2 * Kernel-based Virtual Machine driver for Linux
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
14 * This work is licensed under the terms of the GNU GPL, version 2. See
15 * the COPYING file in the top-level directory.
19 #include <kvm/iodev.h>
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched.h>
36 #include <linux/cpumask.h>
37 #include <linux/smp.h>
38 #include <linux/anon_inodes.h>
39 #include <linux/profile.h>
40 #include <linux/kvm_para.h>
41 #include <linux/pagemap.h>
42 #include <linux/mman.h>
43 #include <linux/swap.h>
44 #include <linux/bitops.h>
45 #include <linux/spinlock.h>
46 #include <linux/compat.h>
47 #include <linux/srcu.h>
48 #include <linux/hugetlb.h>
49 #include <linux/slab.h>
50 #include <linux/sort.h>
51 #include <linux/bsearch.h>
53 #include <asm/processor.h>
55 #include <asm/ioctl.h>
56 #include <asm/uaccess.h>
57 #include <asm/pgtable.h>
59 #include "coalesced_mmio.h"
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/kvm.h>
66 MODULE_AUTHOR("Qumranet");
67 MODULE_LICENSE("GPL");
69 /* Architectures should define their poll value according to the halt latency */
70 static unsigned int halt_poll_ns
= KVM_HALT_POLL_NS_DEFAULT
;
71 module_param(halt_poll_ns
, uint
, S_IRUGO
| S_IWUSR
);
73 /* Default doubles per-vcpu halt_poll_ns. */
74 static unsigned int halt_poll_ns_grow
= 2;
75 module_param(halt_poll_ns_grow
, int, S_IRUGO
);
77 /* Default resets per-vcpu halt_poll_ns . */
78 static unsigned int halt_poll_ns_shrink
;
79 module_param(halt_poll_ns_shrink
, int, S_IRUGO
);
84 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock
87 DEFINE_SPINLOCK(kvm_lock
);
88 static DEFINE_RAW_SPINLOCK(kvm_count_lock
);
91 static cpumask_var_t cpus_hardware_enabled
;
92 static int kvm_usage_count
;
93 static atomic_t hardware_enable_failed
;
95 struct kmem_cache
*kvm_vcpu_cache
;
96 EXPORT_SYMBOL_GPL(kvm_vcpu_cache
);
98 static __read_mostly
struct preempt_ops kvm_preempt_ops
;
100 struct dentry
*kvm_debugfs_dir
;
101 EXPORT_SYMBOL_GPL(kvm_debugfs_dir
);
103 static long kvm_vcpu_ioctl(struct file
*file
, unsigned int ioctl
,
105 #ifdef CONFIG_KVM_COMPAT
106 static long kvm_vcpu_compat_ioctl(struct file
*file
, unsigned int ioctl
,
109 static int hardware_enable_all(void);
110 static void hardware_disable_all(void);
112 static void kvm_io_bus_destroy(struct kvm_io_bus
*bus
);
114 static void kvm_release_pfn_dirty(pfn_t pfn
);
115 static void mark_page_dirty_in_slot(struct kvm_memory_slot
*memslot
, gfn_t gfn
);
117 __visible
bool kvm_rebooting
;
118 EXPORT_SYMBOL_GPL(kvm_rebooting
);
120 static bool largepages_enabled
= true;
122 bool kvm_is_reserved_pfn(pfn_t pfn
)
125 return PageReserved(pfn_to_page(pfn
));
131 * Switches to specified vcpu, until a matching vcpu_put()
133 int vcpu_load(struct kvm_vcpu
*vcpu
)
137 if (mutex_lock_killable(&vcpu
->mutex
))
140 preempt_notifier_register(&vcpu
->preempt_notifier
);
141 kvm_arch_vcpu_load(vcpu
, cpu
);
145 EXPORT_SYMBOL_GPL(vcpu_load
);
147 void vcpu_put(struct kvm_vcpu
*vcpu
)
150 kvm_arch_vcpu_put(vcpu
);
151 preempt_notifier_unregister(&vcpu
->preempt_notifier
);
153 mutex_unlock(&vcpu
->mutex
);
155 EXPORT_SYMBOL_GPL(vcpu_put
);
157 static void ack_flush(void *_completed
)
161 bool kvm_make_all_cpus_request(struct kvm
*kvm
, unsigned int req
)
166 struct kvm_vcpu
*vcpu
;
168 zalloc_cpumask_var(&cpus
, GFP_ATOMIC
);
171 kvm_for_each_vcpu(i
, vcpu
, kvm
) {
172 kvm_make_request(req
, vcpu
);
175 /* Set ->requests bit before we read ->mode */
178 if (cpus
!= NULL
&& cpu
!= -1 && cpu
!= me
&&
179 kvm_vcpu_exiting_guest_mode(vcpu
) != OUTSIDE_GUEST_MODE
)
180 cpumask_set_cpu(cpu
, cpus
);
182 if (unlikely(cpus
== NULL
))
183 smp_call_function_many(cpu_online_mask
, ack_flush
, NULL
, 1);
184 else if (!cpumask_empty(cpus
))
185 smp_call_function_many(cpus
, ack_flush
, NULL
, 1);
189 free_cpumask_var(cpus
);
193 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
194 void kvm_flush_remote_tlbs(struct kvm
*kvm
)
196 long dirty_count
= kvm
->tlbs_dirty
;
199 if (kvm_make_all_cpus_request(kvm
, KVM_REQ_TLB_FLUSH
))
200 ++kvm
->stat
.remote_tlb_flush
;
201 cmpxchg(&kvm
->tlbs_dirty
, dirty_count
, 0);
203 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs
);
206 void kvm_reload_remote_mmus(struct kvm
*kvm
)
208 kvm_make_all_cpus_request(kvm
, KVM_REQ_MMU_RELOAD
);
211 void kvm_make_mclock_inprogress_request(struct kvm
*kvm
)
213 kvm_make_all_cpus_request(kvm
, KVM_REQ_MCLOCK_INPROGRESS
);
216 void kvm_make_scan_ioapic_request(struct kvm
*kvm
)
218 kvm_make_all_cpus_request(kvm
, KVM_REQ_SCAN_IOAPIC
);
221 int kvm_vcpu_init(struct kvm_vcpu
*vcpu
, struct kvm
*kvm
, unsigned id
)
226 mutex_init(&vcpu
->mutex
);
231 vcpu
->halt_poll_ns
= 0;
232 init_waitqueue_head(&vcpu
->wq
);
233 kvm_async_pf_vcpu_init(vcpu
);
236 INIT_LIST_HEAD(&vcpu
->blocked_vcpu_list
);
238 page
= alloc_page(GFP_KERNEL
| __GFP_ZERO
);
243 vcpu
->run
= page_address(page
);
245 kvm_vcpu_set_in_spin_loop(vcpu
, false);
246 kvm_vcpu_set_dy_eligible(vcpu
, false);
247 vcpu
->preempted
= false;
249 r
= kvm_arch_vcpu_init(vcpu
);
255 free_page((unsigned long)vcpu
->run
);
259 EXPORT_SYMBOL_GPL(kvm_vcpu_init
);
261 void kvm_vcpu_uninit(struct kvm_vcpu
*vcpu
)
264 kvm_arch_vcpu_uninit(vcpu
);
265 free_page((unsigned long)vcpu
->run
);
267 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit
);
269 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
270 static inline struct kvm
*mmu_notifier_to_kvm(struct mmu_notifier
*mn
)
272 return container_of(mn
, struct kvm
, mmu_notifier
);
275 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier
*mn
,
276 struct mm_struct
*mm
,
277 unsigned long address
)
279 struct kvm
*kvm
= mmu_notifier_to_kvm(mn
);
280 int need_tlb_flush
, idx
;
283 * When ->invalidate_page runs, the linux pte has been zapped
284 * already but the page is still allocated until
285 * ->invalidate_page returns. So if we increase the sequence
286 * here the kvm page fault will notice if the spte can't be
287 * established because the page is going to be freed. If
288 * instead the kvm page fault establishes the spte before
289 * ->invalidate_page runs, kvm_unmap_hva will release it
292 * The sequence increase only need to be seen at spin_unlock
293 * time, and not at spin_lock time.
295 * Increasing the sequence after the spin_unlock would be
296 * unsafe because the kvm page fault could then establish the
297 * pte after kvm_unmap_hva returned, without noticing the page
298 * is going to be freed.
300 idx
= srcu_read_lock(&kvm
->srcu
);
301 spin_lock(&kvm
->mmu_lock
);
303 kvm
->mmu_notifier_seq
++;
304 need_tlb_flush
= kvm_unmap_hva(kvm
, address
) | kvm
->tlbs_dirty
;
305 /* we've to flush the tlb before the pages can be freed */
307 kvm_flush_remote_tlbs(kvm
);
309 spin_unlock(&kvm
->mmu_lock
);
311 kvm_arch_mmu_notifier_invalidate_page(kvm
, address
);
313 srcu_read_unlock(&kvm
->srcu
, idx
);
316 static void kvm_mmu_notifier_change_pte(struct mmu_notifier
*mn
,
317 struct mm_struct
*mm
,
318 unsigned long address
,
321 struct kvm
*kvm
= mmu_notifier_to_kvm(mn
);
324 idx
= srcu_read_lock(&kvm
->srcu
);
325 spin_lock(&kvm
->mmu_lock
);
326 kvm
->mmu_notifier_seq
++;
327 kvm_set_spte_hva(kvm
, address
, pte
);
328 spin_unlock(&kvm
->mmu_lock
);
329 srcu_read_unlock(&kvm
->srcu
, idx
);
332 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier
*mn
,
333 struct mm_struct
*mm
,
337 struct kvm
*kvm
= mmu_notifier_to_kvm(mn
);
338 int need_tlb_flush
= 0, idx
;
340 idx
= srcu_read_lock(&kvm
->srcu
);
341 spin_lock(&kvm
->mmu_lock
);
343 * The count increase must become visible at unlock time as no
344 * spte can be established without taking the mmu_lock and
345 * count is also read inside the mmu_lock critical section.
347 kvm
->mmu_notifier_count
++;
348 need_tlb_flush
= kvm_unmap_hva_range(kvm
, start
, end
);
349 need_tlb_flush
|= kvm
->tlbs_dirty
;
350 /* we've to flush the tlb before the pages can be freed */
352 kvm_flush_remote_tlbs(kvm
);
354 spin_unlock(&kvm
->mmu_lock
);
355 srcu_read_unlock(&kvm
->srcu
, idx
);
358 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier
*mn
,
359 struct mm_struct
*mm
,
363 struct kvm
*kvm
= mmu_notifier_to_kvm(mn
);
365 spin_lock(&kvm
->mmu_lock
);
367 * This sequence increase will notify the kvm page fault that
368 * the page that is going to be mapped in the spte could have
371 kvm
->mmu_notifier_seq
++;
374 * The above sequence increase must be visible before the
375 * below count decrease, which is ensured by the smp_wmb above
376 * in conjunction with the smp_rmb in mmu_notifier_retry().
378 kvm
->mmu_notifier_count
--;
379 spin_unlock(&kvm
->mmu_lock
);
381 BUG_ON(kvm
->mmu_notifier_count
< 0);
384 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier
*mn
,
385 struct mm_struct
*mm
,
389 struct kvm
*kvm
= mmu_notifier_to_kvm(mn
);
392 idx
= srcu_read_lock(&kvm
->srcu
);
393 spin_lock(&kvm
->mmu_lock
);
395 young
= kvm_age_hva(kvm
, start
, end
);
397 kvm_flush_remote_tlbs(kvm
);
399 spin_unlock(&kvm
->mmu_lock
);
400 srcu_read_unlock(&kvm
->srcu
, idx
);
405 static int kvm_mmu_notifier_clear_young(struct mmu_notifier
*mn
,
406 struct mm_struct
*mm
,
410 struct kvm
*kvm
= mmu_notifier_to_kvm(mn
);
413 idx
= srcu_read_lock(&kvm
->srcu
);
414 spin_lock(&kvm
->mmu_lock
);
416 * Even though we do not flush TLB, this will still adversely
417 * affect performance on pre-Haswell Intel EPT, where there is
418 * no EPT Access Bit to clear so that we have to tear down EPT
419 * tables instead. If we find this unacceptable, we can always
420 * add a parameter to kvm_age_hva so that it effectively doesn't
421 * do anything on clear_young.
423 * Also note that currently we never issue secondary TLB flushes
424 * from clear_young, leaving this job up to the regular system
425 * cadence. If we find this inaccurate, we might come up with a
426 * more sophisticated heuristic later.
428 young
= kvm_age_hva(kvm
, start
, end
);
429 spin_unlock(&kvm
->mmu_lock
);
430 srcu_read_unlock(&kvm
->srcu
, idx
);
435 static int kvm_mmu_notifier_test_young(struct mmu_notifier
*mn
,
436 struct mm_struct
*mm
,
437 unsigned long address
)
439 struct kvm
*kvm
= mmu_notifier_to_kvm(mn
);
442 idx
= srcu_read_lock(&kvm
->srcu
);
443 spin_lock(&kvm
->mmu_lock
);
444 young
= kvm_test_age_hva(kvm
, address
);
445 spin_unlock(&kvm
->mmu_lock
);
446 srcu_read_unlock(&kvm
->srcu
, idx
);
451 static void kvm_mmu_notifier_release(struct mmu_notifier
*mn
,
452 struct mm_struct
*mm
)
454 struct kvm
*kvm
= mmu_notifier_to_kvm(mn
);
457 idx
= srcu_read_lock(&kvm
->srcu
);
458 kvm_arch_flush_shadow_all(kvm
);
459 srcu_read_unlock(&kvm
->srcu
, idx
);
462 static const struct mmu_notifier_ops kvm_mmu_notifier_ops
= {
463 .invalidate_page
= kvm_mmu_notifier_invalidate_page
,
464 .invalidate_range_start
= kvm_mmu_notifier_invalidate_range_start
,
465 .invalidate_range_end
= kvm_mmu_notifier_invalidate_range_end
,
466 .clear_flush_young
= kvm_mmu_notifier_clear_flush_young
,
467 .clear_young
= kvm_mmu_notifier_clear_young
,
468 .test_young
= kvm_mmu_notifier_test_young
,
469 .change_pte
= kvm_mmu_notifier_change_pte
,
470 .release
= kvm_mmu_notifier_release
,
473 static int kvm_init_mmu_notifier(struct kvm
*kvm
)
475 kvm
->mmu_notifier
.ops
= &kvm_mmu_notifier_ops
;
476 return mmu_notifier_register(&kvm
->mmu_notifier
, current
->mm
);
479 #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
481 static int kvm_init_mmu_notifier(struct kvm
*kvm
)
486 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
488 static struct kvm_memslots
*kvm_alloc_memslots(void)
491 struct kvm_memslots
*slots
;
493 slots
= kvm_kvzalloc(sizeof(struct kvm_memslots
));
498 * Init kvm generation close to the maximum to easily test the
499 * code of handling generation number wrap-around.
501 slots
->generation
= -150;
502 for (i
= 0; i
< KVM_MEM_SLOTS_NUM
; i
++)
503 slots
->id_to_index
[i
] = slots
->memslots
[i
].id
= i
;
508 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot
*memslot
)
510 if (!memslot
->dirty_bitmap
)
513 kvfree(memslot
->dirty_bitmap
);
514 memslot
->dirty_bitmap
= NULL
;
518 * Free any memory in @free but not in @dont.
520 static void kvm_free_memslot(struct kvm
*kvm
, struct kvm_memory_slot
*free
,
521 struct kvm_memory_slot
*dont
)
523 if (!dont
|| free
->dirty_bitmap
!= dont
->dirty_bitmap
)
524 kvm_destroy_dirty_bitmap(free
);
526 kvm_arch_free_memslot(kvm
, free
, dont
);
531 static void kvm_free_memslots(struct kvm
*kvm
, struct kvm_memslots
*slots
)
533 struct kvm_memory_slot
*memslot
;
538 kvm_for_each_memslot(memslot
, slots
)
539 kvm_free_memslot(kvm
, memslot
, NULL
);
544 static struct kvm
*kvm_create_vm(unsigned long type
)
547 struct kvm
*kvm
= kvm_arch_alloc_vm();
550 return ERR_PTR(-ENOMEM
);
552 spin_lock_init(&kvm
->mmu_lock
);
553 atomic_inc(¤t
->mm
->mm_count
);
554 kvm
->mm
= current
->mm
;
555 kvm_eventfd_init(kvm
);
556 mutex_init(&kvm
->lock
);
557 mutex_init(&kvm
->irq_lock
);
558 mutex_init(&kvm
->slots_lock
);
559 atomic_set(&kvm
->users_count
, 1);
560 INIT_LIST_HEAD(&kvm
->devices
);
562 r
= kvm_arch_init_vm(kvm
, type
);
564 goto out_err_no_disable
;
566 r
= hardware_enable_all();
568 goto out_err_no_disable
;
570 #ifdef CONFIG_HAVE_KVM_IRQFD
571 INIT_HLIST_HEAD(&kvm
->irq_ack_notifier_list
);
574 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM
> SHRT_MAX
);
577 for (i
= 0; i
< KVM_ADDRESS_SPACE_NUM
; i
++) {
578 kvm
->memslots
[i
] = kvm_alloc_memslots();
579 if (!kvm
->memslots
[i
])
580 goto out_err_no_srcu
;
583 if (init_srcu_struct(&kvm
->srcu
))
584 goto out_err_no_srcu
;
585 if (init_srcu_struct(&kvm
->irq_srcu
))
586 goto out_err_no_irq_srcu
;
587 for (i
= 0; i
< KVM_NR_BUSES
; i
++) {
588 kvm
->buses
[i
] = kzalloc(sizeof(struct kvm_io_bus
),
594 r
= kvm_init_mmu_notifier(kvm
);
598 spin_lock(&kvm_lock
);
599 list_add(&kvm
->vm_list
, &vm_list
);
600 spin_unlock(&kvm_lock
);
602 preempt_notifier_inc();
607 cleanup_srcu_struct(&kvm
->irq_srcu
);
609 cleanup_srcu_struct(&kvm
->srcu
);
611 hardware_disable_all();
613 for (i
= 0; i
< KVM_NR_BUSES
; i
++)
614 kfree(kvm
->buses
[i
]);
615 for (i
= 0; i
< KVM_ADDRESS_SPACE_NUM
; i
++)
616 kvm_free_memslots(kvm
, kvm
->memslots
[i
]);
617 kvm_arch_free_vm(kvm
);
623 * Avoid using vmalloc for a small buffer.
624 * Should not be used when the size is statically known.
626 void *kvm_kvzalloc(unsigned long size
)
628 if (size
> PAGE_SIZE
)
629 return vzalloc(size
);
631 return kzalloc(size
, GFP_KERNEL
);
634 static void kvm_destroy_devices(struct kvm
*kvm
)
636 struct list_head
*node
, *tmp
;
638 list_for_each_safe(node
, tmp
, &kvm
->devices
) {
639 struct kvm_device
*dev
=
640 list_entry(node
, struct kvm_device
, vm_node
);
643 dev
->ops
->destroy(dev
);
647 static void kvm_destroy_vm(struct kvm
*kvm
)
650 struct mm_struct
*mm
= kvm
->mm
;
652 kvm_arch_sync_events(kvm
);
653 spin_lock(&kvm_lock
);
654 list_del(&kvm
->vm_list
);
655 spin_unlock(&kvm_lock
);
656 kvm_free_irq_routing(kvm
);
657 for (i
= 0; i
< KVM_NR_BUSES
; i
++) {
659 kvm_io_bus_destroy(kvm
->buses
[i
]);
660 kvm
->buses
[i
] = NULL
;
662 kvm_coalesced_mmio_free(kvm
);
663 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
664 mmu_notifier_unregister(&kvm
->mmu_notifier
, kvm
->mm
);
666 kvm_arch_flush_shadow_all(kvm
);
668 kvm_arch_destroy_vm(kvm
);
669 kvm_destroy_devices(kvm
);
670 for (i
= 0; i
< KVM_ADDRESS_SPACE_NUM
; i
++)
671 kvm_free_memslots(kvm
, kvm
->memslots
[i
]);
672 cleanup_srcu_struct(&kvm
->irq_srcu
);
673 cleanup_srcu_struct(&kvm
->srcu
);
674 kvm_arch_free_vm(kvm
);
675 preempt_notifier_dec();
676 hardware_disable_all();
680 void kvm_get_kvm(struct kvm
*kvm
)
682 atomic_inc(&kvm
->users_count
);
684 EXPORT_SYMBOL_GPL(kvm_get_kvm
);
686 void kvm_put_kvm(struct kvm
*kvm
)
688 if (atomic_dec_and_test(&kvm
->users_count
))
691 EXPORT_SYMBOL_GPL(kvm_put_kvm
);
694 static int kvm_vm_release(struct inode
*inode
, struct file
*filp
)
696 struct kvm
*kvm
= filp
->private_data
;
698 kvm_irqfd_release(kvm
);
705 * Allocation size is twice as large as the actual dirty bitmap size.
706 * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
708 static int kvm_create_dirty_bitmap(struct kvm_memory_slot
*memslot
)
710 unsigned long dirty_bytes
= 2 * kvm_dirty_bitmap_bytes(memslot
);
712 memslot
->dirty_bitmap
= kvm_kvzalloc(dirty_bytes
);
713 if (!memslot
->dirty_bitmap
)
720 * Insert memslot and re-sort memslots based on their GFN,
721 * so binary search could be used to lookup GFN.
722 * Sorting algorithm takes advantage of having initially
723 * sorted array and known changed memslot position.
725 static void update_memslots(struct kvm_memslots
*slots
,
726 struct kvm_memory_slot
*new)
729 int i
= slots
->id_to_index
[id
];
730 struct kvm_memory_slot
*mslots
= slots
->memslots
;
732 WARN_ON(mslots
[i
].id
!= id
);
734 WARN_ON(!mslots
[i
].npages
);
735 if (mslots
[i
].npages
)
738 if (!mslots
[i
].npages
)
742 while (i
< KVM_MEM_SLOTS_NUM
- 1 &&
743 new->base_gfn
<= mslots
[i
+ 1].base_gfn
) {
744 if (!mslots
[i
+ 1].npages
)
746 mslots
[i
] = mslots
[i
+ 1];
747 slots
->id_to_index
[mslots
[i
].id
] = i
;
752 * The ">=" is needed when creating a slot with base_gfn == 0,
753 * so that it moves before all those with base_gfn == npages == 0.
755 * On the other hand, if new->npages is zero, the above loop has
756 * already left i pointing to the beginning of the empty part of
757 * mslots, and the ">=" would move the hole backwards in this
758 * case---which is wrong. So skip the loop when deleting a slot.
762 new->base_gfn
>= mslots
[i
- 1].base_gfn
) {
763 mslots
[i
] = mslots
[i
- 1];
764 slots
->id_to_index
[mslots
[i
].id
] = i
;
768 WARN_ON_ONCE(i
!= slots
->used_slots
);
771 slots
->id_to_index
[mslots
[i
].id
] = i
;
774 static int check_memory_region_flags(const struct kvm_userspace_memory_region
*mem
)
776 u32 valid_flags
= KVM_MEM_LOG_DIRTY_PAGES
;
778 #ifdef __KVM_HAVE_READONLY_MEM
779 valid_flags
|= KVM_MEM_READONLY
;
782 if (mem
->flags
& ~valid_flags
)
788 static struct kvm_memslots
*install_new_memslots(struct kvm
*kvm
,
789 int as_id
, struct kvm_memslots
*slots
)
791 struct kvm_memslots
*old_memslots
= __kvm_memslots(kvm
, as_id
);
794 * Set the low bit in the generation, which disables SPTE caching
795 * until the end of synchronize_srcu_expedited.
797 WARN_ON(old_memslots
->generation
& 1);
798 slots
->generation
= old_memslots
->generation
+ 1;
800 rcu_assign_pointer(kvm
->memslots
[as_id
], slots
);
801 synchronize_srcu_expedited(&kvm
->srcu
);
804 * Increment the new memslot generation a second time. This prevents
805 * vm exits that race with memslot updates from caching a memslot
806 * generation that will (potentially) be valid forever.
810 kvm_arch_memslots_updated(kvm
, slots
);
816 * Allocate some memory and give it an address in the guest physical address
819 * Discontiguous memory is allowed, mostly for framebuffers.
821 * Must be called holding kvm->slots_lock for write.
823 int __kvm_set_memory_region(struct kvm
*kvm
,
824 const struct kvm_userspace_memory_region
*mem
)
828 unsigned long npages
;
829 struct kvm_memory_slot
*slot
;
830 struct kvm_memory_slot old
, new;
831 struct kvm_memslots
*slots
= NULL
, *old_memslots
;
833 enum kvm_mr_change change
;
835 r
= check_memory_region_flags(mem
);
840 as_id
= mem
->slot
>> 16;
843 /* General sanity checks */
844 if (mem
->memory_size
& (PAGE_SIZE
- 1))
846 if (mem
->guest_phys_addr
& (PAGE_SIZE
- 1))
848 /* We can read the guest memory with __xxx_user() later on. */
849 if ((id
< KVM_USER_MEM_SLOTS
) &&
850 ((mem
->userspace_addr
& (PAGE_SIZE
- 1)) ||
851 !access_ok(VERIFY_WRITE
,
852 (void __user
*)(unsigned long)mem
->userspace_addr
,
855 if (as_id
>= KVM_ADDRESS_SPACE_NUM
|| id
>= KVM_MEM_SLOTS_NUM
)
857 if (mem
->guest_phys_addr
+ mem
->memory_size
< mem
->guest_phys_addr
)
860 slot
= id_to_memslot(__kvm_memslots(kvm
, as_id
), id
);
861 base_gfn
= mem
->guest_phys_addr
>> PAGE_SHIFT
;
862 npages
= mem
->memory_size
>> PAGE_SHIFT
;
864 if (npages
> KVM_MEM_MAX_NR_PAGES
)
870 new.base_gfn
= base_gfn
;
872 new.flags
= mem
->flags
;
876 change
= KVM_MR_CREATE
;
877 else { /* Modify an existing slot. */
878 if ((mem
->userspace_addr
!= old
.userspace_addr
) ||
879 (npages
!= old
.npages
) ||
880 ((new.flags
^ old
.flags
) & KVM_MEM_READONLY
))
883 if (base_gfn
!= old
.base_gfn
)
884 change
= KVM_MR_MOVE
;
885 else if (new.flags
!= old
.flags
)
886 change
= KVM_MR_FLAGS_ONLY
;
887 else { /* Nothing to change. */
896 change
= KVM_MR_DELETE
;
901 if ((change
== KVM_MR_CREATE
) || (change
== KVM_MR_MOVE
)) {
902 /* Check for overlaps */
904 kvm_for_each_memslot(slot
, __kvm_memslots(kvm
, as_id
)) {
905 if ((slot
->id
>= KVM_USER_MEM_SLOTS
) ||
908 if (!((base_gfn
+ npages
<= slot
->base_gfn
) ||
909 (base_gfn
>= slot
->base_gfn
+ slot
->npages
)))
914 /* Free page dirty bitmap if unneeded */
915 if (!(new.flags
& KVM_MEM_LOG_DIRTY_PAGES
))
916 new.dirty_bitmap
= NULL
;
919 if (change
== KVM_MR_CREATE
) {
920 new.userspace_addr
= mem
->userspace_addr
;
922 if (kvm_arch_create_memslot(kvm
, &new, npages
))
926 /* Allocate page dirty bitmap if needed */
927 if ((new.flags
& KVM_MEM_LOG_DIRTY_PAGES
) && !new.dirty_bitmap
) {
928 if (kvm_create_dirty_bitmap(&new) < 0)
932 slots
= kvm_kvzalloc(sizeof(struct kvm_memslots
));
935 memcpy(slots
, __kvm_memslots(kvm
, as_id
), sizeof(struct kvm_memslots
));
937 if ((change
== KVM_MR_DELETE
) || (change
== KVM_MR_MOVE
)) {
938 slot
= id_to_memslot(slots
, id
);
939 slot
->flags
|= KVM_MEMSLOT_INVALID
;
941 old_memslots
= install_new_memslots(kvm
, as_id
, slots
);
943 /* slot was deleted or moved, clear iommu mapping */
944 kvm_iommu_unmap_pages(kvm
, &old
);
945 /* From this point no new shadow pages pointing to a deleted,
946 * or moved, memslot will be created.
948 * validation of sp->gfn happens in:
949 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
950 * - kvm_is_visible_gfn (mmu_check_roots)
952 kvm_arch_flush_shadow_memslot(kvm
, slot
);
955 * We can re-use the old_memslots from above, the only difference
956 * from the currently installed memslots is the invalid flag. This
957 * will get overwritten by update_memslots anyway.
959 slots
= old_memslots
;
962 r
= kvm_arch_prepare_memory_region(kvm
, &new, mem
, change
);
966 /* actual memory is freed via old in kvm_free_memslot below */
967 if (change
== KVM_MR_DELETE
) {
968 new.dirty_bitmap
= NULL
;
969 memset(&new.arch
, 0, sizeof(new.arch
));
972 update_memslots(slots
, &new);
973 old_memslots
= install_new_memslots(kvm
, as_id
, slots
);
975 kvm_arch_commit_memory_region(kvm
, mem
, &old
, &new, change
);
977 kvm_free_memslot(kvm
, &old
, &new);
978 kvfree(old_memslots
);
981 * IOMMU mapping: New slots need to be mapped. Old slots need to be
982 * un-mapped and re-mapped if their base changes. Since base change
983 * unmapping is handled above with slot deletion, mapping alone is
984 * needed here. Anything else the iommu might care about for existing
985 * slots (size changes, userspace addr changes and read-only flag
986 * changes) is disallowed above, so any other attribute changes getting
987 * here can be skipped.
989 if ((change
== KVM_MR_CREATE
) || (change
== KVM_MR_MOVE
)) {
990 r
= kvm_iommu_map_pages(kvm
, &new);
999 kvm_free_memslot(kvm
, &new, &old
);
1003 EXPORT_SYMBOL_GPL(__kvm_set_memory_region
);
1005 int kvm_set_memory_region(struct kvm
*kvm
,
1006 const struct kvm_userspace_memory_region
*mem
)
1010 mutex_lock(&kvm
->slots_lock
);
1011 r
= __kvm_set_memory_region(kvm
, mem
);
1012 mutex_unlock(&kvm
->slots_lock
);
1015 EXPORT_SYMBOL_GPL(kvm_set_memory_region
);
1017 static int kvm_vm_ioctl_set_memory_region(struct kvm
*kvm
,
1018 struct kvm_userspace_memory_region
*mem
)
1020 if ((u16
)mem
->slot
>= KVM_USER_MEM_SLOTS
)
1023 return kvm_set_memory_region(kvm
, mem
);
1026 int kvm_get_dirty_log(struct kvm
*kvm
,
1027 struct kvm_dirty_log
*log
, int *is_dirty
)
1029 struct kvm_memslots
*slots
;
1030 struct kvm_memory_slot
*memslot
;
1031 int r
, i
, as_id
, id
;
1033 unsigned long any
= 0;
1036 as_id
= log
->slot
>> 16;
1037 id
= (u16
)log
->slot
;
1038 if (as_id
>= KVM_ADDRESS_SPACE_NUM
|| id
>= KVM_USER_MEM_SLOTS
)
1041 slots
= __kvm_memslots(kvm
, as_id
);
1042 memslot
= id_to_memslot(slots
, id
);
1044 if (!memslot
->dirty_bitmap
)
1047 n
= kvm_dirty_bitmap_bytes(memslot
);
1049 for (i
= 0; !any
&& i
< n
/sizeof(long); ++i
)
1050 any
= memslot
->dirty_bitmap
[i
];
1053 if (copy_to_user(log
->dirty_bitmap
, memslot
->dirty_bitmap
, n
))
1063 EXPORT_SYMBOL_GPL(kvm_get_dirty_log
);
1065 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1067 * kvm_get_dirty_log_protect - get a snapshot of dirty pages, and if any pages
1068 * are dirty write protect them for next write.
1069 * @kvm: pointer to kvm instance
1070 * @log: slot id and address to which we copy the log
1071 * @is_dirty: flag set if any page is dirty
1073 * We need to keep it in mind that VCPU threads can write to the bitmap
1074 * concurrently. So, to avoid losing track of dirty pages we keep the
1077 * 1. Take a snapshot of the bit and clear it if needed.
1078 * 2. Write protect the corresponding page.
1079 * 3. Copy the snapshot to the userspace.
1080 * 4. Upon return caller flushes TLB's if needed.
1082 * Between 2 and 4, the guest may write to the page using the remaining TLB
1083 * entry. This is not a problem because the page is reported dirty using
1084 * the snapshot taken before and step 4 ensures that writes done after
1085 * exiting to userspace will be logged for the next call.
1088 int kvm_get_dirty_log_protect(struct kvm
*kvm
,
1089 struct kvm_dirty_log
*log
, bool *is_dirty
)
1091 struct kvm_memslots
*slots
;
1092 struct kvm_memory_slot
*memslot
;
1093 int r
, i
, as_id
, id
;
1095 unsigned long *dirty_bitmap
;
1096 unsigned long *dirty_bitmap_buffer
;
1099 as_id
= log
->slot
>> 16;
1100 id
= (u16
)log
->slot
;
1101 if (as_id
>= KVM_ADDRESS_SPACE_NUM
|| id
>= KVM_USER_MEM_SLOTS
)
1104 slots
= __kvm_memslots(kvm
, as_id
);
1105 memslot
= id_to_memslot(slots
, id
);
1107 dirty_bitmap
= memslot
->dirty_bitmap
;
1112 n
= kvm_dirty_bitmap_bytes(memslot
);
1114 dirty_bitmap_buffer
= dirty_bitmap
+ n
/ sizeof(long);
1115 memset(dirty_bitmap_buffer
, 0, n
);
1117 spin_lock(&kvm
->mmu_lock
);
1119 for (i
= 0; i
< n
/ sizeof(long); i
++) {
1123 if (!dirty_bitmap
[i
])
1128 mask
= xchg(&dirty_bitmap
[i
], 0);
1129 dirty_bitmap_buffer
[i
] = mask
;
1132 offset
= i
* BITS_PER_LONG
;
1133 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm
, memslot
,
1138 spin_unlock(&kvm
->mmu_lock
);
1141 if (copy_to_user(log
->dirty_bitmap
, dirty_bitmap_buffer
, n
))
1148 EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect
);
1151 bool kvm_largepages_enabled(void)
1153 return largepages_enabled
;
1156 void kvm_disable_largepages(void)
1158 largepages_enabled
= false;
1160 EXPORT_SYMBOL_GPL(kvm_disable_largepages
);
1162 struct kvm_memory_slot
*gfn_to_memslot(struct kvm
*kvm
, gfn_t gfn
)
1164 return __gfn_to_memslot(kvm_memslots(kvm
), gfn
);
1166 EXPORT_SYMBOL_GPL(gfn_to_memslot
);
1168 struct kvm_memory_slot
*kvm_vcpu_gfn_to_memslot(struct kvm_vcpu
*vcpu
, gfn_t gfn
)
1170 return __gfn_to_memslot(kvm_vcpu_memslots(vcpu
), gfn
);
1173 int kvm_is_visible_gfn(struct kvm
*kvm
, gfn_t gfn
)
1175 struct kvm_memory_slot
*memslot
= gfn_to_memslot(kvm
, gfn
);
1177 if (!memslot
|| memslot
->id
>= KVM_USER_MEM_SLOTS
||
1178 memslot
->flags
& KVM_MEMSLOT_INVALID
)
1183 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn
);
1185 unsigned long kvm_host_page_size(struct kvm
*kvm
, gfn_t gfn
)
1187 struct vm_area_struct
*vma
;
1188 unsigned long addr
, size
;
1192 addr
= gfn_to_hva(kvm
, gfn
);
1193 if (kvm_is_error_hva(addr
))
1196 down_read(¤t
->mm
->mmap_sem
);
1197 vma
= find_vma(current
->mm
, addr
);
1201 size
= vma_kernel_pagesize(vma
);
1204 up_read(¤t
->mm
->mmap_sem
);
1209 static bool memslot_is_readonly(struct kvm_memory_slot
*slot
)
1211 return slot
->flags
& KVM_MEM_READONLY
;
1214 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot
*slot
, gfn_t gfn
,
1215 gfn_t
*nr_pages
, bool write
)
1217 if (!slot
|| slot
->flags
& KVM_MEMSLOT_INVALID
)
1218 return KVM_HVA_ERR_BAD
;
1220 if (memslot_is_readonly(slot
) && write
)
1221 return KVM_HVA_ERR_RO_BAD
;
1224 *nr_pages
= slot
->npages
- (gfn
- slot
->base_gfn
);
1226 return __gfn_to_hva_memslot(slot
, gfn
);
1229 static unsigned long gfn_to_hva_many(struct kvm_memory_slot
*slot
, gfn_t gfn
,
1232 return __gfn_to_hva_many(slot
, gfn
, nr_pages
, true);
1235 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot
*slot
,
1238 return gfn_to_hva_many(slot
, gfn
, NULL
);
1240 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot
);
1242 unsigned long gfn_to_hva(struct kvm
*kvm
, gfn_t gfn
)
1244 return gfn_to_hva_many(gfn_to_memslot(kvm
, gfn
), gfn
, NULL
);
1246 EXPORT_SYMBOL_GPL(gfn_to_hva
);
1248 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu
*vcpu
, gfn_t gfn
)
1250 return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu
, gfn
), gfn
, NULL
);
1252 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva
);
1255 * If writable is set to false, the hva returned by this function is only
1256 * allowed to be read.
1258 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot
*slot
,
1259 gfn_t gfn
, bool *writable
)
1261 unsigned long hva
= __gfn_to_hva_many(slot
, gfn
, NULL
, false);
1263 if (!kvm_is_error_hva(hva
) && writable
)
1264 *writable
= !memslot_is_readonly(slot
);
1269 unsigned long gfn_to_hva_prot(struct kvm
*kvm
, gfn_t gfn
, bool *writable
)
1271 struct kvm_memory_slot
*slot
= gfn_to_memslot(kvm
, gfn
);
1273 return gfn_to_hva_memslot_prot(slot
, gfn
, writable
);
1276 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu
*vcpu
, gfn_t gfn
, bool *writable
)
1278 struct kvm_memory_slot
*slot
= kvm_vcpu_gfn_to_memslot(vcpu
, gfn
);
1280 return gfn_to_hva_memslot_prot(slot
, gfn
, writable
);
1283 static int get_user_page_nowait(struct task_struct
*tsk
, struct mm_struct
*mm
,
1284 unsigned long start
, int write
, struct page
**page
)
1286 int flags
= FOLL_TOUCH
| FOLL_NOWAIT
| FOLL_HWPOISON
| FOLL_GET
;
1289 flags
|= FOLL_WRITE
;
1291 return __get_user_pages(tsk
, mm
, start
, 1, flags
, page
, NULL
, NULL
);
1294 static inline int check_user_page_hwpoison(unsigned long addr
)
1296 int rc
, flags
= FOLL_TOUCH
| FOLL_HWPOISON
| FOLL_WRITE
;
1298 rc
= __get_user_pages(current
, current
->mm
, addr
, 1,
1299 flags
, NULL
, NULL
, NULL
);
1300 return rc
== -EHWPOISON
;
1304 * The atomic path to get the writable pfn which will be stored in @pfn,
1305 * true indicates success, otherwise false is returned.
1307 static bool hva_to_pfn_fast(unsigned long addr
, bool atomic
, bool *async
,
1308 bool write_fault
, bool *writable
, pfn_t
*pfn
)
1310 struct page
*page
[1];
1313 if (!(async
|| atomic
))
1317 * Fast pin a writable pfn only if it is a write fault request
1318 * or the caller allows to map a writable pfn for a read fault
1321 if (!(write_fault
|| writable
))
1324 npages
= __get_user_pages_fast(addr
, 1, 1, page
);
1326 *pfn
= page_to_pfn(page
[0]);
1337 * The slow path to get the pfn of the specified host virtual address,
1338 * 1 indicates success, -errno is returned if error is detected.
1340 static int hva_to_pfn_slow(unsigned long addr
, bool *async
, bool write_fault
,
1341 bool *writable
, pfn_t
*pfn
)
1343 struct page
*page
[1];
1349 *writable
= write_fault
;
1352 down_read(¤t
->mm
->mmap_sem
);
1353 npages
= get_user_page_nowait(current
, current
->mm
,
1354 addr
, write_fault
, page
);
1355 up_read(¤t
->mm
->mmap_sem
);
1357 npages
= __get_user_pages_unlocked(current
, current
->mm
, addr
, 1,
1358 write_fault
, 0, page
,
1359 FOLL_TOUCH
|FOLL_HWPOISON
);
1363 /* map read fault as writable if possible */
1364 if (unlikely(!write_fault
) && writable
) {
1365 struct page
*wpage
[1];
1367 npages
= __get_user_pages_fast(addr
, 1, 1, wpage
);
1376 *pfn
= page_to_pfn(page
[0]);
1380 static bool vma_is_valid(struct vm_area_struct
*vma
, bool write_fault
)
1382 if (unlikely(!(vma
->vm_flags
& VM_READ
)))
1385 if (write_fault
&& (unlikely(!(vma
->vm_flags
& VM_WRITE
))))
1392 * Pin guest page in memory and return its pfn.
1393 * @addr: host virtual address which maps memory to the guest
1394 * @atomic: whether this function can sleep
1395 * @async: whether this function need to wait IO complete if the
1396 * host page is not in the memory
1397 * @write_fault: whether we should get a writable host page
1398 * @writable: whether it allows to map a writable host page for !@write_fault
1400 * The function will map a writable host page for these two cases:
1401 * 1): @write_fault = true
1402 * 2): @write_fault = false && @writable, @writable will tell the caller
1403 * whether the mapping is writable.
1405 static pfn_t
hva_to_pfn(unsigned long addr
, bool atomic
, bool *async
,
1406 bool write_fault
, bool *writable
)
1408 struct vm_area_struct
*vma
;
1412 /* we can do it either atomically or asynchronously, not both */
1413 BUG_ON(atomic
&& async
);
1415 if (hva_to_pfn_fast(addr
, atomic
, async
, write_fault
, writable
, &pfn
))
1419 return KVM_PFN_ERR_FAULT
;
1421 npages
= hva_to_pfn_slow(addr
, async
, write_fault
, writable
, &pfn
);
1425 down_read(¤t
->mm
->mmap_sem
);
1426 if (npages
== -EHWPOISON
||
1427 (!async
&& check_user_page_hwpoison(addr
))) {
1428 pfn
= KVM_PFN_ERR_HWPOISON
;
1432 vma
= find_vma_intersection(current
->mm
, addr
, addr
+ 1);
1435 pfn
= KVM_PFN_ERR_FAULT
;
1436 else if ((vma
->vm_flags
& VM_PFNMAP
)) {
1437 pfn
= ((addr
- vma
->vm_start
) >> PAGE_SHIFT
) +
1439 BUG_ON(!kvm_is_reserved_pfn(pfn
));
1441 if (async
&& vma_is_valid(vma
, write_fault
))
1443 pfn
= KVM_PFN_ERR_FAULT
;
1446 up_read(¤t
->mm
->mmap_sem
);
1450 pfn_t
__gfn_to_pfn_memslot(struct kvm_memory_slot
*slot
, gfn_t gfn
, bool atomic
,
1451 bool *async
, bool write_fault
, bool *writable
)
1453 unsigned long addr
= __gfn_to_hva_many(slot
, gfn
, NULL
, write_fault
);
1455 if (addr
== KVM_HVA_ERR_RO_BAD
)
1456 return KVM_PFN_ERR_RO_FAULT
;
1458 if (kvm_is_error_hva(addr
))
1459 return KVM_PFN_NOSLOT
;
1461 /* Do not map writable pfn in the readonly memslot. */
1462 if (writable
&& memslot_is_readonly(slot
)) {
1467 return hva_to_pfn(addr
, atomic
, async
, write_fault
,
1470 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot
);
1472 pfn_t
gfn_to_pfn_prot(struct kvm
*kvm
, gfn_t gfn
, bool write_fault
,
1475 return __gfn_to_pfn_memslot(gfn_to_memslot(kvm
, gfn
), gfn
, false, NULL
,
1476 write_fault
, writable
);
1478 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot
);
1480 pfn_t
gfn_to_pfn_memslot(struct kvm_memory_slot
*slot
, gfn_t gfn
)
1482 return __gfn_to_pfn_memslot(slot
, gfn
, false, NULL
, true, NULL
);
1484 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot
);
1486 pfn_t
gfn_to_pfn_memslot_atomic(struct kvm_memory_slot
*slot
, gfn_t gfn
)
1488 return __gfn_to_pfn_memslot(slot
, gfn
, true, NULL
, true, NULL
);
1490 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic
);
1492 pfn_t
gfn_to_pfn_atomic(struct kvm
*kvm
, gfn_t gfn
)
1494 return gfn_to_pfn_memslot_atomic(gfn_to_memslot(kvm
, gfn
), gfn
);
1496 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic
);
1498 pfn_t
kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu
*vcpu
, gfn_t gfn
)
1500 return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu
, gfn
), gfn
);
1502 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic
);
1504 pfn_t
gfn_to_pfn(struct kvm
*kvm
, gfn_t gfn
)
1506 return gfn_to_pfn_memslot(gfn_to_memslot(kvm
, gfn
), gfn
);
1508 EXPORT_SYMBOL_GPL(gfn_to_pfn
);
1510 pfn_t
kvm_vcpu_gfn_to_pfn(struct kvm_vcpu
*vcpu
, gfn_t gfn
)
1512 return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu
, gfn
), gfn
);
1514 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn
);
1516 int gfn_to_page_many_atomic(struct kvm_memory_slot
*slot
, gfn_t gfn
,
1517 struct page
**pages
, int nr_pages
)
1522 addr
= gfn_to_hva_many(slot
, gfn
, &entry
);
1523 if (kvm_is_error_hva(addr
))
1526 if (entry
< nr_pages
)
1529 return __get_user_pages_fast(addr
, nr_pages
, 1, pages
);
1531 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic
);
1533 static struct page
*kvm_pfn_to_page(pfn_t pfn
)
1535 if (is_error_noslot_pfn(pfn
))
1536 return KVM_ERR_PTR_BAD_PAGE
;
1538 if (kvm_is_reserved_pfn(pfn
)) {
1540 return KVM_ERR_PTR_BAD_PAGE
;
1543 return pfn_to_page(pfn
);
1546 struct page
*gfn_to_page(struct kvm
*kvm
, gfn_t gfn
)
1550 pfn
= gfn_to_pfn(kvm
, gfn
);
1552 return kvm_pfn_to_page(pfn
);
1554 EXPORT_SYMBOL_GPL(gfn_to_page
);
1556 struct page
*kvm_vcpu_gfn_to_page(struct kvm_vcpu
*vcpu
, gfn_t gfn
)
1560 pfn
= kvm_vcpu_gfn_to_pfn(vcpu
, gfn
);
1562 return kvm_pfn_to_page(pfn
);
1564 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page
);
1566 void kvm_release_page_clean(struct page
*page
)
1568 WARN_ON(is_error_page(page
));
1570 kvm_release_pfn_clean(page_to_pfn(page
));
1572 EXPORT_SYMBOL_GPL(kvm_release_page_clean
);
1574 void kvm_release_pfn_clean(pfn_t pfn
)
1576 if (!is_error_noslot_pfn(pfn
) && !kvm_is_reserved_pfn(pfn
))
1577 put_page(pfn_to_page(pfn
));
1579 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean
);
1581 void kvm_release_page_dirty(struct page
*page
)
1583 WARN_ON(is_error_page(page
));
1585 kvm_release_pfn_dirty(page_to_pfn(page
));
1587 EXPORT_SYMBOL_GPL(kvm_release_page_dirty
);
1589 static void kvm_release_pfn_dirty(pfn_t pfn
)
1591 kvm_set_pfn_dirty(pfn
);
1592 kvm_release_pfn_clean(pfn
);
1595 void kvm_set_pfn_dirty(pfn_t pfn
)
1597 if (!kvm_is_reserved_pfn(pfn
)) {
1598 struct page
*page
= pfn_to_page(pfn
);
1600 if (!PageReserved(page
))
1604 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty
);
1606 void kvm_set_pfn_accessed(pfn_t pfn
)
1608 if (!kvm_is_reserved_pfn(pfn
))
1609 mark_page_accessed(pfn_to_page(pfn
));
1611 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed
);
1613 void kvm_get_pfn(pfn_t pfn
)
1615 if (!kvm_is_reserved_pfn(pfn
))
1616 get_page(pfn_to_page(pfn
));
1618 EXPORT_SYMBOL_GPL(kvm_get_pfn
);
1620 static int next_segment(unsigned long len
, int offset
)
1622 if (len
> PAGE_SIZE
- offset
)
1623 return PAGE_SIZE
- offset
;
1628 static int __kvm_read_guest_page(struct kvm_memory_slot
*slot
, gfn_t gfn
,
1629 void *data
, int offset
, int len
)
1634 addr
= gfn_to_hva_memslot_prot(slot
, gfn
, NULL
);
1635 if (kvm_is_error_hva(addr
))
1637 r
= __copy_from_user(data
, (void __user
*)addr
+ offset
, len
);
1643 int kvm_read_guest_page(struct kvm
*kvm
, gfn_t gfn
, void *data
, int offset
,
1646 struct kvm_memory_slot
*slot
= gfn_to_memslot(kvm
, gfn
);
1648 return __kvm_read_guest_page(slot
, gfn
, data
, offset
, len
);
1650 EXPORT_SYMBOL_GPL(kvm_read_guest_page
);
1652 int kvm_vcpu_read_guest_page(struct kvm_vcpu
*vcpu
, gfn_t gfn
, void *data
,
1653 int offset
, int len
)
1655 struct kvm_memory_slot
*slot
= kvm_vcpu_gfn_to_memslot(vcpu
, gfn
);
1657 return __kvm_read_guest_page(slot
, gfn
, data
, offset
, len
);
1659 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page
);
1661 int kvm_read_guest(struct kvm
*kvm
, gpa_t gpa
, void *data
, unsigned long len
)
1663 gfn_t gfn
= gpa
>> PAGE_SHIFT
;
1665 int offset
= offset_in_page(gpa
);
1668 while ((seg
= next_segment(len
, offset
)) != 0) {
1669 ret
= kvm_read_guest_page(kvm
, gfn
, data
, offset
, seg
);
1679 EXPORT_SYMBOL_GPL(kvm_read_guest
);
1681 int kvm_vcpu_read_guest(struct kvm_vcpu
*vcpu
, gpa_t gpa
, void *data
, unsigned long len
)
1683 gfn_t gfn
= gpa
>> PAGE_SHIFT
;
1685 int offset
= offset_in_page(gpa
);
1688 while ((seg
= next_segment(len
, offset
)) != 0) {
1689 ret
= kvm_vcpu_read_guest_page(vcpu
, gfn
, data
, offset
, seg
);
1699 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest
);
1701 static int __kvm_read_guest_atomic(struct kvm_memory_slot
*slot
, gfn_t gfn
,
1702 void *data
, int offset
, unsigned long len
)
1707 addr
= gfn_to_hva_memslot_prot(slot
, gfn
, NULL
);
1708 if (kvm_is_error_hva(addr
))
1710 pagefault_disable();
1711 r
= __copy_from_user_inatomic(data
, (void __user
*)addr
+ offset
, len
);
1718 int kvm_read_guest_atomic(struct kvm
*kvm
, gpa_t gpa
, void *data
,
1721 gfn_t gfn
= gpa
>> PAGE_SHIFT
;
1722 struct kvm_memory_slot
*slot
= gfn_to_memslot(kvm
, gfn
);
1723 int offset
= offset_in_page(gpa
);
1725 return __kvm_read_guest_atomic(slot
, gfn
, data
, offset
, len
);
1727 EXPORT_SYMBOL_GPL(kvm_read_guest_atomic
);
1729 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
1730 void *data
, unsigned long len
)
1732 gfn_t gfn
= gpa
>> PAGE_SHIFT
;
1733 struct kvm_memory_slot
*slot
= kvm_vcpu_gfn_to_memslot(vcpu
, gfn
);
1734 int offset
= offset_in_page(gpa
);
1736 return __kvm_read_guest_atomic(slot
, gfn
, data
, offset
, len
);
1738 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic
);
1740 static int __kvm_write_guest_page(struct kvm_memory_slot
*memslot
, gfn_t gfn
,
1741 const void *data
, int offset
, int len
)
1746 addr
= gfn_to_hva_memslot(memslot
, gfn
);
1747 if (kvm_is_error_hva(addr
))
1749 r
= __copy_to_user((void __user
*)addr
+ offset
, data
, len
);
1752 mark_page_dirty_in_slot(memslot
, gfn
);
1756 int kvm_write_guest_page(struct kvm
*kvm
, gfn_t gfn
,
1757 const void *data
, int offset
, int len
)
1759 struct kvm_memory_slot
*slot
= gfn_to_memslot(kvm
, gfn
);
1761 return __kvm_write_guest_page(slot
, gfn
, data
, offset
, len
);
1763 EXPORT_SYMBOL_GPL(kvm_write_guest_page
);
1765 int kvm_vcpu_write_guest_page(struct kvm_vcpu
*vcpu
, gfn_t gfn
,
1766 const void *data
, int offset
, int len
)
1768 struct kvm_memory_slot
*slot
= kvm_vcpu_gfn_to_memslot(vcpu
, gfn
);
1770 return __kvm_write_guest_page(slot
, gfn
, data
, offset
, len
);
1772 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page
);
1774 int kvm_write_guest(struct kvm
*kvm
, gpa_t gpa
, const void *data
,
1777 gfn_t gfn
= gpa
>> PAGE_SHIFT
;
1779 int offset
= offset_in_page(gpa
);
1782 while ((seg
= next_segment(len
, offset
)) != 0) {
1783 ret
= kvm_write_guest_page(kvm
, gfn
, data
, offset
, seg
);
1793 EXPORT_SYMBOL_GPL(kvm_write_guest
);
1795 int kvm_vcpu_write_guest(struct kvm_vcpu
*vcpu
, gpa_t gpa
, const void *data
,
1798 gfn_t gfn
= gpa
>> PAGE_SHIFT
;
1800 int offset
= offset_in_page(gpa
);
1803 while ((seg
= next_segment(len
, offset
)) != 0) {
1804 ret
= kvm_vcpu_write_guest_page(vcpu
, gfn
, data
, offset
, seg
);
1814 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest
);
1816 int kvm_gfn_to_hva_cache_init(struct kvm
*kvm
, struct gfn_to_hva_cache
*ghc
,
1817 gpa_t gpa
, unsigned long len
)
1819 struct kvm_memslots
*slots
= kvm_memslots(kvm
);
1820 int offset
= offset_in_page(gpa
);
1821 gfn_t start_gfn
= gpa
>> PAGE_SHIFT
;
1822 gfn_t end_gfn
= (gpa
+ len
- 1) >> PAGE_SHIFT
;
1823 gfn_t nr_pages_needed
= end_gfn
- start_gfn
+ 1;
1824 gfn_t nr_pages_avail
;
1827 ghc
->generation
= slots
->generation
;
1829 ghc
->memslot
= gfn_to_memslot(kvm
, start_gfn
);
1830 ghc
->hva
= gfn_to_hva_many(ghc
->memslot
, start_gfn
, NULL
);
1831 if (!kvm_is_error_hva(ghc
->hva
) && nr_pages_needed
<= 1) {
1835 * If the requested region crosses two memslots, we still
1836 * verify that the entire region is valid here.
1838 while (start_gfn
<= end_gfn
) {
1839 ghc
->memslot
= gfn_to_memslot(kvm
, start_gfn
);
1840 ghc
->hva
= gfn_to_hva_many(ghc
->memslot
, start_gfn
,
1842 if (kvm_is_error_hva(ghc
->hva
))
1844 start_gfn
+= nr_pages_avail
;
1846 /* Use the slow path for cross page reads and writes. */
1847 ghc
->memslot
= NULL
;
1851 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init
);
1853 int kvm_write_guest_cached(struct kvm
*kvm
, struct gfn_to_hva_cache
*ghc
,
1854 void *data
, unsigned long len
)
1856 struct kvm_memslots
*slots
= kvm_memslots(kvm
);
1859 BUG_ON(len
> ghc
->len
);
1861 if (slots
->generation
!= ghc
->generation
)
1862 kvm_gfn_to_hva_cache_init(kvm
, ghc
, ghc
->gpa
, ghc
->len
);
1864 if (unlikely(!ghc
->memslot
))
1865 return kvm_write_guest(kvm
, ghc
->gpa
, data
, len
);
1867 if (kvm_is_error_hva(ghc
->hva
))
1870 r
= __copy_to_user((void __user
*)ghc
->hva
, data
, len
);
1873 mark_page_dirty_in_slot(ghc
->memslot
, ghc
->gpa
>> PAGE_SHIFT
);
1877 EXPORT_SYMBOL_GPL(kvm_write_guest_cached
);
1879 int kvm_read_guest_cached(struct kvm
*kvm
, struct gfn_to_hva_cache
*ghc
,
1880 void *data
, unsigned long len
)
1882 struct kvm_memslots
*slots
= kvm_memslots(kvm
);
1885 BUG_ON(len
> ghc
->len
);
1887 if (slots
->generation
!= ghc
->generation
)
1888 kvm_gfn_to_hva_cache_init(kvm
, ghc
, ghc
->gpa
, ghc
->len
);
1890 if (unlikely(!ghc
->memslot
))
1891 return kvm_read_guest(kvm
, ghc
->gpa
, data
, len
);
1893 if (kvm_is_error_hva(ghc
->hva
))
1896 r
= __copy_from_user(data
, (void __user
*)ghc
->hva
, len
);
1902 EXPORT_SYMBOL_GPL(kvm_read_guest_cached
);
1904 int kvm_clear_guest_page(struct kvm
*kvm
, gfn_t gfn
, int offset
, int len
)
1906 const void *zero_page
= (const void *) __va(page_to_phys(ZERO_PAGE(0)));
1908 return kvm_write_guest_page(kvm
, gfn
, zero_page
, offset
, len
);
1910 EXPORT_SYMBOL_GPL(kvm_clear_guest_page
);
1912 int kvm_clear_guest(struct kvm
*kvm
, gpa_t gpa
, unsigned long len
)
1914 gfn_t gfn
= gpa
>> PAGE_SHIFT
;
1916 int offset
= offset_in_page(gpa
);
1919 while ((seg
= next_segment(len
, offset
)) != 0) {
1920 ret
= kvm_clear_guest_page(kvm
, gfn
, offset
, seg
);
1929 EXPORT_SYMBOL_GPL(kvm_clear_guest
);
1931 static void mark_page_dirty_in_slot(struct kvm_memory_slot
*memslot
,
1934 if (memslot
&& memslot
->dirty_bitmap
) {
1935 unsigned long rel_gfn
= gfn
- memslot
->base_gfn
;
1937 set_bit_le(rel_gfn
, memslot
->dirty_bitmap
);
1941 void mark_page_dirty(struct kvm
*kvm
, gfn_t gfn
)
1943 struct kvm_memory_slot
*memslot
;
1945 memslot
= gfn_to_memslot(kvm
, gfn
);
1946 mark_page_dirty_in_slot(memslot
, gfn
);
1948 EXPORT_SYMBOL_GPL(mark_page_dirty
);
1950 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu
*vcpu
, gfn_t gfn
)
1952 struct kvm_memory_slot
*memslot
;
1954 memslot
= kvm_vcpu_gfn_to_memslot(vcpu
, gfn
);
1955 mark_page_dirty_in_slot(memslot
, gfn
);
1957 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty
);
1959 static void grow_halt_poll_ns(struct kvm_vcpu
*vcpu
)
1963 old
= val
= vcpu
->halt_poll_ns
;
1965 if (val
== 0 && halt_poll_ns_grow
)
1968 val
*= halt_poll_ns_grow
;
1970 if (val
> halt_poll_ns
)
1973 vcpu
->halt_poll_ns
= val
;
1974 trace_kvm_halt_poll_ns_grow(vcpu
->vcpu_id
, val
, old
);
1977 static void shrink_halt_poll_ns(struct kvm_vcpu
*vcpu
)
1981 old
= val
= vcpu
->halt_poll_ns
;
1982 if (halt_poll_ns_shrink
== 0)
1985 val
/= halt_poll_ns_shrink
;
1987 vcpu
->halt_poll_ns
= val
;
1988 trace_kvm_halt_poll_ns_shrink(vcpu
->vcpu_id
, val
, old
);
1991 static int kvm_vcpu_check_block(struct kvm_vcpu
*vcpu
)
1993 if (kvm_arch_vcpu_runnable(vcpu
)) {
1994 kvm_make_request(KVM_REQ_UNHALT
, vcpu
);
1997 if (kvm_cpu_has_pending_timer(vcpu
))
1999 if (signal_pending(current
))
2006 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
2008 void kvm_vcpu_block(struct kvm_vcpu
*vcpu
)
2012 bool waited
= false;
2015 start
= cur
= ktime_get();
2016 if (vcpu
->halt_poll_ns
) {
2017 ktime_t stop
= ktime_add_ns(ktime_get(), vcpu
->halt_poll_ns
);
2019 ++vcpu
->stat
.halt_attempted_poll
;
2022 * This sets KVM_REQ_UNHALT if an interrupt
2025 if (kvm_vcpu_check_block(vcpu
) < 0) {
2026 ++vcpu
->stat
.halt_successful_poll
;
2030 } while (single_task_running() && ktime_before(cur
, stop
));
2033 kvm_arch_vcpu_blocking(vcpu
);
2036 prepare_to_wait(&vcpu
->wq
, &wait
, TASK_INTERRUPTIBLE
);
2038 if (kvm_vcpu_check_block(vcpu
) < 0)
2045 finish_wait(&vcpu
->wq
, &wait
);
2048 kvm_arch_vcpu_unblocking(vcpu
);
2050 block_ns
= ktime_to_ns(cur
) - ktime_to_ns(start
);
2053 if (block_ns
<= vcpu
->halt_poll_ns
)
2055 /* we had a long block, shrink polling */
2056 else if (vcpu
->halt_poll_ns
&& block_ns
> halt_poll_ns
)
2057 shrink_halt_poll_ns(vcpu
);
2058 /* we had a short halt and our poll time is too small */
2059 else if (vcpu
->halt_poll_ns
< halt_poll_ns
&&
2060 block_ns
< halt_poll_ns
)
2061 grow_halt_poll_ns(vcpu
);
2063 vcpu
->halt_poll_ns
= 0;
2065 trace_kvm_vcpu_wakeup(block_ns
, waited
);
2067 EXPORT_SYMBOL_GPL(kvm_vcpu_block
);
2071 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
2073 void kvm_vcpu_kick(struct kvm_vcpu
*vcpu
)
2076 int cpu
= vcpu
->cpu
;
2077 wait_queue_head_t
*wqp
;
2079 wqp
= kvm_arch_vcpu_wq(vcpu
);
2080 if (waitqueue_active(wqp
)) {
2081 wake_up_interruptible(wqp
);
2082 ++vcpu
->stat
.halt_wakeup
;
2086 if (cpu
!= me
&& (unsigned)cpu
< nr_cpu_ids
&& cpu_online(cpu
))
2087 if (kvm_arch_vcpu_should_kick(vcpu
))
2088 smp_send_reschedule(cpu
);
2091 EXPORT_SYMBOL_GPL(kvm_vcpu_kick
);
2092 #endif /* !CONFIG_S390 */
2094 int kvm_vcpu_yield_to(struct kvm_vcpu
*target
)
2097 struct task_struct
*task
= NULL
;
2101 pid
= rcu_dereference(target
->pid
);
2103 task
= get_pid_task(pid
, PIDTYPE_PID
);
2107 ret
= yield_to(task
, 1);
2108 put_task_struct(task
);
2112 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to
);
2115 * Helper that checks whether a VCPU is eligible for directed yield.
2116 * Most eligible candidate to yield is decided by following heuristics:
2118 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently
2119 * (preempted lock holder), indicated by @in_spin_loop.
2120 * Set at the beiginning and cleared at the end of interception/PLE handler.
2122 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
2123 * chance last time (mostly it has become eligible now since we have probably
2124 * yielded to lockholder in last iteration. This is done by toggling
2125 * @dy_eligible each time a VCPU checked for eligibility.)
2127 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
2128 * to preempted lock-holder could result in wrong VCPU selection and CPU
2129 * burning. Giving priority for a potential lock-holder increases lock
2132 * Since algorithm is based on heuristics, accessing another VCPU data without
2133 * locking does not harm. It may result in trying to yield to same VCPU, fail
2134 * and continue with next VCPU and so on.
2136 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu
*vcpu
)
2138 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2141 eligible
= !vcpu
->spin_loop
.in_spin_loop
||
2142 vcpu
->spin_loop
.dy_eligible
;
2144 if (vcpu
->spin_loop
.in_spin_loop
)
2145 kvm_vcpu_set_dy_eligible(vcpu
, !vcpu
->spin_loop
.dy_eligible
);
2153 void kvm_vcpu_on_spin(struct kvm_vcpu
*me
)
2155 struct kvm
*kvm
= me
->kvm
;
2156 struct kvm_vcpu
*vcpu
;
2157 int last_boosted_vcpu
= me
->kvm
->last_boosted_vcpu
;
2163 kvm_vcpu_set_in_spin_loop(me
, true);
2165 * We boost the priority of a VCPU that is runnable but not
2166 * currently running, because it got preempted by something
2167 * else and called schedule in __vcpu_run. Hopefully that
2168 * VCPU is holding the lock that we need and will release it.
2169 * We approximate round-robin by starting at the last boosted VCPU.
2171 for (pass
= 0; pass
< 2 && !yielded
&& try; pass
++) {
2172 kvm_for_each_vcpu(i
, vcpu
, kvm
) {
2173 if (!pass
&& i
<= last_boosted_vcpu
) {
2174 i
= last_boosted_vcpu
;
2176 } else if (pass
&& i
> last_boosted_vcpu
)
2178 if (!ACCESS_ONCE(vcpu
->preempted
))
2182 if (waitqueue_active(&vcpu
->wq
) && !kvm_arch_vcpu_runnable(vcpu
))
2184 if (!kvm_vcpu_eligible_for_directed_yield(vcpu
))
2187 yielded
= kvm_vcpu_yield_to(vcpu
);
2189 kvm
->last_boosted_vcpu
= i
;
2191 } else if (yielded
< 0) {
2198 kvm_vcpu_set_in_spin_loop(me
, false);
2200 /* Ensure vcpu is not eligible during next spinloop */
2201 kvm_vcpu_set_dy_eligible(me
, false);
2203 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin
);
2205 static int kvm_vcpu_fault(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
2207 struct kvm_vcpu
*vcpu
= vma
->vm_file
->private_data
;
2210 if (vmf
->pgoff
== 0)
2211 page
= virt_to_page(vcpu
->run
);
2213 else if (vmf
->pgoff
== KVM_PIO_PAGE_OFFSET
)
2214 page
= virt_to_page(vcpu
->arch
.pio_data
);
2216 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2217 else if (vmf
->pgoff
== KVM_COALESCED_MMIO_PAGE_OFFSET
)
2218 page
= virt_to_page(vcpu
->kvm
->coalesced_mmio_ring
);
2221 return kvm_arch_vcpu_fault(vcpu
, vmf
);
2227 static const struct vm_operations_struct kvm_vcpu_vm_ops
= {
2228 .fault
= kvm_vcpu_fault
,
2231 static int kvm_vcpu_mmap(struct file
*file
, struct vm_area_struct
*vma
)
2233 vma
->vm_ops
= &kvm_vcpu_vm_ops
;
2237 static int kvm_vcpu_release(struct inode
*inode
, struct file
*filp
)
2239 struct kvm_vcpu
*vcpu
= filp
->private_data
;
2241 kvm_put_kvm(vcpu
->kvm
);
2245 static struct file_operations kvm_vcpu_fops
= {
2246 .release
= kvm_vcpu_release
,
2247 .unlocked_ioctl
= kvm_vcpu_ioctl
,
2248 #ifdef CONFIG_KVM_COMPAT
2249 .compat_ioctl
= kvm_vcpu_compat_ioctl
,
2251 .mmap
= kvm_vcpu_mmap
,
2252 .llseek
= noop_llseek
,
2256 * Allocates an inode for the vcpu.
2258 static int create_vcpu_fd(struct kvm_vcpu
*vcpu
)
2260 return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops
, vcpu
, O_RDWR
| O_CLOEXEC
);
2264 * Creates some virtual cpus. Good luck creating more than one.
2266 static int kvm_vm_ioctl_create_vcpu(struct kvm
*kvm
, u32 id
)
2269 struct kvm_vcpu
*vcpu
, *v
;
2271 if (id
>= KVM_MAX_VCPUS
)
2274 vcpu
= kvm_arch_vcpu_create(kvm
, id
);
2276 return PTR_ERR(vcpu
);
2278 preempt_notifier_init(&vcpu
->preempt_notifier
, &kvm_preempt_ops
);
2280 r
= kvm_arch_vcpu_setup(vcpu
);
2284 mutex_lock(&kvm
->lock
);
2285 if (!kvm_vcpu_compatible(vcpu
)) {
2287 goto unlock_vcpu_destroy
;
2289 if (atomic_read(&kvm
->online_vcpus
) == KVM_MAX_VCPUS
) {
2291 goto unlock_vcpu_destroy
;
2294 kvm_for_each_vcpu(r
, v
, kvm
)
2295 if (v
->vcpu_id
== id
) {
2297 goto unlock_vcpu_destroy
;
2300 BUG_ON(kvm
->vcpus
[atomic_read(&kvm
->online_vcpus
)]);
2302 /* Now it's all set up, let userspace reach it */
2304 r
= create_vcpu_fd(vcpu
);
2307 goto unlock_vcpu_destroy
;
2310 kvm
->vcpus
[atomic_read(&kvm
->online_vcpus
)] = vcpu
;
2313 * Pairs with smp_rmb() in kvm_get_vcpu. Write kvm->vcpus
2314 * before kvm->online_vcpu's incremented value.
2317 atomic_inc(&kvm
->online_vcpus
);
2319 mutex_unlock(&kvm
->lock
);
2320 kvm_arch_vcpu_postcreate(vcpu
);
2323 unlock_vcpu_destroy
:
2324 mutex_unlock(&kvm
->lock
);
2326 kvm_arch_vcpu_destroy(vcpu
);
2330 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu
*vcpu
, sigset_t
*sigset
)
2333 sigdelsetmask(sigset
, sigmask(SIGKILL
)|sigmask(SIGSTOP
));
2334 vcpu
->sigset_active
= 1;
2335 vcpu
->sigset
= *sigset
;
2337 vcpu
->sigset_active
= 0;
2341 static long kvm_vcpu_ioctl(struct file
*filp
,
2342 unsigned int ioctl
, unsigned long arg
)
2344 struct kvm_vcpu
*vcpu
= filp
->private_data
;
2345 void __user
*argp
= (void __user
*)arg
;
2347 struct kvm_fpu
*fpu
= NULL
;
2348 struct kvm_sregs
*kvm_sregs
= NULL
;
2350 if (vcpu
->kvm
->mm
!= current
->mm
)
2353 if (unlikely(_IOC_TYPE(ioctl
) != KVMIO
))
2356 #if defined(CONFIG_S390) || defined(CONFIG_PPC) || defined(CONFIG_MIPS)
2358 * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
2359 * so vcpu_load() would break it.
2361 if (ioctl
== KVM_S390_INTERRUPT
|| ioctl
== KVM_S390_IRQ
|| ioctl
== KVM_INTERRUPT
)
2362 return kvm_arch_vcpu_ioctl(filp
, ioctl
, arg
);
2366 r
= vcpu_load(vcpu
);
2374 if (unlikely(vcpu
->pid
!= current
->pids
[PIDTYPE_PID
].pid
)) {
2375 /* The thread running this VCPU changed. */
2376 struct pid
*oldpid
= vcpu
->pid
;
2377 struct pid
*newpid
= get_task_pid(current
, PIDTYPE_PID
);
2379 rcu_assign_pointer(vcpu
->pid
, newpid
);
2384 r
= kvm_arch_vcpu_ioctl_run(vcpu
, vcpu
->run
);
2385 trace_kvm_userspace_exit(vcpu
->run
->exit_reason
, r
);
2387 case KVM_GET_REGS
: {
2388 struct kvm_regs
*kvm_regs
;
2391 kvm_regs
= kzalloc(sizeof(struct kvm_regs
), GFP_KERNEL
);
2394 r
= kvm_arch_vcpu_ioctl_get_regs(vcpu
, kvm_regs
);
2398 if (copy_to_user(argp
, kvm_regs
, sizeof(struct kvm_regs
)))
2405 case KVM_SET_REGS
: {
2406 struct kvm_regs
*kvm_regs
;
2409 kvm_regs
= memdup_user(argp
, sizeof(*kvm_regs
));
2410 if (IS_ERR(kvm_regs
)) {
2411 r
= PTR_ERR(kvm_regs
);
2414 r
= kvm_arch_vcpu_ioctl_set_regs(vcpu
, kvm_regs
);
2418 case KVM_GET_SREGS
: {
2419 kvm_sregs
= kzalloc(sizeof(struct kvm_sregs
), GFP_KERNEL
);
2423 r
= kvm_arch_vcpu_ioctl_get_sregs(vcpu
, kvm_sregs
);
2427 if (copy_to_user(argp
, kvm_sregs
, sizeof(struct kvm_sregs
)))
2432 case KVM_SET_SREGS
: {
2433 kvm_sregs
= memdup_user(argp
, sizeof(*kvm_sregs
));
2434 if (IS_ERR(kvm_sregs
)) {
2435 r
= PTR_ERR(kvm_sregs
);
2439 r
= kvm_arch_vcpu_ioctl_set_sregs(vcpu
, kvm_sregs
);
2442 case KVM_GET_MP_STATE
: {
2443 struct kvm_mp_state mp_state
;
2445 r
= kvm_arch_vcpu_ioctl_get_mpstate(vcpu
, &mp_state
);
2449 if (copy_to_user(argp
, &mp_state
, sizeof(mp_state
)))
2454 case KVM_SET_MP_STATE
: {
2455 struct kvm_mp_state mp_state
;
2458 if (copy_from_user(&mp_state
, argp
, sizeof(mp_state
)))
2460 r
= kvm_arch_vcpu_ioctl_set_mpstate(vcpu
, &mp_state
);
2463 case KVM_TRANSLATE
: {
2464 struct kvm_translation tr
;
2467 if (copy_from_user(&tr
, argp
, sizeof(tr
)))
2469 r
= kvm_arch_vcpu_ioctl_translate(vcpu
, &tr
);
2473 if (copy_to_user(argp
, &tr
, sizeof(tr
)))
2478 case KVM_SET_GUEST_DEBUG
: {
2479 struct kvm_guest_debug dbg
;
2482 if (copy_from_user(&dbg
, argp
, sizeof(dbg
)))
2484 r
= kvm_arch_vcpu_ioctl_set_guest_debug(vcpu
, &dbg
);
2487 case KVM_SET_SIGNAL_MASK
: {
2488 struct kvm_signal_mask __user
*sigmask_arg
= argp
;
2489 struct kvm_signal_mask kvm_sigmask
;
2490 sigset_t sigset
, *p
;
2495 if (copy_from_user(&kvm_sigmask
, argp
,
2496 sizeof(kvm_sigmask
)))
2499 if (kvm_sigmask
.len
!= sizeof(sigset
))
2502 if (copy_from_user(&sigset
, sigmask_arg
->sigset
,
2507 r
= kvm_vcpu_ioctl_set_sigmask(vcpu
, p
);
2511 fpu
= kzalloc(sizeof(struct kvm_fpu
), GFP_KERNEL
);
2515 r
= kvm_arch_vcpu_ioctl_get_fpu(vcpu
, fpu
);
2519 if (copy_to_user(argp
, fpu
, sizeof(struct kvm_fpu
)))
2525 fpu
= memdup_user(argp
, sizeof(*fpu
));
2531 r
= kvm_arch_vcpu_ioctl_set_fpu(vcpu
, fpu
);
2535 r
= kvm_arch_vcpu_ioctl(filp
, ioctl
, arg
);
2544 #ifdef CONFIG_KVM_COMPAT
2545 static long kvm_vcpu_compat_ioctl(struct file
*filp
,
2546 unsigned int ioctl
, unsigned long arg
)
2548 struct kvm_vcpu
*vcpu
= filp
->private_data
;
2549 void __user
*argp
= compat_ptr(arg
);
2552 if (vcpu
->kvm
->mm
!= current
->mm
)
2556 case KVM_SET_SIGNAL_MASK
: {
2557 struct kvm_signal_mask __user
*sigmask_arg
= argp
;
2558 struct kvm_signal_mask kvm_sigmask
;
2559 compat_sigset_t csigset
;
2564 if (copy_from_user(&kvm_sigmask
, argp
,
2565 sizeof(kvm_sigmask
)))
2568 if (kvm_sigmask
.len
!= sizeof(csigset
))
2571 if (copy_from_user(&csigset
, sigmask_arg
->sigset
,
2574 sigset_from_compat(&sigset
, &csigset
);
2575 r
= kvm_vcpu_ioctl_set_sigmask(vcpu
, &sigset
);
2577 r
= kvm_vcpu_ioctl_set_sigmask(vcpu
, NULL
);
2581 r
= kvm_vcpu_ioctl(filp
, ioctl
, arg
);
2589 static int kvm_device_ioctl_attr(struct kvm_device
*dev
,
2590 int (*accessor
)(struct kvm_device
*dev
,
2591 struct kvm_device_attr
*attr
),
2594 struct kvm_device_attr attr
;
2599 if (copy_from_user(&attr
, (void __user
*)arg
, sizeof(attr
)))
2602 return accessor(dev
, &attr
);
2605 static long kvm_device_ioctl(struct file
*filp
, unsigned int ioctl
,
2608 struct kvm_device
*dev
= filp
->private_data
;
2611 case KVM_SET_DEVICE_ATTR
:
2612 return kvm_device_ioctl_attr(dev
, dev
->ops
->set_attr
, arg
);
2613 case KVM_GET_DEVICE_ATTR
:
2614 return kvm_device_ioctl_attr(dev
, dev
->ops
->get_attr
, arg
);
2615 case KVM_HAS_DEVICE_ATTR
:
2616 return kvm_device_ioctl_attr(dev
, dev
->ops
->has_attr
, arg
);
2618 if (dev
->ops
->ioctl
)
2619 return dev
->ops
->ioctl(dev
, ioctl
, arg
);
2625 static int kvm_device_release(struct inode
*inode
, struct file
*filp
)
2627 struct kvm_device
*dev
= filp
->private_data
;
2628 struct kvm
*kvm
= dev
->kvm
;
2634 static const struct file_operations kvm_device_fops
= {
2635 .unlocked_ioctl
= kvm_device_ioctl
,
2636 #ifdef CONFIG_KVM_COMPAT
2637 .compat_ioctl
= kvm_device_ioctl
,
2639 .release
= kvm_device_release
,
2642 struct kvm_device
*kvm_device_from_filp(struct file
*filp
)
2644 if (filp
->f_op
!= &kvm_device_fops
)
2647 return filp
->private_data
;
2650 static struct kvm_device_ops
*kvm_device_ops_table
[KVM_DEV_TYPE_MAX
] = {
2651 #ifdef CONFIG_KVM_MPIC
2652 [KVM_DEV_TYPE_FSL_MPIC_20
] = &kvm_mpic_ops
,
2653 [KVM_DEV_TYPE_FSL_MPIC_42
] = &kvm_mpic_ops
,
2656 #ifdef CONFIG_KVM_XICS
2657 [KVM_DEV_TYPE_XICS
] = &kvm_xics_ops
,
2661 int kvm_register_device_ops(struct kvm_device_ops
*ops
, u32 type
)
2663 if (type
>= ARRAY_SIZE(kvm_device_ops_table
))
2666 if (kvm_device_ops_table
[type
] != NULL
)
2669 kvm_device_ops_table
[type
] = ops
;
2673 void kvm_unregister_device_ops(u32 type
)
2675 if (kvm_device_ops_table
[type
] != NULL
)
2676 kvm_device_ops_table
[type
] = NULL
;
2679 static int kvm_ioctl_create_device(struct kvm
*kvm
,
2680 struct kvm_create_device
*cd
)
2682 struct kvm_device_ops
*ops
= NULL
;
2683 struct kvm_device
*dev
;
2684 bool test
= cd
->flags
& KVM_CREATE_DEVICE_TEST
;
2687 if (cd
->type
>= ARRAY_SIZE(kvm_device_ops_table
))
2690 ops
= kvm_device_ops_table
[cd
->type
];
2697 dev
= kzalloc(sizeof(*dev
), GFP_KERNEL
);
2704 ret
= ops
->create(dev
, cd
->type
);
2710 ret
= anon_inode_getfd(ops
->name
, &kvm_device_fops
, dev
, O_RDWR
| O_CLOEXEC
);
2716 list_add(&dev
->vm_node
, &kvm
->devices
);
2722 static long kvm_vm_ioctl_check_extension_generic(struct kvm
*kvm
, long arg
)
2725 case KVM_CAP_USER_MEMORY
:
2726 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS
:
2727 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS
:
2728 case KVM_CAP_INTERNAL_ERROR_DATA
:
2729 #ifdef CONFIG_HAVE_KVM_MSI
2730 case KVM_CAP_SIGNAL_MSI
:
2732 #ifdef CONFIG_HAVE_KVM_IRQFD
2734 case KVM_CAP_IRQFD_RESAMPLE
:
2736 case KVM_CAP_IOEVENTFD_ANY_LENGTH
:
2737 case KVM_CAP_CHECK_EXTENSION_VM
:
2739 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2740 case KVM_CAP_IRQ_ROUTING
:
2741 return KVM_MAX_IRQ_ROUTES
;
2743 #if KVM_ADDRESS_SPACE_NUM > 1
2744 case KVM_CAP_MULTI_ADDRESS_SPACE
:
2745 return KVM_ADDRESS_SPACE_NUM
;
2750 return kvm_vm_ioctl_check_extension(kvm
, arg
);
2753 static long kvm_vm_ioctl(struct file
*filp
,
2754 unsigned int ioctl
, unsigned long arg
)
2756 struct kvm
*kvm
= filp
->private_data
;
2757 void __user
*argp
= (void __user
*)arg
;
2760 if (kvm
->mm
!= current
->mm
)
2763 case KVM_CREATE_VCPU
:
2764 r
= kvm_vm_ioctl_create_vcpu(kvm
, arg
);
2766 case KVM_SET_USER_MEMORY_REGION
: {
2767 struct kvm_userspace_memory_region kvm_userspace_mem
;
2770 if (copy_from_user(&kvm_userspace_mem
, argp
,
2771 sizeof(kvm_userspace_mem
)))
2774 r
= kvm_vm_ioctl_set_memory_region(kvm
, &kvm_userspace_mem
);
2777 case KVM_GET_DIRTY_LOG
: {
2778 struct kvm_dirty_log log
;
2781 if (copy_from_user(&log
, argp
, sizeof(log
)))
2783 r
= kvm_vm_ioctl_get_dirty_log(kvm
, &log
);
2786 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2787 case KVM_REGISTER_COALESCED_MMIO
: {
2788 struct kvm_coalesced_mmio_zone zone
;
2791 if (copy_from_user(&zone
, argp
, sizeof(zone
)))
2793 r
= kvm_vm_ioctl_register_coalesced_mmio(kvm
, &zone
);
2796 case KVM_UNREGISTER_COALESCED_MMIO
: {
2797 struct kvm_coalesced_mmio_zone zone
;
2800 if (copy_from_user(&zone
, argp
, sizeof(zone
)))
2802 r
= kvm_vm_ioctl_unregister_coalesced_mmio(kvm
, &zone
);
2807 struct kvm_irqfd data
;
2810 if (copy_from_user(&data
, argp
, sizeof(data
)))
2812 r
= kvm_irqfd(kvm
, &data
);
2815 case KVM_IOEVENTFD
: {
2816 struct kvm_ioeventfd data
;
2819 if (copy_from_user(&data
, argp
, sizeof(data
)))
2821 r
= kvm_ioeventfd(kvm
, &data
);
2824 #ifdef CONFIG_HAVE_KVM_MSI
2825 case KVM_SIGNAL_MSI
: {
2829 if (copy_from_user(&msi
, argp
, sizeof(msi
)))
2831 r
= kvm_send_userspace_msi(kvm
, &msi
);
2835 #ifdef __KVM_HAVE_IRQ_LINE
2836 case KVM_IRQ_LINE_STATUS
:
2837 case KVM_IRQ_LINE
: {
2838 struct kvm_irq_level irq_event
;
2841 if (copy_from_user(&irq_event
, argp
, sizeof(irq_event
)))
2844 r
= kvm_vm_ioctl_irq_line(kvm
, &irq_event
,
2845 ioctl
== KVM_IRQ_LINE_STATUS
);
2850 if (ioctl
== KVM_IRQ_LINE_STATUS
) {
2851 if (copy_to_user(argp
, &irq_event
, sizeof(irq_event
)))
2859 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2860 case KVM_SET_GSI_ROUTING
: {
2861 struct kvm_irq_routing routing
;
2862 struct kvm_irq_routing __user
*urouting
;
2863 struct kvm_irq_routing_entry
*entries
;
2866 if (copy_from_user(&routing
, argp
, sizeof(routing
)))
2869 if (routing
.nr
> KVM_MAX_IRQ_ROUTES
)
2874 entries
= vmalloc(routing
.nr
* sizeof(*entries
));
2879 if (copy_from_user(entries
, urouting
->entries
,
2880 routing
.nr
* sizeof(*entries
)))
2881 goto out_free_irq_routing
;
2882 r
= kvm_set_irq_routing(kvm
, entries
, routing
.nr
,
2884 out_free_irq_routing
:
2888 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
2889 case KVM_CREATE_DEVICE
: {
2890 struct kvm_create_device cd
;
2893 if (copy_from_user(&cd
, argp
, sizeof(cd
)))
2896 r
= kvm_ioctl_create_device(kvm
, &cd
);
2901 if (copy_to_user(argp
, &cd
, sizeof(cd
)))
2907 case KVM_CHECK_EXTENSION
:
2908 r
= kvm_vm_ioctl_check_extension_generic(kvm
, arg
);
2911 r
= kvm_arch_vm_ioctl(filp
, ioctl
, arg
);
2917 #ifdef CONFIG_KVM_COMPAT
2918 struct compat_kvm_dirty_log
{
2922 compat_uptr_t dirty_bitmap
; /* one bit per page */
2927 static long kvm_vm_compat_ioctl(struct file
*filp
,
2928 unsigned int ioctl
, unsigned long arg
)
2930 struct kvm
*kvm
= filp
->private_data
;
2933 if (kvm
->mm
!= current
->mm
)
2936 case KVM_GET_DIRTY_LOG
: {
2937 struct compat_kvm_dirty_log compat_log
;
2938 struct kvm_dirty_log log
;
2941 if (copy_from_user(&compat_log
, (void __user
*)arg
,
2942 sizeof(compat_log
)))
2944 log
.slot
= compat_log
.slot
;
2945 log
.padding1
= compat_log
.padding1
;
2946 log
.padding2
= compat_log
.padding2
;
2947 log
.dirty_bitmap
= compat_ptr(compat_log
.dirty_bitmap
);
2949 r
= kvm_vm_ioctl_get_dirty_log(kvm
, &log
);
2953 r
= kvm_vm_ioctl(filp
, ioctl
, arg
);
2961 static struct file_operations kvm_vm_fops
= {
2962 .release
= kvm_vm_release
,
2963 .unlocked_ioctl
= kvm_vm_ioctl
,
2964 #ifdef CONFIG_KVM_COMPAT
2965 .compat_ioctl
= kvm_vm_compat_ioctl
,
2967 .llseek
= noop_llseek
,
2970 static int kvm_dev_ioctl_create_vm(unsigned long type
)
2975 kvm
= kvm_create_vm(type
);
2977 return PTR_ERR(kvm
);
2978 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2979 r
= kvm_coalesced_mmio_init(kvm
);
2985 r
= anon_inode_getfd("kvm-vm", &kvm_vm_fops
, kvm
, O_RDWR
| O_CLOEXEC
);
2992 static long kvm_dev_ioctl(struct file
*filp
,
2993 unsigned int ioctl
, unsigned long arg
)
2998 case KVM_GET_API_VERSION
:
3001 r
= KVM_API_VERSION
;
3004 r
= kvm_dev_ioctl_create_vm(arg
);
3006 case KVM_CHECK_EXTENSION
:
3007 r
= kvm_vm_ioctl_check_extension_generic(NULL
, arg
);
3009 case KVM_GET_VCPU_MMAP_SIZE
:
3012 r
= PAGE_SIZE
; /* struct kvm_run */
3014 r
+= PAGE_SIZE
; /* pio data page */
3016 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
3017 r
+= PAGE_SIZE
; /* coalesced mmio ring page */
3020 case KVM_TRACE_ENABLE
:
3021 case KVM_TRACE_PAUSE
:
3022 case KVM_TRACE_DISABLE
:
3026 return kvm_arch_dev_ioctl(filp
, ioctl
, arg
);
3032 static struct file_operations kvm_chardev_ops
= {
3033 .unlocked_ioctl
= kvm_dev_ioctl
,
3034 .compat_ioctl
= kvm_dev_ioctl
,
3035 .llseek
= noop_llseek
,
3038 static struct miscdevice kvm_dev
= {
3044 static void hardware_enable_nolock(void *junk
)
3046 int cpu
= raw_smp_processor_id();
3049 if (cpumask_test_cpu(cpu
, cpus_hardware_enabled
))
3052 cpumask_set_cpu(cpu
, cpus_hardware_enabled
);
3054 r
= kvm_arch_hardware_enable();
3057 cpumask_clear_cpu(cpu
, cpus_hardware_enabled
);
3058 atomic_inc(&hardware_enable_failed
);
3059 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu
);
3063 static void hardware_enable(void)
3065 raw_spin_lock(&kvm_count_lock
);
3066 if (kvm_usage_count
)
3067 hardware_enable_nolock(NULL
);
3068 raw_spin_unlock(&kvm_count_lock
);
3071 static void hardware_disable_nolock(void *junk
)
3073 int cpu
= raw_smp_processor_id();
3075 if (!cpumask_test_cpu(cpu
, cpus_hardware_enabled
))
3077 cpumask_clear_cpu(cpu
, cpus_hardware_enabled
);
3078 kvm_arch_hardware_disable();
3081 static void hardware_disable(void)
3083 raw_spin_lock(&kvm_count_lock
);
3084 if (kvm_usage_count
)
3085 hardware_disable_nolock(NULL
);
3086 raw_spin_unlock(&kvm_count_lock
);
3089 static void hardware_disable_all_nolock(void)
3091 BUG_ON(!kvm_usage_count
);
3094 if (!kvm_usage_count
)
3095 on_each_cpu(hardware_disable_nolock
, NULL
, 1);
3098 static void hardware_disable_all(void)
3100 raw_spin_lock(&kvm_count_lock
);
3101 hardware_disable_all_nolock();
3102 raw_spin_unlock(&kvm_count_lock
);
3105 static int hardware_enable_all(void)
3109 raw_spin_lock(&kvm_count_lock
);
3112 if (kvm_usage_count
== 1) {
3113 atomic_set(&hardware_enable_failed
, 0);
3114 on_each_cpu(hardware_enable_nolock
, NULL
, 1);
3116 if (atomic_read(&hardware_enable_failed
)) {
3117 hardware_disable_all_nolock();
3122 raw_spin_unlock(&kvm_count_lock
);
3127 static int kvm_cpu_hotplug(struct notifier_block
*notifier
, unsigned long val
,
3130 val
&= ~CPU_TASKS_FROZEN
;
3142 static int kvm_reboot(struct notifier_block
*notifier
, unsigned long val
,
3146 * Some (well, at least mine) BIOSes hang on reboot if
3149 * And Intel TXT required VMX off for all cpu when system shutdown.
3151 pr_info("kvm: exiting hardware virtualization\n");
3152 kvm_rebooting
= true;
3153 on_each_cpu(hardware_disable_nolock
, NULL
, 1);
3157 static struct notifier_block kvm_reboot_notifier
= {
3158 .notifier_call
= kvm_reboot
,
3162 static void kvm_io_bus_destroy(struct kvm_io_bus
*bus
)
3166 for (i
= 0; i
< bus
->dev_count
; i
++) {
3167 struct kvm_io_device
*pos
= bus
->range
[i
].dev
;
3169 kvm_iodevice_destructor(pos
);
3174 static inline int kvm_io_bus_cmp(const struct kvm_io_range
*r1
,
3175 const struct kvm_io_range
*r2
)
3177 gpa_t addr1
= r1
->addr
;
3178 gpa_t addr2
= r2
->addr
;
3183 /* If r2->len == 0, match the exact address. If r2->len != 0,
3184 * accept any overlapping write. Any order is acceptable for
3185 * overlapping ranges, because kvm_io_bus_get_first_dev ensures
3186 * we process all of them.
3199 static int kvm_io_bus_sort_cmp(const void *p1
, const void *p2
)
3201 return kvm_io_bus_cmp(p1
, p2
);
3204 static int kvm_io_bus_insert_dev(struct kvm_io_bus
*bus
, struct kvm_io_device
*dev
,
3205 gpa_t addr
, int len
)
3207 bus
->range
[bus
->dev_count
++] = (struct kvm_io_range
) {
3213 sort(bus
->range
, bus
->dev_count
, sizeof(struct kvm_io_range
),
3214 kvm_io_bus_sort_cmp
, NULL
);
3219 static int kvm_io_bus_get_first_dev(struct kvm_io_bus
*bus
,
3220 gpa_t addr
, int len
)
3222 struct kvm_io_range
*range
, key
;
3225 key
= (struct kvm_io_range
) {
3230 range
= bsearch(&key
, bus
->range
, bus
->dev_count
,
3231 sizeof(struct kvm_io_range
), kvm_io_bus_sort_cmp
);
3235 off
= range
- bus
->range
;
3237 while (off
> 0 && kvm_io_bus_cmp(&key
, &bus
->range
[off
-1]) == 0)
3243 static int __kvm_io_bus_write(struct kvm_vcpu
*vcpu
, struct kvm_io_bus
*bus
,
3244 struct kvm_io_range
*range
, const void *val
)
3248 idx
= kvm_io_bus_get_first_dev(bus
, range
->addr
, range
->len
);
3252 while (idx
< bus
->dev_count
&&
3253 kvm_io_bus_cmp(range
, &bus
->range
[idx
]) == 0) {
3254 if (!kvm_iodevice_write(vcpu
, bus
->range
[idx
].dev
, range
->addr
,
3263 /* kvm_io_bus_write - called under kvm->slots_lock */
3264 int kvm_io_bus_write(struct kvm_vcpu
*vcpu
, enum kvm_bus bus_idx
, gpa_t addr
,
3265 int len
, const void *val
)
3267 struct kvm_io_bus
*bus
;
3268 struct kvm_io_range range
;
3271 range
= (struct kvm_io_range
) {
3276 bus
= srcu_dereference(vcpu
->kvm
->buses
[bus_idx
], &vcpu
->kvm
->srcu
);
3279 r
= __kvm_io_bus_write(vcpu
, bus
, &range
, val
);
3280 return r
< 0 ? r
: 0;
3283 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
3284 int kvm_io_bus_write_cookie(struct kvm_vcpu
*vcpu
, enum kvm_bus bus_idx
,
3285 gpa_t addr
, int len
, const void *val
, long cookie
)
3287 struct kvm_io_bus
*bus
;
3288 struct kvm_io_range range
;
3290 range
= (struct kvm_io_range
) {
3295 bus
= srcu_dereference(vcpu
->kvm
->buses
[bus_idx
], &vcpu
->kvm
->srcu
);
3299 /* First try the device referenced by cookie. */
3300 if ((cookie
>= 0) && (cookie
< bus
->dev_count
) &&
3301 (kvm_io_bus_cmp(&range
, &bus
->range
[cookie
]) == 0))
3302 if (!kvm_iodevice_write(vcpu
, bus
->range
[cookie
].dev
, addr
, len
,
3307 * cookie contained garbage; fall back to search and return the
3308 * correct cookie value.
3310 return __kvm_io_bus_write(vcpu
, bus
, &range
, val
);
3313 static int __kvm_io_bus_read(struct kvm_vcpu
*vcpu
, struct kvm_io_bus
*bus
,
3314 struct kvm_io_range
*range
, void *val
)
3318 idx
= kvm_io_bus_get_first_dev(bus
, range
->addr
, range
->len
);
3322 while (idx
< bus
->dev_count
&&
3323 kvm_io_bus_cmp(range
, &bus
->range
[idx
]) == 0) {
3324 if (!kvm_iodevice_read(vcpu
, bus
->range
[idx
].dev
, range
->addr
,
3332 EXPORT_SYMBOL_GPL(kvm_io_bus_write
);
3334 /* kvm_io_bus_read - called under kvm->slots_lock */
3335 int kvm_io_bus_read(struct kvm_vcpu
*vcpu
, enum kvm_bus bus_idx
, gpa_t addr
,
3338 struct kvm_io_bus
*bus
;
3339 struct kvm_io_range range
;
3342 range
= (struct kvm_io_range
) {
3347 bus
= srcu_dereference(vcpu
->kvm
->buses
[bus_idx
], &vcpu
->kvm
->srcu
);
3350 r
= __kvm_io_bus_read(vcpu
, bus
, &range
, val
);
3351 return r
< 0 ? r
: 0;
3355 /* Caller must hold slots_lock. */
3356 int kvm_io_bus_register_dev(struct kvm
*kvm
, enum kvm_bus bus_idx
, gpa_t addr
,
3357 int len
, struct kvm_io_device
*dev
)
3359 struct kvm_io_bus
*new_bus
, *bus
;
3361 bus
= kvm
->buses
[bus_idx
];
3365 /* exclude ioeventfd which is limited by maximum fd */
3366 if (bus
->dev_count
- bus
->ioeventfd_count
> NR_IOBUS_DEVS
- 1)
3369 new_bus
= kmalloc(sizeof(*bus
) + ((bus
->dev_count
+ 1) *
3370 sizeof(struct kvm_io_range
)), GFP_KERNEL
);
3373 memcpy(new_bus
, bus
, sizeof(*bus
) + (bus
->dev_count
*
3374 sizeof(struct kvm_io_range
)));
3375 kvm_io_bus_insert_dev(new_bus
, dev
, addr
, len
);
3376 rcu_assign_pointer(kvm
->buses
[bus_idx
], new_bus
);
3377 synchronize_srcu_expedited(&kvm
->srcu
);
3383 /* Caller must hold slots_lock. */
3384 void kvm_io_bus_unregister_dev(struct kvm
*kvm
, enum kvm_bus bus_idx
,
3385 struct kvm_io_device
*dev
)
3388 struct kvm_io_bus
*new_bus
, *bus
;
3390 bus
= kvm
->buses
[bus_idx
];
3394 for (i
= 0; i
< bus
->dev_count
; i
++)
3395 if (bus
->range
[i
].dev
== dev
) {
3399 if (i
== bus
->dev_count
)
3402 new_bus
= kmalloc(sizeof(*bus
) + ((bus
->dev_count
- 1) *
3403 sizeof(struct kvm_io_range
)), GFP_KERNEL
);
3405 pr_err("kvm: failed to shrink bus, removing it completely\n");
3409 memcpy(new_bus
, bus
, sizeof(*bus
) + i
* sizeof(struct kvm_io_range
));
3410 new_bus
->dev_count
--;
3411 memcpy(new_bus
->range
+ i
, bus
->range
+ i
+ 1,
3412 (new_bus
->dev_count
- i
) * sizeof(struct kvm_io_range
));
3415 rcu_assign_pointer(kvm
->buses
[bus_idx
], new_bus
);
3416 synchronize_srcu_expedited(&kvm
->srcu
);
3421 static struct notifier_block kvm_cpu_notifier
= {
3422 .notifier_call
= kvm_cpu_hotplug
,
3425 static int vm_stat_get(void *_offset
, u64
*val
)
3427 unsigned offset
= (long)_offset
;
3431 spin_lock(&kvm_lock
);
3432 list_for_each_entry(kvm
, &vm_list
, vm_list
)
3433 *val
+= *(u32
*)((void *)kvm
+ offset
);
3434 spin_unlock(&kvm_lock
);
3438 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops
, vm_stat_get
, NULL
, "%llu\n");
3440 static int vcpu_stat_get(void *_offset
, u64
*val
)
3442 unsigned offset
= (long)_offset
;
3444 struct kvm_vcpu
*vcpu
;
3448 spin_lock(&kvm_lock
);
3449 list_for_each_entry(kvm
, &vm_list
, vm_list
)
3450 kvm_for_each_vcpu(i
, vcpu
, kvm
)
3451 *val
+= *(u32
*)((void *)vcpu
+ offset
);
3453 spin_unlock(&kvm_lock
);
3457 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops
, vcpu_stat_get
, NULL
, "%llu\n");
3459 static const struct file_operations
*stat_fops
[] = {
3460 [KVM_STAT_VCPU
] = &vcpu_stat_fops
,
3461 [KVM_STAT_VM
] = &vm_stat_fops
,
3464 static int kvm_init_debug(void)
3467 struct kvm_stats_debugfs_item
*p
;
3469 kvm_debugfs_dir
= debugfs_create_dir("kvm", NULL
);
3470 if (kvm_debugfs_dir
== NULL
)
3473 for (p
= debugfs_entries
; p
->name
; ++p
) {
3474 p
->dentry
= debugfs_create_file(p
->name
, 0444, kvm_debugfs_dir
,
3475 (void *)(long)p
->offset
,
3476 stat_fops
[p
->kind
]);
3477 if (p
->dentry
== NULL
)
3484 debugfs_remove_recursive(kvm_debugfs_dir
);
3489 static void kvm_exit_debug(void)
3491 struct kvm_stats_debugfs_item
*p
;
3493 for (p
= debugfs_entries
; p
->name
; ++p
)
3494 debugfs_remove(p
->dentry
);
3495 debugfs_remove(kvm_debugfs_dir
);
3498 static int kvm_suspend(void)
3500 if (kvm_usage_count
)
3501 hardware_disable_nolock(NULL
);
3505 static void kvm_resume(void)
3507 if (kvm_usage_count
) {
3508 WARN_ON(raw_spin_is_locked(&kvm_count_lock
));
3509 hardware_enable_nolock(NULL
);
3513 static struct syscore_ops kvm_syscore_ops
= {
3514 .suspend
= kvm_suspend
,
3515 .resume
= kvm_resume
,
3519 struct kvm_vcpu
*preempt_notifier_to_vcpu(struct preempt_notifier
*pn
)
3521 return container_of(pn
, struct kvm_vcpu
, preempt_notifier
);
3524 static void kvm_sched_in(struct preempt_notifier
*pn
, int cpu
)
3526 struct kvm_vcpu
*vcpu
= preempt_notifier_to_vcpu(pn
);
3528 if (vcpu
->preempted
)
3529 vcpu
->preempted
= false;
3531 kvm_arch_sched_in(vcpu
, cpu
);
3533 kvm_arch_vcpu_load(vcpu
, cpu
);
3536 static void kvm_sched_out(struct preempt_notifier
*pn
,
3537 struct task_struct
*next
)
3539 struct kvm_vcpu
*vcpu
= preempt_notifier_to_vcpu(pn
);
3541 if (current
->state
== TASK_RUNNING
)
3542 vcpu
->preempted
= true;
3543 kvm_arch_vcpu_put(vcpu
);
3546 int kvm_init(void *opaque
, unsigned vcpu_size
, unsigned vcpu_align
,
3547 struct module
*module
)
3552 r
= kvm_arch_init(opaque
);
3557 * kvm_arch_init makes sure there's at most one caller
3558 * for architectures that support multiple implementations,
3559 * like intel and amd on x86.
3560 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
3561 * conflicts in case kvm is already setup for another implementation.
3563 r
= kvm_irqfd_init();
3567 if (!zalloc_cpumask_var(&cpus_hardware_enabled
, GFP_KERNEL
)) {
3572 r
= kvm_arch_hardware_setup();
3576 for_each_online_cpu(cpu
) {
3577 smp_call_function_single(cpu
,
3578 kvm_arch_check_processor_compat
,
3584 r
= register_cpu_notifier(&kvm_cpu_notifier
);
3587 register_reboot_notifier(&kvm_reboot_notifier
);
3589 /* A kmem cache lets us meet the alignment requirements of fx_save. */
3591 vcpu_align
= __alignof__(struct kvm_vcpu
);
3592 kvm_vcpu_cache
= kmem_cache_create("kvm_vcpu", vcpu_size
, vcpu_align
,
3594 if (!kvm_vcpu_cache
) {
3599 r
= kvm_async_pf_init();
3603 kvm_chardev_ops
.owner
= module
;
3604 kvm_vm_fops
.owner
= module
;
3605 kvm_vcpu_fops
.owner
= module
;
3607 r
= misc_register(&kvm_dev
);
3609 pr_err("kvm: misc device register failed\n");
3613 register_syscore_ops(&kvm_syscore_ops
);
3615 kvm_preempt_ops
.sched_in
= kvm_sched_in
;
3616 kvm_preempt_ops
.sched_out
= kvm_sched_out
;
3618 r
= kvm_init_debug();
3620 pr_err("kvm: create debugfs files failed\n");
3624 r
= kvm_vfio_ops_init();
3630 unregister_syscore_ops(&kvm_syscore_ops
);
3631 misc_deregister(&kvm_dev
);
3633 kvm_async_pf_deinit();
3635 kmem_cache_destroy(kvm_vcpu_cache
);
3637 unregister_reboot_notifier(&kvm_reboot_notifier
);
3638 unregister_cpu_notifier(&kvm_cpu_notifier
);
3641 kvm_arch_hardware_unsetup();
3643 free_cpumask_var(cpus_hardware_enabled
);
3651 EXPORT_SYMBOL_GPL(kvm_init
);
3656 misc_deregister(&kvm_dev
);
3657 kmem_cache_destroy(kvm_vcpu_cache
);
3658 kvm_async_pf_deinit();
3659 unregister_syscore_ops(&kvm_syscore_ops
);
3660 unregister_reboot_notifier(&kvm_reboot_notifier
);
3661 unregister_cpu_notifier(&kvm_cpu_notifier
);
3662 on_each_cpu(hardware_disable_nolock
, NULL
, 1);
3663 kvm_arch_hardware_unsetup();
3666 free_cpumask_var(cpus_hardware_enabled
);
3667 kvm_vfio_ops_exit();
3669 EXPORT_SYMBOL_GPL(kvm_exit
);