1 /* arch/sparc64/mm/tsb.c
3 * Copyright (C) 2006, 2008 David S. Miller <davem@davemloft.net>
6 #include <linux/kernel.h>
7 #include <linux/preempt.h>
8 #include <linux/slab.h>
10 #include <asm/pgtable.h>
11 #include <asm/mmu_context.h>
12 #include <asm/setup.h>
15 #include <asm/oplib.h>
17 extern struct tsb swapper_tsb
[KERNEL_TSB_NENTRIES
];
19 static inline unsigned long tsb_hash(unsigned long vaddr
, unsigned long hash_shift
, unsigned long nentries
)
22 return vaddr
& (nentries
- 1);
25 static inline int tag_compare(unsigned long tag
, unsigned long vaddr
)
27 return (tag
== (vaddr
>> 22));
30 /* TSB flushes need only occur on the processor initiating the address
31 * space modification, not on each cpu the address space has run on.
32 * Only the TLB flush needs that treatment.
35 void flush_tsb_kernel_range(unsigned long start
, unsigned long end
)
39 for (v
= start
; v
< end
; v
+= PAGE_SIZE
) {
40 unsigned long hash
= tsb_hash(v
, PAGE_SHIFT
,
42 struct tsb
*ent
= &swapper_tsb
[hash
];
44 if (tag_compare(ent
->tag
, v
))
45 ent
->tag
= (1UL << TSB_TAG_INVALID_BIT
);
49 static void __flush_tsb_one_entry(unsigned long tsb
, unsigned long v
,
50 unsigned long hash_shift
,
51 unsigned long nentries
)
53 unsigned long tag
, ent
, hash
;
56 hash
= tsb_hash(v
, hash_shift
, nentries
);
57 ent
= tsb
+ (hash
* sizeof(struct tsb
));
63 static void __flush_tsb_one(struct tlb_batch
*tb
, unsigned long hash_shift
,
64 unsigned long tsb
, unsigned long nentries
)
68 for (i
= 0; i
< tb
->tlb_nr
; i
++)
69 __flush_tsb_one_entry(tsb
, tb
->vaddrs
[i
], hash_shift
, nentries
);
72 void flush_tsb_user(struct tlb_batch
*tb
)
74 struct mm_struct
*mm
= tb
->mm
;
75 unsigned long nentries
, base
, flags
;
77 spin_lock_irqsave(&mm
->context
.lock
, flags
);
79 base
= (unsigned long) mm
->context
.tsb_block
[MM_TSB_BASE
].tsb
;
80 nentries
= mm
->context
.tsb_block
[MM_TSB_BASE
].tsb_nentries
;
81 if (tlb_type
== cheetah_plus
|| tlb_type
== hypervisor
)
83 __flush_tsb_one(tb
, PAGE_SHIFT
, base
, nentries
);
85 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
86 if (mm
->context
.tsb_block
[MM_TSB_HUGE
].tsb
) {
87 base
= (unsigned long) mm
->context
.tsb_block
[MM_TSB_HUGE
].tsb
;
88 nentries
= mm
->context
.tsb_block
[MM_TSB_HUGE
].tsb_nentries
;
89 if (tlb_type
== cheetah_plus
|| tlb_type
== hypervisor
)
91 __flush_tsb_one(tb
, REAL_HPAGE_SHIFT
, base
, nentries
);
94 spin_unlock_irqrestore(&mm
->context
.lock
, flags
);
97 void flush_tsb_user_page(struct mm_struct
*mm
, unsigned long vaddr
)
99 unsigned long nentries
, base
, flags
;
101 spin_lock_irqsave(&mm
->context
.lock
, flags
);
103 base
= (unsigned long) mm
->context
.tsb_block
[MM_TSB_BASE
].tsb
;
104 nentries
= mm
->context
.tsb_block
[MM_TSB_BASE
].tsb_nentries
;
105 if (tlb_type
== cheetah_plus
|| tlb_type
== hypervisor
)
107 __flush_tsb_one_entry(base
, vaddr
, PAGE_SHIFT
, nentries
);
109 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
110 if (mm
->context
.tsb_block
[MM_TSB_HUGE
].tsb
) {
111 base
= (unsigned long) mm
->context
.tsb_block
[MM_TSB_HUGE
].tsb
;
112 nentries
= mm
->context
.tsb_block
[MM_TSB_HUGE
].tsb_nentries
;
113 if (tlb_type
== cheetah_plus
|| tlb_type
== hypervisor
)
115 __flush_tsb_one_entry(base
, vaddr
, REAL_HPAGE_SHIFT
, nentries
);
118 spin_unlock_irqrestore(&mm
->context
.lock
, flags
);
121 #define HV_PGSZ_IDX_BASE HV_PGSZ_IDX_8K
122 #define HV_PGSZ_MASK_BASE HV_PGSZ_MASK_8K
124 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
125 #define HV_PGSZ_IDX_HUGE HV_PGSZ_IDX_4MB
126 #define HV_PGSZ_MASK_HUGE HV_PGSZ_MASK_4MB
129 static void setup_tsb_params(struct mm_struct
*mm
, unsigned long tsb_idx
, unsigned long tsb_bytes
)
131 unsigned long tsb_reg
, base
, tsb_paddr
;
132 unsigned long page_sz
, tte
;
134 mm
->context
.tsb_block
[tsb_idx
].tsb_nentries
=
135 tsb_bytes
/ sizeof(struct tsb
);
139 base
= TSBMAP_8K_BASE
;
141 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
143 base
= TSBMAP_4M_BASE
;
150 tte
= pgprot_val(PAGE_KERNEL_LOCKED
);
151 tsb_paddr
= __pa(mm
->context
.tsb_block
[tsb_idx
].tsb
);
152 BUG_ON(tsb_paddr
& (tsb_bytes
- 1UL));
154 /* Use the smallest page size that can map the whole TSB
160 #ifdef DCACHE_ALIASING_POSSIBLE
161 base
+= (tsb_paddr
& 8192);
183 page_sz
= 512 * 1024;
188 page_sz
= 512 * 1024;
193 page_sz
= 512 * 1024;
198 page_sz
= 4 * 1024 * 1024;
202 printk(KERN_ERR
"TSB[%s:%d]: Impossible TSB size %lu, killing process.\n",
203 current
->comm
, current
->pid
, tsb_bytes
);
206 tte
|= pte_sz_bits(page_sz
);
208 if (tlb_type
== cheetah_plus
|| tlb_type
== hypervisor
) {
209 /* Physical mapping, no locked TLB entry for TSB. */
210 tsb_reg
|= tsb_paddr
;
212 mm
->context
.tsb_block
[tsb_idx
].tsb_reg_val
= tsb_reg
;
213 mm
->context
.tsb_block
[tsb_idx
].tsb_map_vaddr
= 0;
214 mm
->context
.tsb_block
[tsb_idx
].tsb_map_pte
= 0;
217 tsb_reg
|= (tsb_paddr
& (page_sz
- 1UL));
218 tte
|= (tsb_paddr
& ~(page_sz
- 1UL));
220 mm
->context
.tsb_block
[tsb_idx
].tsb_reg_val
= tsb_reg
;
221 mm
->context
.tsb_block
[tsb_idx
].tsb_map_vaddr
= base
;
222 mm
->context
.tsb_block
[tsb_idx
].tsb_map_pte
= tte
;
225 /* Setup the Hypervisor TSB descriptor. */
226 if (tlb_type
== hypervisor
) {
227 struct hv_tsb_descr
*hp
= &mm
->context
.tsb_descr
[tsb_idx
];
231 hp
->pgsz_idx
= HV_PGSZ_IDX_BASE
;
233 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
235 hp
->pgsz_idx
= HV_PGSZ_IDX_HUGE
;
242 hp
->num_ttes
= tsb_bytes
/ 16;
246 hp
->pgsz_mask
= HV_PGSZ_MASK_BASE
;
248 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
250 hp
->pgsz_mask
= HV_PGSZ_MASK_HUGE
;
256 hp
->tsb_base
= tsb_paddr
;
261 struct kmem_cache
*pgtable_cache __read_mostly
;
263 static struct kmem_cache
*tsb_caches
[8] __read_mostly
;
265 static const char *tsb_cache_names
[8] = {
276 void __init
pgtable_cache_init(void)
280 pgtable_cache
= kmem_cache_create("pgtable_cache",
281 PAGE_SIZE
, PAGE_SIZE
,
284 if (!pgtable_cache
) {
285 prom_printf("pgtable_cache_init(): Could not create!\n");
289 for (i
= 0; i
< ARRAY_SIZE(tsb_cache_names
); i
++) {
290 unsigned long size
= 8192 << i
;
291 const char *name
= tsb_cache_names
[i
];
293 tsb_caches
[i
] = kmem_cache_create(name
,
296 if (!tsb_caches
[i
]) {
297 prom_printf("Could not create %s cache\n", name
);
303 int sysctl_tsb_ratio
= -2;
305 static unsigned long tsb_size_to_rss_limit(unsigned long new_size
)
307 unsigned long num_ents
= (new_size
/ sizeof(struct tsb
));
309 if (sysctl_tsb_ratio
< 0)
310 return num_ents
- (num_ents
>> -sysctl_tsb_ratio
);
312 return num_ents
+ (num_ents
>> sysctl_tsb_ratio
);
315 /* When the RSS of an address space exceeds tsb_rss_limit for a TSB,
316 * do_sparc64_fault() invokes this routine to try and grow it.
318 * When we reach the maximum TSB size supported, we stick ~0UL into
319 * tsb_rss_limit for that TSB so the grow checks in do_sparc64_fault()
320 * will not trigger any longer.
322 * The TSB can be anywhere from 8K to 1MB in size, in increasing powers
323 * of two. The TSB must be aligned to it's size, so f.e. a 512K TSB
324 * must be 512K aligned. It also must be physically contiguous, so we
325 * cannot use vmalloc().
327 * The idea here is to grow the TSB when the RSS of the process approaches
328 * the number of entries that the current TSB can hold at once. Currently,
329 * we trigger when the RSS hits 3/4 of the TSB capacity.
331 void tsb_grow(struct mm_struct
*mm
, unsigned long tsb_index
, unsigned long rss
)
333 unsigned long max_tsb_size
= 1 * 1024 * 1024;
334 unsigned long new_size
, old_size
, flags
;
335 struct tsb
*old_tsb
, *new_tsb
;
336 unsigned long new_cache_index
, old_cache_index
;
337 unsigned long new_rss_limit
;
340 if (max_tsb_size
> (PAGE_SIZE
<< MAX_ORDER
))
341 max_tsb_size
= (PAGE_SIZE
<< MAX_ORDER
);
344 for (new_size
= 8192; new_size
< max_tsb_size
; new_size
<<= 1UL) {
345 new_rss_limit
= tsb_size_to_rss_limit(new_size
);
346 if (new_rss_limit
> rss
)
351 if (new_size
== max_tsb_size
)
352 new_rss_limit
= ~0UL;
355 gfp_flags
= GFP_KERNEL
;
356 if (new_size
> (PAGE_SIZE
* 2))
357 gfp_flags
|= __GFP_NOWARN
| __GFP_NORETRY
;
359 new_tsb
= kmem_cache_alloc_node(tsb_caches
[new_cache_index
],
360 gfp_flags
, numa_node_id());
361 if (unlikely(!new_tsb
)) {
362 /* Not being able to fork due to a high-order TSB
363 * allocation failure is very bad behavior. Just back
364 * down to a 0-order allocation and force no TSB
365 * growing for this address space.
367 if (mm
->context
.tsb_block
[tsb_index
].tsb
== NULL
&&
368 new_cache_index
> 0) {
371 new_rss_limit
= ~0UL;
372 goto retry_tsb_alloc
;
375 /* If we failed on a TSB grow, we are under serious
376 * memory pressure so don't try to grow any more.
378 if (mm
->context
.tsb_block
[tsb_index
].tsb
!= NULL
)
379 mm
->context
.tsb_block
[tsb_index
].tsb_rss_limit
= ~0UL;
383 /* Mark all tags as invalid. */
384 tsb_init(new_tsb
, new_size
);
386 /* Ok, we are about to commit the changes. If we are
387 * growing an existing TSB the locking is very tricky,
390 * We have to hold mm->context.lock while committing to the
391 * new TSB, this synchronizes us with processors in
392 * flush_tsb_user() and switch_mm() for this address space.
394 * But even with that lock held, processors run asynchronously
395 * accessing the old TSB via TLB miss handling. This is OK
396 * because those actions are just propagating state from the
397 * Linux page tables into the TSB, page table mappings are not
398 * being changed. If a real fault occurs, the processor will
399 * synchronize with us when it hits flush_tsb_user(), this is
400 * also true for the case where vmscan is modifying the page
401 * tables. The only thing we need to be careful with is to
402 * skip any locked TSB entries during copy_tsb().
404 * When we finish committing to the new TSB, we have to drop
405 * the lock and ask all other cpus running this address space
406 * to run tsb_context_switch() to see the new TSB table.
408 spin_lock_irqsave(&mm
->context
.lock
, flags
);
410 old_tsb
= mm
->context
.tsb_block
[tsb_index
].tsb
;
412 (mm
->context
.tsb_block
[tsb_index
].tsb_reg_val
& 0x7UL
);
413 old_size
= (mm
->context
.tsb_block
[tsb_index
].tsb_nentries
*
417 /* Handle multiple threads trying to grow the TSB at the same time.
418 * One will get in here first, and bump the size and the RSS limit.
419 * The others will get in here next and hit this check.
421 if (unlikely(old_tsb
&&
422 (rss
< mm
->context
.tsb_block
[tsb_index
].tsb_rss_limit
))) {
423 spin_unlock_irqrestore(&mm
->context
.lock
, flags
);
425 kmem_cache_free(tsb_caches
[new_cache_index
], new_tsb
);
429 mm
->context
.tsb_block
[tsb_index
].tsb_rss_limit
= new_rss_limit
;
432 extern void copy_tsb(unsigned long old_tsb_base
,
433 unsigned long old_tsb_size
,
434 unsigned long new_tsb_base
,
435 unsigned long new_tsb_size
);
436 unsigned long old_tsb_base
= (unsigned long) old_tsb
;
437 unsigned long new_tsb_base
= (unsigned long) new_tsb
;
439 if (tlb_type
== cheetah_plus
|| tlb_type
== hypervisor
) {
440 old_tsb_base
= __pa(old_tsb_base
);
441 new_tsb_base
= __pa(new_tsb_base
);
443 copy_tsb(old_tsb_base
, old_size
, new_tsb_base
, new_size
);
446 mm
->context
.tsb_block
[tsb_index
].tsb
= new_tsb
;
447 setup_tsb_params(mm
, tsb_index
, new_size
);
449 spin_unlock_irqrestore(&mm
->context
.lock
, flags
);
451 /* If old_tsb is NULL, we're being invoked for the first time
452 * from init_new_context().
455 /* Reload it on the local cpu. */
456 tsb_context_switch(mm
);
458 /* Now force other processors to do the same. */
463 /* Now it is safe to free the old tsb. */
464 kmem_cache_free(tsb_caches
[old_cache_index
], old_tsb
);
468 int init_new_context(struct task_struct
*tsk
, struct mm_struct
*mm
)
470 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
471 unsigned long huge_pte_count
;
475 spin_lock_init(&mm
->context
.lock
);
477 mm
->context
.sparc64_ctx_val
= 0UL;
479 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
480 /* We reset it to zero because the fork() page copying
481 * will re-increment the counters as the parent PTEs are
482 * copied into the child address space.
484 huge_pte_count
= mm
->context
.huge_pte_count
;
485 mm
->context
.huge_pte_count
= 0;
488 /* copy_mm() copies over the parent's mm_struct before calling
489 * us, so we need to zero out the TSB pointer or else tsb_grow()
490 * will be confused and think there is an older TSB to free up.
492 for (i
= 0; i
< MM_NUM_TSBS
; i
++)
493 mm
->context
.tsb_block
[i
].tsb
= NULL
;
495 /* If this is fork, inherit the parent's TSB size. We would
496 * grow it to that size on the first page fault anyways.
498 tsb_grow(mm
, MM_TSB_BASE
, get_mm_rss(mm
));
500 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
501 if (unlikely(huge_pte_count
))
502 tsb_grow(mm
, MM_TSB_HUGE
, huge_pte_count
);
505 if (unlikely(!mm
->context
.tsb_block
[MM_TSB_BASE
].tsb
))
511 static void tsb_destroy_one(struct tsb_config
*tp
)
513 unsigned long cache_index
;
517 cache_index
= tp
->tsb_reg_val
& 0x7UL
;
518 kmem_cache_free(tsb_caches
[cache_index
], tp
->tsb
);
520 tp
->tsb_reg_val
= 0UL;
523 void destroy_context(struct mm_struct
*mm
)
525 unsigned long flags
, i
;
527 for (i
= 0; i
< MM_NUM_TSBS
; i
++)
528 tsb_destroy_one(&mm
->context
.tsb_block
[i
]);
530 spin_lock_irqsave(&ctx_alloc_lock
, flags
);
532 if (CTX_VALID(mm
->context
)) {
533 unsigned long nr
= CTX_NRBITS(mm
->context
);
534 mmu_context_bmap
[nr
>>6] &= ~(1UL << (nr
& 63));
537 spin_unlock_irqrestore(&ctx_alloc_lock
, flags
);