2 * Procedures for maintaining information about logical memory blocks.
4 * Peter Bergner, IBM Corp. June 2001.
5 * Copyright (C) 2001 Peter Bergner.
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version
10 * 2 of the License, or (at your option) any later version.
13 #include <linux/kernel.h>
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/bitops.h>
17 #include <linux/poison.h>
18 #include <linux/pfn.h>
19 #include <linux/debugfs.h>
20 #include <linux/seq_file.h>
21 #include <linux/memblock.h>
23 #include <asm-generic/sections.h>
28 static struct memblock_region memblock_memory_init_regions
[INIT_MEMBLOCK_REGIONS
] __initdata_memblock
;
29 static struct memblock_region memblock_reserved_init_regions
[INIT_MEMBLOCK_REGIONS
] __initdata_memblock
;
30 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
31 static struct memblock_region memblock_physmem_init_regions
[INIT_PHYSMEM_REGIONS
] __initdata_memblock
;
34 struct memblock memblock __initdata_memblock
= {
35 .memory
.regions
= memblock_memory_init_regions
,
36 .memory
.cnt
= 1, /* empty dummy entry */
37 .memory
.max
= INIT_MEMBLOCK_REGIONS
,
39 .reserved
.regions
= memblock_reserved_init_regions
,
40 .reserved
.cnt
= 1, /* empty dummy entry */
41 .reserved
.max
= INIT_MEMBLOCK_REGIONS
,
43 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
44 .physmem
.regions
= memblock_physmem_init_regions
,
45 .physmem
.cnt
= 1, /* empty dummy entry */
46 .physmem
.max
= INIT_PHYSMEM_REGIONS
,
50 .current_limit
= MEMBLOCK_ALLOC_ANYWHERE
,
53 int memblock_debug __initdata_memblock
;
54 #ifdef CONFIG_MOVABLE_NODE
55 bool movable_node_enabled __initdata_memblock
= false;
57 static bool system_has_some_mirror __initdata_memblock
= false;
58 static int memblock_can_resize __initdata_memblock
;
59 static int memblock_memory_in_slab __initdata_memblock
= 0;
60 static int memblock_reserved_in_slab __initdata_memblock
= 0;
62 ulong __init_memblock
choose_memblock_flags(void)
64 return system_has_some_mirror
? MEMBLOCK_MIRROR
: MEMBLOCK_NONE
;
67 /* inline so we don't get a warning when pr_debug is compiled out */
68 static __init_memblock
const char *
69 memblock_type_name(struct memblock_type
*type
)
71 if (type
== &memblock
.memory
)
73 else if (type
== &memblock
.reserved
)
79 /* adjust *@size so that (@base + *@size) doesn't overflow, return new size */
80 static inline phys_addr_t
memblock_cap_size(phys_addr_t base
, phys_addr_t
*size
)
82 return *size
= min(*size
, (phys_addr_t
)ULLONG_MAX
- base
);
86 * Address comparison utilities
88 static unsigned long __init_memblock
memblock_addrs_overlap(phys_addr_t base1
, phys_addr_t size1
,
89 phys_addr_t base2
, phys_addr_t size2
)
91 return ((base1
< (base2
+ size2
)) && (base2
< (base1
+ size1
)));
94 bool __init_memblock
memblock_overlaps_region(struct memblock_type
*type
,
95 phys_addr_t base
, phys_addr_t size
)
99 for (i
= 0; i
< type
->cnt
; i
++)
100 if (memblock_addrs_overlap(base
, size
, type
->regions
[i
].base
,
101 type
->regions
[i
].size
))
103 return i
< type
->cnt
;
107 * __memblock_find_range_bottom_up - find free area utility in bottom-up
108 * @start: start of candidate range
109 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
110 * @size: size of free area to find
111 * @align: alignment of free area to find
112 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
113 * @flags: pick from blocks based on memory attributes
115 * Utility called from memblock_find_in_range_node(), find free area bottom-up.
118 * Found address on success, 0 on failure.
120 static phys_addr_t __init_memblock
121 __memblock_find_range_bottom_up(phys_addr_t start
, phys_addr_t end
,
122 phys_addr_t size
, phys_addr_t align
, int nid
,
125 phys_addr_t this_start
, this_end
, cand
;
128 for_each_free_mem_range(i
, nid
, flags
, &this_start
, &this_end
, NULL
) {
129 this_start
= clamp(this_start
, start
, end
);
130 this_end
= clamp(this_end
, start
, end
);
132 cand
= round_up(this_start
, align
);
133 if (cand
< this_end
&& this_end
- cand
>= size
)
141 * __memblock_find_range_top_down - find free area utility, in top-down
142 * @start: start of candidate range
143 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
144 * @size: size of free area to find
145 * @align: alignment of free area to find
146 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
147 * @flags: pick from blocks based on memory attributes
149 * Utility called from memblock_find_in_range_node(), find free area top-down.
152 * Found address on success, 0 on failure.
154 static phys_addr_t __init_memblock
155 __memblock_find_range_top_down(phys_addr_t start
, phys_addr_t end
,
156 phys_addr_t size
, phys_addr_t align
, int nid
,
159 phys_addr_t this_start
, this_end
, cand
;
162 for_each_free_mem_range_reverse(i
, nid
, flags
, &this_start
, &this_end
,
164 this_start
= clamp(this_start
, start
, end
);
165 this_end
= clamp(this_end
, start
, end
);
170 cand
= round_down(this_end
- size
, align
);
171 if (cand
>= this_start
)
179 * memblock_find_in_range_node - find free area in given range and node
180 * @size: size of free area to find
181 * @align: alignment of free area to find
182 * @start: start of candidate range
183 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
184 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
185 * @flags: pick from blocks based on memory attributes
187 * Find @size free area aligned to @align in the specified range and node.
189 * When allocation direction is bottom-up, the @start should be greater
190 * than the end of the kernel image. Otherwise, it will be trimmed. The
191 * reason is that we want the bottom-up allocation just near the kernel
192 * image so it is highly likely that the allocated memory and the kernel
193 * will reside in the same node.
195 * If bottom-up allocation failed, will try to allocate memory top-down.
198 * Found address on success, 0 on failure.
200 phys_addr_t __init_memblock
memblock_find_in_range_node(phys_addr_t size
,
201 phys_addr_t align
, phys_addr_t start
,
202 phys_addr_t end
, int nid
, ulong flags
)
204 phys_addr_t kernel_end
, ret
;
207 if (end
== MEMBLOCK_ALLOC_ACCESSIBLE
)
208 end
= memblock
.current_limit
;
210 /* avoid allocating the first page */
211 start
= max_t(phys_addr_t
, start
, PAGE_SIZE
);
212 end
= max(start
, end
);
213 kernel_end
= __pa_symbol(_end
);
216 * try bottom-up allocation only when bottom-up mode
217 * is set and @end is above the kernel image.
219 if (memblock_bottom_up() && end
> kernel_end
) {
220 phys_addr_t bottom_up_start
;
222 /* make sure we will allocate above the kernel */
223 bottom_up_start
= max(start
, kernel_end
);
225 /* ok, try bottom-up allocation first */
226 ret
= __memblock_find_range_bottom_up(bottom_up_start
, end
,
227 size
, align
, nid
, flags
);
232 * we always limit bottom-up allocation above the kernel,
233 * but top-down allocation doesn't have the limit, so
234 * retrying top-down allocation may succeed when bottom-up
237 * bottom-up allocation is expected to be fail very rarely,
238 * so we use WARN_ONCE() here to see the stack trace if
241 WARN_ONCE(1, "memblock: bottom-up allocation failed, memory hotunplug may be affected\n");
244 return __memblock_find_range_top_down(start
, end
, size
, align
, nid
,
249 * memblock_find_in_range - find free area in given range
250 * @start: start of candidate range
251 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
252 * @size: size of free area to find
253 * @align: alignment of free area to find
255 * Find @size free area aligned to @align in the specified range.
258 * Found address on success, 0 on failure.
260 phys_addr_t __init_memblock
memblock_find_in_range(phys_addr_t start
,
261 phys_addr_t end
, phys_addr_t size
,
265 ulong flags
= choose_memblock_flags();
268 ret
= memblock_find_in_range_node(size
, align
, start
, end
,
269 NUMA_NO_NODE
, flags
);
271 if (!ret
&& (flags
& MEMBLOCK_MIRROR
)) {
272 pr_warn("Could not allocate %pap bytes of mirrored memory\n",
274 flags
&= ~MEMBLOCK_MIRROR
;
281 static void __init_memblock
memblock_remove_region(struct memblock_type
*type
, unsigned long r
)
283 type
->total_size
-= type
->regions
[r
].size
;
284 memmove(&type
->regions
[r
], &type
->regions
[r
+ 1],
285 (type
->cnt
- (r
+ 1)) * sizeof(type
->regions
[r
]));
288 /* Special case for empty arrays */
289 if (type
->cnt
== 0) {
290 WARN_ON(type
->total_size
!= 0);
292 type
->regions
[0].base
= 0;
293 type
->regions
[0].size
= 0;
294 type
->regions
[0].flags
= 0;
295 memblock_set_region_node(&type
->regions
[0], MAX_NUMNODES
);
299 #ifdef CONFIG_ARCH_DISCARD_MEMBLOCK
301 phys_addr_t __init_memblock
get_allocated_memblock_reserved_regions_info(
304 if (memblock
.reserved
.regions
== memblock_reserved_init_regions
)
307 *addr
= __pa(memblock
.reserved
.regions
);
309 return PAGE_ALIGN(sizeof(struct memblock_region
) *
310 memblock
.reserved
.max
);
313 phys_addr_t __init_memblock
get_allocated_memblock_memory_regions_info(
316 if (memblock
.memory
.regions
== memblock_memory_init_regions
)
319 *addr
= __pa(memblock
.memory
.regions
);
321 return PAGE_ALIGN(sizeof(struct memblock_region
) *
322 memblock
.memory
.max
);
328 * memblock_double_array - double the size of the memblock regions array
329 * @type: memblock type of the regions array being doubled
330 * @new_area_start: starting address of memory range to avoid overlap with
331 * @new_area_size: size of memory range to avoid overlap with
333 * Double the size of the @type regions array. If memblock is being used to
334 * allocate memory for a new reserved regions array and there is a previously
335 * allocated memory range [@new_area_start,@new_area_start+@new_area_size]
336 * waiting to be reserved, ensure the memory used by the new array does
340 * 0 on success, -1 on failure.
342 static int __init_memblock
memblock_double_array(struct memblock_type
*type
,
343 phys_addr_t new_area_start
,
344 phys_addr_t new_area_size
)
346 struct memblock_region
*new_array
, *old_array
;
347 phys_addr_t old_alloc_size
, new_alloc_size
;
348 phys_addr_t old_size
, new_size
, addr
;
349 int use_slab
= slab_is_available();
352 /* We don't allow resizing until we know about the reserved regions
353 * of memory that aren't suitable for allocation
355 if (!memblock_can_resize
)
358 /* Calculate new doubled size */
359 old_size
= type
->max
* sizeof(struct memblock_region
);
360 new_size
= old_size
<< 1;
362 * We need to allocated new one align to PAGE_SIZE,
363 * so we can free them completely later.
365 old_alloc_size
= PAGE_ALIGN(old_size
);
366 new_alloc_size
= PAGE_ALIGN(new_size
);
368 /* Retrieve the slab flag */
369 if (type
== &memblock
.memory
)
370 in_slab
= &memblock_memory_in_slab
;
372 in_slab
= &memblock_reserved_in_slab
;
374 /* Try to find some space for it.
376 * WARNING: We assume that either slab_is_available() and we use it or
377 * we use MEMBLOCK for allocations. That means that this is unsafe to
378 * use when bootmem is currently active (unless bootmem itself is
379 * implemented on top of MEMBLOCK which isn't the case yet)
381 * This should however not be an issue for now, as we currently only
382 * call into MEMBLOCK while it's still active, or much later when slab
383 * is active for memory hotplug operations
386 new_array
= kmalloc(new_size
, GFP_KERNEL
);
387 addr
= new_array
? __pa(new_array
) : 0;
389 /* only exclude range when trying to double reserved.regions */
390 if (type
!= &memblock
.reserved
)
391 new_area_start
= new_area_size
= 0;
393 addr
= memblock_find_in_range(new_area_start
+ new_area_size
,
394 memblock
.current_limit
,
395 new_alloc_size
, PAGE_SIZE
);
396 if (!addr
&& new_area_size
)
397 addr
= memblock_find_in_range(0,
398 min(new_area_start
, memblock
.current_limit
),
399 new_alloc_size
, PAGE_SIZE
);
401 new_array
= addr
? __va(addr
) : NULL
;
404 pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n",
405 memblock_type_name(type
), type
->max
, type
->max
* 2);
409 memblock_dbg("memblock: %s is doubled to %ld at [%#010llx-%#010llx]",
410 memblock_type_name(type
), type
->max
* 2, (u64
)addr
,
411 (u64
)addr
+ new_size
- 1);
414 * Found space, we now need to move the array over before we add the
415 * reserved region since it may be our reserved array itself that is
418 memcpy(new_array
, type
->regions
, old_size
);
419 memset(new_array
+ type
->max
, 0, old_size
);
420 old_array
= type
->regions
;
421 type
->regions
= new_array
;
424 /* Free old array. We needn't free it if the array is the static one */
427 else if (old_array
!= memblock_memory_init_regions
&&
428 old_array
!= memblock_reserved_init_regions
)
429 memblock_free(__pa(old_array
), old_alloc_size
);
432 * Reserve the new array if that comes from the memblock. Otherwise, we
436 BUG_ON(memblock_reserve(addr
, new_alloc_size
));
438 /* Update slab flag */
445 * memblock_merge_regions - merge neighboring compatible regions
446 * @type: memblock type to scan
448 * Scan @type and merge neighboring compatible regions.
450 static void __init_memblock
memblock_merge_regions(struct memblock_type
*type
)
454 /* cnt never goes below 1 */
455 while (i
< type
->cnt
- 1) {
456 struct memblock_region
*this = &type
->regions
[i
];
457 struct memblock_region
*next
= &type
->regions
[i
+ 1];
459 if (this->base
+ this->size
!= next
->base
||
460 memblock_get_region_node(this) !=
461 memblock_get_region_node(next
) ||
462 this->flags
!= next
->flags
) {
463 BUG_ON(this->base
+ this->size
> next
->base
);
468 this->size
+= next
->size
;
469 /* move forward from next + 1, index of which is i + 2 */
470 memmove(next
, next
+ 1, (type
->cnt
- (i
+ 2)) * sizeof(*next
));
476 * memblock_insert_region - insert new memblock region
477 * @type: memblock type to insert into
478 * @idx: index for the insertion point
479 * @base: base address of the new region
480 * @size: size of the new region
481 * @nid: node id of the new region
482 * @flags: flags of the new region
484 * Insert new memblock region [@base,@base+@size) into @type at @idx.
485 * @type must already have extra room to accomodate the new region.
487 static void __init_memblock
memblock_insert_region(struct memblock_type
*type
,
488 int idx
, phys_addr_t base
,
490 int nid
, unsigned long flags
)
492 struct memblock_region
*rgn
= &type
->regions
[idx
];
494 BUG_ON(type
->cnt
>= type
->max
);
495 memmove(rgn
+ 1, rgn
, (type
->cnt
- idx
) * sizeof(*rgn
));
499 memblock_set_region_node(rgn
, nid
);
501 type
->total_size
+= size
;
505 * memblock_add_range - add new memblock region
506 * @type: memblock type to add new region into
507 * @base: base address of the new region
508 * @size: size of the new region
509 * @nid: nid of the new region
510 * @flags: flags of the new region
512 * Add new memblock region [@base,@base+@size) into @type. The new region
513 * is allowed to overlap with existing ones - overlaps don't affect already
514 * existing regions. @type is guaranteed to be minimal (all neighbouring
515 * compatible regions are merged) after the addition.
518 * 0 on success, -errno on failure.
520 int __init_memblock
memblock_add_range(struct memblock_type
*type
,
521 phys_addr_t base
, phys_addr_t size
,
522 int nid
, unsigned long flags
)
525 phys_addr_t obase
= base
;
526 phys_addr_t end
= base
+ memblock_cap_size(base
, &size
);
528 struct memblock_region
*rgn
;
533 /* special case for empty array */
534 if (type
->regions
[0].size
== 0) {
535 WARN_ON(type
->cnt
!= 1 || type
->total_size
);
536 type
->regions
[0].base
= base
;
537 type
->regions
[0].size
= size
;
538 type
->regions
[0].flags
= flags
;
539 memblock_set_region_node(&type
->regions
[0], nid
);
540 type
->total_size
= size
;
545 * The following is executed twice. Once with %false @insert and
546 * then with %true. The first counts the number of regions needed
547 * to accomodate the new area. The second actually inserts them.
552 for_each_memblock_type(type
, rgn
) {
553 phys_addr_t rbase
= rgn
->base
;
554 phys_addr_t rend
= rbase
+ rgn
->size
;
561 * @rgn overlaps. If it separates the lower part of new
562 * area, insert that portion.
565 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
566 WARN_ON(nid
!= memblock_get_region_node(rgn
));
568 WARN_ON(flags
!= rgn
->flags
);
571 memblock_insert_region(type
, idx
++, base
,
575 /* area below @rend is dealt with, forget about it */
576 base
= min(rend
, end
);
579 /* insert the remaining portion */
583 memblock_insert_region(type
, idx
, base
, end
- base
,
588 * If this was the first round, resize array and repeat for actual
589 * insertions; otherwise, merge and return.
592 while (type
->cnt
+ nr_new
> type
->max
)
593 if (memblock_double_array(type
, obase
, size
) < 0)
598 memblock_merge_regions(type
);
603 int __init_memblock
memblock_add_node(phys_addr_t base
, phys_addr_t size
,
606 return memblock_add_range(&memblock
.memory
, base
, size
, nid
, 0);
609 int __init_memblock
memblock_add(phys_addr_t base
, phys_addr_t size
)
611 memblock_dbg("memblock_add: [%#016llx-%#016llx] flags %#02lx %pF\n",
612 (unsigned long long)base
,
613 (unsigned long long)base
+ size
- 1,
614 0UL, (void *)_RET_IP_
);
616 return memblock_add_range(&memblock
.memory
, base
, size
, MAX_NUMNODES
, 0);
620 * memblock_isolate_range - isolate given range into disjoint memblocks
621 * @type: memblock type to isolate range for
622 * @base: base of range to isolate
623 * @size: size of range to isolate
624 * @start_rgn: out parameter for the start of isolated region
625 * @end_rgn: out parameter for the end of isolated region
627 * Walk @type and ensure that regions don't cross the boundaries defined by
628 * [@base,@base+@size). Crossing regions are split at the boundaries,
629 * which may create at most two more regions. The index of the first
630 * region inside the range is returned in *@start_rgn and end in *@end_rgn.
633 * 0 on success, -errno on failure.
635 static int __init_memblock
memblock_isolate_range(struct memblock_type
*type
,
636 phys_addr_t base
, phys_addr_t size
,
637 int *start_rgn
, int *end_rgn
)
639 phys_addr_t end
= base
+ memblock_cap_size(base
, &size
);
641 struct memblock_region
*rgn
;
643 *start_rgn
= *end_rgn
= 0;
648 /* we'll create at most two more regions */
649 while (type
->cnt
+ 2 > type
->max
)
650 if (memblock_double_array(type
, base
, size
) < 0)
653 for_each_memblock_type(type
, rgn
) {
654 phys_addr_t rbase
= rgn
->base
;
655 phys_addr_t rend
= rbase
+ rgn
->size
;
664 * @rgn intersects from below. Split and continue
665 * to process the next region - the new top half.
668 rgn
->size
-= base
- rbase
;
669 type
->total_size
-= base
- rbase
;
670 memblock_insert_region(type
, idx
, rbase
, base
- rbase
,
671 memblock_get_region_node(rgn
),
673 } else if (rend
> end
) {
675 * @rgn intersects from above. Split and redo the
676 * current region - the new bottom half.
679 rgn
->size
-= end
- rbase
;
680 type
->total_size
-= end
- rbase
;
681 memblock_insert_region(type
, idx
--, rbase
, end
- rbase
,
682 memblock_get_region_node(rgn
),
685 /* @rgn is fully contained, record it */
695 static int __init_memblock
memblock_remove_range(struct memblock_type
*type
,
696 phys_addr_t base
, phys_addr_t size
)
698 int start_rgn
, end_rgn
;
701 ret
= memblock_isolate_range(type
, base
, size
, &start_rgn
, &end_rgn
);
705 for (i
= end_rgn
- 1; i
>= start_rgn
; i
--)
706 memblock_remove_region(type
, i
);
710 int __init_memblock
memblock_remove(phys_addr_t base
, phys_addr_t size
)
712 return memblock_remove_range(&memblock
.memory
, base
, size
);
716 int __init_memblock
memblock_free(phys_addr_t base
, phys_addr_t size
)
718 memblock_dbg(" memblock_free: [%#016llx-%#016llx] %pF\n",
719 (unsigned long long)base
,
720 (unsigned long long)base
+ size
- 1,
723 kmemleak_free_part(__va(base
), size
);
724 return memblock_remove_range(&memblock
.reserved
, base
, size
);
727 int __init_memblock
memblock_reserve(phys_addr_t base
, phys_addr_t size
)
729 memblock_dbg("memblock_reserve: [%#016llx-%#016llx] flags %#02lx %pF\n",
730 (unsigned long long)base
,
731 (unsigned long long)base
+ size
- 1,
732 0UL, (void *)_RET_IP_
);
734 return memblock_add_range(&memblock
.reserved
, base
, size
, MAX_NUMNODES
, 0);
739 * This function isolates region [@base, @base + @size), and sets/clears flag
741 * Return 0 on success, -errno on failure.
743 static int __init_memblock
memblock_setclr_flag(phys_addr_t base
,
744 phys_addr_t size
, int set
, int flag
)
746 struct memblock_type
*type
= &memblock
.memory
;
747 int i
, ret
, start_rgn
, end_rgn
;
749 ret
= memblock_isolate_range(type
, base
, size
, &start_rgn
, &end_rgn
);
753 for (i
= start_rgn
; i
< end_rgn
; i
++)
755 memblock_set_region_flags(&type
->regions
[i
], flag
);
757 memblock_clear_region_flags(&type
->regions
[i
], flag
);
759 memblock_merge_regions(type
);
764 * memblock_mark_hotplug - Mark hotpluggable memory with flag MEMBLOCK_HOTPLUG.
765 * @base: the base phys addr of the region
766 * @size: the size of the region
768 * Return 0 on success, -errno on failure.
770 int __init_memblock
memblock_mark_hotplug(phys_addr_t base
, phys_addr_t size
)
772 return memblock_setclr_flag(base
, size
, 1, MEMBLOCK_HOTPLUG
);
776 * memblock_clear_hotplug - Clear flag MEMBLOCK_HOTPLUG for a specified region.
777 * @base: the base phys addr of the region
778 * @size: the size of the region
780 * Return 0 on success, -errno on failure.
782 int __init_memblock
memblock_clear_hotplug(phys_addr_t base
, phys_addr_t size
)
784 return memblock_setclr_flag(base
, size
, 0, MEMBLOCK_HOTPLUG
);
788 * memblock_mark_mirror - Mark mirrored memory with flag MEMBLOCK_MIRROR.
789 * @base: the base phys addr of the region
790 * @size: the size of the region
792 * Return 0 on success, -errno on failure.
794 int __init_memblock
memblock_mark_mirror(phys_addr_t base
, phys_addr_t size
)
796 system_has_some_mirror
= true;
798 return memblock_setclr_flag(base
, size
, 1, MEMBLOCK_MIRROR
);
802 * memblock_mark_nomap - Mark a memory region with flag MEMBLOCK_NOMAP.
803 * @base: the base phys addr of the region
804 * @size: the size of the region
806 * Return 0 on success, -errno on failure.
808 int __init_memblock
memblock_mark_nomap(phys_addr_t base
, phys_addr_t size
)
810 return memblock_setclr_flag(base
, size
, 1, MEMBLOCK_NOMAP
);
814 * __next_reserved_mem_region - next function for for_each_reserved_region()
815 * @idx: pointer to u64 loop variable
816 * @out_start: ptr to phys_addr_t for start address of the region, can be %NULL
817 * @out_end: ptr to phys_addr_t for end address of the region, can be %NULL
819 * Iterate over all reserved memory regions.
821 void __init_memblock
__next_reserved_mem_region(u64
*idx
,
822 phys_addr_t
*out_start
,
823 phys_addr_t
*out_end
)
825 struct memblock_type
*type
= &memblock
.reserved
;
827 if (*idx
< type
->cnt
) {
828 struct memblock_region
*r
= &type
->regions
[*idx
];
829 phys_addr_t base
= r
->base
;
830 phys_addr_t size
= r
->size
;
835 *out_end
= base
+ size
- 1;
841 /* signal end of iteration */
846 * __next__mem_range - next function for for_each_free_mem_range() etc.
847 * @idx: pointer to u64 loop variable
848 * @nid: node selector, %NUMA_NO_NODE for all nodes
849 * @flags: pick from blocks based on memory attributes
850 * @type_a: pointer to memblock_type from where the range is taken
851 * @type_b: pointer to memblock_type which excludes memory from being taken
852 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
853 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
854 * @out_nid: ptr to int for nid of the range, can be %NULL
856 * Find the first area from *@idx which matches @nid, fill the out
857 * parameters, and update *@idx for the next iteration. The lower 32bit of
858 * *@idx contains index into type_a and the upper 32bit indexes the
859 * areas before each region in type_b. For example, if type_b regions
860 * look like the following,
862 * 0:[0-16), 1:[32-48), 2:[128-130)
864 * The upper 32bit indexes the following regions.
866 * 0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX)
868 * As both region arrays are sorted, the function advances the two indices
869 * in lockstep and returns each intersection.
871 void __init_memblock
__next_mem_range(u64
*idx
, int nid
, ulong flags
,
872 struct memblock_type
*type_a
,
873 struct memblock_type
*type_b
,
874 phys_addr_t
*out_start
,
875 phys_addr_t
*out_end
, int *out_nid
)
877 int idx_a
= *idx
& 0xffffffff;
878 int idx_b
= *idx
>> 32;
880 if (WARN_ONCE(nid
== MAX_NUMNODES
,
881 "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
884 for (; idx_a
< type_a
->cnt
; idx_a
++) {
885 struct memblock_region
*m
= &type_a
->regions
[idx_a
];
887 phys_addr_t m_start
= m
->base
;
888 phys_addr_t m_end
= m
->base
+ m
->size
;
889 int m_nid
= memblock_get_region_node(m
);
891 /* only memory regions are associated with nodes, check it */
892 if (nid
!= NUMA_NO_NODE
&& nid
!= m_nid
)
895 /* skip hotpluggable memory regions if needed */
896 if (movable_node_is_enabled() && memblock_is_hotpluggable(m
))
899 /* if we want mirror memory skip non-mirror memory regions */
900 if ((flags
& MEMBLOCK_MIRROR
) && !memblock_is_mirror(m
))
903 /* skip nomap memory unless we were asked for it explicitly */
904 if (!(flags
& MEMBLOCK_NOMAP
) && memblock_is_nomap(m
))
909 *out_start
= m_start
;
915 *idx
= (u32
)idx_a
| (u64
)idx_b
<< 32;
919 /* scan areas before each reservation */
920 for (; idx_b
< type_b
->cnt
+ 1; idx_b
++) {
921 struct memblock_region
*r
;
925 r
= &type_b
->regions
[idx_b
];
926 r_start
= idx_b
? r
[-1].base
+ r
[-1].size
: 0;
927 r_end
= idx_b
< type_b
->cnt
?
928 r
->base
: ULLONG_MAX
;
931 * if idx_b advanced past idx_a,
932 * break out to advance idx_a
934 if (r_start
>= m_end
)
936 /* if the two regions intersect, we're done */
937 if (m_start
< r_end
) {
940 max(m_start
, r_start
);
942 *out_end
= min(m_end
, r_end
);
946 * The region which ends first is
947 * advanced for the next iteration.
953 *idx
= (u32
)idx_a
| (u64
)idx_b
<< 32;
959 /* signal end of iteration */
964 * __next_mem_range_rev - generic next function for for_each_*_range_rev()
966 * Finds the next range from type_a which is not marked as unsuitable
969 * @idx: pointer to u64 loop variable
970 * @nid: node selector, %NUMA_NO_NODE for all nodes
971 * @flags: pick from blocks based on memory attributes
972 * @type_a: pointer to memblock_type from where the range is taken
973 * @type_b: pointer to memblock_type which excludes memory from being taken
974 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
975 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
976 * @out_nid: ptr to int for nid of the range, can be %NULL
978 * Reverse of __next_mem_range().
980 void __init_memblock
__next_mem_range_rev(u64
*idx
, int nid
, ulong flags
,
981 struct memblock_type
*type_a
,
982 struct memblock_type
*type_b
,
983 phys_addr_t
*out_start
,
984 phys_addr_t
*out_end
, int *out_nid
)
986 int idx_a
= *idx
& 0xffffffff;
987 int idx_b
= *idx
>> 32;
989 if (WARN_ONCE(nid
== MAX_NUMNODES
, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
992 if (*idx
== (u64
)ULLONG_MAX
) {
993 idx_a
= type_a
->cnt
- 1;
997 for (; idx_a
>= 0; idx_a
--) {
998 struct memblock_region
*m
= &type_a
->regions
[idx_a
];
1000 phys_addr_t m_start
= m
->base
;
1001 phys_addr_t m_end
= m
->base
+ m
->size
;
1002 int m_nid
= memblock_get_region_node(m
);
1004 /* only memory regions are associated with nodes, check it */
1005 if (nid
!= NUMA_NO_NODE
&& nid
!= m_nid
)
1008 /* skip hotpluggable memory regions if needed */
1009 if (movable_node_is_enabled() && memblock_is_hotpluggable(m
))
1012 /* if we want mirror memory skip non-mirror memory regions */
1013 if ((flags
& MEMBLOCK_MIRROR
) && !memblock_is_mirror(m
))
1016 /* skip nomap memory unless we were asked for it explicitly */
1017 if (!(flags
& MEMBLOCK_NOMAP
) && memblock_is_nomap(m
))
1022 *out_start
= m_start
;
1028 *idx
= (u32
)idx_a
| (u64
)idx_b
<< 32;
1032 /* scan areas before each reservation */
1033 for (; idx_b
>= 0; idx_b
--) {
1034 struct memblock_region
*r
;
1035 phys_addr_t r_start
;
1038 r
= &type_b
->regions
[idx_b
];
1039 r_start
= idx_b
? r
[-1].base
+ r
[-1].size
: 0;
1040 r_end
= idx_b
< type_b
->cnt
?
1041 r
->base
: ULLONG_MAX
;
1043 * if idx_b advanced past idx_a,
1044 * break out to advance idx_a
1047 if (r_end
<= m_start
)
1049 /* if the two regions intersect, we're done */
1050 if (m_end
> r_start
) {
1052 *out_start
= max(m_start
, r_start
);
1054 *out_end
= min(m_end
, r_end
);
1057 if (m_start
>= r_start
)
1061 *idx
= (u32
)idx_a
| (u64
)idx_b
<< 32;
1066 /* signal end of iteration */
1070 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1072 * Common iterator interface used to define for_each_mem_range().
1074 void __init_memblock
__next_mem_pfn_range(int *idx
, int nid
,
1075 unsigned long *out_start_pfn
,
1076 unsigned long *out_end_pfn
, int *out_nid
)
1078 struct memblock_type
*type
= &memblock
.memory
;
1079 struct memblock_region
*r
;
1081 while (++*idx
< type
->cnt
) {
1082 r
= &type
->regions
[*idx
];
1084 if (PFN_UP(r
->base
) >= PFN_DOWN(r
->base
+ r
->size
))
1086 if (nid
== MAX_NUMNODES
|| nid
== r
->nid
)
1089 if (*idx
>= type
->cnt
) {
1095 *out_start_pfn
= PFN_UP(r
->base
);
1097 *out_end_pfn
= PFN_DOWN(r
->base
+ r
->size
);
1103 * memblock_set_node - set node ID on memblock regions
1104 * @base: base of area to set node ID for
1105 * @size: size of area to set node ID for
1106 * @type: memblock type to set node ID for
1107 * @nid: node ID to set
1109 * Set the nid of memblock @type regions in [@base,@base+@size) to @nid.
1110 * Regions which cross the area boundaries are split as necessary.
1113 * 0 on success, -errno on failure.
1115 int __init_memblock
memblock_set_node(phys_addr_t base
, phys_addr_t size
,
1116 struct memblock_type
*type
, int nid
)
1118 int start_rgn
, end_rgn
;
1121 ret
= memblock_isolate_range(type
, base
, size
, &start_rgn
, &end_rgn
);
1125 for (i
= start_rgn
; i
< end_rgn
; i
++)
1126 memblock_set_region_node(&type
->regions
[i
], nid
);
1128 memblock_merge_regions(type
);
1131 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
1133 static phys_addr_t __init
memblock_alloc_range_nid(phys_addr_t size
,
1134 phys_addr_t align
, phys_addr_t start
,
1135 phys_addr_t end
, int nid
, ulong flags
)
1140 align
= SMP_CACHE_BYTES
;
1142 found
= memblock_find_in_range_node(size
, align
, start
, end
, nid
,
1144 if (found
&& !memblock_reserve(found
, size
)) {
1146 * The min_count is set to 0 so that memblock allocations are
1147 * never reported as leaks.
1149 kmemleak_alloc(__va(found
), size
, 0, 0);
1155 phys_addr_t __init
memblock_alloc_range(phys_addr_t size
, phys_addr_t align
,
1156 phys_addr_t start
, phys_addr_t end
,
1159 return memblock_alloc_range_nid(size
, align
, start
, end
, NUMA_NO_NODE
,
1163 static phys_addr_t __init
memblock_alloc_base_nid(phys_addr_t size
,
1164 phys_addr_t align
, phys_addr_t max_addr
,
1165 int nid
, ulong flags
)
1167 return memblock_alloc_range_nid(size
, align
, 0, max_addr
, nid
, flags
);
1170 phys_addr_t __init
memblock_alloc_nid(phys_addr_t size
, phys_addr_t align
, int nid
)
1172 ulong flags
= choose_memblock_flags();
1176 ret
= memblock_alloc_base_nid(size
, align
, MEMBLOCK_ALLOC_ACCESSIBLE
,
1179 if (!ret
&& (flags
& MEMBLOCK_MIRROR
)) {
1180 flags
&= ~MEMBLOCK_MIRROR
;
1186 phys_addr_t __init
__memblock_alloc_base(phys_addr_t size
, phys_addr_t align
, phys_addr_t max_addr
)
1188 return memblock_alloc_base_nid(size
, align
, max_addr
, NUMA_NO_NODE
,
1192 phys_addr_t __init
memblock_alloc_base(phys_addr_t size
, phys_addr_t align
, phys_addr_t max_addr
)
1196 alloc
= __memblock_alloc_base(size
, align
, max_addr
);
1199 panic("ERROR: Failed to allocate 0x%llx bytes below 0x%llx.\n",
1200 (unsigned long long) size
, (unsigned long long) max_addr
);
1205 phys_addr_t __init
memblock_alloc(phys_addr_t size
, phys_addr_t align
)
1207 return memblock_alloc_base(size
, align
, MEMBLOCK_ALLOC_ACCESSIBLE
);
1210 phys_addr_t __init
memblock_alloc_try_nid(phys_addr_t size
, phys_addr_t align
, int nid
)
1212 phys_addr_t res
= memblock_alloc_nid(size
, align
, nid
);
1216 return memblock_alloc_base(size
, align
, MEMBLOCK_ALLOC_ACCESSIBLE
);
1220 * memblock_virt_alloc_internal - allocate boot memory block
1221 * @size: size of memory block to be allocated in bytes
1222 * @align: alignment of the region and block's size
1223 * @min_addr: the lower bound of the memory region to allocate (phys address)
1224 * @max_addr: the upper bound of the memory region to allocate (phys address)
1225 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1227 * The @min_addr limit is dropped if it can not be satisfied and the allocation
1228 * will fall back to memory below @min_addr. Also, allocation may fall back
1229 * to any node in the system if the specified node can not
1230 * hold the requested memory.
1232 * The allocation is performed from memory region limited by
1233 * memblock.current_limit if @max_addr == %BOOTMEM_ALLOC_ACCESSIBLE.
1235 * The memory block is aligned on SMP_CACHE_BYTES if @align == 0.
1237 * The phys address of allocated boot memory block is converted to virtual and
1238 * allocated memory is reset to 0.
1240 * In addition, function sets the min_count to 0 using kmemleak_alloc for
1241 * allocated boot memory block, so that it is never reported as leaks.
1244 * Virtual address of allocated memory block on success, NULL on failure.
1246 static void * __init
memblock_virt_alloc_internal(
1247 phys_addr_t size
, phys_addr_t align
,
1248 phys_addr_t min_addr
, phys_addr_t max_addr
,
1253 ulong flags
= choose_memblock_flags();
1255 if (WARN_ONCE(nid
== MAX_NUMNODES
, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1259 * Detect any accidental use of these APIs after slab is ready, as at
1260 * this moment memblock may be deinitialized already and its
1261 * internal data may be destroyed (after execution of free_all_bootmem)
1263 if (WARN_ON_ONCE(slab_is_available()))
1264 return kzalloc_node(size
, GFP_NOWAIT
, nid
);
1267 align
= SMP_CACHE_BYTES
;
1269 if (max_addr
> memblock
.current_limit
)
1270 max_addr
= memblock
.current_limit
;
1273 alloc
= memblock_find_in_range_node(size
, align
, min_addr
, max_addr
,
1278 if (nid
!= NUMA_NO_NODE
) {
1279 alloc
= memblock_find_in_range_node(size
, align
, min_addr
,
1280 max_addr
, NUMA_NO_NODE
,
1291 if (flags
& MEMBLOCK_MIRROR
) {
1292 flags
&= ~MEMBLOCK_MIRROR
;
1293 pr_warn("Could not allocate %pap bytes of mirrored memory\n",
1300 memblock_reserve(alloc
, size
);
1301 ptr
= phys_to_virt(alloc
);
1302 memset(ptr
, 0, size
);
1305 * The min_count is set to 0 so that bootmem allocated blocks
1306 * are never reported as leaks. This is because many of these blocks
1307 * are only referred via the physical address which is not
1308 * looked up by kmemleak.
1310 kmemleak_alloc(ptr
, size
, 0, 0);
1316 * memblock_virt_alloc_try_nid_nopanic - allocate boot memory block
1317 * @size: size of memory block to be allocated in bytes
1318 * @align: alignment of the region and block's size
1319 * @min_addr: the lower bound of the memory region from where the allocation
1320 * is preferred (phys address)
1321 * @max_addr: the upper bound of the memory region from where the allocation
1322 * is preferred (phys address), or %BOOTMEM_ALLOC_ACCESSIBLE to
1323 * allocate only from memory limited by memblock.current_limit value
1324 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1326 * Public version of _memblock_virt_alloc_try_nid_nopanic() which provides
1327 * additional debug information (including caller info), if enabled.
1330 * Virtual address of allocated memory block on success, NULL on failure.
1332 void * __init
memblock_virt_alloc_try_nid_nopanic(
1333 phys_addr_t size
, phys_addr_t align
,
1334 phys_addr_t min_addr
, phys_addr_t max_addr
,
1337 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx %pF\n",
1338 __func__
, (u64
)size
, (u64
)align
, nid
, (u64
)min_addr
,
1339 (u64
)max_addr
, (void *)_RET_IP_
);
1340 return memblock_virt_alloc_internal(size
, align
, min_addr
,
1345 * memblock_virt_alloc_try_nid - allocate boot memory block with panicking
1346 * @size: size of memory block to be allocated in bytes
1347 * @align: alignment of the region and block's size
1348 * @min_addr: the lower bound of the memory region from where the allocation
1349 * is preferred (phys address)
1350 * @max_addr: the upper bound of the memory region from where the allocation
1351 * is preferred (phys address), or %BOOTMEM_ALLOC_ACCESSIBLE to
1352 * allocate only from memory limited by memblock.current_limit value
1353 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1355 * Public panicking version of _memblock_virt_alloc_try_nid_nopanic()
1356 * which provides debug information (including caller info), if enabled,
1357 * and panics if the request can not be satisfied.
1360 * Virtual address of allocated memory block on success, NULL on failure.
1362 void * __init
memblock_virt_alloc_try_nid(
1363 phys_addr_t size
, phys_addr_t align
,
1364 phys_addr_t min_addr
, phys_addr_t max_addr
,
1369 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx %pF\n",
1370 __func__
, (u64
)size
, (u64
)align
, nid
, (u64
)min_addr
,
1371 (u64
)max_addr
, (void *)_RET_IP_
);
1372 ptr
= memblock_virt_alloc_internal(size
, align
,
1373 min_addr
, max_addr
, nid
);
1377 panic("%s: Failed to allocate %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx\n",
1378 __func__
, (u64
)size
, (u64
)align
, nid
, (u64
)min_addr
,
1384 * __memblock_free_early - free boot memory block
1385 * @base: phys starting address of the boot memory block
1386 * @size: size of the boot memory block in bytes
1388 * Free boot memory block previously allocated by memblock_virt_alloc_xx() API.
1389 * The freeing memory will not be released to the buddy allocator.
1391 void __init
__memblock_free_early(phys_addr_t base
, phys_addr_t size
)
1393 memblock_dbg("%s: [%#016llx-%#016llx] %pF\n",
1394 __func__
, (u64
)base
, (u64
)base
+ size
- 1,
1396 kmemleak_free_part(__va(base
), size
);
1397 memblock_remove_range(&memblock
.reserved
, base
, size
);
1401 * __memblock_free_late - free bootmem block pages directly to buddy allocator
1402 * @addr: phys starting address of the boot memory block
1403 * @size: size of the boot memory block in bytes
1405 * This is only useful when the bootmem allocator has already been torn
1406 * down, but we are still initializing the system. Pages are released directly
1407 * to the buddy allocator, no bootmem metadata is updated because it is gone.
1409 void __init
__memblock_free_late(phys_addr_t base
, phys_addr_t size
)
1413 memblock_dbg("%s: [%#016llx-%#016llx] %pF\n",
1414 __func__
, (u64
)base
, (u64
)base
+ size
- 1,
1416 kmemleak_free_part(__va(base
), size
);
1417 cursor
= PFN_UP(base
);
1418 end
= PFN_DOWN(base
+ size
);
1420 for (; cursor
< end
; cursor
++) {
1421 __free_pages_bootmem(pfn_to_page(cursor
), cursor
, 0);
1427 * Remaining API functions
1430 phys_addr_t __init_memblock
memblock_phys_mem_size(void)
1432 return memblock
.memory
.total_size
;
1435 phys_addr_t __init
memblock_mem_size(unsigned long limit_pfn
)
1437 unsigned long pages
= 0;
1438 struct memblock_region
*r
;
1439 unsigned long start_pfn
, end_pfn
;
1441 for_each_memblock(memory
, r
) {
1442 start_pfn
= memblock_region_memory_base_pfn(r
);
1443 end_pfn
= memblock_region_memory_end_pfn(r
);
1444 start_pfn
= min_t(unsigned long, start_pfn
, limit_pfn
);
1445 end_pfn
= min_t(unsigned long, end_pfn
, limit_pfn
);
1446 pages
+= end_pfn
- start_pfn
;
1449 return PFN_PHYS(pages
);
1452 /* lowest address */
1453 phys_addr_t __init_memblock
memblock_start_of_DRAM(void)
1455 return memblock
.memory
.regions
[0].base
;
1458 phys_addr_t __init_memblock
memblock_end_of_DRAM(void)
1460 int idx
= memblock
.memory
.cnt
- 1;
1462 return (memblock
.memory
.regions
[idx
].base
+ memblock
.memory
.regions
[idx
].size
);
1465 void __init
memblock_enforce_memory_limit(phys_addr_t limit
)
1467 phys_addr_t max_addr
= (phys_addr_t
)ULLONG_MAX
;
1468 struct memblock_region
*r
;
1473 /* find out max address */
1474 for_each_memblock(memory
, r
) {
1475 if (limit
<= r
->size
) {
1476 max_addr
= r
->base
+ limit
;
1482 /* truncate both memory and reserved regions */
1483 memblock_remove_range(&memblock
.memory
, max_addr
,
1484 (phys_addr_t
)ULLONG_MAX
);
1485 memblock_remove_range(&memblock
.reserved
, max_addr
,
1486 (phys_addr_t
)ULLONG_MAX
);
1489 static int __init_memblock
memblock_search(struct memblock_type
*type
, phys_addr_t addr
)
1491 unsigned int left
= 0, right
= type
->cnt
;
1494 unsigned int mid
= (right
+ left
) / 2;
1496 if (addr
< type
->regions
[mid
].base
)
1498 else if (addr
>= (type
->regions
[mid
].base
+
1499 type
->regions
[mid
].size
))
1503 } while (left
< right
);
1507 bool __init
memblock_is_reserved(phys_addr_t addr
)
1509 return memblock_search(&memblock
.reserved
, addr
) != -1;
1512 bool __init_memblock
memblock_is_memory(phys_addr_t addr
)
1514 return memblock_search(&memblock
.memory
, addr
) != -1;
1517 int __init_memblock
memblock_is_map_memory(phys_addr_t addr
)
1519 int i
= memblock_search(&memblock
.memory
, addr
);
1523 return !memblock_is_nomap(&memblock
.memory
.regions
[i
]);
1526 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1527 int __init_memblock
memblock_search_pfn_nid(unsigned long pfn
,
1528 unsigned long *start_pfn
, unsigned long *end_pfn
)
1530 struct memblock_type
*type
= &memblock
.memory
;
1531 int mid
= memblock_search(type
, PFN_PHYS(pfn
));
1536 *start_pfn
= PFN_DOWN(type
->regions
[mid
].base
);
1537 *end_pfn
= PFN_DOWN(type
->regions
[mid
].base
+ type
->regions
[mid
].size
);
1539 return type
->regions
[mid
].nid
;
1544 * memblock_is_region_memory - check if a region is a subset of memory
1545 * @base: base of region to check
1546 * @size: size of region to check
1548 * Check if the region [@base, @base+@size) is a subset of a memory block.
1551 * 0 if false, non-zero if true
1553 int __init_memblock
memblock_is_region_memory(phys_addr_t base
, phys_addr_t size
)
1555 int idx
= memblock_search(&memblock
.memory
, base
);
1556 phys_addr_t end
= base
+ memblock_cap_size(base
, &size
);
1560 return memblock
.memory
.regions
[idx
].base
<= base
&&
1561 (memblock
.memory
.regions
[idx
].base
+
1562 memblock
.memory
.regions
[idx
].size
) >= end
;
1566 * memblock_is_region_reserved - check if a region intersects reserved memory
1567 * @base: base of region to check
1568 * @size: size of region to check
1570 * Check if the region [@base, @base+@size) intersects a reserved memory block.
1573 * True if they intersect, false if not.
1575 bool __init_memblock
memblock_is_region_reserved(phys_addr_t base
, phys_addr_t size
)
1577 memblock_cap_size(base
, &size
);
1578 return memblock_overlaps_region(&memblock
.reserved
, base
, size
);
1581 void __init_memblock
memblock_trim_memory(phys_addr_t align
)
1583 phys_addr_t start
, end
, orig_start
, orig_end
;
1584 struct memblock_region
*r
;
1586 for_each_memblock(memory
, r
) {
1587 orig_start
= r
->base
;
1588 orig_end
= r
->base
+ r
->size
;
1589 start
= round_up(orig_start
, align
);
1590 end
= round_down(orig_end
, align
);
1592 if (start
== orig_start
&& end
== orig_end
)
1597 r
->size
= end
- start
;
1599 memblock_remove_region(&memblock
.memory
,
1600 r
- memblock
.memory
.regions
);
1606 void __init_memblock
memblock_set_current_limit(phys_addr_t limit
)
1608 memblock
.current_limit
= limit
;
1611 phys_addr_t __init_memblock
memblock_get_current_limit(void)
1613 return memblock
.current_limit
;
1616 static void __init_memblock
memblock_dump(struct memblock_type
*type
, char *name
)
1618 unsigned long long base
, size
;
1619 unsigned long flags
;
1621 struct memblock_region
*rgn
;
1623 pr_info(" %s.cnt = 0x%lx\n", name
, type
->cnt
);
1625 for_each_memblock_type(type
, rgn
) {
1626 char nid_buf
[32] = "";
1631 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1632 if (memblock_get_region_node(rgn
) != MAX_NUMNODES
)
1633 snprintf(nid_buf
, sizeof(nid_buf
), " on node %d",
1634 memblock_get_region_node(rgn
));
1636 pr_info(" %s[%#x]\t[%#016llx-%#016llx], %#llx bytes%s flags: %#lx\n",
1637 name
, idx
, base
, base
+ size
- 1, size
, nid_buf
, flags
);
1641 void __init_memblock
__memblock_dump_all(void)
1643 pr_info("MEMBLOCK configuration:\n");
1644 pr_info(" memory size = %#llx reserved size = %#llx\n",
1645 (unsigned long long)memblock
.memory
.total_size
,
1646 (unsigned long long)memblock
.reserved
.total_size
);
1648 memblock_dump(&memblock
.memory
, "memory");
1649 memblock_dump(&memblock
.reserved
, "reserved");
1652 void __init
memblock_allow_resize(void)
1654 memblock_can_resize
= 1;
1657 static int __init
early_memblock(char *p
)
1659 if (p
&& strstr(p
, "debug"))
1663 early_param("memblock", early_memblock
);
1665 #if defined(CONFIG_DEBUG_FS) && !defined(CONFIG_ARCH_DISCARD_MEMBLOCK)
1667 static int memblock_debug_show(struct seq_file
*m
, void *private)
1669 struct memblock_type
*type
= m
->private;
1670 struct memblock_region
*reg
;
1673 for (i
= 0; i
< type
->cnt
; i
++) {
1674 reg
= &type
->regions
[i
];
1675 seq_printf(m
, "%4d: ", i
);
1676 if (sizeof(phys_addr_t
) == 4)
1677 seq_printf(m
, "0x%08lx..0x%08lx\n",
1678 (unsigned long)reg
->base
,
1679 (unsigned long)(reg
->base
+ reg
->size
- 1));
1681 seq_printf(m
, "0x%016llx..0x%016llx\n",
1682 (unsigned long long)reg
->base
,
1683 (unsigned long long)(reg
->base
+ reg
->size
- 1));
1689 static int memblock_debug_open(struct inode
*inode
, struct file
*file
)
1691 return single_open(file
, memblock_debug_show
, inode
->i_private
);
1694 static const struct file_operations memblock_debug_fops
= {
1695 .open
= memblock_debug_open
,
1697 .llseek
= seq_lseek
,
1698 .release
= single_release
,
1701 static int __init
memblock_init_debugfs(void)
1703 struct dentry
*root
= debugfs_create_dir("memblock", NULL
);
1706 debugfs_create_file("memory", S_IRUGO
, root
, &memblock
.memory
, &memblock_debug_fops
);
1707 debugfs_create_file("reserved", S_IRUGO
, root
, &memblock
.reserved
, &memblock_debug_fops
);
1708 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
1709 debugfs_create_file("physmem", S_IRUGO
, root
, &memblock
.physmem
, &memblock_debug_fops
);
1714 __initcall(memblock_init_debugfs
);
1716 #endif /* CONFIG_DEBUG_FS */