bridge: Fix build of ipv6 multicast code.
[linux/fpc-iii.git] / net / sunrpc / svc_xprt.c
blob061b2e0f9118833bcc93facef2cb8bc40f655a01
1 /*
2 * linux/net/sunrpc/svc_xprt.c
4 * Author: Tom Tucker <tom@opengridcomputing.com>
5 */
7 #include <linux/sched.h>
8 #include <linux/smp_lock.h>
9 #include <linux/errno.h>
10 #include <linux/freezer.h>
11 #include <linux/kthread.h>
12 #include <linux/slab.h>
13 #include <net/sock.h>
14 #include <linux/sunrpc/stats.h>
15 #include <linux/sunrpc/svc_xprt.h>
16 #include <linux/sunrpc/svcsock.h>
18 #define RPCDBG_FACILITY RPCDBG_SVCXPRT
20 static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt);
21 static int svc_deferred_recv(struct svc_rqst *rqstp);
22 static struct cache_deferred_req *svc_defer(struct cache_req *req);
23 static void svc_age_temp_xprts(unsigned long closure);
25 /* apparently the "standard" is that clients close
26 * idle connections after 5 minutes, servers after
27 * 6 minutes
28 * http://www.connectathon.org/talks96/nfstcp.pdf
30 static int svc_conn_age_period = 6*60;
32 /* List of registered transport classes */
33 static DEFINE_SPINLOCK(svc_xprt_class_lock);
34 static LIST_HEAD(svc_xprt_class_list);
36 /* SMP locking strategy:
38 * svc_pool->sp_lock protects most of the fields of that pool.
39 * svc_serv->sv_lock protects sv_tempsocks, sv_permsocks, sv_tmpcnt.
40 * when both need to be taken (rare), svc_serv->sv_lock is first.
41 * BKL protects svc_serv->sv_nrthread.
42 * svc_sock->sk_lock protects the svc_sock->sk_deferred list
43 * and the ->sk_info_authunix cache.
45 * The XPT_BUSY bit in xprt->xpt_flags prevents a transport being
46 * enqueued multiply. During normal transport processing this bit
47 * is set by svc_xprt_enqueue and cleared by svc_xprt_received.
48 * Providers should not manipulate this bit directly.
50 * Some flags can be set to certain values at any time
51 * providing that certain rules are followed:
53 * XPT_CONN, XPT_DATA:
54 * - Can be set or cleared at any time.
55 * - After a set, svc_xprt_enqueue must be called to enqueue
56 * the transport for processing.
57 * - After a clear, the transport must be read/accepted.
58 * If this succeeds, it must be set again.
59 * XPT_CLOSE:
60 * - Can set at any time. It is never cleared.
61 * XPT_DEAD:
62 * - Can only be set while XPT_BUSY is held which ensures
63 * that no other thread will be using the transport or will
64 * try to set XPT_DEAD.
67 int svc_reg_xprt_class(struct svc_xprt_class *xcl)
69 struct svc_xprt_class *cl;
70 int res = -EEXIST;
72 dprintk("svc: Adding svc transport class '%s'\n", xcl->xcl_name);
74 INIT_LIST_HEAD(&xcl->xcl_list);
75 spin_lock(&svc_xprt_class_lock);
76 /* Make sure there isn't already a class with the same name */
77 list_for_each_entry(cl, &svc_xprt_class_list, xcl_list) {
78 if (strcmp(xcl->xcl_name, cl->xcl_name) == 0)
79 goto out;
81 list_add_tail(&xcl->xcl_list, &svc_xprt_class_list);
82 res = 0;
83 out:
84 spin_unlock(&svc_xprt_class_lock);
85 return res;
87 EXPORT_SYMBOL_GPL(svc_reg_xprt_class);
89 void svc_unreg_xprt_class(struct svc_xprt_class *xcl)
91 dprintk("svc: Removing svc transport class '%s'\n", xcl->xcl_name);
92 spin_lock(&svc_xprt_class_lock);
93 list_del_init(&xcl->xcl_list);
94 spin_unlock(&svc_xprt_class_lock);
96 EXPORT_SYMBOL_GPL(svc_unreg_xprt_class);
99 * Format the transport list for printing
101 int svc_print_xprts(char *buf, int maxlen)
103 struct list_head *le;
104 char tmpstr[80];
105 int len = 0;
106 buf[0] = '\0';
108 spin_lock(&svc_xprt_class_lock);
109 list_for_each(le, &svc_xprt_class_list) {
110 int slen;
111 struct svc_xprt_class *xcl =
112 list_entry(le, struct svc_xprt_class, xcl_list);
114 sprintf(tmpstr, "%s %d\n", xcl->xcl_name, xcl->xcl_max_payload);
115 slen = strlen(tmpstr);
116 if (len + slen > maxlen)
117 break;
118 len += slen;
119 strcat(buf, tmpstr);
121 spin_unlock(&svc_xprt_class_lock);
123 return len;
126 static void svc_xprt_free(struct kref *kref)
128 struct svc_xprt *xprt =
129 container_of(kref, struct svc_xprt, xpt_ref);
130 struct module *owner = xprt->xpt_class->xcl_owner;
131 if (test_bit(XPT_CACHE_AUTH, &xprt->xpt_flags) &&
132 xprt->xpt_auth_cache != NULL)
133 svcauth_unix_info_release(xprt->xpt_auth_cache);
134 xprt->xpt_ops->xpo_free(xprt);
135 module_put(owner);
138 void svc_xprt_put(struct svc_xprt *xprt)
140 kref_put(&xprt->xpt_ref, svc_xprt_free);
142 EXPORT_SYMBOL_GPL(svc_xprt_put);
145 * Called by transport drivers to initialize the transport independent
146 * portion of the transport instance.
148 void svc_xprt_init(struct svc_xprt_class *xcl, struct svc_xprt *xprt,
149 struct svc_serv *serv)
151 memset(xprt, 0, sizeof(*xprt));
152 xprt->xpt_class = xcl;
153 xprt->xpt_ops = xcl->xcl_ops;
154 kref_init(&xprt->xpt_ref);
155 xprt->xpt_server = serv;
156 INIT_LIST_HEAD(&xprt->xpt_list);
157 INIT_LIST_HEAD(&xprt->xpt_ready);
158 INIT_LIST_HEAD(&xprt->xpt_deferred);
159 mutex_init(&xprt->xpt_mutex);
160 spin_lock_init(&xprt->xpt_lock);
161 set_bit(XPT_BUSY, &xprt->xpt_flags);
162 rpc_init_wait_queue(&xprt->xpt_bc_pending, "xpt_bc_pending");
164 EXPORT_SYMBOL_GPL(svc_xprt_init);
166 static struct svc_xprt *__svc_xpo_create(struct svc_xprt_class *xcl,
167 struct svc_serv *serv,
168 const int family,
169 const unsigned short port,
170 int flags)
172 struct sockaddr_in sin = {
173 .sin_family = AF_INET,
174 .sin_addr.s_addr = htonl(INADDR_ANY),
175 .sin_port = htons(port),
177 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
178 struct sockaddr_in6 sin6 = {
179 .sin6_family = AF_INET6,
180 .sin6_addr = IN6ADDR_ANY_INIT,
181 .sin6_port = htons(port),
183 #endif /* defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) */
184 struct sockaddr *sap;
185 size_t len;
187 switch (family) {
188 case PF_INET:
189 sap = (struct sockaddr *)&sin;
190 len = sizeof(sin);
191 break;
192 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
193 case PF_INET6:
194 sap = (struct sockaddr *)&sin6;
195 len = sizeof(sin6);
196 break;
197 #endif /* defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) */
198 default:
199 return ERR_PTR(-EAFNOSUPPORT);
202 return xcl->xcl_ops->xpo_create(serv, sap, len, flags);
205 int svc_create_xprt(struct svc_serv *serv, const char *xprt_name,
206 const int family, const unsigned short port,
207 int flags)
209 struct svc_xprt_class *xcl;
211 dprintk("svc: creating transport %s[%d]\n", xprt_name, port);
212 spin_lock(&svc_xprt_class_lock);
213 list_for_each_entry(xcl, &svc_xprt_class_list, xcl_list) {
214 struct svc_xprt *newxprt;
216 if (strcmp(xprt_name, xcl->xcl_name))
217 continue;
219 if (!try_module_get(xcl->xcl_owner))
220 goto err;
222 spin_unlock(&svc_xprt_class_lock);
223 newxprt = __svc_xpo_create(xcl, serv, family, port, flags);
224 if (IS_ERR(newxprt)) {
225 module_put(xcl->xcl_owner);
226 return PTR_ERR(newxprt);
229 clear_bit(XPT_TEMP, &newxprt->xpt_flags);
230 spin_lock_bh(&serv->sv_lock);
231 list_add(&newxprt->xpt_list, &serv->sv_permsocks);
232 spin_unlock_bh(&serv->sv_lock);
233 clear_bit(XPT_BUSY, &newxprt->xpt_flags);
234 return svc_xprt_local_port(newxprt);
236 err:
237 spin_unlock(&svc_xprt_class_lock);
238 dprintk("svc: transport %s not found\n", xprt_name);
240 /* This errno is exposed to user space. Provide a reasonable
241 * perror msg for a bad transport. */
242 return -EPROTONOSUPPORT;
244 EXPORT_SYMBOL_GPL(svc_create_xprt);
247 * Copy the local and remote xprt addresses to the rqstp structure
249 void svc_xprt_copy_addrs(struct svc_rqst *rqstp, struct svc_xprt *xprt)
251 struct sockaddr *sin;
253 memcpy(&rqstp->rq_addr, &xprt->xpt_remote, xprt->xpt_remotelen);
254 rqstp->rq_addrlen = xprt->xpt_remotelen;
257 * Destination address in request is needed for binding the
258 * source address in RPC replies/callbacks later.
260 sin = (struct sockaddr *)&xprt->xpt_local;
261 switch (sin->sa_family) {
262 case AF_INET:
263 rqstp->rq_daddr.addr = ((struct sockaddr_in *)sin)->sin_addr;
264 break;
265 case AF_INET6:
266 rqstp->rq_daddr.addr6 = ((struct sockaddr_in6 *)sin)->sin6_addr;
267 break;
270 EXPORT_SYMBOL_GPL(svc_xprt_copy_addrs);
273 * svc_print_addr - Format rq_addr field for printing
274 * @rqstp: svc_rqst struct containing address to print
275 * @buf: target buffer for formatted address
276 * @len: length of target buffer
279 char *svc_print_addr(struct svc_rqst *rqstp, char *buf, size_t len)
281 return __svc_print_addr(svc_addr(rqstp), buf, len);
283 EXPORT_SYMBOL_GPL(svc_print_addr);
286 * Queue up an idle server thread. Must have pool->sp_lock held.
287 * Note: this is really a stack rather than a queue, so that we only
288 * use as many different threads as we need, and the rest don't pollute
289 * the cache.
291 static void svc_thread_enqueue(struct svc_pool *pool, struct svc_rqst *rqstp)
293 list_add(&rqstp->rq_list, &pool->sp_threads);
297 * Dequeue an nfsd thread. Must have pool->sp_lock held.
299 static void svc_thread_dequeue(struct svc_pool *pool, struct svc_rqst *rqstp)
301 list_del(&rqstp->rq_list);
305 * Queue up a transport with data pending. If there are idle nfsd
306 * processes, wake 'em up.
309 void svc_xprt_enqueue(struct svc_xprt *xprt)
311 struct svc_serv *serv = xprt->xpt_server;
312 struct svc_pool *pool;
313 struct svc_rqst *rqstp;
314 int cpu;
316 if (!(xprt->xpt_flags &
317 ((1<<XPT_CONN)|(1<<XPT_DATA)|(1<<XPT_CLOSE)|(1<<XPT_DEFERRED))))
318 return;
320 cpu = get_cpu();
321 pool = svc_pool_for_cpu(xprt->xpt_server, cpu);
322 put_cpu();
324 spin_lock_bh(&pool->sp_lock);
326 if (!list_empty(&pool->sp_threads) &&
327 !list_empty(&pool->sp_sockets))
328 printk(KERN_ERR
329 "svc_xprt_enqueue: "
330 "threads and transports both waiting??\n");
332 if (test_bit(XPT_DEAD, &xprt->xpt_flags)) {
333 /* Don't enqueue dead transports */
334 dprintk("svc: transport %p is dead, not enqueued\n", xprt);
335 goto out_unlock;
338 pool->sp_stats.packets++;
340 /* Mark transport as busy. It will remain in this state until
341 * the provider calls svc_xprt_received. We update XPT_BUSY
342 * atomically because it also guards against trying to enqueue
343 * the transport twice.
345 if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags)) {
346 /* Don't enqueue transport while already enqueued */
347 dprintk("svc: transport %p busy, not enqueued\n", xprt);
348 goto out_unlock;
350 BUG_ON(xprt->xpt_pool != NULL);
351 xprt->xpt_pool = pool;
353 /* Handle pending connection */
354 if (test_bit(XPT_CONN, &xprt->xpt_flags))
355 goto process;
357 /* Handle close in-progress */
358 if (test_bit(XPT_CLOSE, &xprt->xpt_flags))
359 goto process;
361 /* Check if we have space to reply to a request */
362 if (!xprt->xpt_ops->xpo_has_wspace(xprt)) {
363 /* Don't enqueue while not enough space for reply */
364 dprintk("svc: no write space, transport %p not enqueued\n",
365 xprt);
366 xprt->xpt_pool = NULL;
367 clear_bit(XPT_BUSY, &xprt->xpt_flags);
368 goto out_unlock;
371 process:
372 if (!list_empty(&pool->sp_threads)) {
373 rqstp = list_entry(pool->sp_threads.next,
374 struct svc_rqst,
375 rq_list);
376 dprintk("svc: transport %p served by daemon %p\n",
377 xprt, rqstp);
378 svc_thread_dequeue(pool, rqstp);
379 if (rqstp->rq_xprt)
380 printk(KERN_ERR
381 "svc_xprt_enqueue: server %p, rq_xprt=%p!\n",
382 rqstp, rqstp->rq_xprt);
383 rqstp->rq_xprt = xprt;
384 svc_xprt_get(xprt);
385 rqstp->rq_reserved = serv->sv_max_mesg;
386 atomic_add(rqstp->rq_reserved, &xprt->xpt_reserved);
387 pool->sp_stats.threads_woken++;
388 BUG_ON(xprt->xpt_pool != pool);
389 wake_up(&rqstp->rq_wait);
390 } else {
391 dprintk("svc: transport %p put into queue\n", xprt);
392 list_add_tail(&xprt->xpt_ready, &pool->sp_sockets);
393 pool->sp_stats.sockets_queued++;
394 BUG_ON(xprt->xpt_pool != pool);
397 out_unlock:
398 spin_unlock_bh(&pool->sp_lock);
400 EXPORT_SYMBOL_GPL(svc_xprt_enqueue);
403 * Dequeue the first transport. Must be called with the pool->sp_lock held.
405 static struct svc_xprt *svc_xprt_dequeue(struct svc_pool *pool)
407 struct svc_xprt *xprt;
409 if (list_empty(&pool->sp_sockets))
410 return NULL;
412 xprt = list_entry(pool->sp_sockets.next,
413 struct svc_xprt, xpt_ready);
414 list_del_init(&xprt->xpt_ready);
416 dprintk("svc: transport %p dequeued, inuse=%d\n",
417 xprt, atomic_read(&xprt->xpt_ref.refcount));
419 return xprt;
423 * svc_xprt_received conditionally queues the transport for processing
424 * by another thread. The caller must hold the XPT_BUSY bit and must
425 * not thereafter touch transport data.
427 * Note: XPT_DATA only gets cleared when a read-attempt finds no (or
428 * insufficient) data.
430 void svc_xprt_received(struct svc_xprt *xprt)
432 BUG_ON(!test_bit(XPT_BUSY, &xprt->xpt_flags));
433 xprt->xpt_pool = NULL;
434 clear_bit(XPT_BUSY, &xprt->xpt_flags);
435 svc_xprt_enqueue(xprt);
437 EXPORT_SYMBOL_GPL(svc_xprt_received);
440 * svc_reserve - change the space reserved for the reply to a request.
441 * @rqstp: The request in question
442 * @space: new max space to reserve
444 * Each request reserves some space on the output queue of the transport
445 * to make sure the reply fits. This function reduces that reserved
446 * space to be the amount of space used already, plus @space.
449 void svc_reserve(struct svc_rqst *rqstp, int space)
451 space += rqstp->rq_res.head[0].iov_len;
453 if (space < rqstp->rq_reserved) {
454 struct svc_xprt *xprt = rqstp->rq_xprt;
455 atomic_sub((rqstp->rq_reserved - space), &xprt->xpt_reserved);
456 rqstp->rq_reserved = space;
458 svc_xprt_enqueue(xprt);
461 EXPORT_SYMBOL_GPL(svc_reserve);
463 static void svc_xprt_release(struct svc_rqst *rqstp)
465 struct svc_xprt *xprt = rqstp->rq_xprt;
467 rqstp->rq_xprt->xpt_ops->xpo_release_rqst(rqstp);
469 kfree(rqstp->rq_deferred);
470 rqstp->rq_deferred = NULL;
472 svc_free_res_pages(rqstp);
473 rqstp->rq_res.page_len = 0;
474 rqstp->rq_res.page_base = 0;
476 /* Reset response buffer and release
477 * the reservation.
478 * But first, check that enough space was reserved
479 * for the reply, otherwise we have a bug!
481 if ((rqstp->rq_res.len) > rqstp->rq_reserved)
482 printk(KERN_ERR "RPC request reserved %d but used %d\n",
483 rqstp->rq_reserved,
484 rqstp->rq_res.len);
486 rqstp->rq_res.head[0].iov_len = 0;
487 svc_reserve(rqstp, 0);
488 rqstp->rq_xprt = NULL;
490 svc_xprt_put(xprt);
494 * External function to wake up a server waiting for data
495 * This really only makes sense for services like lockd
496 * which have exactly one thread anyway.
498 void svc_wake_up(struct svc_serv *serv)
500 struct svc_rqst *rqstp;
501 unsigned int i;
502 struct svc_pool *pool;
504 for (i = 0; i < serv->sv_nrpools; i++) {
505 pool = &serv->sv_pools[i];
507 spin_lock_bh(&pool->sp_lock);
508 if (!list_empty(&pool->sp_threads)) {
509 rqstp = list_entry(pool->sp_threads.next,
510 struct svc_rqst,
511 rq_list);
512 dprintk("svc: daemon %p woken up.\n", rqstp);
514 svc_thread_dequeue(pool, rqstp);
515 rqstp->rq_xprt = NULL;
517 wake_up(&rqstp->rq_wait);
519 spin_unlock_bh(&pool->sp_lock);
522 EXPORT_SYMBOL_GPL(svc_wake_up);
524 int svc_port_is_privileged(struct sockaddr *sin)
526 switch (sin->sa_family) {
527 case AF_INET:
528 return ntohs(((struct sockaddr_in *)sin)->sin_port)
529 < PROT_SOCK;
530 case AF_INET6:
531 return ntohs(((struct sockaddr_in6 *)sin)->sin6_port)
532 < PROT_SOCK;
533 default:
534 return 0;
539 * Make sure that we don't have too many active connections. If we have,
540 * something must be dropped. It's not clear what will happen if we allow
541 * "too many" connections, but when dealing with network-facing software,
542 * we have to code defensively. Here we do that by imposing hard limits.
544 * There's no point in trying to do random drop here for DoS
545 * prevention. The NFS clients does 1 reconnect in 15 seconds. An
546 * attacker can easily beat that.
548 * The only somewhat efficient mechanism would be if drop old
549 * connections from the same IP first. But right now we don't even
550 * record the client IP in svc_sock.
552 * single-threaded services that expect a lot of clients will probably
553 * need to set sv_maxconn to override the default value which is based
554 * on the number of threads
556 static void svc_check_conn_limits(struct svc_serv *serv)
558 unsigned int limit = serv->sv_maxconn ? serv->sv_maxconn :
559 (serv->sv_nrthreads+3) * 20;
561 if (serv->sv_tmpcnt > limit) {
562 struct svc_xprt *xprt = NULL;
563 spin_lock_bh(&serv->sv_lock);
564 if (!list_empty(&serv->sv_tempsocks)) {
565 if (net_ratelimit()) {
566 /* Try to help the admin */
567 printk(KERN_NOTICE "%s: too many open "
568 "connections, consider increasing %s\n",
569 serv->sv_name, serv->sv_maxconn ?
570 "the max number of connections." :
571 "the number of threads.");
574 * Always select the oldest connection. It's not fair,
575 * but so is life
577 xprt = list_entry(serv->sv_tempsocks.prev,
578 struct svc_xprt,
579 xpt_list);
580 set_bit(XPT_CLOSE, &xprt->xpt_flags);
581 svc_xprt_get(xprt);
583 spin_unlock_bh(&serv->sv_lock);
585 if (xprt) {
586 svc_xprt_enqueue(xprt);
587 svc_xprt_put(xprt);
593 * Receive the next request on any transport. This code is carefully
594 * organised not to touch any cachelines in the shared svc_serv
595 * structure, only cachelines in the local svc_pool.
597 int svc_recv(struct svc_rqst *rqstp, long timeout)
599 struct svc_xprt *xprt = NULL;
600 struct svc_serv *serv = rqstp->rq_server;
601 struct svc_pool *pool = rqstp->rq_pool;
602 int len, i;
603 int pages;
604 struct xdr_buf *arg;
605 DECLARE_WAITQUEUE(wait, current);
606 long time_left;
608 dprintk("svc: server %p waiting for data (to = %ld)\n",
609 rqstp, timeout);
611 if (rqstp->rq_xprt)
612 printk(KERN_ERR
613 "svc_recv: service %p, transport not NULL!\n",
614 rqstp);
615 if (waitqueue_active(&rqstp->rq_wait))
616 printk(KERN_ERR
617 "svc_recv: service %p, wait queue active!\n",
618 rqstp);
620 /* now allocate needed pages. If we get a failure, sleep briefly */
621 pages = (serv->sv_max_mesg + PAGE_SIZE) / PAGE_SIZE;
622 for (i = 0; i < pages ; i++)
623 while (rqstp->rq_pages[i] == NULL) {
624 struct page *p = alloc_page(GFP_KERNEL);
625 if (!p) {
626 set_current_state(TASK_INTERRUPTIBLE);
627 if (signalled() || kthread_should_stop()) {
628 set_current_state(TASK_RUNNING);
629 return -EINTR;
631 schedule_timeout(msecs_to_jiffies(500));
633 rqstp->rq_pages[i] = p;
635 rqstp->rq_pages[i++] = NULL; /* this might be seen in nfs_read_actor */
636 BUG_ON(pages >= RPCSVC_MAXPAGES);
638 /* Make arg->head point to first page and arg->pages point to rest */
639 arg = &rqstp->rq_arg;
640 arg->head[0].iov_base = page_address(rqstp->rq_pages[0]);
641 arg->head[0].iov_len = PAGE_SIZE;
642 arg->pages = rqstp->rq_pages + 1;
643 arg->page_base = 0;
644 /* save at least one page for response */
645 arg->page_len = (pages-2)*PAGE_SIZE;
646 arg->len = (pages-1)*PAGE_SIZE;
647 arg->tail[0].iov_len = 0;
649 try_to_freeze();
650 cond_resched();
651 if (signalled() || kthread_should_stop())
652 return -EINTR;
654 spin_lock_bh(&pool->sp_lock);
655 xprt = svc_xprt_dequeue(pool);
656 if (xprt) {
657 rqstp->rq_xprt = xprt;
658 svc_xprt_get(xprt);
659 rqstp->rq_reserved = serv->sv_max_mesg;
660 atomic_add(rqstp->rq_reserved, &xprt->xpt_reserved);
661 } else {
662 /* No data pending. Go to sleep */
663 svc_thread_enqueue(pool, rqstp);
666 * We have to be able to interrupt this wait
667 * to bring down the daemons ...
669 set_current_state(TASK_INTERRUPTIBLE);
672 * checking kthread_should_stop() here allows us to avoid
673 * locking and signalling when stopping kthreads that call
674 * svc_recv. If the thread has already been woken up, then
675 * we can exit here without sleeping. If not, then it
676 * it'll be woken up quickly during the schedule_timeout
678 if (kthread_should_stop()) {
679 set_current_state(TASK_RUNNING);
680 spin_unlock_bh(&pool->sp_lock);
681 return -EINTR;
684 add_wait_queue(&rqstp->rq_wait, &wait);
685 spin_unlock_bh(&pool->sp_lock);
687 time_left = schedule_timeout(timeout);
689 try_to_freeze();
691 spin_lock_bh(&pool->sp_lock);
692 remove_wait_queue(&rqstp->rq_wait, &wait);
693 if (!time_left)
694 pool->sp_stats.threads_timedout++;
696 xprt = rqstp->rq_xprt;
697 if (!xprt) {
698 svc_thread_dequeue(pool, rqstp);
699 spin_unlock_bh(&pool->sp_lock);
700 dprintk("svc: server %p, no data yet\n", rqstp);
701 if (signalled() || kthread_should_stop())
702 return -EINTR;
703 else
704 return -EAGAIN;
707 spin_unlock_bh(&pool->sp_lock);
709 len = 0;
710 if (test_bit(XPT_CLOSE, &xprt->xpt_flags)) {
711 dprintk("svc_recv: found XPT_CLOSE\n");
712 svc_delete_xprt(xprt);
713 } else if (test_bit(XPT_LISTENER, &xprt->xpt_flags)) {
714 struct svc_xprt *newxpt;
715 newxpt = xprt->xpt_ops->xpo_accept(xprt);
716 if (newxpt) {
718 * We know this module_get will succeed because the
719 * listener holds a reference too
721 __module_get(newxpt->xpt_class->xcl_owner);
722 svc_check_conn_limits(xprt->xpt_server);
723 spin_lock_bh(&serv->sv_lock);
724 set_bit(XPT_TEMP, &newxpt->xpt_flags);
725 list_add(&newxpt->xpt_list, &serv->sv_tempsocks);
726 serv->sv_tmpcnt++;
727 if (serv->sv_temptimer.function == NULL) {
728 /* setup timer to age temp transports */
729 setup_timer(&serv->sv_temptimer,
730 svc_age_temp_xprts,
731 (unsigned long)serv);
732 mod_timer(&serv->sv_temptimer,
733 jiffies + svc_conn_age_period * HZ);
735 spin_unlock_bh(&serv->sv_lock);
736 svc_xprt_received(newxpt);
738 svc_xprt_received(xprt);
739 } else {
740 dprintk("svc: server %p, pool %u, transport %p, inuse=%d\n",
741 rqstp, pool->sp_id, xprt,
742 atomic_read(&xprt->xpt_ref.refcount));
743 rqstp->rq_deferred = svc_deferred_dequeue(xprt);
744 if (rqstp->rq_deferred) {
745 svc_xprt_received(xprt);
746 len = svc_deferred_recv(rqstp);
747 } else
748 len = xprt->xpt_ops->xpo_recvfrom(rqstp);
749 dprintk("svc: got len=%d\n", len);
752 /* No data, incomplete (TCP) read, or accept() */
753 if (len == 0 || len == -EAGAIN) {
754 rqstp->rq_res.len = 0;
755 svc_xprt_release(rqstp);
756 return -EAGAIN;
758 clear_bit(XPT_OLD, &xprt->xpt_flags);
760 rqstp->rq_secure = svc_port_is_privileged(svc_addr(rqstp));
761 rqstp->rq_chandle.defer = svc_defer;
763 if (serv->sv_stats)
764 serv->sv_stats->netcnt++;
765 return len;
767 EXPORT_SYMBOL_GPL(svc_recv);
770 * Drop request
772 void svc_drop(struct svc_rqst *rqstp)
774 dprintk("svc: xprt %p dropped request\n", rqstp->rq_xprt);
775 svc_xprt_release(rqstp);
777 EXPORT_SYMBOL_GPL(svc_drop);
780 * Return reply to client.
782 int svc_send(struct svc_rqst *rqstp)
784 struct svc_xprt *xprt;
785 int len;
786 struct xdr_buf *xb;
788 xprt = rqstp->rq_xprt;
789 if (!xprt)
790 return -EFAULT;
792 /* release the receive skb before sending the reply */
793 rqstp->rq_xprt->xpt_ops->xpo_release_rqst(rqstp);
795 /* calculate over-all length */
796 xb = &rqstp->rq_res;
797 xb->len = xb->head[0].iov_len +
798 xb->page_len +
799 xb->tail[0].iov_len;
801 /* Grab mutex to serialize outgoing data. */
802 mutex_lock(&xprt->xpt_mutex);
803 if (test_bit(XPT_DEAD, &xprt->xpt_flags))
804 len = -ENOTCONN;
805 else
806 len = xprt->xpt_ops->xpo_sendto(rqstp);
807 mutex_unlock(&xprt->xpt_mutex);
808 rpc_wake_up(&xprt->xpt_bc_pending);
809 svc_xprt_release(rqstp);
811 if (len == -ECONNREFUSED || len == -ENOTCONN || len == -EAGAIN)
812 return 0;
813 return len;
817 * Timer function to close old temporary transports, using
818 * a mark-and-sweep algorithm.
820 static void svc_age_temp_xprts(unsigned long closure)
822 struct svc_serv *serv = (struct svc_serv *)closure;
823 struct svc_xprt *xprt;
824 struct list_head *le, *next;
825 LIST_HEAD(to_be_aged);
827 dprintk("svc_age_temp_xprts\n");
829 if (!spin_trylock_bh(&serv->sv_lock)) {
830 /* busy, try again 1 sec later */
831 dprintk("svc_age_temp_xprts: busy\n");
832 mod_timer(&serv->sv_temptimer, jiffies + HZ);
833 return;
836 list_for_each_safe(le, next, &serv->sv_tempsocks) {
837 xprt = list_entry(le, struct svc_xprt, xpt_list);
839 /* First time through, just mark it OLD. Second time
840 * through, close it. */
841 if (!test_and_set_bit(XPT_OLD, &xprt->xpt_flags))
842 continue;
843 if (atomic_read(&xprt->xpt_ref.refcount) > 1 ||
844 test_bit(XPT_BUSY, &xprt->xpt_flags))
845 continue;
846 svc_xprt_get(xprt);
847 list_move(le, &to_be_aged);
848 set_bit(XPT_CLOSE, &xprt->xpt_flags);
849 set_bit(XPT_DETACHED, &xprt->xpt_flags);
851 spin_unlock_bh(&serv->sv_lock);
853 while (!list_empty(&to_be_aged)) {
854 le = to_be_aged.next;
855 /* fiddling the xpt_list node is safe 'cos we're XPT_DETACHED */
856 list_del_init(le);
857 xprt = list_entry(le, struct svc_xprt, xpt_list);
859 dprintk("queuing xprt %p for closing\n", xprt);
861 /* a thread will dequeue and close it soon */
862 svc_xprt_enqueue(xprt);
863 svc_xprt_put(xprt);
866 mod_timer(&serv->sv_temptimer, jiffies + svc_conn_age_period * HZ);
870 * Remove a dead transport
872 void svc_delete_xprt(struct svc_xprt *xprt)
874 struct svc_serv *serv = xprt->xpt_server;
875 struct svc_deferred_req *dr;
877 /* Only do this once */
878 if (test_and_set_bit(XPT_DEAD, &xprt->xpt_flags))
879 return;
881 dprintk("svc: svc_delete_xprt(%p)\n", xprt);
882 xprt->xpt_ops->xpo_detach(xprt);
884 spin_lock_bh(&serv->sv_lock);
885 if (!test_and_set_bit(XPT_DETACHED, &xprt->xpt_flags))
886 list_del_init(&xprt->xpt_list);
888 * We used to delete the transport from whichever list
889 * it's sk_xprt.xpt_ready node was on, but we don't actually
890 * need to. This is because the only time we're called
891 * while still attached to a queue, the queue itself
892 * is about to be destroyed (in svc_destroy).
894 if (test_bit(XPT_TEMP, &xprt->xpt_flags))
895 serv->sv_tmpcnt--;
897 while ((dr = svc_deferred_dequeue(xprt)) != NULL)
898 kfree(dr);
900 svc_xprt_put(xprt);
901 spin_unlock_bh(&serv->sv_lock);
904 void svc_close_xprt(struct svc_xprt *xprt)
906 set_bit(XPT_CLOSE, &xprt->xpt_flags);
907 if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags))
908 /* someone else will have to effect the close */
909 return;
911 svc_xprt_get(xprt);
912 svc_delete_xprt(xprt);
913 clear_bit(XPT_BUSY, &xprt->xpt_flags);
914 svc_xprt_put(xprt);
916 EXPORT_SYMBOL_GPL(svc_close_xprt);
918 void svc_close_all(struct list_head *xprt_list)
920 struct svc_xprt *xprt;
921 struct svc_xprt *tmp;
923 list_for_each_entry_safe(xprt, tmp, xprt_list, xpt_list) {
924 set_bit(XPT_CLOSE, &xprt->xpt_flags);
925 if (test_bit(XPT_BUSY, &xprt->xpt_flags)) {
926 /* Waiting to be processed, but no threads left,
927 * So just remove it from the waiting list
929 list_del_init(&xprt->xpt_ready);
930 clear_bit(XPT_BUSY, &xprt->xpt_flags);
932 svc_close_xprt(xprt);
937 * Handle defer and revisit of requests
940 static void svc_revisit(struct cache_deferred_req *dreq, int too_many)
942 struct svc_deferred_req *dr =
943 container_of(dreq, struct svc_deferred_req, handle);
944 struct svc_xprt *xprt = dr->xprt;
946 spin_lock(&xprt->xpt_lock);
947 set_bit(XPT_DEFERRED, &xprt->xpt_flags);
948 if (too_many || test_bit(XPT_DEAD, &xprt->xpt_flags)) {
949 spin_unlock(&xprt->xpt_lock);
950 dprintk("revisit canceled\n");
951 svc_xprt_put(xprt);
952 kfree(dr);
953 return;
955 dprintk("revisit queued\n");
956 dr->xprt = NULL;
957 list_add(&dr->handle.recent, &xprt->xpt_deferred);
958 spin_unlock(&xprt->xpt_lock);
959 svc_xprt_enqueue(xprt);
960 svc_xprt_put(xprt);
964 * Save the request off for later processing. The request buffer looks
965 * like this:
967 * <xprt-header><rpc-header><rpc-pagelist><rpc-tail>
969 * This code can only handle requests that consist of an xprt-header
970 * and rpc-header.
972 static struct cache_deferred_req *svc_defer(struct cache_req *req)
974 struct svc_rqst *rqstp = container_of(req, struct svc_rqst, rq_chandle);
975 struct svc_deferred_req *dr;
977 if (rqstp->rq_arg.page_len || !rqstp->rq_usedeferral)
978 return NULL; /* if more than a page, give up FIXME */
979 if (rqstp->rq_deferred) {
980 dr = rqstp->rq_deferred;
981 rqstp->rq_deferred = NULL;
982 } else {
983 size_t skip;
984 size_t size;
985 /* FIXME maybe discard if size too large */
986 size = sizeof(struct svc_deferred_req) + rqstp->rq_arg.len;
987 dr = kmalloc(size, GFP_KERNEL);
988 if (dr == NULL)
989 return NULL;
991 dr->handle.owner = rqstp->rq_server;
992 dr->prot = rqstp->rq_prot;
993 memcpy(&dr->addr, &rqstp->rq_addr, rqstp->rq_addrlen);
994 dr->addrlen = rqstp->rq_addrlen;
995 dr->daddr = rqstp->rq_daddr;
996 dr->argslen = rqstp->rq_arg.len >> 2;
997 dr->xprt_hlen = rqstp->rq_xprt_hlen;
999 /* back up head to the start of the buffer and copy */
1000 skip = rqstp->rq_arg.len - rqstp->rq_arg.head[0].iov_len;
1001 memcpy(dr->args, rqstp->rq_arg.head[0].iov_base - skip,
1002 dr->argslen << 2);
1004 svc_xprt_get(rqstp->rq_xprt);
1005 dr->xprt = rqstp->rq_xprt;
1007 dr->handle.revisit = svc_revisit;
1008 return &dr->handle;
1012 * recv data from a deferred request into an active one
1014 static int svc_deferred_recv(struct svc_rqst *rqstp)
1016 struct svc_deferred_req *dr = rqstp->rq_deferred;
1018 /* setup iov_base past transport header */
1019 rqstp->rq_arg.head[0].iov_base = dr->args + (dr->xprt_hlen>>2);
1020 /* The iov_len does not include the transport header bytes */
1021 rqstp->rq_arg.head[0].iov_len = (dr->argslen<<2) - dr->xprt_hlen;
1022 rqstp->rq_arg.page_len = 0;
1023 /* The rq_arg.len includes the transport header bytes */
1024 rqstp->rq_arg.len = dr->argslen<<2;
1025 rqstp->rq_prot = dr->prot;
1026 memcpy(&rqstp->rq_addr, &dr->addr, dr->addrlen);
1027 rqstp->rq_addrlen = dr->addrlen;
1028 /* Save off transport header len in case we get deferred again */
1029 rqstp->rq_xprt_hlen = dr->xprt_hlen;
1030 rqstp->rq_daddr = dr->daddr;
1031 rqstp->rq_respages = rqstp->rq_pages;
1032 return (dr->argslen<<2) - dr->xprt_hlen;
1036 static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt)
1038 struct svc_deferred_req *dr = NULL;
1040 if (!test_bit(XPT_DEFERRED, &xprt->xpt_flags))
1041 return NULL;
1042 spin_lock(&xprt->xpt_lock);
1043 clear_bit(XPT_DEFERRED, &xprt->xpt_flags);
1044 if (!list_empty(&xprt->xpt_deferred)) {
1045 dr = list_entry(xprt->xpt_deferred.next,
1046 struct svc_deferred_req,
1047 handle.recent);
1048 list_del_init(&dr->handle.recent);
1049 set_bit(XPT_DEFERRED, &xprt->xpt_flags);
1051 spin_unlock(&xprt->xpt_lock);
1052 return dr;
1056 * svc_find_xprt - find an RPC transport instance
1057 * @serv: pointer to svc_serv to search
1058 * @xcl_name: C string containing transport's class name
1059 * @af: Address family of transport's local address
1060 * @port: transport's IP port number
1062 * Return the transport instance pointer for the endpoint accepting
1063 * connections/peer traffic from the specified transport class,
1064 * address family and port.
1066 * Specifying 0 for the address family or port is effectively a
1067 * wild-card, and will result in matching the first transport in the
1068 * service's list that has a matching class name.
1070 struct svc_xprt *svc_find_xprt(struct svc_serv *serv, const char *xcl_name,
1071 const sa_family_t af, const unsigned short port)
1073 struct svc_xprt *xprt;
1074 struct svc_xprt *found = NULL;
1076 /* Sanity check the args */
1077 if (serv == NULL || xcl_name == NULL)
1078 return found;
1080 spin_lock_bh(&serv->sv_lock);
1081 list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) {
1082 if (strcmp(xprt->xpt_class->xcl_name, xcl_name))
1083 continue;
1084 if (af != AF_UNSPEC && af != xprt->xpt_local.ss_family)
1085 continue;
1086 if (port != 0 && port != svc_xprt_local_port(xprt))
1087 continue;
1088 found = xprt;
1089 svc_xprt_get(xprt);
1090 break;
1092 spin_unlock_bh(&serv->sv_lock);
1093 return found;
1095 EXPORT_SYMBOL_GPL(svc_find_xprt);
1097 static int svc_one_xprt_name(const struct svc_xprt *xprt,
1098 char *pos, int remaining)
1100 int len;
1102 len = snprintf(pos, remaining, "%s %u\n",
1103 xprt->xpt_class->xcl_name,
1104 svc_xprt_local_port(xprt));
1105 if (len >= remaining)
1106 return -ENAMETOOLONG;
1107 return len;
1111 * svc_xprt_names - format a buffer with a list of transport names
1112 * @serv: pointer to an RPC service
1113 * @buf: pointer to a buffer to be filled in
1114 * @buflen: length of buffer to be filled in
1116 * Fills in @buf with a string containing a list of transport names,
1117 * each name terminated with '\n'.
1119 * Returns positive length of the filled-in string on success; otherwise
1120 * a negative errno value is returned if an error occurs.
1122 int svc_xprt_names(struct svc_serv *serv, char *buf, const int buflen)
1124 struct svc_xprt *xprt;
1125 int len, totlen;
1126 char *pos;
1128 /* Sanity check args */
1129 if (!serv)
1130 return 0;
1132 spin_lock_bh(&serv->sv_lock);
1134 pos = buf;
1135 totlen = 0;
1136 list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) {
1137 len = svc_one_xprt_name(xprt, pos, buflen - totlen);
1138 if (len < 0) {
1139 *buf = '\0';
1140 totlen = len;
1142 if (len <= 0)
1143 break;
1145 pos += len;
1146 totlen += len;
1149 spin_unlock_bh(&serv->sv_lock);
1150 return totlen;
1152 EXPORT_SYMBOL_GPL(svc_xprt_names);
1155 /*----------------------------------------------------------------------------*/
1157 static void *svc_pool_stats_start(struct seq_file *m, loff_t *pos)
1159 unsigned int pidx = (unsigned int)*pos;
1160 struct svc_serv *serv = m->private;
1162 dprintk("svc_pool_stats_start, *pidx=%u\n", pidx);
1164 if (!pidx)
1165 return SEQ_START_TOKEN;
1166 return (pidx > serv->sv_nrpools ? NULL : &serv->sv_pools[pidx-1]);
1169 static void *svc_pool_stats_next(struct seq_file *m, void *p, loff_t *pos)
1171 struct svc_pool *pool = p;
1172 struct svc_serv *serv = m->private;
1174 dprintk("svc_pool_stats_next, *pos=%llu\n", *pos);
1176 if (p == SEQ_START_TOKEN) {
1177 pool = &serv->sv_pools[0];
1178 } else {
1179 unsigned int pidx = (pool - &serv->sv_pools[0]);
1180 if (pidx < serv->sv_nrpools-1)
1181 pool = &serv->sv_pools[pidx+1];
1182 else
1183 pool = NULL;
1185 ++*pos;
1186 return pool;
1189 static void svc_pool_stats_stop(struct seq_file *m, void *p)
1193 static int svc_pool_stats_show(struct seq_file *m, void *p)
1195 struct svc_pool *pool = p;
1197 if (p == SEQ_START_TOKEN) {
1198 seq_puts(m, "# pool packets-arrived sockets-enqueued threads-woken threads-timedout\n");
1199 return 0;
1202 seq_printf(m, "%u %lu %lu %lu %lu\n",
1203 pool->sp_id,
1204 pool->sp_stats.packets,
1205 pool->sp_stats.sockets_queued,
1206 pool->sp_stats.threads_woken,
1207 pool->sp_stats.threads_timedout);
1209 return 0;
1212 static const struct seq_operations svc_pool_stats_seq_ops = {
1213 .start = svc_pool_stats_start,
1214 .next = svc_pool_stats_next,
1215 .stop = svc_pool_stats_stop,
1216 .show = svc_pool_stats_show,
1219 int svc_pool_stats_open(struct svc_serv *serv, struct file *file)
1221 int err;
1223 err = seq_open(file, &svc_pool_stats_seq_ops);
1224 if (!err)
1225 ((struct seq_file *) file->private_data)->private = serv;
1226 return err;
1228 EXPORT_SYMBOL(svc_pool_stats_open);
1230 /*----------------------------------------------------------------------------*/