2 * (C) Copyright Linus Torvalds 1999
3 * (C) Copyright Johannes Erdfelt 1999-2001
4 * (C) Copyright Andreas Gal 1999
5 * (C) Copyright Gregory P. Smith 1999
6 * (C) Copyright Deti Fliegl 1999
7 * (C) Copyright Randy Dunlap 2000
8 * (C) Copyright David Brownell 2000-2002
10 * This program is free software; you can redistribute it and/or modify it
11 * under the terms of the GNU General Public License as published by the
12 * Free Software Foundation; either version 2 of the License, or (at your
13 * option) any later version.
15 * This program is distributed in the hope that it will be useful, but
16 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
17 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software Foundation,
22 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
25 #include <linux/bcd.h>
26 #include <linux/module.h>
27 #include <linux/version.h>
28 #include <linux/kernel.h>
29 #include <linux/slab.h>
30 #include <linux/completion.h>
31 #include <linux/utsname.h>
34 #include <linux/device.h>
35 #include <linux/dma-mapping.h>
36 #include <linux/mutex.h>
38 #include <asm/byteorder.h>
39 #include <asm/unaligned.h>
40 #include <linux/platform_device.h>
41 #include <linux/workqueue.h>
42 #include <linux/pm_runtime.h>
43 #include <linux/types.h>
45 #include <linux/phy/phy.h>
46 #include <linux/usb.h>
47 #include <linux/usb/hcd.h>
48 #include <linux/usb/phy.h>
53 /*-------------------------------------------------------------------------*/
56 * USB Host Controller Driver framework
58 * Plugs into usbcore (usb_bus) and lets HCDs share code, minimizing
59 * HCD-specific behaviors/bugs.
61 * This does error checks, tracks devices and urbs, and delegates to a
62 * "hc_driver" only for code (and data) that really needs to know about
63 * hardware differences. That includes root hub registers, i/o queues,
64 * and so on ... but as little else as possible.
66 * Shared code includes most of the "root hub" code (these are emulated,
67 * though each HC's hardware works differently) and PCI glue, plus request
68 * tracking overhead. The HCD code should only block on spinlocks or on
69 * hardware handshaking; blocking on software events (such as other kernel
70 * threads releasing resources, or completing actions) is all generic.
72 * Happens the USB 2.0 spec says this would be invisible inside the "USBD",
73 * and includes mostly a "HCDI" (HCD Interface) along with some APIs used
74 * only by the hub driver ... and that neither should be seen or used by
75 * usb client device drivers.
77 * Contributors of ideas or unattributed patches include: David Brownell,
78 * Roman Weissgaerber, Rory Bolt, Greg Kroah-Hartman, ...
81 * 2002-02-21 Pull in most of the usb_bus support from usb.c; some
82 * associated cleanup. "usb_hcd" still != "usb_bus".
83 * 2001-12-12 Initial patch version for Linux 2.5.1 kernel.
86 /*-------------------------------------------------------------------------*/
88 /* Keep track of which host controller drivers are loaded */
89 unsigned long usb_hcds_loaded
;
90 EXPORT_SYMBOL_GPL(usb_hcds_loaded
);
92 /* host controllers we manage */
93 LIST_HEAD (usb_bus_list
);
94 EXPORT_SYMBOL_GPL (usb_bus_list
);
96 /* used when allocating bus numbers */
98 static DECLARE_BITMAP(busmap
, USB_MAXBUS
);
100 /* used when updating list of hcds */
101 DEFINE_MUTEX(usb_bus_list_lock
); /* exported only for usbfs */
102 EXPORT_SYMBOL_GPL (usb_bus_list_lock
);
104 /* used for controlling access to virtual root hubs */
105 static DEFINE_SPINLOCK(hcd_root_hub_lock
);
107 /* used when updating an endpoint's URB list */
108 static DEFINE_SPINLOCK(hcd_urb_list_lock
);
110 /* used to protect against unlinking URBs after the device is gone */
111 static DEFINE_SPINLOCK(hcd_urb_unlink_lock
);
113 /* wait queue for synchronous unlinks */
114 DECLARE_WAIT_QUEUE_HEAD(usb_kill_urb_queue
);
116 static inline int is_root_hub(struct usb_device
*udev
)
118 return (udev
->parent
== NULL
);
121 /*-------------------------------------------------------------------------*/
124 * Sharable chunks of root hub code.
127 /*-------------------------------------------------------------------------*/
128 #define KERNEL_REL bin2bcd(((LINUX_VERSION_CODE >> 16) & 0x0ff))
129 #define KERNEL_VER bin2bcd(((LINUX_VERSION_CODE >> 8) & 0x0ff))
131 /* usb 3.0 root hub device descriptor */
132 static const u8 usb3_rh_dev_descriptor
[18] = {
133 0x12, /* __u8 bLength; */
134 0x01, /* __u8 bDescriptorType; Device */
135 0x00, 0x03, /* __le16 bcdUSB; v3.0 */
137 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
138 0x00, /* __u8 bDeviceSubClass; */
139 0x03, /* __u8 bDeviceProtocol; USB 3.0 hub */
140 0x09, /* __u8 bMaxPacketSize0; 2^9 = 512 Bytes */
142 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
143 0x03, 0x00, /* __le16 idProduct; device 0x0003 */
144 KERNEL_VER
, KERNEL_REL
, /* __le16 bcdDevice */
146 0x03, /* __u8 iManufacturer; */
147 0x02, /* __u8 iProduct; */
148 0x01, /* __u8 iSerialNumber; */
149 0x01 /* __u8 bNumConfigurations; */
152 /* usb 2.5 (wireless USB 1.0) root hub device descriptor */
153 static const u8 usb25_rh_dev_descriptor
[18] = {
154 0x12, /* __u8 bLength; */
155 0x01, /* __u8 bDescriptorType; Device */
156 0x50, 0x02, /* __le16 bcdUSB; v2.5 */
158 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
159 0x00, /* __u8 bDeviceSubClass; */
160 0x00, /* __u8 bDeviceProtocol; [ usb 2.0 no TT ] */
161 0xFF, /* __u8 bMaxPacketSize0; always 0xFF (WUSB Spec 7.4.1). */
163 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
164 0x02, 0x00, /* __le16 idProduct; device 0x0002 */
165 KERNEL_VER
, KERNEL_REL
, /* __le16 bcdDevice */
167 0x03, /* __u8 iManufacturer; */
168 0x02, /* __u8 iProduct; */
169 0x01, /* __u8 iSerialNumber; */
170 0x01 /* __u8 bNumConfigurations; */
173 /* usb 2.0 root hub device descriptor */
174 static const u8 usb2_rh_dev_descriptor
[18] = {
175 0x12, /* __u8 bLength; */
176 0x01, /* __u8 bDescriptorType; Device */
177 0x00, 0x02, /* __le16 bcdUSB; v2.0 */
179 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
180 0x00, /* __u8 bDeviceSubClass; */
181 0x00, /* __u8 bDeviceProtocol; [ usb 2.0 no TT ] */
182 0x40, /* __u8 bMaxPacketSize0; 64 Bytes */
184 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
185 0x02, 0x00, /* __le16 idProduct; device 0x0002 */
186 KERNEL_VER
, KERNEL_REL
, /* __le16 bcdDevice */
188 0x03, /* __u8 iManufacturer; */
189 0x02, /* __u8 iProduct; */
190 0x01, /* __u8 iSerialNumber; */
191 0x01 /* __u8 bNumConfigurations; */
194 /* no usb 2.0 root hub "device qualifier" descriptor: one speed only */
196 /* usb 1.1 root hub device descriptor */
197 static const u8 usb11_rh_dev_descriptor
[18] = {
198 0x12, /* __u8 bLength; */
199 0x01, /* __u8 bDescriptorType; Device */
200 0x10, 0x01, /* __le16 bcdUSB; v1.1 */
202 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
203 0x00, /* __u8 bDeviceSubClass; */
204 0x00, /* __u8 bDeviceProtocol; [ low/full speeds only ] */
205 0x40, /* __u8 bMaxPacketSize0; 64 Bytes */
207 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
208 0x01, 0x00, /* __le16 idProduct; device 0x0001 */
209 KERNEL_VER
, KERNEL_REL
, /* __le16 bcdDevice */
211 0x03, /* __u8 iManufacturer; */
212 0x02, /* __u8 iProduct; */
213 0x01, /* __u8 iSerialNumber; */
214 0x01 /* __u8 bNumConfigurations; */
218 /*-------------------------------------------------------------------------*/
220 /* Configuration descriptors for our root hubs */
222 static const u8 fs_rh_config_descriptor
[] = {
224 /* one configuration */
225 0x09, /* __u8 bLength; */
226 0x02, /* __u8 bDescriptorType; Configuration */
227 0x19, 0x00, /* __le16 wTotalLength; */
228 0x01, /* __u8 bNumInterfaces; (1) */
229 0x01, /* __u8 bConfigurationValue; */
230 0x00, /* __u8 iConfiguration; */
231 0xc0, /* __u8 bmAttributes;
236 0x00, /* __u8 MaxPower; */
239 * USB 2.0, single TT organization (mandatory):
240 * one interface, protocol 0
242 * USB 2.0, multiple TT organization (optional):
243 * two interfaces, protocols 1 (like single TT)
244 * and 2 (multiple TT mode) ... config is
250 0x09, /* __u8 if_bLength; */
251 0x04, /* __u8 if_bDescriptorType; Interface */
252 0x00, /* __u8 if_bInterfaceNumber; */
253 0x00, /* __u8 if_bAlternateSetting; */
254 0x01, /* __u8 if_bNumEndpoints; */
255 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */
256 0x00, /* __u8 if_bInterfaceSubClass; */
257 0x00, /* __u8 if_bInterfaceProtocol; [usb1.1 or single tt] */
258 0x00, /* __u8 if_iInterface; */
260 /* one endpoint (status change endpoint) */
261 0x07, /* __u8 ep_bLength; */
262 0x05, /* __u8 ep_bDescriptorType; Endpoint */
263 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */
264 0x03, /* __u8 ep_bmAttributes; Interrupt */
265 0x02, 0x00, /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) */
266 0xff /* __u8 ep_bInterval; (255ms -- usb 2.0 spec) */
269 static const u8 hs_rh_config_descriptor
[] = {
271 /* one configuration */
272 0x09, /* __u8 bLength; */
273 0x02, /* __u8 bDescriptorType; Configuration */
274 0x19, 0x00, /* __le16 wTotalLength; */
275 0x01, /* __u8 bNumInterfaces; (1) */
276 0x01, /* __u8 bConfigurationValue; */
277 0x00, /* __u8 iConfiguration; */
278 0xc0, /* __u8 bmAttributes;
283 0x00, /* __u8 MaxPower; */
286 * USB 2.0, single TT organization (mandatory):
287 * one interface, protocol 0
289 * USB 2.0, multiple TT organization (optional):
290 * two interfaces, protocols 1 (like single TT)
291 * and 2 (multiple TT mode) ... config is
297 0x09, /* __u8 if_bLength; */
298 0x04, /* __u8 if_bDescriptorType; Interface */
299 0x00, /* __u8 if_bInterfaceNumber; */
300 0x00, /* __u8 if_bAlternateSetting; */
301 0x01, /* __u8 if_bNumEndpoints; */
302 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */
303 0x00, /* __u8 if_bInterfaceSubClass; */
304 0x00, /* __u8 if_bInterfaceProtocol; [usb1.1 or single tt] */
305 0x00, /* __u8 if_iInterface; */
307 /* one endpoint (status change endpoint) */
308 0x07, /* __u8 ep_bLength; */
309 0x05, /* __u8 ep_bDescriptorType; Endpoint */
310 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */
311 0x03, /* __u8 ep_bmAttributes; Interrupt */
312 /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
313 * see hub.c:hub_configure() for details. */
314 (USB_MAXCHILDREN
+ 1 + 7) / 8, 0x00,
315 0x0c /* __u8 ep_bInterval; (256ms -- usb 2.0 spec) */
318 static const u8 ss_rh_config_descriptor
[] = {
319 /* one configuration */
320 0x09, /* __u8 bLength; */
321 0x02, /* __u8 bDescriptorType; Configuration */
322 0x1f, 0x00, /* __le16 wTotalLength; */
323 0x01, /* __u8 bNumInterfaces; (1) */
324 0x01, /* __u8 bConfigurationValue; */
325 0x00, /* __u8 iConfiguration; */
326 0xc0, /* __u8 bmAttributes;
331 0x00, /* __u8 MaxPower; */
334 0x09, /* __u8 if_bLength; */
335 0x04, /* __u8 if_bDescriptorType; Interface */
336 0x00, /* __u8 if_bInterfaceNumber; */
337 0x00, /* __u8 if_bAlternateSetting; */
338 0x01, /* __u8 if_bNumEndpoints; */
339 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */
340 0x00, /* __u8 if_bInterfaceSubClass; */
341 0x00, /* __u8 if_bInterfaceProtocol; */
342 0x00, /* __u8 if_iInterface; */
344 /* one endpoint (status change endpoint) */
345 0x07, /* __u8 ep_bLength; */
346 0x05, /* __u8 ep_bDescriptorType; Endpoint */
347 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */
348 0x03, /* __u8 ep_bmAttributes; Interrupt */
349 /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
350 * see hub.c:hub_configure() for details. */
351 (USB_MAXCHILDREN
+ 1 + 7) / 8, 0x00,
352 0x0c, /* __u8 ep_bInterval; (256ms -- usb 2.0 spec) */
354 /* one SuperSpeed endpoint companion descriptor */
355 0x06, /* __u8 ss_bLength */
356 0x30, /* __u8 ss_bDescriptorType; SuperSpeed EP Companion */
357 0x00, /* __u8 ss_bMaxBurst; allows 1 TX between ACKs */
358 0x00, /* __u8 ss_bmAttributes; 1 packet per service interval */
359 0x02, 0x00 /* __le16 ss_wBytesPerInterval; 15 bits for max 15 ports */
362 /* authorized_default behaviour:
363 * -1 is authorized for all devices except wireless (old behaviour)
364 * 0 is unauthorized for all devices
365 * 1 is authorized for all devices
367 static int authorized_default
= -1;
368 module_param(authorized_default
, int, S_IRUGO
|S_IWUSR
);
369 MODULE_PARM_DESC(authorized_default
,
370 "Default USB device authorization: 0 is not authorized, 1 is "
371 "authorized, -1 is authorized except for wireless USB (default, "
373 /*-------------------------------------------------------------------------*/
376 * ascii2desc() - Helper routine for producing UTF-16LE string descriptors
377 * @s: Null-terminated ASCII (actually ISO-8859-1) string
378 * @buf: Buffer for USB string descriptor (header + UTF-16LE)
379 * @len: Length (in bytes; may be odd) of descriptor buffer.
381 * Return: The number of bytes filled in: 2 + 2*strlen(s) or @len,
385 * USB String descriptors can contain at most 126 characters; input
386 * strings longer than that are truncated.
389 ascii2desc(char const *s
, u8
*buf
, unsigned len
)
391 unsigned n
, t
= 2 + 2*strlen(s
);
394 t
= 254; /* Longest possible UTF string descriptor */
398 t
+= USB_DT_STRING
<< 8; /* Now t is first 16 bits to store */
406 t
= (unsigned char)*s
++;
412 * rh_string() - provides string descriptors for root hub
413 * @id: the string ID number (0: langids, 1: serial #, 2: product, 3: vendor)
414 * @hcd: the host controller for this root hub
415 * @data: buffer for output packet
416 * @len: length of the provided buffer
418 * Produces either a manufacturer, product or serial number string for the
419 * virtual root hub device.
421 * Return: The number of bytes filled in: the length of the descriptor or
422 * of the provided buffer, whichever is less.
425 rh_string(int id
, struct usb_hcd
const *hcd
, u8
*data
, unsigned len
)
429 static char const langids
[4] = {4, USB_DT_STRING
, 0x09, 0x04};
434 /* Array of LANGID codes (0x0409 is MSFT-speak for "en-us") */
435 /* See http://www.usb.org/developers/docs/USB_LANGIDs.pdf */
438 memcpy(data
, langids
, len
);
442 s
= hcd
->self
.bus_name
;
446 s
= hcd
->product_desc
;
450 snprintf (buf
, sizeof buf
, "%s %s %s", init_utsname()->sysname
,
451 init_utsname()->release
, hcd
->driver
->description
);
455 /* Can't happen; caller guarantees it */
459 return ascii2desc(s
, data
, len
);
463 /* Root hub control transfers execute synchronously */
464 static int rh_call_control (struct usb_hcd
*hcd
, struct urb
*urb
)
466 struct usb_ctrlrequest
*cmd
;
467 u16 typeReq
, wValue
, wIndex
, wLength
;
468 u8
*ubuf
= urb
->transfer_buffer
;
472 u8 patch_protocol
= 0;
479 spin_lock_irq(&hcd_root_hub_lock
);
480 status
= usb_hcd_link_urb_to_ep(hcd
, urb
);
481 spin_unlock_irq(&hcd_root_hub_lock
);
484 urb
->hcpriv
= hcd
; /* Indicate it's queued */
486 cmd
= (struct usb_ctrlrequest
*) urb
->setup_packet
;
487 typeReq
= (cmd
->bRequestType
<< 8) | cmd
->bRequest
;
488 wValue
= le16_to_cpu (cmd
->wValue
);
489 wIndex
= le16_to_cpu (cmd
->wIndex
);
490 wLength
= le16_to_cpu (cmd
->wLength
);
492 if (wLength
> urb
->transfer_buffer_length
)
496 * tbuf should be at least as big as the
497 * USB hub descriptor.
499 tbuf_size
= max_t(u16
, sizeof(struct usb_hub_descriptor
), wLength
);
500 tbuf
= kzalloc(tbuf_size
, GFP_KERNEL
);
507 urb
->actual_length
= 0;
510 /* DEVICE REQUESTS */
512 /* The root hub's remote wakeup enable bit is implemented using
513 * driver model wakeup flags. If this system supports wakeup
514 * through USB, userspace may change the default "allow wakeup"
515 * policy through sysfs or these calls.
517 * Most root hubs support wakeup from downstream devices, for
518 * runtime power management (disabling USB clocks and reducing
519 * VBUS power usage). However, not all of them do so; silicon,
520 * board, and BIOS bugs here are not uncommon, so these can't
521 * be treated quite like external hubs.
523 * Likewise, not all root hubs will pass wakeup events upstream,
524 * to wake up the whole system. So don't assume root hub and
525 * controller capabilities are identical.
528 case DeviceRequest
| USB_REQ_GET_STATUS
:
529 tbuf
[0] = (device_may_wakeup(&hcd
->self
.root_hub
->dev
)
530 << USB_DEVICE_REMOTE_WAKEUP
)
531 | (1 << USB_DEVICE_SELF_POWERED
);
535 case DeviceOutRequest
| USB_REQ_CLEAR_FEATURE
:
536 if (wValue
== USB_DEVICE_REMOTE_WAKEUP
)
537 device_set_wakeup_enable(&hcd
->self
.root_hub
->dev
, 0);
541 case DeviceOutRequest
| USB_REQ_SET_FEATURE
:
542 if (device_can_wakeup(&hcd
->self
.root_hub
->dev
)
543 && wValue
== USB_DEVICE_REMOTE_WAKEUP
)
544 device_set_wakeup_enable(&hcd
->self
.root_hub
->dev
, 1);
548 case DeviceRequest
| USB_REQ_GET_CONFIGURATION
:
552 case DeviceOutRequest
| USB_REQ_SET_CONFIGURATION
:
554 case DeviceRequest
| USB_REQ_GET_DESCRIPTOR
:
555 switch (wValue
& 0xff00) {
556 case USB_DT_DEVICE
<< 8:
557 switch (hcd
->speed
) {
559 bufp
= usb3_rh_dev_descriptor
;
562 bufp
= usb25_rh_dev_descriptor
;
565 bufp
= usb2_rh_dev_descriptor
;
568 bufp
= usb11_rh_dev_descriptor
;
577 case USB_DT_CONFIG
<< 8:
578 switch (hcd
->speed
) {
580 bufp
= ss_rh_config_descriptor
;
581 len
= sizeof ss_rh_config_descriptor
;
585 bufp
= hs_rh_config_descriptor
;
586 len
= sizeof hs_rh_config_descriptor
;
589 bufp
= fs_rh_config_descriptor
;
590 len
= sizeof fs_rh_config_descriptor
;
595 if (device_can_wakeup(&hcd
->self
.root_hub
->dev
))
598 case USB_DT_STRING
<< 8:
599 if ((wValue
& 0xff) < 4)
600 urb
->actual_length
= rh_string(wValue
& 0xff,
602 else /* unsupported IDs --> "protocol stall" */
605 case USB_DT_BOS
<< 8:
611 case DeviceRequest
| USB_REQ_GET_INTERFACE
:
615 case DeviceOutRequest
| USB_REQ_SET_INTERFACE
:
617 case DeviceOutRequest
| USB_REQ_SET_ADDRESS
:
618 /* wValue == urb->dev->devaddr */
619 dev_dbg (hcd
->self
.controller
, "root hub device address %d\n",
623 /* INTERFACE REQUESTS (no defined feature/status flags) */
625 /* ENDPOINT REQUESTS */
627 case EndpointRequest
| USB_REQ_GET_STATUS
:
628 /* ENDPOINT_HALT flag */
633 case EndpointOutRequest
| USB_REQ_CLEAR_FEATURE
:
634 case EndpointOutRequest
| USB_REQ_SET_FEATURE
:
635 dev_dbg (hcd
->self
.controller
, "no endpoint features yet\n");
638 /* CLASS REQUESTS (and errors) */
642 /* non-generic request */
648 case GetHubDescriptor
:
649 len
= sizeof (struct usb_hub_descriptor
);
651 case DeviceRequest
| USB_REQ_GET_DESCRIPTOR
:
652 /* len is returned by hub_control */
655 status
= hcd
->driver
->hub_control (hcd
,
656 typeReq
, wValue
, wIndex
,
659 if (typeReq
== GetHubDescriptor
)
660 usb_hub_adjust_deviceremovable(hcd
->self
.root_hub
,
661 (struct usb_hub_descriptor
*)tbuf
);
664 /* "protocol stall" on error */
670 if (status
!= -EPIPE
) {
671 dev_dbg (hcd
->self
.controller
,
672 "CTRL: TypeReq=0x%x val=0x%x "
673 "idx=0x%x len=%d ==> %d\n",
674 typeReq
, wValue
, wIndex
,
677 } else if (status
> 0) {
678 /* hub_control may return the length of data copied. */
683 if (urb
->transfer_buffer_length
< len
)
684 len
= urb
->transfer_buffer_length
;
685 urb
->actual_length
= len
;
686 /* always USB_DIR_IN, toward host */
687 memcpy (ubuf
, bufp
, len
);
689 /* report whether RH hardware supports remote wakeup */
691 len
> offsetof (struct usb_config_descriptor
,
693 ((struct usb_config_descriptor
*)ubuf
)->bmAttributes
694 |= USB_CONFIG_ATT_WAKEUP
;
696 /* report whether RH hardware has an integrated TT */
697 if (patch_protocol
&&
698 len
> offsetof(struct usb_device_descriptor
,
700 ((struct usb_device_descriptor
*) ubuf
)->
701 bDeviceProtocol
= USB_HUB_PR_HS_SINGLE_TT
;
706 /* any errors get returned through the urb completion */
707 spin_lock_irq(&hcd_root_hub_lock
);
708 usb_hcd_unlink_urb_from_ep(hcd
, urb
);
709 usb_hcd_giveback_urb(hcd
, urb
, status
);
710 spin_unlock_irq(&hcd_root_hub_lock
);
714 /*-------------------------------------------------------------------------*/
717 * Root Hub interrupt transfers are polled using a timer if the
718 * driver requests it; otherwise the driver is responsible for
719 * calling usb_hcd_poll_rh_status() when an event occurs.
721 * Completions are called in_interrupt(), but they may or may not
724 void usb_hcd_poll_rh_status(struct usb_hcd
*hcd
)
729 char buffer
[6]; /* Any root hubs with > 31 ports? */
731 if (unlikely(!hcd
->rh_pollable
))
733 if (!hcd
->uses_new_polling
&& !hcd
->status_urb
)
736 length
= hcd
->driver
->hub_status_data(hcd
, buffer
);
739 /* try to complete the status urb */
740 spin_lock_irqsave(&hcd_root_hub_lock
, flags
);
741 urb
= hcd
->status_urb
;
743 clear_bit(HCD_FLAG_POLL_PENDING
, &hcd
->flags
);
744 hcd
->status_urb
= NULL
;
745 urb
->actual_length
= length
;
746 memcpy(urb
->transfer_buffer
, buffer
, length
);
748 usb_hcd_unlink_urb_from_ep(hcd
, urb
);
749 usb_hcd_giveback_urb(hcd
, urb
, 0);
752 set_bit(HCD_FLAG_POLL_PENDING
, &hcd
->flags
);
754 spin_unlock_irqrestore(&hcd_root_hub_lock
, flags
);
757 /* The USB 2.0 spec says 256 ms. This is close enough and won't
758 * exceed that limit if HZ is 100. The math is more clunky than
759 * maybe expected, this is to make sure that all timers for USB devices
760 * fire at the same time to give the CPU a break in between */
761 if (hcd
->uses_new_polling
? HCD_POLL_RH(hcd
) :
762 (length
== 0 && hcd
->status_urb
!= NULL
))
763 mod_timer (&hcd
->rh_timer
, (jiffies
/(HZ
/4) + 1) * (HZ
/4));
765 EXPORT_SYMBOL_GPL(usb_hcd_poll_rh_status
);
768 static void rh_timer_func (unsigned long _hcd
)
770 usb_hcd_poll_rh_status((struct usb_hcd
*) _hcd
);
773 /*-------------------------------------------------------------------------*/
775 static int rh_queue_status (struct usb_hcd
*hcd
, struct urb
*urb
)
779 unsigned len
= 1 + (urb
->dev
->maxchild
/ 8);
781 spin_lock_irqsave (&hcd_root_hub_lock
, flags
);
782 if (hcd
->status_urb
|| urb
->transfer_buffer_length
< len
) {
783 dev_dbg (hcd
->self
.controller
, "not queuing rh status urb\n");
788 retval
= usb_hcd_link_urb_to_ep(hcd
, urb
);
792 hcd
->status_urb
= urb
;
793 urb
->hcpriv
= hcd
; /* indicate it's queued */
794 if (!hcd
->uses_new_polling
)
795 mod_timer(&hcd
->rh_timer
, (jiffies
/(HZ
/4) + 1) * (HZ
/4));
797 /* If a status change has already occurred, report it ASAP */
798 else if (HCD_POLL_PENDING(hcd
))
799 mod_timer(&hcd
->rh_timer
, jiffies
);
802 spin_unlock_irqrestore (&hcd_root_hub_lock
, flags
);
806 static int rh_urb_enqueue (struct usb_hcd
*hcd
, struct urb
*urb
)
808 if (usb_endpoint_xfer_int(&urb
->ep
->desc
))
809 return rh_queue_status (hcd
, urb
);
810 if (usb_endpoint_xfer_control(&urb
->ep
->desc
))
811 return rh_call_control (hcd
, urb
);
815 /*-------------------------------------------------------------------------*/
817 /* Unlinks of root-hub control URBs are legal, but they don't do anything
818 * since these URBs always execute synchronously.
820 static int usb_rh_urb_dequeue(struct usb_hcd
*hcd
, struct urb
*urb
, int status
)
825 spin_lock_irqsave(&hcd_root_hub_lock
, flags
);
826 rc
= usb_hcd_check_unlink_urb(hcd
, urb
, status
);
830 if (usb_endpoint_num(&urb
->ep
->desc
) == 0) { /* Control URB */
833 } else { /* Status URB */
834 if (!hcd
->uses_new_polling
)
835 del_timer (&hcd
->rh_timer
);
836 if (urb
== hcd
->status_urb
) {
837 hcd
->status_urb
= NULL
;
838 usb_hcd_unlink_urb_from_ep(hcd
, urb
);
839 usb_hcd_giveback_urb(hcd
, urb
, status
);
843 spin_unlock_irqrestore(&hcd_root_hub_lock
, flags
);
850 * Show & store the current value of authorized_default
852 static ssize_t
authorized_default_show(struct device
*dev
,
853 struct device_attribute
*attr
, char *buf
)
855 struct usb_device
*rh_usb_dev
= to_usb_device(dev
);
856 struct usb_bus
*usb_bus
= rh_usb_dev
->bus
;
857 struct usb_hcd
*usb_hcd
;
859 usb_hcd
= bus_to_hcd(usb_bus
);
860 return snprintf(buf
, PAGE_SIZE
, "%u\n", usb_hcd
->authorized_default
);
863 static ssize_t
authorized_default_store(struct device
*dev
,
864 struct device_attribute
*attr
,
865 const char *buf
, size_t size
)
869 struct usb_device
*rh_usb_dev
= to_usb_device(dev
);
870 struct usb_bus
*usb_bus
= rh_usb_dev
->bus
;
871 struct usb_hcd
*usb_hcd
;
873 usb_hcd
= bus_to_hcd(usb_bus
);
874 result
= sscanf(buf
, "%u\n", &val
);
876 usb_hcd
->authorized_default
= val
? 1 : 0;
883 static DEVICE_ATTR_RW(authorized_default
);
885 /* Group all the USB bus attributes */
886 static struct attribute
*usb_bus_attrs
[] = {
887 &dev_attr_authorized_default
.attr
,
891 static struct attribute_group usb_bus_attr_group
= {
892 .name
= NULL
, /* we want them in the same directory */
893 .attrs
= usb_bus_attrs
,
898 /*-------------------------------------------------------------------------*/
901 * usb_bus_init - shared initialization code
902 * @bus: the bus structure being initialized
904 * This code is used to initialize a usb_bus structure, memory for which is
905 * separately managed.
907 static void usb_bus_init (struct usb_bus
*bus
)
909 memset (&bus
->devmap
, 0, sizeof(struct usb_devmap
));
911 bus
->devnum_next
= 1;
913 bus
->root_hub
= NULL
;
915 bus
->bandwidth_allocated
= 0;
916 bus
->bandwidth_int_reqs
= 0;
917 bus
->bandwidth_isoc_reqs
= 0;
918 mutex_init(&bus
->usb_address0_mutex
);
920 INIT_LIST_HEAD (&bus
->bus_list
);
923 /*-------------------------------------------------------------------------*/
926 * usb_register_bus - registers the USB host controller with the usb core
927 * @bus: pointer to the bus to register
928 * Context: !in_interrupt()
930 * Assigns a bus number, and links the controller into usbcore data
931 * structures so that it can be seen by scanning the bus list.
933 * Return: 0 if successful. A negative error code otherwise.
935 static int usb_register_bus(struct usb_bus
*bus
)
940 mutex_lock(&usb_bus_list_lock
);
941 busnum
= find_next_zero_bit(busmap
, USB_MAXBUS
, 1);
942 if (busnum
>= USB_MAXBUS
) {
943 printk (KERN_ERR
"%s: too many buses\n", usbcore_name
);
944 goto error_find_busnum
;
946 set_bit(busnum
, busmap
);
947 bus
->busnum
= busnum
;
949 /* Add it to the local list of buses */
950 list_add (&bus
->bus_list
, &usb_bus_list
);
951 mutex_unlock(&usb_bus_list_lock
);
953 usb_notify_add_bus(bus
);
955 dev_info (bus
->controller
, "new USB bus registered, assigned bus "
956 "number %d\n", bus
->busnum
);
960 mutex_unlock(&usb_bus_list_lock
);
965 * usb_deregister_bus - deregisters the USB host controller
966 * @bus: pointer to the bus to deregister
967 * Context: !in_interrupt()
969 * Recycles the bus number, and unlinks the controller from usbcore data
970 * structures so that it won't be seen by scanning the bus list.
972 static void usb_deregister_bus (struct usb_bus
*bus
)
974 dev_info (bus
->controller
, "USB bus %d deregistered\n", bus
->busnum
);
977 * NOTE: make sure that all the devices are removed by the
978 * controller code, as well as having it call this when cleaning
981 mutex_lock(&usb_bus_list_lock
);
982 list_del (&bus
->bus_list
);
983 mutex_unlock(&usb_bus_list_lock
);
985 usb_notify_remove_bus(bus
);
987 clear_bit(bus
->busnum
, busmap
);
991 * register_root_hub - called by usb_add_hcd() to register a root hub
992 * @hcd: host controller for this root hub
994 * This function registers the root hub with the USB subsystem. It sets up
995 * the device properly in the device tree and then calls usb_new_device()
996 * to register the usb device. It also assigns the root hub's USB address
999 * Return: 0 if successful. A negative error code otherwise.
1001 static int register_root_hub(struct usb_hcd
*hcd
)
1003 struct device
*parent_dev
= hcd
->self
.controller
;
1004 struct usb_device
*usb_dev
= hcd
->self
.root_hub
;
1005 const int devnum
= 1;
1008 usb_dev
->devnum
= devnum
;
1009 usb_dev
->bus
->devnum_next
= devnum
+ 1;
1010 memset (&usb_dev
->bus
->devmap
.devicemap
, 0,
1011 sizeof usb_dev
->bus
->devmap
.devicemap
);
1012 set_bit (devnum
, usb_dev
->bus
->devmap
.devicemap
);
1013 usb_set_device_state(usb_dev
, USB_STATE_ADDRESS
);
1015 mutex_lock(&usb_bus_list_lock
);
1017 usb_dev
->ep0
.desc
.wMaxPacketSize
= cpu_to_le16(64);
1018 retval
= usb_get_device_descriptor(usb_dev
, USB_DT_DEVICE_SIZE
);
1019 if (retval
!= sizeof usb_dev
->descriptor
) {
1020 mutex_unlock(&usb_bus_list_lock
);
1021 dev_dbg (parent_dev
, "can't read %s device descriptor %d\n",
1022 dev_name(&usb_dev
->dev
), retval
);
1023 return (retval
< 0) ? retval
: -EMSGSIZE
;
1025 if (usb_dev
->speed
== USB_SPEED_SUPER
) {
1026 retval
= usb_get_bos_descriptor(usb_dev
);
1028 mutex_unlock(&usb_bus_list_lock
);
1029 dev_dbg(parent_dev
, "can't read %s bos descriptor %d\n",
1030 dev_name(&usb_dev
->dev
), retval
);
1035 retval
= usb_new_device (usb_dev
);
1037 dev_err (parent_dev
, "can't register root hub for %s, %d\n",
1038 dev_name(&usb_dev
->dev
), retval
);
1040 spin_lock_irq (&hcd_root_hub_lock
);
1041 hcd
->rh_registered
= 1;
1042 spin_unlock_irq (&hcd_root_hub_lock
);
1044 /* Did the HC die before the root hub was registered? */
1046 usb_hc_died (hcd
); /* This time clean up */
1048 mutex_unlock(&usb_bus_list_lock
);
1054 * usb_hcd_start_port_resume - a root-hub port is sending a resume signal
1055 * @bus: the bus which the root hub belongs to
1056 * @portnum: the port which is being resumed
1058 * HCDs should call this function when they know that a resume signal is
1059 * being sent to a root-hub port. The root hub will be prevented from
1060 * going into autosuspend until usb_hcd_end_port_resume() is called.
1062 * The bus's private lock must be held by the caller.
1064 void usb_hcd_start_port_resume(struct usb_bus
*bus
, int portnum
)
1066 unsigned bit
= 1 << portnum
;
1068 if (!(bus
->resuming_ports
& bit
)) {
1069 bus
->resuming_ports
|= bit
;
1070 pm_runtime_get_noresume(&bus
->root_hub
->dev
);
1073 EXPORT_SYMBOL_GPL(usb_hcd_start_port_resume
);
1076 * usb_hcd_end_port_resume - a root-hub port has stopped sending a resume signal
1077 * @bus: the bus which the root hub belongs to
1078 * @portnum: the port which is being resumed
1080 * HCDs should call this function when they know that a resume signal has
1081 * stopped being sent to a root-hub port. The root hub will be allowed to
1082 * autosuspend again.
1084 * The bus's private lock must be held by the caller.
1086 void usb_hcd_end_port_resume(struct usb_bus
*bus
, int portnum
)
1088 unsigned bit
= 1 << portnum
;
1090 if (bus
->resuming_ports
& bit
) {
1091 bus
->resuming_ports
&= ~bit
;
1092 pm_runtime_put_noidle(&bus
->root_hub
->dev
);
1095 EXPORT_SYMBOL_GPL(usb_hcd_end_port_resume
);
1097 /*-------------------------------------------------------------------------*/
1100 * usb_calc_bus_time - approximate periodic transaction time in nanoseconds
1101 * @speed: from dev->speed; USB_SPEED_{LOW,FULL,HIGH}
1102 * @is_input: true iff the transaction sends data to the host
1103 * @isoc: true for isochronous transactions, false for interrupt ones
1104 * @bytecount: how many bytes in the transaction.
1106 * Return: Approximate bus time in nanoseconds for a periodic transaction.
1109 * See USB 2.0 spec section 5.11.3; only periodic transfers need to be
1110 * scheduled in software, this function is only used for such scheduling.
1112 long usb_calc_bus_time (int speed
, int is_input
, int isoc
, int bytecount
)
1117 case USB_SPEED_LOW
: /* INTR only */
1119 tmp
= (67667L * (31L + 10L * BitTime (bytecount
))) / 1000L;
1120 return 64060L + (2 * BW_HUB_LS_SETUP
) + BW_HOST_DELAY
+ tmp
;
1122 tmp
= (66700L * (31L + 10L * BitTime (bytecount
))) / 1000L;
1123 return 64107L + (2 * BW_HUB_LS_SETUP
) + BW_HOST_DELAY
+ tmp
;
1125 case USB_SPEED_FULL
: /* ISOC or INTR */
1127 tmp
= (8354L * (31L + 10L * BitTime (bytecount
))) / 1000L;
1128 return ((is_input
) ? 7268L : 6265L) + BW_HOST_DELAY
+ tmp
;
1130 tmp
= (8354L * (31L + 10L * BitTime (bytecount
))) / 1000L;
1131 return 9107L + BW_HOST_DELAY
+ tmp
;
1133 case USB_SPEED_HIGH
: /* ISOC or INTR */
1134 /* FIXME adjust for input vs output */
1136 tmp
= HS_NSECS_ISO (bytecount
);
1138 tmp
= HS_NSECS (bytecount
);
1141 pr_debug ("%s: bogus device speed!\n", usbcore_name
);
1145 EXPORT_SYMBOL_GPL(usb_calc_bus_time
);
1148 /*-------------------------------------------------------------------------*/
1151 * Generic HC operations.
1154 /*-------------------------------------------------------------------------*/
1157 * usb_hcd_link_urb_to_ep - add an URB to its endpoint queue
1158 * @hcd: host controller to which @urb was submitted
1159 * @urb: URB being submitted
1161 * Host controller drivers should call this routine in their enqueue()
1162 * method. The HCD's private spinlock must be held and interrupts must
1163 * be disabled. The actions carried out here are required for URB
1164 * submission, as well as for endpoint shutdown and for usb_kill_urb.
1166 * Return: 0 for no error, otherwise a negative error code (in which case
1167 * the enqueue() method must fail). If no error occurs but enqueue() fails
1168 * anyway, it must call usb_hcd_unlink_urb_from_ep() before releasing
1169 * the private spinlock and returning.
1171 int usb_hcd_link_urb_to_ep(struct usb_hcd
*hcd
, struct urb
*urb
)
1175 spin_lock(&hcd_urb_list_lock
);
1177 /* Check that the URB isn't being killed */
1178 if (unlikely(atomic_read(&urb
->reject
))) {
1183 if (unlikely(!urb
->ep
->enabled
)) {
1188 if (unlikely(!urb
->dev
->can_submit
)) {
1194 * Check the host controller's state and add the URB to the
1197 if (HCD_RH_RUNNING(hcd
)) {
1199 list_add_tail(&urb
->urb_list
, &urb
->ep
->urb_list
);
1205 spin_unlock(&hcd_urb_list_lock
);
1208 EXPORT_SYMBOL_GPL(usb_hcd_link_urb_to_ep
);
1211 * usb_hcd_check_unlink_urb - check whether an URB may be unlinked
1212 * @hcd: host controller to which @urb was submitted
1213 * @urb: URB being checked for unlinkability
1214 * @status: error code to store in @urb if the unlink succeeds
1216 * Host controller drivers should call this routine in their dequeue()
1217 * method. The HCD's private spinlock must be held and interrupts must
1218 * be disabled. The actions carried out here are required for making
1219 * sure than an unlink is valid.
1221 * Return: 0 for no error, otherwise a negative error code (in which case
1222 * the dequeue() method must fail). The possible error codes are:
1224 * -EIDRM: @urb was not submitted or has already completed.
1225 * The completion function may not have been called yet.
1227 * -EBUSY: @urb has already been unlinked.
1229 int usb_hcd_check_unlink_urb(struct usb_hcd
*hcd
, struct urb
*urb
,
1232 struct list_head
*tmp
;
1234 /* insist the urb is still queued */
1235 list_for_each(tmp
, &urb
->ep
->urb_list
) {
1236 if (tmp
== &urb
->urb_list
)
1239 if (tmp
!= &urb
->urb_list
)
1242 /* Any status except -EINPROGRESS means something already started to
1243 * unlink this URB from the hardware. So there's no more work to do.
1247 urb
->unlinked
= status
;
1250 EXPORT_SYMBOL_GPL(usb_hcd_check_unlink_urb
);
1253 * usb_hcd_unlink_urb_from_ep - remove an URB from its endpoint queue
1254 * @hcd: host controller to which @urb was submitted
1255 * @urb: URB being unlinked
1257 * Host controller drivers should call this routine before calling
1258 * usb_hcd_giveback_urb(). The HCD's private spinlock must be held and
1259 * interrupts must be disabled. The actions carried out here are required
1260 * for URB completion.
1262 void usb_hcd_unlink_urb_from_ep(struct usb_hcd
*hcd
, struct urb
*urb
)
1264 /* clear all state linking urb to this dev (and hcd) */
1265 spin_lock(&hcd_urb_list_lock
);
1266 list_del_init(&urb
->urb_list
);
1267 spin_unlock(&hcd_urb_list_lock
);
1269 EXPORT_SYMBOL_GPL(usb_hcd_unlink_urb_from_ep
);
1272 * Some usb host controllers can only perform dma using a small SRAM area.
1273 * The usb core itself is however optimized for host controllers that can dma
1274 * using regular system memory - like pci devices doing bus mastering.
1276 * To support host controllers with limited dma capabilities we provide dma
1277 * bounce buffers. This feature can be enabled using the HCD_LOCAL_MEM flag.
1278 * For this to work properly the host controller code must first use the
1279 * function dma_declare_coherent_memory() to point out which memory area
1280 * that should be used for dma allocations.
1282 * The HCD_LOCAL_MEM flag then tells the usb code to allocate all data for
1283 * dma using dma_alloc_coherent() which in turn allocates from the memory
1284 * area pointed out with dma_declare_coherent_memory().
1286 * So, to summarize...
1288 * - We need "local" memory, canonical example being
1289 * a small SRAM on a discrete controller being the
1290 * only memory that the controller can read ...
1291 * (a) "normal" kernel memory is no good, and
1292 * (b) there's not enough to share
1294 * - The only *portable* hook for such stuff in the
1295 * DMA framework is dma_declare_coherent_memory()
1297 * - So we use that, even though the primary requirement
1298 * is that the memory be "local" (hence addressable
1299 * by that device), not "coherent".
1303 static int hcd_alloc_coherent(struct usb_bus
*bus
,
1304 gfp_t mem_flags
, dma_addr_t
*dma_handle
,
1305 void **vaddr_handle
, size_t size
,
1306 enum dma_data_direction dir
)
1308 unsigned char *vaddr
;
1310 if (*vaddr_handle
== NULL
) {
1315 vaddr
= hcd_buffer_alloc(bus
, size
+ sizeof(vaddr
),
1316 mem_flags
, dma_handle
);
1321 * Store the virtual address of the buffer at the end
1322 * of the allocated dma buffer. The size of the buffer
1323 * may be uneven so use unaligned functions instead
1324 * of just rounding up. It makes sense to optimize for
1325 * memory footprint over access speed since the amount
1326 * of memory available for dma may be limited.
1328 put_unaligned((unsigned long)*vaddr_handle
,
1329 (unsigned long *)(vaddr
+ size
));
1331 if (dir
== DMA_TO_DEVICE
)
1332 memcpy(vaddr
, *vaddr_handle
, size
);
1334 *vaddr_handle
= vaddr
;
1338 static void hcd_free_coherent(struct usb_bus
*bus
, dma_addr_t
*dma_handle
,
1339 void **vaddr_handle
, size_t size
,
1340 enum dma_data_direction dir
)
1342 unsigned char *vaddr
= *vaddr_handle
;
1344 vaddr
= (void *)get_unaligned((unsigned long *)(vaddr
+ size
));
1346 if (dir
== DMA_FROM_DEVICE
)
1347 memcpy(vaddr
, *vaddr_handle
, size
);
1349 hcd_buffer_free(bus
, size
+ sizeof(vaddr
), *vaddr_handle
, *dma_handle
);
1351 *vaddr_handle
= vaddr
;
1355 void usb_hcd_unmap_urb_setup_for_dma(struct usb_hcd
*hcd
, struct urb
*urb
)
1357 if (urb
->transfer_flags
& URB_SETUP_MAP_SINGLE
)
1358 dma_unmap_single(hcd
->self
.controller
,
1360 sizeof(struct usb_ctrlrequest
),
1362 else if (urb
->transfer_flags
& URB_SETUP_MAP_LOCAL
)
1363 hcd_free_coherent(urb
->dev
->bus
,
1365 (void **) &urb
->setup_packet
,
1366 sizeof(struct usb_ctrlrequest
),
1369 /* Make it safe to call this routine more than once */
1370 urb
->transfer_flags
&= ~(URB_SETUP_MAP_SINGLE
| URB_SETUP_MAP_LOCAL
);
1372 EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_setup_for_dma
);
1374 static void unmap_urb_for_dma(struct usb_hcd
*hcd
, struct urb
*urb
)
1376 if (hcd
->driver
->unmap_urb_for_dma
)
1377 hcd
->driver
->unmap_urb_for_dma(hcd
, urb
);
1379 usb_hcd_unmap_urb_for_dma(hcd
, urb
);
1382 void usb_hcd_unmap_urb_for_dma(struct usb_hcd
*hcd
, struct urb
*urb
)
1384 enum dma_data_direction dir
;
1386 usb_hcd_unmap_urb_setup_for_dma(hcd
, urb
);
1388 dir
= usb_urb_dir_in(urb
) ? DMA_FROM_DEVICE
: DMA_TO_DEVICE
;
1389 if (urb
->transfer_flags
& URB_DMA_MAP_SG
)
1390 dma_unmap_sg(hcd
->self
.controller
,
1394 else if (urb
->transfer_flags
& URB_DMA_MAP_PAGE
)
1395 dma_unmap_page(hcd
->self
.controller
,
1397 urb
->transfer_buffer_length
,
1399 else if (urb
->transfer_flags
& URB_DMA_MAP_SINGLE
)
1400 dma_unmap_single(hcd
->self
.controller
,
1402 urb
->transfer_buffer_length
,
1404 else if (urb
->transfer_flags
& URB_MAP_LOCAL
)
1405 hcd_free_coherent(urb
->dev
->bus
,
1407 &urb
->transfer_buffer
,
1408 urb
->transfer_buffer_length
,
1411 /* Make it safe to call this routine more than once */
1412 urb
->transfer_flags
&= ~(URB_DMA_MAP_SG
| URB_DMA_MAP_PAGE
|
1413 URB_DMA_MAP_SINGLE
| URB_MAP_LOCAL
);
1415 EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_for_dma
);
1417 static int map_urb_for_dma(struct usb_hcd
*hcd
, struct urb
*urb
,
1420 if (hcd
->driver
->map_urb_for_dma
)
1421 return hcd
->driver
->map_urb_for_dma(hcd
, urb
, mem_flags
);
1423 return usb_hcd_map_urb_for_dma(hcd
, urb
, mem_flags
);
1426 int usb_hcd_map_urb_for_dma(struct usb_hcd
*hcd
, struct urb
*urb
,
1429 enum dma_data_direction dir
;
1432 /* Map the URB's buffers for DMA access.
1433 * Lower level HCD code should use *_dma exclusively,
1434 * unless it uses pio or talks to another transport,
1435 * or uses the provided scatter gather list for bulk.
1438 if (usb_endpoint_xfer_control(&urb
->ep
->desc
)) {
1439 if (hcd
->self
.uses_pio_for_control
)
1441 if (hcd
->self
.uses_dma
) {
1442 urb
->setup_dma
= dma_map_single(
1443 hcd
->self
.controller
,
1445 sizeof(struct usb_ctrlrequest
),
1447 if (dma_mapping_error(hcd
->self
.controller
,
1450 urb
->transfer_flags
|= URB_SETUP_MAP_SINGLE
;
1451 } else if (hcd
->driver
->flags
& HCD_LOCAL_MEM
) {
1452 ret
= hcd_alloc_coherent(
1453 urb
->dev
->bus
, mem_flags
,
1455 (void **)&urb
->setup_packet
,
1456 sizeof(struct usb_ctrlrequest
),
1460 urb
->transfer_flags
|= URB_SETUP_MAP_LOCAL
;
1464 dir
= usb_urb_dir_in(urb
) ? DMA_FROM_DEVICE
: DMA_TO_DEVICE
;
1465 if (urb
->transfer_buffer_length
!= 0
1466 && !(urb
->transfer_flags
& URB_NO_TRANSFER_DMA_MAP
)) {
1467 if (hcd
->self
.uses_dma
) {
1471 /* We don't support sg for isoc transfers ! */
1472 if (usb_endpoint_xfer_isoc(&urb
->ep
->desc
)) {
1478 hcd
->self
.controller
,
1485 urb
->transfer_flags
|= URB_DMA_MAP_SG
;
1486 urb
->num_mapped_sgs
= n
;
1487 if (n
!= urb
->num_sgs
)
1488 urb
->transfer_flags
|=
1489 URB_DMA_SG_COMBINED
;
1490 } else if (urb
->sg
) {
1491 struct scatterlist
*sg
= urb
->sg
;
1492 urb
->transfer_dma
= dma_map_page(
1493 hcd
->self
.controller
,
1496 urb
->transfer_buffer_length
,
1498 if (dma_mapping_error(hcd
->self
.controller
,
1502 urb
->transfer_flags
|= URB_DMA_MAP_PAGE
;
1503 } else if (is_vmalloc_addr(urb
->transfer_buffer
)) {
1504 WARN_ONCE(1, "transfer buffer not dma capable\n");
1507 urb
->transfer_dma
= dma_map_single(
1508 hcd
->self
.controller
,
1509 urb
->transfer_buffer
,
1510 urb
->transfer_buffer_length
,
1512 if (dma_mapping_error(hcd
->self
.controller
,
1516 urb
->transfer_flags
|= URB_DMA_MAP_SINGLE
;
1518 } else if (hcd
->driver
->flags
& HCD_LOCAL_MEM
) {
1519 ret
= hcd_alloc_coherent(
1520 urb
->dev
->bus
, mem_flags
,
1522 &urb
->transfer_buffer
,
1523 urb
->transfer_buffer_length
,
1526 urb
->transfer_flags
|= URB_MAP_LOCAL
;
1528 if (ret
&& (urb
->transfer_flags
& (URB_SETUP_MAP_SINGLE
|
1529 URB_SETUP_MAP_LOCAL
)))
1530 usb_hcd_unmap_urb_for_dma(hcd
, urb
);
1534 EXPORT_SYMBOL_GPL(usb_hcd_map_urb_for_dma
);
1536 /*-------------------------------------------------------------------------*/
1538 /* may be called in any context with a valid urb->dev usecount
1539 * caller surrenders "ownership" of urb
1540 * expects usb_submit_urb() to have sanity checked and conditioned all
1543 int usb_hcd_submit_urb (struct urb
*urb
, gfp_t mem_flags
)
1546 struct usb_hcd
*hcd
= bus_to_hcd(urb
->dev
->bus
);
1548 /* increment urb's reference count as part of giving it to the HCD
1549 * (which will control it). HCD guarantees that it either returns
1550 * an error or calls giveback(), but not both.
1553 atomic_inc(&urb
->use_count
);
1554 atomic_inc(&urb
->dev
->urbnum
);
1555 usbmon_urb_submit(&hcd
->self
, urb
);
1557 /* NOTE requirements on root-hub callers (usbfs and the hub
1558 * driver, for now): URBs' urb->transfer_buffer must be
1559 * valid and usb_buffer_{sync,unmap}() not be needed, since
1560 * they could clobber root hub response data. Also, control
1561 * URBs must be submitted in process context with interrupts
1565 if (is_root_hub(urb
->dev
)) {
1566 status
= rh_urb_enqueue(hcd
, urb
);
1568 status
= map_urb_for_dma(hcd
, urb
, mem_flags
);
1569 if (likely(status
== 0)) {
1570 status
= hcd
->driver
->urb_enqueue(hcd
, urb
, mem_flags
);
1571 if (unlikely(status
))
1572 unmap_urb_for_dma(hcd
, urb
);
1576 if (unlikely(status
)) {
1577 usbmon_urb_submit_error(&hcd
->self
, urb
, status
);
1579 INIT_LIST_HEAD(&urb
->urb_list
);
1580 atomic_dec(&urb
->use_count
);
1581 atomic_dec(&urb
->dev
->urbnum
);
1582 if (atomic_read(&urb
->reject
))
1583 wake_up(&usb_kill_urb_queue
);
1589 /*-------------------------------------------------------------------------*/
1591 /* this makes the hcd giveback() the urb more quickly, by kicking it
1592 * off hardware queues (which may take a while) and returning it as
1593 * soon as practical. we've already set up the urb's return status,
1594 * but we can't know if the callback completed already.
1596 static int unlink1(struct usb_hcd
*hcd
, struct urb
*urb
, int status
)
1600 if (is_root_hub(urb
->dev
))
1601 value
= usb_rh_urb_dequeue(hcd
, urb
, status
);
1604 /* The only reason an HCD might fail this call is if
1605 * it has not yet fully queued the urb to begin with.
1606 * Such failures should be harmless. */
1607 value
= hcd
->driver
->urb_dequeue(hcd
, urb
, status
);
1613 * called in any context
1615 * caller guarantees urb won't be recycled till both unlink()
1616 * and the urb's completion function return
1618 int usb_hcd_unlink_urb (struct urb
*urb
, int status
)
1620 struct usb_hcd
*hcd
;
1621 struct usb_device
*udev
= urb
->dev
;
1622 int retval
= -EIDRM
;
1623 unsigned long flags
;
1625 /* Prevent the device and bus from going away while
1626 * the unlink is carried out. If they are already gone
1627 * then urb->use_count must be 0, since disconnected
1628 * devices can't have any active URBs.
1630 spin_lock_irqsave(&hcd_urb_unlink_lock
, flags
);
1631 if (atomic_read(&urb
->use_count
) > 0) {
1635 spin_unlock_irqrestore(&hcd_urb_unlink_lock
, flags
);
1637 hcd
= bus_to_hcd(urb
->dev
->bus
);
1638 retval
= unlink1(hcd
, urb
, status
);
1640 retval
= -EINPROGRESS
;
1641 else if (retval
!= -EIDRM
&& retval
!= -EBUSY
)
1642 dev_dbg(&udev
->dev
, "hcd_unlink_urb %p fail %d\n",
1649 /*-------------------------------------------------------------------------*/
1651 static void __usb_hcd_giveback_urb(struct urb
*urb
)
1653 struct usb_hcd
*hcd
= bus_to_hcd(urb
->dev
->bus
);
1654 struct usb_anchor
*anchor
= urb
->anchor
;
1655 int status
= urb
->unlinked
;
1656 unsigned long flags
;
1659 if (unlikely((urb
->transfer_flags
& URB_SHORT_NOT_OK
) &&
1660 urb
->actual_length
< urb
->transfer_buffer_length
&&
1662 status
= -EREMOTEIO
;
1664 unmap_urb_for_dma(hcd
, urb
);
1665 usbmon_urb_complete(&hcd
->self
, urb
, status
);
1666 usb_anchor_suspend_wakeups(anchor
);
1667 usb_unanchor_urb(urb
);
1668 if (likely(status
== 0))
1669 usb_led_activity(USB_LED_EVENT_HOST
);
1671 /* pass ownership to the completion handler */
1672 urb
->status
= status
;
1675 * We disable local IRQs here avoid possible deadlock because
1676 * drivers may call spin_lock() to hold lock which might be
1677 * acquired in one hard interrupt handler.
1679 * The local_irq_save()/local_irq_restore() around complete()
1680 * will be removed if current USB drivers have been cleaned up
1681 * and no one may trigger the above deadlock situation when
1682 * running complete() in tasklet.
1684 local_irq_save(flags
);
1686 local_irq_restore(flags
);
1688 usb_anchor_resume_wakeups(anchor
);
1689 atomic_dec(&urb
->use_count
);
1690 if (unlikely(atomic_read(&urb
->reject
)))
1691 wake_up(&usb_kill_urb_queue
);
1695 static void usb_giveback_urb_bh(unsigned long param
)
1697 struct giveback_urb_bh
*bh
= (struct giveback_urb_bh
*)param
;
1698 struct list_head local_list
;
1700 spin_lock_irq(&bh
->lock
);
1703 list_replace_init(&bh
->head
, &local_list
);
1704 spin_unlock_irq(&bh
->lock
);
1706 while (!list_empty(&local_list
)) {
1709 urb
= list_entry(local_list
.next
, struct urb
, urb_list
);
1710 list_del_init(&urb
->urb_list
);
1711 bh
->completing_ep
= urb
->ep
;
1712 __usb_hcd_giveback_urb(urb
);
1713 bh
->completing_ep
= NULL
;
1716 /* check if there are new URBs to giveback */
1717 spin_lock_irq(&bh
->lock
);
1718 if (!list_empty(&bh
->head
))
1720 bh
->running
= false;
1721 spin_unlock_irq(&bh
->lock
);
1725 * usb_hcd_giveback_urb - return URB from HCD to device driver
1726 * @hcd: host controller returning the URB
1727 * @urb: urb being returned to the USB device driver.
1728 * @status: completion status code for the URB.
1729 * Context: in_interrupt()
1731 * This hands the URB from HCD to its USB device driver, using its
1732 * completion function. The HCD has freed all per-urb resources
1733 * (and is done using urb->hcpriv). It also released all HCD locks;
1734 * the device driver won't cause problems if it frees, modifies,
1735 * or resubmits this URB.
1737 * If @urb was unlinked, the value of @status will be overridden by
1738 * @urb->unlinked. Erroneous short transfers are detected in case
1739 * the HCD hasn't checked for them.
1741 void usb_hcd_giveback_urb(struct usb_hcd
*hcd
, struct urb
*urb
, int status
)
1743 struct giveback_urb_bh
*bh
;
1744 bool running
, high_prio_bh
;
1746 /* pass status to tasklet via unlinked */
1747 if (likely(!urb
->unlinked
))
1748 urb
->unlinked
= status
;
1750 if (!hcd_giveback_urb_in_bh(hcd
) && !is_root_hub(urb
->dev
)) {
1751 __usb_hcd_giveback_urb(urb
);
1755 if (usb_pipeisoc(urb
->pipe
) || usb_pipeint(urb
->pipe
)) {
1756 bh
= &hcd
->high_prio_bh
;
1757 high_prio_bh
= true;
1759 bh
= &hcd
->low_prio_bh
;
1760 high_prio_bh
= false;
1763 spin_lock(&bh
->lock
);
1764 list_add_tail(&urb
->urb_list
, &bh
->head
);
1765 running
= bh
->running
;
1766 spin_unlock(&bh
->lock
);
1770 else if (high_prio_bh
)
1771 tasklet_hi_schedule(&bh
->bh
);
1773 tasklet_schedule(&bh
->bh
);
1775 EXPORT_SYMBOL_GPL(usb_hcd_giveback_urb
);
1777 /*-------------------------------------------------------------------------*/
1779 /* Cancel all URBs pending on this endpoint and wait for the endpoint's
1780 * queue to drain completely. The caller must first insure that no more
1781 * URBs can be submitted for this endpoint.
1783 void usb_hcd_flush_endpoint(struct usb_device
*udev
,
1784 struct usb_host_endpoint
*ep
)
1786 struct usb_hcd
*hcd
;
1792 hcd
= bus_to_hcd(udev
->bus
);
1794 /* No more submits can occur */
1795 spin_lock_irq(&hcd_urb_list_lock
);
1797 list_for_each_entry (urb
, &ep
->urb_list
, urb_list
) {
1803 is_in
= usb_urb_dir_in(urb
);
1804 spin_unlock(&hcd_urb_list_lock
);
1807 unlink1(hcd
, urb
, -ESHUTDOWN
);
1808 dev_dbg (hcd
->self
.controller
,
1809 "shutdown urb %p ep%d%s%s\n",
1810 urb
, usb_endpoint_num(&ep
->desc
),
1811 is_in
? "in" : "out",
1814 switch (usb_endpoint_type(&ep
->desc
)) {
1815 case USB_ENDPOINT_XFER_CONTROL
:
1817 case USB_ENDPOINT_XFER_BULK
:
1819 case USB_ENDPOINT_XFER_INT
:
1828 /* list contents may have changed */
1829 spin_lock(&hcd_urb_list_lock
);
1832 spin_unlock_irq(&hcd_urb_list_lock
);
1834 /* Wait until the endpoint queue is completely empty */
1835 while (!list_empty (&ep
->urb_list
)) {
1836 spin_lock_irq(&hcd_urb_list_lock
);
1838 /* The list may have changed while we acquired the spinlock */
1840 if (!list_empty (&ep
->urb_list
)) {
1841 urb
= list_entry (ep
->urb_list
.prev
, struct urb
,
1845 spin_unlock_irq(&hcd_urb_list_lock
);
1855 * usb_hcd_alloc_bandwidth - check whether a new bandwidth setting exceeds
1857 * @udev: target &usb_device
1858 * @new_config: new configuration to install
1859 * @cur_alt: the current alternate interface setting
1860 * @new_alt: alternate interface setting that is being installed
1862 * To change configurations, pass in the new configuration in new_config,
1863 * and pass NULL for cur_alt and new_alt.
1865 * To reset a device's configuration (put the device in the ADDRESSED state),
1866 * pass in NULL for new_config, cur_alt, and new_alt.
1868 * To change alternate interface settings, pass in NULL for new_config,
1869 * pass in the current alternate interface setting in cur_alt,
1870 * and pass in the new alternate interface setting in new_alt.
1872 * Return: An error if the requested bandwidth change exceeds the
1873 * bus bandwidth or host controller internal resources.
1875 int usb_hcd_alloc_bandwidth(struct usb_device
*udev
,
1876 struct usb_host_config
*new_config
,
1877 struct usb_host_interface
*cur_alt
,
1878 struct usb_host_interface
*new_alt
)
1880 int num_intfs
, i
, j
;
1881 struct usb_host_interface
*alt
= NULL
;
1883 struct usb_hcd
*hcd
;
1884 struct usb_host_endpoint
*ep
;
1886 hcd
= bus_to_hcd(udev
->bus
);
1887 if (!hcd
->driver
->check_bandwidth
)
1890 /* Configuration is being removed - set configuration 0 */
1891 if (!new_config
&& !cur_alt
) {
1892 for (i
= 1; i
< 16; ++i
) {
1893 ep
= udev
->ep_out
[i
];
1895 hcd
->driver
->drop_endpoint(hcd
, udev
, ep
);
1896 ep
= udev
->ep_in
[i
];
1898 hcd
->driver
->drop_endpoint(hcd
, udev
, ep
);
1900 hcd
->driver
->check_bandwidth(hcd
, udev
);
1903 /* Check if the HCD says there's enough bandwidth. Enable all endpoints
1904 * each interface's alt setting 0 and ask the HCD to check the bandwidth
1905 * of the bus. There will always be bandwidth for endpoint 0, so it's
1909 num_intfs
= new_config
->desc
.bNumInterfaces
;
1910 /* Remove endpoints (except endpoint 0, which is always on the
1911 * schedule) from the old config from the schedule
1913 for (i
= 1; i
< 16; ++i
) {
1914 ep
= udev
->ep_out
[i
];
1916 ret
= hcd
->driver
->drop_endpoint(hcd
, udev
, ep
);
1920 ep
= udev
->ep_in
[i
];
1922 ret
= hcd
->driver
->drop_endpoint(hcd
, udev
, ep
);
1927 for (i
= 0; i
< num_intfs
; ++i
) {
1928 struct usb_host_interface
*first_alt
;
1931 first_alt
= &new_config
->intf_cache
[i
]->altsetting
[0];
1932 iface_num
= first_alt
->desc
.bInterfaceNumber
;
1933 /* Set up endpoints for alternate interface setting 0 */
1934 alt
= usb_find_alt_setting(new_config
, iface_num
, 0);
1936 /* No alt setting 0? Pick the first setting. */
1939 for (j
= 0; j
< alt
->desc
.bNumEndpoints
; j
++) {
1940 ret
= hcd
->driver
->add_endpoint(hcd
, udev
, &alt
->endpoint
[j
]);
1946 if (cur_alt
&& new_alt
) {
1947 struct usb_interface
*iface
= usb_ifnum_to_if(udev
,
1948 cur_alt
->desc
.bInterfaceNumber
);
1952 if (iface
->resetting_device
) {
1954 * The USB core just reset the device, so the xHCI host
1955 * and the device will think alt setting 0 is installed.
1956 * However, the USB core will pass in the alternate
1957 * setting installed before the reset as cur_alt. Dig
1958 * out the alternate setting 0 structure, or the first
1959 * alternate setting if a broken device doesn't have alt
1962 cur_alt
= usb_altnum_to_altsetting(iface
, 0);
1964 cur_alt
= &iface
->altsetting
[0];
1967 /* Drop all the endpoints in the current alt setting */
1968 for (i
= 0; i
< cur_alt
->desc
.bNumEndpoints
; i
++) {
1969 ret
= hcd
->driver
->drop_endpoint(hcd
, udev
,
1970 &cur_alt
->endpoint
[i
]);
1974 /* Add all the endpoints in the new alt setting */
1975 for (i
= 0; i
< new_alt
->desc
.bNumEndpoints
; i
++) {
1976 ret
= hcd
->driver
->add_endpoint(hcd
, udev
,
1977 &new_alt
->endpoint
[i
]);
1982 ret
= hcd
->driver
->check_bandwidth(hcd
, udev
);
1985 hcd
->driver
->reset_bandwidth(hcd
, udev
);
1989 /* Disables the endpoint: synchronizes with the hcd to make sure all
1990 * endpoint state is gone from hardware. usb_hcd_flush_endpoint() must
1991 * have been called previously. Use for set_configuration, set_interface,
1992 * driver removal, physical disconnect.
1994 * example: a qh stored in ep->hcpriv, holding state related to endpoint
1995 * type, maxpacket size, toggle, halt status, and scheduling.
1997 void usb_hcd_disable_endpoint(struct usb_device
*udev
,
1998 struct usb_host_endpoint
*ep
)
2000 struct usb_hcd
*hcd
;
2003 hcd
= bus_to_hcd(udev
->bus
);
2004 if (hcd
->driver
->endpoint_disable
)
2005 hcd
->driver
->endpoint_disable(hcd
, ep
);
2009 * usb_hcd_reset_endpoint - reset host endpoint state
2010 * @udev: USB device.
2011 * @ep: the endpoint to reset.
2013 * Resets any host endpoint state such as the toggle bit, sequence
2014 * number and current window.
2016 void usb_hcd_reset_endpoint(struct usb_device
*udev
,
2017 struct usb_host_endpoint
*ep
)
2019 struct usb_hcd
*hcd
= bus_to_hcd(udev
->bus
);
2021 if (hcd
->driver
->endpoint_reset
)
2022 hcd
->driver
->endpoint_reset(hcd
, ep
);
2024 int epnum
= usb_endpoint_num(&ep
->desc
);
2025 int is_out
= usb_endpoint_dir_out(&ep
->desc
);
2026 int is_control
= usb_endpoint_xfer_control(&ep
->desc
);
2028 usb_settoggle(udev
, epnum
, is_out
, 0);
2030 usb_settoggle(udev
, epnum
, !is_out
, 0);
2035 * usb_alloc_streams - allocate bulk endpoint stream IDs.
2036 * @interface: alternate setting that includes all endpoints.
2037 * @eps: array of endpoints that need streams.
2038 * @num_eps: number of endpoints in the array.
2039 * @num_streams: number of streams to allocate.
2040 * @mem_flags: flags hcd should use to allocate memory.
2042 * Sets up a group of bulk endpoints to have @num_streams stream IDs available.
2043 * Drivers may queue multiple transfers to different stream IDs, which may
2044 * complete in a different order than they were queued.
2046 * Return: On success, the number of allocated streams. On failure, a negative
2049 int usb_alloc_streams(struct usb_interface
*interface
,
2050 struct usb_host_endpoint
**eps
, unsigned int num_eps
,
2051 unsigned int num_streams
, gfp_t mem_flags
)
2053 struct usb_hcd
*hcd
;
2054 struct usb_device
*dev
;
2057 dev
= interface_to_usbdev(interface
);
2058 hcd
= bus_to_hcd(dev
->bus
);
2059 if (!hcd
->driver
->alloc_streams
|| !hcd
->driver
->free_streams
)
2061 if (dev
->speed
!= USB_SPEED_SUPER
)
2063 if (dev
->state
< USB_STATE_CONFIGURED
)
2066 for (i
= 0; i
< num_eps
; i
++) {
2067 /* Streams only apply to bulk endpoints. */
2068 if (!usb_endpoint_xfer_bulk(&eps
[i
]->desc
))
2070 /* Re-alloc is not allowed */
2071 if (eps
[i
]->streams
)
2075 ret
= hcd
->driver
->alloc_streams(hcd
, dev
, eps
, num_eps
,
2076 num_streams
, mem_flags
);
2080 for (i
= 0; i
< num_eps
; i
++)
2081 eps
[i
]->streams
= ret
;
2085 EXPORT_SYMBOL_GPL(usb_alloc_streams
);
2088 * usb_free_streams - free bulk endpoint stream IDs.
2089 * @interface: alternate setting that includes all endpoints.
2090 * @eps: array of endpoints to remove streams from.
2091 * @num_eps: number of endpoints in the array.
2092 * @mem_flags: flags hcd should use to allocate memory.
2094 * Reverts a group of bulk endpoints back to not using stream IDs.
2095 * Can fail if we are given bad arguments, or HCD is broken.
2097 * Return: 0 on success. On failure, a negative error code.
2099 int usb_free_streams(struct usb_interface
*interface
,
2100 struct usb_host_endpoint
**eps
, unsigned int num_eps
,
2103 struct usb_hcd
*hcd
;
2104 struct usb_device
*dev
;
2107 dev
= interface_to_usbdev(interface
);
2108 hcd
= bus_to_hcd(dev
->bus
);
2109 if (dev
->speed
!= USB_SPEED_SUPER
)
2112 /* Double-free is not allowed */
2113 for (i
= 0; i
< num_eps
; i
++)
2114 if (!eps
[i
] || !eps
[i
]->streams
)
2117 ret
= hcd
->driver
->free_streams(hcd
, dev
, eps
, num_eps
, mem_flags
);
2121 for (i
= 0; i
< num_eps
; i
++)
2122 eps
[i
]->streams
= 0;
2126 EXPORT_SYMBOL_GPL(usb_free_streams
);
2128 /* Protect against drivers that try to unlink URBs after the device
2129 * is gone, by waiting until all unlinks for @udev are finished.
2130 * Since we don't currently track URBs by device, simply wait until
2131 * nothing is running in the locked region of usb_hcd_unlink_urb().
2133 void usb_hcd_synchronize_unlinks(struct usb_device
*udev
)
2135 spin_lock_irq(&hcd_urb_unlink_lock
);
2136 spin_unlock_irq(&hcd_urb_unlink_lock
);
2139 /*-------------------------------------------------------------------------*/
2141 /* called in any context */
2142 int usb_hcd_get_frame_number (struct usb_device
*udev
)
2144 struct usb_hcd
*hcd
= bus_to_hcd(udev
->bus
);
2146 if (!HCD_RH_RUNNING(hcd
))
2148 return hcd
->driver
->get_frame_number (hcd
);
2151 /*-------------------------------------------------------------------------*/
2155 int hcd_bus_suspend(struct usb_device
*rhdev
, pm_message_t msg
)
2157 struct usb_hcd
*hcd
= container_of(rhdev
->bus
, struct usb_hcd
, self
);
2159 int old_state
= hcd
->state
;
2161 dev_dbg(&rhdev
->dev
, "bus %ssuspend, wakeup %d\n",
2162 (PMSG_IS_AUTO(msg
) ? "auto-" : ""),
2163 rhdev
->do_remote_wakeup
);
2164 if (HCD_DEAD(hcd
)) {
2165 dev_dbg(&rhdev
->dev
, "skipped %s of dead bus\n", "suspend");
2169 if (!hcd
->driver
->bus_suspend
) {
2172 clear_bit(HCD_FLAG_RH_RUNNING
, &hcd
->flags
);
2173 hcd
->state
= HC_STATE_QUIESCING
;
2174 status
= hcd
->driver
->bus_suspend(hcd
);
2177 usb_set_device_state(rhdev
, USB_STATE_SUSPENDED
);
2178 hcd
->state
= HC_STATE_SUSPENDED
;
2180 /* Did we race with a root-hub wakeup event? */
2181 if (rhdev
->do_remote_wakeup
) {
2184 status
= hcd
->driver
->hub_status_data(hcd
, buffer
);
2186 dev_dbg(&rhdev
->dev
, "suspend raced with wakeup event\n");
2187 hcd_bus_resume(rhdev
, PMSG_AUTO_RESUME
);
2192 spin_lock_irq(&hcd_root_hub_lock
);
2193 if (!HCD_DEAD(hcd
)) {
2194 set_bit(HCD_FLAG_RH_RUNNING
, &hcd
->flags
);
2195 hcd
->state
= old_state
;
2197 spin_unlock_irq(&hcd_root_hub_lock
);
2198 dev_dbg(&rhdev
->dev
, "bus %s fail, err %d\n",
2204 int hcd_bus_resume(struct usb_device
*rhdev
, pm_message_t msg
)
2206 struct usb_hcd
*hcd
= container_of(rhdev
->bus
, struct usb_hcd
, self
);
2208 int old_state
= hcd
->state
;
2210 dev_dbg(&rhdev
->dev
, "usb %sresume\n",
2211 (PMSG_IS_AUTO(msg
) ? "auto-" : ""));
2212 if (HCD_DEAD(hcd
)) {
2213 dev_dbg(&rhdev
->dev
, "skipped %s of dead bus\n", "resume");
2216 if (!hcd
->driver
->bus_resume
)
2218 if (HCD_RH_RUNNING(hcd
))
2221 hcd
->state
= HC_STATE_RESUMING
;
2222 status
= hcd
->driver
->bus_resume(hcd
);
2223 clear_bit(HCD_FLAG_WAKEUP_PENDING
, &hcd
->flags
);
2225 struct usb_device
*udev
;
2228 spin_lock_irq(&hcd_root_hub_lock
);
2229 if (!HCD_DEAD(hcd
)) {
2230 usb_set_device_state(rhdev
, rhdev
->actconfig
2231 ? USB_STATE_CONFIGURED
2232 : USB_STATE_ADDRESS
);
2233 set_bit(HCD_FLAG_RH_RUNNING
, &hcd
->flags
);
2234 hcd
->state
= HC_STATE_RUNNING
;
2236 spin_unlock_irq(&hcd_root_hub_lock
);
2239 * Check whether any of the enabled ports on the root hub are
2240 * unsuspended. If they are then a TRSMRCY delay is needed
2241 * (this is what the USB-2 spec calls a "global resume").
2242 * Otherwise we can skip the delay.
2244 usb_hub_for_each_child(rhdev
, port1
, udev
) {
2245 if (udev
->state
!= USB_STATE_NOTATTACHED
&&
2246 !udev
->port_is_suspended
) {
2247 usleep_range(10000, 11000); /* TRSMRCY */
2252 hcd
->state
= old_state
;
2253 dev_dbg(&rhdev
->dev
, "bus %s fail, err %d\n",
2255 if (status
!= -ESHUTDOWN
)
2261 /* Workqueue routine for root-hub remote wakeup */
2262 static void hcd_resume_work(struct work_struct
*work
)
2264 struct usb_hcd
*hcd
= container_of(work
, struct usb_hcd
, wakeup_work
);
2265 struct usb_device
*udev
= hcd
->self
.root_hub
;
2267 usb_remote_wakeup(udev
);
2271 * usb_hcd_resume_root_hub - called by HCD to resume its root hub
2272 * @hcd: host controller for this root hub
2274 * The USB host controller calls this function when its root hub is
2275 * suspended (with the remote wakeup feature enabled) and a remote
2276 * wakeup request is received. The routine submits a workqueue request
2277 * to resume the root hub (that is, manage its downstream ports again).
2279 void usb_hcd_resume_root_hub (struct usb_hcd
*hcd
)
2281 unsigned long flags
;
2283 spin_lock_irqsave (&hcd_root_hub_lock
, flags
);
2284 if (hcd
->rh_registered
) {
2285 set_bit(HCD_FLAG_WAKEUP_PENDING
, &hcd
->flags
);
2286 queue_work(pm_wq
, &hcd
->wakeup_work
);
2288 spin_unlock_irqrestore (&hcd_root_hub_lock
, flags
);
2290 EXPORT_SYMBOL_GPL(usb_hcd_resume_root_hub
);
2292 #endif /* CONFIG_PM */
2294 /*-------------------------------------------------------------------------*/
2296 #ifdef CONFIG_USB_OTG
2299 * usb_bus_start_enum - start immediate enumeration (for OTG)
2300 * @bus: the bus (must use hcd framework)
2301 * @port_num: 1-based number of port; usually bus->otg_port
2302 * Context: in_interrupt()
2304 * Starts enumeration, with an immediate reset followed later by
2305 * hub_wq identifying and possibly configuring the device.
2306 * This is needed by OTG controller drivers, where it helps meet
2307 * HNP protocol timing requirements for starting a port reset.
2309 * Return: 0 if successful.
2311 int usb_bus_start_enum(struct usb_bus
*bus
, unsigned port_num
)
2313 struct usb_hcd
*hcd
;
2314 int status
= -EOPNOTSUPP
;
2316 /* NOTE: since HNP can't start by grabbing the bus's address0_sem,
2317 * boards with root hubs hooked up to internal devices (instead of
2318 * just the OTG port) may need more attention to resetting...
2320 hcd
= container_of (bus
, struct usb_hcd
, self
);
2321 if (port_num
&& hcd
->driver
->start_port_reset
)
2322 status
= hcd
->driver
->start_port_reset(hcd
, port_num
);
2324 /* allocate hub_wq shortly after (first) root port reset finishes;
2325 * it may issue others, until at least 50 msecs have passed.
2328 mod_timer(&hcd
->rh_timer
, jiffies
+ msecs_to_jiffies(10));
2331 EXPORT_SYMBOL_GPL(usb_bus_start_enum
);
2335 /*-------------------------------------------------------------------------*/
2338 * usb_hcd_irq - hook IRQs to HCD framework (bus glue)
2339 * @irq: the IRQ being raised
2340 * @__hcd: pointer to the HCD whose IRQ is being signaled
2342 * If the controller isn't HALTed, calls the driver's irq handler.
2343 * Checks whether the controller is now dead.
2345 * Return: %IRQ_HANDLED if the IRQ was handled. %IRQ_NONE otherwise.
2347 irqreturn_t
usb_hcd_irq (int irq
, void *__hcd
)
2349 struct usb_hcd
*hcd
= __hcd
;
2352 if (unlikely(HCD_DEAD(hcd
) || !HCD_HW_ACCESSIBLE(hcd
)))
2354 else if (hcd
->driver
->irq(hcd
) == IRQ_NONE
)
2361 EXPORT_SYMBOL_GPL(usb_hcd_irq
);
2363 /*-------------------------------------------------------------------------*/
2366 * usb_hc_died - report abnormal shutdown of a host controller (bus glue)
2367 * @hcd: pointer to the HCD representing the controller
2369 * This is called by bus glue to report a USB host controller that died
2370 * while operations may still have been pending. It's called automatically
2371 * by the PCI glue, so only glue for non-PCI busses should need to call it.
2373 * Only call this function with the primary HCD.
2375 void usb_hc_died (struct usb_hcd
*hcd
)
2377 unsigned long flags
;
2379 dev_err (hcd
->self
.controller
, "HC died; cleaning up\n");
2381 spin_lock_irqsave (&hcd_root_hub_lock
, flags
);
2382 clear_bit(HCD_FLAG_RH_RUNNING
, &hcd
->flags
);
2383 set_bit(HCD_FLAG_DEAD
, &hcd
->flags
);
2384 if (hcd
->rh_registered
) {
2385 clear_bit(HCD_FLAG_POLL_RH
, &hcd
->flags
);
2387 /* make hub_wq clean up old urbs and devices */
2388 usb_set_device_state (hcd
->self
.root_hub
,
2389 USB_STATE_NOTATTACHED
);
2390 usb_kick_hub_wq(hcd
->self
.root_hub
);
2392 if (usb_hcd_is_primary_hcd(hcd
) && hcd
->shared_hcd
) {
2393 hcd
= hcd
->shared_hcd
;
2394 if (hcd
->rh_registered
) {
2395 clear_bit(HCD_FLAG_POLL_RH
, &hcd
->flags
);
2397 /* make hub_wq clean up old urbs and devices */
2398 usb_set_device_state(hcd
->self
.root_hub
,
2399 USB_STATE_NOTATTACHED
);
2400 usb_kick_hub_wq(hcd
->self
.root_hub
);
2403 spin_unlock_irqrestore (&hcd_root_hub_lock
, flags
);
2404 /* Make sure that the other roothub is also deallocated. */
2406 EXPORT_SYMBOL_GPL (usb_hc_died
);
2408 /*-------------------------------------------------------------------------*/
2410 static void init_giveback_urb_bh(struct giveback_urb_bh
*bh
)
2413 spin_lock_init(&bh
->lock
);
2414 INIT_LIST_HEAD(&bh
->head
);
2415 tasklet_init(&bh
->bh
, usb_giveback_urb_bh
, (unsigned long)bh
);
2419 * usb_create_shared_hcd - create and initialize an HCD structure
2420 * @driver: HC driver that will use this hcd
2421 * @dev: device for this HC, stored in hcd->self.controller
2422 * @bus_name: value to store in hcd->self.bus_name
2423 * @primary_hcd: a pointer to the usb_hcd structure that is sharing the
2424 * PCI device. Only allocate certain resources for the primary HCD
2425 * Context: !in_interrupt()
2427 * Allocate a struct usb_hcd, with extra space at the end for the
2428 * HC driver's private data. Initialize the generic members of the
2431 * Return: On success, a pointer to the created and initialized HCD structure.
2432 * On failure (e.g. if memory is unavailable), %NULL.
2434 struct usb_hcd
*usb_create_shared_hcd(const struct hc_driver
*driver
,
2435 struct device
*dev
, const char *bus_name
,
2436 struct usb_hcd
*primary_hcd
)
2438 struct usb_hcd
*hcd
;
2440 hcd
= kzalloc(sizeof(*hcd
) + driver
->hcd_priv_size
, GFP_KERNEL
);
2442 dev_dbg (dev
, "hcd alloc failed\n");
2445 if (primary_hcd
== NULL
) {
2446 hcd
->bandwidth_mutex
= kmalloc(sizeof(*hcd
->bandwidth_mutex
),
2448 if (!hcd
->bandwidth_mutex
) {
2450 dev_dbg(dev
, "hcd bandwidth mutex alloc failed\n");
2453 mutex_init(hcd
->bandwidth_mutex
);
2454 dev_set_drvdata(dev
, hcd
);
2456 mutex_lock(&usb_port_peer_mutex
);
2457 hcd
->bandwidth_mutex
= primary_hcd
->bandwidth_mutex
;
2458 hcd
->primary_hcd
= primary_hcd
;
2459 primary_hcd
->primary_hcd
= primary_hcd
;
2460 hcd
->shared_hcd
= primary_hcd
;
2461 primary_hcd
->shared_hcd
= hcd
;
2462 mutex_unlock(&usb_port_peer_mutex
);
2465 kref_init(&hcd
->kref
);
2467 usb_bus_init(&hcd
->self
);
2468 hcd
->self
.controller
= dev
;
2469 hcd
->self
.bus_name
= bus_name
;
2470 hcd
->self
.uses_dma
= (dev
->dma_mask
!= NULL
);
2472 init_timer(&hcd
->rh_timer
);
2473 hcd
->rh_timer
.function
= rh_timer_func
;
2474 hcd
->rh_timer
.data
= (unsigned long) hcd
;
2476 INIT_WORK(&hcd
->wakeup_work
, hcd_resume_work
);
2479 hcd
->driver
= driver
;
2480 hcd
->speed
= driver
->flags
& HCD_MASK
;
2481 hcd
->product_desc
= (driver
->product_desc
) ? driver
->product_desc
:
2482 "USB Host Controller";
2485 EXPORT_SYMBOL_GPL(usb_create_shared_hcd
);
2488 * usb_create_hcd - create and initialize an HCD structure
2489 * @driver: HC driver that will use this hcd
2490 * @dev: device for this HC, stored in hcd->self.controller
2491 * @bus_name: value to store in hcd->self.bus_name
2492 * Context: !in_interrupt()
2494 * Allocate a struct usb_hcd, with extra space at the end for the
2495 * HC driver's private data. Initialize the generic members of the
2498 * Return: On success, a pointer to the created and initialized HCD
2499 * structure. On failure (e.g. if memory is unavailable), %NULL.
2501 struct usb_hcd
*usb_create_hcd(const struct hc_driver
*driver
,
2502 struct device
*dev
, const char *bus_name
)
2504 return usb_create_shared_hcd(driver
, dev
, bus_name
, NULL
);
2506 EXPORT_SYMBOL_GPL(usb_create_hcd
);
2509 * Roothubs that share one PCI device must also share the bandwidth mutex.
2510 * Don't deallocate the bandwidth_mutex until the last shared usb_hcd is
2513 * Make sure to only deallocate the bandwidth_mutex when the primary HCD is
2514 * freed. When hcd_release() is called for either hcd in a peer set
2515 * invalidate the peer's ->shared_hcd and ->primary_hcd pointers to
2516 * block new peering attempts
2518 static void hcd_release(struct kref
*kref
)
2520 struct usb_hcd
*hcd
= container_of (kref
, struct usb_hcd
, kref
);
2522 mutex_lock(&usb_port_peer_mutex
);
2523 if (usb_hcd_is_primary_hcd(hcd
))
2524 kfree(hcd
->bandwidth_mutex
);
2525 if (hcd
->shared_hcd
) {
2526 struct usb_hcd
*peer
= hcd
->shared_hcd
;
2528 peer
->shared_hcd
= NULL
;
2529 if (peer
->primary_hcd
== hcd
)
2530 peer
->primary_hcd
= NULL
;
2532 mutex_unlock(&usb_port_peer_mutex
);
2536 struct usb_hcd
*usb_get_hcd (struct usb_hcd
*hcd
)
2539 kref_get (&hcd
->kref
);
2542 EXPORT_SYMBOL_GPL(usb_get_hcd
);
2544 void usb_put_hcd (struct usb_hcd
*hcd
)
2547 kref_put (&hcd
->kref
, hcd_release
);
2549 EXPORT_SYMBOL_GPL(usb_put_hcd
);
2551 int usb_hcd_is_primary_hcd(struct usb_hcd
*hcd
)
2553 if (!hcd
->primary_hcd
)
2555 return hcd
== hcd
->primary_hcd
;
2557 EXPORT_SYMBOL_GPL(usb_hcd_is_primary_hcd
);
2559 int usb_hcd_find_raw_port_number(struct usb_hcd
*hcd
, int port1
)
2561 if (!hcd
->driver
->find_raw_port_number
)
2564 return hcd
->driver
->find_raw_port_number(hcd
, port1
);
2567 static int usb_hcd_request_irqs(struct usb_hcd
*hcd
,
2568 unsigned int irqnum
, unsigned long irqflags
)
2572 if (hcd
->driver
->irq
) {
2574 snprintf(hcd
->irq_descr
, sizeof(hcd
->irq_descr
), "%s:usb%d",
2575 hcd
->driver
->description
, hcd
->self
.busnum
);
2576 retval
= request_irq(irqnum
, &usb_hcd_irq
, irqflags
,
2577 hcd
->irq_descr
, hcd
);
2579 dev_err(hcd
->self
.controller
,
2580 "request interrupt %d failed\n",
2585 dev_info(hcd
->self
.controller
, "irq %d, %s 0x%08llx\n", irqnum
,
2586 (hcd
->driver
->flags
& HCD_MEMORY
) ?
2587 "io mem" : "io base",
2588 (unsigned long long)hcd
->rsrc_start
);
2591 if (hcd
->rsrc_start
)
2592 dev_info(hcd
->self
.controller
, "%s 0x%08llx\n",
2593 (hcd
->driver
->flags
& HCD_MEMORY
) ?
2594 "io mem" : "io base",
2595 (unsigned long long)hcd
->rsrc_start
);
2601 * Before we free this root hub, flush in-flight peering attempts
2602 * and disable peer lookups
2604 static void usb_put_invalidate_rhdev(struct usb_hcd
*hcd
)
2606 struct usb_device
*rhdev
;
2608 mutex_lock(&usb_port_peer_mutex
);
2609 rhdev
= hcd
->self
.root_hub
;
2610 hcd
->self
.root_hub
= NULL
;
2611 mutex_unlock(&usb_port_peer_mutex
);
2616 * usb_add_hcd - finish generic HCD structure initialization and register
2617 * @hcd: the usb_hcd structure to initialize
2618 * @irqnum: Interrupt line to allocate
2619 * @irqflags: Interrupt type flags
2621 * Finish the remaining parts of generic HCD initialization: allocate the
2622 * buffers of consistent memory, register the bus, request the IRQ line,
2623 * and call the driver's reset() and start() routines.
2625 int usb_add_hcd(struct usb_hcd
*hcd
,
2626 unsigned int irqnum
, unsigned long irqflags
)
2629 struct usb_device
*rhdev
;
2631 if (IS_ENABLED(CONFIG_USB_PHY
) && !hcd
->usb_phy
) {
2632 struct usb_phy
*phy
= usb_get_phy_dev(hcd
->self
.controller
, 0);
2635 retval
= PTR_ERR(phy
);
2636 if (retval
== -EPROBE_DEFER
)
2639 retval
= usb_phy_init(phy
);
2645 hcd
->remove_phy
= 1;
2649 if (IS_ENABLED(CONFIG_GENERIC_PHY
) && !hcd
->phy
) {
2650 struct phy
*phy
= phy_get(hcd
->self
.controller
, "usb");
2653 retval
= PTR_ERR(phy
);
2654 if (retval
== -EPROBE_DEFER
)
2657 retval
= phy_init(phy
);
2662 retval
= phy_power_on(phy
);
2669 hcd
->remove_phy
= 1;
2673 dev_info(hcd
->self
.controller
, "%s\n", hcd
->product_desc
);
2675 /* Keep old behaviour if authorized_default is not in [0, 1]. */
2676 if (authorized_default
< 0 || authorized_default
> 1)
2677 hcd
->authorized_default
= hcd
->wireless
? 0 : 1;
2679 hcd
->authorized_default
= authorized_default
;
2680 set_bit(HCD_FLAG_HW_ACCESSIBLE
, &hcd
->flags
);
2682 /* HC is in reset state, but accessible. Now do the one-time init,
2683 * bottom up so that hcds can customize the root hubs before hub_wq
2684 * starts talking to them. (Note, bus id is assigned early too.)
2686 if ((retval
= hcd_buffer_create(hcd
)) != 0) {
2687 dev_dbg(hcd
->self
.controller
, "pool alloc failed\n");
2688 goto err_create_buf
;
2691 if ((retval
= usb_register_bus(&hcd
->self
)) < 0)
2692 goto err_register_bus
;
2694 if ((rhdev
= usb_alloc_dev(NULL
, &hcd
->self
, 0)) == NULL
) {
2695 dev_err(hcd
->self
.controller
, "unable to allocate root hub\n");
2697 goto err_allocate_root_hub
;
2699 mutex_lock(&usb_port_peer_mutex
);
2700 hcd
->self
.root_hub
= rhdev
;
2701 mutex_unlock(&usb_port_peer_mutex
);
2703 switch (hcd
->speed
) {
2705 rhdev
->speed
= USB_SPEED_FULL
;
2708 rhdev
->speed
= USB_SPEED_HIGH
;
2711 rhdev
->speed
= USB_SPEED_WIRELESS
;
2714 rhdev
->speed
= USB_SPEED_SUPER
;
2718 goto err_set_rh_speed
;
2721 /* wakeup flag init defaults to "everything works" for root hubs,
2722 * but drivers can override it in reset() if needed, along with
2723 * recording the overall controller's system wakeup capability.
2725 device_set_wakeup_capable(&rhdev
->dev
, 1);
2727 /* HCD_FLAG_RH_RUNNING doesn't matter until the root hub is
2728 * registered. But since the controller can die at any time,
2729 * let's initialize the flag before touching the hardware.
2731 set_bit(HCD_FLAG_RH_RUNNING
, &hcd
->flags
);
2733 /* "reset" is misnamed; its role is now one-time init. the controller
2734 * should already have been reset (and boot firmware kicked off etc).
2736 if (hcd
->driver
->reset
&& (retval
= hcd
->driver
->reset(hcd
)) < 0) {
2737 dev_err(hcd
->self
.controller
, "can't setup: %d\n", retval
);
2738 goto err_hcd_driver_setup
;
2740 hcd
->rh_pollable
= 1;
2742 /* NOTE: root hub and controller capabilities may not be the same */
2743 if (device_can_wakeup(hcd
->self
.controller
)
2744 && device_can_wakeup(&hcd
->self
.root_hub
->dev
))
2745 dev_dbg(hcd
->self
.controller
, "supports USB remote wakeup\n");
2747 /* initialize tasklets */
2748 init_giveback_urb_bh(&hcd
->high_prio_bh
);
2749 init_giveback_urb_bh(&hcd
->low_prio_bh
);
2751 /* enable irqs just before we start the controller,
2752 * if the BIOS provides legacy PCI irqs.
2754 if (usb_hcd_is_primary_hcd(hcd
) && irqnum
) {
2755 retval
= usb_hcd_request_irqs(hcd
, irqnum
, irqflags
);
2757 goto err_request_irq
;
2760 hcd
->state
= HC_STATE_RUNNING
;
2761 retval
= hcd
->driver
->start(hcd
);
2763 dev_err(hcd
->self
.controller
, "startup error %d\n", retval
);
2764 goto err_hcd_driver_start
;
2767 /* starting here, usbcore will pay attention to this root hub */
2768 if ((retval
= register_root_hub(hcd
)) != 0)
2769 goto err_register_root_hub
;
2771 retval
= sysfs_create_group(&rhdev
->dev
.kobj
, &usb_bus_attr_group
);
2773 printk(KERN_ERR
"Cannot register USB bus sysfs attributes: %d\n",
2775 goto error_create_attr_group
;
2777 if (hcd
->uses_new_polling
&& HCD_POLL_RH(hcd
))
2778 usb_hcd_poll_rh_status(hcd
);
2782 error_create_attr_group
:
2783 clear_bit(HCD_FLAG_RH_RUNNING
, &hcd
->flags
);
2784 if (HC_IS_RUNNING(hcd
->state
))
2785 hcd
->state
= HC_STATE_QUIESCING
;
2786 spin_lock_irq(&hcd_root_hub_lock
);
2787 hcd
->rh_registered
= 0;
2788 spin_unlock_irq(&hcd_root_hub_lock
);
2791 cancel_work_sync(&hcd
->wakeup_work
);
2793 mutex_lock(&usb_bus_list_lock
);
2794 usb_disconnect(&rhdev
); /* Sets rhdev to NULL */
2795 mutex_unlock(&usb_bus_list_lock
);
2796 err_register_root_hub
:
2797 hcd
->rh_pollable
= 0;
2798 clear_bit(HCD_FLAG_POLL_RH
, &hcd
->flags
);
2799 del_timer_sync(&hcd
->rh_timer
);
2800 hcd
->driver
->stop(hcd
);
2801 hcd
->state
= HC_STATE_HALT
;
2802 clear_bit(HCD_FLAG_POLL_RH
, &hcd
->flags
);
2803 del_timer_sync(&hcd
->rh_timer
);
2804 err_hcd_driver_start
:
2805 if (usb_hcd_is_primary_hcd(hcd
) && hcd
->irq
> 0)
2806 free_irq(irqnum
, hcd
);
2808 err_hcd_driver_setup
:
2810 usb_put_invalidate_rhdev(hcd
);
2811 err_allocate_root_hub
:
2812 usb_deregister_bus(&hcd
->self
);
2814 hcd_buffer_destroy(hcd
);
2816 if (IS_ENABLED(CONFIG_GENERIC_PHY
) && hcd
->remove_phy
&& hcd
->phy
) {
2817 phy_power_off(hcd
->phy
);
2823 if (hcd
->remove_phy
&& hcd
->usb_phy
) {
2824 usb_phy_shutdown(hcd
->usb_phy
);
2825 usb_put_phy(hcd
->usb_phy
);
2826 hcd
->usb_phy
= NULL
;
2830 EXPORT_SYMBOL_GPL(usb_add_hcd
);
2833 * usb_remove_hcd - shutdown processing for generic HCDs
2834 * @hcd: the usb_hcd structure to remove
2835 * Context: !in_interrupt()
2837 * Disconnects the root hub, then reverses the effects of usb_add_hcd(),
2838 * invoking the HCD's stop() method.
2840 void usb_remove_hcd(struct usb_hcd
*hcd
)
2842 struct usb_device
*rhdev
= hcd
->self
.root_hub
;
2844 dev_info(hcd
->self
.controller
, "remove, state %x\n", hcd
->state
);
2847 sysfs_remove_group(&rhdev
->dev
.kobj
, &usb_bus_attr_group
);
2849 clear_bit(HCD_FLAG_RH_RUNNING
, &hcd
->flags
);
2850 if (HC_IS_RUNNING (hcd
->state
))
2851 hcd
->state
= HC_STATE_QUIESCING
;
2853 dev_dbg(hcd
->self
.controller
, "roothub graceful disconnect\n");
2854 spin_lock_irq (&hcd_root_hub_lock
);
2855 hcd
->rh_registered
= 0;
2856 spin_unlock_irq (&hcd_root_hub_lock
);
2859 cancel_work_sync(&hcd
->wakeup_work
);
2862 mutex_lock(&usb_bus_list_lock
);
2863 usb_disconnect(&rhdev
); /* Sets rhdev to NULL */
2864 mutex_unlock(&usb_bus_list_lock
);
2867 * tasklet_kill() isn't needed here because:
2868 * - driver's disconnect() called from usb_disconnect() should
2869 * make sure its URBs are completed during the disconnect()
2872 * - it is too late to run complete() here since driver may have
2873 * been removed already now
2876 /* Prevent any more root-hub status calls from the timer.
2877 * The HCD might still restart the timer (if a port status change
2878 * interrupt occurs), but usb_hcd_poll_rh_status() won't invoke
2879 * the hub_status_data() callback.
2881 hcd
->rh_pollable
= 0;
2882 clear_bit(HCD_FLAG_POLL_RH
, &hcd
->flags
);
2883 del_timer_sync(&hcd
->rh_timer
);
2885 hcd
->driver
->stop(hcd
);
2886 hcd
->state
= HC_STATE_HALT
;
2888 /* In case the HCD restarted the timer, stop it again. */
2889 clear_bit(HCD_FLAG_POLL_RH
, &hcd
->flags
);
2890 del_timer_sync(&hcd
->rh_timer
);
2892 if (usb_hcd_is_primary_hcd(hcd
)) {
2894 free_irq(hcd
->irq
, hcd
);
2897 usb_deregister_bus(&hcd
->self
);
2898 hcd_buffer_destroy(hcd
);
2900 if (IS_ENABLED(CONFIG_GENERIC_PHY
) && hcd
->remove_phy
&& hcd
->phy
) {
2901 phy_power_off(hcd
->phy
);
2906 if (hcd
->remove_phy
&& hcd
->usb_phy
) {
2907 usb_phy_shutdown(hcd
->usb_phy
);
2908 usb_put_phy(hcd
->usb_phy
);
2909 hcd
->usb_phy
= NULL
;
2912 usb_put_invalidate_rhdev(hcd
);
2914 EXPORT_SYMBOL_GPL(usb_remove_hcd
);
2917 usb_hcd_platform_shutdown(struct platform_device
*dev
)
2919 struct usb_hcd
*hcd
= platform_get_drvdata(dev
);
2921 if (hcd
->driver
->shutdown
)
2922 hcd
->driver
->shutdown(hcd
);
2924 EXPORT_SYMBOL_GPL(usb_hcd_platform_shutdown
);
2926 /*-------------------------------------------------------------------------*/
2928 #if defined(CONFIG_USB_MON) || defined(CONFIG_USB_MON_MODULE)
2930 struct usb_mon_operations
*mon_ops
;
2933 * The registration is unlocked.
2934 * We do it this way because we do not want to lock in hot paths.
2936 * Notice that the code is minimally error-proof. Because usbmon needs
2937 * symbols from usbcore, usbcore gets referenced and cannot be unloaded first.
2940 int usb_mon_register (struct usb_mon_operations
*ops
)
2950 EXPORT_SYMBOL_GPL (usb_mon_register
);
2952 void usb_mon_deregister (void)
2955 if (mon_ops
== NULL
) {
2956 printk(KERN_ERR
"USB: monitor was not registered\n");
2962 EXPORT_SYMBOL_GPL (usb_mon_deregister
);
2964 #endif /* CONFIG_USB_MON || CONFIG_USB_MON_MODULE */