2368 if (err)
2369 goto out1;
2371 /* if the mount is moved, it should no longer be expire
2372 * automatically */
2373 list_del_init(&old->mnt_expire);
2374 out1:
2375 unlock_mount(mp);
2376 out:
2377 if (!err)
2378 path_put(&parent_path);
2379 path_put(&old_path);
2380 return err;
2383 static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
2385 int err;
2386 const char *subtype = strchr(fstype, '.');
2387 if (subtype) {
2388 subtype++;
2389 err = -EINVAL;
2390 if (!subtype[0])
2391 goto err;
2392 } else
2393 subtype = "";
2395 mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
2396 err = -ENOMEM;
2397 if (!mnt->mnt_sb->s_subtype)
2398 goto err;
2399 return mnt;
2401 err:
2402 mntput(mnt);
2403 return ERR_PTR(err);
2407 * add a mount into a namespace's mount tree
2409 static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
2411 struct mountpoint *mp;
2412 struct mount *parent;
2413 int err;
2415 mnt_flags &= ~MNT_INTERNAL_FLAGS;
2417 mp = lock_mount(path);
2418 if (IS_ERR(mp))
2419 return PTR_ERR(mp);
2421 parent = real_mount(path->mnt);
2422 err = -EINVAL;
2423 if (unlikely(!check_mnt(parent))) {
2424 /* that's acceptable only for automounts done in private ns */
2425 if (!(mnt_flags & MNT_SHRINKABLE))
2426 goto unlock;
2427 /* ... and for those we'd better have mountpoint still alive */
2428 if (!parent->mnt_ns)
2429 goto unlock;
2432 /* Refuse the same filesystem on the same mount point */
2433 err = -EBUSY;
2434 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
2435 path->mnt->mnt_root == path->dentry)
2436 goto unlock;
2438 err = -EINVAL;
2439 if (d_is_symlink(newmnt->mnt.mnt_root))
2440 goto unlock;
2442 newmnt->mnt.mnt_flags = mnt_flags;
2443 err = graft_tree(newmnt, parent, mp);
2445 unlock:
2446 unlock_mount(mp);
2447 return err;
2450 static bool fs_fully_visible(struct file_system_type *fs_type, int *new_mnt_flags);
2453 * create a new mount for userspace and request it to be added into the
2454 * namespace's tree
2456 static int do_new_mount(struct path *path, const char *fstype, int flags,
2457 int mnt_flags, const char *name, void *data)
2459 struct file_system_type *type;
2460 struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
2461 struct vfsmount *mnt;
2462 int err;
2464 if (!fstype)
2465 return -EINVAL;
2467 type = get_fs_type(fstype);
2468 if (!type)
2469 return -ENODEV;
2471 if (user_ns != &init_user_ns) {
2472 if (!(type->fs_flags & FS_USERNS_MOUNT)) {
2473 put_filesystem(type);
2474 return -EPERM;
2476 /* Only in special cases allow devices from mounts
2477 * created outside the initial user namespace.
2479 if (!(type->fs_flags & FS_USERNS_DEV_MOUNT)) {
2480 flags |= MS_NODEV;
2481 mnt_flags |= MNT_NODEV | MNT_LOCK_NODEV;
2483 if (type->fs_flags & FS_USERNS_VISIBLE) {
2484 if (!fs_fully_visible(type, &mnt_flags)) {
2485 put_filesystem(type);
2486 return -EPERM;
2491 mnt = vfs_kern_mount(type, flags, name, data);
2492 if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
2493 !mnt->mnt_sb->s_subtype)
2494 mnt = fs_set_subtype(mnt, fstype);
2496 put_filesystem(type);
2497 if (IS_ERR(mnt))
2498 return PTR_ERR(mnt);
2500 err = do_add_mount(real_mount(mnt), path, mnt_flags);
2501 if (err)
2502 mntput(mnt);
2503 return err;
2506 int finish_automount(struct vfsmount *m, struct path *path)
2508 struct mount *mnt = real_mount(m);
2509 int err;
2510 /* The new mount record should have at least 2 refs to prevent it being
2511 * expired before we get a chance to add it
2513 BUG_ON(mnt_get_count(mnt) < 2);
2515 if (m->mnt_sb == path->mnt->mnt_sb &&
2516 m->mnt_root == path->dentry) {
2517 err = -ELOOP;
2518 goto fail;
2521 err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
2522 if (!err)
2523 return 0;
2524 fail:
2525 /* remove m from any expiration list it may be on */
2526 if (!list_empty(&mnt->mnt_expire)) {
2527 namespace_lock();
2528 list_del_init(&mnt->mnt_expire);
2529 namespace_unlock();
2531 mntput(m);
2532 mntput(m);
2533 return err;
2537 * mnt_set_expiry - Put a mount on an expiration list
2538 * @mnt: The mount to list.
2539 * @expiry_list: The list to add the mount to.
2541 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
2543 namespace_lock();
2545 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
2547 namespace_unlock();
2549 EXPORT_SYMBOL(mnt_set_expiry);
2552 * process a list of expirable mountpoints with the intent of discarding any
2553 * mountpoints that aren't in use and haven't been touched since last we came
2554 * here
2556 void mark_mounts_for_expiry(struct list_head *mounts)
2558 struct mount *mnt, *next;
2559 LIST_HEAD(graveyard);
2561 if (list_empty(mounts))
2562 return;
2564 namespace_lock();
2565 lock_mount_hash();
2567 /* extract from the expiration list every vfsmount that matches the
2568 * following criteria:
2569 * - only referenced by its parent vfsmount
2570 * - still marked for expiry (marked on the last call here; marks are
2571 * cleared by mntput())
2573 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
2574 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
2575 propagate_mount_busy(mnt, 1))
2576 continue;
2577 list_move(&mnt->mnt_expire, &graveyard);
2579 while (!list_empty(&graveyard)) {
2580 mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
2581 touch_mnt_namespace(mnt->mnt_ns);
2582 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
2584 unlock_mount_hash();
2585 namespace_unlock();
2588 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
2591 * Ripoff of 'select_parent()'
2593 * search the list of submounts for a given mountpoint, and move any
2594 * shrinkable submounts to the 'graveyard' list.
2596 static int select_submounts(struct mount *parent, struct list_head *graveyard)
2598 struct mount *this_parent = parent;
2599 struct list_head *next;
2600 int found = 0;
2602 repeat:
2603 next = this_parent->mnt_mounts.next;
2604 resume:
2605 while (next != &this_parent->mnt_mounts) {
2606 struct list_head *tmp = next;
2607 struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
2609 next = tmp->next;
2610 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
2611 continue;
2613 * Descend a level if the d_mounts list is non-empty.
2615 if (!list_empty(&mnt->mnt_mounts)) {
2616 this_parent = mnt;
2617 goto repeat;
2620 if (!propagate_mount_busy(mnt, 1)) {
2621 list_move_tail(&mnt->mnt_expire, graveyard);
2622 found++;
2626 * All done at this level ... ascend and resume the search
2628 if (this_parent != parent) {
2629 next = this_parent->mnt_child.next;
2630 this_parent = this_parent->mnt_parent;
2631 goto resume;
2633 return found;
2637 * process a list of expirable mountpoints with the intent of discarding any
2638 * submounts of a specific parent mountpoint
2640 * mount_lock must be held for write
2642 static void shrink_submounts(struct mount *mnt)
2644 LIST_HEAD(graveyard);
2645 struct mount *m;
2647 /* extract submounts of 'mountpoint' from the expiration list */
2648 while (select_submounts(mnt, &graveyard)) {
2649 while (!list_empty(&graveyard)) {
2650 m = list_first_entry(&graveyard, struct mount,
2651 mnt_expire);
2652 touch_mnt_namespace(m->mnt_ns);
2653 umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC);
2659 * Some copy_from_user() implementations do not return the exact number of
2660 * bytes remaining to copy on a fault. But copy_mount_options() requires that.
2661 * Note that this function differs from copy_from_user() in that it will oops
2662 * on bad values of `to', rather than returning a short copy.
2664 static long exact_copy_from_user(void *to, const void __user * from,
2665 unsigned long n)
2667 char *t = to;
2668 const char __user *f = from;
2669 char c;
2671 if (!access_ok(VERIFY_READ, from, n))
2672 return n;
2674 while (n) {
2675 if (__get_user(c, f)) {
2676 memset(t, 0, n);
2677 break;
2679 *t++ = c;
2680 f++;
2681 n--;
2683 return n;
2686 int copy_mount_options(const void __user * data, unsigned long *where)
2688 int i;
2689 unsigned long page;
2690 unsigned long size;
2692 *where = 0;
2693 if (!data)
2694 return 0;
2696 if (!(page = __get_free_page(GFP_KERNEL)))
2697 return -ENOMEM;
2699 /* We only care that *some* data at the address the user
2700 * gave us is valid. Just in case, we'll zero
2701 * the remainder of the page.
2703 /* copy_from_user cannot cross TASK_SIZE ! */
2704 size = TASK_SIZE - (unsigned long)data;
2705 if (size > PAGE_SIZE)
2706 size = PAGE_SIZE;
2708 i = size - exact_copy_from_user((void *)page, data, size);
2709 if (!i) {
2710 free_page(page);
2711 return -EFAULT;
2713 if (i != PAGE_SIZE)
2714 memset((char *)page + i, 0, PAGE_SIZE - i);
2715 *where = page;
2716 return 0;
2719 char *copy_mount_string(const void __user *data)
2721 return data ? strndup_user(data, PAGE_SIZE) : NULL;
2725 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
2726 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
2728 * data is a (void *) that can point to any structure up to
2729 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
2730 * information (or be NULL).
2732 * Pre-0.97 versions of mount() didn't have a flags word.
2733 * When the flags word was introduced its top half was required
2734 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
2735 * Therefore, if this magic number is present, it carries no information
2736 * and must be discarded.
2738 long do_mount(const char *dev_name, const char __user *dir_name,
2739 const char *type_page, unsigned long flags, void *data_page)
2741 struct path path;
2742 int retval = 0;
2743 int mnt_flags = 0;
2745 /* Discard magic */
2746 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
2747 flags &= ~MS_MGC_MSK;
2749 /* Basic sanity checks */
2750 if (data_page)
2751 ((char *)data_page)[PAGE_SIZE - 1] = 0;
2753 /* ... and get the mountpoint */
2754 retval = user_path(dir_name, &path);
2755 if (retval)
2756 return retval;
2758 retval = security_sb_mount(dev_name, &path,
2759 type_page, flags, data_page);
2760 if (!retval && !may_mount())
2761 retval = -EPERM;
2762 if (retval)
2763 goto dput_out;
2765 /* Default to relatime unless overriden */
2766 if (!(flags & MS_NOATIME))
2767 mnt_flags |= MNT_RELATIME;
2769 /* Separate the per-mountpoint flags */
2770 if (flags & MS_NOSUID)
2771 mnt_flags |= MNT_NOSUID;
2772 if (flags & MS_NODEV)
2773 mnt_flags |= MNT_NODEV;
2774 if (flags & MS_NOEXEC)
2775 mnt_flags |= MNT_NOEXEC;
2776 if (flags & MS_NOATIME)
2777 mnt_flags |= MNT_NOATIME;
2778 if (flags & MS_NODIRATIME)
2779 mnt_flags |= MNT_NODIRATIME;
2780 if (flags & MS_STRICTATIME)
2781 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
2782 if (flags & MS_RDONLY)
2783 mnt_flags |= MNT_READONLY;
2785 /* The default atime for remount is preservation */
2786 if ((flags & MS_REMOUNT) &&
2787 ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
2788 MS_STRICTATIME)) == 0)) {
2789 mnt_flags &= ~MNT_ATIME_MASK;
2790 mnt_flags |= path.mnt->mnt_flags & MNT_ATIME_MASK;
2793 flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN |
2794 MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT |
2795 MS_STRICTATIME);
2797 if (flags & MS_REMOUNT)
2798 retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
2799 data_page);
2800 else if (flags & MS_BIND)
2801 retval = do_loopback(&path, dev_name, flags & MS_REC);
2802 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2803 retval = do_change_type(&path, flags);
2804 else if (flags & MS_MOVE)
2805 retval = do_move_mount(&path, dev_name);
2806 else
2807 retval = do_new_mount(&path, type_page, flags, mnt_flags,
2808 dev_name, data_page);
2809 dput_out:
2810 path_put(&path);
2811 return retval;
2814 static void free_mnt_ns(struct mnt_namespace *ns)
2816 ns_free_inum(&ns->ns);
2817 put_user_ns(ns->user_ns);
2818 kfree(ns);
2822 * Assign a sequence number so we can detect when we attempt to bind
2823 * mount a reference to an older mount namespace into the current
2824 * mount namespace, preventing reference counting loops. A 64bit
2825 * number incrementing at 10Ghz will take 12,427 years to wrap which
2826 * is effectively never, so we can ignore the possibility.
2828 static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
2830 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns)
2832 struct mnt_namespace *new_ns;
2833 int ret;
2835 new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
2836 if (!new_ns)
2837 return ERR_PTR(-ENOMEM);
2838 ret = ns_alloc_inum(&new_ns->ns);
2839 if (ret) {
2840 kfree(new_ns);
2841 return ERR_PTR(ret);
2843 new_ns->ns.ops = &mntns_operations;
2844 new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
2845 atomic_set(&new_ns->count, 1);
2846 new_ns->root = NULL;
2847 INIT_LIST_HEAD(&new_ns->list);
2848 init_waitqueue_head(&new_ns->poll);
2849 new_ns->event = 0;
2850 new_ns->user_ns = get_user_ns(user_ns);
2851 new_ns->mounts = 0;
2852 new_ns->pending_mounts = 0;
2853 return new_ns;
2856 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
2857 struct user_namespace *user_ns, struct fs_struct *new_fs)
2859 struct mnt_namespace *new_ns;
2860 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
2861 struct mount *p, *q;
2862 struct mount *old;
2863 struct mount *new;
2864 int copy_flags;
2866 BUG_ON(!ns);
2868 if (likely(!(flags & CLONE_NEWNS))) {
2869 get_mnt_ns(ns);
2870 return ns;
2873 old = ns->root;
2875 new_ns = alloc_mnt_ns(user_ns);
2876 if (IS_ERR(new_ns))
2877 return new_ns;
2879 namespace_lock();
2880 /* First pass: copy the tree topology */
2881 copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
2882 if (user_ns != ns->user_ns)
2883 copy_flags |= CL_SHARED_TO_SLAVE | CL_UNPRIVILEGED;
2884 new = copy_tree(old, old->mnt.mnt_root, copy_flags);
2885 if (IS_ERR(new)) {
2886 namespace_unlock();
2887 free_mnt_ns(new_ns);
2888 return ERR_CAST(new);
2890 new_ns->root = new;
2891 list_add_tail(&new_ns->list, &new->mnt_list);
2894 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2895 * as belonging to new namespace. We have already acquired a private
2896 * fs_struct, so tsk->fs->lock is not needed.
2898 p = old;
2899 q = new;
2900 while (p) {
2901 q->mnt_ns = new_ns;
2902 new_ns->mounts++;
2903 if (new_fs) {
2904 if (&p->mnt == new_fs->root.mnt) {
2905 new_fs->root.mnt = mntget(&q->mnt);
2906 rootmnt = &p->mnt;
2908 if (&p->mnt == new_fs->pwd.mnt) {
2909 new_fs->pwd.mnt = mntget(&q->mnt);
2910 pwdmnt = &p->mnt;
2913 p = next_mnt(p, old);
2914 q = next_mnt(q, new);
2915 if (!q)
2916 break;
2917 while (p->mnt.mnt_root != q->mnt.mnt_root)
2918 p = next_mnt(p, old);
2920 namespace_unlock();
2922 if (rootmnt)
2923 mntput(rootmnt);
2924 if (pwdmnt)
2925 mntput(pwdmnt);
2927 return new_ns;
2931 * create_mnt_ns - creates a private namespace and adds a root filesystem
2932 * @mnt: pointer to the new root filesystem mountpoint
2934 static struct mnt_namespace *create_mnt_ns(struct vfsmount *m)
2936 struct mnt_namespace *new_ns = alloc_mnt_ns(&init_user_ns);
2937 if (!IS_ERR(new_ns)) {
2938 struct mount *mnt = real_mount(m);
2939 mnt->mnt_ns = new_ns;
2940 new_ns->root = mnt;
2941 new_ns->mounts++;
2942 list_add(&mnt->mnt_list, &new_ns->list);
2943 } else {
2944 mntput(m);
2946 return new_ns;
2949 struct dentry *mount_subtree(struct vfsmount *mnt, const char *name)
2951 struct mnt_namespace *ns;
2952 struct super_block *s;
2953 struct path path;
2954 int err;
2956 ns = create_mnt_ns(mnt);
2957 if (IS_ERR(ns))
2958 return ERR_CAST(ns);
2960 err = vfs_path_lookup(mnt->mnt_root, mnt,
2961 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
2963 put_mnt_ns(ns);
2965 if (err)
2966 return ERR_PTR(err);
2968 /* trade a vfsmount reference for active sb one */
2969 s = path.mnt->mnt_sb;
2970 atomic_inc(&s->s_active);
2971 mntput(path.mnt);
2972 /* lock the sucker */
2973 down_write(&s->s_umount);
2974 /* ... and return the root of (sub)tree on it */
2975 return path.dentry;
2977 EXPORT_SYMBOL(mount_subtree);
2979 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
2980 char __user *, type, unsigned long, flags, void __user *, data)
2982 int ret;
2983 char *kernel_type;
2984 char *kernel_dev;
2985 unsigned long data_page;
2987 kernel_type = copy_mount_string(type);
2988 ret = PTR_ERR(kernel_type);
2989 if (IS_ERR(kernel_type))
2990 goto out_type;
2992 kernel_dev = copy_mount_string(dev_name);
2993 ret = PTR_ERR(kernel_dev);
2994 if (IS_ERR(kernel_dev))
2995 goto out_dev;
2997 ret = copy_mount_options(data, &data_page);
2998 if (ret < 0)
2999 goto out_data;
3001 ret = do_mount(kernel_dev, dir_name, kernel_type, flags,
3002 (void *) data_page);
3004 free_page(data_page);
3005 out_data:
3006 kfree(kernel_dev);
3007 out_dev:
3008 kfree(kernel_type);
3009 out_type:
3010 return ret;
3014 * Return true if path is reachable from root
3016 * namespace_sem or mount_lock is held
3018 bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
3019 const struct path *root)
3021 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
3022 dentry = mnt->mnt_mountpoint;
3023 mnt = mnt->mnt_parent;
3025 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
3028 int path_is_under(struct path *path1, struct path *path2)
3030 int res;
3031 read_seqlock_excl(&mount_lock);
3032 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
3033 read_sequnlock_excl(&mount_lock);
3034 return res;
3036 EXPORT_SYMBOL(path_is_under);
3039 * pivot_root Semantics:
3040 * Moves the root file system of the current process to the directory put_old,
3041 * makes new_root as the new root file system of the current process, and sets
3042 * root/cwd of all processes which had them on the current root to new_root.
3044 * Restrictions:
3045 * The new_root and put_old must be directories, and must not be on the
3046 * same file system as the current process root. The put_old must be
3047 * underneath new_root, i.e. adding a non-zero number of /.. to the string
3048 * pointed to by put_old must yield the same directory as new_root. No other
3049 * file system may be mounted on put_old. After all, new_root is a mountpoint.
3051 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
3052 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
3053 * in this situation.
3055 * Notes:
3056 * - we don't move root/cwd if they are not at the root (reason: if something
3057 * cared enough to change them, it's probably wrong to force them elsewhere)
3058 * - it's okay to pick a root that isn't the root of a file system, e.g.
3059 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
3060 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
3061 * first.
3063 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
3064 const char __user *, put_old)
3066 struct path new, old, parent_path, root_parent, root;
3067 struct mount *new_mnt, *root_mnt, *old_mnt;
3068 struct mountpoint *old_mp, *root_mp;
3069 int error;
3071 if (!may_mount())
3072 return -EPERM;
3074 error = user_path_dir(new_root, &new);
3075 if (error)
3076 goto out0;
3078 error = user_path_dir(put_old, &old);
3079 if (error)
3080 goto out1;
3082 error = security_sb_pivotroot(&old, &new);
3083 if (error)
3084 goto out2;
3086 get_fs_root(current->fs, &root);
3087 old_mp = lock_mount(&old);
3088 error = PTR_ERR(old_mp);
3089 if (IS_ERR(old_mp))
3090 goto out3;
3092 error = -EINVAL;
3093 new_mnt = real_mount(new.mnt);
3094 root_mnt = real_mount(root.mnt);
3095 old_mnt = real_mount(old.mnt);
3096 if (IS_MNT_SHARED(old_mnt) ||
3097 IS_MNT_SHARED(new_mnt->mnt_parent) ||
3098 IS_MNT_SHARED(root_mnt->mnt_parent))
3099 goto out4;
3100 if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
3101 goto out4;
3102 if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
3103 goto out4;
3104 error = -ENOENT;
3105 if (d_unlinked(new.dentry))
3106 goto out4;
3107 error = -EBUSY;
3108 if (new_mnt == root_mnt || old_mnt == root_mnt)
3109 goto out4; /* loop, on the same file system */
3110 error = -EINVAL;
3111 if (root.mnt->mnt_root != root.dentry)
3112 goto out4; /* not a mountpoint */
3113 if (!mnt_has_parent(root_mnt))
3114 goto out4; /* not attached */
3115 root_mp = root_mnt->mnt_mp;
3116 if (new.mnt->mnt_root != new.dentry)
3117 goto out4; /* not a mountpoint */
3118 if (!mnt_has_parent(new_mnt))
3119 goto out4; /* not attached */
3120 /* make sure we can reach put_old from new_root */
3121 if (!is_path_reachable(old_mnt, old.dentry, &new))
3122 goto out4;
3123 /* make certain new is below the root */
3124 if (!is_path_reachable(new_mnt, new.dentry, &root))
3125 goto out4;
3126 root_mp->m_count++; /* pin it so it won't go away */
3127 lock_mount_hash();
3128 detach_mnt(new_mnt, &parent_path);
3129 detach_mnt(root_mnt, &root_parent);
3130 if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
3131 new_mnt->mnt.mnt_flags |= MNT_LOCKED;
3132 root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
3134 /* mount old root on put_old */
3135 attach_mnt(root_mnt, old_mnt, old_mp);
3136 /* mount new_root on / */
3137 attach_mnt(new_mnt, real_mount(root_parent.mnt), root_mp);
3138 touch_mnt_namespace(current->nsproxy->mnt_ns);
3139 /* A moved mount should not expire automatically */
3140 list_del_init(&new_mnt->mnt_expire);
3141 put_mountpoint(root_mp);
3142 unlock_mount_hash();
3143 chroot_fs_refs(&root, &new);
3144 error = 0;
3145 out4:
3146 unlock_mount(old_mp);
3147 if (!error) {
3148 path_put(&root_parent);
3149 path_put(&parent_path);
3151 out3:
3152 path_put(&root);
3153 out2:
3154 path_put(&old);
3155 out1:
3156 path_put(&new);
3157 out0:
3158 return error;
3161 static void __init init_mount_tree(void)
3163 struct vfsmount *mnt;
3164 struct mnt_namespace *ns;
3165 struct path root;
3166 struct file_system_type *type;
3168 type = get_fs_type("rootfs");
3169 if (!type)
3170 panic("Can't find rootfs type");
3171 mnt = vfs_kern_mount(type, 0, "rootfs", NULL);
3172 put_filesystem(type);
3173 if (IS_ERR(mnt))
3174 panic("Can't create rootfs");
3176 ns = create_mnt_ns(mnt);
3177 if (IS_ERR(ns))
3178 panic("Can't allocate initial namespace");
3180 init_task.nsproxy->mnt_ns = ns;
3181 get_mnt_ns(ns);
3183 root.mnt = mnt;
3184 root.dentry = mnt->mnt_root;
3185 mnt->mnt_flags |= MNT_LOCKED;
3187 set_fs_pwd(current->fs, &root);
3188 set_fs_root(current->fs, &root);
3191 void __init mnt_init(void)
3193 unsigned u;
3194 int err;
3196 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
3197 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3199 mount_hashtable = alloc_large_system_hash("Mount-cache",
3200 sizeof(struct hlist_head),
3201 mhash_entries, 19,
3203 &m_hash_shift, &m_hash_mask, 0, 0);
3204 mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
3205 sizeof(struct hlist_head),
3206 mphash_entries, 19,
3208 &mp_hash_shift, &mp_hash_mask, 0, 0);
3210 if (!mount_hashtable || !mountpoint_hashtable)
3211 panic("Failed to allocate mount hash table\n");
3213 for (u = 0; u <= m_hash_mask; u++)
3214 INIT_HLIST_HEAD(&mount_hashtable[u]);
3215 for (u = 0; u <= mp_hash_mask; u++)
3216 INIT_HLIST_HEAD(&mountpoint_hashtable[u]);
3218 kernfs_init();
3220 err = sysfs_init();
3221 if (err)
3222 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
3223 __func__, err);
3224 fs_kobj = kobject_create_and_add("fs", NULL);
3225 if (!fs_kobj)
3226 printk(KERN_WARNING "%s: kobj create error\n", __func__);
3227 init_rootfs();
3228 init_mount_tree();
3231 void put_mnt_ns(struct mnt_namespace *ns)
3233 if (!atomic_dec_and_test(&ns->count))
3234 return;
3235 drop_collected_mounts(&ns->root->mnt);
3236 free_mnt_ns(ns);
3239 struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
3241 struct vfsmount *mnt;
3242 mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, data);
3243 if (!IS_ERR(mnt)) {
3245 * it is a longterm mount, don't release mnt until
3246 * we unmount before file sys is unregistered
3248 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
3250 return mnt;
3252 EXPORT_SYMBOL_GPL(kern_mount_data);
3254 void kern_unmount(struct vfsmount *mnt)
3256 /* release long term mount so mount point can be released */
3257 if (!IS_ERR_OR_NULL(mnt)) {
3258 real_mount(mnt)->mnt_ns = NULL;
3259 synchronize_rcu(); /* yecchhh... */
3260 mntput(mnt);
3263 EXPORT_SYMBOL(kern_unmount);
3265 bool our_mnt(struct vfsmount *mnt)
3267 return check_mnt(real_mount(mnt));
3270 bool current_chrooted(void)
3272 /* Does the current process have a non-standard root */
3273 struct path ns_root;
3274 struct path fs_root;
3275 bool chrooted;
3277 /* Find the namespace root */
3278 ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
3279 ns_root.dentry = ns_root.mnt->mnt_root;
3280 path_get(&ns_root);
3281 while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
3284 get_fs_root(current->fs, &fs_root);
3286 chrooted = !path_equal(&fs_root, &ns_root);
3288 path_put(&fs_root);
3289 path_put(&ns_root);
3291 return chrooted;
3294 static bool fs_fully_visible(struct file_system_type *type, int *new_mnt_flags)
3296 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
3297 int new_flags = *new_mnt_flags;
3298 struct mount *mnt;
3299 bool visible = false;
3301 if (unlikely(!ns))
3302 return false;
3304 down_read(&namespace_sem);
3305 list_for_each_entry(mnt, &ns->list, mnt_list) {
3306 struct mount *child;
3307 int mnt_flags;
3309 if (mnt->mnt.mnt_sb->s_type != type)
3310 continue;
3312 /* This mount is not fully visible if it's root directory
3313 * is not the root directory of the filesystem.
3315 if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root)
3316 continue;
3318 /* Read the mount flags and filter out flags that
3319 * may safely be ignored.
3321 mnt_flags = mnt->mnt.mnt_flags;
3322 if (mnt->mnt.mnt_sb->s_iflags & SB_I_NOEXEC)
3323 mnt_flags &= ~(MNT_LOCK_NOSUID | MNT_LOCK_NOEXEC);
3325 /* Don't miss readonly hidden in the superblock flags */
3326 if (mnt->mnt.mnt_sb->s_flags & MS_RDONLY)
3327 mnt_flags |= MNT_LOCK_READONLY;
3329 /* Verify the mount flags are equal to or more permissive
3330 * than the proposed new mount.
3332 if ((mnt_flags & MNT_LOCK_READONLY) &&
3333 !(new_flags & MNT_READONLY))
3334 continue;
3335 if ((mnt_flags & MNT_LOCK_NODEV) &&
3336 !(new_flags & MNT_NODEV))
3337 continue;
3338 if ((mnt_flags & MNT_LOCK_NOSUID) &&
3339 !(new_flags & MNT_NOSUID))
3340 continue;
3341 if ((mnt_flags & MNT_LOCK_NOEXEC) &&
3342 !(new_flags & MNT_NOEXEC))
3343 continue;
3344 if ((mnt_flags & MNT_LOCK_ATIME) &&
3345 ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK)))
3346 continue;
3348 /* This mount is not fully visible if there are any
3349 * locked child mounts that cover anything except for
3350 * empty directories.
3352 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
3353 struct inode *inode = child->mnt_mountpoint->d_inode;
3354 /* Only worry about locked mounts */
3355 if (!(child->mnt.mnt_flags & MNT_LOCKED))
3356 continue;
3357 /* Is the directory permanetly empty? */
3358 if (!is_empty_dir_inode(inode))
3359 goto next;
3361 /* Preserve the locked attributes */
3362 *new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \
3363 MNT_LOCK_NODEV | \
3364 MNT_LOCK_NOSUID | \
3365 MNT_LOCK_NOEXEC | \
3366 MNT_LOCK_ATIME);
3367 visible = true;
3368 goto found;
3369 next: ;
3371 found:
3372 up_read(&namespace_sem);
3373 return visible;
3376 static struct ns_common *mntns_get(struct task_struct *task)
3378 struct ns_common *ns = NULL;
3379 struct nsproxy *nsproxy;
3381 task_lock(task);
3382 nsproxy = task->nsproxy;
3383 if (nsproxy) {
3384 ns = &nsproxy->mnt_ns->ns;
3385 get_mnt_ns(to_mnt_ns(ns));
3387 task_unlock(task);
3389 return ns;
3392 static void mntns_put(struct ns_common *ns)
3394 put_mnt_ns(to_mnt_ns(ns));
3397 static int mntns_install(struct nsproxy *nsproxy, struct ns_common *ns)
3399 struct fs_struct *fs = current->fs;
3400 struct mnt_namespace *mnt_ns = to_mnt_ns(ns);
3401 struct path root;
3403 if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
3404 !ns_capable(current_user_ns(), CAP_SYS_CHROOT) ||
3405 !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
3406 return -EPERM;
3408 if (fs->users != 1)
3409 return -EINVAL;
3411 get_mnt_ns(mnt_ns);
3412 put_mnt_ns(nsproxy->mnt_ns);
3413 nsproxy->mnt_ns = mnt_ns;
3415 /* Find the root */
3416 root.mnt = &mnt_ns->root->mnt;
3417 root.dentry = mnt_ns->root->mnt.mnt_root;
3418 path_get(&root);
3419 while(d_mountpoint(root.dentry) && follow_down_one(&root))
3422 /* Update the pwd and root */
3423 set_fs_pwd(fs, &root);
3424 set_fs_root(fs, &root);
3426 path_put(&root);
3427 return 0;
3430 const struct proc_ns_operations mntns_operations = {
3431 .name = "mnt",
3432 .type = CLONE_NEWNS,
3433 .get = mntns_get,
3434 .put = mntns_put,
3435 .install = mntns_install,