2 * RTC subsystem, interface functions
4 * Copyright (C) 2005 Tower Technologies
5 * Author: Alessandro Zummo <a.zummo@towertech.it>
7 * based on arch/arm/common/rtctime.c
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
14 #include <linux/rtc.h>
15 #include <linux/sched.h>
16 #include <linux/module.h>
17 #include <linux/log2.h>
18 #include <linux/workqueue.h>
20 static int rtc_timer_enqueue(struct rtc_device
*rtc
, struct rtc_timer
*timer
);
21 static void rtc_timer_remove(struct rtc_device
*rtc
, struct rtc_timer
*timer
);
23 static int __rtc_read_time(struct rtc_device
*rtc
, struct rtc_time
*tm
)
28 else if (!rtc
->ops
->read_time
)
31 memset(tm
, 0, sizeof(struct rtc_time
));
32 err
= rtc
->ops
->read_time(rtc
->dev
.parent
, tm
);
34 dev_dbg(&rtc
->dev
, "read_time: fail to read: %d\n",
39 err
= rtc_valid_tm(tm
);
41 dev_dbg(&rtc
->dev
, "read_time: rtc_time isn't valid\n");
46 int rtc_read_time(struct rtc_device
*rtc
, struct rtc_time
*tm
)
50 err
= mutex_lock_interruptible(&rtc
->ops_lock
);
54 err
= __rtc_read_time(rtc
, tm
);
55 mutex_unlock(&rtc
->ops_lock
);
58 EXPORT_SYMBOL_GPL(rtc_read_time
);
60 int rtc_set_time(struct rtc_device
*rtc
, struct rtc_time
*tm
)
64 err
= rtc_valid_tm(tm
);
68 err
= mutex_lock_interruptible(&rtc
->ops_lock
);
74 else if (rtc
->ops
->set_time
)
75 err
= rtc
->ops
->set_time(rtc
->dev
.parent
, tm
);
76 else if (rtc
->ops
->set_mmss64
) {
77 time64_t secs64
= rtc_tm_to_time64(tm
);
79 err
= rtc
->ops
->set_mmss64(rtc
->dev
.parent
, secs64
);
80 } else if (rtc
->ops
->set_mmss
) {
81 time64_t secs64
= rtc_tm_to_time64(tm
);
82 err
= rtc
->ops
->set_mmss(rtc
->dev
.parent
, secs64
);
86 pm_stay_awake(rtc
->dev
.parent
);
87 mutex_unlock(&rtc
->ops_lock
);
88 /* A timer might have just expired */
89 schedule_work(&rtc
->irqwork
);
92 EXPORT_SYMBOL_GPL(rtc_set_time
);
94 int rtc_set_mmss(struct rtc_device
*rtc
, unsigned long secs
)
98 err
= mutex_lock_interruptible(&rtc
->ops_lock
);
104 else if (rtc
->ops
->set_mmss64
)
105 err
= rtc
->ops
->set_mmss64(rtc
->dev
.parent
, secs
);
106 else if (rtc
->ops
->set_mmss
)
107 err
= rtc
->ops
->set_mmss(rtc
->dev
.parent
, secs
);
108 else if (rtc
->ops
->read_time
&& rtc
->ops
->set_time
) {
109 struct rtc_time
new, old
;
111 err
= rtc
->ops
->read_time(rtc
->dev
.parent
, &old
);
113 rtc_time64_to_tm(secs
, &new);
116 * avoid writing when we're going to change the day of
117 * the month. We will retry in the next minute. This
118 * basically means that if the RTC must not drift
119 * by more than 1 minute in 11 minutes.
121 if (!((old
.tm_hour
== 23 && old
.tm_min
== 59) ||
122 (new.tm_hour
== 23 && new.tm_min
== 59)))
123 err
= rtc
->ops
->set_time(rtc
->dev
.parent
,
130 pm_stay_awake(rtc
->dev
.parent
);
131 mutex_unlock(&rtc
->ops_lock
);
132 /* A timer might have just expired */
133 schedule_work(&rtc
->irqwork
);
137 EXPORT_SYMBOL_GPL(rtc_set_mmss
);
139 static int rtc_read_alarm_internal(struct rtc_device
*rtc
, struct rtc_wkalrm
*alarm
)
143 err
= mutex_lock_interruptible(&rtc
->ops_lock
);
147 if (rtc
->ops
== NULL
)
149 else if (!rtc
->ops
->read_alarm
)
152 memset(alarm
, 0, sizeof(struct rtc_wkalrm
));
153 err
= rtc
->ops
->read_alarm(rtc
->dev
.parent
, alarm
);
156 mutex_unlock(&rtc
->ops_lock
);
160 int __rtc_read_alarm(struct rtc_device
*rtc
, struct rtc_wkalrm
*alarm
)
163 struct rtc_time before
, now
;
165 time64_t t_now
, t_alm
;
166 enum { none
, day
, month
, year
} missing
= none
;
169 /* The lower level RTC driver may return -1 in some fields,
170 * creating invalid alarm->time values, for reasons like:
172 * - The hardware may not be capable of filling them in;
173 * many alarms match only on time-of-day fields, not
174 * day/month/year calendar data.
176 * - Some hardware uses illegal values as "wildcard" match
177 * values, which non-Linux firmware (like a BIOS) may try
178 * to set up as e.g. "alarm 15 minutes after each hour".
179 * Linux uses only oneshot alarms.
181 * When we see that here, we deal with it by using values from
182 * a current RTC timestamp for any missing (-1) values. The
183 * RTC driver prevents "periodic alarm" modes.
185 * But this can be racey, because some fields of the RTC timestamp
186 * may have wrapped in the interval since we read the RTC alarm,
187 * which would lead to us inserting inconsistent values in place
190 * Reading the alarm and timestamp in the reverse sequence
191 * would have the same race condition, and not solve the issue.
193 * So, we must first read the RTC timestamp,
194 * then read the RTC alarm value,
195 * and then read a second RTC timestamp.
197 * If any fields of the second timestamp have changed
198 * when compared with the first timestamp, then we know
199 * our timestamp may be inconsistent with that used by
200 * the low-level rtc_read_alarm_internal() function.
202 * So, when the two timestamps disagree, we just loop and do
203 * the process again to get a fully consistent set of values.
205 * This could all instead be done in the lower level driver,
206 * but since more than one lower level RTC implementation needs it,
207 * then it's probably best best to do it here instead of there..
210 /* Get the "before" timestamp */
211 err
= rtc_read_time(rtc
, &before
);
216 memcpy(&before
, &now
, sizeof(struct rtc_time
));
219 /* get the RTC alarm values, which may be incomplete */
220 err
= rtc_read_alarm_internal(rtc
, alarm
);
224 /* full-function RTCs won't have such missing fields */
225 if (rtc_valid_tm(&alarm
->time
) == 0)
228 /* get the "after" timestamp, to detect wrapped fields */
229 err
= rtc_read_time(rtc
, &now
);
233 /* note that tm_sec is a "don't care" value here: */
234 } while ( before
.tm_min
!= now
.tm_min
235 || before
.tm_hour
!= now
.tm_hour
236 || before
.tm_mon
!= now
.tm_mon
237 || before
.tm_year
!= now
.tm_year
);
239 /* Fill in the missing alarm fields using the timestamp; we
240 * know there's at least one since alarm->time is invalid.
242 if (alarm
->time
.tm_sec
== -1)
243 alarm
->time
.tm_sec
= now
.tm_sec
;
244 if (alarm
->time
.tm_min
== -1)
245 alarm
->time
.tm_min
= now
.tm_min
;
246 if (alarm
->time
.tm_hour
== -1)
247 alarm
->time
.tm_hour
= now
.tm_hour
;
249 /* For simplicity, only support date rollover for now */
250 if (alarm
->time
.tm_mday
< 1 || alarm
->time
.tm_mday
> 31) {
251 alarm
->time
.tm_mday
= now
.tm_mday
;
254 if ((unsigned)alarm
->time
.tm_mon
>= 12) {
255 alarm
->time
.tm_mon
= now
.tm_mon
;
259 if (alarm
->time
.tm_year
== -1) {
260 alarm
->time
.tm_year
= now
.tm_year
;
265 /* with luck, no rollover is needed */
266 t_now
= rtc_tm_to_time64(&now
);
267 t_alm
= rtc_tm_to_time64(&alarm
->time
);
273 /* 24 hour rollover ... if it's now 10am Monday, an alarm that
274 * that will trigger at 5am will do so at 5am Tuesday, which
275 * could also be in the next month or year. This is a common
276 * case, especially for PCs.
279 dev_dbg(&rtc
->dev
, "alarm rollover: %s\n", "day");
280 t_alm
+= 24 * 60 * 60;
281 rtc_time64_to_tm(t_alm
, &alarm
->time
);
284 /* Month rollover ... if it's the 31th, an alarm on the 3rd will
285 * be next month. An alarm matching on the 30th, 29th, or 28th
286 * may end up in the month after that! Many newer PCs support
287 * this type of alarm.
290 dev_dbg(&rtc
->dev
, "alarm rollover: %s\n", "month");
292 if (alarm
->time
.tm_mon
< 11)
293 alarm
->time
.tm_mon
++;
295 alarm
->time
.tm_mon
= 0;
296 alarm
->time
.tm_year
++;
298 days
= rtc_month_days(alarm
->time
.tm_mon
,
299 alarm
->time
.tm_year
);
300 } while (days
< alarm
->time
.tm_mday
);
303 /* Year rollover ... easy except for leap years! */
305 dev_dbg(&rtc
->dev
, "alarm rollover: %s\n", "year");
307 alarm
->time
.tm_year
++;
308 } while (!is_leap_year(alarm
->time
.tm_year
+ 1900)
309 && rtc_valid_tm(&alarm
->time
) != 0);
313 dev_warn(&rtc
->dev
, "alarm rollover not handled\n");
317 err
= rtc_valid_tm(&alarm
->time
);
320 dev_warn(&rtc
->dev
, "invalid alarm value: %d-%d-%d %d:%d:%d\n",
321 alarm
->time
.tm_year
+ 1900, alarm
->time
.tm_mon
+ 1,
322 alarm
->time
.tm_mday
, alarm
->time
.tm_hour
, alarm
->time
.tm_min
,
329 int rtc_read_alarm(struct rtc_device
*rtc
, struct rtc_wkalrm
*alarm
)
333 err
= mutex_lock_interruptible(&rtc
->ops_lock
);
336 if (rtc
->ops
== NULL
)
338 else if (!rtc
->ops
->read_alarm
)
341 memset(alarm
, 0, sizeof(struct rtc_wkalrm
));
342 alarm
->enabled
= rtc
->aie_timer
.enabled
;
343 alarm
->time
= rtc_ktime_to_tm(rtc
->aie_timer
.node
.expires
);
345 mutex_unlock(&rtc
->ops_lock
);
349 EXPORT_SYMBOL_GPL(rtc_read_alarm
);
351 static int __rtc_set_alarm(struct rtc_device
*rtc
, struct rtc_wkalrm
*alarm
)
354 time64_t now
, scheduled
;
357 err
= rtc_valid_tm(&alarm
->time
);
360 scheduled
= rtc_tm_to_time64(&alarm
->time
);
362 /* Make sure we're not setting alarms in the past */
363 err
= __rtc_read_time(rtc
, &tm
);
366 now
= rtc_tm_to_time64(&tm
);
367 if (scheduled
<= now
)
370 * XXX - We just checked to make sure the alarm time is not
371 * in the past, but there is still a race window where if
372 * the is alarm set for the next second and the second ticks
373 * over right here, before we set the alarm.
378 else if (!rtc
->ops
->set_alarm
)
381 err
= rtc
->ops
->set_alarm(rtc
->dev
.parent
, alarm
);
386 int rtc_set_alarm(struct rtc_device
*rtc
, struct rtc_wkalrm
*alarm
)
390 err
= rtc_valid_tm(&alarm
->time
);
394 err
= mutex_lock_interruptible(&rtc
->ops_lock
);
397 if (rtc
->aie_timer
.enabled
)
398 rtc_timer_remove(rtc
, &rtc
->aie_timer
);
400 rtc
->aie_timer
.node
.expires
= rtc_tm_to_ktime(alarm
->time
);
401 rtc
->aie_timer
.period
= ktime_set(0, 0);
403 err
= rtc_timer_enqueue(rtc
, &rtc
->aie_timer
);
405 mutex_unlock(&rtc
->ops_lock
);
408 EXPORT_SYMBOL_GPL(rtc_set_alarm
);
410 /* Called once per device from rtc_device_register */
411 int rtc_initialize_alarm(struct rtc_device
*rtc
, struct rtc_wkalrm
*alarm
)
416 err
= rtc_valid_tm(&alarm
->time
);
420 err
= rtc_read_time(rtc
, &now
);
424 err
= mutex_lock_interruptible(&rtc
->ops_lock
);
428 rtc
->aie_timer
.node
.expires
= rtc_tm_to_ktime(alarm
->time
);
429 rtc
->aie_timer
.period
= ktime_set(0, 0);
431 /* Alarm has to be enabled & in the futrure for us to enqueue it */
432 if (alarm
->enabled
&& (rtc_tm_to_ktime(now
).tv64
<
433 rtc
->aie_timer
.node
.expires
.tv64
)) {
435 rtc
->aie_timer
.enabled
= 1;
436 timerqueue_add(&rtc
->timerqueue
, &rtc
->aie_timer
.node
);
438 mutex_unlock(&rtc
->ops_lock
);
441 EXPORT_SYMBOL_GPL(rtc_initialize_alarm
);
445 int rtc_alarm_irq_enable(struct rtc_device
*rtc
, unsigned int enabled
)
447 int err
= mutex_lock_interruptible(&rtc
->ops_lock
);
451 if (rtc
->aie_timer
.enabled
!= enabled
) {
453 err
= rtc_timer_enqueue(rtc
, &rtc
->aie_timer
);
455 rtc_timer_remove(rtc
, &rtc
->aie_timer
);
462 else if (!rtc
->ops
->alarm_irq_enable
)
465 err
= rtc
->ops
->alarm_irq_enable(rtc
->dev
.parent
, enabled
);
467 mutex_unlock(&rtc
->ops_lock
);
470 EXPORT_SYMBOL_GPL(rtc_alarm_irq_enable
);
472 int rtc_update_irq_enable(struct rtc_device
*rtc
, unsigned int enabled
)
474 int err
= mutex_lock_interruptible(&rtc
->ops_lock
);
478 #ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL
479 if (enabled
== 0 && rtc
->uie_irq_active
) {
480 mutex_unlock(&rtc
->ops_lock
);
481 return rtc_dev_update_irq_enable_emul(rtc
, 0);
484 /* make sure we're changing state */
485 if (rtc
->uie_rtctimer
.enabled
== enabled
)
488 if (rtc
->uie_unsupported
) {
497 __rtc_read_time(rtc
, &tm
);
498 onesec
= ktime_set(1, 0);
499 now
= rtc_tm_to_ktime(tm
);
500 rtc
->uie_rtctimer
.node
.expires
= ktime_add(now
, onesec
);
501 rtc
->uie_rtctimer
.period
= ktime_set(1, 0);
502 err
= rtc_timer_enqueue(rtc
, &rtc
->uie_rtctimer
);
504 rtc_timer_remove(rtc
, &rtc
->uie_rtctimer
);
507 mutex_unlock(&rtc
->ops_lock
);
508 #ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL
510 * Enable emulation if the driver did not provide
511 * the update_irq_enable function pointer or if returned
512 * -EINVAL to signal that it has been configured without
513 * interrupts or that are not available at the moment.
516 err
= rtc_dev_update_irq_enable_emul(rtc
, enabled
);
521 EXPORT_SYMBOL_GPL(rtc_update_irq_enable
);
525 * rtc_handle_legacy_irq - AIE, UIE and PIE event hook
526 * @rtc: pointer to the rtc device
528 * This function is called when an AIE, UIE or PIE mode interrupt
529 * has occurred (or been emulated).
531 * Triggers the registered irq_task function callback.
533 void rtc_handle_legacy_irq(struct rtc_device
*rtc
, int num
, int mode
)
537 /* mark one irq of the appropriate mode */
538 spin_lock_irqsave(&rtc
->irq_lock
, flags
);
539 rtc
->irq_data
= (rtc
->irq_data
+ (num
<< 8)) | (RTC_IRQF
|mode
);
540 spin_unlock_irqrestore(&rtc
->irq_lock
, flags
);
542 /* call the task func */
543 spin_lock_irqsave(&rtc
->irq_task_lock
, flags
);
545 rtc
->irq_task
->func(rtc
->irq_task
->private_data
);
546 spin_unlock_irqrestore(&rtc
->irq_task_lock
, flags
);
548 wake_up_interruptible(&rtc
->irq_queue
);
549 kill_fasync(&rtc
->async_queue
, SIGIO
, POLL_IN
);
554 * rtc_aie_update_irq - AIE mode rtctimer hook
555 * @private: pointer to the rtc_device
557 * This functions is called when the aie_timer expires.
559 void rtc_aie_update_irq(void *private)
561 struct rtc_device
*rtc
= (struct rtc_device
*)private;
562 rtc_handle_legacy_irq(rtc
, 1, RTC_AF
);
567 * rtc_uie_update_irq - UIE mode rtctimer hook
568 * @private: pointer to the rtc_device
570 * This functions is called when the uie_timer expires.
572 void rtc_uie_update_irq(void *private)
574 struct rtc_device
*rtc
= (struct rtc_device
*)private;
575 rtc_handle_legacy_irq(rtc
, 1, RTC_UF
);
580 * rtc_pie_update_irq - PIE mode hrtimer hook
581 * @timer: pointer to the pie mode hrtimer
583 * This function is used to emulate PIE mode interrupts
584 * using an hrtimer. This function is called when the periodic
587 enum hrtimer_restart
rtc_pie_update_irq(struct hrtimer
*timer
)
589 struct rtc_device
*rtc
;
592 rtc
= container_of(timer
, struct rtc_device
, pie_timer
);
594 period
= ktime_set(0, NSEC_PER_SEC
/rtc
->irq_freq
);
595 count
= hrtimer_forward_now(timer
, period
);
597 rtc_handle_legacy_irq(rtc
, count
, RTC_PF
);
599 return HRTIMER_RESTART
;
603 * rtc_update_irq - Triggered when a RTC interrupt occurs.
604 * @rtc: the rtc device
605 * @num: how many irqs are being reported (usually one)
606 * @events: mask of RTC_IRQF with one or more of RTC_PF, RTC_AF, RTC_UF
609 void rtc_update_irq(struct rtc_device
*rtc
,
610 unsigned long num
, unsigned long events
)
612 if (unlikely(IS_ERR_OR_NULL(rtc
)))
615 pm_stay_awake(rtc
->dev
.parent
);
616 schedule_work(&rtc
->irqwork
);
618 EXPORT_SYMBOL_GPL(rtc_update_irq
);
620 static int __rtc_match(struct device
*dev
, const void *data
)
622 const char *name
= data
;
624 if (strcmp(dev_name(dev
), name
) == 0)
629 struct rtc_device
*rtc_class_open(const char *name
)
632 struct rtc_device
*rtc
= NULL
;
634 dev
= class_find_device(rtc_class
, NULL
, name
, __rtc_match
);
636 rtc
= to_rtc_device(dev
);
639 if (!try_module_get(rtc
->owner
)) {
647 EXPORT_SYMBOL_GPL(rtc_class_open
);
649 void rtc_class_close(struct rtc_device
*rtc
)
651 module_put(rtc
->owner
);
652 put_device(&rtc
->dev
);
654 EXPORT_SYMBOL_GPL(rtc_class_close
);
656 int rtc_irq_register(struct rtc_device
*rtc
, struct rtc_task
*task
)
660 if (task
== NULL
|| task
->func
== NULL
)
663 /* Cannot register while the char dev is in use */
664 if (test_and_set_bit_lock(RTC_DEV_BUSY
, &rtc
->flags
))
667 spin_lock_irq(&rtc
->irq_task_lock
);
668 if (rtc
->irq_task
== NULL
) {
669 rtc
->irq_task
= task
;
672 spin_unlock_irq(&rtc
->irq_task_lock
);
674 clear_bit_unlock(RTC_DEV_BUSY
, &rtc
->flags
);
678 EXPORT_SYMBOL_GPL(rtc_irq_register
);
680 void rtc_irq_unregister(struct rtc_device
*rtc
, struct rtc_task
*task
)
682 spin_lock_irq(&rtc
->irq_task_lock
);
683 if (rtc
->irq_task
== task
)
684 rtc
->irq_task
= NULL
;
685 spin_unlock_irq(&rtc
->irq_task_lock
);
687 EXPORT_SYMBOL_GPL(rtc_irq_unregister
);
689 static int rtc_update_hrtimer(struct rtc_device
*rtc
, int enabled
)
692 * We always cancel the timer here first, because otherwise
693 * we could run into BUG_ON(timer->state != HRTIMER_STATE_CALLBACK);
694 * when we manage to start the timer before the callback
695 * returns HRTIMER_RESTART.
697 * We cannot use hrtimer_cancel() here as a running callback
698 * could be blocked on rtc->irq_task_lock and hrtimer_cancel()
699 * would spin forever.
701 if (hrtimer_try_to_cancel(&rtc
->pie_timer
) < 0)
705 ktime_t period
= ktime_set(0, NSEC_PER_SEC
/ rtc
->irq_freq
);
707 hrtimer_start(&rtc
->pie_timer
, period
, HRTIMER_MODE_REL
);
713 * rtc_irq_set_state - enable/disable 2^N Hz periodic IRQs
714 * @rtc: the rtc device
715 * @task: currently registered with rtc_irq_register()
716 * @enabled: true to enable periodic IRQs
719 * Note that rtc_irq_set_freq() should previously have been used to
720 * specify the desired frequency of periodic IRQ task->func() callbacks.
722 int rtc_irq_set_state(struct rtc_device
*rtc
, struct rtc_task
*task
, int enabled
)
728 spin_lock_irqsave(&rtc
->irq_task_lock
, flags
);
729 if (rtc
->irq_task
!= NULL
&& task
== NULL
)
731 else if (rtc
->irq_task
!= task
)
734 if (rtc_update_hrtimer(rtc
, enabled
) < 0) {
735 spin_unlock_irqrestore(&rtc
->irq_task_lock
, flags
);
739 rtc
->pie_enabled
= enabled
;
741 spin_unlock_irqrestore(&rtc
->irq_task_lock
, flags
);
744 EXPORT_SYMBOL_GPL(rtc_irq_set_state
);
747 * rtc_irq_set_freq - set 2^N Hz periodic IRQ frequency for IRQ
748 * @rtc: the rtc device
749 * @task: currently registered with rtc_irq_register()
750 * @freq: positive frequency with which task->func() will be called
753 * Note that rtc_irq_set_state() is used to enable or disable the
756 int rtc_irq_set_freq(struct rtc_device
*rtc
, struct rtc_task
*task
, int freq
)
761 if (freq
<= 0 || freq
> RTC_MAX_FREQ
)
764 spin_lock_irqsave(&rtc
->irq_task_lock
, flags
);
765 if (rtc
->irq_task
!= NULL
&& task
== NULL
)
767 else if (rtc
->irq_task
!= task
)
770 rtc
->irq_freq
= freq
;
771 if (rtc
->pie_enabled
&& rtc_update_hrtimer(rtc
, 1) < 0) {
772 spin_unlock_irqrestore(&rtc
->irq_task_lock
, flags
);
777 spin_unlock_irqrestore(&rtc
->irq_task_lock
, flags
);
780 EXPORT_SYMBOL_GPL(rtc_irq_set_freq
);
783 * rtc_timer_enqueue - Adds a rtc_timer to the rtc_device timerqueue
785 * @timer timer being added.
787 * Enqueues a timer onto the rtc devices timerqueue and sets
788 * the next alarm event appropriately.
790 * Sets the enabled bit on the added timer.
792 * Must hold ops_lock for proper serialization of timerqueue
794 static int rtc_timer_enqueue(struct rtc_device
*rtc
, struct rtc_timer
*timer
)
797 timerqueue_add(&rtc
->timerqueue
, &timer
->node
);
798 if (&timer
->node
== timerqueue_getnext(&rtc
->timerqueue
)) {
799 struct rtc_wkalrm alarm
;
801 alarm
.time
= rtc_ktime_to_tm(timer
->node
.expires
);
803 err
= __rtc_set_alarm(rtc
, &alarm
);
805 pm_stay_awake(rtc
->dev
.parent
);
806 schedule_work(&rtc
->irqwork
);
808 timerqueue_del(&rtc
->timerqueue
, &timer
->node
);
816 static void rtc_alarm_disable(struct rtc_device
*rtc
)
818 if (!rtc
->ops
|| !rtc
->ops
->alarm_irq_enable
)
821 rtc
->ops
->alarm_irq_enable(rtc
->dev
.parent
, false);
825 * rtc_timer_remove - Removes a rtc_timer from the rtc_device timerqueue
827 * @timer timer being removed.
829 * Removes a timer onto the rtc devices timerqueue and sets
830 * the next alarm event appropriately.
832 * Clears the enabled bit on the removed timer.
834 * Must hold ops_lock for proper serialization of timerqueue
836 static void rtc_timer_remove(struct rtc_device
*rtc
, struct rtc_timer
*timer
)
838 struct timerqueue_node
*next
= timerqueue_getnext(&rtc
->timerqueue
);
839 timerqueue_del(&rtc
->timerqueue
, &timer
->node
);
841 if (next
== &timer
->node
) {
842 struct rtc_wkalrm alarm
;
844 next
= timerqueue_getnext(&rtc
->timerqueue
);
846 rtc_alarm_disable(rtc
);
849 alarm
.time
= rtc_ktime_to_tm(next
->expires
);
851 err
= __rtc_set_alarm(rtc
, &alarm
);
853 pm_stay_awake(rtc
->dev
.parent
);
854 schedule_work(&rtc
->irqwork
);
860 * rtc_timer_do_work - Expires rtc timers
862 * @timer timer being removed.
864 * Expires rtc timers. Reprograms next alarm event if needed.
865 * Called via worktask.
867 * Serializes access to timerqueue via ops_lock mutex
869 void rtc_timer_do_work(struct work_struct
*work
)
871 struct rtc_timer
*timer
;
872 struct timerqueue_node
*next
;
876 struct rtc_device
*rtc
=
877 container_of(work
, struct rtc_device
, irqwork
);
879 mutex_lock(&rtc
->ops_lock
);
881 __rtc_read_time(rtc
, &tm
);
882 now
= rtc_tm_to_ktime(tm
);
883 while ((next
= timerqueue_getnext(&rtc
->timerqueue
))) {
884 if (next
->expires
.tv64
> now
.tv64
)
888 timer
= container_of(next
, struct rtc_timer
, node
);
889 timerqueue_del(&rtc
->timerqueue
, &timer
->node
);
891 if (timer
->task
.func
)
892 timer
->task
.func(timer
->task
.private_data
);
894 /* Re-add/fwd periodic timers */
895 if (ktime_to_ns(timer
->period
)) {
896 timer
->node
.expires
= ktime_add(timer
->node
.expires
,
899 timerqueue_add(&rtc
->timerqueue
, &timer
->node
);
905 struct rtc_wkalrm alarm
;
909 alarm
.time
= rtc_ktime_to_tm(next
->expires
);
912 err
= __rtc_set_alarm(rtc
, &alarm
);
919 timer
= container_of(next
, struct rtc_timer
, node
);
920 timerqueue_del(&rtc
->timerqueue
, &timer
->node
);
922 dev_err(&rtc
->dev
, "__rtc_set_alarm: err=%d\n", err
);
926 rtc_alarm_disable(rtc
);
928 pm_relax(rtc
->dev
.parent
);
929 mutex_unlock(&rtc
->ops_lock
);
933 /* rtc_timer_init - Initializes an rtc_timer
934 * @timer: timer to be intiialized
935 * @f: function pointer to be called when timer fires
936 * @data: private data passed to function pointer
938 * Kernel interface to initializing an rtc_timer.
940 void rtc_timer_init(struct rtc_timer
*timer
, void (*f
)(void *p
), void *data
)
942 timerqueue_init(&timer
->node
);
944 timer
->task
.func
= f
;
945 timer
->task
.private_data
= data
;
948 /* rtc_timer_start - Sets an rtc_timer to fire in the future
949 * @ rtc: rtc device to be used
950 * @ timer: timer being set
951 * @ expires: time at which to expire the timer
952 * @ period: period that the timer will recur
954 * Kernel interface to set an rtc_timer
956 int rtc_timer_start(struct rtc_device
*rtc
, struct rtc_timer
*timer
,
957 ktime_t expires
, ktime_t period
)
960 mutex_lock(&rtc
->ops_lock
);
962 rtc_timer_remove(rtc
, timer
);
964 timer
->node
.expires
= expires
;
965 timer
->period
= period
;
967 ret
= rtc_timer_enqueue(rtc
, timer
);
969 mutex_unlock(&rtc
->ops_lock
);
973 /* rtc_timer_cancel - Stops an rtc_timer
974 * @ rtc: rtc device to be used
975 * @ timer: timer being set
977 * Kernel interface to cancel an rtc_timer
979 int rtc_timer_cancel(struct rtc_device
*rtc
, struct rtc_timer
*timer
)
982 mutex_lock(&rtc
->ops_lock
);
984 rtc_timer_remove(rtc
, timer
);
985 mutex_unlock(&rtc
->ops_lock
);