4 * (C) Copyright Al Viro 2000, 2001
5 * Released under GPL v2.
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
11 #include <linux/syscalls.h>
12 #include <linux/export.h>
13 #include <linux/capability.h>
14 #include <linux/mnt_namespace.h>
15 #include <linux/user_namespace.h>
16 #include <linux/namei.h>
17 #include <linux/security.h>
18 #include <linux/idr.h>
19 #include <linux/init.h> /* init_rootfs */
20 #include <linux/fs_struct.h> /* get_fs_root et.al. */
21 #include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
22 #include <linux/uaccess.h>
23 #include <linux/proc_ns.h>
24 #include <linux/magic.h>
25 #include <linux/bootmem.h>
26 #include <linux/task_work.h>
30 /* Maximum number of mounts in a mount namespace */
31 unsigned int sysctl_mount_max __read_mostly
= 100000;
33 static unsigned int m_hash_mask __read_mostly
;
34 static unsigned int m_hash_shift __read_mostly
;
35 static unsigned int mp_hash_mask __read_mostly
;
36 static unsigned int mp_hash_shift __read_mostly
;
38 static __initdata
unsigned long mhash_entries
;
39 static int __init
set_mhash_entries(char *str
)
43 mhash_entries
= simple_strtoul(str
, &str
, 0);
46 __setup("mhash_entries=", set_mhash_entries
);
48 static __initdata
unsigned long mphash_entries
;
49 static int __init
set_mphash_entries(char *str
)
53 mphash_entries
= simple_strtoul(str
, &str
, 0);
56 __setup("mphash_entries=", set_mphash_entries
);
59 static DEFINE_IDA(mnt_id_ida
);
60 static DEFINE_IDA(mnt_group_ida
);
61 static DEFINE_SPINLOCK(mnt_id_lock
);
62 static int mnt_id_start
= 0;
63 static int mnt_group_start
= 1;
65 static struct hlist_head
*mount_hashtable __read_mostly
;
66 static struct hlist_head
*mountpoint_hashtable __read_mostly
;
67 static struct kmem_cache
*mnt_cache __read_mostly
;
68 static DECLARE_RWSEM(namespace_sem
);
71 struct kobject
*fs_kobj
;
72 EXPORT_SYMBOL_GPL(fs_kobj
);
75 * vfsmount lock may be taken for read to prevent changes to the
76 * vfsmount hash, ie. during mountpoint lookups or walking back
79 * It should be taken for write in all cases where the vfsmount
80 * tree or hash is modified or when a vfsmount structure is modified.
82 __cacheline_aligned_in_smp
DEFINE_SEQLOCK(mount_lock
);
84 static inline struct hlist_head
*m_hash(struct vfsmount
*mnt
, struct dentry
*dentry
)
86 unsigned long tmp
= ((unsigned long)mnt
/ L1_CACHE_BYTES
);
87 tmp
+= ((unsigned long)dentry
/ L1_CACHE_BYTES
);
88 tmp
= tmp
+ (tmp
>> m_hash_shift
);
89 return &mount_hashtable
[tmp
& m_hash_mask
];
92 static inline struct hlist_head
*mp_hash(struct dentry
*dentry
)
94 unsigned long tmp
= ((unsigned long)dentry
/ L1_CACHE_BYTES
);
95 tmp
= tmp
+ (tmp
>> mp_hash_shift
);
96 return &mountpoint_hashtable
[tmp
& mp_hash_mask
];
100 * allocation is serialized by namespace_sem, but we need the spinlock to
101 * serialize with freeing.
103 static int mnt_alloc_id(struct mount
*mnt
)
108 ida_pre_get(&mnt_id_ida
, GFP_KERNEL
);
109 spin_lock(&mnt_id_lock
);
110 res
= ida_get_new_above(&mnt_id_ida
, mnt_id_start
, &mnt
->mnt_id
);
112 mnt_id_start
= mnt
->mnt_id
+ 1;
113 spin_unlock(&mnt_id_lock
);
120 static void mnt_free_id(struct mount
*mnt
)
122 int id
= mnt
->mnt_id
;
123 spin_lock(&mnt_id_lock
);
124 ida_remove(&mnt_id_ida
, id
);
125 if (mnt_id_start
> id
)
127 spin_unlock(&mnt_id_lock
);
131 * Allocate a new peer group ID
133 * mnt_group_ida is protected by namespace_sem
135 static int mnt_alloc_group_id(struct mount
*mnt
)
139 if (!ida_pre_get(&mnt_group_ida
, GFP_KERNEL
))
142 res
= ida_get_new_above(&mnt_group_ida
,
146 mnt_group_start
= mnt
->mnt_group_id
+ 1;
152 * Release a peer group ID
154 void mnt_release_group_id(struct mount
*mnt
)
156 int id
= mnt
->mnt_group_id
;
157 ida_remove(&mnt_group_ida
, id
);
158 if (mnt_group_start
> id
)
159 mnt_group_start
= id
;
160 mnt
->mnt_group_id
= 0;
164 * vfsmount lock must be held for read
166 static inline void mnt_add_count(struct mount
*mnt
, int n
)
169 this_cpu_add(mnt
->mnt_pcp
->mnt_count
, n
);
178 * vfsmount lock must be held for write
180 unsigned int mnt_get_count(struct mount
*mnt
)
183 unsigned int count
= 0;
186 for_each_possible_cpu(cpu
) {
187 count
+= per_cpu_ptr(mnt
->mnt_pcp
, cpu
)->mnt_count
;
192 return mnt
->mnt_count
;
196 static void drop_mountpoint(struct fs_pin
*p
)
198 struct mount
*m
= container_of(p
, struct mount
, mnt_umount
);
199 dput(m
->mnt_ex_mountpoint
);
204 static struct mount
*alloc_vfsmnt(const char *name
)
206 struct mount
*mnt
= kmem_cache_zalloc(mnt_cache
, GFP_KERNEL
);
210 err
= mnt_alloc_id(mnt
);
215 mnt
->mnt_devname
= kstrdup_const(name
, GFP_KERNEL
);
216 if (!mnt
->mnt_devname
)
221 mnt
->mnt_pcp
= alloc_percpu(struct mnt_pcp
);
223 goto out_free_devname
;
225 this_cpu_add(mnt
->mnt_pcp
->mnt_count
, 1);
228 mnt
->mnt_writers
= 0;
231 INIT_HLIST_NODE(&mnt
->mnt_hash
);
232 INIT_LIST_HEAD(&mnt
->mnt_child
);
233 INIT_LIST_HEAD(&mnt
->mnt_mounts
);
234 INIT_LIST_HEAD(&mnt
->mnt_list
);
235 INIT_LIST_HEAD(&mnt
->mnt_expire
);
236 INIT_LIST_HEAD(&mnt
->mnt_share
);
237 INIT_LIST_HEAD(&mnt
->mnt_slave_list
);
238 INIT_LIST_HEAD(&mnt
->mnt_slave
);
239 INIT_HLIST_NODE(&mnt
->mnt_mp_list
);
240 #ifdef CONFIG_FSNOTIFY
241 INIT_HLIST_HEAD(&mnt
->mnt_fsnotify_marks
);
243 init_fs_pin(&mnt
->mnt_umount
, drop_mountpoint
);
249 kfree_const(mnt
->mnt_devname
);
254 kmem_cache_free(mnt_cache
, mnt
);
259 * Most r/o checks on a fs are for operations that take
260 * discrete amounts of time, like a write() or unlink().
261 * We must keep track of when those operations start
262 * (for permission checks) and when they end, so that
263 * we can determine when writes are able to occur to
267 * __mnt_is_readonly: check whether a mount is read-only
268 * @mnt: the mount to check for its write status
270 * This shouldn't be used directly ouside of the VFS.
271 * It does not guarantee that the filesystem will stay
272 * r/w, just that it is right *now*. This can not and
273 * should not be used in place of IS_RDONLY(inode).
274 * mnt_want/drop_write() will _keep_ the filesystem
277 int __mnt_is_readonly(struct vfsmount
*mnt
)
279 if (mnt
->mnt_flags
& MNT_READONLY
)
281 if (mnt
->mnt_sb
->s_flags
& MS_RDONLY
)
285 EXPORT_SYMBOL_GPL(__mnt_is_readonly
);
287 static inline void mnt_inc_writers(struct mount
*mnt
)
290 this_cpu_inc(mnt
->mnt_pcp
->mnt_writers
);
296 static inline void mnt_dec_writers(struct mount
*mnt
)
299 this_cpu_dec(mnt
->mnt_pcp
->mnt_writers
);
305 static unsigned int mnt_get_writers(struct mount
*mnt
)
308 unsigned int count
= 0;
311 for_each_possible_cpu(cpu
) {
312 count
+= per_cpu_ptr(mnt
->mnt_pcp
, cpu
)->mnt_writers
;
317 return mnt
->mnt_writers
;
321 static int mnt_is_readonly(struct vfsmount
*mnt
)
323 if (mnt
->mnt_sb
->s_readonly_remount
)
325 /* Order wrt setting s_flags/s_readonly_remount in do_remount() */
327 return __mnt_is_readonly(mnt
);
331 * Most r/o & frozen checks on a fs are for operations that take discrete
332 * amounts of time, like a write() or unlink(). We must keep track of when
333 * those operations start (for permission checks) and when they end, so that we
334 * can determine when writes are able to occur to a filesystem.
337 * __mnt_want_write - get write access to a mount without freeze protection
338 * @m: the mount on which to take a write
340 * This tells the low-level filesystem that a write is about to be performed to
341 * it, and makes sure that writes are allowed (mnt it read-write) before
342 * returning success. This operation does not protect against filesystem being
343 * frozen. When the write operation is finished, __mnt_drop_write() must be
344 * called. This is effectively a refcount.
346 int __mnt_want_write(struct vfsmount
*m
)
348 struct mount
*mnt
= real_mount(m
);
352 mnt_inc_writers(mnt
);
354 * The store to mnt_inc_writers must be visible before we pass
355 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
356 * incremented count after it has set MNT_WRITE_HOLD.
359 while (ACCESS_ONCE(mnt
->mnt
.mnt_flags
) & MNT_WRITE_HOLD
)
362 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
363 * be set to match its requirements. So we must not load that until
364 * MNT_WRITE_HOLD is cleared.
367 if (mnt_is_readonly(m
)) {
368 mnt_dec_writers(mnt
);
377 * mnt_want_write - get write access to a mount
378 * @m: the mount on which to take a write
380 * This tells the low-level filesystem that a write is about to be performed to
381 * it, and makes sure that writes are allowed (mount is read-write, filesystem
382 * is not frozen) before returning success. When the write operation is
383 * finished, mnt_drop_write() must be called. This is effectively a refcount.
385 int mnt_want_write(struct vfsmount
*m
)
389 sb_start_write(m
->mnt_sb
);
390 ret
= __mnt_want_write(m
);
392 sb_end_write(m
->mnt_sb
);
395 EXPORT_SYMBOL_GPL(mnt_want_write
);
398 * mnt_clone_write - get write access to a mount
399 * @mnt: the mount on which to take a write
401 * This is effectively like mnt_want_write, except
402 * it must only be used to take an extra write reference
403 * on a mountpoint that we already know has a write reference
404 * on it. This allows some optimisation.
406 * After finished, mnt_drop_write must be called as usual to
407 * drop the reference.
409 int mnt_clone_write(struct vfsmount
*mnt
)
411 /* superblock may be r/o */
412 if (__mnt_is_readonly(mnt
))
415 mnt_inc_writers(real_mount(mnt
));
419 EXPORT_SYMBOL_GPL(mnt_clone_write
);
422 * __mnt_want_write_file - get write access to a file's mount
423 * @file: the file who's mount on which to take a write
425 * This is like __mnt_want_write, but it takes a file and can
426 * do some optimisations if the file is open for write already
428 int __mnt_want_write_file(struct file
*file
)
430 if (!(file
->f_mode
& FMODE_WRITER
))
431 return __mnt_want_write(file
->f_path
.mnt
);
433 return mnt_clone_write(file
->f_path
.mnt
);
437 * mnt_want_write_file - get write access to a file's mount
438 * @file: the file who's mount on which to take a write
440 * This is like mnt_want_write, but it takes a file and can
441 * do some optimisations if the file is open for write already
443 int mnt_want_write_file(struct file
*file
)
447 sb_start_write(file
->f_path
.mnt
->mnt_sb
);
448 ret
= __mnt_want_write_file(file
);
450 sb_end_write(file
->f_path
.mnt
->mnt_sb
);
453 EXPORT_SYMBOL_GPL(mnt_want_write_file
);
456 * __mnt_drop_write - give up write access to a mount
457 * @mnt: the mount on which to give up write access
459 * Tells the low-level filesystem that we are done
460 * performing writes to it. Must be matched with
461 * __mnt_want_write() call above.
463 void __mnt_drop_write(struct vfsmount
*mnt
)
466 mnt_dec_writers(real_mount(mnt
));
471 * mnt_drop_write - give up write access to a mount
472 * @mnt: the mount on which to give up write access
474 * Tells the low-level filesystem that we are done performing writes to it and
475 * also allows filesystem to be frozen again. Must be matched with
476 * mnt_want_write() call above.
478 void mnt_drop_write(struct vfsmount
*mnt
)
480 __mnt_drop_write(mnt
);
481 sb_end_write(mnt
->mnt_sb
);
483 EXPORT_SYMBOL_GPL(mnt_drop_write
);
485 void __mnt_drop_write_file(struct file
*file
)
487 __mnt_drop_write(file
->f_path
.mnt
);
490 void mnt_drop_write_file(struct file
*file
)
492 mnt_drop_write(file
->f_path
.mnt
);
494 EXPORT_SYMBOL(mnt_drop_write_file
);
496 static int mnt_make_readonly(struct mount
*mnt
)
501 mnt
->mnt
.mnt_flags
|= MNT_WRITE_HOLD
;
503 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
504 * should be visible before we do.
509 * With writers on hold, if this value is zero, then there are
510 * definitely no active writers (although held writers may subsequently
511 * increment the count, they'll have to wait, and decrement it after
512 * seeing MNT_READONLY).
514 * It is OK to have counter incremented on one CPU and decremented on
515 * another: the sum will add up correctly. The danger would be when we
516 * sum up each counter, if we read a counter before it is incremented,
517 * but then read another CPU's count which it has been subsequently
518 * decremented from -- we would see more decrements than we should.
519 * MNT_WRITE_HOLD protects against this scenario, because
520 * mnt_want_write first increments count, then smp_mb, then spins on
521 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
522 * we're counting up here.
524 if (mnt_get_writers(mnt
) > 0)
527 mnt
->mnt
.mnt_flags
|= MNT_READONLY
;
529 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
530 * that become unheld will see MNT_READONLY.
533 mnt
->mnt
.mnt_flags
&= ~MNT_WRITE_HOLD
;
538 static void __mnt_unmake_readonly(struct mount
*mnt
)
541 mnt
->mnt
.mnt_flags
&= ~MNT_READONLY
;
545 int sb_prepare_remount_readonly(struct super_block
*sb
)
550 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */
551 if (atomic_long_read(&sb
->s_remove_count
))
555 list_for_each_entry(mnt
, &sb
->s_mounts
, mnt_instance
) {
556 if (!(mnt
->mnt
.mnt_flags
& MNT_READONLY
)) {
557 mnt
->mnt
.mnt_flags
|= MNT_WRITE_HOLD
;
559 if (mnt_get_writers(mnt
) > 0) {
565 if (!err
&& atomic_long_read(&sb
->s_remove_count
))
569 sb
->s_readonly_remount
= 1;
572 list_for_each_entry(mnt
, &sb
->s_mounts
, mnt_instance
) {
573 if (mnt
->mnt
.mnt_flags
& MNT_WRITE_HOLD
)
574 mnt
->mnt
.mnt_flags
&= ~MNT_WRITE_HOLD
;
581 static void free_vfsmnt(struct mount
*mnt
)
583 kfree_const(mnt
->mnt_devname
);
585 free_percpu(mnt
->mnt_pcp
);
587 kmem_cache_free(mnt_cache
, mnt
);
590 static void delayed_free_vfsmnt(struct rcu_head
*head
)
592 free_vfsmnt(container_of(head
, struct mount
, mnt_rcu
));
595 /* call under rcu_read_lock */
596 int __legitimize_mnt(struct vfsmount
*bastard
, unsigned seq
)
599 if (read_seqretry(&mount_lock
, seq
))
603 mnt
= real_mount(bastard
);
604 mnt_add_count(mnt
, 1);
605 if (likely(!read_seqretry(&mount_lock
, seq
)))
607 if (bastard
->mnt_flags
& MNT_SYNC_UMOUNT
) {
608 mnt_add_count(mnt
, -1);
614 /* call under rcu_read_lock */
615 bool legitimize_mnt(struct vfsmount
*bastard
, unsigned seq
)
617 int res
= __legitimize_mnt(bastard
, seq
);
620 if (unlikely(res
< 0)) {
629 * find the first mount at @dentry on vfsmount @mnt.
630 * call under rcu_read_lock()
632 struct mount
*__lookup_mnt(struct vfsmount
*mnt
, struct dentry
*dentry
)
634 struct hlist_head
*head
= m_hash(mnt
, dentry
);
637 hlist_for_each_entry_rcu(p
, head
, mnt_hash
)
638 if (&p
->mnt_parent
->mnt
== mnt
&& p
->mnt_mountpoint
== dentry
)
644 * lookup_mnt - Return the first child mount mounted at path
646 * "First" means first mounted chronologically. If you create the
649 * mount /dev/sda1 /mnt
650 * mount /dev/sda2 /mnt
651 * mount /dev/sda3 /mnt
653 * Then lookup_mnt() on the base /mnt dentry in the root mount will
654 * return successively the root dentry and vfsmount of /dev/sda1, then
655 * /dev/sda2, then /dev/sda3, then NULL.
657 * lookup_mnt takes a reference to the found vfsmount.
659 struct vfsmount
*lookup_mnt(struct path
*path
)
661 struct mount
*child_mnt
;
667 seq
= read_seqbegin(&mount_lock
);
668 child_mnt
= __lookup_mnt(path
->mnt
, path
->dentry
);
669 m
= child_mnt
? &child_mnt
->mnt
: NULL
;
670 } while (!legitimize_mnt(m
, seq
));
676 * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
677 * current mount namespace.
679 * The common case is dentries are not mountpoints at all and that
680 * test is handled inline. For the slow case when we are actually
681 * dealing with a mountpoint of some kind, walk through all of the
682 * mounts in the current mount namespace and test to see if the dentry
685 * The mount_hashtable is not usable in the context because we
686 * need to identify all mounts that may be in the current mount
687 * namespace not just a mount that happens to have some specified
690 bool __is_local_mountpoint(struct dentry
*dentry
)
692 struct mnt_namespace
*ns
= current
->nsproxy
->mnt_ns
;
694 bool is_covered
= false;
696 if (!d_mountpoint(dentry
))
699 down_read(&namespace_sem
);
700 list_for_each_entry(mnt
, &ns
->list
, mnt_list
) {
701 is_covered
= (mnt
->mnt_mountpoint
== dentry
);
705 up_read(&namespace_sem
);
710 static struct mountpoint
*lookup_mountpoint(struct dentry
*dentry
)
712 struct hlist_head
*chain
= mp_hash(dentry
);
713 struct mountpoint
*mp
;
715 hlist_for_each_entry(mp
, chain
, m_hash
) {
716 if (mp
->m_dentry
== dentry
) {
717 /* might be worth a WARN_ON() */
718 if (d_unlinked(dentry
))
719 return ERR_PTR(-ENOENT
);
727 static struct mountpoint
*get_mountpoint(struct dentry
*dentry
)
729 struct mountpoint
*mp
, *new = NULL
;
732 if (d_mountpoint(dentry
)) {
734 read_seqlock_excl(&mount_lock
);
735 mp
= lookup_mountpoint(dentry
);
736 read_sequnlock_excl(&mount_lock
);
742 new = kmalloc(sizeof(struct mountpoint
), GFP_KERNEL
);
744 return ERR_PTR(-ENOMEM
);
747 /* Exactly one processes may set d_mounted */
748 ret
= d_set_mounted(dentry
);
750 /* Someone else set d_mounted? */
754 /* The dentry is not available as a mountpoint? */
759 /* Add the new mountpoint to the hash table */
760 read_seqlock_excl(&mount_lock
);
761 new->m_dentry
= dentry
;
763 hlist_add_head(&new->m_hash
, mp_hash(dentry
));
764 INIT_HLIST_HEAD(&new->m_list
);
765 read_sequnlock_excl(&mount_lock
);
774 static void put_mountpoint(struct mountpoint
*mp
)
776 if (!--mp
->m_count
) {
777 struct dentry
*dentry
= mp
->m_dentry
;
778 BUG_ON(!hlist_empty(&mp
->m_list
));
779 spin_lock(&dentry
->d_lock
);
780 dentry
->d_flags
&= ~DCACHE_MOUNTED
;
781 spin_unlock(&dentry
->d_lock
);
782 hlist_del(&mp
->m_hash
);
787 static inline int check_mnt(struct mount
*mnt
)
789 return mnt
->mnt_ns
== current
->nsproxy
->mnt_ns
;
793 * vfsmount lock must be held for write
795 static void touch_mnt_namespace(struct mnt_namespace
*ns
)
799 wake_up_interruptible(&ns
->poll
);
804 * vfsmount lock must be held for write
806 static void __touch_mnt_namespace(struct mnt_namespace
*ns
)
808 if (ns
&& ns
->event
!= event
) {
810 wake_up_interruptible(&ns
->poll
);
815 * vfsmount lock must be held for write
817 static void unhash_mnt(struct mount
*mnt
)
819 mnt
->mnt_parent
= mnt
;
820 mnt
->mnt_mountpoint
= mnt
->mnt
.mnt_root
;
821 list_del_init(&mnt
->mnt_child
);
822 hlist_del_init_rcu(&mnt
->mnt_hash
);
823 hlist_del_init(&mnt
->mnt_mp_list
);
824 put_mountpoint(mnt
->mnt_mp
);
829 * vfsmount lock must be held for write
831 static void detach_mnt(struct mount
*mnt
, struct path
*old_path
)
833 old_path
->dentry
= mnt
->mnt_mountpoint
;
834 old_path
->mnt
= &mnt
->mnt_parent
->mnt
;
839 * vfsmount lock must be held for write
841 static void umount_mnt(struct mount
*mnt
)
843 /* old mountpoint will be dropped when we can do that */
844 mnt
->mnt_ex_mountpoint
= mnt
->mnt_mountpoint
;
849 * vfsmount lock must be held for write
851 void mnt_set_mountpoint(struct mount
*mnt
,
852 struct mountpoint
*mp
,
853 struct mount
*child_mnt
)
856 mnt_add_count(mnt
, 1); /* essentially, that's mntget */
857 child_mnt
->mnt_mountpoint
= dget(mp
->m_dentry
);
858 child_mnt
->mnt_parent
= mnt
;
859 child_mnt
->mnt_mp
= mp
;
860 hlist_add_head(&child_mnt
->mnt_mp_list
, &mp
->m_list
);
863 static void __attach_mnt(struct mount
*mnt
, struct mount
*parent
)
865 hlist_add_head_rcu(&mnt
->mnt_hash
,
866 m_hash(&parent
->mnt
, mnt
->mnt_mountpoint
));
867 list_add_tail(&mnt
->mnt_child
, &parent
->mnt_mounts
);
871 * vfsmount lock must be held for write
873 static void attach_mnt(struct mount
*mnt
,
874 struct mount
*parent
,
875 struct mountpoint
*mp
)
877 mnt_set_mountpoint(parent
, mp
, mnt
);
878 __attach_mnt(mnt
, parent
);
881 void mnt_change_mountpoint(struct mount
*parent
, struct mountpoint
*mp
, struct mount
*mnt
)
883 struct mountpoint
*old_mp
= mnt
->mnt_mp
;
884 struct dentry
*old_mountpoint
= mnt
->mnt_mountpoint
;
885 struct mount
*old_parent
= mnt
->mnt_parent
;
887 list_del_init(&mnt
->mnt_child
);
888 hlist_del_init(&mnt
->mnt_mp_list
);
889 hlist_del_init_rcu(&mnt
->mnt_hash
);
891 attach_mnt(mnt
, parent
, mp
);
893 put_mountpoint(old_mp
);
896 * Safely avoid even the suggestion this code might sleep or
897 * lock the mount hash by taking advantage of the knowledge that
898 * mnt_change_mountpoint will not release the final reference
901 * During mounting, the mount passed in as the parent mount will
902 * continue to use the old mountpoint and during unmounting, the
903 * old mountpoint will continue to exist until namespace_unlock,
904 * which happens well after mnt_change_mountpoint.
906 spin_lock(&old_mountpoint
->d_lock
);
907 old_mountpoint
->d_lockref
.count
--;
908 spin_unlock(&old_mountpoint
->d_lock
);
910 mnt_add_count(old_parent
, -1);
914 * vfsmount lock must be held for write
916 static void commit_tree(struct mount
*mnt
)
918 struct mount
*parent
= mnt
->mnt_parent
;
921 struct mnt_namespace
*n
= parent
->mnt_ns
;
923 BUG_ON(parent
== mnt
);
925 list_add_tail(&head
, &mnt
->mnt_list
);
926 list_for_each_entry(m
, &head
, mnt_list
)
929 list_splice(&head
, n
->list
.prev
);
931 n
->mounts
+= n
->pending_mounts
;
932 n
->pending_mounts
= 0;
934 __attach_mnt(mnt
, parent
);
935 touch_mnt_namespace(n
);
938 static struct mount
*next_mnt(struct mount
*p
, struct mount
*root
)
940 struct list_head
*next
= p
->mnt_mounts
.next
;
941 if (next
== &p
->mnt_mounts
) {
945 next
= p
->mnt_child
.next
;
946 if (next
!= &p
->mnt_parent
->mnt_mounts
)
951 return list_entry(next
, struct mount
, mnt_child
);
954 static struct mount
*skip_mnt_tree(struct mount
*p
)
956 struct list_head
*prev
= p
->mnt_mounts
.prev
;
957 while (prev
!= &p
->mnt_mounts
) {
958 p
= list_entry(prev
, struct mount
, mnt_child
);
959 prev
= p
->mnt_mounts
.prev
;
965 vfs_kern_mount(struct file_system_type
*type
, int flags
, const char *name
, void *data
)
971 return ERR_PTR(-ENODEV
);
973 mnt
= alloc_vfsmnt(name
);
975 return ERR_PTR(-ENOMEM
);
977 if (flags
& MS_KERNMOUNT
)
978 mnt
->mnt
.mnt_flags
= MNT_INTERNAL
;
980 root
= mount_fs(type
, flags
, name
, data
);
984 return ERR_CAST(root
);
987 mnt
->mnt
.mnt_root
= root
;
988 mnt
->mnt
.mnt_sb
= root
->d_sb
;
989 mnt
->mnt_mountpoint
= mnt
->mnt
.mnt_root
;
990 mnt
->mnt_parent
= mnt
;
992 list_add_tail(&mnt
->mnt_instance
, &root
->d_sb
->s_mounts
);
996 EXPORT_SYMBOL_GPL(vfs_kern_mount
);
998 static struct mount
*clone_mnt(struct mount
*old
, struct dentry
*root
,
1001 struct super_block
*sb
= old
->mnt
.mnt_sb
;
1005 mnt
= alloc_vfsmnt(old
->mnt_devname
);
1007 return ERR_PTR(-ENOMEM
);
1009 if (flag
& (CL_SLAVE
| CL_PRIVATE
| CL_SHARED_TO_SLAVE
))
1010 mnt
->mnt_group_id
= 0; /* not a peer of original */
1012 mnt
->mnt_group_id
= old
->mnt_group_id
;
1014 if ((flag
& CL_MAKE_SHARED
) && !mnt
->mnt_group_id
) {
1015 err
= mnt_alloc_group_id(mnt
);
1020 mnt
->mnt
.mnt_flags
= old
->mnt
.mnt_flags
& ~(MNT_WRITE_HOLD
|MNT_MARKED
);
1021 /* Don't allow unprivileged users to change mount flags */
1022 if (flag
& CL_UNPRIVILEGED
) {
1023 mnt
->mnt
.mnt_flags
|= MNT_LOCK_ATIME
;
1025 if (mnt
->mnt
.mnt_flags
& MNT_READONLY
)
1026 mnt
->mnt
.mnt_flags
|= MNT_LOCK_READONLY
;
1028 if (mnt
->mnt
.mnt_flags
& MNT_NODEV
)
1029 mnt
->mnt
.mnt_flags
|= MNT_LOCK_NODEV
;
1031 if (mnt
->mnt
.mnt_flags
& MNT_NOSUID
)
1032 mnt
->mnt
.mnt_flags
|= MNT_LOCK_NOSUID
;
1034 if (mnt
->mnt
.mnt_flags
& MNT_NOEXEC
)
1035 mnt
->mnt
.mnt_flags
|= MNT_LOCK_NOEXEC
;
1038 /* Don't allow unprivileged users to reveal what is under a mount */
1039 if ((flag
& CL_UNPRIVILEGED
) &&
1040 (!(flag
& CL_EXPIRE
) || list_empty(&old
->mnt_expire
)))
1041 mnt
->mnt
.mnt_flags
|= MNT_LOCKED
;
1043 atomic_inc(&sb
->s_active
);
1044 mnt
->mnt
.mnt_sb
= sb
;
1045 mnt
->mnt
.mnt_root
= dget(root
);
1046 mnt
->mnt_mountpoint
= mnt
->mnt
.mnt_root
;
1047 mnt
->mnt_parent
= mnt
;
1049 list_add_tail(&mnt
->mnt_instance
, &sb
->s_mounts
);
1050 unlock_mount_hash();
1052 if ((flag
& CL_SLAVE
) ||
1053 ((flag
& CL_SHARED_TO_SLAVE
) && IS_MNT_SHARED(old
))) {
1054 list_add(&mnt
->mnt_slave
, &old
->mnt_slave_list
);
1055 mnt
->mnt_master
= old
;
1056 CLEAR_MNT_SHARED(mnt
);
1057 } else if (!(flag
& CL_PRIVATE
)) {
1058 if ((flag
& CL_MAKE_SHARED
) || IS_MNT_SHARED(old
))
1059 list_add(&mnt
->mnt_share
, &old
->mnt_share
);
1060 if (IS_MNT_SLAVE(old
))
1061 list_add(&mnt
->mnt_slave
, &old
->mnt_slave
);
1062 mnt
->mnt_master
= old
->mnt_master
;
1064 if (flag
& CL_MAKE_SHARED
)
1065 set_mnt_shared(mnt
);
1067 /* stick the duplicate mount on the same expiry list
1068 * as the original if that was on one */
1069 if (flag
& CL_EXPIRE
) {
1070 if (!list_empty(&old
->mnt_expire
))
1071 list_add(&mnt
->mnt_expire
, &old
->mnt_expire
);
1079 return ERR_PTR(err
);
1082 static void cleanup_mnt(struct mount
*mnt
)
1085 * This probably indicates that somebody messed
1086 * up a mnt_want/drop_write() pair. If this
1087 * happens, the filesystem was probably unable
1088 * to make r/w->r/o transitions.
1091 * The locking used to deal with mnt_count decrement provides barriers,
1092 * so mnt_get_writers() below is safe.
1094 WARN_ON(mnt_get_writers(mnt
));
1095 if (unlikely(mnt
->mnt_pins
.first
))
1097 fsnotify_vfsmount_delete(&mnt
->mnt
);
1098 dput(mnt
->mnt
.mnt_root
);
1099 deactivate_super(mnt
->mnt
.mnt_sb
);
1101 call_rcu(&mnt
->mnt_rcu
, delayed_free_vfsmnt
);
1104 static void __cleanup_mnt(struct rcu_head
*head
)
1106 cleanup_mnt(container_of(head
, struct mount
, mnt_rcu
));
1109 static LLIST_HEAD(delayed_mntput_list
);
1110 static void delayed_mntput(struct work_struct
*unused
)
1112 struct llist_node
*node
= llist_del_all(&delayed_mntput_list
);
1113 struct llist_node
*next
;
1115 for (; node
; node
= next
) {
1116 next
= llist_next(node
);
1117 cleanup_mnt(llist_entry(node
, struct mount
, mnt_llist
));
1120 static DECLARE_DELAYED_WORK(delayed_mntput_work
, delayed_mntput
);
1122 static void mntput_no_expire(struct mount
*mnt
)
1125 mnt_add_count(mnt
, -1);
1126 if (likely(mnt
->mnt_ns
)) { /* shouldn't be the last one */
1131 if (mnt_get_count(mnt
)) {
1133 unlock_mount_hash();
1136 if (unlikely(mnt
->mnt
.mnt_flags
& MNT_DOOMED
)) {
1138 unlock_mount_hash();
1141 mnt
->mnt
.mnt_flags
|= MNT_DOOMED
;
1144 list_del(&mnt
->mnt_instance
);
1146 if (unlikely(!list_empty(&mnt
->mnt_mounts
))) {
1147 struct mount
*p
, *tmp
;
1148 list_for_each_entry_safe(p
, tmp
, &mnt
->mnt_mounts
, mnt_child
) {
1152 unlock_mount_hash();
1154 if (likely(!(mnt
->mnt
.mnt_flags
& MNT_INTERNAL
))) {
1155 struct task_struct
*task
= current
;
1156 if (likely(!(task
->flags
& PF_KTHREAD
))) {
1157 init_task_work(&mnt
->mnt_rcu
, __cleanup_mnt
);
1158 if (!task_work_add(task
, &mnt
->mnt_rcu
, true))
1161 if (llist_add(&mnt
->mnt_llist
, &delayed_mntput_list
))
1162 schedule_delayed_work(&delayed_mntput_work
, 1);
1168 void mntput(struct vfsmount
*mnt
)
1171 struct mount
*m
= real_mount(mnt
);
1172 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
1173 if (unlikely(m
->mnt_expiry_mark
))
1174 m
->mnt_expiry_mark
= 0;
1175 mntput_no_expire(m
);
1178 EXPORT_SYMBOL(mntput
);
1180 struct vfsmount
*mntget(struct vfsmount
*mnt
)
1183 mnt_add_count(real_mount(mnt
), 1);
1186 EXPORT_SYMBOL(mntget
);
1188 struct vfsmount
*mnt_clone_internal(struct path
*path
)
1191 p
= clone_mnt(real_mount(path
->mnt
), path
->dentry
, CL_PRIVATE
);
1194 p
->mnt
.mnt_flags
|= MNT_INTERNAL
;
1198 static inline void mangle(struct seq_file
*m
, const char *s
)
1200 seq_escape(m
, s
, " \t\n\\");
1204 * Simple .show_options callback for filesystems which don't want to
1205 * implement more complex mount option showing.
1207 * See also save_mount_options().
1209 int generic_show_options(struct seq_file
*m
, struct dentry
*root
)
1211 const char *options
;
1214 options
= rcu_dereference(root
->d_sb
->s_options
);
1216 if (options
!= NULL
&& options
[0]) {
1224 EXPORT_SYMBOL(generic_show_options
);
1227 * If filesystem uses generic_show_options(), this function should be
1228 * called from the fill_super() callback.
1230 * The .remount_fs callback usually needs to be handled in a special
1231 * way, to make sure, that previous options are not overwritten if the
1234 * Also note, that if the filesystem's .remount_fs function doesn't
1235 * reset all options to their default value, but changes only newly
1236 * given options, then the displayed options will not reflect reality
1239 void save_mount_options(struct super_block
*sb
, char *options
)
1241 BUG_ON(sb
->s_options
);
1242 rcu_assign_pointer(sb
->s_options
, kstrdup(options
, GFP_KERNEL
));
1244 EXPORT_SYMBOL(save_mount_options
);
1246 void replace_mount_options(struct super_block
*sb
, char *options
)
1248 char *old
= sb
->s_options
;
1249 rcu_assign_pointer(sb
->s_options
, options
);
1255 EXPORT_SYMBOL(replace_mount_options
);
1257 #ifdef CONFIG_PROC_FS
1258 /* iterator; we want it to have access to namespace_sem, thus here... */
1259 static void *m_start(struct seq_file
*m
, loff_t
*pos
)
1261 struct proc_mounts
*p
= m
->private;
1263 down_read(&namespace_sem
);
1264 if (p
->cached_event
== p
->ns
->event
) {
1265 void *v
= p
->cached_mount
;
1266 if (*pos
== p
->cached_index
)
1268 if (*pos
== p
->cached_index
+ 1) {
1269 v
= seq_list_next(v
, &p
->ns
->list
, &p
->cached_index
);
1270 return p
->cached_mount
= v
;
1274 p
->cached_event
= p
->ns
->event
;
1275 p
->cached_mount
= seq_list_start(&p
->ns
->list
, *pos
);
1276 p
->cached_index
= *pos
;
1277 return p
->cached_mount
;
1280 static void *m_next(struct seq_file
*m
, void *v
, loff_t
*pos
)
1282 struct proc_mounts
*p
= m
->private;
1284 p
->cached_mount
= seq_list_next(v
, &p
->ns
->list
, pos
);
1285 p
->cached_index
= *pos
;
1286 return p
->cached_mount
;
1289 static void m_stop(struct seq_file
*m
, void *v
)
1291 up_read(&namespace_sem
);
1294 static int m_show(struct seq_file
*m
, void *v
)
1296 struct proc_mounts
*p
= m
->private;
1297 struct mount
*r
= list_entry(v
, struct mount
, mnt_list
);
1298 return p
->show(m
, &r
->mnt
);
1301 const struct seq_operations mounts_op
= {
1307 #endif /* CONFIG_PROC_FS */
1310 * may_umount_tree - check if a mount tree is busy
1311 * @mnt: root of mount tree
1313 * This is called to check if a tree of mounts has any
1314 * open files, pwds, chroots or sub mounts that are
1317 int may_umount_tree(struct vfsmount
*m
)
1319 struct mount
*mnt
= real_mount(m
);
1320 int actual_refs
= 0;
1321 int minimum_refs
= 0;
1325 /* write lock needed for mnt_get_count */
1327 for (p
= mnt
; p
; p
= next_mnt(p
, mnt
)) {
1328 actual_refs
+= mnt_get_count(p
);
1331 unlock_mount_hash();
1333 if (actual_refs
> minimum_refs
)
1339 EXPORT_SYMBOL(may_umount_tree
);
1342 * may_umount - check if a mount point is busy
1343 * @mnt: root of mount
1345 * This is called to check if a mount point has any
1346 * open files, pwds, chroots or sub mounts. If the
1347 * mount has sub mounts this will return busy
1348 * regardless of whether the sub mounts are busy.
1350 * Doesn't take quota and stuff into account. IOW, in some cases it will
1351 * give false negatives. The main reason why it's here is that we need
1352 * a non-destructive way to look for easily umountable filesystems.
1354 int may_umount(struct vfsmount
*mnt
)
1357 down_read(&namespace_sem
);
1359 if (propagate_mount_busy(real_mount(mnt
), 2))
1361 unlock_mount_hash();
1362 up_read(&namespace_sem
);
1366 EXPORT_SYMBOL(may_umount
);
1368 static HLIST_HEAD(unmounted
); /* protected by namespace_sem */
1370 static void namespace_unlock(void)
1372 struct hlist_head head
;
1374 hlist_move_list(&unmounted
, &head
);
1376 up_write(&namespace_sem
);
1378 if (likely(hlist_empty(&head
)))
1383 group_pin_kill(&head
);
1386 static inline void namespace_lock(void)
1388 down_write(&namespace_sem
);
1391 enum umount_tree_flags
{
1393 UMOUNT_PROPAGATE
= 2,
1394 UMOUNT_CONNECTED
= 4,
1397 static bool disconnect_mount(struct mount
*mnt
, enum umount_tree_flags how
)
1399 /* Leaving mounts connected is only valid for lazy umounts */
1400 if (how
& UMOUNT_SYNC
)
1403 /* A mount without a parent has nothing to be connected to */
1404 if (!mnt_has_parent(mnt
))
1407 /* Because the reference counting rules change when mounts are
1408 * unmounted and connected, umounted mounts may not be
1409 * connected to mounted mounts.
1411 if (!(mnt
->mnt_parent
->mnt
.mnt_flags
& MNT_UMOUNT
))
1414 /* Has it been requested that the mount remain connected? */
1415 if (how
& UMOUNT_CONNECTED
)
1418 /* Is the mount locked such that it needs to remain connected? */
1419 if (IS_MNT_LOCKED(mnt
))
1422 /* By default disconnect the mount */
1427 * mount_lock must be held
1428 * namespace_sem must be held for write
1430 static void umount_tree(struct mount
*mnt
, enum umount_tree_flags how
)
1432 LIST_HEAD(tmp_list
);
1435 if (how
& UMOUNT_PROPAGATE
)
1436 propagate_mount_unlock(mnt
);
1438 /* Gather the mounts to umount */
1439 for (p
= mnt
; p
; p
= next_mnt(p
, mnt
)) {
1440 p
->mnt
.mnt_flags
|= MNT_UMOUNT
;
1441 list_move(&p
->mnt_list
, &tmp_list
);
1444 /* Hide the mounts from mnt_mounts */
1445 list_for_each_entry(p
, &tmp_list
, mnt_list
) {
1446 list_del_init(&p
->mnt_child
);
1449 /* Add propogated mounts to the tmp_list */
1450 if (how
& UMOUNT_PROPAGATE
)
1451 propagate_umount(&tmp_list
);
1453 while (!list_empty(&tmp_list
)) {
1454 struct mnt_namespace
*ns
;
1456 p
= list_first_entry(&tmp_list
, struct mount
, mnt_list
);
1457 list_del_init(&p
->mnt_expire
);
1458 list_del_init(&p
->mnt_list
);
1462 __touch_mnt_namespace(ns
);
1465 if (how
& UMOUNT_SYNC
)
1466 p
->mnt
.mnt_flags
|= MNT_SYNC_UMOUNT
;
1468 disconnect
= disconnect_mount(p
, how
);
1470 pin_insert_group(&p
->mnt_umount
, &p
->mnt_parent
->mnt
,
1471 disconnect
? &unmounted
: NULL
);
1472 if (mnt_has_parent(p
)) {
1473 mnt_add_count(p
->mnt_parent
, -1);
1475 /* Don't forget about p */
1476 list_add_tail(&p
->mnt_child
, &p
->mnt_parent
->mnt_mounts
);
1481 change_mnt_propagation(p
, MS_PRIVATE
);
1485 static void shrink_submounts(struct mount
*mnt
);
1487 static int do_umount(struct mount
*mnt
, int flags
)
1489 struct super_block
*sb
= mnt
->mnt
.mnt_sb
;
1492 retval
= security_sb_umount(&mnt
->mnt
, flags
);
1497 * Allow userspace to request a mountpoint be expired rather than
1498 * unmounting unconditionally. Unmount only happens if:
1499 * (1) the mark is already set (the mark is cleared by mntput())
1500 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1502 if (flags
& MNT_EXPIRE
) {
1503 if (&mnt
->mnt
== current
->fs
->root
.mnt
||
1504 flags
& (MNT_FORCE
| MNT_DETACH
))
1508 * probably don't strictly need the lock here if we examined
1509 * all race cases, but it's a slowpath.
1512 if (mnt_get_count(mnt
) != 2) {
1513 unlock_mount_hash();
1516 unlock_mount_hash();
1518 if (!xchg(&mnt
->mnt_expiry_mark
, 1))
1523 * If we may have to abort operations to get out of this
1524 * mount, and they will themselves hold resources we must
1525 * allow the fs to do things. In the Unix tradition of
1526 * 'Gee thats tricky lets do it in userspace' the umount_begin
1527 * might fail to complete on the first run through as other tasks
1528 * must return, and the like. Thats for the mount program to worry
1529 * about for the moment.
1532 if (flags
& MNT_FORCE
&& sb
->s_op
->umount_begin
) {
1533 sb
->s_op
->umount_begin(sb
);
1537 * No sense to grab the lock for this test, but test itself looks
1538 * somewhat bogus. Suggestions for better replacement?
1539 * Ho-hum... In principle, we might treat that as umount + switch
1540 * to rootfs. GC would eventually take care of the old vfsmount.
1541 * Actually it makes sense, especially if rootfs would contain a
1542 * /reboot - static binary that would close all descriptors and
1543 * call reboot(9). Then init(8) could umount root and exec /reboot.
1545 if (&mnt
->mnt
== current
->fs
->root
.mnt
&& !(flags
& MNT_DETACH
)) {
1547 * Special case for "unmounting" root ...
1548 * we just try to remount it readonly.
1550 if (!capable(CAP_SYS_ADMIN
))
1552 down_write(&sb
->s_umount
);
1553 if (!(sb
->s_flags
& MS_RDONLY
))
1554 retval
= do_remount_sb(sb
, MS_RDONLY
, NULL
, 0);
1555 up_write(&sb
->s_umount
);
1563 if (flags
& MNT_DETACH
) {
1564 if (!list_empty(&mnt
->mnt_list
))
1565 umount_tree(mnt
, UMOUNT_PROPAGATE
);
1568 shrink_submounts(mnt
);
1570 if (!propagate_mount_busy(mnt
, 2)) {
1571 if (!list_empty(&mnt
->mnt_list
))
1572 umount_tree(mnt
, UMOUNT_PROPAGATE
|UMOUNT_SYNC
);
1576 unlock_mount_hash();
1582 * __detach_mounts - lazily unmount all mounts on the specified dentry
1584 * During unlink, rmdir, and d_drop it is possible to loose the path
1585 * to an existing mountpoint, and wind up leaking the mount.
1586 * detach_mounts allows lazily unmounting those mounts instead of
1589 * The caller may hold dentry->d_inode->i_mutex.
1591 void __detach_mounts(struct dentry
*dentry
)
1593 struct mountpoint
*mp
;
1598 mp
= lookup_mountpoint(dentry
);
1599 if (IS_ERR_OR_NULL(mp
))
1603 while (!hlist_empty(&mp
->m_list
)) {
1604 mnt
= hlist_entry(mp
->m_list
.first
, struct mount
, mnt_mp_list
);
1605 if (mnt
->mnt
.mnt_flags
& MNT_UMOUNT
) {
1606 hlist_add_head(&mnt
->mnt_umount
.s_list
, &unmounted
);
1609 else umount_tree(mnt
, UMOUNT_CONNECTED
);
1613 unlock_mount_hash();
1618 * Is the caller allowed to modify his namespace?
1620 static inline bool may_mount(void)
1622 return ns_capable(current
->nsproxy
->mnt_ns
->user_ns
, CAP_SYS_ADMIN
);
1626 * Now umount can handle mount points as well as block devices.
1627 * This is important for filesystems which use unnamed block devices.
1629 * We now support a flag for forced unmount like the other 'big iron'
1630 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1633 SYSCALL_DEFINE2(umount
, char __user
*, name
, int, flags
)
1638 int lookup_flags
= 0;
1640 if (flags
& ~(MNT_FORCE
| MNT_DETACH
| MNT_EXPIRE
| UMOUNT_NOFOLLOW
))
1646 if (!(flags
& UMOUNT_NOFOLLOW
))
1647 lookup_flags
|= LOOKUP_FOLLOW
;
1649 retval
= user_path_mountpoint_at(AT_FDCWD
, name
, lookup_flags
, &path
);
1652 mnt
= real_mount(path
.mnt
);
1654 if (path
.dentry
!= path
.mnt
->mnt_root
)
1656 if (!check_mnt(mnt
))
1658 if (mnt
->mnt
.mnt_flags
& MNT_LOCKED
)
1661 if (flags
& MNT_FORCE
&& !capable(CAP_SYS_ADMIN
))
1664 retval
= do_umount(mnt
, flags
);
1666 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
1668 mntput_no_expire(mnt
);
1673 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
1676 * The 2.0 compatible umount. No flags.
1678 SYSCALL_DEFINE1(oldumount
, char __user
*, name
)
1680 return sys_umount(name
, 0);
1685 static bool is_mnt_ns_file(struct dentry
*dentry
)
1687 /* Is this a proxy for a mount namespace? */
1688 return dentry
->d_op
== &ns_dentry_operations
&&
1689 dentry
->d_fsdata
== &mntns_operations
;
1692 struct mnt_namespace
*to_mnt_ns(struct ns_common
*ns
)
1694 return container_of(ns
, struct mnt_namespace
, ns
);
1697 static bool mnt_ns_loop(struct dentry
*dentry
)
1699 /* Could bind mounting the mount namespace inode cause a
1700 * mount namespace loop?
1702 struct mnt_namespace
*mnt_ns
;
1703 if (!is_mnt_ns_file(dentry
))
1706 mnt_ns
= to_mnt_ns(get_proc_ns(dentry
->d_inode
));
1707 return current
->nsproxy
->mnt_ns
->seq
>= mnt_ns
->seq
;
1710 struct mount
*copy_tree(struct mount
*mnt
, struct dentry
*dentry
,
1713 struct mount
*res
, *p
, *q
, *r
, *parent
;
1715 if (!(flag
& CL_COPY_UNBINDABLE
) && IS_MNT_UNBINDABLE(mnt
))
1716 return ERR_PTR(-EINVAL
);
1718 if (!(flag
& CL_COPY_MNT_NS_FILE
) && is_mnt_ns_file(dentry
))
1719 return ERR_PTR(-EINVAL
);
1721 res
= q
= clone_mnt(mnt
, dentry
, flag
);
1725 q
->mnt_mountpoint
= mnt
->mnt_mountpoint
;
1728 list_for_each_entry(r
, &mnt
->mnt_mounts
, mnt_child
) {
1730 if (!is_subdir(r
->mnt_mountpoint
, dentry
))
1733 for (s
= r
; s
; s
= next_mnt(s
, r
)) {
1734 if (!(flag
& CL_COPY_UNBINDABLE
) &&
1735 IS_MNT_UNBINDABLE(s
)) {
1736 s
= skip_mnt_tree(s
);
1739 if (!(flag
& CL_COPY_MNT_NS_FILE
) &&
1740 is_mnt_ns_file(s
->mnt
.mnt_root
)) {
1741 s
= skip_mnt_tree(s
);
1744 while (p
!= s
->mnt_parent
) {
1750 q
= clone_mnt(p
, p
->mnt
.mnt_root
, flag
);
1754 list_add_tail(&q
->mnt_list
, &res
->mnt_list
);
1755 attach_mnt(q
, parent
, p
->mnt_mp
);
1756 unlock_mount_hash();
1763 umount_tree(res
, UMOUNT_SYNC
);
1764 unlock_mount_hash();
1769 /* Caller should check returned pointer for errors */
1771 struct vfsmount
*collect_mounts(struct path
*path
)
1775 if (!check_mnt(real_mount(path
->mnt
)))
1776 tree
= ERR_PTR(-EINVAL
);
1778 tree
= copy_tree(real_mount(path
->mnt
), path
->dentry
,
1779 CL_COPY_ALL
| CL_PRIVATE
);
1782 return ERR_CAST(tree
);
1786 void drop_collected_mounts(struct vfsmount
*mnt
)
1790 umount_tree(real_mount(mnt
), UMOUNT_SYNC
);
1791 unlock_mount_hash();
1796 * clone_private_mount - create a private clone of a path
1798 * This creates a new vfsmount, which will be the clone of @path. The new will
1799 * not be attached anywhere in the namespace and will be private (i.e. changes
1800 * to the originating mount won't be propagated into this).
1802 * Release with mntput().
1804 struct vfsmount
*clone_private_mount(struct path
*path
)
1806 struct mount
*old_mnt
= real_mount(path
->mnt
);
1807 struct mount
*new_mnt
;
1809 if (IS_MNT_UNBINDABLE(old_mnt
))
1810 return ERR_PTR(-EINVAL
);
1812 down_read(&namespace_sem
);
1813 new_mnt
= clone_mnt(old_mnt
, path
->dentry
, CL_PRIVATE
);
1814 up_read(&namespace_sem
);
1815 if (IS_ERR(new_mnt
))
1816 return ERR_CAST(new_mnt
);
1818 return &new_mnt
->mnt
;
1820 EXPORT_SYMBOL_GPL(clone_private_mount
);
1822 int iterate_mounts(int (*f
)(struct vfsmount
*, void *), void *arg
,
1823 struct vfsmount
*root
)
1826 int res
= f(root
, arg
);
1829 list_for_each_entry(mnt
, &real_mount(root
)->mnt_list
, mnt_list
) {
1830 res
= f(&mnt
->mnt
, arg
);
1837 static void cleanup_group_ids(struct mount
*mnt
, struct mount
*end
)
1841 for (p
= mnt
; p
!= end
; p
= next_mnt(p
, mnt
)) {
1842 if (p
->mnt_group_id
&& !IS_MNT_SHARED(p
))
1843 mnt_release_group_id(p
);
1847 static int invent_group_ids(struct mount
*mnt
, bool recurse
)
1851 for (p
= mnt
; p
; p
= recurse
? next_mnt(p
, mnt
) : NULL
) {
1852 if (!p
->mnt_group_id
&& !IS_MNT_SHARED(p
)) {
1853 int err
= mnt_alloc_group_id(p
);
1855 cleanup_group_ids(mnt
, p
);
1864 int count_mounts(struct mnt_namespace
*ns
, struct mount
*mnt
)
1866 unsigned int max
= READ_ONCE(sysctl_mount_max
);
1867 unsigned int mounts
= 0, old
, pending
, sum
;
1870 for (p
= mnt
; p
; p
= next_mnt(p
, mnt
))
1874 pending
= ns
->pending_mounts
;
1875 sum
= old
+ pending
;
1879 (mounts
> (max
- sum
)))
1882 ns
->pending_mounts
= pending
+ mounts
;
1887 * @source_mnt : mount tree to be attached
1888 * @nd : place the mount tree @source_mnt is attached
1889 * @parent_nd : if non-null, detach the source_mnt from its parent and
1890 * store the parent mount and mountpoint dentry.
1891 * (done when source_mnt is moved)
1893 * NOTE: in the table below explains the semantics when a source mount
1894 * of a given type is attached to a destination mount of a given type.
1895 * ---------------------------------------------------------------------------
1896 * | BIND MOUNT OPERATION |
1897 * |**************************************************************************
1898 * | source-->| shared | private | slave | unbindable |
1902 * |**************************************************************************
1903 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
1905 * |non-shared| shared (+) | private | slave (*) | invalid |
1906 * ***************************************************************************
1907 * A bind operation clones the source mount and mounts the clone on the
1908 * destination mount.
1910 * (++) the cloned mount is propagated to all the mounts in the propagation
1911 * tree of the destination mount and the cloned mount is added to
1912 * the peer group of the source mount.
1913 * (+) the cloned mount is created under the destination mount and is marked
1914 * as shared. The cloned mount is added to the peer group of the source
1916 * (+++) the mount is propagated to all the mounts in the propagation tree
1917 * of the destination mount and the cloned mount is made slave
1918 * of the same master as that of the source mount. The cloned mount
1919 * is marked as 'shared and slave'.
1920 * (*) the cloned mount is made a slave of the same master as that of the
1923 * ---------------------------------------------------------------------------
1924 * | MOVE MOUNT OPERATION |
1925 * |**************************************************************************
1926 * | source-->| shared | private | slave | unbindable |
1930 * |**************************************************************************
1931 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
1933 * |non-shared| shared (+*) | private | slave (*) | unbindable |
1934 * ***************************************************************************
1936 * (+) the mount is moved to the destination. And is then propagated to
1937 * all the mounts in the propagation tree of the destination mount.
1938 * (+*) the mount is moved to the destination.
1939 * (+++) the mount is moved to the destination and is then propagated to
1940 * all the mounts belonging to the destination mount's propagation tree.
1941 * the mount is marked as 'shared and slave'.
1942 * (*) the mount continues to be a slave at the new location.
1944 * if the source mount is a tree, the operations explained above is
1945 * applied to each mount in the tree.
1946 * Must be called without spinlocks held, since this function can sleep
1949 static int attach_recursive_mnt(struct mount
*source_mnt
,
1950 struct mount
*dest_mnt
,
1951 struct mountpoint
*dest_mp
,
1952 struct path
*parent_path
)
1954 HLIST_HEAD(tree_list
);
1955 struct mnt_namespace
*ns
= dest_mnt
->mnt_ns
;
1956 struct mountpoint
*smp
;
1957 struct mount
*child
, *p
;
1958 struct hlist_node
*n
;
1961 /* Preallocate a mountpoint in case the new mounts need
1962 * to be tucked under other mounts.
1964 smp
= get_mountpoint(source_mnt
->mnt
.mnt_root
);
1966 return PTR_ERR(smp
);
1968 /* Is there space to add these mounts to the mount namespace? */
1970 err
= count_mounts(ns
, source_mnt
);
1975 if (IS_MNT_SHARED(dest_mnt
)) {
1976 err
= invent_group_ids(source_mnt
, true);
1979 err
= propagate_mnt(dest_mnt
, dest_mp
, source_mnt
, &tree_list
);
1982 goto out_cleanup_ids
;
1983 for (p
= source_mnt
; p
; p
= next_mnt(p
, source_mnt
))
1989 detach_mnt(source_mnt
, parent_path
);
1990 attach_mnt(source_mnt
, dest_mnt
, dest_mp
);
1991 touch_mnt_namespace(source_mnt
->mnt_ns
);
1993 mnt_set_mountpoint(dest_mnt
, dest_mp
, source_mnt
);
1994 commit_tree(source_mnt
);
1997 hlist_for_each_entry_safe(child
, n
, &tree_list
, mnt_hash
) {
1999 hlist_del_init(&child
->mnt_hash
);
2000 q
= __lookup_mnt(&child
->mnt_parent
->mnt
,
2001 child
->mnt_mountpoint
);
2003 mnt_change_mountpoint(child
, smp
, q
);
2006 put_mountpoint(smp
);
2007 unlock_mount_hash();
2012 while (!hlist_empty(&tree_list
)) {
2013 child
= hlist_entry(tree_list
.first
, struct mount
, mnt_hash
);
2014 child
->mnt_parent
->mnt_ns
->pending_mounts
= 0;
2015 umount_tree(child
, UMOUNT_SYNC
);
2017 unlock_mount_hash();
2018 cleanup_group_ids(source_mnt
, NULL
);
2020 ns
->pending_mounts
= 0;
2022 read_seqlock_excl(&mount_lock
);
2023 put_mountpoint(smp
);
2024 read_sequnlock_excl(&mount_lock
);
2029 static struct mountpoint
*lock_mount(struct path
*path
)
2031 struct vfsmount
*mnt
;
2032 struct dentry
*dentry
= path
->dentry
;
2034 mutex_lock(&dentry
->d_inode
->i_mutex
);
2035 if (unlikely(cant_mount(dentry
))) {
2036 mutex_unlock(&dentry
->d_inode
->i_mutex
);
2037 return ERR_PTR(-ENOENT
);
2040 mnt
= lookup_mnt(path
);
2042 struct mountpoint
*mp
= get_mountpoint(dentry
);
2045 mutex_unlock(&dentry
->d_inode
->i_mutex
);
2051 mutex_unlock(&path
->dentry
->d_inode
->i_mutex
);
2054 dentry
= path
->dentry
= dget(mnt
->mnt_root
);
2058 static void unlock_mount(struct mountpoint
*where
)
2060 struct dentry
*dentry
= where
->m_dentry
;
2062 read_seqlock_excl(&mount_lock
);
2063 put_mountpoint(where
);
2064 read_sequnlock_excl(&mount_lock
);
2067 mutex_unlock(&dentry
->d_inode
->i_mutex
);
2070 static int graft_tree(struct mount
*mnt
, struct mount
*p
, struct mountpoint
*mp
)
2072 if (mnt
->mnt
.mnt_sb
->s_flags
& MS_NOUSER
)
2075 if (d_is_dir(mp
->m_dentry
) !=
2076 d_is_dir(mnt
->mnt
.mnt_root
))
2079 return attach_recursive_mnt(mnt
, p
, mp
, NULL
);
2083 * Sanity check the flags to change_mnt_propagation.
2086 static int flags_to_propagation_type(int flags
)
2088 int type
= flags
& ~(MS_REC
| MS_SILENT
);
2090 /* Fail if any non-propagation flags are set */
2091 if (type
& ~(MS_SHARED
| MS_PRIVATE
| MS_SLAVE
| MS_UNBINDABLE
))
2093 /* Only one propagation flag should be set */
2094 if (!is_power_of_2(type
))
2100 * recursively change the type of the mountpoint.
2102 static int do_change_type(struct path
*path
, int flag
)
2105 struct mount
*mnt
= real_mount(path
->mnt
);
2106 int recurse
= flag
& MS_REC
;
2110 if (path
->dentry
!= path
->mnt
->mnt_root
)
2113 type
= flags_to_propagation_type(flag
);
2118 if (type
== MS_SHARED
) {
2119 err
= invent_group_ids(mnt
, recurse
);
2125 for (m
= mnt
; m
; m
= (recurse
? next_mnt(m
, mnt
) : NULL
))
2126 change_mnt_propagation(m
, type
);
2127 unlock_mount_hash();
2134 static bool has_locked_children(struct mount
*mnt
, struct dentry
*dentry
)
2136 struct mount
*child
;
2137 list_for_each_entry(child
, &mnt
->mnt_mounts
, mnt_child
) {
2138 if (!is_subdir(child
->mnt_mountpoint
, dentry
))
2141 if (child
->mnt
.mnt_flags
& MNT_LOCKED
)
2148 * do loopback mount.
2150 static int do_loopback(struct path
*path
, const char *old_name
,
2153 struct path old_path
;
2154 struct mount
*mnt
= NULL
, *old
, *parent
;
2155 struct mountpoint
*mp
;
2157 if (!old_name
|| !*old_name
)
2159 err
= kern_path(old_name
, LOOKUP_FOLLOW
|LOOKUP_AUTOMOUNT
, &old_path
);
2164 if (mnt_ns_loop(old_path
.dentry
))
2167 mp
= lock_mount(path
);
2172 old
= real_mount(old_path
.mnt
);
2173 parent
= real_mount(path
->mnt
);
2176 if (IS_MNT_UNBINDABLE(old
))
2179 if (!check_mnt(parent
))
2182 if (!check_mnt(old
) && old_path
.dentry
->d_op
!= &ns_dentry_operations
)
2185 if (!recurse
&& has_locked_children(old
, old_path
.dentry
))
2189 mnt
= copy_tree(old
, old_path
.dentry
, CL_COPY_MNT_NS_FILE
);
2191 mnt
= clone_mnt(old
, old_path
.dentry
, 0);
2198 mnt
->mnt
.mnt_flags
&= ~MNT_LOCKED
;
2200 err
= graft_tree(mnt
, parent
, mp
);
2203 umount_tree(mnt
, UMOUNT_SYNC
);
2204 unlock_mount_hash();
2209 path_put(&old_path
);
2213 static int change_mount_flags(struct vfsmount
*mnt
, int ms_flags
)
2216 int readonly_request
= 0;
2218 if (ms_flags
& MS_RDONLY
)
2219 readonly_request
= 1;
2220 if (readonly_request
== __mnt_is_readonly(mnt
))
2223 if (readonly_request
)
2224 error
= mnt_make_readonly(real_mount(mnt
));
2226 __mnt_unmake_readonly(real_mount(mnt
));
2231 * change filesystem flags. dir should be a physical root of filesystem.
2232 * If you've mounted a non-root directory somewhere and want to do remount
2233 * on it - tough luck.
2235 static int do_remount(struct path
*path
, int flags
, int mnt_flags
,
2239 struct super_block
*sb
= path
->mnt
->mnt_sb
;
2240 struct mount
*mnt
= real_mount(path
->mnt
);
2242 if (!check_mnt(mnt
))
2245 if (path
->dentry
!= path
->mnt
->mnt_root
)
2248 /* Don't allow changing of locked mnt flags.
2250 * No locks need to be held here while testing the various
2251 * MNT_LOCK flags because those flags can never be cleared
2252 * once they are set.
2254 if ((mnt
->mnt
.mnt_flags
& MNT_LOCK_READONLY
) &&
2255 !(mnt_flags
& MNT_READONLY
)) {
2258 if ((mnt
->mnt
.mnt_flags
& MNT_LOCK_NODEV
) &&
2259 !(mnt_flags
& MNT_NODEV
)) {
2260 /* Was the nodev implicitly added in mount? */
2261 if ((mnt
->mnt_ns
->user_ns
!= &init_user_ns
) &&
2262 !(sb
->s_type
->fs_flags
& FS_USERNS_DEV_MOUNT
)) {
2263 mnt_flags
|= MNT_NODEV
;
2268 if ((mnt
->mnt
.mnt_flags
& MNT_LOCK_NOSUID
) &&
2269 !(mnt_flags
& MNT_NOSUID
)) {
2272 if ((mnt
->mnt
.mnt_flags
& MNT_LOCK_NOEXEC
) &&
2273 !(mnt_flags
& MNT_NOEXEC
)) {
2276 if ((mnt
->mnt
.mnt_flags
& MNT_LOCK_ATIME
) &&
2277 ((mnt
->mnt
.mnt_flags
& MNT_ATIME_MASK
) != (mnt_flags
& MNT_ATIME_MASK
))) {
2281 err
= security_sb_remount(sb
, data
);
2285 down_write(&sb
->s_umount
);
2286 if (flags
& MS_BIND
)
2287 err
= change_mount_flags(path
->mnt
, flags
);
2288 else if (!capable(CAP_SYS_ADMIN
))
2291 err
= do_remount_sb(sb
, flags
, data
, 0);
2294 mnt_flags
|= mnt
->mnt
.mnt_flags
& ~MNT_USER_SETTABLE_MASK
;
2295 mnt
->mnt
.mnt_flags
= mnt_flags
;
2296 touch_mnt_namespace(mnt
->mnt_ns
);
2297 unlock_mount_hash();
2299 up_write(&sb
->s_umount
);
2303 static inline int tree_contains_unbindable(struct mount
*mnt
)
2306 for (p
= mnt
; p
; p
= next_mnt(p
, mnt
)) {
2307 if (IS_MNT_UNBINDABLE(p
))
2313 static int do_move_mount(struct path
*path
, const char *old_name
)
2315 struct path old_path
, parent_path
;
2318 struct mountpoint
*mp
;
2320 if (!old_name
|| !*old_name
)
2322 err
= kern_path(old_name
, LOOKUP_FOLLOW
, &old_path
);
2326 mp
= lock_mount(path
);
2331 old
= real_mount(old_path
.mnt
);
2332 p
= real_mount(path
->mnt
);
2335 if (!check_mnt(p
) || !check_mnt(old
))
2338 if (old
->mnt
.mnt_flags
& MNT_LOCKED
)
2342 if (old_path
.dentry
!= old_path
.mnt
->mnt_root
)
2345 if (!mnt_has_parent(old
))
2348 if (d_is_dir(path
->dentry
) !=
2349 d_is_dir(old_path
.dentry
))
2352 * Don't move a mount residing in a shared parent.
2354 if (IS_MNT_SHARED(old
->mnt_parent
))
2357 * Don't move a mount tree containing unbindable mounts to a destination
2358 * mount which is shared.
2360 if (IS_MNT_SHARED(p
) && tree_contains_unbindable(old
))
2363 for (; mnt_has_parent(p
); p
= p
->mnt_parent
)
2367 err
= attach_recursive_mnt(old
, real_mount(path
->mnt
), mp
, &parent_path
);
2371 /* if the mount is moved, it should no longer be expire
2373 list_del_init(&old
->mnt_expire
);
2378 path_put(&parent_path
);
2379 path_put(&old_path
);
2383 static struct vfsmount
*fs_set_subtype(struct vfsmount
*mnt
, const char *fstype
)
2386 const char *subtype
= strchr(fstype
, '.');
2395 mnt
->mnt_sb
->s_subtype
= kstrdup(subtype
, GFP_KERNEL
);
2397 if (!mnt
->mnt_sb
->s_subtype
)
2403 return ERR_PTR(err
);
2407 * add a mount into a namespace's mount tree
2409 static int do_add_mount(struct mount
*newmnt
, struct path
*path
, int mnt_flags
)
2411 struct mountpoint
*mp
;
2412 struct mount
*parent
;
2415 mnt_flags
&= ~MNT_INTERNAL_FLAGS
;
2417 mp
= lock_mount(path
);
2421 parent
= real_mount(path
->mnt
);
2423 if (unlikely(!check_mnt(parent
))) {
2424 /* that's acceptable only for automounts done in private ns */
2425 if (!(mnt_flags
& MNT_SHRINKABLE
))
2427 /* ... and for those we'd better have mountpoint still alive */
2428 if (!parent
->mnt_ns
)
2432 /* Refuse the same filesystem on the same mount point */
2434 if (path
->mnt
->mnt_sb
== newmnt
->mnt
.mnt_sb
&&
2435 path
->mnt
->mnt_root
== path
->dentry
)
2439 if (d_is_symlink(newmnt
->mnt
.mnt_root
))
2442 newmnt
->mnt
.mnt_flags
= mnt_flags
;
2443 err
= graft_tree(newmnt
, parent
, mp
);
2450 static bool fs_fully_visible(struct file_system_type
*fs_type
, int *new_mnt_flags
);
2453 * create a new mount for userspace and request it to be added into the
2456 static int do_new_mount(struct path
*path
, const char *fstype
, int flags
,
2457 int mnt_flags
, const char *name
, void *data
)
2459 struct file_system_type
*type
;
2460 struct user_namespace
*user_ns
= current
->nsproxy
->mnt_ns
->user_ns
;
2461 struct vfsmount
*mnt
;
2467 type
= get_fs_type(fstype
);
2471 if (user_ns
!= &init_user_ns
) {
2472 if (!(type
->fs_flags
& FS_USERNS_MOUNT
)) {
2473 put_filesystem(type
);
2476 /* Only in special cases allow devices from mounts
2477 * created outside the initial user namespace.
2479 if (!(type
->fs_flags
& FS_USERNS_DEV_MOUNT
)) {
2481 mnt_flags
|= MNT_NODEV
| MNT_LOCK_NODEV
;
2483 if (type
->fs_flags
& FS_USERNS_VISIBLE
) {
2484 if (!fs_fully_visible(type
, &mnt_flags
)) {
2485 put_filesystem(type
);
2491 mnt
= vfs_kern_mount(type
, flags
, name
, data
);
2492 if (!IS_ERR(mnt
) && (type
->fs_flags
& FS_HAS_SUBTYPE
) &&
2493 !mnt
->mnt_sb
->s_subtype
)
2494 mnt
= fs_set_subtype(mnt
, fstype
);
2496 put_filesystem(type
);
2498 return PTR_ERR(mnt
);
2500 err
= do_add_mount(real_mount(mnt
), path
, mnt_flags
);
2506 int finish_automount(struct vfsmount
*m
, struct path
*path
)
2508 struct mount
*mnt
= real_mount(m
);
2510 /* The new mount record should have at least 2 refs to prevent it being
2511 * expired before we get a chance to add it
2513 BUG_ON(mnt_get_count(mnt
) < 2);
2515 if (m
->mnt_sb
== path
->mnt
->mnt_sb
&&
2516 m
->mnt_root
== path
->dentry
) {
2521 err
= do_add_mount(mnt
, path
, path
->mnt
->mnt_flags
| MNT_SHRINKABLE
);
2525 /* remove m from any expiration list it may be on */
2526 if (!list_empty(&mnt
->mnt_expire
)) {
2528 list_del_init(&mnt
->mnt_expire
);
2537 * mnt_set_expiry - Put a mount on an expiration list
2538 * @mnt: The mount to list.
2539 * @expiry_list: The list to add the mount to.
2541 void mnt_set_expiry(struct vfsmount
*mnt
, struct list_head
*expiry_list
)
2545 list_add_tail(&real_mount(mnt
)->mnt_expire
, expiry_list
);
2549 EXPORT_SYMBOL(mnt_set_expiry
);
2552 * process a list of expirable mountpoints with the intent of discarding any
2553 * mountpoints that aren't in use and haven't been touched since last we came
2556 void mark_mounts_for_expiry(struct list_head
*mounts
)
2558 struct mount
*mnt
, *next
;
2559 LIST_HEAD(graveyard
);
2561 if (list_empty(mounts
))
2567 /* extract from the expiration list every vfsmount that matches the
2568 * following criteria:
2569 * - only referenced by its parent vfsmount
2570 * - still marked for expiry (marked on the last call here; marks are
2571 * cleared by mntput())
2573 list_for_each_entry_safe(mnt
, next
, mounts
, mnt_expire
) {
2574 if (!xchg(&mnt
->mnt_expiry_mark
, 1) ||
2575 propagate_mount_busy(mnt
, 1))
2577 list_move(&mnt
->mnt_expire
, &graveyard
);
2579 while (!list_empty(&graveyard
)) {
2580 mnt
= list_first_entry(&graveyard
, struct mount
, mnt_expire
);
2581 touch_mnt_namespace(mnt
->mnt_ns
);
2582 umount_tree(mnt
, UMOUNT_PROPAGATE
|UMOUNT_SYNC
);
2584 unlock_mount_hash();
2588 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry
);
2591 * Ripoff of 'select_parent()'
2593 * search the list of submounts for a given mountpoint, and move any
2594 * shrinkable submounts to the 'graveyard' list.
2596 static int select_submounts(struct mount
*parent
, struct list_head
*graveyard
)
2598 struct mount
*this_parent
= parent
;
2599 struct list_head
*next
;
2603 next
= this_parent
->mnt_mounts
.next
;
2605 while (next
!= &this_parent
->mnt_mounts
) {
2606 struct list_head
*tmp
= next
;
2607 struct mount
*mnt
= list_entry(tmp
, struct mount
, mnt_child
);
2610 if (!(mnt
->mnt
.mnt_flags
& MNT_SHRINKABLE
))
2613 * Descend a level if the d_mounts list is non-empty.
2615 if (!list_empty(&mnt
->mnt_mounts
)) {
2620 if (!propagate_mount_busy(mnt
, 1)) {
2621 list_move_tail(&mnt
->mnt_expire
, graveyard
);
2626 * All done at this level ... ascend and resume the search
2628 if (this_parent
!= parent
) {
2629 next
= this_parent
->mnt_child
.next
;
2630 this_parent
= this_parent
->mnt_parent
;
2637 * process a list of expirable mountpoints with the intent of discarding any
2638 * submounts of a specific parent mountpoint
2640 * mount_lock must be held for write
2642 static void shrink_submounts(struct mount
*mnt
)
2644 LIST_HEAD(graveyard
);
2647 /* extract submounts of 'mountpoint' from the expiration list */
2648 while (select_submounts(mnt
, &graveyard
)) {
2649 while (!list_empty(&graveyard
)) {
2650 m
= list_first_entry(&graveyard
, struct mount
,
2652 touch_mnt_namespace(m
->mnt_ns
);
2653 umount_tree(m
, UMOUNT_PROPAGATE
|UMOUNT_SYNC
);
2659 * Some copy_from_user() implementations do not return the exact number of
2660 * bytes remaining to copy on a fault. But copy_mount_options() requires that.
2661 * Note that this function differs from copy_from_user() in that it will oops
2662 * on bad values of `to', rather than returning a short copy.
2664 static long exact_copy_from_user(void *to
, const void __user
* from
,
2668 const char __user
*f
= from
;
2671 if (!access_ok(VERIFY_READ
, from
, n
))
2675 if (__get_user(c
, f
)) {
2686 int copy_mount_options(const void __user
* data
, unsigned long *where
)
2696 if (!(page
= __get_free_page(GFP_KERNEL
)))
2699 /* We only care that *some* data at the address the user
2700 * gave us is valid. Just in case, we'll zero
2701 * the remainder of the page.
2703 /* copy_from_user cannot cross TASK_SIZE ! */
2704 size
= TASK_SIZE
- (unsigned long)data
;
2705 if (size
> PAGE_SIZE
)
2708 i
= size
- exact_copy_from_user((void *)page
, data
, size
);
2714 memset((char *)page
+ i
, 0, PAGE_SIZE
- i
);
2719 char *copy_mount_string(const void __user
*data
)
2721 return data
? strndup_user(data
, PAGE_SIZE
) : NULL
;
2725 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
2726 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
2728 * data is a (void *) that can point to any structure up to
2729 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
2730 * information (or be NULL).
2732 * Pre-0.97 versions of mount() didn't have a flags word.
2733 * When the flags word was introduced its top half was required
2734 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
2735 * Therefore, if this magic number is present, it carries no information
2736 * and must be discarded.
2738 long do_mount(const char *dev_name
, const char __user
*dir_name
,
2739 const char *type_page
, unsigned long flags
, void *data_page
)
2746 if ((flags
& MS_MGC_MSK
) == MS_MGC_VAL
)
2747 flags
&= ~MS_MGC_MSK
;
2749 /* Basic sanity checks */
2751 ((char *)data_page
)[PAGE_SIZE
- 1] = 0;
2753 /* ... and get the mountpoint */
2754 retval
= user_path(dir_name
, &path
);
2758 retval
= security_sb_mount(dev_name
, &path
,
2759 type_page
, flags
, data_page
);
2760 if (!retval
&& !may_mount())
2765 /* Default to relatime unless overriden */
2766 if (!(flags
& MS_NOATIME
))
2767 mnt_flags
|= MNT_RELATIME
;
2769 /* Separate the per-mountpoint flags */
2770 if (flags
& MS_NOSUID
)
2771 mnt_flags
|= MNT_NOSUID
;
2772 if (flags
& MS_NODEV
)
2773 mnt_flags
|= MNT_NODEV
;
2774 if (flags
& MS_NOEXEC
)
2775 mnt_flags
|= MNT_NOEXEC
;
2776 if (flags
& MS_NOATIME
)
2777 mnt_flags
|= MNT_NOATIME
;
2778 if (flags
& MS_NODIRATIME
)
2779 mnt_flags
|= MNT_NODIRATIME
;
2780 if (flags
& MS_STRICTATIME
)
2781 mnt_flags
&= ~(MNT_RELATIME
| MNT_NOATIME
);
2782 if (flags
& MS_RDONLY
)
2783 mnt_flags
|= MNT_READONLY
;
2785 /* The default atime for remount is preservation */
2786 if ((flags
& MS_REMOUNT
) &&
2787 ((flags
& (MS_NOATIME
| MS_NODIRATIME
| MS_RELATIME
|
2788 MS_STRICTATIME
)) == 0)) {
2789 mnt_flags
&= ~MNT_ATIME_MASK
;
2790 mnt_flags
|= path
.mnt
->mnt_flags
& MNT_ATIME_MASK
;
2793 flags
&= ~(MS_NOSUID
| MS_NOEXEC
| MS_NODEV
| MS_ACTIVE
| MS_BORN
|
2794 MS_NOATIME
| MS_NODIRATIME
| MS_RELATIME
| MS_KERNMOUNT
|
2797 if (flags
& MS_REMOUNT
)
2798 retval
= do_remount(&path
, flags
& ~MS_REMOUNT
, mnt_flags
,
2800 else if (flags
& MS_BIND
)
2801 retval
= do_loopback(&path
, dev_name
, flags
& MS_REC
);
2802 else if (flags
& (MS_SHARED
| MS_PRIVATE
| MS_SLAVE
| MS_UNBINDABLE
))
2803 retval
= do_change_type(&path
, flags
);
2804 else if (flags
& MS_MOVE
)
2805 retval
= do_move_mount(&path
, dev_name
);
2807 retval
= do_new_mount(&path
, type_page
, flags
, mnt_flags
,
2808 dev_name
, data_page
);
2814 static void free_mnt_ns(struct mnt_namespace
*ns
)
2816 ns_free_inum(&ns
->ns
);
2817 put_user_ns(ns
->user_ns
);
2822 * Assign a sequence number so we can detect when we attempt to bind
2823 * mount a reference to an older mount namespace into the current
2824 * mount namespace, preventing reference counting loops. A 64bit
2825 * number incrementing at 10Ghz will take 12,427 years to wrap which
2826 * is effectively never, so we can ignore the possibility.
2828 static atomic64_t mnt_ns_seq
= ATOMIC64_INIT(1);
2830 static struct mnt_namespace
*alloc_mnt_ns(struct user_namespace
*user_ns
)
2832 struct mnt_namespace
*new_ns
;
2835 new_ns
= kmalloc(sizeof(struct mnt_namespace
), GFP_KERNEL
);
2837 return ERR_PTR(-ENOMEM
);
2838 ret
= ns_alloc_inum(&new_ns
->ns
);
2841 return ERR_PTR(ret
);
2843 new_ns
->ns
.ops
= &mntns_operations
;
2844 new_ns
->seq
= atomic64_add_return(1, &mnt_ns_seq
);
2845 atomic_set(&new_ns
->count
, 1);
2846 new_ns
->root
= NULL
;
2847 INIT_LIST_HEAD(&new_ns
->list
);
2848 init_waitqueue_head(&new_ns
->poll
);
2850 new_ns
->user_ns
= get_user_ns(user_ns
);
2852 new_ns
->pending_mounts
= 0;
2856 struct mnt_namespace
*copy_mnt_ns(unsigned long flags
, struct mnt_namespace
*ns
,
2857 struct user_namespace
*user_ns
, struct fs_struct
*new_fs
)
2859 struct mnt_namespace
*new_ns
;
2860 struct vfsmount
*rootmnt
= NULL
, *pwdmnt
= NULL
;
2861 struct mount
*p
, *q
;
2868 if (likely(!(flags
& CLONE_NEWNS
))) {
2875 new_ns
= alloc_mnt_ns(user_ns
);
2880 /* First pass: copy the tree topology */
2881 copy_flags
= CL_COPY_UNBINDABLE
| CL_EXPIRE
;
2882 if (user_ns
!= ns
->user_ns
)
2883 copy_flags
|= CL_SHARED_TO_SLAVE
| CL_UNPRIVILEGED
;
2884 new = copy_tree(old
, old
->mnt
.mnt_root
, copy_flags
);
2887 free_mnt_ns(new_ns
);
2888 return ERR_CAST(new);
2891 list_add_tail(&new_ns
->list
, &new->mnt_list
);
2894 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2895 * as belonging to new namespace. We have already acquired a private
2896 * fs_struct, so tsk->fs->lock is not needed.
2904 if (&p
->mnt
== new_fs
->root
.mnt
) {
2905 new_fs
->root
.mnt
= mntget(&q
->mnt
);
2908 if (&p
->mnt
== new_fs
->pwd
.mnt
) {
2909 new_fs
->pwd
.mnt
= mntget(&q
->mnt
);
2913 p
= next_mnt(p
, old
);
2914 q
= next_mnt(q
, new);
2917 while (p
->mnt
.mnt_root
!= q
->mnt
.mnt_root
)
2918 p
= next_mnt(p
, old
);
2931 * create_mnt_ns - creates a private namespace and adds a root filesystem
2932 * @mnt: pointer to the new root filesystem mountpoint
2934 static struct mnt_namespace
*create_mnt_ns(struct vfsmount
*m
)
2936 struct mnt_namespace
*new_ns
= alloc_mnt_ns(&init_user_ns
);
2937 if (!IS_ERR(new_ns
)) {
2938 struct mount
*mnt
= real_mount(m
);
2939 mnt
->mnt_ns
= new_ns
;
2942 list_add(&mnt
->mnt_list
, &new_ns
->list
);
2949 struct dentry
*mount_subtree(struct vfsmount
*mnt
, const char *name
)
2951 struct mnt_namespace
*ns
;
2952 struct super_block
*s
;
2956 ns
= create_mnt_ns(mnt
);
2958 return ERR_CAST(ns
);
2960 err
= vfs_path_lookup(mnt
->mnt_root
, mnt
,
2961 name
, LOOKUP_FOLLOW
|LOOKUP_AUTOMOUNT
, &path
);
2966 return ERR_PTR(err
);
2968 /* trade a vfsmount reference for active sb one */
2969 s
= path
.mnt
->mnt_sb
;
2970 atomic_inc(&s
->s_active
);
2972 /* lock the sucker */
2973 down_write(&s
->s_umount
);
2974 /* ... and return the root of (sub)tree on it */
2977 EXPORT_SYMBOL(mount_subtree
);
2979 SYSCALL_DEFINE5(mount
, char __user
*, dev_name
, char __user
*, dir_name
,
2980 char __user
*, type
, unsigned long, flags
, void __user
*, data
)
2985 unsigned long data_page
;
2987 kernel_type
= copy_mount_string(type
);
2988 ret
= PTR_ERR(kernel_type
);
2989 if (IS_ERR(kernel_type
))
2992 kernel_dev
= copy_mount_string(dev_name
);
2993 ret
= PTR_ERR(kernel_dev
);
2994 if (IS_ERR(kernel_dev
))
2997 ret
= copy_mount_options(data
, &data_page
);
3001 ret
= do_mount(kernel_dev
, dir_name
, kernel_type
, flags
,
3002 (void *) data_page
);
3004 free_page(data_page
);
3014 * Return true if path is reachable from root
3016 * namespace_sem or mount_lock is held
3018 bool is_path_reachable(struct mount
*mnt
, struct dentry
*dentry
,
3019 const struct path
*root
)
3021 while (&mnt
->mnt
!= root
->mnt
&& mnt_has_parent(mnt
)) {
3022 dentry
= mnt
->mnt_mountpoint
;
3023 mnt
= mnt
->mnt_parent
;
3025 return &mnt
->mnt
== root
->mnt
&& is_subdir(dentry
, root
->dentry
);
3028 int path_is_under(struct path
*path1
, struct path
*path2
)
3031 read_seqlock_excl(&mount_lock
);
3032 res
= is_path_reachable(real_mount(path1
->mnt
), path1
->dentry
, path2
);
3033 read_sequnlock_excl(&mount_lock
);
3036 EXPORT_SYMBOL(path_is_under
);
3039 * pivot_root Semantics:
3040 * Moves the root file system of the current process to the directory put_old,
3041 * makes new_root as the new root file system of the current process, and sets
3042 * root/cwd of all processes which had them on the current root to new_root.
3045 * The new_root and put_old must be directories, and must not be on the
3046 * same file system as the current process root. The put_old must be
3047 * underneath new_root, i.e. adding a non-zero number of /.. to the string
3048 * pointed to by put_old must yield the same directory as new_root. No other
3049 * file system may be mounted on put_old. After all, new_root is a mountpoint.
3051 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
3052 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
3053 * in this situation.
3056 * - we don't move root/cwd if they are not at the root (reason: if something
3057 * cared enough to change them, it's probably wrong to force them elsewhere)
3058 * - it's okay to pick a root that isn't the root of a file system, e.g.
3059 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
3060 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
3063 SYSCALL_DEFINE2(pivot_root
, const char __user
*, new_root
,
3064 const char __user
*, put_old
)
3066 struct path
new, old
, parent_path
, root_parent
, root
;
3067 struct mount
*new_mnt
, *root_mnt
, *old_mnt
;
3068 struct mountpoint
*old_mp
, *root_mp
;
3074 error
= user_path_dir(new_root
, &new);
3078 error
= user_path_dir(put_old
, &old
);
3082 error
= security_sb_pivotroot(&old
, &new);
3086 get_fs_root(current
->fs
, &root
);
3087 old_mp
= lock_mount(&old
);
3088 error
= PTR_ERR(old_mp
);
3093 new_mnt
= real_mount(new.mnt
);
3094 root_mnt
= real_mount(root
.mnt
);
3095 old_mnt
= real_mount(old
.mnt
);
3096 if (IS_MNT_SHARED(old_mnt
) ||
3097 IS_MNT_SHARED(new_mnt
->mnt_parent
) ||
3098 IS_MNT_SHARED(root_mnt
->mnt_parent
))
3100 if (!check_mnt(root_mnt
) || !check_mnt(new_mnt
))
3102 if (new_mnt
->mnt
.mnt_flags
& MNT_LOCKED
)
3105 if (d_unlinked(new.dentry
))
3108 if (new_mnt
== root_mnt
|| old_mnt
== root_mnt
)
3109 goto out4
; /* loop, on the same file system */
3111 if (root
.mnt
->mnt_root
!= root
.dentry
)
3112 goto out4
; /* not a mountpoint */
3113 if (!mnt_has_parent(root_mnt
))
3114 goto out4
; /* not attached */
3115 root_mp
= root_mnt
->mnt_mp
;
3116 if (new.mnt
->mnt_root
!= new.dentry
)
3117 goto out4
; /* not a mountpoint */
3118 if (!mnt_has_parent(new_mnt
))
3119 goto out4
; /* not attached */
3120 /* make sure we can reach put_old from new_root */
3121 if (!is_path_reachable(old_mnt
, old
.dentry
, &new))
3123 /* make certain new is below the root */
3124 if (!is_path_reachable(new_mnt
, new.dentry
, &root
))
3126 root_mp
->m_count
++; /* pin it so it won't go away */
3128 detach_mnt(new_mnt
, &parent_path
);
3129 detach_mnt(root_mnt
, &root_parent
);
3130 if (root_mnt
->mnt
.mnt_flags
& MNT_LOCKED
) {
3131 new_mnt
->mnt
.mnt_flags
|= MNT_LOCKED
;
3132 root_mnt
->mnt
.mnt_flags
&= ~MNT_LOCKED
;
3134 /* mount old root on put_old */
3135 attach_mnt(root_mnt
, old_mnt
, old_mp
);
3136 /* mount new_root on / */
3137 attach_mnt(new_mnt
, real_mount(root_parent
.mnt
), root_mp
);
3138 touch_mnt_namespace(current
->nsproxy
->mnt_ns
);
3139 /* A moved mount should not expire automatically */
3140 list_del_init(&new_mnt
->mnt_expire
);
3141 put_mountpoint(root_mp
);
3142 unlock_mount_hash();
3143 chroot_fs_refs(&root
, &new);
3146 unlock_mount(old_mp
);
3148 path_put(&root_parent
);
3149 path_put(&parent_path
);
3161 static void __init
init_mount_tree(void)
3163 struct vfsmount
*mnt
;
3164 struct mnt_namespace
*ns
;
3166 struct file_system_type
*type
;
3168 type
= get_fs_type("rootfs");
3170 panic("Can't find rootfs type");
3171 mnt
= vfs_kern_mount(type
, 0, "rootfs", NULL
);
3172 put_filesystem(type
);
3174 panic("Can't create rootfs");
3176 ns
= create_mnt_ns(mnt
);
3178 panic("Can't allocate initial namespace");
3180 init_task
.nsproxy
->mnt_ns
= ns
;
3184 root
.dentry
= mnt
->mnt_root
;
3185 mnt
->mnt_flags
|= MNT_LOCKED
;
3187 set_fs_pwd(current
->fs
, &root
);
3188 set_fs_root(current
->fs
, &root
);
3191 void __init
mnt_init(void)
3196 mnt_cache
= kmem_cache_create("mnt_cache", sizeof(struct mount
),
3197 0, SLAB_HWCACHE_ALIGN
| SLAB_PANIC
, NULL
);
3199 mount_hashtable
= alloc_large_system_hash("Mount-cache",
3200 sizeof(struct hlist_head
),
3203 &m_hash_shift
, &m_hash_mask
, 0, 0);
3204 mountpoint_hashtable
= alloc_large_system_hash("Mountpoint-cache",
3205 sizeof(struct hlist_head
),
3208 &mp_hash_shift
, &mp_hash_mask
, 0, 0);
3210 if (!mount_hashtable
|| !mountpoint_hashtable
)
3211 panic("Failed to allocate mount hash table\n");
3213 for (u
= 0; u
<= m_hash_mask
; u
++)
3214 INIT_HLIST_HEAD(&mount_hashtable
[u
]);
3215 for (u
= 0; u
<= mp_hash_mask
; u
++)
3216 INIT_HLIST_HEAD(&mountpoint_hashtable
[u
]);
3222 printk(KERN_WARNING
"%s: sysfs_init error: %d\n",
3224 fs_kobj
= kobject_create_and_add("fs", NULL
);
3226 printk(KERN_WARNING
"%s: kobj create error\n", __func__
);
3231 void put_mnt_ns(struct mnt_namespace
*ns
)
3233 if (!atomic_dec_and_test(&ns
->count
))
3235 drop_collected_mounts(&ns
->root
->mnt
);
3239 struct vfsmount
*kern_mount_data(struct file_system_type
*type
, void *data
)
3241 struct vfsmount
*mnt
;
3242 mnt
= vfs_kern_mount(type
, MS_KERNMOUNT
, type
->name
, data
);
3245 * it is a longterm mount, don't release mnt until
3246 * we unmount before file sys is unregistered
3248 real_mount(mnt
)->mnt_ns
= MNT_NS_INTERNAL
;
3252 EXPORT_SYMBOL_GPL(kern_mount_data
);
3254 void kern_unmount(struct vfsmount
*mnt
)
3256 /* release long term mount so mount point can be released */
3257 if (!IS_ERR_OR_NULL(mnt
)) {
3258 real_mount(mnt
)->mnt_ns
= NULL
;
3259 synchronize_rcu(); /* yecchhh... */
3263 EXPORT_SYMBOL(kern_unmount
);
3265 bool our_mnt(struct vfsmount
*mnt
)
3267 return check_mnt(real_mount(mnt
));
3270 bool current_chrooted(void)
3272 /* Does the current process have a non-standard root */
3273 struct path ns_root
;
3274 struct path fs_root
;
3277 /* Find the namespace root */
3278 ns_root
.mnt
= ¤t
->nsproxy
->mnt_ns
->root
->mnt
;
3279 ns_root
.dentry
= ns_root
.mnt
->mnt_root
;
3281 while (d_mountpoint(ns_root
.dentry
) && follow_down_one(&ns_root
))
3284 get_fs_root(current
->fs
, &fs_root
);
3286 chrooted
= !path_equal(&fs_root
, &ns_root
);
3294 static bool fs_fully_visible(struct file_system_type
*type
, int *new_mnt_flags
)
3296 struct mnt_namespace
*ns
= current
->nsproxy
->mnt_ns
;
3297 int new_flags
= *new_mnt_flags
;
3299 bool visible
= false;
3304 down_read(&namespace_sem
);
3305 list_for_each_entry(mnt
, &ns
->list
, mnt_list
) {
3306 struct mount
*child
;
3309 if (mnt
->mnt
.mnt_sb
->s_type
!= type
)
3312 /* This mount is not fully visible if it's root directory
3313 * is not the root directory of the filesystem.
3315 if (mnt
->mnt
.mnt_root
!= mnt
->mnt
.mnt_sb
->s_root
)
3318 /* Read the mount flags and filter out flags that
3319 * may safely be ignored.
3321 mnt_flags
= mnt
->mnt
.mnt_flags
;
3322 if (mnt
->mnt
.mnt_sb
->s_iflags
& SB_I_NOEXEC
)
3323 mnt_flags
&= ~(MNT_LOCK_NOSUID
| MNT_LOCK_NOEXEC
);
3325 /* Don't miss readonly hidden in the superblock flags */
3326 if (mnt
->mnt
.mnt_sb
->s_flags
& MS_RDONLY
)
3327 mnt_flags
|= MNT_LOCK_READONLY
;
3329 /* Verify the mount flags are equal to or more permissive
3330 * than the proposed new mount.
3332 if ((mnt_flags
& MNT_LOCK_READONLY
) &&
3333 !(new_flags
& MNT_READONLY
))
3335 if ((mnt_flags
& MNT_LOCK_NODEV
) &&
3336 !(new_flags
& MNT_NODEV
))
3338 if ((mnt_flags
& MNT_LOCK_NOSUID
) &&
3339 !(new_flags
& MNT_NOSUID
))
3341 if ((mnt_flags
& MNT_LOCK_NOEXEC
) &&
3342 !(new_flags
& MNT_NOEXEC
))
3344 if ((mnt_flags
& MNT_LOCK_ATIME
) &&
3345 ((mnt_flags
& MNT_ATIME_MASK
) != (new_flags
& MNT_ATIME_MASK
)))
3348 /* This mount is not fully visible if there are any
3349 * locked child mounts that cover anything except for
3350 * empty directories.
3352 list_for_each_entry(child
, &mnt
->mnt_mounts
, mnt_child
) {
3353 struct inode
*inode
= child
->mnt_mountpoint
->d_inode
;
3354 /* Only worry about locked mounts */
3355 if (!(child
->mnt
.mnt_flags
& MNT_LOCKED
))
3357 /* Is the directory permanetly empty? */
3358 if (!is_empty_dir_inode(inode
))
3361 /* Preserve the locked attributes */
3362 *new_mnt_flags
|= mnt_flags
& (MNT_LOCK_READONLY
| \
3372 up_read(&namespace_sem
);
3376 static struct ns_common
*mntns_get(struct task_struct
*task
)
3378 struct ns_common
*ns
= NULL
;
3379 struct nsproxy
*nsproxy
;
3382 nsproxy
= task
->nsproxy
;
3384 ns
= &nsproxy
->mnt_ns
->ns
;
3385 get_mnt_ns(to_mnt_ns(ns
));
3392 static void mntns_put(struct ns_common
*ns
)
3394 put_mnt_ns(to_mnt_ns(ns
));
3397 static int mntns_install(struct nsproxy
*nsproxy
, struct ns_common
*ns
)
3399 struct fs_struct
*fs
= current
->fs
;
3400 struct mnt_namespace
*mnt_ns
= to_mnt_ns(ns
);
3403 if (!ns_capable(mnt_ns
->user_ns
, CAP_SYS_ADMIN
) ||
3404 !ns_capable(current_user_ns(), CAP_SYS_CHROOT
) ||
3405 !ns_capable(current_user_ns(), CAP_SYS_ADMIN
))
3412 put_mnt_ns(nsproxy
->mnt_ns
);
3413 nsproxy
->mnt_ns
= mnt_ns
;
3416 root
.mnt
= &mnt_ns
->root
->mnt
;
3417 root
.dentry
= mnt_ns
->root
->mnt
.mnt_root
;
3419 while(d_mountpoint(root
.dentry
) && follow_down_one(&root
))
3422 /* Update the pwd and root */
3423 set_fs_pwd(fs
, &root
);
3424 set_fs_root(fs
, &root
);
3430 const struct proc_ns_operations mntns_operations
= {
3432 .type
= CLONE_NEWNS
,
3435 .install
= mntns_install
,