3 * Copyright (C) 1992 Krishna Balasubramanian
4 * Copyright (C) 1995 Eric Schenk, Bruno Haible
6 * /proc/sysvipc/sem support (c) 1999 Dragos Acostachioaie <dragos@iname.com>
8 * SMP-threaded, sysctl's added
9 * (c) 1999 Manfred Spraul <manfred@colorfullife.com>
10 * Enforced range limit on SEM_UNDO
11 * (c) 2001 Red Hat Inc
13 * (c) 2003 Manfred Spraul <manfred@colorfullife.com>
14 * Further wakeup optimizations, documentation
15 * (c) 2010 Manfred Spraul <manfred@colorfullife.com>
17 * support for audit of ipc object properties and permission changes
18 * Dustin Kirkland <dustin.kirkland@us.ibm.com>
22 * Pavel Emelianov <xemul@openvz.org>
24 * Implementation notes: (May 2010)
25 * This file implements System V semaphores.
27 * User space visible behavior:
28 * - FIFO ordering for semop() operations (just FIFO, not starvation
30 * - multiple semaphore operations that alter the same semaphore in
31 * one semop() are handled.
32 * - sem_ctime (time of last semctl()) is updated in the IPC_SET, SETVAL and
34 * - two Linux specific semctl() commands: SEM_STAT, SEM_INFO.
35 * - undo adjustments at process exit are limited to 0..SEMVMX.
36 * - namespace are supported.
37 * - SEMMSL, SEMMNS, SEMOPM and SEMMNI can be configured at runtine by writing
38 * to /proc/sys/kernel/sem.
39 * - statistics about the usage are reported in /proc/sysvipc/sem.
43 * - all global variables are read-mostly.
44 * - semop() calls and semctl(RMID) are synchronized by RCU.
45 * - most operations do write operations (actually: spin_lock calls) to
46 * the per-semaphore array structure.
47 * Thus: Perfect SMP scaling between independent semaphore arrays.
48 * If multiple semaphores in one array are used, then cache line
49 * trashing on the semaphore array spinlock will limit the scaling.
50 * - semncnt and semzcnt are calculated on demand in count_semcnt()
51 * - the task that performs a successful semop() scans the list of all
52 * sleeping tasks and completes any pending operations that can be fulfilled.
53 * Semaphores are actively given to waiting tasks (necessary for FIFO).
54 * (see update_queue())
55 * - To improve the scalability, the actual wake-up calls are performed after
56 * dropping all locks. (see wake_up_sem_queue_prepare(),
57 * wake_up_sem_queue_do())
58 * - All work is done by the waker, the woken up task does not have to do
59 * anything - not even acquiring a lock or dropping a refcount.
60 * - A woken up task may not even touch the semaphore array anymore, it may
61 * have been destroyed already by a semctl(RMID).
62 * - The synchronizations between wake-ups due to a timeout/signal and a
63 * wake-up due to a completed semaphore operation is achieved by using an
64 * intermediate state (IN_WAKEUP).
65 * - UNDO values are stored in an array (one per process and per
66 * semaphore array, lazily allocated). For backwards compatibility, multiple
67 * modes for the UNDO variables are supported (per process, per thread)
68 * (see copy_semundo, CLONE_SYSVSEM)
69 * - There are two lists of the pending operations: a per-array list
70 * and per-semaphore list (stored in the array). This allows to achieve FIFO
71 * ordering without always scanning all pending operations.
72 * The worst-case behavior is nevertheless O(N^2) for N wakeups.
75 #include <linux/slab.h>
76 #include <linux/spinlock.h>
77 #include <linux/init.h>
78 #include <linux/proc_fs.h>
79 #include <linux/time.h>
80 #include <linux/security.h>
81 #include <linux/syscalls.h>
82 #include <linux/audit.h>
83 #include <linux/capability.h>
84 #include <linux/seq_file.h>
85 #include <linux/rwsem.h>
86 #include <linux/nsproxy.h>
87 #include <linux/ipc_namespace.h>
89 #include <linux/uaccess.h>
92 /* One semaphore structure for each semaphore in the system. */
94 int semval
; /* current value */
95 int sempid
; /* pid of last operation */
96 spinlock_t lock
; /* spinlock for fine-grained semtimedop */
97 struct list_head pending_alter
; /* pending single-sop operations */
98 /* that alter the semaphore */
99 struct list_head pending_const
; /* pending single-sop operations */
100 /* that do not alter the semaphore*/
101 time_t sem_otime
; /* candidate for sem_otime */
102 } ____cacheline_aligned_in_smp
;
104 /* One queue for each sleeping process in the system. */
106 struct list_head list
; /* queue of pending operations */
107 struct task_struct
*sleeper
; /* this process */
108 struct sem_undo
*undo
; /* undo structure */
109 int pid
; /* process id of requesting process */
110 int status
; /* completion status of operation */
111 struct sembuf
*sops
; /* array of pending operations */
112 struct sembuf
*blocking
; /* the operation that blocked */
113 int nsops
; /* number of operations */
114 int alter
; /* does *sops alter the array? */
117 /* Each task has a list of undo requests. They are executed automatically
118 * when the process exits.
121 struct list_head list_proc
; /* per-process list: *
122 * all undos from one process
124 struct rcu_head rcu
; /* rcu struct for sem_undo */
125 struct sem_undo_list
*ulp
; /* back ptr to sem_undo_list */
126 struct list_head list_id
; /* per semaphore array list:
127 * all undos for one array */
128 int semid
; /* semaphore set identifier */
129 short *semadj
; /* array of adjustments */
130 /* one per semaphore */
133 /* sem_undo_list controls shared access to the list of sem_undo structures
134 * that may be shared among all a CLONE_SYSVSEM task group.
136 struct sem_undo_list
{
139 struct list_head list_proc
;
143 #define sem_ids(ns) ((ns)->ids[IPC_SEM_IDS])
145 #define sem_checkid(sma, semid) ipc_checkid(&sma->sem_perm, semid)
147 static int newary(struct ipc_namespace
*, struct ipc_params
*);
148 static void freeary(struct ipc_namespace
*, struct kern_ipc_perm
*);
149 #ifdef CONFIG_PROC_FS
150 static int sysvipc_sem_proc_show(struct seq_file
*s
, void *it
);
153 #define SEMMSL_FAST 256 /* 512 bytes on stack */
154 #define SEMOPM_FAST 64 /* ~ 372 bytes on stack */
159 * sem_array.complex_count,
160 * sem_array.pending{_alter,_cont},
161 * sem_array.sem_undo: global sem_lock() for read/write
162 * sem_undo.proc_next: only "current" is allowed to read/write that field.
164 * sem_array.sem_base[i].pending_{const,alter}:
165 * global or semaphore sem_lock() for read/write
168 #define sc_semmsl sem_ctls[0]
169 #define sc_semmns sem_ctls[1]
170 #define sc_semopm sem_ctls[2]
171 #define sc_semmni sem_ctls[3]
173 void sem_init_ns(struct ipc_namespace
*ns
)
175 ns
->sc_semmsl
= SEMMSL
;
176 ns
->sc_semmns
= SEMMNS
;
177 ns
->sc_semopm
= SEMOPM
;
178 ns
->sc_semmni
= SEMMNI
;
180 ipc_init_ids(&ns
->ids
[IPC_SEM_IDS
]);
184 void sem_exit_ns(struct ipc_namespace
*ns
)
186 free_ipcs(ns
, &sem_ids(ns
), freeary
);
187 idr_destroy(&ns
->ids
[IPC_SEM_IDS
].ipcs_idr
);
191 void __init
sem_init(void)
193 sem_init_ns(&init_ipc_ns
);
194 ipc_init_proc_interface("sysvipc/sem",
195 " key semid perms nsems uid gid cuid cgid otime ctime\n",
196 IPC_SEM_IDS
, sysvipc_sem_proc_show
);
200 * unmerge_queues - unmerge queues, if possible.
201 * @sma: semaphore array
203 * The function unmerges the wait queues if complex_count is 0.
204 * It must be called prior to dropping the global semaphore array lock.
206 static void unmerge_queues(struct sem_array
*sma
)
208 struct sem_queue
*q
, *tq
;
210 /* complex operations still around? */
211 if (sma
->complex_count
)
214 * We will switch back to simple mode.
215 * Move all pending operation back into the per-semaphore
218 list_for_each_entry_safe(q
, tq
, &sma
->pending_alter
, list
) {
220 curr
= &sma
->sem_base
[q
->sops
[0].sem_num
];
222 list_add_tail(&q
->list
, &curr
->pending_alter
);
224 INIT_LIST_HEAD(&sma
->pending_alter
);
228 * merge_queues - merge single semop queues into global queue
229 * @sma: semaphore array
231 * This function merges all per-semaphore queues into the global queue.
232 * It is necessary to achieve FIFO ordering for the pending single-sop
233 * operations when a multi-semop operation must sleep.
234 * Only the alter operations must be moved, the const operations can stay.
236 static void merge_queues(struct sem_array
*sma
)
239 for (i
= 0; i
< sma
->sem_nsems
; i
++) {
240 struct sem
*sem
= sma
->sem_base
+ i
;
242 list_splice_init(&sem
->pending_alter
, &sma
->pending_alter
);
246 static void sem_rcu_free(struct rcu_head
*head
)
248 struct ipc_rcu
*p
= container_of(head
, struct ipc_rcu
, rcu
);
249 struct sem_array
*sma
= ipc_rcu_to_struct(p
);
251 security_sem_free(sma
);
256 * Wait until all currently ongoing simple ops have completed.
257 * Caller must own sem_perm.lock.
258 * New simple ops cannot start, because simple ops first check
259 * that sem_perm.lock is free.
260 * that a) sem_perm.lock is free and b) complex_count is 0.
262 static void sem_wait_array(struct sem_array
*sma
)
267 if (sma
->complex_count
) {
268 /* The thread that increased sma->complex_count waited on
269 * all sem->lock locks. Thus we don't need to wait again.
274 for (i
= 0; i
< sma
->sem_nsems
; i
++) {
275 sem
= sma
->sem_base
+ i
;
276 spin_unlock_wait(&sem
->lock
);
281 * If the request contains only one semaphore operation, and there are
282 * no complex transactions pending, lock only the semaphore involved.
283 * Otherwise, lock the entire semaphore array, since we either have
284 * multiple semaphores in our own semops, or we need to look at
285 * semaphores from other pending complex operations.
287 static inline int sem_lock(struct sem_array
*sma
, struct sembuf
*sops
,
293 /* Complex operation - acquire a full lock */
294 ipc_lock_object(&sma
->sem_perm
);
296 /* And wait until all simple ops that are processed
297 * right now have dropped their locks.
304 * Only one semaphore affected - try to optimize locking.
306 * - optimized locking is possible if no complex operation
307 * is either enqueued or processed right now.
308 * - The test for enqueued complex ops is simple:
309 * sma->complex_count != 0
310 * - Testing for complex ops that are processed right now is
311 * a bit more difficult. Complex ops acquire the full lock
312 * and first wait that the running simple ops have completed.
314 * Thus: If we own a simple lock and the global lock is free
315 * and complex_count is now 0, then it will stay 0 and
316 * thus just locking sem->lock is sufficient.
318 sem
= sma
->sem_base
+ sops
->sem_num
;
320 if (sma
->complex_count
== 0) {
322 * It appears that no complex operation is around.
323 * Acquire the per-semaphore lock.
325 spin_lock(&sem
->lock
);
327 /* Then check that the global lock is free */
328 if (!spin_is_locked(&sma
->sem_perm
.lock
)) {
330 * The ipc object lock check must be visible on all
331 * cores before rechecking the complex count. Otherwise
332 * we can race with another thread that does:
334 * spin_unlock(sem_perm.lock);
339 * Now repeat the test of complex_count:
340 * It can't change anymore until we drop sem->lock.
341 * Thus: if is now 0, then it will stay 0.
343 if (sma
->complex_count
== 0) {
344 /* fast path successful! */
345 return sops
->sem_num
;
348 spin_unlock(&sem
->lock
);
351 /* slow path: acquire the full lock */
352 ipc_lock_object(&sma
->sem_perm
);
354 if (sma
->complex_count
== 0) {
356 * There is no complex operation, thus we can switch
357 * back to the fast path.
359 spin_lock(&sem
->lock
);
360 ipc_unlock_object(&sma
->sem_perm
);
361 return sops
->sem_num
;
363 /* Not a false alarm, thus complete the sequence for a
371 static inline void sem_unlock(struct sem_array
*sma
, int locknum
)
375 ipc_unlock_object(&sma
->sem_perm
);
377 struct sem
*sem
= sma
->sem_base
+ locknum
;
378 spin_unlock(&sem
->lock
);
383 * sem_lock_(check_) routines are called in the paths where the rwsem
386 * The caller holds the RCU read lock.
388 static inline struct sem_array
*sem_obtain_lock(struct ipc_namespace
*ns
,
389 int id
, struct sembuf
*sops
, int nsops
, int *locknum
)
391 struct kern_ipc_perm
*ipcp
;
392 struct sem_array
*sma
;
394 ipcp
= ipc_obtain_object(&sem_ids(ns
), id
);
396 return ERR_CAST(ipcp
);
398 sma
= container_of(ipcp
, struct sem_array
, sem_perm
);
399 *locknum
= sem_lock(sma
, sops
, nsops
);
401 /* ipc_rmid() may have already freed the ID while sem_lock
402 * was spinning: verify that the structure is still valid
404 if (ipc_valid_object(ipcp
))
405 return container_of(ipcp
, struct sem_array
, sem_perm
);
407 sem_unlock(sma
, *locknum
);
408 return ERR_PTR(-EINVAL
);
411 static inline struct sem_array
*sem_obtain_object(struct ipc_namespace
*ns
, int id
)
413 struct kern_ipc_perm
*ipcp
= ipc_obtain_object(&sem_ids(ns
), id
);
416 return ERR_CAST(ipcp
);
418 return container_of(ipcp
, struct sem_array
, sem_perm
);
421 static inline struct sem_array
*sem_obtain_object_check(struct ipc_namespace
*ns
,
424 struct kern_ipc_perm
*ipcp
= ipc_obtain_object_check(&sem_ids(ns
), id
);
427 return ERR_CAST(ipcp
);
429 return container_of(ipcp
, struct sem_array
, sem_perm
);
432 static inline void sem_lock_and_putref(struct sem_array
*sma
)
434 sem_lock(sma
, NULL
, -1);
435 ipc_rcu_putref(sma
, ipc_rcu_free
);
438 static inline void sem_rmid(struct ipc_namespace
*ns
, struct sem_array
*s
)
440 ipc_rmid(&sem_ids(ns
), &s
->sem_perm
);
444 * Lockless wakeup algorithm:
445 * Without the check/retry algorithm a lockless wakeup is possible:
446 * - queue.status is initialized to -EINTR before blocking.
447 * - wakeup is performed by
448 * * unlinking the queue entry from the pending list
449 * * setting queue.status to IN_WAKEUP
450 * This is the notification for the blocked thread that a
451 * result value is imminent.
452 * * call wake_up_process
453 * * set queue.status to the final value.
454 * - the previously blocked thread checks queue.status:
455 * * if it's IN_WAKEUP, then it must wait until the value changes
456 * * if it's not -EINTR, then the operation was completed by
457 * update_queue. semtimedop can return queue.status without
458 * performing any operation on the sem array.
459 * * otherwise it must acquire the spinlock and check what's up.
461 * The two-stage algorithm is necessary to protect against the following
463 * - if queue.status is set after wake_up_process, then the woken up idle
464 * thread could race forward and try (and fail) to acquire sma->lock
465 * before update_queue had a chance to set queue.status
466 * - if queue.status is written before wake_up_process and if the
467 * blocked process is woken up by a signal between writing
468 * queue.status and the wake_up_process, then the woken up
469 * process could return from semtimedop and die by calling
470 * sys_exit before wake_up_process is called. Then wake_up_process
471 * will oops, because the task structure is already invalid.
472 * (yes, this happened on s390 with sysv msg).
478 * newary - Create a new semaphore set
480 * @params: ptr to the structure that contains key, semflg and nsems
482 * Called with sem_ids.rwsem held (as a writer)
484 static int newary(struct ipc_namespace
*ns
, struct ipc_params
*params
)
488 struct sem_array
*sma
;
490 key_t key
= params
->key
;
491 int nsems
= params
->u
.nsems
;
492 int semflg
= params
->flg
;
497 if (ns
->used_sems
+ nsems
> ns
->sc_semmns
)
500 size
= sizeof(*sma
) + nsems
* sizeof(struct sem
);
501 sma
= ipc_rcu_alloc(size
);
505 memset(sma
, 0, size
);
507 sma
->sem_perm
.mode
= (semflg
& S_IRWXUGO
);
508 sma
->sem_perm
.key
= key
;
510 sma
->sem_perm
.security
= NULL
;
511 retval
= security_sem_alloc(sma
);
513 ipc_rcu_putref(sma
, ipc_rcu_free
);
517 sma
->sem_base
= (struct sem
*) &sma
[1];
519 for (i
= 0; i
< nsems
; i
++) {
520 INIT_LIST_HEAD(&sma
->sem_base
[i
].pending_alter
);
521 INIT_LIST_HEAD(&sma
->sem_base
[i
].pending_const
);
522 spin_lock_init(&sma
->sem_base
[i
].lock
);
525 sma
->complex_count
= 0;
526 INIT_LIST_HEAD(&sma
->pending_alter
);
527 INIT_LIST_HEAD(&sma
->pending_const
);
528 INIT_LIST_HEAD(&sma
->list_id
);
529 sma
->sem_nsems
= nsems
;
530 sma
->sem_ctime
= get_seconds();
532 id
= ipc_addid(&sem_ids(ns
), &sma
->sem_perm
, ns
->sc_semmni
);
534 ipc_rcu_putref(sma
, sem_rcu_free
);
537 ns
->used_sems
+= nsems
;
542 return sma
->sem_perm
.id
;
547 * Called with sem_ids.rwsem and ipcp locked.
549 static inline int sem_security(struct kern_ipc_perm
*ipcp
, int semflg
)
551 struct sem_array
*sma
;
553 sma
= container_of(ipcp
, struct sem_array
, sem_perm
);
554 return security_sem_associate(sma
, semflg
);
558 * Called with sem_ids.rwsem and ipcp locked.
560 static inline int sem_more_checks(struct kern_ipc_perm
*ipcp
,
561 struct ipc_params
*params
)
563 struct sem_array
*sma
;
565 sma
= container_of(ipcp
, struct sem_array
, sem_perm
);
566 if (params
->u
.nsems
> sma
->sem_nsems
)
572 SYSCALL_DEFINE3(semget
, key_t
, key
, int, nsems
, int, semflg
)
574 struct ipc_namespace
*ns
;
575 static const struct ipc_ops sem_ops
= {
577 .associate
= sem_security
,
578 .more_checks
= sem_more_checks
,
580 struct ipc_params sem_params
;
582 ns
= current
->nsproxy
->ipc_ns
;
584 if (nsems
< 0 || nsems
> ns
->sc_semmsl
)
587 sem_params
.key
= key
;
588 sem_params
.flg
= semflg
;
589 sem_params
.u
.nsems
= nsems
;
591 return ipcget(ns
, &sem_ids(ns
), &sem_ops
, &sem_params
);
595 * perform_atomic_semop - Perform (if possible) a semaphore operation
596 * @sma: semaphore array
597 * @q: struct sem_queue that describes the operation
599 * Returns 0 if the operation was possible.
600 * Returns 1 if the operation is impossible, the caller must sleep.
601 * Negative values are error codes.
603 static int perform_atomic_semop(struct sem_array
*sma
, struct sem_queue
*q
)
605 int result
, sem_op
, nsops
, pid
;
615 for (sop
= sops
; sop
< sops
+ nsops
; sop
++) {
616 curr
= sma
->sem_base
+ sop
->sem_num
;
617 sem_op
= sop
->sem_op
;
618 result
= curr
->semval
;
620 if (!sem_op
&& result
)
629 if (sop
->sem_flg
& SEM_UNDO
) {
630 int undo
= un
->semadj
[sop
->sem_num
] - sem_op
;
631 /* Exceeding the undo range is an error. */
632 if (undo
< (-SEMAEM
- 1) || undo
> SEMAEM
)
634 un
->semadj
[sop
->sem_num
] = undo
;
637 curr
->semval
= result
;
642 while (sop
>= sops
) {
643 sma
->sem_base
[sop
->sem_num
].sempid
= pid
;
656 if (sop
->sem_flg
& IPC_NOWAIT
)
663 while (sop
>= sops
) {
664 sem_op
= sop
->sem_op
;
665 sma
->sem_base
[sop
->sem_num
].semval
-= sem_op
;
666 if (sop
->sem_flg
& SEM_UNDO
)
667 un
->semadj
[sop
->sem_num
] += sem_op
;
674 /** wake_up_sem_queue_prepare(q, error): Prepare wake-up
675 * @q: queue entry that must be signaled
676 * @error: Error value for the signal
678 * Prepare the wake-up of the queue entry q.
680 static void wake_up_sem_queue_prepare(struct list_head
*pt
,
681 struct sem_queue
*q
, int error
)
683 if (list_empty(pt
)) {
685 * Hold preempt off so that we don't get preempted and have the
686 * wakee busy-wait until we're scheduled back on.
690 q
->status
= IN_WAKEUP
;
693 list_add_tail(&q
->list
, pt
);
697 * wake_up_sem_queue_do - do the actual wake-up
698 * @pt: list of tasks to be woken up
700 * Do the actual wake-up.
701 * The function is called without any locks held, thus the semaphore array
702 * could be destroyed already and the tasks can disappear as soon as the
703 * status is set to the actual return code.
705 static void wake_up_sem_queue_do(struct list_head
*pt
)
707 struct sem_queue
*q
, *t
;
710 did_something
= !list_empty(pt
);
711 list_for_each_entry_safe(q
, t
, pt
, list
) {
712 wake_up_process(q
->sleeper
);
713 /* q can disappear immediately after writing q->status. */
721 static void unlink_queue(struct sem_array
*sma
, struct sem_queue
*q
)
725 sma
->complex_count
--;
728 /** check_restart(sma, q)
729 * @sma: semaphore array
730 * @q: the operation that just completed
732 * update_queue is O(N^2) when it restarts scanning the whole queue of
733 * waiting operations. Therefore this function checks if the restart is
734 * really necessary. It is called after a previously waiting operation
735 * modified the array.
736 * Note that wait-for-zero operations are handled without restart.
738 static int check_restart(struct sem_array
*sma
, struct sem_queue
*q
)
740 /* pending complex alter operations are too difficult to analyse */
741 if (!list_empty(&sma
->pending_alter
))
744 /* we were a sleeping complex operation. Too difficult */
748 /* It is impossible that someone waits for the new value:
749 * - complex operations always restart.
750 * - wait-for-zero are handled seperately.
751 * - q is a previously sleeping simple operation that
752 * altered the array. It must be a decrement, because
753 * simple increments never sleep.
754 * - If there are older (higher priority) decrements
755 * in the queue, then they have observed the original
756 * semval value and couldn't proceed. The operation
757 * decremented to value - thus they won't proceed either.
763 * wake_const_ops - wake up non-alter tasks
764 * @sma: semaphore array.
765 * @semnum: semaphore that was modified.
766 * @pt: list head for the tasks that must be woken up.
768 * wake_const_ops must be called after a semaphore in a semaphore array
769 * was set to 0. If complex const operations are pending, wake_const_ops must
770 * be called with semnum = -1, as well as with the number of each modified
772 * The tasks that must be woken up are added to @pt. The return code
773 * is stored in q->pid.
774 * The function returns 1 if at least one operation was completed successfully.
776 static int wake_const_ops(struct sem_array
*sma
, int semnum
,
777 struct list_head
*pt
)
780 struct list_head
*walk
;
781 struct list_head
*pending_list
;
782 int semop_completed
= 0;
785 pending_list
= &sma
->pending_const
;
787 pending_list
= &sma
->sem_base
[semnum
].pending_const
;
789 walk
= pending_list
->next
;
790 while (walk
!= pending_list
) {
793 q
= container_of(walk
, struct sem_queue
, list
);
796 error
= perform_atomic_semop(sma
, q
);
799 /* operation completed, remove from queue & wakeup */
801 unlink_queue(sma
, q
);
803 wake_up_sem_queue_prepare(pt
, q
, error
);
808 return semop_completed
;
812 * do_smart_wakeup_zero - wakeup all wait for zero tasks
813 * @sma: semaphore array
814 * @sops: operations that were performed
815 * @nsops: number of operations
816 * @pt: list head of the tasks that must be woken up.
818 * Checks all required queue for wait-for-zero operations, based
819 * on the actual changes that were performed on the semaphore array.
820 * The function returns 1 if at least one operation was completed successfully.
822 static int do_smart_wakeup_zero(struct sem_array
*sma
, struct sembuf
*sops
,
823 int nsops
, struct list_head
*pt
)
826 int semop_completed
= 0;
829 /* first: the per-semaphore queues, if known */
831 for (i
= 0; i
< nsops
; i
++) {
832 int num
= sops
[i
].sem_num
;
834 if (sma
->sem_base
[num
].semval
== 0) {
836 semop_completed
|= wake_const_ops(sma
, num
, pt
);
841 * No sops means modified semaphores not known.
842 * Assume all were changed.
844 for (i
= 0; i
< sma
->sem_nsems
; i
++) {
845 if (sma
->sem_base
[i
].semval
== 0) {
847 semop_completed
|= wake_const_ops(sma
, i
, pt
);
852 * If one of the modified semaphores got 0,
853 * then check the global queue, too.
856 semop_completed
|= wake_const_ops(sma
, -1, pt
);
858 return semop_completed
;
863 * update_queue - look for tasks that can be completed.
864 * @sma: semaphore array.
865 * @semnum: semaphore that was modified.
866 * @pt: list head for the tasks that must be woken up.
868 * update_queue must be called after a semaphore in a semaphore array
869 * was modified. If multiple semaphores were modified, update_queue must
870 * be called with semnum = -1, as well as with the number of each modified
872 * The tasks that must be woken up are added to @pt. The return code
873 * is stored in q->pid.
874 * The function internally checks if const operations can now succeed.
876 * The function return 1 if at least one semop was completed successfully.
878 static int update_queue(struct sem_array
*sma
, int semnum
, struct list_head
*pt
)
881 struct list_head
*walk
;
882 struct list_head
*pending_list
;
883 int semop_completed
= 0;
886 pending_list
= &sma
->pending_alter
;
888 pending_list
= &sma
->sem_base
[semnum
].pending_alter
;
891 walk
= pending_list
->next
;
892 while (walk
!= pending_list
) {
895 q
= container_of(walk
, struct sem_queue
, list
);
898 /* If we are scanning the single sop, per-semaphore list of
899 * one semaphore and that semaphore is 0, then it is not
900 * necessary to scan further: simple increments
901 * that affect only one entry succeed immediately and cannot
902 * be in the per semaphore pending queue, and decrements
903 * cannot be successful if the value is already 0.
905 if (semnum
!= -1 && sma
->sem_base
[semnum
].semval
== 0)
908 error
= perform_atomic_semop(sma
, q
);
910 /* Does q->sleeper still need to sleep? */
914 unlink_queue(sma
, q
);
920 do_smart_wakeup_zero(sma
, q
->sops
, q
->nsops
, pt
);
921 restart
= check_restart(sma
, q
);
924 wake_up_sem_queue_prepare(pt
, q
, error
);
928 return semop_completed
;
932 * set_semotime - set sem_otime
933 * @sma: semaphore array
934 * @sops: operations that modified the array, may be NULL
936 * sem_otime is replicated to avoid cache line trashing.
937 * This function sets one instance to the current time.
939 static void set_semotime(struct sem_array
*sma
, struct sembuf
*sops
)
942 sma
->sem_base
[0].sem_otime
= get_seconds();
944 sma
->sem_base
[sops
[0].sem_num
].sem_otime
=
950 * do_smart_update - optimized update_queue
951 * @sma: semaphore array
952 * @sops: operations that were performed
953 * @nsops: number of operations
954 * @otime: force setting otime
955 * @pt: list head of the tasks that must be woken up.
957 * do_smart_update() does the required calls to update_queue and wakeup_zero,
958 * based on the actual changes that were performed on the semaphore array.
959 * Note that the function does not do the actual wake-up: the caller is
960 * responsible for calling wake_up_sem_queue_do(@pt).
961 * It is safe to perform this call after dropping all locks.
963 static void do_smart_update(struct sem_array
*sma
, struct sembuf
*sops
, int nsops
,
964 int otime
, struct list_head
*pt
)
968 otime
|= do_smart_wakeup_zero(sma
, sops
, nsops
, pt
);
970 if (!list_empty(&sma
->pending_alter
)) {
971 /* semaphore array uses the global queue - just process it. */
972 otime
|= update_queue(sma
, -1, pt
);
976 * No sops, thus the modified semaphores are not
979 for (i
= 0; i
< sma
->sem_nsems
; i
++)
980 otime
|= update_queue(sma
, i
, pt
);
983 * Check the semaphores that were increased:
984 * - No complex ops, thus all sleeping ops are
986 * - if we decreased the value, then any sleeping
987 * semaphore ops wont be able to run: If the
988 * previous value was too small, then the new
989 * value will be too small, too.
991 for (i
= 0; i
< nsops
; i
++) {
992 if (sops
[i
].sem_op
> 0) {
993 otime
|= update_queue(sma
,
994 sops
[i
].sem_num
, pt
);
1000 set_semotime(sma
, sops
);
1004 * check_qop: Test if a queued operation sleeps on the semaphore semnum
1006 static int check_qop(struct sem_array
*sma
, int semnum
, struct sem_queue
*q
,
1009 struct sembuf
*sop
= q
->blocking
;
1012 * Linux always (since 0.99.10) reported a task as sleeping on all
1013 * semaphores. This violates SUS, therefore it was changed to the
1014 * standard compliant behavior.
1015 * Give the administrators a chance to notice that an application
1016 * might misbehave because it relies on the Linux behavior.
1018 pr_info_once("semctl(GETNCNT/GETZCNT) is since 3.16 Single Unix Specification compliant.\n"
1019 "The task %s (%d) triggered the difference, watch for misbehavior.\n",
1020 current
->comm
, task_pid_nr(current
));
1022 if (sop
->sem_num
!= semnum
)
1025 if (count_zero
&& sop
->sem_op
== 0)
1027 if (!count_zero
&& sop
->sem_op
< 0)
1033 /* The following counts are associated to each semaphore:
1034 * semncnt number of tasks waiting on semval being nonzero
1035 * semzcnt number of tasks waiting on semval being zero
1037 * Per definition, a task waits only on the semaphore of the first semop
1038 * that cannot proceed, even if additional operation would block, too.
1040 static int count_semcnt(struct sem_array
*sma
, ushort semnum
,
1043 struct list_head
*l
;
1044 struct sem_queue
*q
;
1048 /* First: check the simple operations. They are easy to evaluate */
1050 l
= &sma
->sem_base
[semnum
].pending_const
;
1052 l
= &sma
->sem_base
[semnum
].pending_alter
;
1054 list_for_each_entry(q
, l
, list
) {
1055 /* all task on a per-semaphore list sleep on exactly
1061 /* Then: check the complex operations. */
1062 list_for_each_entry(q
, &sma
->pending_alter
, list
) {
1063 semcnt
+= check_qop(sma
, semnum
, q
, count_zero
);
1066 list_for_each_entry(q
, &sma
->pending_const
, list
) {
1067 semcnt
+= check_qop(sma
, semnum
, q
, count_zero
);
1073 /* Free a semaphore set. freeary() is called with sem_ids.rwsem locked
1074 * as a writer and the spinlock for this semaphore set hold. sem_ids.rwsem
1075 * remains locked on exit.
1077 static void freeary(struct ipc_namespace
*ns
, struct kern_ipc_perm
*ipcp
)
1079 struct sem_undo
*un
, *tu
;
1080 struct sem_queue
*q
, *tq
;
1081 struct sem_array
*sma
= container_of(ipcp
, struct sem_array
, sem_perm
);
1082 struct list_head tasks
;
1085 /* Free the existing undo structures for this semaphore set. */
1086 ipc_assert_locked_object(&sma
->sem_perm
);
1087 list_for_each_entry_safe(un
, tu
, &sma
->list_id
, list_id
) {
1088 list_del(&un
->list_id
);
1089 spin_lock(&un
->ulp
->lock
);
1091 list_del_rcu(&un
->list_proc
);
1092 spin_unlock(&un
->ulp
->lock
);
1096 /* Wake up all pending processes and let them fail with EIDRM. */
1097 INIT_LIST_HEAD(&tasks
);
1098 list_for_each_entry_safe(q
, tq
, &sma
->pending_const
, list
) {
1099 unlink_queue(sma
, q
);
1100 wake_up_sem_queue_prepare(&tasks
, q
, -EIDRM
);
1103 list_for_each_entry_safe(q
, tq
, &sma
->pending_alter
, list
) {
1104 unlink_queue(sma
, q
);
1105 wake_up_sem_queue_prepare(&tasks
, q
, -EIDRM
);
1107 for (i
= 0; i
< sma
->sem_nsems
; i
++) {
1108 struct sem
*sem
= sma
->sem_base
+ i
;
1109 list_for_each_entry_safe(q
, tq
, &sem
->pending_const
, list
) {
1110 unlink_queue(sma
, q
);
1111 wake_up_sem_queue_prepare(&tasks
, q
, -EIDRM
);
1113 list_for_each_entry_safe(q
, tq
, &sem
->pending_alter
, list
) {
1114 unlink_queue(sma
, q
);
1115 wake_up_sem_queue_prepare(&tasks
, q
, -EIDRM
);
1119 /* Remove the semaphore set from the IDR */
1121 sem_unlock(sma
, -1);
1124 wake_up_sem_queue_do(&tasks
);
1125 ns
->used_sems
-= sma
->sem_nsems
;
1126 ipc_rcu_putref(sma
, sem_rcu_free
);
1129 static unsigned long copy_semid_to_user(void __user
*buf
, struct semid64_ds
*in
, int version
)
1133 return copy_to_user(buf
, in
, sizeof(*in
));
1136 struct semid_ds out
;
1138 memset(&out
, 0, sizeof(out
));
1140 ipc64_perm_to_ipc_perm(&in
->sem_perm
, &out
.sem_perm
);
1142 out
.sem_otime
= in
->sem_otime
;
1143 out
.sem_ctime
= in
->sem_ctime
;
1144 out
.sem_nsems
= in
->sem_nsems
;
1146 return copy_to_user(buf
, &out
, sizeof(out
));
1153 static time_t get_semotime(struct sem_array
*sma
)
1158 res
= sma
->sem_base
[0].sem_otime
;
1159 for (i
= 1; i
< sma
->sem_nsems
; i
++) {
1160 time_t to
= sma
->sem_base
[i
].sem_otime
;
1168 static int semctl_nolock(struct ipc_namespace
*ns
, int semid
,
1169 int cmd
, int version
, void __user
*p
)
1172 struct sem_array
*sma
;
1178 struct seminfo seminfo
;
1181 err
= security_sem_semctl(NULL
, cmd
);
1185 memset(&seminfo
, 0, sizeof(seminfo
));
1186 seminfo
.semmni
= ns
->sc_semmni
;
1187 seminfo
.semmns
= ns
->sc_semmns
;
1188 seminfo
.semmsl
= ns
->sc_semmsl
;
1189 seminfo
.semopm
= ns
->sc_semopm
;
1190 seminfo
.semvmx
= SEMVMX
;
1191 seminfo
.semmnu
= SEMMNU
;
1192 seminfo
.semmap
= SEMMAP
;
1193 seminfo
.semume
= SEMUME
;
1194 down_read(&sem_ids(ns
).rwsem
);
1195 if (cmd
== SEM_INFO
) {
1196 seminfo
.semusz
= sem_ids(ns
).in_use
;
1197 seminfo
.semaem
= ns
->used_sems
;
1199 seminfo
.semusz
= SEMUSZ
;
1200 seminfo
.semaem
= SEMAEM
;
1202 max_id
= ipc_get_maxid(&sem_ids(ns
));
1203 up_read(&sem_ids(ns
).rwsem
);
1204 if (copy_to_user(p
, &seminfo
, sizeof(struct seminfo
)))
1206 return (max_id
< 0) ? 0 : max_id
;
1211 struct semid64_ds tbuf
;
1214 memset(&tbuf
, 0, sizeof(tbuf
));
1217 if (cmd
== SEM_STAT
) {
1218 sma
= sem_obtain_object(ns
, semid
);
1223 id
= sma
->sem_perm
.id
;
1225 sma
= sem_obtain_object_check(ns
, semid
);
1233 if (ipcperms(ns
, &sma
->sem_perm
, S_IRUGO
))
1236 err
= security_sem_semctl(sma
, cmd
);
1240 kernel_to_ipc64_perm(&sma
->sem_perm
, &tbuf
.sem_perm
);
1241 tbuf
.sem_otime
= get_semotime(sma
);
1242 tbuf
.sem_ctime
= sma
->sem_ctime
;
1243 tbuf
.sem_nsems
= sma
->sem_nsems
;
1245 if (copy_semid_to_user(p
, &tbuf
, version
))
1257 static int semctl_setval(struct ipc_namespace
*ns
, int semid
, int semnum
,
1260 struct sem_undo
*un
;
1261 struct sem_array
*sma
;
1264 struct list_head tasks
;
1266 #if defined(CONFIG_64BIT) && defined(__BIG_ENDIAN)
1267 /* big-endian 64bit */
1270 /* 32bit or little-endian 64bit */
1274 if (val
> SEMVMX
|| val
< 0)
1277 INIT_LIST_HEAD(&tasks
);
1280 sma
= sem_obtain_object_check(ns
, semid
);
1283 return PTR_ERR(sma
);
1286 if (semnum
< 0 || semnum
>= sma
->sem_nsems
) {
1292 if (ipcperms(ns
, &sma
->sem_perm
, S_IWUGO
)) {
1297 err
= security_sem_semctl(sma
, SETVAL
);
1303 sem_lock(sma
, NULL
, -1);
1305 if (!ipc_valid_object(&sma
->sem_perm
)) {
1306 sem_unlock(sma
, -1);
1311 curr
= &sma
->sem_base
[semnum
];
1313 ipc_assert_locked_object(&sma
->sem_perm
);
1314 list_for_each_entry(un
, &sma
->list_id
, list_id
)
1315 un
->semadj
[semnum
] = 0;
1318 curr
->sempid
= task_tgid_vnr(current
);
1319 sma
->sem_ctime
= get_seconds();
1320 /* maybe some queued-up processes were waiting for this */
1321 do_smart_update(sma
, NULL
, 0, 0, &tasks
);
1322 sem_unlock(sma
, -1);
1324 wake_up_sem_queue_do(&tasks
);
1328 static int semctl_main(struct ipc_namespace
*ns
, int semid
, int semnum
,
1329 int cmd
, void __user
*p
)
1331 struct sem_array
*sma
;
1334 ushort fast_sem_io
[SEMMSL_FAST
];
1335 ushort
*sem_io
= fast_sem_io
;
1336 struct list_head tasks
;
1338 INIT_LIST_HEAD(&tasks
);
1341 sma
= sem_obtain_object_check(ns
, semid
);
1344 return PTR_ERR(sma
);
1347 nsems
= sma
->sem_nsems
;
1350 if (ipcperms(ns
, &sma
->sem_perm
, cmd
== SETALL
? S_IWUGO
: S_IRUGO
))
1351 goto out_rcu_wakeup
;
1353 err
= security_sem_semctl(sma
, cmd
);
1355 goto out_rcu_wakeup
;
1361 ushort __user
*array
= p
;
1364 sem_lock(sma
, NULL
, -1);
1365 if (!ipc_valid_object(&sma
->sem_perm
)) {
1369 if (nsems
> SEMMSL_FAST
) {
1370 if (!ipc_rcu_getref(sma
)) {
1374 sem_unlock(sma
, -1);
1376 sem_io
= ipc_alloc(sizeof(ushort
)*nsems
);
1377 if (sem_io
== NULL
) {
1378 ipc_rcu_putref(sma
, ipc_rcu_free
);
1383 sem_lock_and_putref(sma
);
1384 if (!ipc_valid_object(&sma
->sem_perm
)) {
1389 for (i
= 0; i
< sma
->sem_nsems
; i
++)
1390 sem_io
[i
] = sma
->sem_base
[i
].semval
;
1391 sem_unlock(sma
, -1);
1394 if (copy_to_user(array
, sem_io
, nsems
*sizeof(ushort
)))
1401 struct sem_undo
*un
;
1403 if (!ipc_rcu_getref(sma
)) {
1405 goto out_rcu_wakeup
;
1409 if (nsems
> SEMMSL_FAST
) {
1410 sem_io
= ipc_alloc(sizeof(ushort
)*nsems
);
1411 if (sem_io
== NULL
) {
1412 ipc_rcu_putref(sma
, ipc_rcu_free
);
1417 if (copy_from_user(sem_io
, p
, nsems
*sizeof(ushort
))) {
1418 ipc_rcu_putref(sma
, ipc_rcu_free
);
1423 for (i
= 0; i
< nsems
; i
++) {
1424 if (sem_io
[i
] > SEMVMX
) {
1425 ipc_rcu_putref(sma
, ipc_rcu_free
);
1431 sem_lock_and_putref(sma
);
1432 if (!ipc_valid_object(&sma
->sem_perm
)) {
1437 for (i
= 0; i
< nsems
; i
++)
1438 sma
->sem_base
[i
].semval
= sem_io
[i
];
1440 ipc_assert_locked_object(&sma
->sem_perm
);
1441 list_for_each_entry(un
, &sma
->list_id
, list_id
) {
1442 for (i
= 0; i
< nsems
; i
++)
1445 sma
->sem_ctime
= get_seconds();
1446 /* maybe some queued-up processes were waiting for this */
1447 do_smart_update(sma
, NULL
, 0, 0, &tasks
);
1451 /* GETVAL, GETPID, GETNCTN, GETZCNT: fall-through */
1454 if (semnum
< 0 || semnum
>= nsems
)
1455 goto out_rcu_wakeup
;
1457 sem_lock(sma
, NULL
, -1);
1458 if (!ipc_valid_object(&sma
->sem_perm
)) {
1462 curr
= &sma
->sem_base
[semnum
];
1472 err
= count_semcnt(sma
, semnum
, 0);
1475 err
= count_semcnt(sma
, semnum
, 1);
1480 sem_unlock(sma
, -1);
1483 wake_up_sem_queue_do(&tasks
);
1485 if (sem_io
!= fast_sem_io
)
1486 ipc_free(sem_io
, sizeof(ushort
)*nsems
);
1490 static inline unsigned long
1491 copy_semid_from_user(struct semid64_ds
*out
, void __user
*buf
, int version
)
1495 if (copy_from_user(out
, buf
, sizeof(*out
)))
1500 struct semid_ds tbuf_old
;
1502 if (copy_from_user(&tbuf_old
, buf
, sizeof(tbuf_old
)))
1505 out
->sem_perm
.uid
= tbuf_old
.sem_perm
.uid
;
1506 out
->sem_perm
.gid
= tbuf_old
.sem_perm
.gid
;
1507 out
->sem_perm
.mode
= tbuf_old
.sem_perm
.mode
;
1517 * This function handles some semctl commands which require the rwsem
1518 * to be held in write mode.
1519 * NOTE: no locks must be held, the rwsem is taken inside this function.
1521 static int semctl_down(struct ipc_namespace
*ns
, int semid
,
1522 int cmd
, int version
, void __user
*p
)
1524 struct sem_array
*sma
;
1526 struct semid64_ds semid64
;
1527 struct kern_ipc_perm
*ipcp
;
1529 if (cmd
== IPC_SET
) {
1530 if (copy_semid_from_user(&semid64
, p
, version
))
1534 down_write(&sem_ids(ns
).rwsem
);
1537 ipcp
= ipcctl_pre_down_nolock(ns
, &sem_ids(ns
), semid
, cmd
,
1538 &semid64
.sem_perm
, 0);
1540 err
= PTR_ERR(ipcp
);
1544 sma
= container_of(ipcp
, struct sem_array
, sem_perm
);
1546 err
= security_sem_semctl(sma
, cmd
);
1552 sem_lock(sma
, NULL
, -1);
1553 /* freeary unlocks the ipc object and rcu */
1557 sem_lock(sma
, NULL
, -1);
1558 err
= ipc_update_perm(&semid64
.sem_perm
, ipcp
);
1561 sma
->sem_ctime
= get_seconds();
1569 sem_unlock(sma
, -1);
1573 up_write(&sem_ids(ns
).rwsem
);
1577 SYSCALL_DEFINE4(semctl
, int, semid
, int, semnum
, int, cmd
, unsigned long, arg
)
1580 struct ipc_namespace
*ns
;
1581 void __user
*p
= (void __user
*)arg
;
1586 version
= ipc_parse_version(&cmd
);
1587 ns
= current
->nsproxy
->ipc_ns
;
1594 return semctl_nolock(ns
, semid
, cmd
, version
, p
);
1601 return semctl_main(ns
, semid
, semnum
, cmd
, p
);
1603 return semctl_setval(ns
, semid
, semnum
, arg
);
1606 return semctl_down(ns
, semid
, cmd
, version
, p
);
1612 /* If the task doesn't already have a undo_list, then allocate one
1613 * here. We guarantee there is only one thread using this undo list,
1614 * and current is THE ONE
1616 * If this allocation and assignment succeeds, but later
1617 * portions of this code fail, there is no need to free the sem_undo_list.
1618 * Just let it stay associated with the task, and it'll be freed later
1621 * This can block, so callers must hold no locks.
1623 static inline int get_undo_list(struct sem_undo_list
**undo_listp
)
1625 struct sem_undo_list
*undo_list
;
1627 undo_list
= current
->sysvsem
.undo_list
;
1629 undo_list
= kzalloc(sizeof(*undo_list
), GFP_KERNEL
);
1630 if (undo_list
== NULL
)
1632 spin_lock_init(&undo_list
->lock
);
1633 atomic_set(&undo_list
->refcnt
, 1);
1634 INIT_LIST_HEAD(&undo_list
->list_proc
);
1636 current
->sysvsem
.undo_list
= undo_list
;
1638 *undo_listp
= undo_list
;
1642 static struct sem_undo
*__lookup_undo(struct sem_undo_list
*ulp
, int semid
)
1644 struct sem_undo
*un
;
1646 list_for_each_entry_rcu(un
, &ulp
->list_proc
, list_proc
) {
1647 if (un
->semid
== semid
)
1653 static struct sem_undo
*lookup_undo(struct sem_undo_list
*ulp
, int semid
)
1655 struct sem_undo
*un
;
1657 assert_spin_locked(&ulp
->lock
);
1659 un
= __lookup_undo(ulp
, semid
);
1661 list_del_rcu(&un
->list_proc
);
1662 list_add_rcu(&un
->list_proc
, &ulp
->list_proc
);
1668 * find_alloc_undo - lookup (and if not present create) undo array
1670 * @semid: semaphore array id
1672 * The function looks up (and if not present creates) the undo structure.
1673 * The size of the undo structure depends on the size of the semaphore
1674 * array, thus the alloc path is not that straightforward.
1675 * Lifetime-rules: sem_undo is rcu-protected, on success, the function
1676 * performs a rcu_read_lock().
1678 static struct sem_undo
*find_alloc_undo(struct ipc_namespace
*ns
, int semid
)
1680 struct sem_array
*sma
;
1681 struct sem_undo_list
*ulp
;
1682 struct sem_undo
*un
, *new;
1685 error
= get_undo_list(&ulp
);
1687 return ERR_PTR(error
);
1690 spin_lock(&ulp
->lock
);
1691 un
= lookup_undo(ulp
, semid
);
1692 spin_unlock(&ulp
->lock
);
1693 if (likely(un
!= NULL
))
1696 /* no undo structure around - allocate one. */
1697 /* step 1: figure out the size of the semaphore array */
1698 sma
= sem_obtain_object_check(ns
, semid
);
1701 return ERR_CAST(sma
);
1704 nsems
= sma
->sem_nsems
;
1705 if (!ipc_rcu_getref(sma
)) {
1707 un
= ERR_PTR(-EIDRM
);
1712 /* step 2: allocate new undo structure */
1713 new = kzalloc(sizeof(struct sem_undo
) + sizeof(short)*nsems
, GFP_KERNEL
);
1715 ipc_rcu_putref(sma
, ipc_rcu_free
);
1716 return ERR_PTR(-ENOMEM
);
1719 /* step 3: Acquire the lock on semaphore array */
1721 sem_lock_and_putref(sma
);
1722 if (!ipc_valid_object(&sma
->sem_perm
)) {
1723 sem_unlock(sma
, -1);
1726 un
= ERR_PTR(-EIDRM
);
1729 spin_lock(&ulp
->lock
);
1732 * step 4: check for races: did someone else allocate the undo struct?
1734 un
= lookup_undo(ulp
, semid
);
1739 /* step 5: initialize & link new undo structure */
1740 new->semadj
= (short *) &new[1];
1743 assert_spin_locked(&ulp
->lock
);
1744 list_add_rcu(&new->list_proc
, &ulp
->list_proc
);
1745 ipc_assert_locked_object(&sma
->sem_perm
);
1746 list_add(&new->list_id
, &sma
->list_id
);
1750 spin_unlock(&ulp
->lock
);
1751 sem_unlock(sma
, -1);
1758 * get_queue_result - retrieve the result code from sem_queue
1759 * @q: Pointer to queue structure
1761 * Retrieve the return code from the pending queue. If IN_WAKEUP is found in
1762 * q->status, then we must loop until the value is replaced with the final
1763 * value: This may happen if a task is woken up by an unrelated event (e.g.
1764 * signal) and in parallel the task is woken up by another task because it got
1765 * the requested semaphores.
1767 * The function can be called with or without holding the semaphore spinlock.
1769 static int get_queue_result(struct sem_queue
*q
)
1774 while (unlikely(error
== IN_WAKEUP
)) {
1782 SYSCALL_DEFINE4(semtimedop
, int, semid
, struct sembuf __user
*, tsops
,
1783 unsigned, nsops
, const struct timespec __user
*, timeout
)
1785 int error
= -EINVAL
;
1786 struct sem_array
*sma
;
1787 struct sembuf fast_sops
[SEMOPM_FAST
];
1788 struct sembuf
*sops
= fast_sops
, *sop
;
1789 struct sem_undo
*un
;
1790 int undos
= 0, alter
= 0, max
, locknum
;
1791 struct sem_queue queue
;
1792 unsigned long jiffies_left
= 0;
1793 struct ipc_namespace
*ns
;
1794 struct list_head tasks
;
1796 ns
= current
->nsproxy
->ipc_ns
;
1798 if (nsops
< 1 || semid
< 0)
1800 if (nsops
> ns
->sc_semopm
)
1802 if (nsops
> SEMOPM_FAST
) {
1803 sops
= kmalloc(sizeof(*sops
)*nsops
, GFP_KERNEL
);
1807 if (copy_from_user(sops
, tsops
, nsops
* sizeof(*tsops
))) {
1812 struct timespec _timeout
;
1813 if (copy_from_user(&_timeout
, timeout
, sizeof(*timeout
))) {
1817 if (_timeout
.tv_sec
< 0 || _timeout
.tv_nsec
< 0 ||
1818 _timeout
.tv_nsec
>= 1000000000L) {
1822 jiffies_left
= timespec_to_jiffies(&_timeout
);
1825 for (sop
= sops
; sop
< sops
+ nsops
; sop
++) {
1826 if (sop
->sem_num
>= max
)
1828 if (sop
->sem_flg
& SEM_UNDO
)
1830 if (sop
->sem_op
!= 0)
1834 INIT_LIST_HEAD(&tasks
);
1837 /* On success, find_alloc_undo takes the rcu_read_lock */
1838 un
= find_alloc_undo(ns
, semid
);
1840 error
= PTR_ERR(un
);
1848 sma
= sem_obtain_object_check(ns
, semid
);
1851 error
= PTR_ERR(sma
);
1856 if (max
>= sma
->sem_nsems
)
1857 goto out_rcu_wakeup
;
1860 if (ipcperms(ns
, &sma
->sem_perm
, alter
? S_IWUGO
: S_IRUGO
))
1861 goto out_rcu_wakeup
;
1863 error
= security_sem_semop(sma
, sops
, nsops
, alter
);
1865 goto out_rcu_wakeup
;
1868 locknum
= sem_lock(sma
, sops
, nsops
);
1870 * We eventually might perform the following check in a lockless
1871 * fashion, considering ipc_valid_object() locking constraints.
1872 * If nsops == 1 and there is no contention for sem_perm.lock, then
1873 * only a per-semaphore lock is held and it's OK to proceed with the
1874 * check below. More details on the fine grained locking scheme
1875 * entangled here and why it's RMID race safe on comments at sem_lock()
1877 if (!ipc_valid_object(&sma
->sem_perm
))
1878 goto out_unlock_free
;
1880 * semid identifiers are not unique - find_alloc_undo may have
1881 * allocated an undo structure, it was invalidated by an RMID
1882 * and now a new array with received the same id. Check and fail.
1883 * This case can be detected checking un->semid. The existence of
1884 * "un" itself is guaranteed by rcu.
1886 if (un
&& un
->semid
== -1)
1887 goto out_unlock_free
;
1890 queue
.nsops
= nsops
;
1892 queue
.pid
= task_tgid_vnr(current
);
1893 queue
.alter
= alter
;
1895 error
= perform_atomic_semop(sma
, &queue
);
1897 /* If the operation was successful, then do
1898 * the required updates.
1901 do_smart_update(sma
, sops
, nsops
, 1, &tasks
);
1903 set_semotime(sma
, sops
);
1906 goto out_unlock_free
;
1908 /* We need to sleep on this operation, so we put the current
1909 * task into the pending queue and go to sleep.
1914 curr
= &sma
->sem_base
[sops
->sem_num
];
1917 if (sma
->complex_count
) {
1918 list_add_tail(&queue
.list
,
1919 &sma
->pending_alter
);
1922 list_add_tail(&queue
.list
,
1923 &curr
->pending_alter
);
1926 list_add_tail(&queue
.list
, &curr
->pending_const
);
1929 if (!sma
->complex_count
)
1933 list_add_tail(&queue
.list
, &sma
->pending_alter
);
1935 list_add_tail(&queue
.list
, &sma
->pending_const
);
1937 sma
->complex_count
++;
1940 queue
.status
= -EINTR
;
1941 queue
.sleeper
= current
;
1944 __set_current_state(TASK_INTERRUPTIBLE
);
1945 sem_unlock(sma
, locknum
);
1949 jiffies_left
= schedule_timeout(jiffies_left
);
1953 error
= get_queue_result(&queue
);
1955 if (error
!= -EINTR
) {
1956 /* fast path: update_queue already obtained all requested
1958 * Perform a smp_mb(): User space could assume that semop()
1959 * is a memory barrier: Without the mb(), the cpu could
1960 * speculatively read in user space stale data that was
1961 * overwritten by the previous owner of the semaphore.
1969 sma
= sem_obtain_lock(ns
, semid
, sops
, nsops
, &locknum
);
1972 * Wait until it's guaranteed that no wakeup_sem_queue_do() is ongoing.
1974 error
= get_queue_result(&queue
);
1977 * Array removed? If yes, leave without sem_unlock().
1986 * If queue.status != -EINTR we are woken up by another process.
1987 * Leave without unlink_queue(), but with sem_unlock().
1989 if (error
!= -EINTR
)
1990 goto out_unlock_free
;
1993 * If an interrupt occurred we have to clean up the queue
1995 if (timeout
&& jiffies_left
== 0)
1999 * If the wakeup was spurious, just retry
2001 if (error
== -EINTR
&& !signal_pending(current
))
2004 unlink_queue(sma
, &queue
);
2007 sem_unlock(sma
, locknum
);
2010 wake_up_sem_queue_do(&tasks
);
2012 if (sops
!= fast_sops
)
2017 SYSCALL_DEFINE3(semop
, int, semid
, struct sembuf __user
*, tsops
,
2020 return sys_semtimedop(semid
, tsops
, nsops
, NULL
);
2023 /* If CLONE_SYSVSEM is set, establish sharing of SEM_UNDO state between
2024 * parent and child tasks.
2027 int copy_semundo(unsigned long clone_flags
, struct task_struct
*tsk
)
2029 struct sem_undo_list
*undo_list
;
2032 if (clone_flags
& CLONE_SYSVSEM
) {
2033 error
= get_undo_list(&undo_list
);
2036 atomic_inc(&undo_list
->refcnt
);
2037 tsk
->sysvsem
.undo_list
= undo_list
;
2039 tsk
->sysvsem
.undo_list
= NULL
;
2045 * add semadj values to semaphores, free undo structures.
2046 * undo structures are not freed when semaphore arrays are destroyed
2047 * so some of them may be out of date.
2048 * IMPLEMENTATION NOTE: There is some confusion over whether the
2049 * set of adjustments that needs to be done should be done in an atomic
2050 * manner or not. That is, if we are attempting to decrement the semval
2051 * should we queue up and wait until we can do so legally?
2052 * The original implementation attempted to do this (queue and wait).
2053 * The current implementation does not do so. The POSIX standard
2054 * and SVID should be consulted to determine what behavior is mandated.
2056 void exit_sem(struct task_struct
*tsk
)
2058 struct sem_undo_list
*ulp
;
2060 ulp
= tsk
->sysvsem
.undo_list
;
2063 tsk
->sysvsem
.undo_list
= NULL
;
2065 if (!atomic_dec_and_test(&ulp
->refcnt
))
2069 struct sem_array
*sma
;
2070 struct sem_undo
*un
;
2071 struct list_head tasks
;
2075 un
= list_entry_rcu(ulp
->list_proc
.next
,
2076 struct sem_undo
, list_proc
);
2077 if (&un
->list_proc
== &ulp
->list_proc
)
2087 sma
= sem_obtain_object_check(tsk
->nsproxy
->ipc_ns
, un
->semid
);
2088 /* exit_sem raced with IPC_RMID, nothing to do */
2094 sem_lock(sma
, NULL
, -1);
2095 /* exit_sem raced with IPC_RMID, nothing to do */
2096 if (!ipc_valid_object(&sma
->sem_perm
)) {
2097 sem_unlock(sma
, -1);
2101 un
= __lookup_undo(ulp
, semid
);
2103 /* exit_sem raced with IPC_RMID+semget() that created
2104 * exactly the same semid. Nothing to do.
2106 sem_unlock(sma
, -1);
2111 /* remove un from the linked lists */
2112 ipc_assert_locked_object(&sma
->sem_perm
);
2113 list_del(&un
->list_id
);
2115 spin_lock(&ulp
->lock
);
2116 list_del_rcu(&un
->list_proc
);
2117 spin_unlock(&ulp
->lock
);
2119 /* perform adjustments registered in un */
2120 for (i
= 0; i
< sma
->sem_nsems
; i
++) {
2121 struct sem
*semaphore
= &sma
->sem_base
[i
];
2122 if (un
->semadj
[i
]) {
2123 semaphore
->semval
+= un
->semadj
[i
];
2125 * Range checks of the new semaphore value,
2126 * not defined by sus:
2127 * - Some unices ignore the undo entirely
2128 * (e.g. HP UX 11i 11.22, Tru64 V5.1)
2129 * - some cap the value (e.g. FreeBSD caps
2130 * at 0, but doesn't enforce SEMVMX)
2132 * Linux caps the semaphore value, both at 0
2135 * Manfred <manfred@colorfullife.com>
2137 if (semaphore
->semval
< 0)
2138 semaphore
->semval
= 0;
2139 if (semaphore
->semval
> SEMVMX
)
2140 semaphore
->semval
= SEMVMX
;
2141 semaphore
->sempid
= task_tgid_vnr(current
);
2144 /* maybe some queued-up processes were waiting for this */
2145 INIT_LIST_HEAD(&tasks
);
2146 do_smart_update(sma
, NULL
, 0, 1, &tasks
);
2147 sem_unlock(sma
, -1);
2149 wake_up_sem_queue_do(&tasks
);
2156 #ifdef CONFIG_PROC_FS
2157 static int sysvipc_sem_proc_show(struct seq_file
*s
, void *it
)
2159 struct user_namespace
*user_ns
= seq_user_ns(s
);
2160 struct sem_array
*sma
= it
;
2164 * The proc interface isn't aware of sem_lock(), it calls
2165 * ipc_lock_object() directly (in sysvipc_find_ipc).
2166 * In order to stay compatible with sem_lock(), we must wait until
2167 * all simple semop() calls have left their critical regions.
2169 sem_wait_array(sma
);
2171 sem_otime
= get_semotime(sma
);
2174 "%10d %10d %4o %10u %5u %5u %5u %5u %10lu %10lu\n",
2179 from_kuid_munged(user_ns
, sma
->sem_perm
.uid
),
2180 from_kgid_munged(user_ns
, sma
->sem_perm
.gid
),
2181 from_kuid_munged(user_ns
, sma
->sem_perm
.cuid
),
2182 from_kgid_munged(user_ns
, sma
->sem_perm
.cgid
),