NFS: Don't clear desc->pg_moreio in nfs_do_recoalesce()
[linux/fpc-iii.git] / drivers / usb / dwc2 / hcd_queue.c
blobbb97838bc6c04cf1317a837219542291355104da
1 /*
2 * hcd_queue.c - DesignWare HS OTG Controller host queuing routines
4 * Copyright (C) 2004-2013 Synopsys, Inc.
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions, and the following disclaimer,
11 * without modification.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. The names of the above-listed copyright holders may not be used
16 * to endorse or promote products derived from this software without
17 * specific prior written permission.
19 * ALTERNATIVELY, this software may be distributed under the terms of the
20 * GNU General Public License ("GPL") as published by the Free Software
21 * Foundation; either version 2 of the License, or (at your option) any
22 * later version.
24 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
25 * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
26 * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
27 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
28 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
29 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
30 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
31 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
32 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
33 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
34 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
38 * This file contains the functions to manage Queue Heads and Queue
39 * Transfer Descriptors for Host mode
41 #include <linux/kernel.h>
42 #include <linux/module.h>
43 #include <linux/spinlock.h>
44 #include <linux/interrupt.h>
45 #include <linux/dma-mapping.h>
46 #include <linux/io.h>
47 #include <linux/slab.h>
48 #include <linux/usb.h>
50 #include <linux/usb/hcd.h>
51 #include <linux/usb/ch11.h>
53 #include "core.h"
54 #include "hcd.h"
56 /**
57 * dwc2_qh_init() - Initializes a QH structure
59 * @hsotg: The HCD state structure for the DWC OTG controller
60 * @qh: The QH to init
61 * @urb: Holds the information about the device/endpoint needed to initialize
62 * the QH
64 #define SCHEDULE_SLOP 10
65 static void dwc2_qh_init(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh,
66 struct dwc2_hcd_urb *urb)
68 int dev_speed, hub_addr, hub_port;
69 char *speed, *type;
71 dev_vdbg(hsotg->dev, "%s()\n", __func__);
73 /* Initialize QH */
74 qh->ep_type = dwc2_hcd_get_pipe_type(&urb->pipe_info);
75 qh->ep_is_in = dwc2_hcd_is_pipe_in(&urb->pipe_info) ? 1 : 0;
77 qh->data_toggle = DWC2_HC_PID_DATA0;
78 qh->maxp = dwc2_hcd_get_mps(&urb->pipe_info);
79 INIT_LIST_HEAD(&qh->qtd_list);
80 INIT_LIST_HEAD(&qh->qh_list_entry);
82 /* FS/LS Endpoint on HS Hub, NOT virtual root hub */
83 dev_speed = dwc2_host_get_speed(hsotg, urb->priv);
85 dwc2_host_hub_info(hsotg, urb->priv, &hub_addr, &hub_port);
87 if ((dev_speed == USB_SPEED_LOW || dev_speed == USB_SPEED_FULL) &&
88 hub_addr != 0 && hub_addr != 1) {
89 dev_vdbg(hsotg->dev,
90 "QH init: EP %d: TT found at hub addr %d, for port %d\n",
91 dwc2_hcd_get_ep_num(&urb->pipe_info), hub_addr,
92 hub_port);
93 qh->do_split = 1;
96 if (qh->ep_type == USB_ENDPOINT_XFER_INT ||
97 qh->ep_type == USB_ENDPOINT_XFER_ISOC) {
98 /* Compute scheduling parameters once and save them */
99 u32 hprt, prtspd;
101 /* Todo: Account for split transfers in the bus time */
102 int bytecount =
103 dwc2_hb_mult(qh->maxp) * dwc2_max_packet(qh->maxp);
105 qh->usecs = NS_TO_US(usb_calc_bus_time(qh->do_split ?
106 USB_SPEED_HIGH : dev_speed, qh->ep_is_in,
107 qh->ep_type == USB_ENDPOINT_XFER_ISOC,
108 bytecount));
109 /* Start in a slightly future (micro)frame */
110 qh->sched_frame = dwc2_frame_num_inc(hsotg->frame_number,
111 SCHEDULE_SLOP);
112 qh->interval = urb->interval;
113 #if 0
114 /* Increase interrupt polling rate for debugging */
115 if (qh->ep_type == USB_ENDPOINT_XFER_INT)
116 qh->interval = 8;
117 #endif
118 hprt = readl(hsotg->regs + HPRT0);
119 prtspd = (hprt & HPRT0_SPD_MASK) >> HPRT0_SPD_SHIFT;
120 if (prtspd == HPRT0_SPD_HIGH_SPEED &&
121 (dev_speed == USB_SPEED_LOW ||
122 dev_speed == USB_SPEED_FULL)) {
123 qh->interval *= 8;
124 qh->sched_frame |= 0x7;
125 qh->start_split_frame = qh->sched_frame;
127 dev_dbg(hsotg->dev, "interval=%d\n", qh->interval);
130 dev_vdbg(hsotg->dev, "DWC OTG HCD QH Initialized\n");
131 dev_vdbg(hsotg->dev, "DWC OTG HCD QH - qh = %p\n", qh);
132 dev_vdbg(hsotg->dev, "DWC OTG HCD QH - Device Address = %d\n",
133 dwc2_hcd_get_dev_addr(&urb->pipe_info));
134 dev_vdbg(hsotg->dev, "DWC OTG HCD QH - Endpoint %d, %s\n",
135 dwc2_hcd_get_ep_num(&urb->pipe_info),
136 dwc2_hcd_is_pipe_in(&urb->pipe_info) ? "IN" : "OUT");
138 qh->dev_speed = dev_speed;
140 switch (dev_speed) {
141 case USB_SPEED_LOW:
142 speed = "low";
143 break;
144 case USB_SPEED_FULL:
145 speed = "full";
146 break;
147 case USB_SPEED_HIGH:
148 speed = "high";
149 break;
150 default:
151 speed = "?";
152 break;
154 dev_vdbg(hsotg->dev, "DWC OTG HCD QH - Speed = %s\n", speed);
156 switch (qh->ep_type) {
157 case USB_ENDPOINT_XFER_ISOC:
158 type = "isochronous";
159 break;
160 case USB_ENDPOINT_XFER_INT:
161 type = "interrupt";
162 break;
163 case USB_ENDPOINT_XFER_CONTROL:
164 type = "control";
165 break;
166 case USB_ENDPOINT_XFER_BULK:
167 type = "bulk";
168 break;
169 default:
170 type = "?";
171 break;
174 dev_vdbg(hsotg->dev, "DWC OTG HCD QH - Type = %s\n", type);
176 if (qh->ep_type == USB_ENDPOINT_XFER_INT) {
177 dev_vdbg(hsotg->dev, "DWC OTG HCD QH - usecs = %d\n",
178 qh->usecs);
179 dev_vdbg(hsotg->dev, "DWC OTG HCD QH - interval = %d\n",
180 qh->interval);
185 * dwc2_hcd_qh_create() - Allocates and initializes a QH
187 * @hsotg: The HCD state structure for the DWC OTG controller
188 * @urb: Holds the information about the device/endpoint needed
189 * to initialize the QH
190 * @atomic_alloc: Flag to do atomic allocation if needed
192 * Return: Pointer to the newly allocated QH, or NULL on error
194 static struct dwc2_qh *dwc2_hcd_qh_create(struct dwc2_hsotg *hsotg,
195 struct dwc2_hcd_urb *urb,
196 gfp_t mem_flags)
198 struct dwc2_qh *qh;
200 if (!urb->priv)
201 return NULL;
203 /* Allocate memory */
204 qh = kzalloc(sizeof(*qh), mem_flags);
205 if (!qh)
206 return NULL;
208 dwc2_qh_init(hsotg, qh, urb);
210 if (hsotg->core_params->dma_desc_enable > 0 &&
211 dwc2_hcd_qh_init_ddma(hsotg, qh, mem_flags) < 0) {
212 dwc2_hcd_qh_free(hsotg, qh);
213 return NULL;
216 return qh;
220 * dwc2_hcd_qh_free() - Frees the QH
222 * @hsotg: HCD instance
223 * @qh: The QH to free
225 * QH should already be removed from the list. QTD list should already be empty
226 * if called from URB Dequeue.
228 * Must NOT be called with interrupt disabled or spinlock held
230 void dwc2_hcd_qh_free(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
232 if (hsotg->core_params->dma_desc_enable > 0)
233 dwc2_hcd_qh_free_ddma(hsotg, qh);
234 else if (qh->dw_align_buf)
235 dma_free_coherent(hsotg->dev, qh->dw_align_buf_size,
236 qh->dw_align_buf, qh->dw_align_buf_dma);
237 kfree(qh);
241 * dwc2_periodic_channel_available() - Checks that a channel is available for a
242 * periodic transfer
244 * @hsotg: The HCD state structure for the DWC OTG controller
246 * Return: 0 if successful, negative error code otherwise
248 static int dwc2_periodic_channel_available(struct dwc2_hsotg *hsotg)
251 * Currently assuming that there is a dedicated host channel for
252 * each periodic transaction plus at least one host channel for
253 * non-periodic transactions
255 int status;
256 int num_channels;
258 num_channels = hsotg->core_params->host_channels;
259 if (hsotg->periodic_channels + hsotg->non_periodic_channels <
260 num_channels
261 && hsotg->periodic_channels < num_channels - 1) {
262 status = 0;
263 } else {
264 dev_dbg(hsotg->dev,
265 "%s: Total channels: %d, Periodic: %d, "
266 "Non-periodic: %d\n", __func__, num_channels,
267 hsotg->periodic_channels, hsotg->non_periodic_channels);
268 status = -ENOSPC;
271 return status;
275 * dwc2_check_periodic_bandwidth() - Checks that there is sufficient bandwidth
276 * for the specified QH in the periodic schedule
278 * @hsotg: The HCD state structure for the DWC OTG controller
279 * @qh: QH containing periodic bandwidth required
281 * Return: 0 if successful, negative error code otherwise
283 * For simplicity, this calculation assumes that all the transfers in the
284 * periodic schedule may occur in the same (micro)frame
286 static int dwc2_check_periodic_bandwidth(struct dwc2_hsotg *hsotg,
287 struct dwc2_qh *qh)
289 int status;
290 s16 max_claimed_usecs;
292 status = 0;
294 if (qh->dev_speed == USB_SPEED_HIGH || qh->do_split) {
296 * High speed mode
297 * Max periodic usecs is 80% x 125 usec = 100 usec
299 max_claimed_usecs = 100 - qh->usecs;
300 } else {
302 * Full speed mode
303 * Max periodic usecs is 90% x 1000 usec = 900 usec
305 max_claimed_usecs = 900 - qh->usecs;
308 if (hsotg->periodic_usecs > max_claimed_usecs) {
309 dev_err(hsotg->dev,
310 "%s: already claimed usecs %d, required usecs %d\n",
311 __func__, hsotg->periodic_usecs, qh->usecs);
312 status = -ENOSPC;
315 return status;
319 * Microframe scheduler
320 * track the total use in hsotg->frame_usecs
321 * keep each qh use in qh->frame_usecs
322 * when surrendering the qh then donate the time back
324 static const unsigned short max_uframe_usecs[] = {
325 100, 100, 100, 100, 100, 100, 30, 0
328 void dwc2_hcd_init_usecs(struct dwc2_hsotg *hsotg)
330 int i;
332 for (i = 0; i < 8; i++)
333 hsotg->frame_usecs[i] = max_uframe_usecs[i];
336 static int dwc2_find_single_uframe(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
338 unsigned short utime = qh->usecs;
339 int i;
341 for (i = 0; i < 8; i++) {
342 /* At the start hsotg->frame_usecs[i] = max_uframe_usecs[i] */
343 if (utime <= hsotg->frame_usecs[i]) {
344 hsotg->frame_usecs[i] -= utime;
345 qh->frame_usecs[i] += utime;
346 return i;
349 return -ENOSPC;
353 * use this for FS apps that can span multiple uframes
355 static int dwc2_find_multi_uframe(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
357 unsigned short utime = qh->usecs;
358 unsigned short xtime;
359 int t_left;
360 int i;
361 int j;
362 int k;
364 for (i = 0; i < 8; i++) {
365 if (hsotg->frame_usecs[i] <= 0)
366 continue;
369 * we need n consecutive slots so use j as a start slot
370 * j plus j+1 must be enough time (for now)
372 xtime = hsotg->frame_usecs[i];
373 for (j = i + 1; j < 8; j++) {
375 * if we add this frame remaining time to xtime we may
376 * be OK, if not we need to test j for a complete frame
378 if (xtime + hsotg->frame_usecs[j] < utime) {
379 if (hsotg->frame_usecs[j] <
380 max_uframe_usecs[j])
381 continue;
383 if (xtime >= utime) {
384 t_left = utime;
385 for (k = i; k < 8; k++) {
386 t_left -= hsotg->frame_usecs[k];
387 if (t_left <= 0) {
388 qh->frame_usecs[k] +=
389 hsotg->frame_usecs[k]
390 + t_left;
391 hsotg->frame_usecs[k] = -t_left;
392 return i;
393 } else {
394 qh->frame_usecs[k] +=
395 hsotg->frame_usecs[k];
396 hsotg->frame_usecs[k] = 0;
400 /* add the frame time to x time */
401 xtime += hsotg->frame_usecs[j];
402 /* we must have a fully available next frame or break */
403 if (xtime < utime &&
404 hsotg->frame_usecs[j] == max_uframe_usecs[j])
405 continue;
408 return -ENOSPC;
411 static int dwc2_find_uframe(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
413 int ret;
415 if (qh->dev_speed == USB_SPEED_HIGH) {
416 /* if this is a hs transaction we need a full frame */
417 ret = dwc2_find_single_uframe(hsotg, qh);
418 } else {
420 * if this is a fs transaction we may need a sequence
421 * of frames
423 ret = dwc2_find_multi_uframe(hsotg, qh);
425 return ret;
429 * dwc2_check_max_xfer_size() - Checks that the max transfer size allowed in a
430 * host channel is large enough to handle the maximum data transfer in a single
431 * (micro)frame for a periodic transfer
433 * @hsotg: The HCD state structure for the DWC OTG controller
434 * @qh: QH for a periodic endpoint
436 * Return: 0 if successful, negative error code otherwise
438 static int dwc2_check_max_xfer_size(struct dwc2_hsotg *hsotg,
439 struct dwc2_qh *qh)
441 u32 max_xfer_size;
442 u32 max_channel_xfer_size;
443 int status = 0;
445 max_xfer_size = dwc2_max_packet(qh->maxp) * dwc2_hb_mult(qh->maxp);
446 max_channel_xfer_size = hsotg->core_params->max_transfer_size;
448 if (max_xfer_size > max_channel_xfer_size) {
449 dev_err(hsotg->dev,
450 "%s: Periodic xfer length %d > max xfer length for channel %d\n",
451 __func__, max_xfer_size, max_channel_xfer_size);
452 status = -ENOSPC;
455 return status;
459 * dwc2_schedule_periodic() - Schedules an interrupt or isochronous transfer in
460 * the periodic schedule
462 * @hsotg: The HCD state structure for the DWC OTG controller
463 * @qh: QH for the periodic transfer. The QH should already contain the
464 * scheduling information.
466 * Return: 0 if successful, negative error code otherwise
468 static int dwc2_schedule_periodic(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
470 int status;
472 if (hsotg->core_params->uframe_sched > 0) {
473 int frame = -1;
475 status = dwc2_find_uframe(hsotg, qh);
476 if (status == 0)
477 frame = 7;
478 else if (status > 0)
479 frame = status - 1;
481 /* Set the new frame up */
482 if (frame >= 0) {
483 qh->sched_frame &= ~0x7;
484 qh->sched_frame |= (frame & 7);
487 if (status > 0)
488 status = 0;
489 } else {
490 status = dwc2_periodic_channel_available(hsotg);
491 if (status) {
492 dev_info(hsotg->dev,
493 "%s: No host channel available for periodic transfer\n",
494 __func__);
495 return status;
498 status = dwc2_check_periodic_bandwidth(hsotg, qh);
501 if (status) {
502 dev_dbg(hsotg->dev,
503 "%s: Insufficient periodic bandwidth for periodic transfer\n",
504 __func__);
505 return status;
508 status = dwc2_check_max_xfer_size(hsotg, qh);
509 if (status) {
510 dev_dbg(hsotg->dev,
511 "%s: Channel max transfer size too small for periodic transfer\n",
512 __func__);
513 return status;
516 if (hsotg->core_params->dma_desc_enable > 0)
517 /* Don't rely on SOF and start in ready schedule */
518 list_add_tail(&qh->qh_list_entry, &hsotg->periodic_sched_ready);
519 else
520 /* Always start in inactive schedule */
521 list_add_tail(&qh->qh_list_entry,
522 &hsotg->periodic_sched_inactive);
524 if (hsotg->core_params->uframe_sched <= 0)
525 /* Reserve periodic channel */
526 hsotg->periodic_channels++;
528 /* Update claimed usecs per (micro)frame */
529 hsotg->periodic_usecs += qh->usecs;
531 return status;
535 * dwc2_deschedule_periodic() - Removes an interrupt or isochronous transfer
536 * from the periodic schedule
538 * @hsotg: The HCD state structure for the DWC OTG controller
539 * @qh: QH for the periodic transfer
541 static void dwc2_deschedule_periodic(struct dwc2_hsotg *hsotg,
542 struct dwc2_qh *qh)
544 int i;
546 list_del_init(&qh->qh_list_entry);
548 /* Update claimed usecs per (micro)frame */
549 hsotg->periodic_usecs -= qh->usecs;
551 if (hsotg->core_params->uframe_sched > 0) {
552 for (i = 0; i < 8; i++) {
553 hsotg->frame_usecs[i] += qh->frame_usecs[i];
554 qh->frame_usecs[i] = 0;
556 } else {
557 /* Release periodic channel reservation */
558 hsotg->periodic_channels--;
563 * dwc2_hcd_qh_add() - Adds a QH to either the non periodic or periodic
564 * schedule if it is not already in the schedule. If the QH is already in
565 * the schedule, no action is taken.
567 * @hsotg: The HCD state structure for the DWC OTG controller
568 * @qh: The QH to add
570 * Return: 0 if successful, negative error code otherwise
572 int dwc2_hcd_qh_add(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
574 int status;
575 u32 intr_mask;
577 if (dbg_qh(qh))
578 dev_vdbg(hsotg->dev, "%s()\n", __func__);
580 if (!list_empty(&qh->qh_list_entry))
581 /* QH already in a schedule */
582 return 0;
584 /* Add the new QH to the appropriate schedule */
585 if (dwc2_qh_is_non_per(qh)) {
586 /* Always start in inactive schedule */
587 list_add_tail(&qh->qh_list_entry,
588 &hsotg->non_periodic_sched_inactive);
589 return 0;
592 status = dwc2_schedule_periodic(hsotg, qh);
593 if (status)
594 return status;
595 if (!hsotg->periodic_qh_count) {
596 intr_mask = readl(hsotg->regs + GINTMSK);
597 intr_mask |= GINTSTS_SOF;
598 writel(intr_mask, hsotg->regs + GINTMSK);
600 hsotg->periodic_qh_count++;
602 return 0;
606 * dwc2_hcd_qh_unlink() - Removes a QH from either the non-periodic or periodic
607 * schedule. Memory is not freed.
609 * @hsotg: The HCD state structure
610 * @qh: QH to remove from schedule
612 void dwc2_hcd_qh_unlink(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
614 u32 intr_mask;
616 dev_vdbg(hsotg->dev, "%s()\n", __func__);
618 if (list_empty(&qh->qh_list_entry))
619 /* QH is not in a schedule */
620 return;
622 if (dwc2_qh_is_non_per(qh)) {
623 if (hsotg->non_periodic_qh_ptr == &qh->qh_list_entry)
624 hsotg->non_periodic_qh_ptr =
625 hsotg->non_periodic_qh_ptr->next;
626 list_del_init(&qh->qh_list_entry);
627 return;
630 dwc2_deschedule_periodic(hsotg, qh);
631 hsotg->periodic_qh_count--;
632 if (!hsotg->periodic_qh_count) {
633 intr_mask = readl(hsotg->regs + GINTMSK);
634 intr_mask &= ~GINTSTS_SOF;
635 writel(intr_mask, hsotg->regs + GINTMSK);
640 * Schedule the next continuing periodic split transfer
642 static void dwc2_sched_periodic_split(struct dwc2_hsotg *hsotg,
643 struct dwc2_qh *qh, u16 frame_number,
644 int sched_next_periodic_split)
646 u16 incr;
648 if (sched_next_periodic_split) {
649 qh->sched_frame = frame_number;
650 incr = dwc2_frame_num_inc(qh->start_split_frame, 1);
651 if (dwc2_frame_num_le(frame_number, incr)) {
653 * Allow one frame to elapse after start split
654 * microframe before scheduling complete split, but
655 * DON'T if we are doing the next start split in the
656 * same frame for an ISOC out
658 if (qh->ep_type != USB_ENDPOINT_XFER_ISOC ||
659 qh->ep_is_in != 0) {
660 qh->sched_frame =
661 dwc2_frame_num_inc(qh->sched_frame, 1);
664 } else {
665 qh->sched_frame = dwc2_frame_num_inc(qh->start_split_frame,
666 qh->interval);
667 if (dwc2_frame_num_le(qh->sched_frame, frame_number))
668 qh->sched_frame = frame_number;
669 qh->sched_frame |= 0x7;
670 qh->start_split_frame = qh->sched_frame;
675 * Deactivates a QH. For non-periodic QHs, removes the QH from the active
676 * non-periodic schedule. The QH is added to the inactive non-periodic
677 * schedule if any QTDs are still attached to the QH.
679 * For periodic QHs, the QH is removed from the periodic queued schedule. If
680 * there are any QTDs still attached to the QH, the QH is added to either the
681 * periodic inactive schedule or the periodic ready schedule and its next
682 * scheduled frame is calculated. The QH is placed in the ready schedule if
683 * the scheduled frame has been reached already. Otherwise it's placed in the
684 * inactive schedule. If there are no QTDs attached to the QH, the QH is
685 * completely removed from the periodic schedule.
687 void dwc2_hcd_qh_deactivate(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh,
688 int sched_next_periodic_split)
690 u16 frame_number;
692 if (dbg_qh(qh))
693 dev_vdbg(hsotg->dev, "%s()\n", __func__);
695 if (dwc2_qh_is_non_per(qh)) {
696 dwc2_hcd_qh_unlink(hsotg, qh);
697 if (!list_empty(&qh->qtd_list))
698 /* Add back to inactive non-periodic schedule */
699 dwc2_hcd_qh_add(hsotg, qh);
700 return;
703 frame_number = dwc2_hcd_get_frame_number(hsotg);
705 if (qh->do_split) {
706 dwc2_sched_periodic_split(hsotg, qh, frame_number,
707 sched_next_periodic_split);
708 } else {
709 qh->sched_frame = dwc2_frame_num_inc(qh->sched_frame,
710 qh->interval);
711 if (dwc2_frame_num_le(qh->sched_frame, frame_number))
712 qh->sched_frame = frame_number;
715 if (list_empty(&qh->qtd_list)) {
716 dwc2_hcd_qh_unlink(hsotg, qh);
717 return;
720 * Remove from periodic_sched_queued and move to
721 * appropriate queue
723 if ((hsotg->core_params->uframe_sched > 0 &&
724 dwc2_frame_num_le(qh->sched_frame, frame_number)) ||
725 (hsotg->core_params->uframe_sched <= 0 &&
726 qh->sched_frame == frame_number))
727 list_move(&qh->qh_list_entry, &hsotg->periodic_sched_ready);
728 else
729 list_move(&qh->qh_list_entry, &hsotg->periodic_sched_inactive);
733 * dwc2_hcd_qtd_init() - Initializes a QTD structure
735 * @qtd: The QTD to initialize
736 * @urb: The associated URB
738 void dwc2_hcd_qtd_init(struct dwc2_qtd *qtd, struct dwc2_hcd_urb *urb)
740 qtd->urb = urb;
741 if (dwc2_hcd_get_pipe_type(&urb->pipe_info) ==
742 USB_ENDPOINT_XFER_CONTROL) {
744 * The only time the QTD data toggle is used is on the data
745 * phase of control transfers. This phase always starts with
746 * DATA1.
748 qtd->data_toggle = DWC2_HC_PID_DATA1;
749 qtd->control_phase = DWC2_CONTROL_SETUP;
752 /* Start split */
753 qtd->complete_split = 0;
754 qtd->isoc_split_pos = DWC2_HCSPLT_XACTPOS_ALL;
755 qtd->isoc_split_offset = 0;
756 qtd->in_process = 0;
758 /* Store the qtd ptr in the urb to reference the QTD */
759 urb->qtd = qtd;
763 * dwc2_hcd_qtd_add() - Adds a QTD to the QTD-list of a QH
765 * @hsotg: The DWC HCD structure
766 * @qtd: The QTD to add
767 * @qh: Out parameter to return queue head
768 * @atomic_alloc: Flag to do atomic alloc if needed
770 * Return: 0 if successful, negative error code otherwise
772 * Finds the correct QH to place the QTD into. If it does not find a QH, it
773 * will create a new QH. If the QH to which the QTD is added is not currently
774 * scheduled, it is placed into the proper schedule based on its EP type.
776 int dwc2_hcd_qtd_add(struct dwc2_hsotg *hsotg, struct dwc2_qtd *qtd,
777 struct dwc2_qh **qh, gfp_t mem_flags)
779 struct dwc2_hcd_urb *urb = qtd->urb;
780 unsigned long flags;
781 int allocated = 0;
782 int retval;
785 * Get the QH which holds the QTD-list to insert to. Create QH if it
786 * doesn't exist.
788 if (*qh == NULL) {
789 *qh = dwc2_hcd_qh_create(hsotg, urb, mem_flags);
790 if (*qh == NULL)
791 return -ENOMEM;
792 allocated = 1;
795 spin_lock_irqsave(&hsotg->lock, flags);
797 retval = dwc2_hcd_qh_add(hsotg, *qh);
798 if (retval)
799 goto fail;
801 qtd->qh = *qh;
802 list_add_tail(&qtd->qtd_list_entry, &(*qh)->qtd_list);
803 spin_unlock_irqrestore(&hsotg->lock, flags);
805 return 0;
807 fail:
808 if (allocated) {
809 struct dwc2_qtd *qtd2, *qtd2_tmp;
810 struct dwc2_qh *qh_tmp = *qh;
812 *qh = NULL;
813 dwc2_hcd_qh_unlink(hsotg, qh_tmp);
815 /* Free each QTD in the QH's QTD list */
816 list_for_each_entry_safe(qtd2, qtd2_tmp, &qh_tmp->qtd_list,
817 qtd_list_entry)
818 dwc2_hcd_qtd_unlink_and_free(hsotg, qtd2, qh_tmp);
820 spin_unlock_irqrestore(&hsotg->lock, flags);
821 dwc2_hcd_qh_free(hsotg, qh_tmp);
822 } else {
823 spin_unlock_irqrestore(&hsotg->lock, flags);
826 return retval;