4 * Copyright (C) 1991, 1992 Linus Torvalds
8 * 'fork.c' contains the help-routines for the 'fork' system call
9 * (see also entry.S and others).
10 * Fork is rather simple, once you get the hang of it, but the memory
11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
14 #include <linux/slab.h>
15 #include <linux/sched/autogroup.h>
16 #include <linux/sched/mm.h>
17 #include <linux/sched/coredump.h>
18 #include <linux/sched/user.h>
19 #include <linux/sched/numa_balancing.h>
20 #include <linux/sched/stat.h>
21 #include <linux/sched/task.h>
22 #include <linux/sched/task_stack.h>
23 #include <linux/sched/cputime.h>
24 #include <linux/rtmutex.h>
25 #include <linux/init.h>
26 #include <linux/unistd.h>
27 #include <linux/module.h>
28 #include <linux/vmalloc.h>
29 #include <linux/completion.h>
30 #include <linux/personality.h>
31 #include <linux/mempolicy.h>
32 #include <linux/sem.h>
33 #include <linux/file.h>
34 #include <linux/fdtable.h>
35 #include <linux/iocontext.h>
36 #include <linux/key.h>
37 #include <linux/binfmts.h>
38 #include <linux/mman.h>
39 #include <linux/mmu_notifier.h>
40 #include <linux/hmm.h>
43 #include <linux/vmacache.h>
44 #include <linux/nsproxy.h>
45 #include <linux/capability.h>
46 #include <linux/cpu.h>
47 #include <linux/cgroup.h>
48 #include <linux/security.h>
49 #include <linux/hugetlb.h>
50 #include <linux/seccomp.h>
51 #include <linux/swap.h>
52 #include <linux/syscalls.h>
53 #include <linux/jiffies.h>
54 #include <linux/futex.h>
55 #include <linux/compat.h>
56 #include <linux/kthread.h>
57 #include <linux/task_io_accounting_ops.h>
58 #include <linux/rcupdate.h>
59 #include <linux/ptrace.h>
60 #include <linux/mount.h>
61 #include <linux/audit.h>
62 #include <linux/memcontrol.h>
63 #include <linux/ftrace.h>
64 #include <linux/proc_fs.h>
65 #include <linux/profile.h>
66 #include <linux/rmap.h>
67 #include <linux/ksm.h>
68 #include <linux/acct.h>
69 #include <linux/userfaultfd_k.h>
70 #include <linux/tsacct_kern.h>
71 #include <linux/cn_proc.h>
72 #include <linux/freezer.h>
73 #include <linux/delayacct.h>
74 #include <linux/taskstats_kern.h>
75 #include <linux/random.h>
76 #include <linux/tty.h>
77 #include <linux/blkdev.h>
78 #include <linux/fs_struct.h>
79 #include <linux/magic.h>
80 #include <linux/sched/mm.h>
81 #include <linux/perf_event.h>
82 #include <linux/posix-timers.h>
83 #include <linux/user-return-notifier.h>
84 #include <linux/oom.h>
85 #include <linux/khugepaged.h>
86 #include <linux/signalfd.h>
87 #include <linux/uprobes.h>
88 #include <linux/aio.h>
89 #include <linux/compiler.h>
90 #include <linux/sysctl.h>
91 #include <linux/kcov.h>
92 #include <linux/livepatch.h>
93 #include <linux/thread_info.h>
95 #include <asm/pgtable.h>
96 #include <asm/pgalloc.h>
97 #include <linux/uaccess.h>
98 #include <asm/mmu_context.h>
99 #include <asm/cacheflush.h>
100 #include <asm/tlbflush.h>
102 #include <trace/events/sched.h>
104 #define CREATE_TRACE_POINTS
105 #include <trace/events/task.h>
108 * Minimum number of threads to boot the kernel
110 #define MIN_THREADS 20
113 * Maximum number of threads
115 #define MAX_THREADS FUTEX_TID_MASK
118 * Protected counters by write_lock_irq(&tasklist_lock)
120 unsigned long total_forks
; /* Handle normal Linux uptimes. */
121 int nr_threads
; /* The idle threads do not count.. */
123 int max_threads
; /* tunable limit on nr_threads */
125 DEFINE_PER_CPU(unsigned long, process_counts
) = 0;
127 __cacheline_aligned
DEFINE_RWLOCK(tasklist_lock
); /* outer */
129 #ifdef CONFIG_PROVE_RCU
130 int lockdep_tasklist_lock_is_held(void)
132 return lockdep_is_held(&tasklist_lock
);
134 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held
);
135 #endif /* #ifdef CONFIG_PROVE_RCU */
137 int nr_processes(void)
142 for_each_possible_cpu(cpu
)
143 total
+= per_cpu(process_counts
, cpu
);
148 void __weak
arch_release_task_struct(struct task_struct
*tsk
)
152 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
153 static struct kmem_cache
*task_struct_cachep
;
155 static inline struct task_struct
*alloc_task_struct_node(int node
)
157 return kmem_cache_alloc_node(task_struct_cachep
, GFP_KERNEL
, node
);
160 static inline void free_task_struct(struct task_struct
*tsk
)
162 kmem_cache_free(task_struct_cachep
, tsk
);
166 void __weak
arch_release_thread_stack(unsigned long *stack
)
170 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
173 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
174 * kmemcache based allocator.
176 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
178 #ifdef CONFIG_VMAP_STACK
180 * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
181 * flush. Try to minimize the number of calls by caching stacks.
183 #define NR_CACHED_STACKS 2
184 static DEFINE_PER_CPU(struct vm_struct
*, cached_stacks
[NR_CACHED_STACKS
]);
186 static int free_vm_stack_cache(unsigned int cpu
)
188 struct vm_struct
**cached_vm_stacks
= per_cpu_ptr(cached_stacks
, cpu
);
191 for (i
= 0; i
< NR_CACHED_STACKS
; i
++) {
192 struct vm_struct
*vm_stack
= cached_vm_stacks
[i
];
197 vfree(vm_stack
->addr
);
198 cached_vm_stacks
[i
] = NULL
;
205 static unsigned long *alloc_thread_stack_node(struct task_struct
*tsk
, int node
)
207 #ifdef CONFIG_VMAP_STACK
211 for (i
= 0; i
< NR_CACHED_STACKS
; i
++) {
214 s
= this_cpu_xchg(cached_stacks
[i
], NULL
);
219 /* Clear stale pointers from reused stack. */
220 memset(s
->addr
, 0, THREAD_SIZE
);
222 tsk
->stack_vm_area
= s
;
226 stack
= __vmalloc_node_range(THREAD_SIZE
, THREAD_ALIGN
,
227 VMALLOC_START
, VMALLOC_END
,
230 0, node
, __builtin_return_address(0));
233 * We can't call find_vm_area() in interrupt context, and
234 * free_thread_stack() can be called in interrupt context,
235 * so cache the vm_struct.
238 tsk
->stack_vm_area
= find_vm_area(stack
);
241 struct page
*page
= alloc_pages_node(node
, THREADINFO_GFP
,
244 return page
? page_address(page
) : NULL
;
248 static inline void free_thread_stack(struct task_struct
*tsk
)
250 #ifdef CONFIG_VMAP_STACK
251 if (task_stack_vm_area(tsk
)) {
254 for (i
= 0; i
< NR_CACHED_STACKS
; i
++) {
255 if (this_cpu_cmpxchg(cached_stacks
[i
],
256 NULL
, tsk
->stack_vm_area
) != NULL
)
262 vfree_atomic(tsk
->stack
);
267 __free_pages(virt_to_page(tsk
->stack
), THREAD_SIZE_ORDER
);
270 static struct kmem_cache
*thread_stack_cache
;
272 static unsigned long *alloc_thread_stack_node(struct task_struct
*tsk
,
275 return kmem_cache_alloc_node(thread_stack_cache
, THREADINFO_GFP
, node
);
278 static void free_thread_stack(struct task_struct
*tsk
)
280 kmem_cache_free(thread_stack_cache
, tsk
->stack
);
283 void thread_stack_cache_init(void)
285 thread_stack_cache
= kmem_cache_create_usercopy("thread_stack",
286 THREAD_SIZE
, THREAD_SIZE
, 0, 0,
288 BUG_ON(thread_stack_cache
== NULL
);
293 /* SLAB cache for signal_struct structures (tsk->signal) */
294 static struct kmem_cache
*signal_cachep
;
296 /* SLAB cache for sighand_struct structures (tsk->sighand) */
297 struct kmem_cache
*sighand_cachep
;
299 /* SLAB cache for files_struct structures (tsk->files) */
300 struct kmem_cache
*files_cachep
;
302 /* SLAB cache for fs_struct structures (tsk->fs) */
303 struct kmem_cache
*fs_cachep
;
305 /* SLAB cache for vm_area_struct structures */
306 static struct kmem_cache
*vm_area_cachep
;
308 /* SLAB cache for mm_struct structures (tsk->mm) */
309 static struct kmem_cache
*mm_cachep
;
311 struct vm_area_struct
*vm_area_alloc(struct mm_struct
*mm
)
313 struct vm_area_struct
*vma
;
315 vma
= kmem_cache_alloc(vm_area_cachep
, GFP_KERNEL
);
321 struct vm_area_struct
*vm_area_dup(struct vm_area_struct
*orig
)
323 struct vm_area_struct
*new = kmem_cache_alloc(vm_area_cachep
, GFP_KERNEL
);
327 INIT_LIST_HEAD(&new->anon_vma_chain
);
332 void vm_area_free(struct vm_area_struct
*vma
)
334 kmem_cache_free(vm_area_cachep
, vma
);
337 static void account_kernel_stack(struct task_struct
*tsk
, int account
)
339 void *stack
= task_stack_page(tsk
);
340 struct vm_struct
*vm
= task_stack_vm_area(tsk
);
342 BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK
) && PAGE_SIZE
% 1024 != 0);
347 BUG_ON(vm
->nr_pages
!= THREAD_SIZE
/ PAGE_SIZE
);
349 for (i
= 0; i
< THREAD_SIZE
/ PAGE_SIZE
; i
++) {
350 mod_zone_page_state(page_zone(vm
->pages
[i
]),
352 PAGE_SIZE
/ 1024 * account
);
355 /* All stack pages belong to the same memcg. */
356 mod_memcg_page_state(vm
->pages
[0], MEMCG_KERNEL_STACK_KB
,
357 account
* (THREAD_SIZE
/ 1024));
360 * All stack pages are in the same zone and belong to the
363 struct page
*first_page
= virt_to_page(stack
);
365 mod_zone_page_state(page_zone(first_page
), NR_KERNEL_STACK_KB
,
366 THREAD_SIZE
/ 1024 * account
);
368 mod_memcg_page_state(first_page
, MEMCG_KERNEL_STACK_KB
,
369 account
* (THREAD_SIZE
/ 1024));
373 static void release_task_stack(struct task_struct
*tsk
)
375 if (WARN_ON(tsk
->state
!= TASK_DEAD
))
376 return; /* Better to leak the stack than to free prematurely */
378 account_kernel_stack(tsk
, -1);
379 arch_release_thread_stack(tsk
->stack
);
380 free_thread_stack(tsk
);
382 #ifdef CONFIG_VMAP_STACK
383 tsk
->stack_vm_area
= NULL
;
387 #ifdef CONFIG_THREAD_INFO_IN_TASK
388 void put_task_stack(struct task_struct
*tsk
)
390 if (atomic_dec_and_test(&tsk
->stack_refcount
))
391 release_task_stack(tsk
);
395 void free_task(struct task_struct
*tsk
)
397 #ifndef CONFIG_THREAD_INFO_IN_TASK
399 * The task is finally done with both the stack and thread_info,
402 release_task_stack(tsk
);
405 * If the task had a separate stack allocation, it should be gone
408 WARN_ON_ONCE(atomic_read(&tsk
->stack_refcount
) != 0);
410 rt_mutex_debug_task_free(tsk
);
411 ftrace_graph_exit_task(tsk
);
412 put_seccomp_filter(tsk
);
413 arch_release_task_struct(tsk
);
414 if (tsk
->flags
& PF_KTHREAD
)
415 free_kthread_struct(tsk
);
416 free_task_struct(tsk
);
418 EXPORT_SYMBOL(free_task
);
421 static __latent_entropy
int dup_mmap(struct mm_struct
*mm
,
422 struct mm_struct
*oldmm
)
424 struct vm_area_struct
*mpnt
, *tmp
, *prev
, **pprev
;
425 struct rb_node
**rb_link
, *rb_parent
;
427 unsigned long charge
;
430 uprobe_start_dup_mmap();
431 if (down_write_killable(&oldmm
->mmap_sem
)) {
433 goto fail_uprobe_end
;
435 flush_cache_dup_mm(oldmm
);
436 uprobe_dup_mmap(oldmm
, mm
);
438 * Not linked in yet - no deadlock potential:
440 down_write_nested(&mm
->mmap_sem
, SINGLE_DEPTH_NESTING
);
442 /* No ordering required: file already has been exposed. */
443 RCU_INIT_POINTER(mm
->exe_file
, get_mm_exe_file(oldmm
));
445 mm
->total_vm
= oldmm
->total_vm
;
446 mm
->data_vm
= oldmm
->data_vm
;
447 mm
->exec_vm
= oldmm
->exec_vm
;
448 mm
->stack_vm
= oldmm
->stack_vm
;
450 rb_link
= &mm
->mm_rb
.rb_node
;
453 retval
= ksm_fork(mm
, oldmm
);
456 retval
= khugepaged_fork(mm
, oldmm
);
461 for (mpnt
= oldmm
->mmap
; mpnt
; mpnt
= mpnt
->vm_next
) {
464 if (mpnt
->vm_flags
& VM_DONTCOPY
) {
465 vm_stat_account(mm
, mpnt
->vm_flags
, -vma_pages(mpnt
));
470 * Don't duplicate many vmas if we've been oom-killed (for
473 if (fatal_signal_pending(current
)) {
477 if (mpnt
->vm_flags
& VM_ACCOUNT
) {
478 unsigned long len
= vma_pages(mpnt
);
480 if (security_vm_enough_memory_mm(oldmm
, len
)) /* sic */
484 tmp
= vm_area_dup(mpnt
);
487 retval
= vma_dup_policy(mpnt
, tmp
);
489 goto fail_nomem_policy
;
491 retval
= dup_userfaultfd(tmp
, &uf
);
493 goto fail_nomem_anon_vma_fork
;
494 if (tmp
->vm_flags
& VM_WIPEONFORK
) {
495 /* VM_WIPEONFORK gets a clean slate in the child. */
496 tmp
->anon_vma
= NULL
;
497 if (anon_vma_prepare(tmp
))
498 goto fail_nomem_anon_vma_fork
;
499 } else if (anon_vma_fork(tmp
, mpnt
))
500 goto fail_nomem_anon_vma_fork
;
501 tmp
->vm_flags
&= ~(VM_LOCKED
| VM_LOCKONFAULT
);
502 tmp
->vm_next
= tmp
->vm_prev
= NULL
;
505 struct inode
*inode
= file_inode(file
);
506 struct address_space
*mapping
= file
->f_mapping
;
509 if (tmp
->vm_flags
& VM_DENYWRITE
)
510 atomic_dec(&inode
->i_writecount
);
511 i_mmap_lock_write(mapping
);
512 if (tmp
->vm_flags
& VM_SHARED
)
513 atomic_inc(&mapping
->i_mmap_writable
);
514 flush_dcache_mmap_lock(mapping
);
515 /* insert tmp into the share list, just after mpnt */
516 vma_interval_tree_insert_after(tmp
, mpnt
,
518 flush_dcache_mmap_unlock(mapping
);
519 i_mmap_unlock_write(mapping
);
523 * Clear hugetlb-related page reserves for children. This only
524 * affects MAP_PRIVATE mappings. Faults generated by the child
525 * are not guaranteed to succeed, even if read-only
527 if (is_vm_hugetlb_page(tmp
))
528 reset_vma_resv_huge_pages(tmp
);
531 * Link in the new vma and copy the page table entries.
534 pprev
= &tmp
->vm_next
;
538 __vma_link_rb(mm
, tmp
, rb_link
, rb_parent
);
539 rb_link
= &tmp
->vm_rb
.rb_right
;
540 rb_parent
= &tmp
->vm_rb
;
543 if (!(tmp
->vm_flags
& VM_WIPEONFORK
))
544 retval
= copy_page_range(mm
, oldmm
, mpnt
);
546 if (tmp
->vm_ops
&& tmp
->vm_ops
->open
)
547 tmp
->vm_ops
->open(tmp
);
552 /* a new mm has just been created */
553 arch_dup_mmap(oldmm
, mm
);
556 up_write(&mm
->mmap_sem
);
558 up_write(&oldmm
->mmap_sem
);
559 dup_userfaultfd_complete(&uf
);
561 uprobe_end_dup_mmap();
563 fail_nomem_anon_vma_fork
:
564 mpol_put(vma_policy(tmp
));
569 vm_unacct_memory(charge
);
573 static inline int mm_alloc_pgd(struct mm_struct
*mm
)
575 mm
->pgd
= pgd_alloc(mm
);
576 if (unlikely(!mm
->pgd
))
581 static inline void mm_free_pgd(struct mm_struct
*mm
)
583 pgd_free(mm
, mm
->pgd
);
586 static int dup_mmap(struct mm_struct
*mm
, struct mm_struct
*oldmm
)
588 down_write(&oldmm
->mmap_sem
);
589 RCU_INIT_POINTER(mm
->exe_file
, get_mm_exe_file(oldmm
));
590 up_write(&oldmm
->mmap_sem
);
593 #define mm_alloc_pgd(mm) (0)
594 #define mm_free_pgd(mm)
595 #endif /* CONFIG_MMU */
597 static void check_mm(struct mm_struct
*mm
)
601 for (i
= 0; i
< NR_MM_COUNTERS
; i
++) {
602 long x
= atomic_long_read(&mm
->rss_stat
.count
[i
]);
605 printk(KERN_ALERT
"BUG: Bad rss-counter state "
606 "mm:%p idx:%d val:%ld\n", mm
, i
, x
);
609 if (mm_pgtables_bytes(mm
))
610 pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n",
611 mm_pgtables_bytes(mm
));
613 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
614 VM_BUG_ON_MM(mm
->pmd_huge_pte
, mm
);
618 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
619 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
622 * Called when the last reference to the mm
623 * is dropped: either by a lazy thread or by
624 * mmput. Free the page directory and the mm.
626 void __mmdrop(struct mm_struct
*mm
)
628 BUG_ON(mm
== &init_mm
);
629 WARN_ON_ONCE(mm
== current
->mm
);
630 WARN_ON_ONCE(mm
== current
->active_mm
);
634 mmu_notifier_mm_destroy(mm
);
636 put_user_ns(mm
->user_ns
);
639 EXPORT_SYMBOL_GPL(__mmdrop
);
641 static void mmdrop_async_fn(struct work_struct
*work
)
643 struct mm_struct
*mm
;
645 mm
= container_of(work
, struct mm_struct
, async_put_work
);
649 static void mmdrop_async(struct mm_struct
*mm
)
651 if (unlikely(atomic_dec_and_test(&mm
->mm_count
))) {
652 INIT_WORK(&mm
->async_put_work
, mmdrop_async_fn
);
653 schedule_work(&mm
->async_put_work
);
657 static inline void free_signal_struct(struct signal_struct
*sig
)
659 taskstats_tgid_free(sig
);
660 sched_autogroup_exit(sig
);
662 * __mmdrop is not safe to call from softirq context on x86 due to
663 * pgd_dtor so postpone it to the async context
666 mmdrop_async(sig
->oom_mm
);
667 kmem_cache_free(signal_cachep
, sig
);
670 static inline void put_signal_struct(struct signal_struct
*sig
)
672 if (atomic_dec_and_test(&sig
->sigcnt
))
673 free_signal_struct(sig
);
676 void __put_task_struct(struct task_struct
*tsk
)
678 WARN_ON(!tsk
->exit_state
);
679 WARN_ON(atomic_read(&tsk
->usage
));
680 WARN_ON(tsk
== current
);
684 security_task_free(tsk
);
686 delayacct_tsk_free(tsk
);
687 put_signal_struct(tsk
->signal
);
689 if (!profile_handoff_task(tsk
))
692 EXPORT_SYMBOL_GPL(__put_task_struct
);
694 void __init __weak
arch_task_cache_init(void) { }
699 static void set_max_threads(unsigned int max_threads_suggested
)
704 * The number of threads shall be limited such that the thread
705 * structures may only consume a small part of the available memory.
707 if (fls64(totalram_pages
) + fls64(PAGE_SIZE
) > 64)
708 threads
= MAX_THREADS
;
710 threads
= div64_u64((u64
) totalram_pages
* (u64
) PAGE_SIZE
,
711 (u64
) THREAD_SIZE
* 8UL);
713 if (threads
> max_threads_suggested
)
714 threads
= max_threads_suggested
;
716 max_threads
= clamp_t(u64
, threads
, MIN_THREADS
, MAX_THREADS
);
719 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
720 /* Initialized by the architecture: */
721 int arch_task_struct_size __read_mostly
;
724 static void task_struct_whitelist(unsigned long *offset
, unsigned long *size
)
726 /* Fetch thread_struct whitelist for the architecture. */
727 arch_thread_struct_whitelist(offset
, size
);
730 * Handle zero-sized whitelist or empty thread_struct, otherwise
731 * adjust offset to position of thread_struct in task_struct.
733 if (unlikely(*size
== 0))
736 *offset
+= offsetof(struct task_struct
, thread
);
739 void __init
fork_init(void)
742 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
743 #ifndef ARCH_MIN_TASKALIGN
744 #define ARCH_MIN_TASKALIGN 0
746 int align
= max_t(int, L1_CACHE_BYTES
, ARCH_MIN_TASKALIGN
);
747 unsigned long useroffset
, usersize
;
749 /* create a slab on which task_structs can be allocated */
750 task_struct_whitelist(&useroffset
, &usersize
);
751 task_struct_cachep
= kmem_cache_create_usercopy("task_struct",
752 arch_task_struct_size
, align
,
753 SLAB_PANIC
|SLAB_ACCOUNT
,
754 useroffset
, usersize
, NULL
);
757 /* do the arch specific task caches init */
758 arch_task_cache_init();
760 set_max_threads(MAX_THREADS
);
762 init_task
.signal
->rlim
[RLIMIT_NPROC
].rlim_cur
= max_threads
/2;
763 init_task
.signal
->rlim
[RLIMIT_NPROC
].rlim_max
= max_threads
/2;
764 init_task
.signal
->rlim
[RLIMIT_SIGPENDING
] =
765 init_task
.signal
->rlim
[RLIMIT_NPROC
];
767 for (i
= 0; i
< UCOUNT_COUNTS
; i
++) {
768 init_user_ns
.ucount_max
[i
] = max_threads
/2;
771 #ifdef CONFIG_VMAP_STACK
772 cpuhp_setup_state(CPUHP_BP_PREPARE_DYN
, "fork:vm_stack_cache",
773 NULL
, free_vm_stack_cache
);
776 lockdep_init_task(&init_task
);
779 int __weak
arch_dup_task_struct(struct task_struct
*dst
,
780 struct task_struct
*src
)
786 void set_task_stack_end_magic(struct task_struct
*tsk
)
788 unsigned long *stackend
;
790 stackend
= end_of_stack(tsk
);
791 *stackend
= STACK_END_MAGIC
; /* for overflow detection */
794 static struct task_struct
*dup_task_struct(struct task_struct
*orig
, int node
)
796 struct task_struct
*tsk
;
797 unsigned long *stack
;
798 struct vm_struct
*stack_vm_area
;
801 if (node
== NUMA_NO_NODE
)
802 node
= tsk_fork_get_node(orig
);
803 tsk
= alloc_task_struct_node(node
);
807 stack
= alloc_thread_stack_node(tsk
, node
);
811 stack_vm_area
= task_stack_vm_area(tsk
);
813 err
= arch_dup_task_struct(tsk
, orig
);
816 * arch_dup_task_struct() clobbers the stack-related fields. Make
817 * sure they're properly initialized before using any stack-related
821 #ifdef CONFIG_VMAP_STACK
822 tsk
->stack_vm_area
= stack_vm_area
;
824 #ifdef CONFIG_THREAD_INFO_IN_TASK
825 atomic_set(&tsk
->stack_refcount
, 1);
831 #ifdef CONFIG_SECCOMP
833 * We must handle setting up seccomp filters once we're under
834 * the sighand lock in case orig has changed between now and
835 * then. Until then, filter must be NULL to avoid messing up
836 * the usage counts on the error path calling free_task.
838 tsk
->seccomp
.filter
= NULL
;
841 setup_thread_stack(tsk
, orig
);
842 clear_user_return_notifier(tsk
);
843 clear_tsk_need_resched(tsk
);
844 set_task_stack_end_magic(tsk
);
846 #ifdef CONFIG_STACKPROTECTOR
847 tsk
->stack_canary
= get_random_canary();
851 * One for us, one for whoever does the "release_task()" (usually
854 atomic_set(&tsk
->usage
, 2);
855 #ifdef CONFIG_BLK_DEV_IO_TRACE
858 tsk
->splice_pipe
= NULL
;
859 tsk
->task_frag
.page
= NULL
;
860 tsk
->wake_q
.next
= NULL
;
862 account_kernel_stack(tsk
, 1);
866 #ifdef CONFIG_FAULT_INJECTION
870 #ifdef CONFIG_BLK_CGROUP
871 tsk
->throttle_queue
= NULL
;
872 tsk
->use_memdelay
= 0;
876 tsk
->active_memcg
= NULL
;
881 free_thread_stack(tsk
);
883 free_task_struct(tsk
);
887 __cacheline_aligned_in_smp
DEFINE_SPINLOCK(mmlist_lock
);
889 static unsigned long default_dump_filter
= MMF_DUMP_FILTER_DEFAULT
;
891 static int __init
coredump_filter_setup(char *s
)
893 default_dump_filter
=
894 (simple_strtoul(s
, NULL
, 0) << MMF_DUMP_FILTER_SHIFT
) &
895 MMF_DUMP_FILTER_MASK
;
899 __setup("coredump_filter=", coredump_filter_setup
);
901 #include <linux/init_task.h>
903 static void mm_init_aio(struct mm_struct
*mm
)
906 spin_lock_init(&mm
->ioctx_lock
);
907 mm
->ioctx_table
= NULL
;
911 static void mm_init_owner(struct mm_struct
*mm
, struct task_struct
*p
)
918 static void mm_init_uprobes_state(struct mm_struct
*mm
)
920 #ifdef CONFIG_UPROBES
921 mm
->uprobes_state
.xol_area
= NULL
;
925 static struct mm_struct
*mm_init(struct mm_struct
*mm
, struct task_struct
*p
,
926 struct user_namespace
*user_ns
)
930 mm
->vmacache_seqnum
= 0;
931 atomic_set(&mm
->mm_users
, 1);
932 atomic_set(&mm
->mm_count
, 1);
933 init_rwsem(&mm
->mmap_sem
);
934 INIT_LIST_HEAD(&mm
->mmlist
);
935 mm
->core_state
= NULL
;
936 mm_pgtables_bytes_init(mm
);
940 memset(&mm
->rss_stat
, 0, sizeof(mm
->rss_stat
));
941 spin_lock_init(&mm
->page_table_lock
);
942 spin_lock_init(&mm
->arg_lock
);
945 mm_init_owner(mm
, p
);
946 RCU_INIT_POINTER(mm
->exe_file
, NULL
);
947 mmu_notifier_mm_init(mm
);
949 init_tlb_flush_pending(mm
);
950 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
951 mm
->pmd_huge_pte
= NULL
;
953 mm_init_uprobes_state(mm
);
956 mm
->flags
= current
->mm
->flags
& MMF_INIT_MASK
;
957 mm
->def_flags
= current
->mm
->def_flags
& VM_INIT_DEF_MASK
;
959 mm
->flags
= default_dump_filter
;
963 if (mm_alloc_pgd(mm
))
966 if (init_new_context(p
, mm
))
969 mm
->user_ns
= get_user_ns(user_ns
);
980 * Allocate and initialize an mm_struct.
982 struct mm_struct
*mm_alloc(void)
984 struct mm_struct
*mm
;
990 memset(mm
, 0, sizeof(*mm
));
991 return mm_init(mm
, current
, current_user_ns());
994 static inline void __mmput(struct mm_struct
*mm
)
996 VM_BUG_ON(atomic_read(&mm
->mm_users
));
998 uprobe_clear_state(mm
);
1001 khugepaged_exit(mm
); /* must run before exit_mmap */
1003 mm_put_huge_zero_page(mm
);
1004 set_mm_exe_file(mm
, NULL
);
1005 if (!list_empty(&mm
->mmlist
)) {
1006 spin_lock(&mmlist_lock
);
1007 list_del(&mm
->mmlist
);
1008 spin_unlock(&mmlist_lock
);
1011 module_put(mm
->binfmt
->module
);
1016 * Decrement the use count and release all resources for an mm.
1018 void mmput(struct mm_struct
*mm
)
1022 if (atomic_dec_and_test(&mm
->mm_users
))
1025 EXPORT_SYMBOL_GPL(mmput
);
1028 static void mmput_async_fn(struct work_struct
*work
)
1030 struct mm_struct
*mm
= container_of(work
, struct mm_struct
,
1036 void mmput_async(struct mm_struct
*mm
)
1038 if (atomic_dec_and_test(&mm
->mm_users
)) {
1039 INIT_WORK(&mm
->async_put_work
, mmput_async_fn
);
1040 schedule_work(&mm
->async_put_work
);
1046 * set_mm_exe_file - change a reference to the mm's executable file
1048 * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1050 * Main users are mmput() and sys_execve(). Callers prevent concurrent
1051 * invocations: in mmput() nobody alive left, in execve task is single
1052 * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the
1053 * mm->exe_file, but does so without using set_mm_exe_file() in order
1054 * to do avoid the need for any locks.
1056 void set_mm_exe_file(struct mm_struct
*mm
, struct file
*new_exe_file
)
1058 struct file
*old_exe_file
;
1061 * It is safe to dereference the exe_file without RCU as
1062 * this function is only called if nobody else can access
1063 * this mm -- see comment above for justification.
1065 old_exe_file
= rcu_dereference_raw(mm
->exe_file
);
1068 get_file(new_exe_file
);
1069 rcu_assign_pointer(mm
->exe_file
, new_exe_file
);
1075 * get_mm_exe_file - acquire a reference to the mm's executable file
1077 * Returns %NULL if mm has no associated executable file.
1078 * User must release file via fput().
1080 struct file
*get_mm_exe_file(struct mm_struct
*mm
)
1082 struct file
*exe_file
;
1085 exe_file
= rcu_dereference(mm
->exe_file
);
1086 if (exe_file
&& !get_file_rcu(exe_file
))
1091 EXPORT_SYMBOL(get_mm_exe_file
);
1094 * get_task_exe_file - acquire a reference to the task's executable file
1096 * Returns %NULL if task's mm (if any) has no associated executable file or
1097 * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
1098 * User must release file via fput().
1100 struct file
*get_task_exe_file(struct task_struct
*task
)
1102 struct file
*exe_file
= NULL
;
1103 struct mm_struct
*mm
;
1108 if (!(task
->flags
& PF_KTHREAD
))
1109 exe_file
= get_mm_exe_file(mm
);
1114 EXPORT_SYMBOL(get_task_exe_file
);
1117 * get_task_mm - acquire a reference to the task's mm
1119 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
1120 * this kernel workthread has transiently adopted a user mm with use_mm,
1121 * to do its AIO) is not set and if so returns a reference to it, after
1122 * bumping up the use count. User must release the mm via mmput()
1123 * after use. Typically used by /proc and ptrace.
1125 struct mm_struct
*get_task_mm(struct task_struct
*task
)
1127 struct mm_struct
*mm
;
1132 if (task
->flags
& PF_KTHREAD
)
1140 EXPORT_SYMBOL_GPL(get_task_mm
);
1142 struct mm_struct
*mm_access(struct task_struct
*task
, unsigned int mode
)
1144 struct mm_struct
*mm
;
1147 err
= mutex_lock_killable(&task
->signal
->cred_guard_mutex
);
1149 return ERR_PTR(err
);
1151 mm
= get_task_mm(task
);
1152 if (mm
&& mm
!= current
->mm
&&
1153 !ptrace_may_access(task
, mode
)) {
1155 mm
= ERR_PTR(-EACCES
);
1157 mutex_unlock(&task
->signal
->cred_guard_mutex
);
1162 static void complete_vfork_done(struct task_struct
*tsk
)
1164 struct completion
*vfork
;
1167 vfork
= tsk
->vfork_done
;
1168 if (likely(vfork
)) {
1169 tsk
->vfork_done
= NULL
;
1175 static int wait_for_vfork_done(struct task_struct
*child
,
1176 struct completion
*vfork
)
1180 freezer_do_not_count();
1181 killed
= wait_for_completion_killable(vfork
);
1186 child
->vfork_done
= NULL
;
1190 put_task_struct(child
);
1194 /* Please note the differences between mmput and mm_release.
1195 * mmput is called whenever we stop holding onto a mm_struct,
1196 * error success whatever.
1198 * mm_release is called after a mm_struct has been removed
1199 * from the current process.
1201 * This difference is important for error handling, when we
1202 * only half set up a mm_struct for a new process and need to restore
1203 * the old one. Because we mmput the new mm_struct before
1204 * restoring the old one. . .
1205 * Eric Biederman 10 January 1998
1207 void mm_release(struct task_struct
*tsk
, struct mm_struct
*mm
)
1209 /* Get rid of any futexes when releasing the mm */
1211 if (unlikely(tsk
->robust_list
)) {
1212 exit_robust_list(tsk
);
1213 tsk
->robust_list
= NULL
;
1215 #ifdef CONFIG_COMPAT
1216 if (unlikely(tsk
->compat_robust_list
)) {
1217 compat_exit_robust_list(tsk
);
1218 tsk
->compat_robust_list
= NULL
;
1221 if (unlikely(!list_empty(&tsk
->pi_state_list
)))
1222 exit_pi_state_list(tsk
);
1225 uprobe_free_utask(tsk
);
1227 /* Get rid of any cached register state */
1228 deactivate_mm(tsk
, mm
);
1231 * Signal userspace if we're not exiting with a core dump
1232 * because we want to leave the value intact for debugging
1235 if (tsk
->clear_child_tid
) {
1236 if (!(tsk
->signal
->flags
& SIGNAL_GROUP_COREDUMP
) &&
1237 atomic_read(&mm
->mm_users
) > 1) {
1239 * We don't check the error code - if userspace has
1240 * not set up a proper pointer then tough luck.
1242 put_user(0, tsk
->clear_child_tid
);
1243 do_futex(tsk
->clear_child_tid
, FUTEX_WAKE
,
1244 1, NULL
, NULL
, 0, 0);
1246 tsk
->clear_child_tid
= NULL
;
1250 * All done, finally we can wake up parent and return this mm to him.
1251 * Also kthread_stop() uses this completion for synchronization.
1253 if (tsk
->vfork_done
)
1254 complete_vfork_done(tsk
);
1258 * Allocate a new mm structure and copy contents from the
1259 * mm structure of the passed in task structure.
1261 static struct mm_struct
*dup_mm(struct task_struct
*tsk
)
1263 struct mm_struct
*mm
, *oldmm
= current
->mm
;
1270 memcpy(mm
, oldmm
, sizeof(*mm
));
1272 if (!mm_init(mm
, tsk
, mm
->user_ns
))
1275 err
= dup_mmap(mm
, oldmm
);
1279 mm
->hiwater_rss
= get_mm_rss(mm
);
1280 mm
->hiwater_vm
= mm
->total_vm
;
1282 if (mm
->binfmt
&& !try_module_get(mm
->binfmt
->module
))
1288 /* don't put binfmt in mmput, we haven't got module yet */
1296 static int copy_mm(unsigned long clone_flags
, struct task_struct
*tsk
)
1298 struct mm_struct
*mm
, *oldmm
;
1301 tsk
->min_flt
= tsk
->maj_flt
= 0;
1302 tsk
->nvcsw
= tsk
->nivcsw
= 0;
1303 #ifdef CONFIG_DETECT_HUNG_TASK
1304 tsk
->last_switch_count
= tsk
->nvcsw
+ tsk
->nivcsw
;
1305 tsk
->last_switch_time
= 0;
1309 tsk
->active_mm
= NULL
;
1312 * Are we cloning a kernel thread?
1314 * We need to steal a active VM for that..
1316 oldmm
= current
->mm
;
1320 /* initialize the new vmacache entries */
1321 vmacache_flush(tsk
);
1323 if (clone_flags
& CLONE_VM
) {
1336 tsk
->active_mm
= mm
;
1343 static int copy_fs(unsigned long clone_flags
, struct task_struct
*tsk
)
1345 struct fs_struct
*fs
= current
->fs
;
1346 if (clone_flags
& CLONE_FS
) {
1347 /* tsk->fs is already what we want */
1348 spin_lock(&fs
->lock
);
1350 spin_unlock(&fs
->lock
);
1354 spin_unlock(&fs
->lock
);
1357 tsk
->fs
= copy_fs_struct(fs
);
1363 static int copy_files(unsigned long clone_flags
, struct task_struct
*tsk
)
1365 struct files_struct
*oldf
, *newf
;
1369 * A background process may not have any files ...
1371 oldf
= current
->files
;
1375 if (clone_flags
& CLONE_FILES
) {
1376 atomic_inc(&oldf
->count
);
1380 newf
= dup_fd(oldf
, &error
);
1390 static int copy_io(unsigned long clone_flags
, struct task_struct
*tsk
)
1393 struct io_context
*ioc
= current
->io_context
;
1394 struct io_context
*new_ioc
;
1399 * Share io context with parent, if CLONE_IO is set
1401 if (clone_flags
& CLONE_IO
) {
1403 tsk
->io_context
= ioc
;
1404 } else if (ioprio_valid(ioc
->ioprio
)) {
1405 new_ioc
= get_task_io_context(tsk
, GFP_KERNEL
, NUMA_NO_NODE
);
1406 if (unlikely(!new_ioc
))
1409 new_ioc
->ioprio
= ioc
->ioprio
;
1410 put_io_context(new_ioc
);
1416 static int copy_sighand(unsigned long clone_flags
, struct task_struct
*tsk
)
1418 struct sighand_struct
*sig
;
1420 if (clone_flags
& CLONE_SIGHAND
) {
1421 atomic_inc(¤t
->sighand
->count
);
1424 sig
= kmem_cache_alloc(sighand_cachep
, GFP_KERNEL
);
1425 rcu_assign_pointer(tsk
->sighand
, sig
);
1429 atomic_set(&sig
->count
, 1);
1430 spin_lock_irq(¤t
->sighand
->siglock
);
1431 memcpy(sig
->action
, current
->sighand
->action
, sizeof(sig
->action
));
1432 spin_unlock_irq(¤t
->sighand
->siglock
);
1436 void __cleanup_sighand(struct sighand_struct
*sighand
)
1438 if (atomic_dec_and_test(&sighand
->count
)) {
1439 signalfd_cleanup(sighand
);
1441 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
1442 * without an RCU grace period, see __lock_task_sighand().
1444 kmem_cache_free(sighand_cachep
, sighand
);
1448 #ifdef CONFIG_POSIX_TIMERS
1450 * Initialize POSIX timer handling for a thread group.
1452 static void posix_cpu_timers_init_group(struct signal_struct
*sig
)
1454 unsigned long cpu_limit
;
1456 cpu_limit
= READ_ONCE(sig
->rlim
[RLIMIT_CPU
].rlim_cur
);
1457 if (cpu_limit
!= RLIM_INFINITY
) {
1458 sig
->cputime_expires
.prof_exp
= cpu_limit
* NSEC_PER_SEC
;
1459 sig
->cputimer
.running
= true;
1462 /* The timer lists. */
1463 INIT_LIST_HEAD(&sig
->cpu_timers
[0]);
1464 INIT_LIST_HEAD(&sig
->cpu_timers
[1]);
1465 INIT_LIST_HEAD(&sig
->cpu_timers
[2]);
1468 static inline void posix_cpu_timers_init_group(struct signal_struct
*sig
) { }
1471 static int copy_signal(unsigned long clone_flags
, struct task_struct
*tsk
)
1473 struct signal_struct
*sig
;
1475 if (clone_flags
& CLONE_THREAD
)
1478 sig
= kmem_cache_zalloc(signal_cachep
, GFP_KERNEL
);
1483 sig
->nr_threads
= 1;
1484 atomic_set(&sig
->live
, 1);
1485 atomic_set(&sig
->sigcnt
, 1);
1487 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1488 sig
->thread_head
= (struct list_head
)LIST_HEAD_INIT(tsk
->thread_node
);
1489 tsk
->thread_node
= (struct list_head
)LIST_HEAD_INIT(sig
->thread_head
);
1491 init_waitqueue_head(&sig
->wait_chldexit
);
1492 sig
->curr_target
= tsk
;
1493 init_sigpending(&sig
->shared_pending
);
1494 INIT_HLIST_HEAD(&sig
->multiprocess
);
1495 seqlock_init(&sig
->stats_lock
);
1496 prev_cputime_init(&sig
->prev_cputime
);
1498 #ifdef CONFIG_POSIX_TIMERS
1499 INIT_LIST_HEAD(&sig
->posix_timers
);
1500 hrtimer_init(&sig
->real_timer
, CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
1501 sig
->real_timer
.function
= it_real_fn
;
1504 task_lock(current
->group_leader
);
1505 memcpy(sig
->rlim
, current
->signal
->rlim
, sizeof sig
->rlim
);
1506 task_unlock(current
->group_leader
);
1508 posix_cpu_timers_init_group(sig
);
1510 tty_audit_fork(sig
);
1511 sched_autogroup_fork(sig
);
1513 sig
->oom_score_adj
= current
->signal
->oom_score_adj
;
1514 sig
->oom_score_adj_min
= current
->signal
->oom_score_adj_min
;
1516 mutex_init(&sig
->cred_guard_mutex
);
1521 static void copy_seccomp(struct task_struct
*p
)
1523 #ifdef CONFIG_SECCOMP
1525 * Must be called with sighand->lock held, which is common to
1526 * all threads in the group. Holding cred_guard_mutex is not
1527 * needed because this new task is not yet running and cannot
1530 assert_spin_locked(¤t
->sighand
->siglock
);
1532 /* Ref-count the new filter user, and assign it. */
1533 get_seccomp_filter(current
);
1534 p
->seccomp
= current
->seccomp
;
1537 * Explicitly enable no_new_privs here in case it got set
1538 * between the task_struct being duplicated and holding the
1539 * sighand lock. The seccomp state and nnp must be in sync.
1541 if (task_no_new_privs(current
))
1542 task_set_no_new_privs(p
);
1545 * If the parent gained a seccomp mode after copying thread
1546 * flags and between before we held the sighand lock, we have
1547 * to manually enable the seccomp thread flag here.
1549 if (p
->seccomp
.mode
!= SECCOMP_MODE_DISABLED
)
1550 set_tsk_thread_flag(p
, TIF_SECCOMP
);
1554 SYSCALL_DEFINE1(set_tid_address
, int __user
*, tidptr
)
1556 current
->clear_child_tid
= tidptr
;
1558 return task_pid_vnr(current
);
1561 static void rt_mutex_init_task(struct task_struct
*p
)
1563 raw_spin_lock_init(&p
->pi_lock
);
1564 #ifdef CONFIG_RT_MUTEXES
1565 p
->pi_waiters
= RB_ROOT_CACHED
;
1566 p
->pi_top_task
= NULL
;
1567 p
->pi_blocked_on
= NULL
;
1571 #ifdef CONFIG_POSIX_TIMERS
1573 * Initialize POSIX timer handling for a single task.
1575 static void posix_cpu_timers_init(struct task_struct
*tsk
)
1577 tsk
->cputime_expires
.prof_exp
= 0;
1578 tsk
->cputime_expires
.virt_exp
= 0;
1579 tsk
->cputime_expires
.sched_exp
= 0;
1580 INIT_LIST_HEAD(&tsk
->cpu_timers
[0]);
1581 INIT_LIST_HEAD(&tsk
->cpu_timers
[1]);
1582 INIT_LIST_HEAD(&tsk
->cpu_timers
[2]);
1585 static inline void posix_cpu_timers_init(struct task_struct
*tsk
) { }
1588 static inline void init_task_pid_links(struct task_struct
*task
)
1592 for (type
= PIDTYPE_PID
; type
< PIDTYPE_MAX
; ++type
) {
1593 INIT_HLIST_NODE(&task
->pid_links
[type
]);
1598 init_task_pid(struct task_struct
*task
, enum pid_type type
, struct pid
*pid
)
1600 if (type
== PIDTYPE_PID
)
1601 task
->thread_pid
= pid
;
1603 task
->signal
->pids
[type
] = pid
;
1606 static inline void rcu_copy_process(struct task_struct
*p
)
1608 #ifdef CONFIG_PREEMPT_RCU
1609 p
->rcu_read_lock_nesting
= 0;
1610 p
->rcu_read_unlock_special
.s
= 0;
1611 p
->rcu_blocked_node
= NULL
;
1612 INIT_LIST_HEAD(&p
->rcu_node_entry
);
1613 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1614 #ifdef CONFIG_TASKS_RCU
1615 p
->rcu_tasks_holdout
= false;
1616 INIT_LIST_HEAD(&p
->rcu_tasks_holdout_list
);
1617 p
->rcu_tasks_idle_cpu
= -1;
1618 #endif /* #ifdef CONFIG_TASKS_RCU */
1622 * This creates a new process as a copy of the old one,
1623 * but does not actually start it yet.
1625 * It copies the registers, and all the appropriate
1626 * parts of the process environment (as per the clone
1627 * flags). The actual kick-off is left to the caller.
1629 static __latent_entropy
struct task_struct
*copy_process(
1630 unsigned long clone_flags
,
1631 unsigned long stack_start
,
1632 unsigned long stack_size
,
1633 int __user
*child_tidptr
,
1640 struct task_struct
*p
;
1641 struct multiprocess_signals delayed
;
1644 * Don't allow sharing the root directory with processes in a different
1647 if ((clone_flags
& (CLONE_NEWNS
|CLONE_FS
)) == (CLONE_NEWNS
|CLONE_FS
))
1648 return ERR_PTR(-EINVAL
);
1650 if ((clone_flags
& (CLONE_NEWUSER
|CLONE_FS
)) == (CLONE_NEWUSER
|CLONE_FS
))
1651 return ERR_PTR(-EINVAL
);
1654 * Thread groups must share signals as well, and detached threads
1655 * can only be started up within the thread group.
1657 if ((clone_flags
& CLONE_THREAD
) && !(clone_flags
& CLONE_SIGHAND
))
1658 return ERR_PTR(-EINVAL
);
1661 * Shared signal handlers imply shared VM. By way of the above,
1662 * thread groups also imply shared VM. Blocking this case allows
1663 * for various simplifications in other code.
1665 if ((clone_flags
& CLONE_SIGHAND
) && !(clone_flags
& CLONE_VM
))
1666 return ERR_PTR(-EINVAL
);
1669 * Siblings of global init remain as zombies on exit since they are
1670 * not reaped by their parent (swapper). To solve this and to avoid
1671 * multi-rooted process trees, prevent global and container-inits
1672 * from creating siblings.
1674 if ((clone_flags
& CLONE_PARENT
) &&
1675 current
->signal
->flags
& SIGNAL_UNKILLABLE
)
1676 return ERR_PTR(-EINVAL
);
1679 * If the new process will be in a different pid or user namespace
1680 * do not allow it to share a thread group with the forking task.
1682 if (clone_flags
& CLONE_THREAD
) {
1683 if ((clone_flags
& (CLONE_NEWUSER
| CLONE_NEWPID
)) ||
1684 (task_active_pid_ns(current
) !=
1685 current
->nsproxy
->pid_ns_for_children
))
1686 return ERR_PTR(-EINVAL
);
1690 * Force any signals received before this point to be delivered
1691 * before the fork happens. Collect up signals sent to multiple
1692 * processes that happen during the fork and delay them so that
1693 * they appear to happen after the fork.
1695 sigemptyset(&delayed
.signal
);
1696 INIT_HLIST_NODE(&delayed
.node
);
1698 spin_lock_irq(¤t
->sighand
->siglock
);
1699 if (!(clone_flags
& CLONE_THREAD
))
1700 hlist_add_head(&delayed
.node
, ¤t
->signal
->multiprocess
);
1701 recalc_sigpending();
1702 spin_unlock_irq(¤t
->sighand
->siglock
);
1703 retval
= -ERESTARTNOINTR
;
1704 if (signal_pending(current
))
1708 p
= dup_task_struct(current
, node
);
1713 * This _must_ happen before we call free_task(), i.e. before we jump
1714 * to any of the bad_fork_* labels. This is to avoid freeing
1715 * p->set_child_tid which is (ab)used as a kthread's data pointer for
1716 * kernel threads (PF_KTHREAD).
1718 p
->set_child_tid
= (clone_flags
& CLONE_CHILD_SETTID
) ? child_tidptr
: NULL
;
1720 * Clear TID on mm_release()?
1722 p
->clear_child_tid
= (clone_flags
& CLONE_CHILD_CLEARTID
) ? child_tidptr
: NULL
;
1724 ftrace_graph_init_task(p
);
1726 rt_mutex_init_task(p
);
1728 #ifdef CONFIG_PROVE_LOCKING
1729 DEBUG_LOCKS_WARN_ON(!p
->hardirqs_enabled
);
1730 DEBUG_LOCKS_WARN_ON(!p
->softirqs_enabled
);
1733 if (atomic_read(&p
->real_cred
->user
->processes
) >=
1734 task_rlimit(p
, RLIMIT_NPROC
)) {
1735 if (p
->real_cred
->user
!= INIT_USER
&&
1736 !capable(CAP_SYS_RESOURCE
) && !capable(CAP_SYS_ADMIN
))
1739 current
->flags
&= ~PF_NPROC_EXCEEDED
;
1741 retval
= copy_creds(p
, clone_flags
);
1746 * If multiple threads are within copy_process(), then this check
1747 * triggers too late. This doesn't hurt, the check is only there
1748 * to stop root fork bombs.
1751 if (nr_threads
>= max_threads
)
1752 goto bad_fork_cleanup_count
;
1754 delayacct_tsk_init(p
); /* Must remain after dup_task_struct() */
1755 p
->flags
&= ~(PF_SUPERPRIV
| PF_WQ_WORKER
| PF_IDLE
);
1756 p
->flags
|= PF_FORKNOEXEC
;
1757 INIT_LIST_HEAD(&p
->children
);
1758 INIT_LIST_HEAD(&p
->sibling
);
1759 rcu_copy_process(p
);
1760 p
->vfork_done
= NULL
;
1761 spin_lock_init(&p
->alloc_lock
);
1763 init_sigpending(&p
->pending
);
1765 p
->utime
= p
->stime
= p
->gtime
= 0;
1766 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
1767 p
->utimescaled
= p
->stimescaled
= 0;
1769 prev_cputime_init(&p
->prev_cputime
);
1771 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1772 seqcount_init(&p
->vtime
.seqcount
);
1773 p
->vtime
.starttime
= 0;
1774 p
->vtime
.state
= VTIME_INACTIVE
;
1777 #if defined(SPLIT_RSS_COUNTING)
1778 memset(&p
->rss_stat
, 0, sizeof(p
->rss_stat
));
1781 p
->default_timer_slack_ns
= current
->timer_slack_ns
;
1783 task_io_accounting_init(&p
->ioac
);
1784 acct_clear_integrals(p
);
1786 posix_cpu_timers_init(p
);
1788 p
->start_time
= ktime_get_ns();
1789 p
->real_start_time
= ktime_get_boot_ns();
1790 p
->io_context
= NULL
;
1791 audit_set_context(p
, NULL
);
1794 p
->mempolicy
= mpol_dup(p
->mempolicy
);
1795 if (IS_ERR(p
->mempolicy
)) {
1796 retval
= PTR_ERR(p
->mempolicy
);
1797 p
->mempolicy
= NULL
;
1798 goto bad_fork_cleanup_threadgroup_lock
;
1801 #ifdef CONFIG_CPUSETS
1802 p
->cpuset_mem_spread_rotor
= NUMA_NO_NODE
;
1803 p
->cpuset_slab_spread_rotor
= NUMA_NO_NODE
;
1804 seqcount_init(&p
->mems_allowed_seq
);
1806 #ifdef CONFIG_TRACE_IRQFLAGS
1808 p
->hardirqs_enabled
= 0;
1809 p
->hardirq_enable_ip
= 0;
1810 p
->hardirq_enable_event
= 0;
1811 p
->hardirq_disable_ip
= _THIS_IP_
;
1812 p
->hardirq_disable_event
= 0;
1813 p
->softirqs_enabled
= 1;
1814 p
->softirq_enable_ip
= _THIS_IP_
;
1815 p
->softirq_enable_event
= 0;
1816 p
->softirq_disable_ip
= 0;
1817 p
->softirq_disable_event
= 0;
1818 p
->hardirq_context
= 0;
1819 p
->softirq_context
= 0;
1822 p
->pagefault_disabled
= 0;
1824 #ifdef CONFIG_LOCKDEP
1825 p
->lockdep_depth
= 0; /* no locks held yet */
1826 p
->curr_chain_key
= 0;
1827 p
->lockdep_recursion
= 0;
1828 lockdep_init_task(p
);
1831 #ifdef CONFIG_DEBUG_MUTEXES
1832 p
->blocked_on
= NULL
; /* not blocked yet */
1834 #ifdef CONFIG_BCACHE
1835 p
->sequential_io
= 0;
1836 p
->sequential_io_avg
= 0;
1839 /* Perform scheduler related setup. Assign this task to a CPU. */
1840 retval
= sched_fork(clone_flags
, p
);
1842 goto bad_fork_cleanup_policy
;
1844 retval
= perf_event_init_task(p
);
1846 goto bad_fork_cleanup_policy
;
1847 retval
= audit_alloc(p
);
1849 goto bad_fork_cleanup_perf
;
1850 /* copy all the process information */
1852 retval
= security_task_alloc(p
, clone_flags
);
1854 goto bad_fork_cleanup_audit
;
1855 retval
= copy_semundo(clone_flags
, p
);
1857 goto bad_fork_cleanup_security
;
1858 retval
= copy_files(clone_flags
, p
);
1860 goto bad_fork_cleanup_semundo
;
1861 retval
= copy_fs(clone_flags
, p
);
1863 goto bad_fork_cleanup_files
;
1864 retval
= copy_sighand(clone_flags
, p
);
1866 goto bad_fork_cleanup_fs
;
1867 retval
= copy_signal(clone_flags
, p
);
1869 goto bad_fork_cleanup_sighand
;
1870 retval
= copy_mm(clone_flags
, p
);
1872 goto bad_fork_cleanup_signal
;
1873 retval
= copy_namespaces(clone_flags
, p
);
1875 goto bad_fork_cleanup_mm
;
1876 retval
= copy_io(clone_flags
, p
);
1878 goto bad_fork_cleanup_namespaces
;
1879 retval
= copy_thread_tls(clone_flags
, stack_start
, stack_size
, p
, tls
);
1881 goto bad_fork_cleanup_io
;
1883 if (pid
!= &init_struct_pid
) {
1884 pid
= alloc_pid(p
->nsproxy
->pid_ns_for_children
);
1886 retval
= PTR_ERR(pid
);
1887 goto bad_fork_cleanup_thread
;
1895 p
->robust_list
= NULL
;
1896 #ifdef CONFIG_COMPAT
1897 p
->compat_robust_list
= NULL
;
1899 INIT_LIST_HEAD(&p
->pi_state_list
);
1900 p
->pi_state_cache
= NULL
;
1903 * sigaltstack should be cleared when sharing the same VM
1905 if ((clone_flags
& (CLONE_VM
|CLONE_VFORK
)) == CLONE_VM
)
1909 * Syscall tracing and stepping should be turned off in the
1910 * child regardless of CLONE_PTRACE.
1912 user_disable_single_step(p
);
1913 clear_tsk_thread_flag(p
, TIF_SYSCALL_TRACE
);
1914 #ifdef TIF_SYSCALL_EMU
1915 clear_tsk_thread_flag(p
, TIF_SYSCALL_EMU
);
1917 clear_all_latency_tracing(p
);
1919 /* ok, now we should be set up.. */
1920 p
->pid
= pid_nr(pid
);
1921 if (clone_flags
& CLONE_THREAD
) {
1922 p
->exit_signal
= -1;
1923 p
->group_leader
= current
->group_leader
;
1924 p
->tgid
= current
->tgid
;
1926 if (clone_flags
& CLONE_PARENT
)
1927 p
->exit_signal
= current
->group_leader
->exit_signal
;
1929 p
->exit_signal
= (clone_flags
& CSIGNAL
);
1930 p
->group_leader
= p
;
1935 p
->nr_dirtied_pause
= 128 >> (PAGE_SHIFT
- 10);
1936 p
->dirty_paused_when
= 0;
1938 p
->pdeath_signal
= 0;
1939 INIT_LIST_HEAD(&p
->thread_group
);
1940 p
->task_works
= NULL
;
1942 cgroup_threadgroup_change_begin(current
);
1944 * Ensure that the cgroup subsystem policies allow the new process to be
1945 * forked. It should be noted the the new process's css_set can be changed
1946 * between here and cgroup_post_fork() if an organisation operation is in
1949 retval
= cgroup_can_fork(p
);
1951 goto bad_fork_free_pid
;
1954 * Make it visible to the rest of the system, but dont wake it up yet.
1955 * Need tasklist lock for parent etc handling!
1957 write_lock_irq(&tasklist_lock
);
1959 /* CLONE_PARENT re-uses the old parent */
1960 if (clone_flags
& (CLONE_PARENT
|CLONE_THREAD
)) {
1961 p
->real_parent
= current
->real_parent
;
1962 p
->parent_exec_id
= current
->parent_exec_id
;
1964 p
->real_parent
= current
;
1965 p
->parent_exec_id
= current
->self_exec_id
;
1968 klp_copy_process(p
);
1970 spin_lock(¤t
->sighand
->siglock
);
1973 * Copy seccomp details explicitly here, in case they were changed
1974 * before holding sighand lock.
1978 rseq_fork(p
, clone_flags
);
1980 /* Don't start children in a dying pid namespace */
1981 if (unlikely(!(ns_of_pid(pid
)->pid_allocated
& PIDNS_ADDING
))) {
1983 goto bad_fork_cancel_cgroup
;
1986 /* Let kill terminate clone/fork in the middle */
1987 if (fatal_signal_pending(current
)) {
1989 goto bad_fork_cancel_cgroup
;
1993 init_task_pid_links(p
);
1994 if (likely(p
->pid
)) {
1995 ptrace_init_task(p
, (clone_flags
& CLONE_PTRACE
) || trace
);
1997 init_task_pid(p
, PIDTYPE_PID
, pid
);
1998 if (thread_group_leader(p
)) {
1999 init_task_pid(p
, PIDTYPE_TGID
, pid
);
2000 init_task_pid(p
, PIDTYPE_PGID
, task_pgrp(current
));
2001 init_task_pid(p
, PIDTYPE_SID
, task_session(current
));
2003 if (is_child_reaper(pid
)) {
2004 ns_of_pid(pid
)->child_reaper
= p
;
2005 p
->signal
->flags
|= SIGNAL_UNKILLABLE
;
2007 p
->signal
->shared_pending
.signal
= delayed
.signal
;
2008 p
->signal
->tty
= tty_kref_get(current
->signal
->tty
);
2010 * Inherit has_child_subreaper flag under the same
2011 * tasklist_lock with adding child to the process tree
2012 * for propagate_has_child_subreaper optimization.
2014 p
->signal
->has_child_subreaper
= p
->real_parent
->signal
->has_child_subreaper
||
2015 p
->real_parent
->signal
->is_child_subreaper
;
2016 list_add_tail(&p
->sibling
, &p
->real_parent
->children
);
2017 list_add_tail_rcu(&p
->tasks
, &init_task
.tasks
);
2018 attach_pid(p
, PIDTYPE_TGID
);
2019 attach_pid(p
, PIDTYPE_PGID
);
2020 attach_pid(p
, PIDTYPE_SID
);
2021 __this_cpu_inc(process_counts
);
2023 current
->signal
->nr_threads
++;
2024 atomic_inc(¤t
->signal
->live
);
2025 atomic_inc(¤t
->signal
->sigcnt
);
2026 task_join_group_stop(p
);
2027 list_add_tail_rcu(&p
->thread_group
,
2028 &p
->group_leader
->thread_group
);
2029 list_add_tail_rcu(&p
->thread_node
,
2030 &p
->signal
->thread_head
);
2032 attach_pid(p
, PIDTYPE_PID
);
2036 hlist_del_init(&delayed
.node
);
2037 spin_unlock(¤t
->sighand
->siglock
);
2038 syscall_tracepoint_update(p
);
2039 write_unlock_irq(&tasklist_lock
);
2041 proc_fork_connector(p
);
2042 cgroup_post_fork(p
);
2043 cgroup_threadgroup_change_end(current
);
2046 trace_task_newtask(p
, clone_flags
);
2047 uprobe_copy_process(p
, clone_flags
);
2051 bad_fork_cancel_cgroup
:
2052 spin_unlock(¤t
->sighand
->siglock
);
2053 write_unlock_irq(&tasklist_lock
);
2054 cgroup_cancel_fork(p
);
2056 cgroup_threadgroup_change_end(current
);
2057 if (pid
!= &init_struct_pid
)
2059 bad_fork_cleanup_thread
:
2061 bad_fork_cleanup_io
:
2064 bad_fork_cleanup_namespaces
:
2065 exit_task_namespaces(p
);
2066 bad_fork_cleanup_mm
:
2069 bad_fork_cleanup_signal
:
2070 if (!(clone_flags
& CLONE_THREAD
))
2071 free_signal_struct(p
->signal
);
2072 bad_fork_cleanup_sighand
:
2073 __cleanup_sighand(p
->sighand
);
2074 bad_fork_cleanup_fs
:
2075 exit_fs(p
); /* blocking */
2076 bad_fork_cleanup_files
:
2077 exit_files(p
); /* blocking */
2078 bad_fork_cleanup_semundo
:
2080 bad_fork_cleanup_security
:
2081 security_task_free(p
);
2082 bad_fork_cleanup_audit
:
2084 bad_fork_cleanup_perf
:
2085 perf_event_free_task(p
);
2086 bad_fork_cleanup_policy
:
2087 lockdep_free_task(p
);
2089 mpol_put(p
->mempolicy
);
2090 bad_fork_cleanup_threadgroup_lock
:
2092 delayacct_tsk_free(p
);
2093 bad_fork_cleanup_count
:
2094 atomic_dec(&p
->cred
->user
->processes
);
2097 p
->state
= TASK_DEAD
;
2101 spin_lock_irq(¤t
->sighand
->siglock
);
2102 hlist_del_init(&delayed
.node
);
2103 spin_unlock_irq(¤t
->sighand
->siglock
);
2104 return ERR_PTR(retval
);
2107 static inline void init_idle_pids(struct task_struct
*idle
)
2111 for (type
= PIDTYPE_PID
; type
< PIDTYPE_MAX
; ++type
) {
2112 INIT_HLIST_NODE(&idle
->pid_links
[type
]); /* not really needed */
2113 init_task_pid(idle
, type
, &init_struct_pid
);
2117 struct task_struct
*fork_idle(int cpu
)
2119 struct task_struct
*task
;
2120 task
= copy_process(CLONE_VM
, 0, 0, NULL
, &init_struct_pid
, 0, 0,
2122 if (!IS_ERR(task
)) {
2123 init_idle_pids(task
);
2124 init_idle(task
, cpu
);
2131 * Ok, this is the main fork-routine.
2133 * It copies the process, and if successful kick-starts
2134 * it and waits for it to finish using the VM if required.
2136 long _do_fork(unsigned long clone_flags
,
2137 unsigned long stack_start
,
2138 unsigned long stack_size
,
2139 int __user
*parent_tidptr
,
2140 int __user
*child_tidptr
,
2143 struct completion vfork
;
2145 struct task_struct
*p
;
2150 * Determine whether and which event to report to ptracer. When
2151 * called from kernel_thread or CLONE_UNTRACED is explicitly
2152 * requested, no event is reported; otherwise, report if the event
2153 * for the type of forking is enabled.
2155 if (!(clone_flags
& CLONE_UNTRACED
)) {
2156 if (clone_flags
& CLONE_VFORK
)
2157 trace
= PTRACE_EVENT_VFORK
;
2158 else if ((clone_flags
& CSIGNAL
) != SIGCHLD
)
2159 trace
= PTRACE_EVENT_CLONE
;
2161 trace
= PTRACE_EVENT_FORK
;
2163 if (likely(!ptrace_event_enabled(current
, trace
)))
2167 p
= copy_process(clone_flags
, stack_start
, stack_size
,
2168 child_tidptr
, NULL
, trace
, tls
, NUMA_NO_NODE
);
2169 add_latent_entropy();
2175 * Do this prior waking up the new thread - the thread pointer
2176 * might get invalid after that point, if the thread exits quickly.
2178 trace_sched_process_fork(current
, p
);
2180 pid
= get_task_pid(p
, PIDTYPE_PID
);
2183 if (clone_flags
& CLONE_PARENT_SETTID
)
2184 put_user(nr
, parent_tidptr
);
2186 if (clone_flags
& CLONE_VFORK
) {
2187 p
->vfork_done
= &vfork
;
2188 init_completion(&vfork
);
2192 wake_up_new_task(p
);
2194 /* forking complete and child started to run, tell ptracer */
2195 if (unlikely(trace
))
2196 ptrace_event_pid(trace
, pid
);
2198 if (clone_flags
& CLONE_VFORK
) {
2199 if (!wait_for_vfork_done(p
, &vfork
))
2200 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE
, pid
);
2207 #ifndef CONFIG_HAVE_COPY_THREAD_TLS
2208 /* For compatibility with architectures that call do_fork directly rather than
2209 * using the syscall entry points below. */
2210 long do_fork(unsigned long clone_flags
,
2211 unsigned long stack_start
,
2212 unsigned long stack_size
,
2213 int __user
*parent_tidptr
,
2214 int __user
*child_tidptr
)
2216 return _do_fork(clone_flags
, stack_start
, stack_size
,
2217 parent_tidptr
, child_tidptr
, 0);
2222 * Create a kernel thread.
2224 pid_t
kernel_thread(int (*fn
)(void *), void *arg
, unsigned long flags
)
2226 return _do_fork(flags
|CLONE_VM
|CLONE_UNTRACED
, (unsigned long)fn
,
2227 (unsigned long)arg
, NULL
, NULL
, 0);
2230 #ifdef __ARCH_WANT_SYS_FORK
2231 SYSCALL_DEFINE0(fork
)
2234 return _do_fork(SIGCHLD
, 0, 0, NULL
, NULL
, 0);
2236 /* can not support in nommu mode */
2242 #ifdef __ARCH_WANT_SYS_VFORK
2243 SYSCALL_DEFINE0(vfork
)
2245 return _do_fork(CLONE_VFORK
| CLONE_VM
| SIGCHLD
, 0,
2250 #ifdef __ARCH_WANT_SYS_CLONE
2251 #ifdef CONFIG_CLONE_BACKWARDS
2252 SYSCALL_DEFINE5(clone
, unsigned long, clone_flags
, unsigned long, newsp
,
2253 int __user
*, parent_tidptr
,
2255 int __user
*, child_tidptr
)
2256 #elif defined(CONFIG_CLONE_BACKWARDS2)
2257 SYSCALL_DEFINE5(clone
, unsigned long, newsp
, unsigned long, clone_flags
,
2258 int __user
*, parent_tidptr
,
2259 int __user
*, child_tidptr
,
2261 #elif defined(CONFIG_CLONE_BACKWARDS3)
2262 SYSCALL_DEFINE6(clone
, unsigned long, clone_flags
, unsigned long, newsp
,
2264 int __user
*, parent_tidptr
,
2265 int __user
*, child_tidptr
,
2268 SYSCALL_DEFINE5(clone
, unsigned long, clone_flags
, unsigned long, newsp
,
2269 int __user
*, parent_tidptr
,
2270 int __user
*, child_tidptr
,
2274 return _do_fork(clone_flags
, newsp
, 0, parent_tidptr
, child_tidptr
, tls
);
2278 void walk_process_tree(struct task_struct
*top
, proc_visitor visitor
, void *data
)
2280 struct task_struct
*leader
, *parent
, *child
;
2283 read_lock(&tasklist_lock
);
2284 leader
= top
= top
->group_leader
;
2286 for_each_thread(leader
, parent
) {
2287 list_for_each_entry(child
, &parent
->children
, sibling
) {
2288 res
= visitor(child
, data
);
2300 if (leader
!= top
) {
2302 parent
= child
->real_parent
;
2303 leader
= parent
->group_leader
;
2307 read_unlock(&tasklist_lock
);
2310 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
2311 #define ARCH_MIN_MMSTRUCT_ALIGN 0
2314 static void sighand_ctor(void *data
)
2316 struct sighand_struct
*sighand
= data
;
2318 spin_lock_init(&sighand
->siglock
);
2319 init_waitqueue_head(&sighand
->signalfd_wqh
);
2322 void __init
proc_caches_init(void)
2324 unsigned int mm_size
;
2326 sighand_cachep
= kmem_cache_create("sighand_cache",
2327 sizeof(struct sighand_struct
), 0,
2328 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
|SLAB_TYPESAFE_BY_RCU
|
2329 SLAB_ACCOUNT
, sighand_ctor
);
2330 signal_cachep
= kmem_cache_create("signal_cache",
2331 sizeof(struct signal_struct
), 0,
2332 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
|SLAB_ACCOUNT
,
2334 files_cachep
= kmem_cache_create("files_cache",
2335 sizeof(struct files_struct
), 0,
2336 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
|SLAB_ACCOUNT
,
2338 fs_cachep
= kmem_cache_create("fs_cache",
2339 sizeof(struct fs_struct
), 0,
2340 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
|SLAB_ACCOUNT
,
2344 * The mm_cpumask is located at the end of mm_struct, and is
2345 * dynamically sized based on the maximum CPU number this system
2346 * can have, taking hotplug into account (nr_cpu_ids).
2348 mm_size
= sizeof(struct mm_struct
) + cpumask_size();
2350 mm_cachep
= kmem_cache_create_usercopy("mm_struct",
2351 mm_size
, ARCH_MIN_MMSTRUCT_ALIGN
,
2352 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
|SLAB_ACCOUNT
,
2353 offsetof(struct mm_struct
, saved_auxv
),
2354 sizeof_field(struct mm_struct
, saved_auxv
),
2356 vm_area_cachep
= KMEM_CACHE(vm_area_struct
, SLAB_PANIC
|SLAB_ACCOUNT
);
2358 nsproxy_cache_init();
2362 * Check constraints on flags passed to the unshare system call.
2364 static int check_unshare_flags(unsigned long unshare_flags
)
2366 if (unshare_flags
& ~(CLONE_THREAD
|CLONE_FS
|CLONE_NEWNS
|CLONE_SIGHAND
|
2367 CLONE_VM
|CLONE_FILES
|CLONE_SYSVSEM
|
2368 CLONE_NEWUTS
|CLONE_NEWIPC
|CLONE_NEWNET
|
2369 CLONE_NEWUSER
|CLONE_NEWPID
|CLONE_NEWCGROUP
))
2372 * Not implemented, but pretend it works if there is nothing
2373 * to unshare. Note that unsharing the address space or the
2374 * signal handlers also need to unshare the signal queues (aka
2377 if (unshare_flags
& (CLONE_THREAD
| CLONE_SIGHAND
| CLONE_VM
)) {
2378 if (!thread_group_empty(current
))
2381 if (unshare_flags
& (CLONE_SIGHAND
| CLONE_VM
)) {
2382 if (atomic_read(¤t
->sighand
->count
) > 1)
2385 if (unshare_flags
& CLONE_VM
) {
2386 if (!current_is_single_threaded())
2394 * Unshare the filesystem structure if it is being shared
2396 static int unshare_fs(unsigned long unshare_flags
, struct fs_struct
**new_fsp
)
2398 struct fs_struct
*fs
= current
->fs
;
2400 if (!(unshare_flags
& CLONE_FS
) || !fs
)
2403 /* don't need lock here; in the worst case we'll do useless copy */
2407 *new_fsp
= copy_fs_struct(fs
);
2415 * Unshare file descriptor table if it is being shared
2417 static int unshare_fd(unsigned long unshare_flags
, struct files_struct
**new_fdp
)
2419 struct files_struct
*fd
= current
->files
;
2422 if ((unshare_flags
& CLONE_FILES
) &&
2423 (fd
&& atomic_read(&fd
->count
) > 1)) {
2424 *new_fdp
= dup_fd(fd
, &error
);
2433 * unshare allows a process to 'unshare' part of the process
2434 * context which was originally shared using clone. copy_*
2435 * functions used by do_fork() cannot be used here directly
2436 * because they modify an inactive task_struct that is being
2437 * constructed. Here we are modifying the current, active,
2440 int ksys_unshare(unsigned long unshare_flags
)
2442 struct fs_struct
*fs
, *new_fs
= NULL
;
2443 struct files_struct
*fd
, *new_fd
= NULL
;
2444 struct cred
*new_cred
= NULL
;
2445 struct nsproxy
*new_nsproxy
= NULL
;
2450 * If unsharing a user namespace must also unshare the thread group
2451 * and unshare the filesystem root and working directories.
2453 if (unshare_flags
& CLONE_NEWUSER
)
2454 unshare_flags
|= CLONE_THREAD
| CLONE_FS
;
2456 * If unsharing vm, must also unshare signal handlers.
2458 if (unshare_flags
& CLONE_VM
)
2459 unshare_flags
|= CLONE_SIGHAND
;
2461 * If unsharing a signal handlers, must also unshare the signal queues.
2463 if (unshare_flags
& CLONE_SIGHAND
)
2464 unshare_flags
|= CLONE_THREAD
;
2466 * If unsharing namespace, must also unshare filesystem information.
2468 if (unshare_flags
& CLONE_NEWNS
)
2469 unshare_flags
|= CLONE_FS
;
2471 err
= check_unshare_flags(unshare_flags
);
2473 goto bad_unshare_out
;
2475 * CLONE_NEWIPC must also detach from the undolist: after switching
2476 * to a new ipc namespace, the semaphore arrays from the old
2477 * namespace are unreachable.
2479 if (unshare_flags
& (CLONE_NEWIPC
|CLONE_SYSVSEM
))
2481 err
= unshare_fs(unshare_flags
, &new_fs
);
2483 goto bad_unshare_out
;
2484 err
= unshare_fd(unshare_flags
, &new_fd
);
2486 goto bad_unshare_cleanup_fs
;
2487 err
= unshare_userns(unshare_flags
, &new_cred
);
2489 goto bad_unshare_cleanup_fd
;
2490 err
= unshare_nsproxy_namespaces(unshare_flags
, &new_nsproxy
,
2493 goto bad_unshare_cleanup_cred
;
2495 if (new_fs
|| new_fd
|| do_sysvsem
|| new_cred
|| new_nsproxy
) {
2498 * CLONE_SYSVSEM is equivalent to sys_exit().
2502 if (unshare_flags
& CLONE_NEWIPC
) {
2503 /* Orphan segments in old ns (see sem above). */
2505 shm_init_task(current
);
2509 switch_task_namespaces(current
, new_nsproxy
);
2515 spin_lock(&fs
->lock
);
2516 current
->fs
= new_fs
;
2521 spin_unlock(&fs
->lock
);
2525 fd
= current
->files
;
2526 current
->files
= new_fd
;
2530 task_unlock(current
);
2533 /* Install the new user namespace */
2534 commit_creds(new_cred
);
2539 perf_event_namespaces(current
);
2541 bad_unshare_cleanup_cred
:
2544 bad_unshare_cleanup_fd
:
2546 put_files_struct(new_fd
);
2548 bad_unshare_cleanup_fs
:
2550 free_fs_struct(new_fs
);
2556 SYSCALL_DEFINE1(unshare
, unsigned long, unshare_flags
)
2558 return ksys_unshare(unshare_flags
);
2562 * Helper to unshare the files of the current task.
2563 * We don't want to expose copy_files internals to
2564 * the exec layer of the kernel.
2567 int unshare_files(struct files_struct
**displaced
)
2569 struct task_struct
*task
= current
;
2570 struct files_struct
*copy
= NULL
;
2573 error
= unshare_fd(CLONE_FILES
, ©
);
2574 if (error
|| !copy
) {
2578 *displaced
= task
->files
;
2585 int sysctl_max_threads(struct ctl_table
*table
, int write
,
2586 void __user
*buffer
, size_t *lenp
, loff_t
*ppos
)
2590 int threads
= max_threads
;
2591 int min
= MIN_THREADS
;
2592 int max
= MAX_THREADS
;
2599 ret
= proc_dointvec_minmax(&t
, write
, buffer
, lenp
, ppos
);
2603 set_max_threads(threads
);