2 * PCI Bus Services, see include/linux/pci.h for further explanation.
4 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
7 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
10 #include <linux/kernel.h>
11 #include <linux/delay.h>
12 #include <linux/init.h>
14 #include <linux/of_pci.h>
15 #include <linux/pci.h>
17 #include <linux/slab.h>
18 #include <linux/module.h>
19 #include <linux/spinlock.h>
20 #include <linux/string.h>
21 #include <linux/log2.h>
22 #include <linux/pci-aspm.h>
23 #include <linux/pm_wakeup.h>
24 #include <linux/interrupt.h>
25 #include <linux/device.h>
26 #include <linux/pm_runtime.h>
27 #include <linux/pci_hotplug.h>
28 #include <asm-generic/pci-bridge.h>
29 #include <asm/setup.h>
32 const char *pci_power_names
[] = {
33 "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
35 EXPORT_SYMBOL_GPL(pci_power_names
);
37 int isa_dma_bridge_buggy
;
38 EXPORT_SYMBOL(isa_dma_bridge_buggy
);
41 EXPORT_SYMBOL(pci_pci_problems
);
43 unsigned int pci_pm_d3_delay
;
45 static void pci_pme_list_scan(struct work_struct
*work
);
47 static LIST_HEAD(pci_pme_list
);
48 static DEFINE_MUTEX(pci_pme_list_mutex
);
49 static DECLARE_DELAYED_WORK(pci_pme_work
, pci_pme_list_scan
);
51 struct pci_pme_device
{
52 struct list_head list
;
56 #define PME_TIMEOUT 1000 /* How long between PME checks */
58 static void pci_dev_d3_sleep(struct pci_dev
*dev
)
60 unsigned int delay
= dev
->d3_delay
;
62 if (delay
< pci_pm_d3_delay
)
63 delay
= pci_pm_d3_delay
;
68 #ifdef CONFIG_PCI_DOMAINS
69 int pci_domains_supported
= 1;
72 #define DEFAULT_CARDBUS_IO_SIZE (256)
73 #define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024)
74 /* pci=cbmemsize=nnM,cbiosize=nn can override this */
75 unsigned long pci_cardbus_io_size
= DEFAULT_CARDBUS_IO_SIZE
;
76 unsigned long pci_cardbus_mem_size
= DEFAULT_CARDBUS_MEM_SIZE
;
78 #define DEFAULT_HOTPLUG_IO_SIZE (256)
79 #define DEFAULT_HOTPLUG_MEM_SIZE (2*1024*1024)
80 /* pci=hpmemsize=nnM,hpiosize=nn can override this */
81 unsigned long pci_hotplug_io_size
= DEFAULT_HOTPLUG_IO_SIZE
;
82 unsigned long pci_hotplug_mem_size
= DEFAULT_HOTPLUG_MEM_SIZE
;
84 enum pcie_bus_config_types pcie_bus_config
= PCIE_BUS_TUNE_OFF
;
87 * The default CLS is used if arch didn't set CLS explicitly and not
88 * all pci devices agree on the same value. Arch can override either
89 * the dfl or actual value as it sees fit. Don't forget this is
90 * measured in 32-bit words, not bytes.
92 u8 pci_dfl_cache_line_size
= L1_CACHE_BYTES
>> 2;
93 u8 pci_cache_line_size
;
96 * If we set up a device for bus mastering, we need to check the latency
97 * timer as certain BIOSes forget to set it properly.
99 unsigned int pcibios_max_latency
= 255;
101 /* If set, the PCIe ARI capability will not be used. */
102 static bool pcie_ari_disabled
;
105 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
106 * @bus: pointer to PCI bus structure to search
108 * Given a PCI bus, returns the highest PCI bus number present in the set
109 * including the given PCI bus and its list of child PCI buses.
111 unsigned char pci_bus_max_busnr(struct pci_bus
*bus
)
114 unsigned char max
, n
;
116 max
= bus
->busn_res
.end
;
117 list_for_each_entry(tmp
, &bus
->children
, node
) {
118 n
= pci_bus_max_busnr(tmp
);
124 EXPORT_SYMBOL_GPL(pci_bus_max_busnr
);
126 #ifdef CONFIG_HAS_IOMEM
127 void __iomem
*pci_ioremap_bar(struct pci_dev
*pdev
, int bar
)
129 struct resource
*res
= &pdev
->resource
[bar
];
132 * Make sure the BAR is actually a memory resource, not an IO resource
134 if (res
->flags
& IORESOURCE_UNSET
|| !(res
->flags
& IORESOURCE_MEM
)) {
135 dev_warn(&pdev
->dev
, "can't ioremap BAR %d: %pR\n", bar
, res
);
138 return ioremap_nocache(res
->start
, resource_size(res
));
140 EXPORT_SYMBOL_GPL(pci_ioremap_bar
);
143 #define PCI_FIND_CAP_TTL 48
145 static int __pci_find_next_cap_ttl(struct pci_bus
*bus
, unsigned int devfn
,
146 u8 pos
, int cap
, int *ttl
)
151 pci_bus_read_config_byte(bus
, devfn
, pos
, &pos
);
157 pci_bus_read_config_word(bus
, devfn
, pos
, &ent
);
169 static int __pci_find_next_cap(struct pci_bus
*bus
, unsigned int devfn
,
172 int ttl
= PCI_FIND_CAP_TTL
;
174 return __pci_find_next_cap_ttl(bus
, devfn
, pos
, cap
, &ttl
);
177 int pci_find_next_capability(struct pci_dev
*dev
, u8 pos
, int cap
)
179 return __pci_find_next_cap(dev
->bus
, dev
->devfn
,
180 pos
+ PCI_CAP_LIST_NEXT
, cap
);
182 EXPORT_SYMBOL_GPL(pci_find_next_capability
);
184 static int __pci_bus_find_cap_start(struct pci_bus
*bus
,
185 unsigned int devfn
, u8 hdr_type
)
189 pci_bus_read_config_word(bus
, devfn
, PCI_STATUS
, &status
);
190 if (!(status
& PCI_STATUS_CAP_LIST
))
194 case PCI_HEADER_TYPE_NORMAL
:
195 case PCI_HEADER_TYPE_BRIDGE
:
196 return PCI_CAPABILITY_LIST
;
197 case PCI_HEADER_TYPE_CARDBUS
:
198 return PCI_CB_CAPABILITY_LIST
;
207 * pci_find_capability - query for devices' capabilities
208 * @dev: PCI device to query
209 * @cap: capability code
211 * Tell if a device supports a given PCI capability.
212 * Returns the address of the requested capability structure within the
213 * device's PCI configuration space or 0 in case the device does not
214 * support it. Possible values for @cap:
216 * %PCI_CAP_ID_PM Power Management
217 * %PCI_CAP_ID_AGP Accelerated Graphics Port
218 * %PCI_CAP_ID_VPD Vital Product Data
219 * %PCI_CAP_ID_SLOTID Slot Identification
220 * %PCI_CAP_ID_MSI Message Signalled Interrupts
221 * %PCI_CAP_ID_CHSWP CompactPCI HotSwap
222 * %PCI_CAP_ID_PCIX PCI-X
223 * %PCI_CAP_ID_EXP PCI Express
225 int pci_find_capability(struct pci_dev
*dev
, int cap
)
229 pos
= __pci_bus_find_cap_start(dev
->bus
, dev
->devfn
, dev
->hdr_type
);
231 pos
= __pci_find_next_cap(dev
->bus
, dev
->devfn
, pos
, cap
);
235 EXPORT_SYMBOL(pci_find_capability
);
238 * pci_bus_find_capability - query for devices' capabilities
239 * @bus: the PCI bus to query
240 * @devfn: PCI device to query
241 * @cap: capability code
243 * Like pci_find_capability() but works for pci devices that do not have a
244 * pci_dev structure set up yet.
246 * Returns the address of the requested capability structure within the
247 * device's PCI configuration space or 0 in case the device does not
250 int pci_bus_find_capability(struct pci_bus
*bus
, unsigned int devfn
, int cap
)
255 pci_bus_read_config_byte(bus
, devfn
, PCI_HEADER_TYPE
, &hdr_type
);
257 pos
= __pci_bus_find_cap_start(bus
, devfn
, hdr_type
& 0x7f);
259 pos
= __pci_find_next_cap(bus
, devfn
, pos
, cap
);
263 EXPORT_SYMBOL(pci_bus_find_capability
);
266 * pci_find_next_ext_capability - Find an extended capability
267 * @dev: PCI device to query
268 * @start: address at which to start looking (0 to start at beginning of list)
269 * @cap: capability code
271 * Returns the address of the next matching extended capability structure
272 * within the device's PCI configuration space or 0 if the device does
273 * not support it. Some capabilities can occur several times, e.g., the
274 * vendor-specific capability, and this provides a way to find them all.
276 int pci_find_next_ext_capability(struct pci_dev
*dev
, int start
, int cap
)
280 int pos
= PCI_CFG_SPACE_SIZE
;
282 /* minimum 8 bytes per capability */
283 ttl
= (PCI_CFG_SPACE_EXP_SIZE
- PCI_CFG_SPACE_SIZE
) / 8;
285 if (dev
->cfg_size
<= PCI_CFG_SPACE_SIZE
)
291 if (pci_read_config_dword(dev
, pos
, &header
) != PCIBIOS_SUCCESSFUL
)
295 * If we have no capabilities, this is indicated by cap ID,
296 * cap version and next pointer all being 0.
302 if (PCI_EXT_CAP_ID(header
) == cap
&& pos
!= start
)
305 pos
= PCI_EXT_CAP_NEXT(header
);
306 if (pos
< PCI_CFG_SPACE_SIZE
)
309 if (pci_read_config_dword(dev
, pos
, &header
) != PCIBIOS_SUCCESSFUL
)
315 EXPORT_SYMBOL_GPL(pci_find_next_ext_capability
);
318 * pci_find_ext_capability - Find an extended capability
319 * @dev: PCI device to query
320 * @cap: capability code
322 * Returns the address of the requested extended capability structure
323 * within the device's PCI configuration space or 0 if the device does
324 * not support it. Possible values for @cap:
326 * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting
327 * %PCI_EXT_CAP_ID_VC Virtual Channel
328 * %PCI_EXT_CAP_ID_DSN Device Serial Number
329 * %PCI_EXT_CAP_ID_PWR Power Budgeting
331 int pci_find_ext_capability(struct pci_dev
*dev
, int cap
)
333 return pci_find_next_ext_capability(dev
, 0, cap
);
335 EXPORT_SYMBOL_GPL(pci_find_ext_capability
);
337 static int __pci_find_next_ht_cap(struct pci_dev
*dev
, int pos
, int ht_cap
)
339 int rc
, ttl
= PCI_FIND_CAP_TTL
;
342 if (ht_cap
== HT_CAPTYPE_SLAVE
|| ht_cap
== HT_CAPTYPE_HOST
)
343 mask
= HT_3BIT_CAP_MASK
;
345 mask
= HT_5BIT_CAP_MASK
;
347 pos
= __pci_find_next_cap_ttl(dev
->bus
, dev
->devfn
, pos
,
348 PCI_CAP_ID_HT
, &ttl
);
350 rc
= pci_read_config_byte(dev
, pos
+ 3, &cap
);
351 if (rc
!= PCIBIOS_SUCCESSFUL
)
354 if ((cap
& mask
) == ht_cap
)
357 pos
= __pci_find_next_cap_ttl(dev
->bus
, dev
->devfn
,
358 pos
+ PCI_CAP_LIST_NEXT
,
359 PCI_CAP_ID_HT
, &ttl
);
365 * pci_find_next_ht_capability - query a device's Hypertransport capabilities
366 * @dev: PCI device to query
367 * @pos: Position from which to continue searching
368 * @ht_cap: Hypertransport capability code
370 * To be used in conjunction with pci_find_ht_capability() to search for
371 * all capabilities matching @ht_cap. @pos should always be a value returned
372 * from pci_find_ht_capability().
374 * NB. To be 100% safe against broken PCI devices, the caller should take
375 * steps to avoid an infinite loop.
377 int pci_find_next_ht_capability(struct pci_dev
*dev
, int pos
, int ht_cap
)
379 return __pci_find_next_ht_cap(dev
, pos
+ PCI_CAP_LIST_NEXT
, ht_cap
);
381 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability
);
384 * pci_find_ht_capability - query a device's Hypertransport capabilities
385 * @dev: PCI device to query
386 * @ht_cap: Hypertransport capability code
388 * Tell if a device supports a given Hypertransport capability.
389 * Returns an address within the device's PCI configuration space
390 * or 0 in case the device does not support the request capability.
391 * The address points to the PCI capability, of type PCI_CAP_ID_HT,
392 * which has a Hypertransport capability matching @ht_cap.
394 int pci_find_ht_capability(struct pci_dev
*dev
, int ht_cap
)
398 pos
= __pci_bus_find_cap_start(dev
->bus
, dev
->devfn
, dev
->hdr_type
);
400 pos
= __pci_find_next_ht_cap(dev
, pos
, ht_cap
);
404 EXPORT_SYMBOL_GPL(pci_find_ht_capability
);
407 * pci_find_parent_resource - return resource region of parent bus of given region
408 * @dev: PCI device structure contains resources to be searched
409 * @res: child resource record for which parent is sought
411 * For given resource region of given device, return the resource
412 * region of parent bus the given region is contained in.
414 struct resource
*pci_find_parent_resource(const struct pci_dev
*dev
,
415 struct resource
*res
)
417 const struct pci_bus
*bus
= dev
->bus
;
421 pci_bus_for_each_resource(bus
, r
, i
) {
424 if (res
->start
&& resource_contains(r
, res
)) {
427 * If the window is prefetchable but the BAR is
428 * not, the allocator made a mistake.
430 if (r
->flags
& IORESOURCE_PREFETCH
&&
431 !(res
->flags
& IORESOURCE_PREFETCH
))
435 * If we're below a transparent bridge, there may
436 * be both a positively-decoded aperture and a
437 * subtractively-decoded region that contain the BAR.
438 * We want the positively-decoded one, so this depends
439 * on pci_bus_for_each_resource() giving us those
447 EXPORT_SYMBOL(pci_find_parent_resource
);
450 * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos
451 * @dev: the PCI device to operate on
452 * @pos: config space offset of status word
453 * @mask: mask of bit(s) to care about in status word
455 * Return 1 when mask bit(s) in status word clear, 0 otherwise.
457 int pci_wait_for_pending(struct pci_dev
*dev
, int pos
, u16 mask
)
461 /* Wait for Transaction Pending bit clean */
462 for (i
= 0; i
< 4; i
++) {
465 msleep((1 << (i
- 1)) * 100);
467 pci_read_config_word(dev
, pos
, &status
);
468 if (!(status
& mask
))
476 * pci_restore_bars - restore a devices BAR values (e.g. after wake-up)
477 * @dev: PCI device to have its BARs restored
479 * Restore the BAR values for a given device, so as to make it
480 * accessible by its driver.
482 static void pci_restore_bars(struct pci_dev
*dev
)
486 for (i
= 0; i
< PCI_BRIDGE_RESOURCES
; i
++)
487 pci_update_resource(dev
, i
);
490 static struct pci_platform_pm_ops
*pci_platform_pm
;
492 int pci_set_platform_pm(struct pci_platform_pm_ops
*ops
)
494 if (!ops
->is_manageable
|| !ops
->set_state
|| !ops
->choose_state
497 pci_platform_pm
= ops
;
501 static inline bool platform_pci_power_manageable(struct pci_dev
*dev
)
503 return pci_platform_pm
? pci_platform_pm
->is_manageable(dev
) : false;
506 static inline int platform_pci_set_power_state(struct pci_dev
*dev
,
509 return pci_platform_pm
? pci_platform_pm
->set_state(dev
, t
) : -ENOSYS
;
512 static inline pci_power_t
platform_pci_choose_state(struct pci_dev
*dev
)
514 return pci_platform_pm
?
515 pci_platform_pm
->choose_state(dev
) : PCI_POWER_ERROR
;
518 static inline int platform_pci_sleep_wake(struct pci_dev
*dev
, bool enable
)
520 return pci_platform_pm
?
521 pci_platform_pm
->sleep_wake(dev
, enable
) : -ENODEV
;
524 static inline int platform_pci_run_wake(struct pci_dev
*dev
, bool enable
)
526 return pci_platform_pm
?
527 pci_platform_pm
->run_wake(dev
, enable
) : -ENODEV
;
530 static inline bool platform_pci_need_resume(struct pci_dev
*dev
)
532 return pci_platform_pm
? pci_platform_pm
->need_resume(dev
) : false;
536 * pci_raw_set_power_state - Use PCI PM registers to set the power state of
538 * @dev: PCI device to handle.
539 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
542 * -EINVAL if the requested state is invalid.
543 * -EIO if device does not support PCI PM or its PM capabilities register has a
544 * wrong version, or device doesn't support the requested state.
545 * 0 if device already is in the requested state.
546 * 0 if device's power state has been successfully changed.
548 static int pci_raw_set_power_state(struct pci_dev
*dev
, pci_power_t state
)
551 bool need_restore
= false;
553 /* Check if we're already there */
554 if (dev
->current_state
== state
)
560 if (state
< PCI_D0
|| state
> PCI_D3hot
)
563 /* Validate current state:
564 * Can enter D0 from any state, but if we can only go deeper
565 * to sleep if we're already in a low power state
567 if (state
!= PCI_D0
&& dev
->current_state
<= PCI_D3cold
568 && dev
->current_state
> state
) {
569 dev_err(&dev
->dev
, "invalid power transition (from state %d to %d)\n",
570 dev
->current_state
, state
);
574 /* check if this device supports the desired state */
575 if ((state
== PCI_D1
&& !dev
->d1_support
)
576 || (state
== PCI_D2
&& !dev
->d2_support
))
579 pci_read_config_word(dev
, dev
->pm_cap
+ PCI_PM_CTRL
, &pmcsr
);
581 /* If we're (effectively) in D3, force entire word to 0.
582 * This doesn't affect PME_Status, disables PME_En, and
583 * sets PowerState to 0.
585 switch (dev
->current_state
) {
589 pmcsr
&= ~PCI_PM_CTRL_STATE_MASK
;
594 case PCI_UNKNOWN
: /* Boot-up */
595 if ((pmcsr
& PCI_PM_CTRL_STATE_MASK
) == PCI_D3hot
596 && !(pmcsr
& PCI_PM_CTRL_NO_SOFT_RESET
))
598 /* Fall-through: force to D0 */
604 /* enter specified state */
605 pci_write_config_word(dev
, dev
->pm_cap
+ PCI_PM_CTRL
, pmcsr
);
607 /* Mandatory power management transition delays */
608 /* see PCI PM 1.1 5.6.1 table 18 */
609 if (state
== PCI_D3hot
|| dev
->current_state
== PCI_D3hot
)
610 pci_dev_d3_sleep(dev
);
611 else if (state
== PCI_D2
|| dev
->current_state
== PCI_D2
)
612 udelay(PCI_PM_D2_DELAY
);
614 pci_read_config_word(dev
, dev
->pm_cap
+ PCI_PM_CTRL
, &pmcsr
);
615 dev
->current_state
= (pmcsr
& PCI_PM_CTRL_STATE_MASK
);
616 if (dev
->current_state
!= state
&& printk_ratelimit())
617 dev_info(&dev
->dev
, "Refused to change power state, currently in D%d\n",
621 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
622 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
623 * from D3hot to D0 _may_ perform an internal reset, thereby
624 * going to "D0 Uninitialized" rather than "D0 Initialized".
625 * For example, at least some versions of the 3c905B and the
626 * 3c556B exhibit this behaviour.
628 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
629 * devices in a D3hot state at boot. Consequently, we need to
630 * restore at least the BARs so that the device will be
631 * accessible to its driver.
634 pci_restore_bars(dev
);
637 pcie_aspm_pm_state_change(dev
->bus
->self
);
643 * pci_update_current_state - Read PCI power state of given device from its
644 * PCI PM registers and cache it
645 * @dev: PCI device to handle.
646 * @state: State to cache in case the device doesn't have the PM capability
648 void pci_update_current_state(struct pci_dev
*dev
, pci_power_t state
)
654 * Configuration space is not accessible for device in
655 * D3cold, so just keep or set D3cold for safety
657 if (dev
->current_state
== PCI_D3cold
)
659 if (state
== PCI_D3cold
) {
660 dev
->current_state
= PCI_D3cold
;
663 pci_read_config_word(dev
, dev
->pm_cap
+ PCI_PM_CTRL
, &pmcsr
);
664 dev
->current_state
= (pmcsr
& PCI_PM_CTRL_STATE_MASK
);
666 dev
->current_state
= state
;
671 * pci_power_up - Put the given device into D0 forcibly
672 * @dev: PCI device to power up
674 void pci_power_up(struct pci_dev
*dev
)
676 if (platform_pci_power_manageable(dev
))
677 platform_pci_set_power_state(dev
, PCI_D0
);
679 pci_raw_set_power_state(dev
, PCI_D0
);
680 pci_update_current_state(dev
, PCI_D0
);
684 * pci_platform_power_transition - Use platform to change device power state
685 * @dev: PCI device to handle.
686 * @state: State to put the device into.
688 static int pci_platform_power_transition(struct pci_dev
*dev
, pci_power_t state
)
692 if (platform_pci_power_manageable(dev
)) {
693 error
= platform_pci_set_power_state(dev
, state
);
695 pci_update_current_state(dev
, state
);
699 if (error
&& !dev
->pm_cap
) /* Fall back to PCI_D0 */
700 dev
->current_state
= PCI_D0
;
706 * pci_wakeup - Wake up a PCI device
707 * @pci_dev: Device to handle.
708 * @ign: ignored parameter
710 static int pci_wakeup(struct pci_dev
*pci_dev
, void *ign
)
712 pci_wakeup_event(pci_dev
);
713 pm_request_resume(&pci_dev
->dev
);
718 * pci_wakeup_bus - Walk given bus and wake up devices on it
719 * @bus: Top bus of the subtree to walk.
721 static void pci_wakeup_bus(struct pci_bus
*bus
)
724 pci_walk_bus(bus
, pci_wakeup
, NULL
);
728 * __pci_start_power_transition - Start power transition of a PCI device
729 * @dev: PCI device to handle.
730 * @state: State to put the device into.
732 static void __pci_start_power_transition(struct pci_dev
*dev
, pci_power_t state
)
734 if (state
== PCI_D0
) {
735 pci_platform_power_transition(dev
, PCI_D0
);
737 * Mandatory power management transition delays, see
738 * PCI Express Base Specification Revision 2.0 Section
739 * 6.6.1: Conventional Reset. Do not delay for
740 * devices powered on/off by corresponding bridge,
741 * because have already delayed for the bridge.
743 if (dev
->runtime_d3cold
) {
744 msleep(dev
->d3cold_delay
);
746 * When powering on a bridge from D3cold, the
747 * whole hierarchy may be powered on into
748 * D0uninitialized state, resume them to give
749 * them a chance to suspend again
751 pci_wakeup_bus(dev
->subordinate
);
757 * __pci_dev_set_current_state - Set current state of a PCI device
758 * @dev: Device to handle
759 * @data: pointer to state to be set
761 static int __pci_dev_set_current_state(struct pci_dev
*dev
, void *data
)
763 pci_power_t state
= *(pci_power_t
*)data
;
765 dev
->current_state
= state
;
770 * __pci_bus_set_current_state - Walk given bus and set current state of devices
771 * @bus: Top bus of the subtree to walk.
772 * @state: state to be set
774 static void __pci_bus_set_current_state(struct pci_bus
*bus
, pci_power_t state
)
777 pci_walk_bus(bus
, __pci_dev_set_current_state
, &state
);
781 * __pci_complete_power_transition - Complete power transition of a PCI device
782 * @dev: PCI device to handle.
783 * @state: State to put the device into.
785 * This function should not be called directly by device drivers.
787 int __pci_complete_power_transition(struct pci_dev
*dev
, pci_power_t state
)
793 ret
= pci_platform_power_transition(dev
, state
);
794 /* Power off the bridge may power off the whole hierarchy */
795 if (!ret
&& state
== PCI_D3cold
)
796 __pci_bus_set_current_state(dev
->subordinate
, PCI_D3cold
);
799 EXPORT_SYMBOL_GPL(__pci_complete_power_transition
);
802 * pci_set_power_state - Set the power state of a PCI device
803 * @dev: PCI device to handle.
804 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
806 * Transition a device to a new power state, using the platform firmware and/or
807 * the device's PCI PM registers.
810 * -EINVAL if the requested state is invalid.
811 * -EIO if device does not support PCI PM or its PM capabilities register has a
812 * wrong version, or device doesn't support the requested state.
813 * 0 if device already is in the requested state.
814 * 0 if device's power state has been successfully changed.
816 int pci_set_power_state(struct pci_dev
*dev
, pci_power_t state
)
820 /* bound the state we're entering */
821 if (state
> PCI_D3cold
)
823 else if (state
< PCI_D0
)
825 else if ((state
== PCI_D1
|| state
== PCI_D2
) && pci_no_d1d2(dev
))
827 * If the device or the parent bridge do not support PCI PM,
828 * ignore the request if we're doing anything other than putting
829 * it into D0 (which would only happen on boot).
833 /* Check if we're already there */
834 if (dev
->current_state
== state
)
837 __pci_start_power_transition(dev
, state
);
839 /* This device is quirked not to be put into D3, so
840 don't put it in D3 */
841 if (state
>= PCI_D3hot
&& (dev
->dev_flags
& PCI_DEV_FLAGS_NO_D3
))
845 * To put device in D3cold, we put device into D3hot in native
846 * way, then put device into D3cold with platform ops
848 error
= pci_raw_set_power_state(dev
, state
> PCI_D3hot
?
851 if (!__pci_complete_power_transition(dev
, state
))
856 EXPORT_SYMBOL(pci_set_power_state
);
859 * pci_choose_state - Choose the power state of a PCI device
860 * @dev: PCI device to be suspended
861 * @state: target sleep state for the whole system. This is the value
862 * that is passed to suspend() function.
864 * Returns PCI power state suitable for given device and given system
868 pci_power_t
pci_choose_state(struct pci_dev
*dev
, pm_message_t state
)
875 ret
= platform_pci_choose_state(dev
);
876 if (ret
!= PCI_POWER_ERROR
)
879 switch (state
.event
) {
882 case PM_EVENT_FREEZE
:
883 case PM_EVENT_PRETHAW
:
884 /* REVISIT both freeze and pre-thaw "should" use D0 */
885 case PM_EVENT_SUSPEND
:
886 case PM_EVENT_HIBERNATE
:
889 dev_info(&dev
->dev
, "unrecognized suspend event %d\n",
895 EXPORT_SYMBOL(pci_choose_state
);
897 #define PCI_EXP_SAVE_REGS 7
899 static struct pci_cap_saved_state
*_pci_find_saved_cap(struct pci_dev
*pci_dev
,
900 u16 cap
, bool extended
)
902 struct pci_cap_saved_state
*tmp
;
904 hlist_for_each_entry(tmp
, &pci_dev
->saved_cap_space
, next
) {
905 if (tmp
->cap
.cap_extended
== extended
&& tmp
->cap
.cap_nr
== cap
)
911 struct pci_cap_saved_state
*pci_find_saved_cap(struct pci_dev
*dev
, char cap
)
913 return _pci_find_saved_cap(dev
, cap
, false);
916 struct pci_cap_saved_state
*pci_find_saved_ext_cap(struct pci_dev
*dev
, u16 cap
)
918 return _pci_find_saved_cap(dev
, cap
, true);
921 static int pci_save_pcie_state(struct pci_dev
*dev
)
924 struct pci_cap_saved_state
*save_state
;
927 if (!pci_is_pcie(dev
))
930 save_state
= pci_find_saved_cap(dev
, PCI_CAP_ID_EXP
);
932 dev_err(&dev
->dev
, "buffer not found in %s\n", __func__
);
936 cap
= (u16
*)&save_state
->cap
.data
[0];
937 pcie_capability_read_word(dev
, PCI_EXP_DEVCTL
, &cap
[i
++]);
938 pcie_capability_read_word(dev
, PCI_EXP_LNKCTL
, &cap
[i
++]);
939 pcie_capability_read_word(dev
, PCI_EXP_SLTCTL
, &cap
[i
++]);
940 pcie_capability_read_word(dev
, PCI_EXP_RTCTL
, &cap
[i
++]);
941 pcie_capability_read_word(dev
, PCI_EXP_DEVCTL2
, &cap
[i
++]);
942 pcie_capability_read_word(dev
, PCI_EXP_LNKCTL2
, &cap
[i
++]);
943 pcie_capability_read_word(dev
, PCI_EXP_SLTCTL2
, &cap
[i
++]);
948 static void pci_restore_pcie_state(struct pci_dev
*dev
)
951 struct pci_cap_saved_state
*save_state
;
954 save_state
= pci_find_saved_cap(dev
, PCI_CAP_ID_EXP
);
958 cap
= (u16
*)&save_state
->cap
.data
[0];
959 pcie_capability_write_word(dev
, PCI_EXP_DEVCTL
, cap
[i
++]);
960 pcie_capability_write_word(dev
, PCI_EXP_LNKCTL
, cap
[i
++]);
961 pcie_capability_write_word(dev
, PCI_EXP_SLTCTL
, cap
[i
++]);
962 pcie_capability_write_word(dev
, PCI_EXP_RTCTL
, cap
[i
++]);
963 pcie_capability_write_word(dev
, PCI_EXP_DEVCTL2
, cap
[i
++]);
964 pcie_capability_write_word(dev
, PCI_EXP_LNKCTL2
, cap
[i
++]);
965 pcie_capability_write_word(dev
, PCI_EXP_SLTCTL2
, cap
[i
++]);
969 static int pci_save_pcix_state(struct pci_dev
*dev
)
972 struct pci_cap_saved_state
*save_state
;
974 pos
= pci_find_capability(dev
, PCI_CAP_ID_PCIX
);
978 save_state
= pci_find_saved_cap(dev
, PCI_CAP_ID_PCIX
);
980 dev_err(&dev
->dev
, "buffer not found in %s\n", __func__
);
984 pci_read_config_word(dev
, pos
+ PCI_X_CMD
,
985 (u16
*)save_state
->cap
.data
);
990 static void pci_restore_pcix_state(struct pci_dev
*dev
)
993 struct pci_cap_saved_state
*save_state
;
996 save_state
= pci_find_saved_cap(dev
, PCI_CAP_ID_PCIX
);
997 pos
= pci_find_capability(dev
, PCI_CAP_ID_PCIX
);
998 if (!save_state
|| pos
<= 0)
1000 cap
= (u16
*)&save_state
->cap
.data
[0];
1002 pci_write_config_word(dev
, pos
+ PCI_X_CMD
, cap
[i
++]);
1007 * pci_save_state - save the PCI configuration space of a device before suspending
1008 * @dev: - PCI device that we're dealing with
1010 int pci_save_state(struct pci_dev
*dev
)
1013 /* XXX: 100% dword access ok here? */
1014 for (i
= 0; i
< 16; i
++)
1015 pci_read_config_dword(dev
, i
* 4, &dev
->saved_config_space
[i
]);
1016 dev
->state_saved
= true;
1018 i
= pci_save_pcie_state(dev
);
1022 i
= pci_save_pcix_state(dev
);
1026 return pci_save_vc_state(dev
);
1028 EXPORT_SYMBOL(pci_save_state
);
1030 static void pci_restore_config_dword(struct pci_dev
*pdev
, int offset
,
1031 u32 saved_val
, int retry
)
1035 pci_read_config_dword(pdev
, offset
, &val
);
1036 if (val
== saved_val
)
1040 dev_dbg(&pdev
->dev
, "restoring config space at offset %#x (was %#x, writing %#x)\n",
1041 offset
, val
, saved_val
);
1042 pci_write_config_dword(pdev
, offset
, saved_val
);
1046 pci_read_config_dword(pdev
, offset
, &val
);
1047 if (val
== saved_val
)
1054 static void pci_restore_config_space_range(struct pci_dev
*pdev
,
1055 int start
, int end
, int retry
)
1059 for (index
= end
; index
>= start
; index
--)
1060 pci_restore_config_dword(pdev
, 4 * index
,
1061 pdev
->saved_config_space
[index
],
1065 static void pci_restore_config_space(struct pci_dev
*pdev
)
1067 if (pdev
->hdr_type
== PCI_HEADER_TYPE_NORMAL
) {
1068 pci_restore_config_space_range(pdev
, 10, 15, 0);
1069 /* Restore BARs before the command register. */
1070 pci_restore_config_space_range(pdev
, 4, 9, 10);
1071 pci_restore_config_space_range(pdev
, 0, 3, 0);
1073 pci_restore_config_space_range(pdev
, 0, 15, 0);
1078 * pci_restore_state - Restore the saved state of a PCI device
1079 * @dev: - PCI device that we're dealing with
1081 void pci_restore_state(struct pci_dev
*dev
)
1083 if (!dev
->state_saved
)
1086 /* PCI Express register must be restored first */
1087 pci_restore_pcie_state(dev
);
1088 pci_restore_ats_state(dev
);
1089 pci_restore_vc_state(dev
);
1091 pci_restore_config_space(dev
);
1093 pci_restore_pcix_state(dev
);
1094 pci_restore_msi_state(dev
);
1095 pci_restore_iov_state(dev
);
1097 dev
->state_saved
= false;
1099 EXPORT_SYMBOL(pci_restore_state
);
1101 struct pci_saved_state
{
1102 u32 config_space
[16];
1103 struct pci_cap_saved_data cap
[0];
1107 * pci_store_saved_state - Allocate and return an opaque struct containing
1108 * the device saved state.
1109 * @dev: PCI device that we're dealing with
1111 * Return NULL if no state or error.
1113 struct pci_saved_state
*pci_store_saved_state(struct pci_dev
*dev
)
1115 struct pci_saved_state
*state
;
1116 struct pci_cap_saved_state
*tmp
;
1117 struct pci_cap_saved_data
*cap
;
1120 if (!dev
->state_saved
)
1123 size
= sizeof(*state
) + sizeof(struct pci_cap_saved_data
);
1125 hlist_for_each_entry(tmp
, &dev
->saved_cap_space
, next
)
1126 size
+= sizeof(struct pci_cap_saved_data
) + tmp
->cap
.size
;
1128 state
= kzalloc(size
, GFP_KERNEL
);
1132 memcpy(state
->config_space
, dev
->saved_config_space
,
1133 sizeof(state
->config_space
));
1136 hlist_for_each_entry(tmp
, &dev
->saved_cap_space
, next
) {
1137 size_t len
= sizeof(struct pci_cap_saved_data
) + tmp
->cap
.size
;
1138 memcpy(cap
, &tmp
->cap
, len
);
1139 cap
= (struct pci_cap_saved_data
*)((u8
*)cap
+ len
);
1141 /* Empty cap_save terminates list */
1145 EXPORT_SYMBOL_GPL(pci_store_saved_state
);
1148 * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1149 * @dev: PCI device that we're dealing with
1150 * @state: Saved state returned from pci_store_saved_state()
1152 int pci_load_saved_state(struct pci_dev
*dev
,
1153 struct pci_saved_state
*state
)
1155 struct pci_cap_saved_data
*cap
;
1157 dev
->state_saved
= false;
1162 memcpy(dev
->saved_config_space
, state
->config_space
,
1163 sizeof(state
->config_space
));
1167 struct pci_cap_saved_state
*tmp
;
1169 tmp
= _pci_find_saved_cap(dev
, cap
->cap_nr
, cap
->cap_extended
);
1170 if (!tmp
|| tmp
->cap
.size
!= cap
->size
)
1173 memcpy(tmp
->cap
.data
, cap
->data
, tmp
->cap
.size
);
1174 cap
= (struct pci_cap_saved_data
*)((u8
*)cap
+
1175 sizeof(struct pci_cap_saved_data
) + cap
->size
);
1178 dev
->state_saved
= true;
1181 EXPORT_SYMBOL_GPL(pci_load_saved_state
);
1184 * pci_load_and_free_saved_state - Reload the save state pointed to by state,
1185 * and free the memory allocated for it.
1186 * @dev: PCI device that we're dealing with
1187 * @state: Pointer to saved state returned from pci_store_saved_state()
1189 int pci_load_and_free_saved_state(struct pci_dev
*dev
,
1190 struct pci_saved_state
**state
)
1192 int ret
= pci_load_saved_state(dev
, *state
);
1197 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state
);
1199 int __weak
pcibios_enable_device(struct pci_dev
*dev
, int bars
)
1201 return pci_enable_resources(dev
, bars
);
1204 static int do_pci_enable_device(struct pci_dev
*dev
, int bars
)
1207 struct pci_dev
*bridge
;
1211 err
= pci_set_power_state(dev
, PCI_D0
);
1212 if (err
< 0 && err
!= -EIO
)
1215 bridge
= pci_upstream_bridge(dev
);
1217 pcie_aspm_powersave_config_link(bridge
);
1219 err
= pcibios_enable_device(dev
, bars
);
1222 pci_fixup_device(pci_fixup_enable
, dev
);
1224 if (dev
->msi_enabled
|| dev
->msix_enabled
)
1227 pci_read_config_byte(dev
, PCI_INTERRUPT_PIN
, &pin
);
1229 pci_read_config_word(dev
, PCI_COMMAND
, &cmd
);
1230 if (cmd
& PCI_COMMAND_INTX_DISABLE
)
1231 pci_write_config_word(dev
, PCI_COMMAND
,
1232 cmd
& ~PCI_COMMAND_INTX_DISABLE
);
1239 * pci_reenable_device - Resume abandoned device
1240 * @dev: PCI device to be resumed
1242 * Note this function is a backend of pci_default_resume and is not supposed
1243 * to be called by normal code, write proper resume handler and use it instead.
1245 int pci_reenable_device(struct pci_dev
*dev
)
1247 if (pci_is_enabled(dev
))
1248 return do_pci_enable_device(dev
, (1 << PCI_NUM_RESOURCES
) - 1);
1251 EXPORT_SYMBOL(pci_reenable_device
);
1253 static void pci_enable_bridge(struct pci_dev
*dev
)
1255 struct pci_dev
*bridge
;
1258 bridge
= pci_upstream_bridge(dev
);
1260 pci_enable_bridge(bridge
);
1262 if (pci_is_enabled(dev
)) {
1263 if (!dev
->is_busmaster
)
1264 pci_set_master(dev
);
1268 retval
= pci_enable_device(dev
);
1270 dev_err(&dev
->dev
, "Error enabling bridge (%d), continuing\n",
1272 pci_set_master(dev
);
1275 static int pci_enable_device_flags(struct pci_dev
*dev
, unsigned long flags
)
1277 struct pci_dev
*bridge
;
1282 * Power state could be unknown at this point, either due to a fresh
1283 * boot or a device removal call. So get the current power state
1284 * so that things like MSI message writing will behave as expected
1285 * (e.g. if the device really is in D0 at enable time).
1289 pci_read_config_word(dev
, dev
->pm_cap
+ PCI_PM_CTRL
, &pmcsr
);
1290 dev
->current_state
= (pmcsr
& PCI_PM_CTRL_STATE_MASK
);
1293 if (atomic_inc_return(&dev
->enable_cnt
) > 1)
1294 return 0; /* already enabled */
1296 bridge
= pci_upstream_bridge(dev
);
1298 pci_enable_bridge(bridge
);
1300 /* only skip sriov related */
1301 for (i
= 0; i
<= PCI_ROM_RESOURCE
; i
++)
1302 if (dev
->resource
[i
].flags
& flags
)
1304 for (i
= PCI_BRIDGE_RESOURCES
; i
< DEVICE_COUNT_RESOURCE
; i
++)
1305 if (dev
->resource
[i
].flags
& flags
)
1308 err
= do_pci_enable_device(dev
, bars
);
1310 atomic_dec(&dev
->enable_cnt
);
1315 * pci_enable_device_io - Initialize a device for use with IO space
1316 * @dev: PCI device to be initialized
1318 * Initialize device before it's used by a driver. Ask low-level code
1319 * to enable I/O resources. Wake up the device if it was suspended.
1320 * Beware, this function can fail.
1322 int pci_enable_device_io(struct pci_dev
*dev
)
1324 return pci_enable_device_flags(dev
, IORESOURCE_IO
);
1326 EXPORT_SYMBOL(pci_enable_device_io
);
1329 * pci_enable_device_mem - Initialize a device for use with Memory space
1330 * @dev: PCI device to be initialized
1332 * Initialize device before it's used by a driver. Ask low-level code
1333 * to enable Memory resources. Wake up the device if it was suspended.
1334 * Beware, this function can fail.
1336 int pci_enable_device_mem(struct pci_dev
*dev
)
1338 return pci_enable_device_flags(dev
, IORESOURCE_MEM
);
1340 EXPORT_SYMBOL(pci_enable_device_mem
);
1343 * pci_enable_device - Initialize device before it's used by a driver.
1344 * @dev: PCI device to be initialized
1346 * Initialize device before it's used by a driver. Ask low-level code
1347 * to enable I/O and memory. Wake up the device if it was suspended.
1348 * Beware, this function can fail.
1350 * Note we don't actually enable the device many times if we call
1351 * this function repeatedly (we just increment the count).
1353 int pci_enable_device(struct pci_dev
*dev
)
1355 return pci_enable_device_flags(dev
, IORESOURCE_MEM
| IORESOURCE_IO
);
1357 EXPORT_SYMBOL(pci_enable_device
);
1360 * Managed PCI resources. This manages device on/off, intx/msi/msix
1361 * on/off and BAR regions. pci_dev itself records msi/msix status, so
1362 * there's no need to track it separately. pci_devres is initialized
1363 * when a device is enabled using managed PCI device enable interface.
1366 unsigned int enabled
:1;
1367 unsigned int pinned
:1;
1368 unsigned int orig_intx
:1;
1369 unsigned int restore_intx
:1;
1373 static void pcim_release(struct device
*gendev
, void *res
)
1375 struct pci_dev
*dev
= container_of(gendev
, struct pci_dev
, dev
);
1376 struct pci_devres
*this = res
;
1379 if (dev
->msi_enabled
)
1380 pci_disable_msi(dev
);
1381 if (dev
->msix_enabled
)
1382 pci_disable_msix(dev
);
1384 for (i
= 0; i
< DEVICE_COUNT_RESOURCE
; i
++)
1385 if (this->region_mask
& (1 << i
))
1386 pci_release_region(dev
, i
);
1388 if (this->restore_intx
)
1389 pci_intx(dev
, this->orig_intx
);
1391 if (this->enabled
&& !this->pinned
)
1392 pci_disable_device(dev
);
1395 static struct pci_devres
*get_pci_dr(struct pci_dev
*pdev
)
1397 struct pci_devres
*dr
, *new_dr
;
1399 dr
= devres_find(&pdev
->dev
, pcim_release
, NULL
, NULL
);
1403 new_dr
= devres_alloc(pcim_release
, sizeof(*new_dr
), GFP_KERNEL
);
1406 return devres_get(&pdev
->dev
, new_dr
, NULL
, NULL
);
1409 static struct pci_devres
*find_pci_dr(struct pci_dev
*pdev
)
1411 if (pci_is_managed(pdev
))
1412 return devres_find(&pdev
->dev
, pcim_release
, NULL
, NULL
);
1417 * pcim_enable_device - Managed pci_enable_device()
1418 * @pdev: PCI device to be initialized
1420 * Managed pci_enable_device().
1422 int pcim_enable_device(struct pci_dev
*pdev
)
1424 struct pci_devres
*dr
;
1427 dr
= get_pci_dr(pdev
);
1433 rc
= pci_enable_device(pdev
);
1435 pdev
->is_managed
= 1;
1440 EXPORT_SYMBOL(pcim_enable_device
);
1443 * pcim_pin_device - Pin managed PCI device
1444 * @pdev: PCI device to pin
1446 * Pin managed PCI device @pdev. Pinned device won't be disabled on
1447 * driver detach. @pdev must have been enabled with
1448 * pcim_enable_device().
1450 void pcim_pin_device(struct pci_dev
*pdev
)
1452 struct pci_devres
*dr
;
1454 dr
= find_pci_dr(pdev
);
1455 WARN_ON(!dr
|| !dr
->enabled
);
1459 EXPORT_SYMBOL(pcim_pin_device
);
1462 * pcibios_add_device - provide arch specific hooks when adding device dev
1463 * @dev: the PCI device being added
1465 * Permits the platform to provide architecture specific functionality when
1466 * devices are added. This is the default implementation. Architecture
1467 * implementations can override this.
1469 int __weak
pcibios_add_device(struct pci_dev
*dev
)
1475 * pcibios_release_device - provide arch specific hooks when releasing device dev
1476 * @dev: the PCI device being released
1478 * Permits the platform to provide architecture specific functionality when
1479 * devices are released. This is the default implementation. Architecture
1480 * implementations can override this.
1482 void __weak
pcibios_release_device(struct pci_dev
*dev
) {}
1485 * pcibios_disable_device - disable arch specific PCI resources for device dev
1486 * @dev: the PCI device to disable
1488 * Disables architecture specific PCI resources for the device. This
1489 * is the default implementation. Architecture implementations can
1492 void __weak
pcibios_disable_device (struct pci_dev
*dev
) {}
1495 * pcibios_penalize_isa_irq - penalize an ISA IRQ
1496 * @irq: ISA IRQ to penalize
1497 * @active: IRQ active or not
1499 * Permits the platform to provide architecture-specific functionality when
1500 * penalizing ISA IRQs. This is the default implementation. Architecture
1501 * implementations can override this.
1503 void __weak
pcibios_penalize_isa_irq(int irq
, int active
) {}
1505 static void do_pci_disable_device(struct pci_dev
*dev
)
1509 pci_read_config_word(dev
, PCI_COMMAND
, &pci_command
);
1510 if (pci_command
& PCI_COMMAND_MASTER
) {
1511 pci_command
&= ~PCI_COMMAND_MASTER
;
1512 pci_write_config_word(dev
, PCI_COMMAND
, pci_command
);
1515 pcibios_disable_device(dev
);
1519 * pci_disable_enabled_device - Disable device without updating enable_cnt
1520 * @dev: PCI device to disable
1522 * NOTE: This function is a backend of PCI power management routines and is
1523 * not supposed to be called drivers.
1525 void pci_disable_enabled_device(struct pci_dev
*dev
)
1527 if (pci_is_enabled(dev
))
1528 do_pci_disable_device(dev
);
1532 * pci_disable_device - Disable PCI device after use
1533 * @dev: PCI device to be disabled
1535 * Signal to the system that the PCI device is not in use by the system
1536 * anymore. This only involves disabling PCI bus-mastering, if active.
1538 * Note we don't actually disable the device until all callers of
1539 * pci_enable_device() have called pci_disable_device().
1541 void pci_disable_device(struct pci_dev
*dev
)
1543 struct pci_devres
*dr
;
1545 dr
= find_pci_dr(dev
);
1549 dev_WARN_ONCE(&dev
->dev
, atomic_read(&dev
->enable_cnt
) <= 0,
1550 "disabling already-disabled device");
1552 if (atomic_dec_return(&dev
->enable_cnt
) != 0)
1555 do_pci_disable_device(dev
);
1557 dev
->is_busmaster
= 0;
1559 EXPORT_SYMBOL(pci_disable_device
);
1562 * pcibios_set_pcie_reset_state - set reset state for device dev
1563 * @dev: the PCIe device reset
1564 * @state: Reset state to enter into
1567 * Sets the PCIe reset state for the device. This is the default
1568 * implementation. Architecture implementations can override this.
1570 int __weak
pcibios_set_pcie_reset_state(struct pci_dev
*dev
,
1571 enum pcie_reset_state state
)
1577 * pci_set_pcie_reset_state - set reset state for device dev
1578 * @dev: the PCIe device reset
1579 * @state: Reset state to enter into
1582 * Sets the PCI reset state for the device.
1584 int pci_set_pcie_reset_state(struct pci_dev
*dev
, enum pcie_reset_state state
)
1586 return pcibios_set_pcie_reset_state(dev
, state
);
1588 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state
);
1591 * pci_check_pme_status - Check if given device has generated PME.
1592 * @dev: Device to check.
1594 * Check the PME status of the device and if set, clear it and clear PME enable
1595 * (if set). Return 'true' if PME status and PME enable were both set or
1596 * 'false' otherwise.
1598 bool pci_check_pme_status(struct pci_dev
*dev
)
1607 pmcsr_pos
= dev
->pm_cap
+ PCI_PM_CTRL
;
1608 pci_read_config_word(dev
, pmcsr_pos
, &pmcsr
);
1609 if (!(pmcsr
& PCI_PM_CTRL_PME_STATUS
))
1612 /* Clear PME status. */
1613 pmcsr
|= PCI_PM_CTRL_PME_STATUS
;
1614 if (pmcsr
& PCI_PM_CTRL_PME_ENABLE
) {
1615 /* Disable PME to avoid interrupt flood. */
1616 pmcsr
&= ~PCI_PM_CTRL_PME_ENABLE
;
1620 pci_write_config_word(dev
, pmcsr_pos
, pmcsr
);
1626 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
1627 * @dev: Device to handle.
1628 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
1630 * Check if @dev has generated PME and queue a resume request for it in that
1633 static int pci_pme_wakeup(struct pci_dev
*dev
, void *pme_poll_reset
)
1635 if (pme_poll_reset
&& dev
->pme_poll
)
1636 dev
->pme_poll
= false;
1638 if (pci_check_pme_status(dev
)) {
1639 pci_wakeup_event(dev
);
1640 pm_request_resume(&dev
->dev
);
1646 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
1647 * @bus: Top bus of the subtree to walk.
1649 void pci_pme_wakeup_bus(struct pci_bus
*bus
)
1652 pci_walk_bus(bus
, pci_pme_wakeup
, (void *)true);
1657 * pci_pme_capable - check the capability of PCI device to generate PME#
1658 * @dev: PCI device to handle.
1659 * @state: PCI state from which device will issue PME#.
1661 bool pci_pme_capable(struct pci_dev
*dev
, pci_power_t state
)
1666 return !!(dev
->pme_support
& (1 << state
));
1668 EXPORT_SYMBOL(pci_pme_capable
);
1670 static void pci_pme_list_scan(struct work_struct
*work
)
1672 struct pci_pme_device
*pme_dev
, *n
;
1674 mutex_lock(&pci_pme_list_mutex
);
1675 list_for_each_entry_safe(pme_dev
, n
, &pci_pme_list
, list
) {
1676 if (pme_dev
->dev
->pme_poll
) {
1677 struct pci_dev
*bridge
;
1679 bridge
= pme_dev
->dev
->bus
->self
;
1681 * If bridge is in low power state, the
1682 * configuration space of subordinate devices
1683 * may be not accessible
1685 if (bridge
&& bridge
->current_state
!= PCI_D0
)
1687 pci_pme_wakeup(pme_dev
->dev
, NULL
);
1689 list_del(&pme_dev
->list
);
1693 if (!list_empty(&pci_pme_list
))
1694 schedule_delayed_work(&pci_pme_work
,
1695 msecs_to_jiffies(PME_TIMEOUT
));
1696 mutex_unlock(&pci_pme_list_mutex
);
1700 * pci_pme_active - enable or disable PCI device's PME# function
1701 * @dev: PCI device to handle.
1702 * @enable: 'true' to enable PME# generation; 'false' to disable it.
1704 * The caller must verify that the device is capable of generating PME# before
1705 * calling this function with @enable equal to 'true'.
1707 void pci_pme_active(struct pci_dev
*dev
, bool enable
)
1711 if (!dev
->pme_support
)
1714 pci_read_config_word(dev
, dev
->pm_cap
+ PCI_PM_CTRL
, &pmcsr
);
1715 /* Clear PME_Status by writing 1 to it and enable PME# */
1716 pmcsr
|= PCI_PM_CTRL_PME_STATUS
| PCI_PM_CTRL_PME_ENABLE
;
1718 pmcsr
&= ~PCI_PM_CTRL_PME_ENABLE
;
1720 pci_write_config_word(dev
, dev
->pm_cap
+ PCI_PM_CTRL
, pmcsr
);
1723 * PCI (as opposed to PCIe) PME requires that the device have
1724 * its PME# line hooked up correctly. Not all hardware vendors
1725 * do this, so the PME never gets delivered and the device
1726 * remains asleep. The easiest way around this is to
1727 * periodically walk the list of suspended devices and check
1728 * whether any have their PME flag set. The assumption is that
1729 * we'll wake up often enough anyway that this won't be a huge
1730 * hit, and the power savings from the devices will still be a
1733 * Although PCIe uses in-band PME message instead of PME# line
1734 * to report PME, PME does not work for some PCIe devices in
1735 * reality. For example, there are devices that set their PME
1736 * status bits, but don't really bother to send a PME message;
1737 * there are PCI Express Root Ports that don't bother to
1738 * trigger interrupts when they receive PME messages from the
1739 * devices below. So PME poll is used for PCIe devices too.
1742 if (dev
->pme_poll
) {
1743 struct pci_pme_device
*pme_dev
;
1745 pme_dev
= kmalloc(sizeof(struct pci_pme_device
),
1748 dev_warn(&dev
->dev
, "can't enable PME#\n");
1752 mutex_lock(&pci_pme_list_mutex
);
1753 list_add(&pme_dev
->list
, &pci_pme_list
);
1754 if (list_is_singular(&pci_pme_list
))
1755 schedule_delayed_work(&pci_pme_work
,
1756 msecs_to_jiffies(PME_TIMEOUT
));
1757 mutex_unlock(&pci_pme_list_mutex
);
1759 mutex_lock(&pci_pme_list_mutex
);
1760 list_for_each_entry(pme_dev
, &pci_pme_list
, list
) {
1761 if (pme_dev
->dev
== dev
) {
1762 list_del(&pme_dev
->list
);
1767 mutex_unlock(&pci_pme_list_mutex
);
1771 dev_dbg(&dev
->dev
, "PME# %s\n", enable
? "enabled" : "disabled");
1773 EXPORT_SYMBOL(pci_pme_active
);
1776 * __pci_enable_wake - enable PCI device as wakeup event source
1777 * @dev: PCI device affected
1778 * @state: PCI state from which device will issue wakeup events
1779 * @runtime: True if the events are to be generated at run time
1780 * @enable: True to enable event generation; false to disable
1782 * This enables the device as a wakeup event source, or disables it.
1783 * When such events involves platform-specific hooks, those hooks are
1784 * called automatically by this routine.
1786 * Devices with legacy power management (no standard PCI PM capabilities)
1787 * always require such platform hooks.
1790 * 0 is returned on success
1791 * -EINVAL is returned if device is not supposed to wake up the system
1792 * Error code depending on the platform is returned if both the platform and
1793 * the native mechanism fail to enable the generation of wake-up events
1795 int __pci_enable_wake(struct pci_dev
*dev
, pci_power_t state
,
1796 bool runtime
, bool enable
)
1800 if (enable
&& !runtime
&& !device_may_wakeup(&dev
->dev
))
1803 /* Don't do the same thing twice in a row for one device. */
1804 if (!!enable
== !!dev
->wakeup_prepared
)
1808 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
1809 * Anderson we should be doing PME# wake enable followed by ACPI wake
1810 * enable. To disable wake-up we call the platform first, for symmetry.
1816 if (pci_pme_capable(dev
, state
))
1817 pci_pme_active(dev
, true);
1820 error
= runtime
? platform_pci_run_wake(dev
, true) :
1821 platform_pci_sleep_wake(dev
, true);
1825 dev
->wakeup_prepared
= true;
1828 platform_pci_run_wake(dev
, false);
1830 platform_pci_sleep_wake(dev
, false);
1831 pci_pme_active(dev
, false);
1832 dev
->wakeup_prepared
= false;
1837 EXPORT_SYMBOL(__pci_enable_wake
);
1840 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
1841 * @dev: PCI device to prepare
1842 * @enable: True to enable wake-up event generation; false to disable
1844 * Many drivers want the device to wake up the system from D3_hot or D3_cold
1845 * and this function allows them to set that up cleanly - pci_enable_wake()
1846 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
1847 * ordering constraints.
1849 * This function only returns error code if the device is not capable of
1850 * generating PME# from both D3_hot and D3_cold, and the platform is unable to
1851 * enable wake-up power for it.
1853 int pci_wake_from_d3(struct pci_dev
*dev
, bool enable
)
1855 return pci_pme_capable(dev
, PCI_D3cold
) ?
1856 pci_enable_wake(dev
, PCI_D3cold
, enable
) :
1857 pci_enable_wake(dev
, PCI_D3hot
, enable
);
1859 EXPORT_SYMBOL(pci_wake_from_d3
);
1862 * pci_target_state - find an appropriate low power state for a given PCI dev
1865 * Use underlying platform code to find a supported low power state for @dev.
1866 * If the platform can't manage @dev, return the deepest state from which it
1867 * can generate wake events, based on any available PME info.
1869 static pci_power_t
pci_target_state(struct pci_dev
*dev
)
1871 pci_power_t target_state
= PCI_D3hot
;
1873 if (platform_pci_power_manageable(dev
)) {
1875 * Call the platform to choose the target state of the device
1876 * and enable wake-up from this state if supported.
1878 pci_power_t state
= platform_pci_choose_state(dev
);
1881 case PCI_POWER_ERROR
:
1886 if (pci_no_d1d2(dev
))
1889 target_state
= state
;
1891 } else if (!dev
->pm_cap
) {
1892 target_state
= PCI_D0
;
1893 } else if (device_may_wakeup(&dev
->dev
)) {
1895 * Find the deepest state from which the device can generate
1896 * wake-up events, make it the target state and enable device
1899 if (dev
->pme_support
) {
1901 && !(dev
->pme_support
& (1 << target_state
)))
1906 return target_state
;
1910 * pci_prepare_to_sleep - prepare PCI device for system-wide transition into a sleep state
1911 * @dev: Device to handle.
1913 * Choose the power state appropriate for the device depending on whether
1914 * it can wake up the system and/or is power manageable by the platform
1915 * (PCI_D3hot is the default) and put the device into that state.
1917 int pci_prepare_to_sleep(struct pci_dev
*dev
)
1919 pci_power_t target_state
= pci_target_state(dev
);
1922 if (target_state
== PCI_POWER_ERROR
)
1925 pci_enable_wake(dev
, target_state
, device_may_wakeup(&dev
->dev
));
1927 error
= pci_set_power_state(dev
, target_state
);
1930 pci_enable_wake(dev
, target_state
, false);
1934 EXPORT_SYMBOL(pci_prepare_to_sleep
);
1937 * pci_back_from_sleep - turn PCI device on during system-wide transition into working state
1938 * @dev: Device to handle.
1940 * Disable device's system wake-up capability and put it into D0.
1942 int pci_back_from_sleep(struct pci_dev
*dev
)
1944 pci_enable_wake(dev
, PCI_D0
, false);
1945 return pci_set_power_state(dev
, PCI_D0
);
1947 EXPORT_SYMBOL(pci_back_from_sleep
);
1950 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
1951 * @dev: PCI device being suspended.
1953 * Prepare @dev to generate wake-up events at run time and put it into a low
1956 int pci_finish_runtime_suspend(struct pci_dev
*dev
)
1958 pci_power_t target_state
= pci_target_state(dev
);
1961 if (target_state
== PCI_POWER_ERROR
)
1964 dev
->runtime_d3cold
= target_state
== PCI_D3cold
;
1966 __pci_enable_wake(dev
, target_state
, true, pci_dev_run_wake(dev
));
1968 error
= pci_set_power_state(dev
, target_state
);
1971 __pci_enable_wake(dev
, target_state
, true, false);
1972 dev
->runtime_d3cold
= false;
1979 * pci_dev_run_wake - Check if device can generate run-time wake-up events.
1980 * @dev: Device to check.
1982 * Return true if the device itself is capable of generating wake-up events
1983 * (through the platform or using the native PCIe PME) or if the device supports
1984 * PME and one of its upstream bridges can generate wake-up events.
1986 bool pci_dev_run_wake(struct pci_dev
*dev
)
1988 struct pci_bus
*bus
= dev
->bus
;
1990 if (device_run_wake(&dev
->dev
))
1993 if (!dev
->pme_support
)
1996 while (bus
->parent
) {
1997 struct pci_dev
*bridge
= bus
->self
;
1999 if (device_run_wake(&bridge
->dev
))
2005 /* We have reached the root bus. */
2007 return device_run_wake(bus
->bridge
);
2011 EXPORT_SYMBOL_GPL(pci_dev_run_wake
);
2014 * pci_dev_keep_suspended - Check if the device can stay in the suspended state.
2015 * @pci_dev: Device to check.
2017 * Return 'true' if the device is runtime-suspended, it doesn't have to be
2018 * reconfigured due to wakeup settings difference between system and runtime
2019 * suspend and the current power state of it is suitable for the upcoming
2020 * (system) transition.
2022 bool pci_dev_keep_suspended(struct pci_dev
*pci_dev
)
2024 struct device
*dev
= &pci_dev
->dev
;
2026 if (!pm_runtime_suspended(dev
)
2027 || (device_can_wakeup(dev
) && !device_may_wakeup(dev
))
2028 || platform_pci_need_resume(pci_dev
))
2031 return pci_target_state(pci_dev
) == pci_dev
->current_state
;
2034 void pci_config_pm_runtime_get(struct pci_dev
*pdev
)
2036 struct device
*dev
= &pdev
->dev
;
2037 struct device
*parent
= dev
->parent
;
2040 pm_runtime_get_sync(parent
);
2041 pm_runtime_get_noresume(dev
);
2043 * pdev->current_state is set to PCI_D3cold during suspending,
2044 * so wait until suspending completes
2046 pm_runtime_barrier(dev
);
2048 * Only need to resume devices in D3cold, because config
2049 * registers are still accessible for devices suspended but
2052 if (pdev
->current_state
== PCI_D3cold
)
2053 pm_runtime_resume(dev
);
2056 void pci_config_pm_runtime_put(struct pci_dev
*pdev
)
2058 struct device
*dev
= &pdev
->dev
;
2059 struct device
*parent
= dev
->parent
;
2061 pm_runtime_put(dev
);
2063 pm_runtime_put_sync(parent
);
2067 * pci_pm_init - Initialize PM functions of given PCI device
2068 * @dev: PCI device to handle.
2070 void pci_pm_init(struct pci_dev
*dev
)
2075 pm_runtime_forbid(&dev
->dev
);
2076 pm_runtime_set_active(&dev
->dev
);
2077 pm_runtime_enable(&dev
->dev
);
2078 device_enable_async_suspend(&dev
->dev
);
2079 dev
->wakeup_prepared
= false;
2082 dev
->pme_support
= 0;
2084 /* find PCI PM capability in list */
2085 pm
= pci_find_capability(dev
, PCI_CAP_ID_PM
);
2088 /* Check device's ability to generate PME# */
2089 pci_read_config_word(dev
, pm
+ PCI_PM_PMC
, &pmc
);
2091 if ((pmc
& PCI_PM_CAP_VER_MASK
) > 3) {
2092 dev_err(&dev
->dev
, "unsupported PM cap regs version (%u)\n",
2093 pmc
& PCI_PM_CAP_VER_MASK
);
2098 dev
->d3_delay
= PCI_PM_D3_WAIT
;
2099 dev
->d3cold_delay
= PCI_PM_D3COLD_WAIT
;
2100 dev
->d3cold_allowed
= true;
2102 dev
->d1_support
= false;
2103 dev
->d2_support
= false;
2104 if (!pci_no_d1d2(dev
)) {
2105 if (pmc
& PCI_PM_CAP_D1
)
2106 dev
->d1_support
= true;
2107 if (pmc
& PCI_PM_CAP_D2
)
2108 dev
->d2_support
= true;
2110 if (dev
->d1_support
|| dev
->d2_support
)
2111 dev_printk(KERN_DEBUG
, &dev
->dev
, "supports%s%s\n",
2112 dev
->d1_support
? " D1" : "",
2113 dev
->d2_support
? " D2" : "");
2116 pmc
&= PCI_PM_CAP_PME_MASK
;
2118 dev_printk(KERN_DEBUG
, &dev
->dev
,
2119 "PME# supported from%s%s%s%s%s\n",
2120 (pmc
& PCI_PM_CAP_PME_D0
) ? " D0" : "",
2121 (pmc
& PCI_PM_CAP_PME_D1
) ? " D1" : "",
2122 (pmc
& PCI_PM_CAP_PME_D2
) ? " D2" : "",
2123 (pmc
& PCI_PM_CAP_PME_D3
) ? " D3hot" : "",
2124 (pmc
& PCI_PM_CAP_PME_D3cold
) ? " D3cold" : "");
2125 dev
->pme_support
= pmc
>> PCI_PM_CAP_PME_SHIFT
;
2126 dev
->pme_poll
= true;
2128 * Make device's PM flags reflect the wake-up capability, but
2129 * let the user space enable it to wake up the system as needed.
2131 device_set_wakeup_capable(&dev
->dev
, true);
2132 /* Disable the PME# generation functionality */
2133 pci_pme_active(dev
, false);
2137 static void pci_add_saved_cap(struct pci_dev
*pci_dev
,
2138 struct pci_cap_saved_state
*new_cap
)
2140 hlist_add_head(&new_cap
->next
, &pci_dev
->saved_cap_space
);
2144 * _pci_add_cap_save_buffer - allocate buffer for saving given
2145 * capability registers
2146 * @dev: the PCI device
2147 * @cap: the capability to allocate the buffer for
2148 * @extended: Standard or Extended capability ID
2149 * @size: requested size of the buffer
2151 static int _pci_add_cap_save_buffer(struct pci_dev
*dev
, u16 cap
,
2152 bool extended
, unsigned int size
)
2155 struct pci_cap_saved_state
*save_state
;
2158 pos
= pci_find_ext_capability(dev
, cap
);
2160 pos
= pci_find_capability(dev
, cap
);
2165 save_state
= kzalloc(sizeof(*save_state
) + size
, GFP_KERNEL
);
2169 save_state
->cap
.cap_nr
= cap
;
2170 save_state
->cap
.cap_extended
= extended
;
2171 save_state
->cap
.size
= size
;
2172 pci_add_saved_cap(dev
, save_state
);
2177 int pci_add_cap_save_buffer(struct pci_dev
*dev
, char cap
, unsigned int size
)
2179 return _pci_add_cap_save_buffer(dev
, cap
, false, size
);
2182 int pci_add_ext_cap_save_buffer(struct pci_dev
*dev
, u16 cap
, unsigned int size
)
2184 return _pci_add_cap_save_buffer(dev
, cap
, true, size
);
2188 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
2189 * @dev: the PCI device
2191 void pci_allocate_cap_save_buffers(struct pci_dev
*dev
)
2195 error
= pci_add_cap_save_buffer(dev
, PCI_CAP_ID_EXP
,
2196 PCI_EXP_SAVE_REGS
* sizeof(u16
));
2199 "unable to preallocate PCI Express save buffer\n");
2201 error
= pci_add_cap_save_buffer(dev
, PCI_CAP_ID_PCIX
, sizeof(u16
));
2204 "unable to preallocate PCI-X save buffer\n");
2206 pci_allocate_vc_save_buffers(dev
);
2209 void pci_free_cap_save_buffers(struct pci_dev
*dev
)
2211 struct pci_cap_saved_state
*tmp
;
2212 struct hlist_node
*n
;
2214 hlist_for_each_entry_safe(tmp
, n
, &dev
->saved_cap_space
, next
)
2219 * pci_configure_ari - enable or disable ARI forwarding
2220 * @dev: the PCI device
2222 * If @dev and its upstream bridge both support ARI, enable ARI in the
2223 * bridge. Otherwise, disable ARI in the bridge.
2225 void pci_configure_ari(struct pci_dev
*dev
)
2228 struct pci_dev
*bridge
;
2230 if (pcie_ari_disabled
|| !pci_is_pcie(dev
) || dev
->devfn
)
2233 bridge
= dev
->bus
->self
;
2237 pcie_capability_read_dword(bridge
, PCI_EXP_DEVCAP2
, &cap
);
2238 if (!(cap
& PCI_EXP_DEVCAP2_ARI
))
2241 if (pci_find_ext_capability(dev
, PCI_EXT_CAP_ID_ARI
)) {
2242 pcie_capability_set_word(bridge
, PCI_EXP_DEVCTL2
,
2243 PCI_EXP_DEVCTL2_ARI
);
2244 bridge
->ari_enabled
= 1;
2246 pcie_capability_clear_word(bridge
, PCI_EXP_DEVCTL2
,
2247 PCI_EXP_DEVCTL2_ARI
);
2248 bridge
->ari_enabled
= 0;
2252 static int pci_acs_enable
;
2255 * pci_request_acs - ask for ACS to be enabled if supported
2257 void pci_request_acs(void)
2263 * pci_std_enable_acs - enable ACS on devices using standard ACS capabilites
2264 * @dev: the PCI device
2266 static int pci_std_enable_acs(struct pci_dev
*dev
)
2272 pos
= pci_find_ext_capability(dev
, PCI_EXT_CAP_ID_ACS
);
2276 pci_read_config_word(dev
, pos
+ PCI_ACS_CAP
, &cap
);
2277 pci_read_config_word(dev
, pos
+ PCI_ACS_CTRL
, &ctrl
);
2279 /* Source Validation */
2280 ctrl
|= (cap
& PCI_ACS_SV
);
2282 /* P2P Request Redirect */
2283 ctrl
|= (cap
& PCI_ACS_RR
);
2285 /* P2P Completion Redirect */
2286 ctrl
|= (cap
& PCI_ACS_CR
);
2288 /* Upstream Forwarding */
2289 ctrl
|= (cap
& PCI_ACS_UF
);
2291 pci_write_config_word(dev
, pos
+ PCI_ACS_CTRL
, ctrl
);
2297 * pci_enable_acs - enable ACS if hardware support it
2298 * @dev: the PCI device
2300 void pci_enable_acs(struct pci_dev
*dev
)
2302 if (!pci_acs_enable
)
2305 if (!pci_std_enable_acs(dev
))
2308 pci_dev_specific_enable_acs(dev
);
2311 static bool pci_acs_flags_enabled(struct pci_dev
*pdev
, u16 acs_flags
)
2316 pos
= pci_find_ext_capability(pdev
, PCI_EXT_CAP_ID_ACS
);
2321 * Except for egress control, capabilities are either required
2322 * or only required if controllable. Features missing from the
2323 * capability field can therefore be assumed as hard-wired enabled.
2325 pci_read_config_word(pdev
, pos
+ PCI_ACS_CAP
, &cap
);
2326 acs_flags
&= (cap
| PCI_ACS_EC
);
2328 pci_read_config_word(pdev
, pos
+ PCI_ACS_CTRL
, &ctrl
);
2329 return (ctrl
& acs_flags
) == acs_flags
;
2333 * pci_acs_enabled - test ACS against required flags for a given device
2334 * @pdev: device to test
2335 * @acs_flags: required PCI ACS flags
2337 * Return true if the device supports the provided flags. Automatically
2338 * filters out flags that are not implemented on multifunction devices.
2340 * Note that this interface checks the effective ACS capabilities of the
2341 * device rather than the actual capabilities. For instance, most single
2342 * function endpoints are not required to support ACS because they have no
2343 * opportunity for peer-to-peer access. We therefore return 'true'
2344 * regardless of whether the device exposes an ACS capability. This makes
2345 * it much easier for callers of this function to ignore the actual type
2346 * or topology of the device when testing ACS support.
2348 bool pci_acs_enabled(struct pci_dev
*pdev
, u16 acs_flags
)
2352 ret
= pci_dev_specific_acs_enabled(pdev
, acs_flags
);
2357 * Conventional PCI and PCI-X devices never support ACS, either
2358 * effectively or actually. The shared bus topology implies that
2359 * any device on the bus can receive or snoop DMA.
2361 if (!pci_is_pcie(pdev
))
2364 switch (pci_pcie_type(pdev
)) {
2366 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec,
2367 * but since their primary interface is PCI/X, we conservatively
2368 * handle them as we would a non-PCIe device.
2370 case PCI_EXP_TYPE_PCIE_BRIDGE
:
2372 * PCIe 3.0, 6.12.1 excludes ACS on these devices. "ACS is never
2373 * applicable... must never implement an ACS Extended Capability...".
2374 * This seems arbitrary, but we take a conservative interpretation
2375 * of this statement.
2377 case PCI_EXP_TYPE_PCI_BRIDGE
:
2378 case PCI_EXP_TYPE_RC_EC
:
2381 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should
2382 * implement ACS in order to indicate their peer-to-peer capabilities,
2383 * regardless of whether they are single- or multi-function devices.
2385 case PCI_EXP_TYPE_DOWNSTREAM
:
2386 case PCI_EXP_TYPE_ROOT_PORT
:
2387 return pci_acs_flags_enabled(pdev
, acs_flags
);
2389 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be
2390 * implemented by the remaining PCIe types to indicate peer-to-peer
2391 * capabilities, but only when they are part of a multifunction
2392 * device. The footnote for section 6.12 indicates the specific
2393 * PCIe types included here.
2395 case PCI_EXP_TYPE_ENDPOINT
:
2396 case PCI_EXP_TYPE_UPSTREAM
:
2397 case PCI_EXP_TYPE_LEG_END
:
2398 case PCI_EXP_TYPE_RC_END
:
2399 if (!pdev
->multifunction
)
2402 return pci_acs_flags_enabled(pdev
, acs_flags
);
2406 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable
2407 * to single function devices with the exception of downstream ports.
2413 * pci_acs_path_enable - test ACS flags from start to end in a hierarchy
2414 * @start: starting downstream device
2415 * @end: ending upstream device or NULL to search to the root bus
2416 * @acs_flags: required flags
2418 * Walk up a device tree from start to end testing PCI ACS support. If
2419 * any step along the way does not support the required flags, return false.
2421 bool pci_acs_path_enabled(struct pci_dev
*start
,
2422 struct pci_dev
*end
, u16 acs_flags
)
2424 struct pci_dev
*pdev
, *parent
= start
;
2429 if (!pci_acs_enabled(pdev
, acs_flags
))
2432 if (pci_is_root_bus(pdev
->bus
))
2433 return (end
== NULL
);
2435 parent
= pdev
->bus
->self
;
2436 } while (pdev
!= end
);
2442 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
2443 * @dev: the PCI device
2444 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD)
2446 * Perform INTx swizzling for a device behind one level of bridge. This is
2447 * required by section 9.1 of the PCI-to-PCI bridge specification for devices
2448 * behind bridges on add-in cards. For devices with ARI enabled, the slot
2449 * number is always 0 (see the Implementation Note in section 2.2.8.1 of
2450 * the PCI Express Base Specification, Revision 2.1)
2452 u8
pci_swizzle_interrupt_pin(const struct pci_dev
*dev
, u8 pin
)
2456 if (pci_ari_enabled(dev
->bus
))
2459 slot
= PCI_SLOT(dev
->devfn
);
2461 return (((pin
- 1) + slot
) % 4) + 1;
2464 int pci_get_interrupt_pin(struct pci_dev
*dev
, struct pci_dev
**bridge
)
2472 while (!pci_is_root_bus(dev
->bus
)) {
2473 pin
= pci_swizzle_interrupt_pin(dev
, pin
);
2474 dev
= dev
->bus
->self
;
2481 * pci_common_swizzle - swizzle INTx all the way to root bridge
2482 * @dev: the PCI device
2483 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
2485 * Perform INTx swizzling for a device. This traverses through all PCI-to-PCI
2486 * bridges all the way up to a PCI root bus.
2488 u8
pci_common_swizzle(struct pci_dev
*dev
, u8
*pinp
)
2492 while (!pci_is_root_bus(dev
->bus
)) {
2493 pin
= pci_swizzle_interrupt_pin(dev
, pin
);
2494 dev
= dev
->bus
->self
;
2497 return PCI_SLOT(dev
->devfn
);
2499 EXPORT_SYMBOL_GPL(pci_common_swizzle
);
2502 * pci_release_region - Release a PCI bar
2503 * @pdev: PCI device whose resources were previously reserved by pci_request_region
2504 * @bar: BAR to release
2506 * Releases the PCI I/O and memory resources previously reserved by a
2507 * successful call to pci_request_region. Call this function only
2508 * after all use of the PCI regions has ceased.
2510 void pci_release_region(struct pci_dev
*pdev
, int bar
)
2512 struct pci_devres
*dr
;
2514 if (pci_resource_len(pdev
, bar
) == 0)
2516 if (pci_resource_flags(pdev
, bar
) & IORESOURCE_IO
)
2517 release_region(pci_resource_start(pdev
, bar
),
2518 pci_resource_len(pdev
, bar
));
2519 else if (pci_resource_flags(pdev
, bar
) & IORESOURCE_MEM
)
2520 release_mem_region(pci_resource_start(pdev
, bar
),
2521 pci_resource_len(pdev
, bar
));
2523 dr
= find_pci_dr(pdev
);
2525 dr
->region_mask
&= ~(1 << bar
);
2527 EXPORT_SYMBOL(pci_release_region
);
2530 * __pci_request_region - Reserved PCI I/O and memory resource
2531 * @pdev: PCI device whose resources are to be reserved
2532 * @bar: BAR to be reserved
2533 * @res_name: Name to be associated with resource.
2534 * @exclusive: whether the region access is exclusive or not
2536 * Mark the PCI region associated with PCI device @pdev BR @bar as
2537 * being reserved by owner @res_name. Do not access any
2538 * address inside the PCI regions unless this call returns
2541 * If @exclusive is set, then the region is marked so that userspace
2542 * is explicitly not allowed to map the resource via /dev/mem or
2543 * sysfs MMIO access.
2545 * Returns 0 on success, or %EBUSY on error. A warning
2546 * message is also printed on failure.
2548 static int __pci_request_region(struct pci_dev
*pdev
, int bar
,
2549 const char *res_name
, int exclusive
)
2551 struct pci_devres
*dr
;
2553 if (pci_resource_len(pdev
, bar
) == 0)
2556 if (pci_resource_flags(pdev
, bar
) & IORESOURCE_IO
) {
2557 if (!request_region(pci_resource_start(pdev
, bar
),
2558 pci_resource_len(pdev
, bar
), res_name
))
2560 } else if (pci_resource_flags(pdev
, bar
) & IORESOURCE_MEM
) {
2561 if (!__request_mem_region(pci_resource_start(pdev
, bar
),
2562 pci_resource_len(pdev
, bar
), res_name
,
2567 dr
= find_pci_dr(pdev
);
2569 dr
->region_mask
|= 1 << bar
;
2574 dev_warn(&pdev
->dev
, "BAR %d: can't reserve %pR\n", bar
,
2575 &pdev
->resource
[bar
]);
2580 * pci_request_region - Reserve PCI I/O and memory resource
2581 * @pdev: PCI device whose resources are to be reserved
2582 * @bar: BAR to be reserved
2583 * @res_name: Name to be associated with resource
2585 * Mark the PCI region associated with PCI device @pdev BAR @bar as
2586 * being reserved by owner @res_name. Do not access any
2587 * address inside the PCI regions unless this call returns
2590 * Returns 0 on success, or %EBUSY on error. A warning
2591 * message is also printed on failure.
2593 int pci_request_region(struct pci_dev
*pdev
, int bar
, const char *res_name
)
2595 return __pci_request_region(pdev
, bar
, res_name
, 0);
2597 EXPORT_SYMBOL(pci_request_region
);
2600 * pci_request_region_exclusive - Reserved PCI I/O and memory resource
2601 * @pdev: PCI device whose resources are to be reserved
2602 * @bar: BAR to be reserved
2603 * @res_name: Name to be associated with resource.
2605 * Mark the PCI region associated with PCI device @pdev BR @bar as
2606 * being reserved by owner @res_name. Do not access any
2607 * address inside the PCI regions unless this call returns
2610 * Returns 0 on success, or %EBUSY on error. A warning
2611 * message is also printed on failure.
2613 * The key difference that _exclusive makes it that userspace is
2614 * explicitly not allowed to map the resource via /dev/mem or
2617 int pci_request_region_exclusive(struct pci_dev
*pdev
, int bar
,
2618 const char *res_name
)
2620 return __pci_request_region(pdev
, bar
, res_name
, IORESOURCE_EXCLUSIVE
);
2622 EXPORT_SYMBOL(pci_request_region_exclusive
);
2625 * pci_release_selected_regions - Release selected PCI I/O and memory resources
2626 * @pdev: PCI device whose resources were previously reserved
2627 * @bars: Bitmask of BARs to be released
2629 * Release selected PCI I/O and memory resources previously reserved.
2630 * Call this function only after all use of the PCI regions has ceased.
2632 void pci_release_selected_regions(struct pci_dev
*pdev
, int bars
)
2636 for (i
= 0; i
< 6; i
++)
2637 if (bars
& (1 << i
))
2638 pci_release_region(pdev
, i
);
2640 EXPORT_SYMBOL(pci_release_selected_regions
);
2642 static int __pci_request_selected_regions(struct pci_dev
*pdev
, int bars
,
2643 const char *res_name
, int excl
)
2647 for (i
= 0; i
< 6; i
++)
2648 if (bars
& (1 << i
))
2649 if (__pci_request_region(pdev
, i
, res_name
, excl
))
2655 if (bars
& (1 << i
))
2656 pci_release_region(pdev
, i
);
2663 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
2664 * @pdev: PCI device whose resources are to be reserved
2665 * @bars: Bitmask of BARs to be requested
2666 * @res_name: Name to be associated with resource
2668 int pci_request_selected_regions(struct pci_dev
*pdev
, int bars
,
2669 const char *res_name
)
2671 return __pci_request_selected_regions(pdev
, bars
, res_name
, 0);
2673 EXPORT_SYMBOL(pci_request_selected_regions
);
2675 int pci_request_selected_regions_exclusive(struct pci_dev
*pdev
, int bars
,
2676 const char *res_name
)
2678 return __pci_request_selected_regions(pdev
, bars
, res_name
,
2679 IORESOURCE_EXCLUSIVE
);
2681 EXPORT_SYMBOL(pci_request_selected_regions_exclusive
);
2684 * pci_release_regions - Release reserved PCI I/O and memory resources
2685 * @pdev: PCI device whose resources were previously reserved by pci_request_regions
2687 * Releases all PCI I/O and memory resources previously reserved by a
2688 * successful call to pci_request_regions. Call this function only
2689 * after all use of the PCI regions has ceased.
2692 void pci_release_regions(struct pci_dev
*pdev
)
2694 pci_release_selected_regions(pdev
, (1 << 6) - 1);
2696 EXPORT_SYMBOL(pci_release_regions
);
2699 * pci_request_regions - Reserved PCI I/O and memory resources
2700 * @pdev: PCI device whose resources are to be reserved
2701 * @res_name: Name to be associated with resource.
2703 * Mark all PCI regions associated with PCI device @pdev as
2704 * being reserved by owner @res_name. Do not access any
2705 * address inside the PCI regions unless this call returns
2708 * Returns 0 on success, or %EBUSY on error. A warning
2709 * message is also printed on failure.
2711 int pci_request_regions(struct pci_dev
*pdev
, const char *res_name
)
2713 return pci_request_selected_regions(pdev
, ((1 << 6) - 1), res_name
);
2715 EXPORT_SYMBOL(pci_request_regions
);
2718 * pci_request_regions_exclusive - Reserved PCI I/O and memory resources
2719 * @pdev: PCI device whose resources are to be reserved
2720 * @res_name: Name to be associated with resource.
2722 * Mark all PCI regions associated with PCI device @pdev as
2723 * being reserved by owner @res_name. Do not access any
2724 * address inside the PCI regions unless this call returns
2727 * pci_request_regions_exclusive() will mark the region so that
2728 * /dev/mem and the sysfs MMIO access will not be allowed.
2730 * Returns 0 on success, or %EBUSY on error. A warning
2731 * message is also printed on failure.
2733 int pci_request_regions_exclusive(struct pci_dev
*pdev
, const char *res_name
)
2735 return pci_request_selected_regions_exclusive(pdev
,
2736 ((1 << 6) - 1), res_name
);
2738 EXPORT_SYMBOL(pci_request_regions_exclusive
);
2741 * pci_remap_iospace - Remap the memory mapped I/O space
2742 * @res: Resource describing the I/O space
2743 * @phys_addr: physical address of range to be mapped
2745 * Remap the memory mapped I/O space described by the @res
2746 * and the CPU physical address @phys_addr into virtual address space.
2747 * Only architectures that have memory mapped IO functions defined
2748 * (and the PCI_IOBASE value defined) should call this function.
2750 int __weak
pci_remap_iospace(const struct resource
*res
, phys_addr_t phys_addr
)
2752 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
2753 unsigned long vaddr
= (unsigned long)PCI_IOBASE
+ res
->start
;
2755 if (!(res
->flags
& IORESOURCE_IO
))
2758 if (res
->end
> IO_SPACE_LIMIT
)
2761 return ioremap_page_range(vaddr
, vaddr
+ resource_size(res
), phys_addr
,
2762 pgprot_device(PAGE_KERNEL
));
2764 /* this architecture does not have memory mapped I/O space,
2765 so this function should never be called */
2766 WARN_ONCE(1, "This architecture does not support memory mapped I/O\n");
2771 static void __pci_set_master(struct pci_dev
*dev
, bool enable
)
2775 pci_read_config_word(dev
, PCI_COMMAND
, &old_cmd
);
2777 cmd
= old_cmd
| PCI_COMMAND_MASTER
;
2779 cmd
= old_cmd
& ~PCI_COMMAND_MASTER
;
2780 if (cmd
!= old_cmd
) {
2781 dev_dbg(&dev
->dev
, "%s bus mastering\n",
2782 enable
? "enabling" : "disabling");
2783 pci_write_config_word(dev
, PCI_COMMAND
, cmd
);
2785 dev
->is_busmaster
= enable
;
2789 * pcibios_setup - process "pci=" kernel boot arguments
2790 * @str: string used to pass in "pci=" kernel boot arguments
2792 * Process kernel boot arguments. This is the default implementation.
2793 * Architecture specific implementations can override this as necessary.
2795 char * __weak __init
pcibios_setup(char *str
)
2801 * pcibios_set_master - enable PCI bus-mastering for device dev
2802 * @dev: the PCI device to enable
2804 * Enables PCI bus-mastering for the device. This is the default
2805 * implementation. Architecture specific implementations can override
2806 * this if necessary.
2808 void __weak
pcibios_set_master(struct pci_dev
*dev
)
2812 /* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
2813 if (pci_is_pcie(dev
))
2816 pci_read_config_byte(dev
, PCI_LATENCY_TIMER
, &lat
);
2818 lat
= (64 <= pcibios_max_latency
) ? 64 : pcibios_max_latency
;
2819 else if (lat
> pcibios_max_latency
)
2820 lat
= pcibios_max_latency
;
2824 pci_write_config_byte(dev
, PCI_LATENCY_TIMER
, lat
);
2828 * pci_set_master - enables bus-mastering for device dev
2829 * @dev: the PCI device to enable
2831 * Enables bus-mastering on the device and calls pcibios_set_master()
2832 * to do the needed arch specific settings.
2834 void pci_set_master(struct pci_dev
*dev
)
2836 __pci_set_master(dev
, true);
2837 pcibios_set_master(dev
);
2839 EXPORT_SYMBOL(pci_set_master
);
2842 * pci_clear_master - disables bus-mastering for device dev
2843 * @dev: the PCI device to disable
2845 void pci_clear_master(struct pci_dev
*dev
)
2847 __pci_set_master(dev
, false);
2849 EXPORT_SYMBOL(pci_clear_master
);
2852 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
2853 * @dev: the PCI device for which MWI is to be enabled
2855 * Helper function for pci_set_mwi.
2856 * Originally copied from drivers/net/acenic.c.
2857 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
2859 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2861 int pci_set_cacheline_size(struct pci_dev
*dev
)
2865 if (!pci_cache_line_size
)
2868 /* Validate current setting: the PCI_CACHE_LINE_SIZE must be
2869 equal to or multiple of the right value. */
2870 pci_read_config_byte(dev
, PCI_CACHE_LINE_SIZE
, &cacheline_size
);
2871 if (cacheline_size
>= pci_cache_line_size
&&
2872 (cacheline_size
% pci_cache_line_size
) == 0)
2875 /* Write the correct value. */
2876 pci_write_config_byte(dev
, PCI_CACHE_LINE_SIZE
, pci_cache_line_size
);
2878 pci_read_config_byte(dev
, PCI_CACHE_LINE_SIZE
, &cacheline_size
);
2879 if (cacheline_size
== pci_cache_line_size
)
2882 dev_printk(KERN_DEBUG
, &dev
->dev
, "cache line size of %d is not supported\n",
2883 pci_cache_line_size
<< 2);
2887 EXPORT_SYMBOL_GPL(pci_set_cacheline_size
);
2890 * pci_set_mwi - enables memory-write-invalidate PCI transaction
2891 * @dev: the PCI device for which MWI is enabled
2893 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
2895 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2897 int pci_set_mwi(struct pci_dev
*dev
)
2899 #ifdef PCI_DISABLE_MWI
2905 rc
= pci_set_cacheline_size(dev
);
2909 pci_read_config_word(dev
, PCI_COMMAND
, &cmd
);
2910 if (!(cmd
& PCI_COMMAND_INVALIDATE
)) {
2911 dev_dbg(&dev
->dev
, "enabling Mem-Wr-Inval\n");
2912 cmd
|= PCI_COMMAND_INVALIDATE
;
2913 pci_write_config_word(dev
, PCI_COMMAND
, cmd
);
2918 EXPORT_SYMBOL(pci_set_mwi
);
2921 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
2922 * @dev: the PCI device for which MWI is enabled
2924 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
2925 * Callers are not required to check the return value.
2927 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2929 int pci_try_set_mwi(struct pci_dev
*dev
)
2931 #ifdef PCI_DISABLE_MWI
2934 return pci_set_mwi(dev
);
2937 EXPORT_SYMBOL(pci_try_set_mwi
);
2940 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
2941 * @dev: the PCI device to disable
2943 * Disables PCI Memory-Write-Invalidate transaction on the device
2945 void pci_clear_mwi(struct pci_dev
*dev
)
2947 #ifndef PCI_DISABLE_MWI
2950 pci_read_config_word(dev
, PCI_COMMAND
, &cmd
);
2951 if (cmd
& PCI_COMMAND_INVALIDATE
) {
2952 cmd
&= ~PCI_COMMAND_INVALIDATE
;
2953 pci_write_config_word(dev
, PCI_COMMAND
, cmd
);
2957 EXPORT_SYMBOL(pci_clear_mwi
);
2960 * pci_intx - enables/disables PCI INTx for device dev
2961 * @pdev: the PCI device to operate on
2962 * @enable: boolean: whether to enable or disable PCI INTx
2964 * Enables/disables PCI INTx for device dev
2966 void pci_intx(struct pci_dev
*pdev
, int enable
)
2968 u16 pci_command
, new;
2970 pci_read_config_word(pdev
, PCI_COMMAND
, &pci_command
);
2973 new = pci_command
& ~PCI_COMMAND_INTX_DISABLE
;
2975 new = pci_command
| PCI_COMMAND_INTX_DISABLE
;
2977 if (new != pci_command
) {
2978 struct pci_devres
*dr
;
2980 pci_write_config_word(pdev
, PCI_COMMAND
, new);
2982 dr
= find_pci_dr(pdev
);
2983 if (dr
&& !dr
->restore_intx
) {
2984 dr
->restore_intx
= 1;
2985 dr
->orig_intx
= !enable
;
2989 EXPORT_SYMBOL_GPL(pci_intx
);
2992 * pci_intx_mask_supported - probe for INTx masking support
2993 * @dev: the PCI device to operate on
2995 * Check if the device dev support INTx masking via the config space
2998 bool pci_intx_mask_supported(struct pci_dev
*dev
)
3000 bool mask_supported
= false;
3003 if (dev
->broken_intx_masking
)
3006 pci_cfg_access_lock(dev
);
3008 pci_read_config_word(dev
, PCI_COMMAND
, &orig
);
3009 pci_write_config_word(dev
, PCI_COMMAND
,
3010 orig
^ PCI_COMMAND_INTX_DISABLE
);
3011 pci_read_config_word(dev
, PCI_COMMAND
, &new);
3014 * There's no way to protect against hardware bugs or detect them
3015 * reliably, but as long as we know what the value should be, let's
3016 * go ahead and check it.
3018 if ((new ^ orig
) & ~PCI_COMMAND_INTX_DISABLE
) {
3019 dev_err(&dev
->dev
, "Command register changed from 0x%x to 0x%x: driver or hardware bug?\n",
3021 } else if ((new ^ orig
) & PCI_COMMAND_INTX_DISABLE
) {
3022 mask_supported
= true;
3023 pci_write_config_word(dev
, PCI_COMMAND
, orig
);
3026 pci_cfg_access_unlock(dev
);
3027 return mask_supported
;
3029 EXPORT_SYMBOL_GPL(pci_intx_mask_supported
);
3031 static bool pci_check_and_set_intx_mask(struct pci_dev
*dev
, bool mask
)
3033 struct pci_bus
*bus
= dev
->bus
;
3034 bool mask_updated
= true;
3035 u32 cmd_status_dword
;
3036 u16 origcmd
, newcmd
;
3037 unsigned long flags
;
3041 * We do a single dword read to retrieve both command and status.
3042 * Document assumptions that make this possible.
3044 BUILD_BUG_ON(PCI_COMMAND
% 4);
3045 BUILD_BUG_ON(PCI_COMMAND
+ 2 != PCI_STATUS
);
3047 raw_spin_lock_irqsave(&pci_lock
, flags
);
3049 bus
->ops
->read(bus
, dev
->devfn
, PCI_COMMAND
, 4, &cmd_status_dword
);
3051 irq_pending
= (cmd_status_dword
>> 16) & PCI_STATUS_INTERRUPT
;
3054 * Check interrupt status register to see whether our device
3055 * triggered the interrupt (when masking) or the next IRQ is
3056 * already pending (when unmasking).
3058 if (mask
!= irq_pending
) {
3059 mask_updated
= false;
3063 origcmd
= cmd_status_dword
;
3064 newcmd
= origcmd
& ~PCI_COMMAND_INTX_DISABLE
;
3066 newcmd
|= PCI_COMMAND_INTX_DISABLE
;
3067 if (newcmd
!= origcmd
)
3068 bus
->ops
->write(bus
, dev
->devfn
, PCI_COMMAND
, 2, newcmd
);
3071 raw_spin_unlock_irqrestore(&pci_lock
, flags
);
3073 return mask_updated
;
3077 * pci_check_and_mask_intx - mask INTx on pending interrupt
3078 * @dev: the PCI device to operate on
3080 * Check if the device dev has its INTx line asserted, mask it and
3081 * return true in that case. False is returned if not interrupt was
3084 bool pci_check_and_mask_intx(struct pci_dev
*dev
)
3086 return pci_check_and_set_intx_mask(dev
, true);
3088 EXPORT_SYMBOL_GPL(pci_check_and_mask_intx
);
3091 * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending
3092 * @dev: the PCI device to operate on
3094 * Check if the device dev has its INTx line asserted, unmask it if not
3095 * and return true. False is returned and the mask remains active if
3096 * there was still an interrupt pending.
3098 bool pci_check_and_unmask_intx(struct pci_dev
*dev
)
3100 return pci_check_and_set_intx_mask(dev
, false);
3102 EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx
);
3105 * pci_msi_off - disables any MSI or MSI-X capabilities
3106 * @dev: the PCI device to operate on
3108 * If you want to use MSI, see pci_enable_msi() and friends.
3109 * This is a lower-level primitive that allows us to disable
3110 * MSI operation at the device level.
3112 void pci_msi_off(struct pci_dev
*dev
)
3118 * This looks like it could go in msi.c, but we need it even when
3119 * CONFIG_PCI_MSI=n. For the same reason, we can't use
3120 * dev->msi_cap or dev->msix_cap here.
3122 pos
= pci_find_capability(dev
, PCI_CAP_ID_MSI
);
3124 pci_read_config_word(dev
, pos
+ PCI_MSI_FLAGS
, &control
);
3125 control
&= ~PCI_MSI_FLAGS_ENABLE
;
3126 pci_write_config_word(dev
, pos
+ PCI_MSI_FLAGS
, control
);
3128 pos
= pci_find_capability(dev
, PCI_CAP_ID_MSIX
);
3130 pci_read_config_word(dev
, pos
+ PCI_MSIX_FLAGS
, &control
);
3131 control
&= ~PCI_MSIX_FLAGS_ENABLE
;
3132 pci_write_config_word(dev
, pos
+ PCI_MSIX_FLAGS
, control
);
3135 EXPORT_SYMBOL_GPL(pci_msi_off
);
3137 int pci_set_dma_max_seg_size(struct pci_dev
*dev
, unsigned int size
)
3139 return dma_set_max_seg_size(&dev
->dev
, size
);
3141 EXPORT_SYMBOL(pci_set_dma_max_seg_size
);
3143 int pci_set_dma_seg_boundary(struct pci_dev
*dev
, unsigned long mask
)
3145 return dma_set_seg_boundary(&dev
->dev
, mask
);
3147 EXPORT_SYMBOL(pci_set_dma_seg_boundary
);
3150 * pci_wait_for_pending_transaction - waits for pending transaction
3151 * @dev: the PCI device to operate on
3153 * Return 0 if transaction is pending 1 otherwise.
3155 int pci_wait_for_pending_transaction(struct pci_dev
*dev
)
3157 if (!pci_is_pcie(dev
))
3160 return pci_wait_for_pending(dev
, pci_pcie_cap(dev
) + PCI_EXP_DEVSTA
,
3161 PCI_EXP_DEVSTA_TRPND
);
3163 EXPORT_SYMBOL(pci_wait_for_pending_transaction
);
3165 static int pcie_flr(struct pci_dev
*dev
, int probe
)
3169 pcie_capability_read_dword(dev
, PCI_EXP_DEVCAP
, &cap
);
3170 if (!(cap
& PCI_EXP_DEVCAP_FLR
))
3176 if (!pci_wait_for_pending_transaction(dev
))
3177 dev_err(&dev
->dev
, "timed out waiting for pending transaction; performing function level reset anyway\n");
3179 pcie_capability_set_word(dev
, PCI_EXP_DEVCTL
, PCI_EXP_DEVCTL_BCR_FLR
);
3184 static int pci_af_flr(struct pci_dev
*dev
, int probe
)
3189 pos
= pci_find_capability(dev
, PCI_CAP_ID_AF
);
3193 pci_read_config_byte(dev
, pos
+ PCI_AF_CAP
, &cap
);
3194 if (!(cap
& PCI_AF_CAP_TP
) || !(cap
& PCI_AF_CAP_FLR
))
3201 * Wait for Transaction Pending bit to clear. A word-aligned test
3202 * is used, so we use the conrol offset rather than status and shift
3203 * the test bit to match.
3205 if (!pci_wait_for_pending(dev
, pos
+ PCI_AF_CTRL
,
3206 PCI_AF_STATUS_TP
<< 8))
3207 dev_err(&dev
->dev
, "timed out waiting for pending transaction; performing AF function level reset anyway\n");
3209 pci_write_config_byte(dev
, pos
+ PCI_AF_CTRL
, PCI_AF_CTRL_FLR
);
3215 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
3216 * @dev: Device to reset.
3217 * @probe: If set, only check if the device can be reset this way.
3219 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
3220 * unset, it will be reinitialized internally when going from PCI_D3hot to
3221 * PCI_D0. If that's the case and the device is not in a low-power state
3222 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
3224 * NOTE: This causes the caller to sleep for twice the device power transition
3225 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
3226 * by default (i.e. unless the @dev's d3_delay field has a different value).
3227 * Moreover, only devices in D0 can be reset by this function.
3229 static int pci_pm_reset(struct pci_dev
*dev
, int probe
)
3233 if (!dev
->pm_cap
|| dev
->dev_flags
& PCI_DEV_FLAGS_NO_PM_RESET
)
3236 pci_read_config_word(dev
, dev
->pm_cap
+ PCI_PM_CTRL
, &csr
);
3237 if (csr
& PCI_PM_CTRL_NO_SOFT_RESET
)
3243 if (dev
->current_state
!= PCI_D0
)
3246 csr
&= ~PCI_PM_CTRL_STATE_MASK
;
3248 pci_write_config_word(dev
, dev
->pm_cap
+ PCI_PM_CTRL
, csr
);
3249 pci_dev_d3_sleep(dev
);
3251 csr
&= ~PCI_PM_CTRL_STATE_MASK
;
3253 pci_write_config_word(dev
, dev
->pm_cap
+ PCI_PM_CTRL
, csr
);
3254 pci_dev_d3_sleep(dev
);
3259 void pci_reset_secondary_bus(struct pci_dev
*dev
)
3263 pci_read_config_word(dev
, PCI_BRIDGE_CONTROL
, &ctrl
);
3264 ctrl
|= PCI_BRIDGE_CTL_BUS_RESET
;
3265 pci_write_config_word(dev
, PCI_BRIDGE_CONTROL
, ctrl
);
3267 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms. Double
3268 * this to 2ms to ensure that we meet the minimum requirement.
3272 ctrl
&= ~PCI_BRIDGE_CTL_BUS_RESET
;
3273 pci_write_config_word(dev
, PCI_BRIDGE_CONTROL
, ctrl
);
3276 * Trhfa for conventional PCI is 2^25 clock cycles.
3277 * Assuming a minimum 33MHz clock this results in a 1s
3278 * delay before we can consider subordinate devices to
3279 * be re-initialized. PCIe has some ways to shorten this,
3280 * but we don't make use of them yet.
3285 void __weak
pcibios_reset_secondary_bus(struct pci_dev
*dev
)
3287 pci_reset_secondary_bus(dev
);
3291 * pci_reset_bridge_secondary_bus - Reset the secondary bus on a PCI bridge.
3292 * @dev: Bridge device
3294 * Use the bridge control register to assert reset on the secondary bus.
3295 * Devices on the secondary bus are left in power-on state.
3297 void pci_reset_bridge_secondary_bus(struct pci_dev
*dev
)
3299 pcibios_reset_secondary_bus(dev
);
3301 EXPORT_SYMBOL_GPL(pci_reset_bridge_secondary_bus
);
3303 static int pci_parent_bus_reset(struct pci_dev
*dev
, int probe
)
3305 struct pci_dev
*pdev
;
3307 if (pci_is_root_bus(dev
->bus
) || dev
->subordinate
||
3308 !dev
->bus
->self
|| dev
->dev_flags
& PCI_DEV_FLAGS_NO_BUS_RESET
)
3311 list_for_each_entry(pdev
, &dev
->bus
->devices
, bus_list
)
3318 pci_reset_bridge_secondary_bus(dev
->bus
->self
);
3323 static int pci_reset_hotplug_slot(struct hotplug_slot
*hotplug
, int probe
)
3327 if (!hotplug
|| !try_module_get(hotplug
->ops
->owner
))
3330 if (hotplug
->ops
->reset_slot
)
3331 rc
= hotplug
->ops
->reset_slot(hotplug
, probe
);
3333 module_put(hotplug
->ops
->owner
);
3338 static int pci_dev_reset_slot_function(struct pci_dev
*dev
, int probe
)
3340 struct pci_dev
*pdev
;
3342 if (dev
->subordinate
|| !dev
->slot
||
3343 dev
->dev_flags
& PCI_DEV_FLAGS_NO_BUS_RESET
)
3346 list_for_each_entry(pdev
, &dev
->bus
->devices
, bus_list
)
3347 if (pdev
!= dev
&& pdev
->slot
== dev
->slot
)
3350 return pci_reset_hotplug_slot(dev
->slot
->hotplug
, probe
);
3353 static int __pci_dev_reset(struct pci_dev
*dev
, int probe
)
3359 rc
= pci_dev_specific_reset(dev
, probe
);
3363 rc
= pcie_flr(dev
, probe
);
3367 rc
= pci_af_flr(dev
, probe
);
3371 rc
= pci_pm_reset(dev
, probe
);
3375 rc
= pci_dev_reset_slot_function(dev
, probe
);
3379 rc
= pci_parent_bus_reset(dev
, probe
);
3384 static void pci_dev_lock(struct pci_dev
*dev
)
3386 pci_cfg_access_lock(dev
);
3387 /* block PM suspend, driver probe, etc. */
3388 device_lock(&dev
->dev
);
3391 /* Return 1 on successful lock, 0 on contention */
3392 static int pci_dev_trylock(struct pci_dev
*dev
)
3394 if (pci_cfg_access_trylock(dev
)) {
3395 if (device_trylock(&dev
->dev
))
3397 pci_cfg_access_unlock(dev
);
3403 static void pci_dev_unlock(struct pci_dev
*dev
)
3405 device_unlock(&dev
->dev
);
3406 pci_cfg_access_unlock(dev
);
3410 * pci_reset_notify - notify device driver of reset
3411 * @dev: device to be notified of reset
3412 * @prepare: 'true' if device is about to be reset; 'false' if reset attempt
3415 * Must be called prior to device access being disabled and after device
3416 * access is restored.
3418 static void pci_reset_notify(struct pci_dev
*dev
, bool prepare
)
3420 const struct pci_error_handlers
*err_handler
=
3421 dev
->driver
? dev
->driver
->err_handler
: NULL
;
3422 if (err_handler
&& err_handler
->reset_notify
)
3423 err_handler
->reset_notify(dev
, prepare
);
3426 static void pci_dev_save_and_disable(struct pci_dev
*dev
)
3428 pci_reset_notify(dev
, true);
3431 * Wake-up device prior to save. PM registers default to D0 after
3432 * reset and a simple register restore doesn't reliably return
3433 * to a non-D0 state anyway.
3435 pci_set_power_state(dev
, PCI_D0
);
3437 pci_save_state(dev
);
3439 * Disable the device by clearing the Command register, except for
3440 * INTx-disable which is set. This not only disables MMIO and I/O port
3441 * BARs, but also prevents the device from being Bus Master, preventing
3442 * DMA from the device including MSI/MSI-X interrupts. For PCI 2.3
3443 * compliant devices, INTx-disable prevents legacy interrupts.
3445 pci_write_config_word(dev
, PCI_COMMAND
, PCI_COMMAND_INTX_DISABLE
);
3448 static void pci_dev_restore(struct pci_dev
*dev
)
3450 pci_restore_state(dev
);
3451 pci_reset_notify(dev
, false);
3454 static int pci_dev_reset(struct pci_dev
*dev
, int probe
)
3461 rc
= __pci_dev_reset(dev
, probe
);
3464 pci_dev_unlock(dev
);
3470 * __pci_reset_function - reset a PCI device function
3471 * @dev: PCI device to reset
3473 * Some devices allow an individual function to be reset without affecting
3474 * other functions in the same device. The PCI device must be responsive
3475 * to PCI config space in order to use this function.
3477 * The device function is presumed to be unused when this function is called.
3478 * Resetting the device will make the contents of PCI configuration space
3479 * random, so any caller of this must be prepared to reinitialise the
3480 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
3483 * Returns 0 if the device function was successfully reset or negative if the
3484 * device doesn't support resetting a single function.
3486 int __pci_reset_function(struct pci_dev
*dev
)
3488 return pci_dev_reset(dev
, 0);
3490 EXPORT_SYMBOL_GPL(__pci_reset_function
);
3493 * __pci_reset_function_locked - reset a PCI device function while holding
3494 * the @dev mutex lock.
3495 * @dev: PCI device to reset
3497 * Some devices allow an individual function to be reset without affecting
3498 * other functions in the same device. The PCI device must be responsive
3499 * to PCI config space in order to use this function.
3501 * The device function is presumed to be unused and the caller is holding
3502 * the device mutex lock when this function is called.
3503 * Resetting the device will make the contents of PCI configuration space
3504 * random, so any caller of this must be prepared to reinitialise the
3505 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
3508 * Returns 0 if the device function was successfully reset or negative if the
3509 * device doesn't support resetting a single function.
3511 int __pci_reset_function_locked(struct pci_dev
*dev
)
3513 return __pci_dev_reset(dev
, 0);
3515 EXPORT_SYMBOL_GPL(__pci_reset_function_locked
);
3518 * pci_probe_reset_function - check whether the device can be safely reset
3519 * @dev: PCI device to reset
3521 * Some devices allow an individual function to be reset without affecting
3522 * other functions in the same device. The PCI device must be responsive
3523 * to PCI config space in order to use this function.
3525 * Returns 0 if the device function can be reset or negative if the
3526 * device doesn't support resetting a single function.
3528 int pci_probe_reset_function(struct pci_dev
*dev
)
3530 return pci_dev_reset(dev
, 1);
3534 * pci_reset_function - quiesce and reset a PCI device function
3535 * @dev: PCI device to reset
3537 * Some devices allow an individual function to be reset without affecting
3538 * other functions in the same device. The PCI device must be responsive
3539 * to PCI config space in order to use this function.
3541 * This function does not just reset the PCI portion of a device, but
3542 * clears all the state associated with the device. This function differs
3543 * from __pci_reset_function in that it saves and restores device state
3546 * Returns 0 if the device function was successfully reset or negative if the
3547 * device doesn't support resetting a single function.
3549 int pci_reset_function(struct pci_dev
*dev
)
3553 rc
= pci_dev_reset(dev
, 1);
3557 pci_dev_save_and_disable(dev
);
3559 rc
= pci_dev_reset(dev
, 0);
3561 pci_dev_restore(dev
);
3565 EXPORT_SYMBOL_GPL(pci_reset_function
);
3568 * pci_try_reset_function - quiesce and reset a PCI device function
3569 * @dev: PCI device to reset
3571 * Same as above, except return -EAGAIN if unable to lock device.
3573 int pci_try_reset_function(struct pci_dev
*dev
)
3577 rc
= pci_dev_reset(dev
, 1);
3581 pci_dev_save_and_disable(dev
);
3583 if (pci_dev_trylock(dev
)) {
3584 rc
= __pci_dev_reset(dev
, 0);
3585 pci_dev_unlock(dev
);
3589 pci_dev_restore(dev
);
3593 EXPORT_SYMBOL_GPL(pci_try_reset_function
);
3595 /* Do any devices on or below this bus prevent a bus reset? */
3596 static bool pci_bus_resetable(struct pci_bus
*bus
)
3598 struct pci_dev
*dev
;
3600 list_for_each_entry(dev
, &bus
->devices
, bus_list
) {
3601 if (dev
->dev_flags
& PCI_DEV_FLAGS_NO_BUS_RESET
||
3602 (dev
->subordinate
&& !pci_bus_resetable(dev
->subordinate
)))
3609 /* Lock devices from the top of the tree down */
3610 static void pci_bus_lock(struct pci_bus
*bus
)
3612 struct pci_dev
*dev
;
3614 list_for_each_entry(dev
, &bus
->devices
, bus_list
) {
3616 if (dev
->subordinate
)
3617 pci_bus_lock(dev
->subordinate
);
3621 /* Unlock devices from the bottom of the tree up */
3622 static void pci_bus_unlock(struct pci_bus
*bus
)
3624 struct pci_dev
*dev
;
3626 list_for_each_entry(dev
, &bus
->devices
, bus_list
) {
3627 if (dev
->subordinate
)
3628 pci_bus_unlock(dev
->subordinate
);
3629 pci_dev_unlock(dev
);
3633 /* Return 1 on successful lock, 0 on contention */
3634 static int pci_bus_trylock(struct pci_bus
*bus
)
3636 struct pci_dev
*dev
;
3638 list_for_each_entry(dev
, &bus
->devices
, bus_list
) {
3639 if (!pci_dev_trylock(dev
))
3641 if (dev
->subordinate
) {
3642 if (!pci_bus_trylock(dev
->subordinate
)) {
3643 pci_dev_unlock(dev
);
3651 list_for_each_entry_continue_reverse(dev
, &bus
->devices
, bus_list
) {
3652 if (dev
->subordinate
)
3653 pci_bus_unlock(dev
->subordinate
);
3654 pci_dev_unlock(dev
);
3659 /* Do any devices on or below this slot prevent a bus reset? */
3660 static bool pci_slot_resetable(struct pci_slot
*slot
)
3662 struct pci_dev
*dev
;
3664 list_for_each_entry(dev
, &slot
->bus
->devices
, bus_list
) {
3665 if (!dev
->slot
|| dev
->slot
!= slot
)
3667 if (dev
->dev_flags
& PCI_DEV_FLAGS_NO_BUS_RESET
||
3668 (dev
->subordinate
&& !pci_bus_resetable(dev
->subordinate
)))
3675 /* Lock devices from the top of the tree down */
3676 static void pci_slot_lock(struct pci_slot
*slot
)
3678 struct pci_dev
*dev
;
3680 list_for_each_entry(dev
, &slot
->bus
->devices
, bus_list
) {
3681 if (!dev
->slot
|| dev
->slot
!= slot
)
3684 if (dev
->subordinate
)
3685 pci_bus_lock(dev
->subordinate
);
3689 /* Unlock devices from the bottom of the tree up */
3690 static void pci_slot_unlock(struct pci_slot
*slot
)
3692 struct pci_dev
*dev
;
3694 list_for_each_entry(dev
, &slot
->bus
->devices
, bus_list
) {
3695 if (!dev
->slot
|| dev
->slot
!= slot
)
3697 if (dev
->subordinate
)
3698 pci_bus_unlock(dev
->subordinate
);
3699 pci_dev_unlock(dev
);
3703 /* Return 1 on successful lock, 0 on contention */
3704 static int pci_slot_trylock(struct pci_slot
*slot
)
3706 struct pci_dev
*dev
;
3708 list_for_each_entry(dev
, &slot
->bus
->devices
, bus_list
) {
3709 if (!dev
->slot
|| dev
->slot
!= slot
)
3711 if (!pci_dev_trylock(dev
))
3713 if (dev
->subordinate
) {
3714 if (!pci_bus_trylock(dev
->subordinate
)) {
3715 pci_dev_unlock(dev
);
3723 list_for_each_entry_continue_reverse(dev
,
3724 &slot
->bus
->devices
, bus_list
) {
3725 if (!dev
->slot
|| dev
->slot
!= slot
)
3727 if (dev
->subordinate
)
3728 pci_bus_unlock(dev
->subordinate
);
3729 pci_dev_unlock(dev
);
3734 /* Save and disable devices from the top of the tree down */
3735 static void pci_bus_save_and_disable(struct pci_bus
*bus
)
3737 struct pci_dev
*dev
;
3739 list_for_each_entry(dev
, &bus
->devices
, bus_list
) {
3740 pci_dev_save_and_disable(dev
);
3741 if (dev
->subordinate
)
3742 pci_bus_save_and_disable(dev
->subordinate
);
3747 * Restore devices from top of the tree down - parent bridges need to be
3748 * restored before we can get to subordinate devices.
3750 static void pci_bus_restore(struct pci_bus
*bus
)
3752 struct pci_dev
*dev
;
3754 list_for_each_entry(dev
, &bus
->devices
, bus_list
) {
3755 pci_dev_restore(dev
);
3756 if (dev
->subordinate
)
3757 pci_bus_restore(dev
->subordinate
);
3761 /* Save and disable devices from the top of the tree down */
3762 static void pci_slot_save_and_disable(struct pci_slot
*slot
)
3764 struct pci_dev
*dev
;
3766 list_for_each_entry(dev
, &slot
->bus
->devices
, bus_list
) {
3767 if (!dev
->slot
|| dev
->slot
!= slot
)
3769 pci_dev_save_and_disable(dev
);
3770 if (dev
->subordinate
)
3771 pci_bus_save_and_disable(dev
->subordinate
);
3776 * Restore devices from top of the tree down - parent bridges need to be
3777 * restored before we can get to subordinate devices.
3779 static void pci_slot_restore(struct pci_slot
*slot
)
3781 struct pci_dev
*dev
;
3783 list_for_each_entry(dev
, &slot
->bus
->devices
, bus_list
) {
3784 if (!dev
->slot
|| dev
->slot
!= slot
)
3786 pci_dev_restore(dev
);
3787 if (dev
->subordinate
)
3788 pci_bus_restore(dev
->subordinate
);
3792 static int pci_slot_reset(struct pci_slot
*slot
, int probe
)
3796 if (!slot
|| !pci_slot_resetable(slot
))
3800 pci_slot_lock(slot
);
3804 rc
= pci_reset_hotplug_slot(slot
->hotplug
, probe
);
3807 pci_slot_unlock(slot
);
3813 * pci_probe_reset_slot - probe whether a PCI slot can be reset
3814 * @slot: PCI slot to probe
3816 * Return 0 if slot can be reset, negative if a slot reset is not supported.
3818 int pci_probe_reset_slot(struct pci_slot
*slot
)
3820 return pci_slot_reset(slot
, 1);
3822 EXPORT_SYMBOL_GPL(pci_probe_reset_slot
);
3825 * pci_reset_slot - reset a PCI slot
3826 * @slot: PCI slot to reset
3828 * A PCI bus may host multiple slots, each slot may support a reset mechanism
3829 * independent of other slots. For instance, some slots may support slot power
3830 * control. In the case of a 1:1 bus to slot architecture, this function may
3831 * wrap the bus reset to avoid spurious slot related events such as hotplug.
3832 * Generally a slot reset should be attempted before a bus reset. All of the
3833 * function of the slot and any subordinate buses behind the slot are reset
3834 * through this function. PCI config space of all devices in the slot and
3835 * behind the slot is saved before and restored after reset.
3837 * Return 0 on success, non-zero on error.
3839 int pci_reset_slot(struct pci_slot
*slot
)
3843 rc
= pci_slot_reset(slot
, 1);
3847 pci_slot_save_and_disable(slot
);
3849 rc
= pci_slot_reset(slot
, 0);
3851 pci_slot_restore(slot
);
3855 EXPORT_SYMBOL_GPL(pci_reset_slot
);
3858 * pci_try_reset_slot - Try to reset a PCI slot
3859 * @slot: PCI slot to reset
3861 * Same as above except return -EAGAIN if the slot cannot be locked
3863 int pci_try_reset_slot(struct pci_slot
*slot
)
3867 rc
= pci_slot_reset(slot
, 1);
3871 pci_slot_save_and_disable(slot
);
3873 if (pci_slot_trylock(slot
)) {
3875 rc
= pci_reset_hotplug_slot(slot
->hotplug
, 0);
3876 pci_slot_unlock(slot
);
3880 pci_slot_restore(slot
);
3884 EXPORT_SYMBOL_GPL(pci_try_reset_slot
);
3886 static int pci_bus_reset(struct pci_bus
*bus
, int probe
)
3888 if (!bus
->self
|| !pci_bus_resetable(bus
))
3898 pci_reset_bridge_secondary_bus(bus
->self
);
3900 pci_bus_unlock(bus
);
3906 * pci_probe_reset_bus - probe whether a PCI bus can be reset
3907 * @bus: PCI bus to probe
3909 * Return 0 if bus can be reset, negative if a bus reset is not supported.
3911 int pci_probe_reset_bus(struct pci_bus
*bus
)
3913 return pci_bus_reset(bus
, 1);
3915 EXPORT_SYMBOL_GPL(pci_probe_reset_bus
);
3918 * pci_reset_bus - reset a PCI bus
3919 * @bus: top level PCI bus to reset
3921 * Do a bus reset on the given bus and any subordinate buses, saving
3922 * and restoring state of all devices.
3924 * Return 0 on success, non-zero on error.
3926 int pci_reset_bus(struct pci_bus
*bus
)
3930 rc
= pci_bus_reset(bus
, 1);
3934 pci_bus_save_and_disable(bus
);
3936 rc
= pci_bus_reset(bus
, 0);
3938 pci_bus_restore(bus
);
3942 EXPORT_SYMBOL_GPL(pci_reset_bus
);
3945 * pci_try_reset_bus - Try to reset a PCI bus
3946 * @bus: top level PCI bus to reset
3948 * Same as above except return -EAGAIN if the bus cannot be locked
3950 int pci_try_reset_bus(struct pci_bus
*bus
)
3954 rc
= pci_bus_reset(bus
, 1);
3958 pci_bus_save_and_disable(bus
);
3960 if (pci_bus_trylock(bus
)) {
3962 pci_reset_bridge_secondary_bus(bus
->self
);
3963 pci_bus_unlock(bus
);
3967 pci_bus_restore(bus
);
3971 EXPORT_SYMBOL_GPL(pci_try_reset_bus
);
3974 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
3975 * @dev: PCI device to query
3977 * Returns mmrbc: maximum designed memory read count in bytes
3978 * or appropriate error value.
3980 int pcix_get_max_mmrbc(struct pci_dev
*dev
)
3985 cap
= pci_find_capability(dev
, PCI_CAP_ID_PCIX
);
3989 if (pci_read_config_dword(dev
, cap
+ PCI_X_STATUS
, &stat
))
3992 return 512 << ((stat
& PCI_X_STATUS_MAX_READ
) >> 21);
3994 EXPORT_SYMBOL(pcix_get_max_mmrbc
);
3997 * pcix_get_mmrbc - get PCI-X maximum memory read byte count
3998 * @dev: PCI device to query
4000 * Returns mmrbc: maximum memory read count in bytes
4001 * or appropriate error value.
4003 int pcix_get_mmrbc(struct pci_dev
*dev
)
4008 cap
= pci_find_capability(dev
, PCI_CAP_ID_PCIX
);
4012 if (pci_read_config_word(dev
, cap
+ PCI_X_CMD
, &cmd
))
4015 return 512 << ((cmd
& PCI_X_CMD_MAX_READ
) >> 2);
4017 EXPORT_SYMBOL(pcix_get_mmrbc
);
4020 * pcix_set_mmrbc - set PCI-X maximum memory read byte count
4021 * @dev: PCI device to query
4022 * @mmrbc: maximum memory read count in bytes
4023 * valid values are 512, 1024, 2048, 4096
4025 * If possible sets maximum memory read byte count, some bridges have erratas
4026 * that prevent this.
4028 int pcix_set_mmrbc(struct pci_dev
*dev
, int mmrbc
)
4034 if (mmrbc
< 512 || mmrbc
> 4096 || !is_power_of_2(mmrbc
))
4037 v
= ffs(mmrbc
) - 10;
4039 cap
= pci_find_capability(dev
, PCI_CAP_ID_PCIX
);
4043 if (pci_read_config_dword(dev
, cap
+ PCI_X_STATUS
, &stat
))
4046 if (v
> (stat
& PCI_X_STATUS_MAX_READ
) >> 21)
4049 if (pci_read_config_word(dev
, cap
+ PCI_X_CMD
, &cmd
))
4052 o
= (cmd
& PCI_X_CMD_MAX_READ
) >> 2;
4054 if (v
> o
&& (dev
->bus
->bus_flags
& PCI_BUS_FLAGS_NO_MMRBC
))
4057 cmd
&= ~PCI_X_CMD_MAX_READ
;
4059 if (pci_write_config_word(dev
, cap
+ PCI_X_CMD
, cmd
))
4064 EXPORT_SYMBOL(pcix_set_mmrbc
);
4067 * pcie_get_readrq - get PCI Express read request size
4068 * @dev: PCI device to query
4070 * Returns maximum memory read request in bytes
4071 * or appropriate error value.
4073 int pcie_get_readrq(struct pci_dev
*dev
)
4077 pcie_capability_read_word(dev
, PCI_EXP_DEVCTL
, &ctl
);
4079 return 128 << ((ctl
& PCI_EXP_DEVCTL_READRQ
) >> 12);
4081 EXPORT_SYMBOL(pcie_get_readrq
);
4084 * pcie_set_readrq - set PCI Express maximum memory read request
4085 * @dev: PCI device to query
4086 * @rq: maximum memory read count in bytes
4087 * valid values are 128, 256, 512, 1024, 2048, 4096
4089 * If possible sets maximum memory read request in bytes
4091 int pcie_set_readrq(struct pci_dev
*dev
, int rq
)
4095 if (rq
< 128 || rq
> 4096 || !is_power_of_2(rq
))
4099 * If using the "performance" PCIe config, we clamp the
4100 * read rq size to the max packet size to prevent the
4101 * host bridge generating requests larger than we can
4104 if (pcie_bus_config
== PCIE_BUS_PERFORMANCE
) {
4105 int mps
= pcie_get_mps(dev
);
4111 v
= (ffs(rq
) - 8) << 12;
4113 return pcie_capability_clear_and_set_word(dev
, PCI_EXP_DEVCTL
,
4114 PCI_EXP_DEVCTL_READRQ
, v
);
4116 EXPORT_SYMBOL(pcie_set_readrq
);
4119 * pcie_get_mps - get PCI Express maximum payload size
4120 * @dev: PCI device to query
4122 * Returns maximum payload size in bytes
4124 int pcie_get_mps(struct pci_dev
*dev
)
4128 pcie_capability_read_word(dev
, PCI_EXP_DEVCTL
, &ctl
);
4130 return 128 << ((ctl
& PCI_EXP_DEVCTL_PAYLOAD
) >> 5);
4132 EXPORT_SYMBOL(pcie_get_mps
);
4135 * pcie_set_mps - set PCI Express maximum payload size
4136 * @dev: PCI device to query
4137 * @mps: maximum payload size in bytes
4138 * valid values are 128, 256, 512, 1024, 2048, 4096
4140 * If possible sets maximum payload size
4142 int pcie_set_mps(struct pci_dev
*dev
, int mps
)
4146 if (mps
< 128 || mps
> 4096 || !is_power_of_2(mps
))
4150 if (v
> dev
->pcie_mpss
)
4154 return pcie_capability_clear_and_set_word(dev
, PCI_EXP_DEVCTL
,
4155 PCI_EXP_DEVCTL_PAYLOAD
, v
);
4157 EXPORT_SYMBOL(pcie_set_mps
);
4160 * pcie_get_minimum_link - determine minimum link settings of a PCI device
4161 * @dev: PCI device to query
4162 * @speed: storage for minimum speed
4163 * @width: storage for minimum width
4165 * This function will walk up the PCI device chain and determine the minimum
4166 * link width and speed of the device.
4168 int pcie_get_minimum_link(struct pci_dev
*dev
, enum pci_bus_speed
*speed
,
4169 enum pcie_link_width
*width
)
4173 *speed
= PCI_SPEED_UNKNOWN
;
4174 *width
= PCIE_LNK_WIDTH_UNKNOWN
;
4178 enum pci_bus_speed next_speed
;
4179 enum pcie_link_width next_width
;
4181 ret
= pcie_capability_read_word(dev
, PCI_EXP_LNKSTA
, &lnksta
);
4185 next_speed
= pcie_link_speed
[lnksta
& PCI_EXP_LNKSTA_CLS
];
4186 next_width
= (lnksta
& PCI_EXP_LNKSTA_NLW
) >>
4187 PCI_EXP_LNKSTA_NLW_SHIFT
;
4189 if (next_speed
< *speed
)
4190 *speed
= next_speed
;
4192 if (next_width
< *width
)
4193 *width
= next_width
;
4195 dev
= dev
->bus
->self
;
4200 EXPORT_SYMBOL(pcie_get_minimum_link
);
4203 * pci_select_bars - Make BAR mask from the type of resource
4204 * @dev: the PCI device for which BAR mask is made
4205 * @flags: resource type mask to be selected
4207 * This helper routine makes bar mask from the type of resource.
4209 int pci_select_bars(struct pci_dev
*dev
, unsigned long flags
)
4212 for (i
= 0; i
< PCI_NUM_RESOURCES
; i
++)
4213 if (pci_resource_flags(dev
, i
) & flags
)
4217 EXPORT_SYMBOL(pci_select_bars
);
4220 * pci_resource_bar - get position of the BAR associated with a resource
4221 * @dev: the PCI device
4222 * @resno: the resource number
4223 * @type: the BAR type to be filled in
4225 * Returns BAR position in config space, or 0 if the BAR is invalid.
4227 int pci_resource_bar(struct pci_dev
*dev
, int resno
, enum pci_bar_type
*type
)
4231 if (resno
< PCI_ROM_RESOURCE
) {
4232 *type
= pci_bar_unknown
;
4233 return PCI_BASE_ADDRESS_0
+ 4 * resno
;
4234 } else if (resno
== PCI_ROM_RESOURCE
) {
4235 *type
= pci_bar_mem32
;
4236 return dev
->rom_base_reg
;
4237 } else if (resno
< PCI_BRIDGE_RESOURCES
) {
4238 /* device specific resource */
4239 *type
= pci_bar_unknown
;
4240 reg
= pci_iov_resource_bar(dev
, resno
);
4245 dev_err(&dev
->dev
, "BAR %d: invalid resource\n", resno
);
4249 /* Some architectures require additional programming to enable VGA */
4250 static arch_set_vga_state_t arch_set_vga_state
;
4252 void __init
pci_register_set_vga_state(arch_set_vga_state_t func
)
4254 arch_set_vga_state
= func
; /* NULL disables */
4257 static int pci_set_vga_state_arch(struct pci_dev
*dev
, bool decode
,
4258 unsigned int command_bits
, u32 flags
)
4260 if (arch_set_vga_state
)
4261 return arch_set_vga_state(dev
, decode
, command_bits
,
4267 * pci_set_vga_state - set VGA decode state on device and parents if requested
4268 * @dev: the PCI device
4269 * @decode: true = enable decoding, false = disable decoding
4270 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
4271 * @flags: traverse ancestors and change bridges
4272 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
4274 int pci_set_vga_state(struct pci_dev
*dev
, bool decode
,
4275 unsigned int command_bits
, u32 flags
)
4277 struct pci_bus
*bus
;
4278 struct pci_dev
*bridge
;
4282 WARN_ON((flags
& PCI_VGA_STATE_CHANGE_DECODES
) && (command_bits
& ~(PCI_COMMAND_IO
|PCI_COMMAND_MEMORY
)));
4284 /* ARCH specific VGA enables */
4285 rc
= pci_set_vga_state_arch(dev
, decode
, command_bits
, flags
);
4289 if (flags
& PCI_VGA_STATE_CHANGE_DECODES
) {
4290 pci_read_config_word(dev
, PCI_COMMAND
, &cmd
);
4292 cmd
|= command_bits
;
4294 cmd
&= ~command_bits
;
4295 pci_write_config_word(dev
, PCI_COMMAND
, cmd
);
4298 if (!(flags
& PCI_VGA_STATE_CHANGE_BRIDGE
))
4305 pci_read_config_word(bridge
, PCI_BRIDGE_CONTROL
,
4308 cmd
|= PCI_BRIDGE_CTL_VGA
;
4310 cmd
&= ~PCI_BRIDGE_CTL_VGA
;
4311 pci_write_config_word(bridge
, PCI_BRIDGE_CONTROL
,
4319 bool pci_device_is_present(struct pci_dev
*pdev
)
4323 return pci_bus_read_dev_vendor_id(pdev
->bus
, pdev
->devfn
, &v
, 0);
4325 EXPORT_SYMBOL_GPL(pci_device_is_present
);
4327 #define RESOURCE_ALIGNMENT_PARAM_SIZE COMMAND_LINE_SIZE
4328 static char resource_alignment_param
[RESOURCE_ALIGNMENT_PARAM_SIZE
] = {0};
4329 static DEFINE_SPINLOCK(resource_alignment_lock
);
4332 * pci_specified_resource_alignment - get resource alignment specified by user.
4333 * @dev: the PCI device to get
4335 * RETURNS: Resource alignment if it is specified.
4336 * Zero if it is not specified.
4338 static resource_size_t
pci_specified_resource_alignment(struct pci_dev
*dev
)
4340 int seg
, bus
, slot
, func
, align_order
, count
;
4341 resource_size_t align
= 0;
4344 spin_lock(&resource_alignment_lock
);
4345 p
= resource_alignment_param
;
4348 if (sscanf(p
, "%d%n", &align_order
, &count
) == 1 &&
4354 if (sscanf(p
, "%x:%x:%x.%x%n",
4355 &seg
, &bus
, &slot
, &func
, &count
) != 4) {
4357 if (sscanf(p
, "%x:%x.%x%n",
4358 &bus
, &slot
, &func
, &count
) != 3) {
4359 /* Invalid format */
4360 printk(KERN_ERR
"PCI: Can't parse resource_alignment parameter: %s\n",
4366 if (seg
== pci_domain_nr(dev
->bus
) &&
4367 bus
== dev
->bus
->number
&&
4368 slot
== PCI_SLOT(dev
->devfn
) &&
4369 func
== PCI_FUNC(dev
->devfn
)) {
4370 if (align_order
== -1)
4373 align
= 1 << align_order
;
4377 if (*p
!= ';' && *p
!= ',') {
4378 /* End of param or invalid format */
4383 spin_unlock(&resource_alignment_lock
);
4388 * This function disables memory decoding and releases memory resources
4389 * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
4390 * It also rounds up size to specified alignment.
4391 * Later on, the kernel will assign page-aligned memory resource back
4394 void pci_reassigndev_resource_alignment(struct pci_dev
*dev
)
4398 resource_size_t align
, size
;
4401 /* check if specified PCI is target device to reassign */
4402 align
= pci_specified_resource_alignment(dev
);
4406 if (dev
->hdr_type
== PCI_HEADER_TYPE_NORMAL
&&
4407 (dev
->class >> 8) == PCI_CLASS_BRIDGE_HOST
) {
4409 "Can't reassign resources to host bridge.\n");
4414 "Disabling memory decoding and releasing memory resources.\n");
4415 pci_read_config_word(dev
, PCI_COMMAND
, &command
);
4416 command
&= ~PCI_COMMAND_MEMORY
;
4417 pci_write_config_word(dev
, PCI_COMMAND
, command
);
4419 for (i
= 0; i
< PCI_BRIDGE_RESOURCES
; i
++) {
4420 r
= &dev
->resource
[i
];
4421 if (!(r
->flags
& IORESOURCE_MEM
))
4423 size
= resource_size(r
);
4427 "Rounding up size of resource #%d to %#llx.\n",
4428 i
, (unsigned long long)size
);
4430 r
->flags
|= IORESOURCE_UNSET
;
4434 /* Need to disable bridge's resource window,
4435 * to enable the kernel to reassign new resource
4438 if (dev
->hdr_type
== PCI_HEADER_TYPE_BRIDGE
&&
4439 (dev
->class >> 8) == PCI_CLASS_BRIDGE_PCI
) {
4440 for (i
= PCI_BRIDGE_RESOURCES
; i
< PCI_NUM_RESOURCES
; i
++) {
4441 r
= &dev
->resource
[i
];
4442 if (!(r
->flags
& IORESOURCE_MEM
))
4444 r
->flags
|= IORESOURCE_UNSET
;
4445 r
->end
= resource_size(r
) - 1;
4448 pci_disable_bridge_window(dev
);
4452 static ssize_t
pci_set_resource_alignment_param(const char *buf
, size_t count
)
4454 if (count
> RESOURCE_ALIGNMENT_PARAM_SIZE
- 1)
4455 count
= RESOURCE_ALIGNMENT_PARAM_SIZE
- 1;
4456 spin_lock(&resource_alignment_lock
);
4457 strncpy(resource_alignment_param
, buf
, count
);
4458 resource_alignment_param
[count
] = '\0';
4459 spin_unlock(&resource_alignment_lock
);
4463 static ssize_t
pci_get_resource_alignment_param(char *buf
, size_t size
)
4466 spin_lock(&resource_alignment_lock
);
4467 count
= snprintf(buf
, size
, "%s", resource_alignment_param
);
4468 spin_unlock(&resource_alignment_lock
);
4472 static ssize_t
pci_resource_alignment_show(struct bus_type
*bus
, char *buf
)
4474 return pci_get_resource_alignment_param(buf
, PAGE_SIZE
);
4477 static ssize_t
pci_resource_alignment_store(struct bus_type
*bus
,
4478 const char *buf
, size_t count
)
4480 return pci_set_resource_alignment_param(buf
, count
);
4483 BUS_ATTR(resource_alignment
, 0644, pci_resource_alignment_show
,
4484 pci_resource_alignment_store
);
4486 static int __init
pci_resource_alignment_sysfs_init(void)
4488 return bus_create_file(&pci_bus_type
,
4489 &bus_attr_resource_alignment
);
4491 late_initcall(pci_resource_alignment_sysfs_init
);
4493 static void pci_no_domains(void)
4495 #ifdef CONFIG_PCI_DOMAINS
4496 pci_domains_supported
= 0;
4500 #ifdef CONFIG_PCI_DOMAINS
4501 static atomic_t __domain_nr
= ATOMIC_INIT(-1);
4503 int pci_get_new_domain_nr(void)
4505 return atomic_inc_return(&__domain_nr
);
4508 #ifdef CONFIG_PCI_DOMAINS_GENERIC
4509 void pci_bus_assign_domain_nr(struct pci_bus
*bus
, struct device
*parent
)
4511 static int use_dt_domains
= -1;
4512 int domain
= of_get_pci_domain_nr(parent
->of_node
);
4515 * Check DT domain and use_dt_domains values.
4517 * If DT domain property is valid (domain >= 0) and
4518 * use_dt_domains != 0, the DT assignment is valid since this means
4519 * we have not previously allocated a domain number by using
4520 * pci_get_new_domain_nr(); we should also update use_dt_domains to
4521 * 1, to indicate that we have just assigned a domain number from
4524 * If DT domain property value is not valid (ie domain < 0), and we
4525 * have not previously assigned a domain number from DT
4526 * (use_dt_domains != 1) we should assign a domain number by
4529 * pci_get_new_domain_nr()
4531 * API and update the use_dt_domains value to keep track of method we
4532 * are using to assign domain numbers (use_dt_domains = 0).
4534 * All other combinations imply we have a platform that is trying
4535 * to mix domain numbers obtained from DT and pci_get_new_domain_nr(),
4536 * which is a recipe for domain mishandling and it is prevented by
4537 * invalidating the domain value (domain = -1) and printing a
4538 * corresponding error.
4540 if (domain
>= 0 && use_dt_domains
) {
4542 } else if (domain
< 0 && use_dt_domains
!= 1) {
4544 domain
= pci_get_new_domain_nr();
4546 dev_err(parent
, "Node %s has inconsistent \"linux,pci-domain\" property in DT\n",
4547 parent
->of_node
->full_name
);
4551 bus
->domain_nr
= domain
;
4557 * pci_ext_cfg_avail - can we access extended PCI config space?
4559 * Returns 1 if we can access PCI extended config space (offsets
4560 * greater than 0xff). This is the default implementation. Architecture
4561 * implementations can override this.
4563 int __weak
pci_ext_cfg_avail(void)
4568 void __weak
pci_fixup_cardbus(struct pci_bus
*bus
)
4571 EXPORT_SYMBOL(pci_fixup_cardbus
);
4573 static int __init
pci_setup(char *str
)
4576 char *k
= strchr(str
, ',');
4579 if (*str
&& (str
= pcibios_setup(str
)) && *str
) {
4580 if (!strcmp(str
, "nomsi")) {
4582 } else if (!strcmp(str
, "noaer")) {
4584 } else if (!strncmp(str
, "realloc=", 8)) {
4585 pci_realloc_get_opt(str
+ 8);
4586 } else if (!strncmp(str
, "realloc", 7)) {
4587 pci_realloc_get_opt("on");
4588 } else if (!strcmp(str
, "nodomains")) {
4590 } else if (!strncmp(str
, "noari", 5)) {
4591 pcie_ari_disabled
= true;
4592 } else if (!strncmp(str
, "cbiosize=", 9)) {
4593 pci_cardbus_io_size
= memparse(str
+ 9, &str
);
4594 } else if (!strncmp(str
, "cbmemsize=", 10)) {
4595 pci_cardbus_mem_size
= memparse(str
+ 10, &str
);
4596 } else if (!strncmp(str
, "resource_alignment=", 19)) {
4597 pci_set_resource_alignment_param(str
+ 19,
4599 } else if (!strncmp(str
, "ecrc=", 5)) {
4600 pcie_ecrc_get_policy(str
+ 5);
4601 } else if (!strncmp(str
, "hpiosize=", 9)) {
4602 pci_hotplug_io_size
= memparse(str
+ 9, &str
);
4603 } else if (!strncmp(str
, "hpmemsize=", 10)) {
4604 pci_hotplug_mem_size
= memparse(str
+ 10, &str
);
4605 } else if (!strncmp(str
, "pcie_bus_tune_off", 17)) {
4606 pcie_bus_config
= PCIE_BUS_TUNE_OFF
;
4607 } else if (!strncmp(str
, "pcie_bus_safe", 13)) {
4608 pcie_bus_config
= PCIE_BUS_SAFE
;
4609 } else if (!strncmp(str
, "pcie_bus_perf", 13)) {
4610 pcie_bus_config
= PCIE_BUS_PERFORMANCE
;
4611 } else if (!strncmp(str
, "pcie_bus_peer2peer", 18)) {
4612 pcie_bus_config
= PCIE_BUS_PEER2PEER
;
4613 } else if (!strncmp(str
, "pcie_scan_all", 13)) {
4614 pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS
);
4616 printk(KERN_ERR
"PCI: Unknown option `%s'\n",
4624 early_param("pci", pci_setup
);