x86/vdso: Fix 'make bzImage' on older distros
[linux/fpc-iii.git] / block / blk-core.c
blob66406474f0c489939d739a5ec5e1287e6191f533
1 /*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
12 * This handles all read/write requests to block devices
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/blk-mq.h>
20 #include <linux/highmem.h>
21 #include <linux/mm.h>
22 #include <linux/kernel_stat.h>
23 #include <linux/string.h>
24 #include <linux/init.h>
25 #include <linux/completion.h>
26 #include <linux/slab.h>
27 #include <linux/swap.h>
28 #include <linux/writeback.h>
29 #include <linux/task_io_accounting_ops.h>
30 #include <linux/fault-inject.h>
31 #include <linux/list_sort.h>
32 #include <linux/delay.h>
33 #include <linux/ratelimit.h>
34 #include <linux/pm_runtime.h>
36 #define CREATE_TRACE_POINTS
37 #include <trace/events/block.h>
39 #include "blk.h"
40 #include "blk-cgroup.h"
41 #include "blk-mq.h"
43 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
44 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
45 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
46 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
47 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
49 DEFINE_IDA(blk_queue_ida);
52 * For the allocated request tables
54 struct kmem_cache *request_cachep = NULL;
57 * For queue allocation
59 struct kmem_cache *blk_requestq_cachep;
62 * Controlling structure to kblockd
64 static struct workqueue_struct *kblockd_workqueue;
66 void blk_queue_congestion_threshold(struct request_queue *q)
68 int nr;
70 nr = q->nr_requests - (q->nr_requests / 8) + 1;
71 if (nr > q->nr_requests)
72 nr = q->nr_requests;
73 q->nr_congestion_on = nr;
75 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
76 if (nr < 1)
77 nr = 1;
78 q->nr_congestion_off = nr;
81 /**
82 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
83 * @bdev: device
85 * Locates the passed device's request queue and returns the address of its
86 * backing_dev_info. This function can only be called if @bdev is opened
87 * and the return value is never NULL.
89 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
91 struct request_queue *q = bdev_get_queue(bdev);
93 return &q->backing_dev_info;
95 EXPORT_SYMBOL(blk_get_backing_dev_info);
97 void blk_rq_init(struct request_queue *q, struct request *rq)
99 memset(rq, 0, sizeof(*rq));
101 INIT_LIST_HEAD(&rq->queuelist);
102 INIT_LIST_HEAD(&rq->timeout_list);
103 rq->cpu = -1;
104 rq->q = q;
105 rq->__sector = (sector_t) -1;
106 INIT_HLIST_NODE(&rq->hash);
107 RB_CLEAR_NODE(&rq->rb_node);
108 rq->cmd = rq->__cmd;
109 rq->cmd_len = BLK_MAX_CDB;
110 rq->tag = -1;
111 rq->start_time = jiffies;
112 set_start_time_ns(rq);
113 rq->part = NULL;
115 EXPORT_SYMBOL(blk_rq_init);
117 static void req_bio_endio(struct request *rq, struct bio *bio,
118 unsigned int nbytes, int error)
120 if (error)
121 clear_bit(BIO_UPTODATE, &bio->bi_flags);
122 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
123 error = -EIO;
125 if (unlikely(rq->cmd_flags & REQ_QUIET))
126 set_bit(BIO_QUIET, &bio->bi_flags);
128 bio_advance(bio, nbytes);
130 /* don't actually finish bio if it's part of flush sequence */
131 if (bio->bi_iter.bi_size == 0 && !(rq->cmd_flags & REQ_FLUSH_SEQ))
132 bio_endio(bio, error);
135 void blk_dump_rq_flags(struct request *rq, char *msg)
137 int bit;
139 printk(KERN_INFO "%s: dev %s: type=%x, flags=%llx\n", msg,
140 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
141 (unsigned long long) rq->cmd_flags);
143 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
144 (unsigned long long)blk_rq_pos(rq),
145 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
146 printk(KERN_INFO " bio %p, biotail %p, len %u\n",
147 rq->bio, rq->biotail, blk_rq_bytes(rq));
149 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
150 printk(KERN_INFO " cdb: ");
151 for (bit = 0; bit < BLK_MAX_CDB; bit++)
152 printk("%02x ", rq->cmd[bit]);
153 printk("\n");
156 EXPORT_SYMBOL(blk_dump_rq_flags);
158 static void blk_delay_work(struct work_struct *work)
160 struct request_queue *q;
162 q = container_of(work, struct request_queue, delay_work.work);
163 spin_lock_irq(q->queue_lock);
164 __blk_run_queue(q);
165 spin_unlock_irq(q->queue_lock);
169 * blk_delay_queue - restart queueing after defined interval
170 * @q: The &struct request_queue in question
171 * @msecs: Delay in msecs
173 * Description:
174 * Sometimes queueing needs to be postponed for a little while, to allow
175 * resources to come back. This function will make sure that queueing is
176 * restarted around the specified time. Queue lock must be held.
178 void blk_delay_queue(struct request_queue *q, unsigned long msecs)
180 if (likely(!blk_queue_dead(q)))
181 queue_delayed_work(kblockd_workqueue, &q->delay_work,
182 msecs_to_jiffies(msecs));
184 EXPORT_SYMBOL(blk_delay_queue);
187 * blk_start_queue - restart a previously stopped queue
188 * @q: The &struct request_queue in question
190 * Description:
191 * blk_start_queue() will clear the stop flag on the queue, and call
192 * the request_fn for the queue if it was in a stopped state when
193 * entered. Also see blk_stop_queue(). Queue lock must be held.
195 void blk_start_queue(struct request_queue *q)
197 WARN_ON(!irqs_disabled());
199 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
200 __blk_run_queue(q);
202 EXPORT_SYMBOL(blk_start_queue);
205 * blk_stop_queue - stop a queue
206 * @q: The &struct request_queue in question
208 * Description:
209 * The Linux block layer assumes that a block driver will consume all
210 * entries on the request queue when the request_fn strategy is called.
211 * Often this will not happen, because of hardware limitations (queue
212 * depth settings). If a device driver gets a 'queue full' response,
213 * or if it simply chooses not to queue more I/O at one point, it can
214 * call this function to prevent the request_fn from being called until
215 * the driver has signalled it's ready to go again. This happens by calling
216 * blk_start_queue() to restart queue operations. Queue lock must be held.
218 void blk_stop_queue(struct request_queue *q)
220 cancel_delayed_work(&q->delay_work);
221 queue_flag_set(QUEUE_FLAG_STOPPED, q);
223 EXPORT_SYMBOL(blk_stop_queue);
226 * blk_sync_queue - cancel any pending callbacks on a queue
227 * @q: the queue
229 * Description:
230 * The block layer may perform asynchronous callback activity
231 * on a queue, such as calling the unplug function after a timeout.
232 * A block device may call blk_sync_queue to ensure that any
233 * such activity is cancelled, thus allowing it to release resources
234 * that the callbacks might use. The caller must already have made sure
235 * that its ->make_request_fn will not re-add plugging prior to calling
236 * this function.
238 * This function does not cancel any asynchronous activity arising
239 * out of elevator or throttling code. That would require elevator_exit()
240 * and blkcg_exit_queue() to be called with queue lock initialized.
243 void blk_sync_queue(struct request_queue *q)
245 del_timer_sync(&q->timeout);
247 if (q->mq_ops) {
248 struct blk_mq_hw_ctx *hctx;
249 int i;
251 queue_for_each_hw_ctx(q, hctx, i) {
252 cancel_delayed_work_sync(&hctx->run_work);
253 cancel_delayed_work_sync(&hctx->delay_work);
255 } else {
256 cancel_delayed_work_sync(&q->delay_work);
259 EXPORT_SYMBOL(blk_sync_queue);
262 * __blk_run_queue_uncond - run a queue whether or not it has been stopped
263 * @q: The queue to run
265 * Description:
266 * Invoke request handling on a queue if there are any pending requests.
267 * May be used to restart request handling after a request has completed.
268 * This variant runs the queue whether or not the queue has been
269 * stopped. Must be called with the queue lock held and interrupts
270 * disabled. See also @blk_run_queue.
272 inline void __blk_run_queue_uncond(struct request_queue *q)
274 if (unlikely(blk_queue_dead(q)))
275 return;
278 * Some request_fn implementations, e.g. scsi_request_fn(), unlock
279 * the queue lock internally. As a result multiple threads may be
280 * running such a request function concurrently. Keep track of the
281 * number of active request_fn invocations such that blk_drain_queue()
282 * can wait until all these request_fn calls have finished.
284 q->request_fn_active++;
285 q->request_fn(q);
286 q->request_fn_active--;
290 * __blk_run_queue - run a single device queue
291 * @q: The queue to run
293 * Description:
294 * See @blk_run_queue. This variant must be called with the queue lock
295 * held and interrupts disabled.
297 void __blk_run_queue(struct request_queue *q)
299 if (unlikely(blk_queue_stopped(q)))
300 return;
302 __blk_run_queue_uncond(q);
304 EXPORT_SYMBOL(__blk_run_queue);
307 * blk_run_queue_async - run a single device queue in workqueue context
308 * @q: The queue to run
310 * Description:
311 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf
312 * of us. The caller must hold the queue lock.
314 void blk_run_queue_async(struct request_queue *q)
316 if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q)))
317 mod_delayed_work(kblockd_workqueue, &q->delay_work, 0);
319 EXPORT_SYMBOL(blk_run_queue_async);
322 * blk_run_queue - run a single device queue
323 * @q: The queue to run
325 * Description:
326 * Invoke request handling on this queue, if it has pending work to do.
327 * May be used to restart queueing when a request has completed.
329 void blk_run_queue(struct request_queue *q)
331 unsigned long flags;
333 spin_lock_irqsave(q->queue_lock, flags);
334 __blk_run_queue(q);
335 spin_unlock_irqrestore(q->queue_lock, flags);
337 EXPORT_SYMBOL(blk_run_queue);
339 void blk_put_queue(struct request_queue *q)
341 kobject_put(&q->kobj);
343 EXPORT_SYMBOL(blk_put_queue);
346 * __blk_drain_queue - drain requests from request_queue
347 * @q: queue to drain
348 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
350 * Drain requests from @q. If @drain_all is set, all requests are drained.
351 * If not, only ELVPRIV requests are drained. The caller is responsible
352 * for ensuring that no new requests which need to be drained are queued.
354 static void __blk_drain_queue(struct request_queue *q, bool drain_all)
355 __releases(q->queue_lock)
356 __acquires(q->queue_lock)
358 int i;
360 lockdep_assert_held(q->queue_lock);
362 while (true) {
363 bool drain = false;
366 * The caller might be trying to drain @q before its
367 * elevator is initialized.
369 if (q->elevator)
370 elv_drain_elevator(q);
372 blkcg_drain_queue(q);
375 * This function might be called on a queue which failed
376 * driver init after queue creation or is not yet fully
377 * active yet. Some drivers (e.g. fd and loop) get unhappy
378 * in such cases. Kick queue iff dispatch queue has
379 * something on it and @q has request_fn set.
381 if (!list_empty(&q->queue_head) && q->request_fn)
382 __blk_run_queue(q);
384 drain |= q->nr_rqs_elvpriv;
385 drain |= q->request_fn_active;
388 * Unfortunately, requests are queued at and tracked from
389 * multiple places and there's no single counter which can
390 * be drained. Check all the queues and counters.
392 if (drain_all) {
393 struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
394 drain |= !list_empty(&q->queue_head);
395 for (i = 0; i < 2; i++) {
396 drain |= q->nr_rqs[i];
397 drain |= q->in_flight[i];
398 if (fq)
399 drain |= !list_empty(&fq->flush_queue[i]);
403 if (!drain)
404 break;
406 spin_unlock_irq(q->queue_lock);
408 msleep(10);
410 spin_lock_irq(q->queue_lock);
414 * With queue marked dead, any woken up waiter will fail the
415 * allocation path, so the wakeup chaining is lost and we're
416 * left with hung waiters. We need to wake up those waiters.
418 if (q->request_fn) {
419 struct request_list *rl;
421 blk_queue_for_each_rl(rl, q)
422 for (i = 0; i < ARRAY_SIZE(rl->wait); i++)
423 wake_up_all(&rl->wait[i]);
428 * blk_queue_bypass_start - enter queue bypass mode
429 * @q: queue of interest
431 * In bypass mode, only the dispatch FIFO queue of @q is used. This
432 * function makes @q enter bypass mode and drains all requests which were
433 * throttled or issued before. On return, it's guaranteed that no request
434 * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
435 * inside queue or RCU read lock.
437 void blk_queue_bypass_start(struct request_queue *q)
439 spin_lock_irq(q->queue_lock);
440 q->bypass_depth++;
441 queue_flag_set(QUEUE_FLAG_BYPASS, q);
442 spin_unlock_irq(q->queue_lock);
445 * Queues start drained. Skip actual draining till init is
446 * complete. This avoids lenghty delays during queue init which
447 * can happen many times during boot.
449 if (blk_queue_init_done(q)) {
450 spin_lock_irq(q->queue_lock);
451 __blk_drain_queue(q, false);
452 spin_unlock_irq(q->queue_lock);
454 /* ensure blk_queue_bypass() is %true inside RCU read lock */
455 synchronize_rcu();
458 EXPORT_SYMBOL_GPL(blk_queue_bypass_start);
461 * blk_queue_bypass_end - leave queue bypass mode
462 * @q: queue of interest
464 * Leave bypass mode and restore the normal queueing behavior.
466 void blk_queue_bypass_end(struct request_queue *q)
468 spin_lock_irq(q->queue_lock);
469 if (!--q->bypass_depth)
470 queue_flag_clear(QUEUE_FLAG_BYPASS, q);
471 WARN_ON_ONCE(q->bypass_depth < 0);
472 spin_unlock_irq(q->queue_lock);
474 EXPORT_SYMBOL_GPL(blk_queue_bypass_end);
476 void blk_set_queue_dying(struct request_queue *q)
478 queue_flag_set_unlocked(QUEUE_FLAG_DYING, q);
480 if (q->mq_ops)
481 blk_mq_wake_waiters(q);
482 else {
483 struct request_list *rl;
485 blk_queue_for_each_rl(rl, q) {
486 if (rl->rq_pool) {
487 wake_up(&rl->wait[BLK_RW_SYNC]);
488 wake_up(&rl->wait[BLK_RW_ASYNC]);
493 EXPORT_SYMBOL_GPL(blk_set_queue_dying);
496 * blk_cleanup_queue - shutdown a request queue
497 * @q: request queue to shutdown
499 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
500 * put it. All future requests will be failed immediately with -ENODEV.
502 void blk_cleanup_queue(struct request_queue *q)
504 spinlock_t *lock = q->queue_lock;
506 /* mark @q DYING, no new request or merges will be allowed afterwards */
507 mutex_lock(&q->sysfs_lock);
508 blk_set_queue_dying(q);
509 spin_lock_irq(lock);
512 * A dying queue is permanently in bypass mode till released. Note
513 * that, unlike blk_queue_bypass_start(), we aren't performing
514 * synchronize_rcu() after entering bypass mode to avoid the delay
515 * as some drivers create and destroy a lot of queues while
516 * probing. This is still safe because blk_release_queue() will be
517 * called only after the queue refcnt drops to zero and nothing,
518 * RCU or not, would be traversing the queue by then.
520 q->bypass_depth++;
521 queue_flag_set(QUEUE_FLAG_BYPASS, q);
523 queue_flag_set(QUEUE_FLAG_NOMERGES, q);
524 queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
525 queue_flag_set(QUEUE_FLAG_DYING, q);
526 spin_unlock_irq(lock);
527 mutex_unlock(&q->sysfs_lock);
530 * Drain all requests queued before DYING marking. Set DEAD flag to
531 * prevent that q->request_fn() gets invoked after draining finished.
533 if (q->mq_ops) {
534 blk_mq_freeze_queue(q);
535 spin_lock_irq(lock);
536 } else {
537 spin_lock_irq(lock);
538 __blk_drain_queue(q, true);
540 queue_flag_set(QUEUE_FLAG_DEAD, q);
541 spin_unlock_irq(lock);
543 /* @q won't process any more request, flush async actions */
544 del_timer_sync(&q->backing_dev_info.laptop_mode_wb_timer);
545 blk_sync_queue(q);
547 if (q->mq_ops)
548 blk_mq_free_queue(q);
550 spin_lock_irq(lock);
551 if (q->queue_lock != &q->__queue_lock)
552 q->queue_lock = &q->__queue_lock;
553 spin_unlock_irq(lock);
555 bdi_destroy(&q->backing_dev_info);
557 /* @q is and will stay empty, shutdown and put */
558 blk_put_queue(q);
560 EXPORT_SYMBOL(blk_cleanup_queue);
562 int blk_init_rl(struct request_list *rl, struct request_queue *q,
563 gfp_t gfp_mask)
565 if (unlikely(rl->rq_pool))
566 return 0;
568 rl->q = q;
569 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
570 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
571 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
572 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
574 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
575 mempool_free_slab, request_cachep,
576 gfp_mask, q->node);
577 if (!rl->rq_pool)
578 return -ENOMEM;
580 return 0;
583 void blk_exit_rl(struct request_list *rl)
585 if (rl->rq_pool)
586 mempool_destroy(rl->rq_pool);
589 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
591 return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE);
593 EXPORT_SYMBOL(blk_alloc_queue);
595 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
597 struct request_queue *q;
598 int err;
600 q = kmem_cache_alloc_node(blk_requestq_cachep,
601 gfp_mask | __GFP_ZERO, node_id);
602 if (!q)
603 return NULL;
605 q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
606 if (q->id < 0)
607 goto fail_q;
609 q->backing_dev_info.ra_pages =
610 (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
611 q->backing_dev_info.state = 0;
612 q->backing_dev_info.capabilities = 0;
613 q->backing_dev_info.name = "block";
614 q->node = node_id;
616 err = bdi_init(&q->backing_dev_info);
617 if (err)
618 goto fail_id;
620 setup_timer(&q->backing_dev_info.laptop_mode_wb_timer,
621 laptop_mode_timer_fn, (unsigned long) q);
622 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
623 INIT_LIST_HEAD(&q->queue_head);
624 INIT_LIST_HEAD(&q->timeout_list);
625 INIT_LIST_HEAD(&q->icq_list);
626 #ifdef CONFIG_BLK_CGROUP
627 INIT_LIST_HEAD(&q->blkg_list);
628 #endif
629 INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
631 kobject_init(&q->kobj, &blk_queue_ktype);
633 mutex_init(&q->sysfs_lock);
634 spin_lock_init(&q->__queue_lock);
637 * By default initialize queue_lock to internal lock and driver can
638 * override it later if need be.
640 q->queue_lock = &q->__queue_lock;
643 * A queue starts its life with bypass turned on to avoid
644 * unnecessary bypass on/off overhead and nasty surprises during
645 * init. The initial bypass will be finished when the queue is
646 * registered by blk_register_queue().
648 q->bypass_depth = 1;
649 __set_bit(QUEUE_FLAG_BYPASS, &q->queue_flags);
651 init_waitqueue_head(&q->mq_freeze_wq);
653 if (blkcg_init_queue(q))
654 goto fail_bdi;
656 return q;
658 fail_bdi:
659 bdi_destroy(&q->backing_dev_info);
660 fail_id:
661 ida_simple_remove(&blk_queue_ida, q->id);
662 fail_q:
663 kmem_cache_free(blk_requestq_cachep, q);
664 return NULL;
666 EXPORT_SYMBOL(blk_alloc_queue_node);
669 * blk_init_queue - prepare a request queue for use with a block device
670 * @rfn: The function to be called to process requests that have been
671 * placed on the queue.
672 * @lock: Request queue spin lock
674 * Description:
675 * If a block device wishes to use the standard request handling procedures,
676 * which sorts requests and coalesces adjacent requests, then it must
677 * call blk_init_queue(). The function @rfn will be called when there
678 * are requests on the queue that need to be processed. If the device
679 * supports plugging, then @rfn may not be called immediately when requests
680 * are available on the queue, but may be called at some time later instead.
681 * Plugged queues are generally unplugged when a buffer belonging to one
682 * of the requests on the queue is needed, or due to memory pressure.
684 * @rfn is not required, or even expected, to remove all requests off the
685 * queue, but only as many as it can handle at a time. If it does leave
686 * requests on the queue, it is responsible for arranging that the requests
687 * get dealt with eventually.
689 * The queue spin lock must be held while manipulating the requests on the
690 * request queue; this lock will be taken also from interrupt context, so irq
691 * disabling is needed for it.
693 * Function returns a pointer to the initialized request queue, or %NULL if
694 * it didn't succeed.
696 * Note:
697 * blk_init_queue() must be paired with a blk_cleanup_queue() call
698 * when the block device is deactivated (such as at module unload).
701 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
703 return blk_init_queue_node(rfn, lock, NUMA_NO_NODE);
705 EXPORT_SYMBOL(blk_init_queue);
707 struct request_queue *
708 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
710 struct request_queue *uninit_q, *q;
712 uninit_q = blk_alloc_queue_node(GFP_KERNEL, node_id);
713 if (!uninit_q)
714 return NULL;
716 q = blk_init_allocated_queue(uninit_q, rfn, lock);
717 if (!q)
718 blk_cleanup_queue(uninit_q);
720 return q;
722 EXPORT_SYMBOL(blk_init_queue_node);
724 struct request_queue *
725 blk_init_allocated_queue(struct request_queue *q, request_fn_proc *rfn,
726 spinlock_t *lock)
728 if (!q)
729 return NULL;
731 q->fq = blk_alloc_flush_queue(q, NUMA_NO_NODE, 0);
732 if (!q->fq)
733 return NULL;
735 if (blk_init_rl(&q->root_rl, q, GFP_KERNEL))
736 goto fail;
738 q->request_fn = rfn;
739 q->prep_rq_fn = NULL;
740 q->unprep_rq_fn = NULL;
741 q->queue_flags |= QUEUE_FLAG_DEFAULT;
743 /* Override internal queue lock with supplied lock pointer */
744 if (lock)
745 q->queue_lock = lock;
748 * This also sets hw/phys segments, boundary and size
750 blk_queue_make_request(q, blk_queue_bio);
752 q->sg_reserved_size = INT_MAX;
754 /* Protect q->elevator from elevator_change */
755 mutex_lock(&q->sysfs_lock);
757 /* init elevator */
758 if (elevator_init(q, NULL)) {
759 mutex_unlock(&q->sysfs_lock);
760 goto fail;
763 mutex_unlock(&q->sysfs_lock);
765 return q;
767 fail:
768 blk_free_flush_queue(q->fq);
769 return NULL;
771 EXPORT_SYMBOL(blk_init_allocated_queue);
773 bool blk_get_queue(struct request_queue *q)
775 if (likely(!blk_queue_dying(q))) {
776 __blk_get_queue(q);
777 return true;
780 return false;
782 EXPORT_SYMBOL(blk_get_queue);
784 static inline void blk_free_request(struct request_list *rl, struct request *rq)
786 if (rq->cmd_flags & REQ_ELVPRIV) {
787 elv_put_request(rl->q, rq);
788 if (rq->elv.icq)
789 put_io_context(rq->elv.icq->ioc);
792 mempool_free(rq, rl->rq_pool);
796 * ioc_batching returns true if the ioc is a valid batching request and
797 * should be given priority access to a request.
799 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
801 if (!ioc)
802 return 0;
805 * Make sure the process is able to allocate at least 1 request
806 * even if the batch times out, otherwise we could theoretically
807 * lose wakeups.
809 return ioc->nr_batch_requests == q->nr_batching ||
810 (ioc->nr_batch_requests > 0
811 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
815 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
816 * will cause the process to be a "batcher" on all queues in the system. This
817 * is the behaviour we want though - once it gets a wakeup it should be given
818 * a nice run.
820 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
822 if (!ioc || ioc_batching(q, ioc))
823 return;
825 ioc->nr_batch_requests = q->nr_batching;
826 ioc->last_waited = jiffies;
829 static void __freed_request(struct request_list *rl, int sync)
831 struct request_queue *q = rl->q;
834 * bdi isn't aware of blkcg yet. As all async IOs end up root
835 * blkcg anyway, just use root blkcg state.
837 if (rl == &q->root_rl &&
838 rl->count[sync] < queue_congestion_off_threshold(q))
839 blk_clear_queue_congested(q, sync);
841 if (rl->count[sync] + 1 <= q->nr_requests) {
842 if (waitqueue_active(&rl->wait[sync]))
843 wake_up(&rl->wait[sync]);
845 blk_clear_rl_full(rl, sync);
850 * A request has just been released. Account for it, update the full and
851 * congestion status, wake up any waiters. Called under q->queue_lock.
853 static void freed_request(struct request_list *rl, unsigned int flags)
855 struct request_queue *q = rl->q;
856 int sync = rw_is_sync(flags);
858 q->nr_rqs[sync]--;
859 rl->count[sync]--;
860 if (flags & REQ_ELVPRIV)
861 q->nr_rqs_elvpriv--;
863 __freed_request(rl, sync);
865 if (unlikely(rl->starved[sync ^ 1]))
866 __freed_request(rl, sync ^ 1);
869 int blk_update_nr_requests(struct request_queue *q, unsigned int nr)
871 struct request_list *rl;
873 spin_lock_irq(q->queue_lock);
874 q->nr_requests = nr;
875 blk_queue_congestion_threshold(q);
877 /* congestion isn't cgroup aware and follows root blkcg for now */
878 rl = &q->root_rl;
880 if (rl->count[BLK_RW_SYNC] >= queue_congestion_on_threshold(q))
881 blk_set_queue_congested(q, BLK_RW_SYNC);
882 else if (rl->count[BLK_RW_SYNC] < queue_congestion_off_threshold(q))
883 blk_clear_queue_congested(q, BLK_RW_SYNC);
885 if (rl->count[BLK_RW_ASYNC] >= queue_congestion_on_threshold(q))
886 blk_set_queue_congested(q, BLK_RW_ASYNC);
887 else if (rl->count[BLK_RW_ASYNC] < queue_congestion_off_threshold(q))
888 blk_clear_queue_congested(q, BLK_RW_ASYNC);
890 blk_queue_for_each_rl(rl, q) {
891 if (rl->count[BLK_RW_SYNC] >= q->nr_requests) {
892 blk_set_rl_full(rl, BLK_RW_SYNC);
893 } else {
894 blk_clear_rl_full(rl, BLK_RW_SYNC);
895 wake_up(&rl->wait[BLK_RW_SYNC]);
898 if (rl->count[BLK_RW_ASYNC] >= q->nr_requests) {
899 blk_set_rl_full(rl, BLK_RW_ASYNC);
900 } else {
901 blk_clear_rl_full(rl, BLK_RW_ASYNC);
902 wake_up(&rl->wait[BLK_RW_ASYNC]);
906 spin_unlock_irq(q->queue_lock);
907 return 0;
911 * Determine if elevator data should be initialized when allocating the
912 * request associated with @bio.
914 static bool blk_rq_should_init_elevator(struct bio *bio)
916 if (!bio)
917 return true;
920 * Flush requests do not use the elevator so skip initialization.
921 * This allows a request to share the flush and elevator data.
923 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA))
924 return false;
926 return true;
930 * rq_ioc - determine io_context for request allocation
931 * @bio: request being allocated is for this bio (can be %NULL)
933 * Determine io_context to use for request allocation for @bio. May return
934 * %NULL if %current->io_context doesn't exist.
936 static struct io_context *rq_ioc(struct bio *bio)
938 #ifdef CONFIG_BLK_CGROUP
939 if (bio && bio->bi_ioc)
940 return bio->bi_ioc;
941 #endif
942 return current->io_context;
946 * __get_request - get a free request
947 * @rl: request list to allocate from
948 * @rw_flags: RW and SYNC flags
949 * @bio: bio to allocate request for (can be %NULL)
950 * @gfp_mask: allocation mask
952 * Get a free request from @q. This function may fail under memory
953 * pressure or if @q is dead.
955 * Must be called with @q->queue_lock held and,
956 * Returns ERR_PTR on failure, with @q->queue_lock held.
957 * Returns request pointer on success, with @q->queue_lock *not held*.
959 static struct request *__get_request(struct request_list *rl, int rw_flags,
960 struct bio *bio, gfp_t gfp_mask)
962 struct request_queue *q = rl->q;
963 struct request *rq;
964 struct elevator_type *et = q->elevator->type;
965 struct io_context *ioc = rq_ioc(bio);
966 struct io_cq *icq = NULL;
967 const bool is_sync = rw_is_sync(rw_flags) != 0;
968 int may_queue;
970 if (unlikely(blk_queue_dying(q)))
971 return ERR_PTR(-ENODEV);
973 may_queue = elv_may_queue(q, rw_flags);
974 if (may_queue == ELV_MQUEUE_NO)
975 goto rq_starved;
977 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
978 if (rl->count[is_sync]+1 >= q->nr_requests) {
980 * The queue will fill after this allocation, so set
981 * it as full, and mark this process as "batching".
982 * This process will be allowed to complete a batch of
983 * requests, others will be blocked.
985 if (!blk_rl_full(rl, is_sync)) {
986 ioc_set_batching(q, ioc);
987 blk_set_rl_full(rl, is_sync);
988 } else {
989 if (may_queue != ELV_MQUEUE_MUST
990 && !ioc_batching(q, ioc)) {
992 * The queue is full and the allocating
993 * process is not a "batcher", and not
994 * exempted by the IO scheduler
996 return ERR_PTR(-ENOMEM);
1001 * bdi isn't aware of blkcg yet. As all async IOs end up
1002 * root blkcg anyway, just use root blkcg state.
1004 if (rl == &q->root_rl)
1005 blk_set_queue_congested(q, is_sync);
1009 * Only allow batching queuers to allocate up to 50% over the defined
1010 * limit of requests, otherwise we could have thousands of requests
1011 * allocated with any setting of ->nr_requests
1013 if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
1014 return ERR_PTR(-ENOMEM);
1016 q->nr_rqs[is_sync]++;
1017 rl->count[is_sync]++;
1018 rl->starved[is_sync] = 0;
1021 * Decide whether the new request will be managed by elevator. If
1022 * so, mark @rw_flags and increment elvpriv. Non-zero elvpriv will
1023 * prevent the current elevator from being destroyed until the new
1024 * request is freed. This guarantees icq's won't be destroyed and
1025 * makes creating new ones safe.
1027 * Also, lookup icq while holding queue_lock. If it doesn't exist,
1028 * it will be created after releasing queue_lock.
1030 if (blk_rq_should_init_elevator(bio) && !blk_queue_bypass(q)) {
1031 rw_flags |= REQ_ELVPRIV;
1032 q->nr_rqs_elvpriv++;
1033 if (et->icq_cache && ioc)
1034 icq = ioc_lookup_icq(ioc, q);
1037 if (blk_queue_io_stat(q))
1038 rw_flags |= REQ_IO_STAT;
1039 spin_unlock_irq(q->queue_lock);
1041 /* allocate and init request */
1042 rq = mempool_alloc(rl->rq_pool, gfp_mask);
1043 if (!rq)
1044 goto fail_alloc;
1046 blk_rq_init(q, rq);
1047 blk_rq_set_rl(rq, rl);
1048 rq->cmd_flags = rw_flags | REQ_ALLOCED;
1050 /* init elvpriv */
1051 if (rw_flags & REQ_ELVPRIV) {
1052 if (unlikely(et->icq_cache && !icq)) {
1053 if (ioc)
1054 icq = ioc_create_icq(ioc, q, gfp_mask);
1055 if (!icq)
1056 goto fail_elvpriv;
1059 rq->elv.icq = icq;
1060 if (unlikely(elv_set_request(q, rq, bio, gfp_mask)))
1061 goto fail_elvpriv;
1063 /* @rq->elv.icq holds io_context until @rq is freed */
1064 if (icq)
1065 get_io_context(icq->ioc);
1067 out:
1069 * ioc may be NULL here, and ioc_batching will be false. That's
1070 * OK, if the queue is under the request limit then requests need
1071 * not count toward the nr_batch_requests limit. There will always
1072 * be some limit enforced by BLK_BATCH_TIME.
1074 if (ioc_batching(q, ioc))
1075 ioc->nr_batch_requests--;
1077 trace_block_getrq(q, bio, rw_flags & 1);
1078 return rq;
1080 fail_elvpriv:
1082 * elvpriv init failed. ioc, icq and elvpriv aren't mempool backed
1083 * and may fail indefinitely under memory pressure and thus
1084 * shouldn't stall IO. Treat this request as !elvpriv. This will
1085 * disturb iosched and blkcg but weird is bettern than dead.
1087 printk_ratelimited(KERN_WARNING "%s: dev %s: request aux data allocation failed, iosched may be disturbed\n",
1088 __func__, dev_name(q->backing_dev_info.dev));
1090 rq->cmd_flags &= ~REQ_ELVPRIV;
1091 rq->elv.icq = NULL;
1093 spin_lock_irq(q->queue_lock);
1094 q->nr_rqs_elvpriv--;
1095 spin_unlock_irq(q->queue_lock);
1096 goto out;
1098 fail_alloc:
1100 * Allocation failed presumably due to memory. Undo anything we
1101 * might have messed up.
1103 * Allocating task should really be put onto the front of the wait
1104 * queue, but this is pretty rare.
1106 spin_lock_irq(q->queue_lock);
1107 freed_request(rl, rw_flags);
1110 * in the very unlikely event that allocation failed and no
1111 * requests for this direction was pending, mark us starved so that
1112 * freeing of a request in the other direction will notice
1113 * us. another possible fix would be to split the rq mempool into
1114 * READ and WRITE
1116 rq_starved:
1117 if (unlikely(rl->count[is_sync] == 0))
1118 rl->starved[is_sync] = 1;
1119 return ERR_PTR(-ENOMEM);
1123 * get_request - get a free request
1124 * @q: request_queue to allocate request from
1125 * @rw_flags: RW and SYNC flags
1126 * @bio: bio to allocate request for (can be %NULL)
1127 * @gfp_mask: allocation mask
1129 * Get a free request from @q. If %__GFP_WAIT is set in @gfp_mask, this
1130 * function keeps retrying under memory pressure and fails iff @q is dead.
1132 * Must be called with @q->queue_lock held and,
1133 * Returns ERR_PTR on failure, with @q->queue_lock held.
1134 * Returns request pointer on success, with @q->queue_lock *not held*.
1136 static struct request *get_request(struct request_queue *q, int rw_flags,
1137 struct bio *bio, gfp_t gfp_mask)
1139 const bool is_sync = rw_is_sync(rw_flags) != 0;
1140 DEFINE_WAIT(wait);
1141 struct request_list *rl;
1142 struct request *rq;
1144 rl = blk_get_rl(q, bio); /* transferred to @rq on success */
1145 retry:
1146 rq = __get_request(rl, rw_flags, bio, gfp_mask);
1147 if (!IS_ERR(rq))
1148 return rq;
1150 if (!(gfp_mask & __GFP_WAIT) || unlikely(blk_queue_dying(q))) {
1151 blk_put_rl(rl);
1152 return rq;
1155 /* wait on @rl and retry */
1156 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1157 TASK_UNINTERRUPTIBLE);
1159 trace_block_sleeprq(q, bio, rw_flags & 1);
1161 spin_unlock_irq(q->queue_lock);
1162 io_schedule();
1165 * After sleeping, we become a "batching" process and will be able
1166 * to allocate at least one request, and up to a big batch of them
1167 * for a small period time. See ioc_batching, ioc_set_batching
1169 ioc_set_batching(q, current->io_context);
1171 spin_lock_irq(q->queue_lock);
1172 finish_wait(&rl->wait[is_sync], &wait);
1174 goto retry;
1177 static struct request *blk_old_get_request(struct request_queue *q, int rw,
1178 gfp_t gfp_mask)
1180 struct request *rq;
1182 BUG_ON(rw != READ && rw != WRITE);
1184 /* create ioc upfront */
1185 create_io_context(gfp_mask, q->node);
1187 spin_lock_irq(q->queue_lock);
1188 rq = get_request(q, rw, NULL, gfp_mask);
1189 if (IS_ERR(rq))
1190 spin_unlock_irq(q->queue_lock);
1191 /* q->queue_lock is unlocked at this point */
1193 return rq;
1196 struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
1198 if (q->mq_ops)
1199 return blk_mq_alloc_request(q, rw, gfp_mask, false);
1200 else
1201 return blk_old_get_request(q, rw, gfp_mask);
1203 EXPORT_SYMBOL(blk_get_request);
1206 * blk_make_request - given a bio, allocate a corresponding struct request.
1207 * @q: target request queue
1208 * @bio: The bio describing the memory mappings that will be submitted for IO.
1209 * It may be a chained-bio properly constructed by block/bio layer.
1210 * @gfp_mask: gfp flags to be used for memory allocation
1212 * blk_make_request is the parallel of generic_make_request for BLOCK_PC
1213 * type commands. Where the struct request needs to be farther initialized by
1214 * the caller. It is passed a &struct bio, which describes the memory info of
1215 * the I/O transfer.
1217 * The caller of blk_make_request must make sure that bi_io_vec
1218 * are set to describe the memory buffers. That bio_data_dir() will return
1219 * the needed direction of the request. (And all bio's in the passed bio-chain
1220 * are properly set accordingly)
1222 * If called under none-sleepable conditions, mapped bio buffers must not
1223 * need bouncing, by calling the appropriate masked or flagged allocator,
1224 * suitable for the target device. Otherwise the call to blk_queue_bounce will
1225 * BUG.
1227 * WARNING: When allocating/cloning a bio-chain, careful consideration should be
1228 * given to how you allocate bios. In particular, you cannot use __GFP_WAIT for
1229 * anything but the first bio in the chain. Otherwise you risk waiting for IO
1230 * completion of a bio that hasn't been submitted yet, thus resulting in a
1231 * deadlock. Alternatively bios should be allocated using bio_kmalloc() instead
1232 * of bio_alloc(), as that avoids the mempool deadlock.
1233 * If possible a big IO should be split into smaller parts when allocation
1234 * fails. Partial allocation should not be an error, or you risk a live-lock.
1236 struct request *blk_make_request(struct request_queue *q, struct bio *bio,
1237 gfp_t gfp_mask)
1239 struct request *rq = blk_get_request(q, bio_data_dir(bio), gfp_mask);
1241 if (IS_ERR(rq))
1242 return rq;
1244 blk_rq_set_block_pc(rq);
1246 for_each_bio(bio) {
1247 struct bio *bounce_bio = bio;
1248 int ret;
1250 blk_queue_bounce(q, &bounce_bio);
1251 ret = blk_rq_append_bio(q, rq, bounce_bio);
1252 if (unlikely(ret)) {
1253 blk_put_request(rq);
1254 return ERR_PTR(ret);
1258 return rq;
1260 EXPORT_SYMBOL(blk_make_request);
1263 * blk_rq_set_block_pc - initialize a request to type BLOCK_PC
1264 * @rq: request to be initialized
1267 void blk_rq_set_block_pc(struct request *rq)
1269 rq->cmd_type = REQ_TYPE_BLOCK_PC;
1270 rq->__data_len = 0;
1271 rq->__sector = (sector_t) -1;
1272 rq->bio = rq->biotail = NULL;
1273 memset(rq->__cmd, 0, sizeof(rq->__cmd));
1275 EXPORT_SYMBOL(blk_rq_set_block_pc);
1278 * blk_requeue_request - put a request back on queue
1279 * @q: request queue where request should be inserted
1280 * @rq: request to be inserted
1282 * Description:
1283 * Drivers often keep queueing requests until the hardware cannot accept
1284 * more, when that condition happens we need to put the request back
1285 * on the queue. Must be called with queue lock held.
1287 void blk_requeue_request(struct request_queue *q, struct request *rq)
1289 blk_delete_timer(rq);
1290 blk_clear_rq_complete(rq);
1291 trace_block_rq_requeue(q, rq);
1293 if (rq->cmd_flags & REQ_QUEUED)
1294 blk_queue_end_tag(q, rq);
1296 BUG_ON(blk_queued_rq(rq));
1298 elv_requeue_request(q, rq);
1300 EXPORT_SYMBOL(blk_requeue_request);
1302 static void add_acct_request(struct request_queue *q, struct request *rq,
1303 int where)
1305 blk_account_io_start(rq, true);
1306 __elv_add_request(q, rq, where);
1309 static void part_round_stats_single(int cpu, struct hd_struct *part,
1310 unsigned long now)
1312 int inflight;
1314 if (now == part->stamp)
1315 return;
1317 inflight = part_in_flight(part);
1318 if (inflight) {
1319 __part_stat_add(cpu, part, time_in_queue,
1320 inflight * (now - part->stamp));
1321 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1323 part->stamp = now;
1327 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1328 * @cpu: cpu number for stats access
1329 * @part: target partition
1331 * The average IO queue length and utilisation statistics are maintained
1332 * by observing the current state of the queue length and the amount of
1333 * time it has been in this state for.
1335 * Normally, that accounting is done on IO completion, but that can result
1336 * in more than a second's worth of IO being accounted for within any one
1337 * second, leading to >100% utilisation. To deal with that, we call this
1338 * function to do a round-off before returning the results when reading
1339 * /proc/diskstats. This accounts immediately for all queue usage up to
1340 * the current jiffies and restarts the counters again.
1342 void part_round_stats(int cpu, struct hd_struct *part)
1344 unsigned long now = jiffies;
1346 if (part->partno)
1347 part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1348 part_round_stats_single(cpu, part, now);
1350 EXPORT_SYMBOL_GPL(part_round_stats);
1352 #ifdef CONFIG_PM
1353 static void blk_pm_put_request(struct request *rq)
1355 if (rq->q->dev && !(rq->cmd_flags & REQ_PM) && !--rq->q->nr_pending)
1356 pm_runtime_mark_last_busy(rq->q->dev);
1358 #else
1359 static inline void blk_pm_put_request(struct request *rq) {}
1360 #endif
1363 * queue lock must be held
1365 void __blk_put_request(struct request_queue *q, struct request *req)
1367 if (unlikely(!q))
1368 return;
1370 if (q->mq_ops) {
1371 blk_mq_free_request(req);
1372 return;
1375 blk_pm_put_request(req);
1377 elv_completed_request(q, req);
1379 /* this is a bio leak */
1380 WARN_ON(req->bio != NULL);
1383 * Request may not have originated from ll_rw_blk. if not,
1384 * it didn't come out of our reserved rq pools
1386 if (req->cmd_flags & REQ_ALLOCED) {
1387 unsigned int flags = req->cmd_flags;
1388 struct request_list *rl = blk_rq_rl(req);
1390 BUG_ON(!list_empty(&req->queuelist));
1391 BUG_ON(ELV_ON_HASH(req));
1393 blk_free_request(rl, req);
1394 freed_request(rl, flags);
1395 blk_put_rl(rl);
1398 EXPORT_SYMBOL_GPL(__blk_put_request);
1400 void blk_put_request(struct request *req)
1402 struct request_queue *q = req->q;
1404 if (q->mq_ops)
1405 blk_mq_free_request(req);
1406 else {
1407 unsigned long flags;
1409 spin_lock_irqsave(q->queue_lock, flags);
1410 __blk_put_request(q, req);
1411 spin_unlock_irqrestore(q->queue_lock, flags);
1414 EXPORT_SYMBOL(blk_put_request);
1417 * blk_add_request_payload - add a payload to a request
1418 * @rq: request to update
1419 * @page: page backing the payload
1420 * @len: length of the payload.
1422 * This allows to later add a payload to an already submitted request by
1423 * a block driver. The driver needs to take care of freeing the payload
1424 * itself.
1426 * Note that this is a quite horrible hack and nothing but handling of
1427 * discard requests should ever use it.
1429 void blk_add_request_payload(struct request *rq, struct page *page,
1430 unsigned int len)
1432 struct bio *bio = rq->bio;
1434 bio->bi_io_vec->bv_page = page;
1435 bio->bi_io_vec->bv_offset = 0;
1436 bio->bi_io_vec->bv_len = len;
1438 bio->bi_iter.bi_size = len;
1439 bio->bi_vcnt = 1;
1440 bio->bi_phys_segments = 1;
1442 rq->__data_len = rq->resid_len = len;
1443 rq->nr_phys_segments = 1;
1445 EXPORT_SYMBOL_GPL(blk_add_request_payload);
1447 bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1448 struct bio *bio)
1450 const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1452 if (!ll_back_merge_fn(q, req, bio))
1453 return false;
1455 trace_block_bio_backmerge(q, req, bio);
1457 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1458 blk_rq_set_mixed_merge(req);
1460 req->biotail->bi_next = bio;
1461 req->biotail = bio;
1462 req->__data_len += bio->bi_iter.bi_size;
1463 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1465 blk_account_io_start(req, false);
1466 return true;
1469 bool bio_attempt_front_merge(struct request_queue *q, struct request *req,
1470 struct bio *bio)
1472 const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1474 if (!ll_front_merge_fn(q, req, bio))
1475 return false;
1477 trace_block_bio_frontmerge(q, req, bio);
1479 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1480 blk_rq_set_mixed_merge(req);
1482 bio->bi_next = req->bio;
1483 req->bio = bio;
1485 req->__sector = bio->bi_iter.bi_sector;
1486 req->__data_len += bio->bi_iter.bi_size;
1487 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1489 blk_account_io_start(req, false);
1490 return true;
1494 * blk_attempt_plug_merge - try to merge with %current's plugged list
1495 * @q: request_queue new bio is being queued at
1496 * @bio: new bio being queued
1497 * @request_count: out parameter for number of traversed plugged requests
1499 * Determine whether @bio being queued on @q can be merged with a request
1500 * on %current's plugged list. Returns %true if merge was successful,
1501 * otherwise %false.
1503 * Plugging coalesces IOs from the same issuer for the same purpose without
1504 * going through @q->queue_lock. As such it's more of an issuing mechanism
1505 * than scheduling, and the request, while may have elvpriv data, is not
1506 * added on the elevator at this point. In addition, we don't have
1507 * reliable access to the elevator outside queue lock. Only check basic
1508 * merging parameters without querying the elevator.
1510 * Caller must ensure !blk_queue_nomerges(q) beforehand.
1512 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
1513 unsigned int *request_count)
1515 struct blk_plug *plug;
1516 struct request *rq;
1517 bool ret = false;
1518 struct list_head *plug_list;
1520 plug = current->plug;
1521 if (!plug)
1522 goto out;
1523 *request_count = 0;
1525 if (q->mq_ops)
1526 plug_list = &plug->mq_list;
1527 else
1528 plug_list = &plug->list;
1530 list_for_each_entry_reverse(rq, plug_list, queuelist) {
1531 int el_ret;
1533 if (rq->q == q)
1534 (*request_count)++;
1536 if (rq->q != q || !blk_rq_merge_ok(rq, bio))
1537 continue;
1539 el_ret = blk_try_merge(rq, bio);
1540 if (el_ret == ELEVATOR_BACK_MERGE) {
1541 ret = bio_attempt_back_merge(q, rq, bio);
1542 if (ret)
1543 break;
1544 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
1545 ret = bio_attempt_front_merge(q, rq, bio);
1546 if (ret)
1547 break;
1550 out:
1551 return ret;
1554 void init_request_from_bio(struct request *req, struct bio *bio)
1556 req->cmd_type = REQ_TYPE_FS;
1558 req->cmd_flags |= bio->bi_rw & REQ_COMMON_MASK;
1559 if (bio->bi_rw & REQ_RAHEAD)
1560 req->cmd_flags |= REQ_FAILFAST_MASK;
1562 req->errors = 0;
1563 req->__sector = bio->bi_iter.bi_sector;
1564 req->ioprio = bio_prio(bio);
1565 blk_rq_bio_prep(req->q, req, bio);
1568 void blk_queue_bio(struct request_queue *q, struct bio *bio)
1570 const bool sync = !!(bio->bi_rw & REQ_SYNC);
1571 struct blk_plug *plug;
1572 int el_ret, rw_flags, where = ELEVATOR_INSERT_SORT;
1573 struct request *req;
1574 unsigned int request_count = 0;
1577 * low level driver can indicate that it wants pages above a
1578 * certain limit bounced to low memory (ie for highmem, or even
1579 * ISA dma in theory)
1581 blk_queue_bounce(q, &bio);
1583 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1584 bio_endio(bio, -EIO);
1585 return;
1588 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) {
1589 spin_lock_irq(q->queue_lock);
1590 where = ELEVATOR_INSERT_FLUSH;
1591 goto get_rq;
1595 * Check if we can merge with the plugged list before grabbing
1596 * any locks.
1598 if (!blk_queue_nomerges(q) &&
1599 blk_attempt_plug_merge(q, bio, &request_count))
1600 return;
1602 spin_lock_irq(q->queue_lock);
1604 el_ret = elv_merge(q, &req, bio);
1605 if (el_ret == ELEVATOR_BACK_MERGE) {
1606 if (bio_attempt_back_merge(q, req, bio)) {
1607 elv_bio_merged(q, req, bio);
1608 if (!attempt_back_merge(q, req))
1609 elv_merged_request(q, req, el_ret);
1610 goto out_unlock;
1612 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
1613 if (bio_attempt_front_merge(q, req, bio)) {
1614 elv_bio_merged(q, req, bio);
1615 if (!attempt_front_merge(q, req))
1616 elv_merged_request(q, req, el_ret);
1617 goto out_unlock;
1621 get_rq:
1623 * This sync check and mask will be re-done in init_request_from_bio(),
1624 * but we need to set it earlier to expose the sync flag to the
1625 * rq allocator and io schedulers.
1627 rw_flags = bio_data_dir(bio);
1628 if (sync)
1629 rw_flags |= REQ_SYNC;
1632 * Grab a free request. This is might sleep but can not fail.
1633 * Returns with the queue unlocked.
1635 req = get_request(q, rw_flags, bio, GFP_NOIO);
1636 if (IS_ERR(req)) {
1637 bio_endio(bio, PTR_ERR(req)); /* @q is dead */
1638 goto out_unlock;
1642 * After dropping the lock and possibly sleeping here, our request
1643 * may now be mergeable after it had proven unmergeable (above).
1644 * We don't worry about that case for efficiency. It won't happen
1645 * often, and the elevators are able to handle it.
1647 init_request_from_bio(req, bio);
1649 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
1650 req->cpu = raw_smp_processor_id();
1652 plug = current->plug;
1653 if (plug) {
1655 * If this is the first request added after a plug, fire
1656 * of a plug trace.
1658 if (!request_count)
1659 trace_block_plug(q);
1660 else {
1661 if (request_count >= BLK_MAX_REQUEST_COUNT) {
1662 blk_flush_plug_list(plug, false);
1663 trace_block_plug(q);
1666 list_add_tail(&req->queuelist, &plug->list);
1667 blk_account_io_start(req, true);
1668 } else {
1669 spin_lock_irq(q->queue_lock);
1670 add_acct_request(q, req, where);
1671 __blk_run_queue(q);
1672 out_unlock:
1673 spin_unlock_irq(q->queue_lock);
1676 EXPORT_SYMBOL_GPL(blk_queue_bio); /* for device mapper only */
1679 * If bio->bi_dev is a partition, remap the location
1681 static inline void blk_partition_remap(struct bio *bio)
1683 struct block_device *bdev = bio->bi_bdev;
1685 if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1686 struct hd_struct *p = bdev->bd_part;
1688 bio->bi_iter.bi_sector += p->start_sect;
1689 bio->bi_bdev = bdev->bd_contains;
1691 trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio,
1692 bdev->bd_dev,
1693 bio->bi_iter.bi_sector - p->start_sect);
1697 static void handle_bad_sector(struct bio *bio)
1699 char b[BDEVNAME_SIZE];
1701 printk(KERN_INFO "attempt to access beyond end of device\n");
1702 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
1703 bdevname(bio->bi_bdev, b),
1704 bio->bi_rw,
1705 (unsigned long long)bio_end_sector(bio),
1706 (long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9));
1708 set_bit(BIO_EOF, &bio->bi_flags);
1711 #ifdef CONFIG_FAIL_MAKE_REQUEST
1713 static DECLARE_FAULT_ATTR(fail_make_request);
1715 static int __init setup_fail_make_request(char *str)
1717 return setup_fault_attr(&fail_make_request, str);
1719 __setup("fail_make_request=", setup_fail_make_request);
1721 static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
1723 return part->make_it_fail && should_fail(&fail_make_request, bytes);
1726 static int __init fail_make_request_debugfs(void)
1728 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
1729 NULL, &fail_make_request);
1731 return PTR_ERR_OR_ZERO(dir);
1734 late_initcall(fail_make_request_debugfs);
1736 #else /* CONFIG_FAIL_MAKE_REQUEST */
1738 static inline bool should_fail_request(struct hd_struct *part,
1739 unsigned int bytes)
1741 return false;
1744 #endif /* CONFIG_FAIL_MAKE_REQUEST */
1747 * Check whether this bio extends beyond the end of the device.
1749 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1751 sector_t maxsector;
1753 if (!nr_sectors)
1754 return 0;
1756 /* Test device or partition size, when known. */
1757 maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
1758 if (maxsector) {
1759 sector_t sector = bio->bi_iter.bi_sector;
1761 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1763 * This may well happen - the kernel calls bread()
1764 * without checking the size of the device, e.g., when
1765 * mounting a device.
1767 handle_bad_sector(bio);
1768 return 1;
1772 return 0;
1775 static noinline_for_stack bool
1776 generic_make_request_checks(struct bio *bio)
1778 struct request_queue *q;
1779 int nr_sectors = bio_sectors(bio);
1780 int err = -EIO;
1781 char b[BDEVNAME_SIZE];
1782 struct hd_struct *part;
1784 might_sleep();
1786 if (bio_check_eod(bio, nr_sectors))
1787 goto end_io;
1789 q = bdev_get_queue(bio->bi_bdev);
1790 if (unlikely(!q)) {
1791 printk(KERN_ERR
1792 "generic_make_request: Trying to access "
1793 "nonexistent block-device %s (%Lu)\n",
1794 bdevname(bio->bi_bdev, b),
1795 (long long) bio->bi_iter.bi_sector);
1796 goto end_io;
1799 if (likely(bio_is_rw(bio) &&
1800 nr_sectors > queue_max_hw_sectors(q))) {
1801 printk(KERN_ERR "bio too big device %s (%u > %u)\n",
1802 bdevname(bio->bi_bdev, b),
1803 bio_sectors(bio),
1804 queue_max_hw_sectors(q));
1805 goto end_io;
1808 part = bio->bi_bdev->bd_part;
1809 if (should_fail_request(part, bio->bi_iter.bi_size) ||
1810 should_fail_request(&part_to_disk(part)->part0,
1811 bio->bi_iter.bi_size))
1812 goto end_io;
1815 * If this device has partitions, remap block n
1816 * of partition p to block n+start(p) of the disk.
1818 blk_partition_remap(bio);
1820 if (bio_check_eod(bio, nr_sectors))
1821 goto end_io;
1824 * Filter flush bio's early so that make_request based
1825 * drivers without flush support don't have to worry
1826 * about them.
1828 if ((bio->bi_rw & (REQ_FLUSH | REQ_FUA)) && !q->flush_flags) {
1829 bio->bi_rw &= ~(REQ_FLUSH | REQ_FUA);
1830 if (!nr_sectors) {
1831 err = 0;
1832 goto end_io;
1836 if ((bio->bi_rw & REQ_DISCARD) &&
1837 (!blk_queue_discard(q) ||
1838 ((bio->bi_rw & REQ_SECURE) && !blk_queue_secdiscard(q)))) {
1839 err = -EOPNOTSUPP;
1840 goto end_io;
1843 if (bio->bi_rw & REQ_WRITE_SAME && !bdev_write_same(bio->bi_bdev)) {
1844 err = -EOPNOTSUPP;
1845 goto end_io;
1849 * Various block parts want %current->io_context and lazy ioc
1850 * allocation ends up trading a lot of pain for a small amount of
1851 * memory. Just allocate it upfront. This may fail and block
1852 * layer knows how to live with it.
1854 create_io_context(GFP_ATOMIC, q->node);
1856 if (blk_throtl_bio(q, bio))
1857 return false; /* throttled, will be resubmitted later */
1859 trace_block_bio_queue(q, bio);
1860 return true;
1862 end_io:
1863 bio_endio(bio, err);
1864 return false;
1868 * generic_make_request - hand a buffer to its device driver for I/O
1869 * @bio: The bio describing the location in memory and on the device.
1871 * generic_make_request() is used to make I/O requests of block
1872 * devices. It is passed a &struct bio, which describes the I/O that needs
1873 * to be done.
1875 * generic_make_request() does not return any status. The
1876 * success/failure status of the request, along with notification of
1877 * completion, is delivered asynchronously through the bio->bi_end_io
1878 * function described (one day) else where.
1880 * The caller of generic_make_request must make sure that bi_io_vec
1881 * are set to describe the memory buffer, and that bi_dev and bi_sector are
1882 * set to describe the device address, and the
1883 * bi_end_io and optionally bi_private are set to describe how
1884 * completion notification should be signaled.
1886 * generic_make_request and the drivers it calls may use bi_next if this
1887 * bio happens to be merged with someone else, and may resubmit the bio to
1888 * a lower device by calling into generic_make_request recursively, which
1889 * means the bio should NOT be touched after the call to ->make_request_fn.
1891 void generic_make_request(struct bio *bio)
1893 struct bio_list bio_list_on_stack;
1895 if (!generic_make_request_checks(bio))
1896 return;
1899 * We only want one ->make_request_fn to be active at a time, else
1900 * stack usage with stacked devices could be a problem. So use
1901 * current->bio_list to keep a list of requests submited by a
1902 * make_request_fn function. current->bio_list is also used as a
1903 * flag to say if generic_make_request is currently active in this
1904 * task or not. If it is NULL, then no make_request is active. If
1905 * it is non-NULL, then a make_request is active, and new requests
1906 * should be added at the tail
1908 if (current->bio_list) {
1909 bio_list_add(current->bio_list, bio);
1910 return;
1913 /* following loop may be a bit non-obvious, and so deserves some
1914 * explanation.
1915 * Before entering the loop, bio->bi_next is NULL (as all callers
1916 * ensure that) so we have a list with a single bio.
1917 * We pretend that we have just taken it off a longer list, so
1918 * we assign bio_list to a pointer to the bio_list_on_stack,
1919 * thus initialising the bio_list of new bios to be
1920 * added. ->make_request() may indeed add some more bios
1921 * through a recursive call to generic_make_request. If it
1922 * did, we find a non-NULL value in bio_list and re-enter the loop
1923 * from the top. In this case we really did just take the bio
1924 * of the top of the list (no pretending) and so remove it from
1925 * bio_list, and call into ->make_request() again.
1927 BUG_ON(bio->bi_next);
1928 bio_list_init(&bio_list_on_stack);
1929 current->bio_list = &bio_list_on_stack;
1930 do {
1931 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
1933 q->make_request_fn(q, bio);
1935 bio = bio_list_pop(current->bio_list);
1936 } while (bio);
1937 current->bio_list = NULL; /* deactivate */
1939 EXPORT_SYMBOL(generic_make_request);
1942 * submit_bio - submit a bio to the block device layer for I/O
1943 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
1944 * @bio: The &struct bio which describes the I/O
1946 * submit_bio() is very similar in purpose to generic_make_request(), and
1947 * uses that function to do most of the work. Both are fairly rough
1948 * interfaces; @bio must be presetup and ready for I/O.
1951 void submit_bio(int rw, struct bio *bio)
1953 bio->bi_rw |= rw;
1956 * If it's a regular read/write or a barrier with data attached,
1957 * go through the normal accounting stuff before submission.
1959 if (bio_has_data(bio)) {
1960 unsigned int count;
1962 if (unlikely(rw & REQ_WRITE_SAME))
1963 count = bdev_logical_block_size(bio->bi_bdev) >> 9;
1964 else
1965 count = bio_sectors(bio);
1967 if (rw & WRITE) {
1968 count_vm_events(PGPGOUT, count);
1969 } else {
1970 task_io_account_read(bio->bi_iter.bi_size);
1971 count_vm_events(PGPGIN, count);
1974 if (unlikely(block_dump)) {
1975 char b[BDEVNAME_SIZE];
1976 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
1977 current->comm, task_pid_nr(current),
1978 (rw & WRITE) ? "WRITE" : "READ",
1979 (unsigned long long)bio->bi_iter.bi_sector,
1980 bdevname(bio->bi_bdev, b),
1981 count);
1985 generic_make_request(bio);
1987 EXPORT_SYMBOL(submit_bio);
1990 * blk_rq_check_limits - Helper function to check a request for the queue limit
1991 * @q: the queue
1992 * @rq: the request being checked
1994 * Description:
1995 * @rq may have been made based on weaker limitations of upper-level queues
1996 * in request stacking drivers, and it may violate the limitation of @q.
1997 * Since the block layer and the underlying device driver trust @rq
1998 * after it is inserted to @q, it should be checked against @q before
1999 * the insertion using this generic function.
2001 * This function should also be useful for request stacking drivers
2002 * in some cases below, so export this function.
2003 * Request stacking drivers like request-based dm may change the queue
2004 * limits while requests are in the queue (e.g. dm's table swapping).
2005 * Such request stacking drivers should check those requests against
2006 * the new queue limits again when they dispatch those requests,
2007 * although such checkings are also done against the old queue limits
2008 * when submitting requests.
2010 int blk_rq_check_limits(struct request_queue *q, struct request *rq)
2012 if (!rq_mergeable(rq))
2013 return 0;
2015 if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, rq->cmd_flags)) {
2016 printk(KERN_ERR "%s: over max size limit.\n", __func__);
2017 return -EIO;
2021 * queue's settings related to segment counting like q->bounce_pfn
2022 * may differ from that of other stacking queues.
2023 * Recalculate it to check the request correctly on this queue's
2024 * limitation.
2026 blk_recalc_rq_segments(rq);
2027 if (rq->nr_phys_segments > queue_max_segments(q)) {
2028 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
2029 return -EIO;
2032 return 0;
2034 EXPORT_SYMBOL_GPL(blk_rq_check_limits);
2037 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
2038 * @q: the queue to submit the request
2039 * @rq: the request being queued
2041 int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
2043 unsigned long flags;
2044 int where = ELEVATOR_INSERT_BACK;
2046 if (blk_rq_check_limits(q, rq))
2047 return -EIO;
2049 if (rq->rq_disk &&
2050 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
2051 return -EIO;
2053 if (q->mq_ops) {
2054 if (blk_queue_io_stat(q))
2055 blk_account_io_start(rq, true);
2056 blk_mq_insert_request(rq, false, true, true);
2057 return 0;
2060 spin_lock_irqsave(q->queue_lock, flags);
2061 if (unlikely(blk_queue_dying(q))) {
2062 spin_unlock_irqrestore(q->queue_lock, flags);
2063 return -ENODEV;
2067 * Submitting request must be dequeued before calling this function
2068 * because it will be linked to another request_queue
2070 BUG_ON(blk_queued_rq(rq));
2072 if (rq->cmd_flags & (REQ_FLUSH|REQ_FUA))
2073 where = ELEVATOR_INSERT_FLUSH;
2075 add_acct_request(q, rq, where);
2076 if (where == ELEVATOR_INSERT_FLUSH)
2077 __blk_run_queue(q);
2078 spin_unlock_irqrestore(q->queue_lock, flags);
2080 return 0;
2082 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
2085 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
2086 * @rq: request to examine
2088 * Description:
2089 * A request could be merge of IOs which require different failure
2090 * handling. This function determines the number of bytes which
2091 * can be failed from the beginning of the request without
2092 * crossing into area which need to be retried further.
2094 * Return:
2095 * The number of bytes to fail.
2097 * Context:
2098 * queue_lock must be held.
2100 unsigned int blk_rq_err_bytes(const struct request *rq)
2102 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
2103 unsigned int bytes = 0;
2104 struct bio *bio;
2106 if (!(rq->cmd_flags & REQ_MIXED_MERGE))
2107 return blk_rq_bytes(rq);
2110 * Currently the only 'mixing' which can happen is between
2111 * different fastfail types. We can safely fail portions
2112 * which have all the failfast bits that the first one has -
2113 * the ones which are at least as eager to fail as the first
2114 * one.
2116 for (bio = rq->bio; bio; bio = bio->bi_next) {
2117 if ((bio->bi_rw & ff) != ff)
2118 break;
2119 bytes += bio->bi_iter.bi_size;
2122 /* this could lead to infinite loop */
2123 BUG_ON(blk_rq_bytes(rq) && !bytes);
2124 return bytes;
2126 EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
2128 void blk_account_io_completion(struct request *req, unsigned int bytes)
2130 if (blk_do_io_stat(req)) {
2131 const int rw = rq_data_dir(req);
2132 struct hd_struct *part;
2133 int cpu;
2135 cpu = part_stat_lock();
2136 part = req->part;
2137 part_stat_add(cpu, part, sectors[rw], bytes >> 9);
2138 part_stat_unlock();
2142 void blk_account_io_done(struct request *req)
2145 * Account IO completion. flush_rq isn't accounted as a
2146 * normal IO on queueing nor completion. Accounting the
2147 * containing request is enough.
2149 if (blk_do_io_stat(req) && !(req->cmd_flags & REQ_FLUSH_SEQ)) {
2150 unsigned long duration = jiffies - req->start_time;
2151 const int rw = rq_data_dir(req);
2152 struct hd_struct *part;
2153 int cpu;
2155 cpu = part_stat_lock();
2156 part = req->part;
2158 part_stat_inc(cpu, part, ios[rw]);
2159 part_stat_add(cpu, part, ticks[rw], duration);
2160 part_round_stats(cpu, part);
2161 part_dec_in_flight(part, rw);
2163 hd_struct_put(part);
2164 part_stat_unlock();
2168 #ifdef CONFIG_PM
2170 * Don't process normal requests when queue is suspended
2171 * or in the process of suspending/resuming
2173 static struct request *blk_pm_peek_request(struct request_queue *q,
2174 struct request *rq)
2176 if (q->dev && (q->rpm_status == RPM_SUSPENDED ||
2177 (q->rpm_status != RPM_ACTIVE && !(rq->cmd_flags & REQ_PM))))
2178 return NULL;
2179 else
2180 return rq;
2182 #else
2183 static inline struct request *blk_pm_peek_request(struct request_queue *q,
2184 struct request *rq)
2186 return rq;
2188 #endif
2190 void blk_account_io_start(struct request *rq, bool new_io)
2192 struct hd_struct *part;
2193 int rw = rq_data_dir(rq);
2194 int cpu;
2196 if (!blk_do_io_stat(rq))
2197 return;
2199 cpu = part_stat_lock();
2201 if (!new_io) {
2202 part = rq->part;
2203 part_stat_inc(cpu, part, merges[rw]);
2204 } else {
2205 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
2206 if (!hd_struct_try_get(part)) {
2208 * The partition is already being removed,
2209 * the request will be accounted on the disk only
2211 * We take a reference on disk->part0 although that
2212 * partition will never be deleted, so we can treat
2213 * it as any other partition.
2215 part = &rq->rq_disk->part0;
2216 hd_struct_get(part);
2218 part_round_stats(cpu, part);
2219 part_inc_in_flight(part, rw);
2220 rq->part = part;
2223 part_stat_unlock();
2227 * blk_peek_request - peek at the top of a request queue
2228 * @q: request queue to peek at
2230 * Description:
2231 * Return the request at the top of @q. The returned request
2232 * should be started using blk_start_request() before LLD starts
2233 * processing it.
2235 * Return:
2236 * Pointer to the request at the top of @q if available. Null
2237 * otherwise.
2239 * Context:
2240 * queue_lock must be held.
2242 struct request *blk_peek_request(struct request_queue *q)
2244 struct request *rq;
2245 int ret;
2247 while ((rq = __elv_next_request(q)) != NULL) {
2249 rq = blk_pm_peek_request(q, rq);
2250 if (!rq)
2251 break;
2253 if (!(rq->cmd_flags & REQ_STARTED)) {
2255 * This is the first time the device driver
2256 * sees this request (possibly after
2257 * requeueing). Notify IO scheduler.
2259 if (rq->cmd_flags & REQ_SORTED)
2260 elv_activate_rq(q, rq);
2263 * just mark as started even if we don't start
2264 * it, a request that has been delayed should
2265 * not be passed by new incoming requests
2267 rq->cmd_flags |= REQ_STARTED;
2268 trace_block_rq_issue(q, rq);
2271 if (!q->boundary_rq || q->boundary_rq == rq) {
2272 q->end_sector = rq_end_sector(rq);
2273 q->boundary_rq = NULL;
2276 if (rq->cmd_flags & REQ_DONTPREP)
2277 break;
2279 if (q->dma_drain_size && blk_rq_bytes(rq)) {
2281 * make sure space for the drain appears we
2282 * know we can do this because max_hw_segments
2283 * has been adjusted to be one fewer than the
2284 * device can handle
2286 rq->nr_phys_segments++;
2289 if (!q->prep_rq_fn)
2290 break;
2292 ret = q->prep_rq_fn(q, rq);
2293 if (ret == BLKPREP_OK) {
2294 break;
2295 } else if (ret == BLKPREP_DEFER) {
2297 * the request may have been (partially) prepped.
2298 * we need to keep this request in the front to
2299 * avoid resource deadlock. REQ_STARTED will
2300 * prevent other fs requests from passing this one.
2302 if (q->dma_drain_size && blk_rq_bytes(rq) &&
2303 !(rq->cmd_flags & REQ_DONTPREP)) {
2305 * remove the space for the drain we added
2306 * so that we don't add it again
2308 --rq->nr_phys_segments;
2311 rq = NULL;
2312 break;
2313 } else if (ret == BLKPREP_KILL) {
2314 rq->cmd_flags |= REQ_QUIET;
2316 * Mark this request as started so we don't trigger
2317 * any debug logic in the end I/O path.
2319 blk_start_request(rq);
2320 __blk_end_request_all(rq, -EIO);
2321 } else {
2322 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
2323 break;
2327 return rq;
2329 EXPORT_SYMBOL(blk_peek_request);
2331 void blk_dequeue_request(struct request *rq)
2333 struct request_queue *q = rq->q;
2335 BUG_ON(list_empty(&rq->queuelist));
2336 BUG_ON(ELV_ON_HASH(rq));
2338 list_del_init(&rq->queuelist);
2341 * the time frame between a request being removed from the lists
2342 * and to it is freed is accounted as io that is in progress at
2343 * the driver side.
2345 if (blk_account_rq(rq)) {
2346 q->in_flight[rq_is_sync(rq)]++;
2347 set_io_start_time_ns(rq);
2352 * blk_start_request - start request processing on the driver
2353 * @req: request to dequeue
2355 * Description:
2356 * Dequeue @req and start timeout timer on it. This hands off the
2357 * request to the driver.
2359 * Block internal functions which don't want to start timer should
2360 * call blk_dequeue_request().
2362 * Context:
2363 * queue_lock must be held.
2365 void blk_start_request(struct request *req)
2367 blk_dequeue_request(req);
2370 * We are now handing the request to the hardware, initialize
2371 * resid_len to full count and add the timeout handler.
2373 req->resid_len = blk_rq_bytes(req);
2374 if (unlikely(blk_bidi_rq(req)))
2375 req->next_rq->resid_len = blk_rq_bytes(req->next_rq);
2377 BUG_ON(test_bit(REQ_ATOM_COMPLETE, &req->atomic_flags));
2378 blk_add_timer(req);
2380 EXPORT_SYMBOL(blk_start_request);
2383 * blk_fetch_request - fetch a request from a request queue
2384 * @q: request queue to fetch a request from
2386 * Description:
2387 * Return the request at the top of @q. The request is started on
2388 * return and LLD can start processing it immediately.
2390 * Return:
2391 * Pointer to the request at the top of @q if available. Null
2392 * otherwise.
2394 * Context:
2395 * queue_lock must be held.
2397 struct request *blk_fetch_request(struct request_queue *q)
2399 struct request *rq;
2401 rq = blk_peek_request(q);
2402 if (rq)
2403 blk_start_request(rq);
2404 return rq;
2406 EXPORT_SYMBOL(blk_fetch_request);
2409 * blk_update_request - Special helper function for request stacking drivers
2410 * @req: the request being processed
2411 * @error: %0 for success, < %0 for error
2412 * @nr_bytes: number of bytes to complete @req
2414 * Description:
2415 * Ends I/O on a number of bytes attached to @req, but doesn't complete
2416 * the request structure even if @req doesn't have leftover.
2417 * If @req has leftover, sets it up for the next range of segments.
2419 * This special helper function is only for request stacking drivers
2420 * (e.g. request-based dm) so that they can handle partial completion.
2421 * Actual device drivers should use blk_end_request instead.
2423 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2424 * %false return from this function.
2426 * Return:
2427 * %false - this request doesn't have any more data
2428 * %true - this request has more data
2430 bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
2432 int total_bytes;
2434 trace_block_rq_complete(req->q, req, nr_bytes);
2436 if (!req->bio)
2437 return false;
2440 * For fs requests, rq is just carrier of independent bio's
2441 * and each partial completion should be handled separately.
2442 * Reset per-request error on each partial completion.
2444 * TODO: tj: This is too subtle. It would be better to let
2445 * low level drivers do what they see fit.
2447 if (req->cmd_type == REQ_TYPE_FS)
2448 req->errors = 0;
2450 if (error && req->cmd_type == REQ_TYPE_FS &&
2451 !(req->cmd_flags & REQ_QUIET)) {
2452 char *error_type;
2454 switch (error) {
2455 case -ENOLINK:
2456 error_type = "recoverable transport";
2457 break;
2458 case -EREMOTEIO:
2459 error_type = "critical target";
2460 break;
2461 case -EBADE:
2462 error_type = "critical nexus";
2463 break;
2464 case -ETIMEDOUT:
2465 error_type = "timeout";
2466 break;
2467 case -ENOSPC:
2468 error_type = "critical space allocation";
2469 break;
2470 case -ENODATA:
2471 error_type = "critical medium";
2472 break;
2473 case -EIO:
2474 default:
2475 error_type = "I/O";
2476 break;
2478 printk_ratelimited(KERN_ERR "%s: %s error, dev %s, sector %llu\n",
2479 __func__, error_type, req->rq_disk ?
2480 req->rq_disk->disk_name : "?",
2481 (unsigned long long)blk_rq_pos(req));
2485 blk_account_io_completion(req, nr_bytes);
2487 total_bytes = 0;
2488 while (req->bio) {
2489 struct bio *bio = req->bio;
2490 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
2492 if (bio_bytes == bio->bi_iter.bi_size)
2493 req->bio = bio->bi_next;
2495 req_bio_endio(req, bio, bio_bytes, error);
2497 total_bytes += bio_bytes;
2498 nr_bytes -= bio_bytes;
2500 if (!nr_bytes)
2501 break;
2505 * completely done
2507 if (!req->bio) {
2509 * Reset counters so that the request stacking driver
2510 * can find how many bytes remain in the request
2511 * later.
2513 req->__data_len = 0;
2514 return false;
2517 req->__data_len -= total_bytes;
2519 /* update sector only for requests with clear definition of sector */
2520 if (req->cmd_type == REQ_TYPE_FS)
2521 req->__sector += total_bytes >> 9;
2523 /* mixed attributes always follow the first bio */
2524 if (req->cmd_flags & REQ_MIXED_MERGE) {
2525 req->cmd_flags &= ~REQ_FAILFAST_MASK;
2526 req->cmd_flags |= req->bio->bi_rw & REQ_FAILFAST_MASK;
2530 * If total number of sectors is less than the first segment
2531 * size, something has gone terribly wrong.
2533 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
2534 blk_dump_rq_flags(req, "request botched");
2535 req->__data_len = blk_rq_cur_bytes(req);
2538 /* recalculate the number of segments */
2539 blk_recalc_rq_segments(req);
2541 return true;
2543 EXPORT_SYMBOL_GPL(blk_update_request);
2545 static bool blk_update_bidi_request(struct request *rq, int error,
2546 unsigned int nr_bytes,
2547 unsigned int bidi_bytes)
2549 if (blk_update_request(rq, error, nr_bytes))
2550 return true;
2552 /* Bidi request must be completed as a whole */
2553 if (unlikely(blk_bidi_rq(rq)) &&
2554 blk_update_request(rq->next_rq, error, bidi_bytes))
2555 return true;
2557 if (blk_queue_add_random(rq->q))
2558 add_disk_randomness(rq->rq_disk);
2560 return false;
2564 * blk_unprep_request - unprepare a request
2565 * @req: the request
2567 * This function makes a request ready for complete resubmission (or
2568 * completion). It happens only after all error handling is complete,
2569 * so represents the appropriate moment to deallocate any resources
2570 * that were allocated to the request in the prep_rq_fn. The queue
2571 * lock is held when calling this.
2573 void blk_unprep_request(struct request *req)
2575 struct request_queue *q = req->q;
2577 req->cmd_flags &= ~REQ_DONTPREP;
2578 if (q->unprep_rq_fn)
2579 q->unprep_rq_fn(q, req);
2581 EXPORT_SYMBOL_GPL(blk_unprep_request);
2584 * queue lock must be held
2586 void blk_finish_request(struct request *req, int error)
2588 if (req->cmd_flags & REQ_QUEUED)
2589 blk_queue_end_tag(req->q, req);
2591 BUG_ON(blk_queued_rq(req));
2593 if (unlikely(laptop_mode) && req->cmd_type == REQ_TYPE_FS)
2594 laptop_io_completion(&req->q->backing_dev_info);
2596 blk_delete_timer(req);
2598 if (req->cmd_flags & REQ_DONTPREP)
2599 blk_unprep_request(req);
2601 blk_account_io_done(req);
2603 if (req->end_io)
2604 req->end_io(req, error);
2605 else {
2606 if (blk_bidi_rq(req))
2607 __blk_put_request(req->next_rq->q, req->next_rq);
2609 __blk_put_request(req->q, req);
2612 EXPORT_SYMBOL(blk_finish_request);
2615 * blk_end_bidi_request - Complete a bidi request
2616 * @rq: the request to complete
2617 * @error: %0 for success, < %0 for error
2618 * @nr_bytes: number of bytes to complete @rq
2619 * @bidi_bytes: number of bytes to complete @rq->next_rq
2621 * Description:
2622 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2623 * Drivers that supports bidi can safely call this member for any
2624 * type of request, bidi or uni. In the later case @bidi_bytes is
2625 * just ignored.
2627 * Return:
2628 * %false - we are done with this request
2629 * %true - still buffers pending for this request
2631 static bool blk_end_bidi_request(struct request *rq, int error,
2632 unsigned int nr_bytes, unsigned int bidi_bytes)
2634 struct request_queue *q = rq->q;
2635 unsigned long flags;
2637 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2638 return true;
2640 spin_lock_irqsave(q->queue_lock, flags);
2641 blk_finish_request(rq, error);
2642 spin_unlock_irqrestore(q->queue_lock, flags);
2644 return false;
2648 * __blk_end_bidi_request - Complete a bidi request with queue lock held
2649 * @rq: the request to complete
2650 * @error: %0 for success, < %0 for error
2651 * @nr_bytes: number of bytes to complete @rq
2652 * @bidi_bytes: number of bytes to complete @rq->next_rq
2654 * Description:
2655 * Identical to blk_end_bidi_request() except that queue lock is
2656 * assumed to be locked on entry and remains so on return.
2658 * Return:
2659 * %false - we are done with this request
2660 * %true - still buffers pending for this request
2662 bool __blk_end_bidi_request(struct request *rq, int error,
2663 unsigned int nr_bytes, unsigned int bidi_bytes)
2665 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2666 return true;
2668 blk_finish_request(rq, error);
2670 return false;
2674 * blk_end_request - Helper function for drivers to complete the request.
2675 * @rq: the request being processed
2676 * @error: %0 for success, < %0 for error
2677 * @nr_bytes: number of bytes to complete
2679 * Description:
2680 * Ends I/O on a number of bytes attached to @rq.
2681 * If @rq has leftover, sets it up for the next range of segments.
2683 * Return:
2684 * %false - we are done with this request
2685 * %true - still buffers pending for this request
2687 bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2689 return blk_end_bidi_request(rq, error, nr_bytes, 0);
2691 EXPORT_SYMBOL(blk_end_request);
2694 * blk_end_request_all - Helper function for drives to finish the request.
2695 * @rq: the request to finish
2696 * @error: %0 for success, < %0 for error
2698 * Description:
2699 * Completely finish @rq.
2701 void blk_end_request_all(struct request *rq, int error)
2703 bool pending;
2704 unsigned int bidi_bytes = 0;
2706 if (unlikely(blk_bidi_rq(rq)))
2707 bidi_bytes = blk_rq_bytes(rq->next_rq);
2709 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2710 BUG_ON(pending);
2712 EXPORT_SYMBOL(blk_end_request_all);
2715 * blk_end_request_cur - Helper function to finish the current request chunk.
2716 * @rq: the request to finish the current chunk for
2717 * @error: %0 for success, < %0 for error
2719 * Description:
2720 * Complete the current consecutively mapped chunk from @rq.
2722 * Return:
2723 * %false - we are done with this request
2724 * %true - still buffers pending for this request
2726 bool blk_end_request_cur(struct request *rq, int error)
2728 return blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2730 EXPORT_SYMBOL(blk_end_request_cur);
2733 * blk_end_request_err - Finish a request till the next failure boundary.
2734 * @rq: the request to finish till the next failure boundary for
2735 * @error: must be negative errno
2737 * Description:
2738 * Complete @rq till the next failure boundary.
2740 * Return:
2741 * %false - we are done with this request
2742 * %true - still buffers pending for this request
2744 bool blk_end_request_err(struct request *rq, int error)
2746 WARN_ON(error >= 0);
2747 return blk_end_request(rq, error, blk_rq_err_bytes(rq));
2749 EXPORT_SYMBOL_GPL(blk_end_request_err);
2752 * __blk_end_request - Helper function for drivers to complete the request.
2753 * @rq: the request being processed
2754 * @error: %0 for success, < %0 for error
2755 * @nr_bytes: number of bytes to complete
2757 * Description:
2758 * Must be called with queue lock held unlike blk_end_request().
2760 * Return:
2761 * %false - we are done with this request
2762 * %true - still buffers pending for this request
2764 bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2766 return __blk_end_bidi_request(rq, error, nr_bytes, 0);
2768 EXPORT_SYMBOL(__blk_end_request);
2771 * __blk_end_request_all - Helper function for drives to finish the request.
2772 * @rq: the request to finish
2773 * @error: %0 for success, < %0 for error
2775 * Description:
2776 * Completely finish @rq. Must be called with queue lock held.
2778 void __blk_end_request_all(struct request *rq, int error)
2780 bool pending;
2781 unsigned int bidi_bytes = 0;
2783 if (unlikely(blk_bidi_rq(rq)))
2784 bidi_bytes = blk_rq_bytes(rq->next_rq);
2786 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2787 BUG_ON(pending);
2789 EXPORT_SYMBOL(__blk_end_request_all);
2792 * __blk_end_request_cur - Helper function to finish the current request chunk.
2793 * @rq: the request to finish the current chunk for
2794 * @error: %0 for success, < %0 for error
2796 * Description:
2797 * Complete the current consecutively mapped chunk from @rq. Must
2798 * be called with queue lock held.
2800 * Return:
2801 * %false - we are done with this request
2802 * %true - still buffers pending for this request
2804 bool __blk_end_request_cur(struct request *rq, int error)
2806 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2808 EXPORT_SYMBOL(__blk_end_request_cur);
2811 * __blk_end_request_err - Finish a request till the next failure boundary.
2812 * @rq: the request to finish till the next failure boundary for
2813 * @error: must be negative errno
2815 * Description:
2816 * Complete @rq till the next failure boundary. Must be called
2817 * with queue lock held.
2819 * Return:
2820 * %false - we are done with this request
2821 * %true - still buffers pending for this request
2823 bool __blk_end_request_err(struct request *rq, int error)
2825 WARN_ON(error >= 0);
2826 return __blk_end_request(rq, error, blk_rq_err_bytes(rq));
2828 EXPORT_SYMBOL_GPL(__blk_end_request_err);
2830 void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2831 struct bio *bio)
2833 /* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw */
2834 rq->cmd_flags |= bio->bi_rw & REQ_WRITE;
2836 if (bio_has_data(bio))
2837 rq->nr_phys_segments = bio_phys_segments(q, bio);
2839 rq->__data_len = bio->bi_iter.bi_size;
2840 rq->bio = rq->biotail = bio;
2842 if (bio->bi_bdev)
2843 rq->rq_disk = bio->bi_bdev->bd_disk;
2846 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2848 * rq_flush_dcache_pages - Helper function to flush all pages in a request
2849 * @rq: the request to be flushed
2851 * Description:
2852 * Flush all pages in @rq.
2854 void rq_flush_dcache_pages(struct request *rq)
2856 struct req_iterator iter;
2857 struct bio_vec bvec;
2859 rq_for_each_segment(bvec, rq, iter)
2860 flush_dcache_page(bvec.bv_page);
2862 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
2863 #endif
2866 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2867 * @q : the queue of the device being checked
2869 * Description:
2870 * Check if underlying low-level drivers of a device are busy.
2871 * If the drivers want to export their busy state, they must set own
2872 * exporting function using blk_queue_lld_busy() first.
2874 * Basically, this function is used only by request stacking drivers
2875 * to stop dispatching requests to underlying devices when underlying
2876 * devices are busy. This behavior helps more I/O merging on the queue
2877 * of the request stacking driver and prevents I/O throughput regression
2878 * on burst I/O load.
2880 * Return:
2881 * 0 - Not busy (The request stacking driver should dispatch request)
2882 * 1 - Busy (The request stacking driver should stop dispatching request)
2884 int blk_lld_busy(struct request_queue *q)
2886 if (q->lld_busy_fn)
2887 return q->lld_busy_fn(q);
2889 return 0;
2891 EXPORT_SYMBOL_GPL(blk_lld_busy);
2894 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2895 * @rq: the clone request to be cleaned up
2897 * Description:
2898 * Free all bios in @rq for a cloned request.
2900 void blk_rq_unprep_clone(struct request *rq)
2902 struct bio *bio;
2904 while ((bio = rq->bio) != NULL) {
2905 rq->bio = bio->bi_next;
2907 bio_put(bio);
2910 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
2913 * Copy attributes of the original request to the clone request.
2914 * The actual data parts (e.g. ->cmd, ->sense) are not copied.
2916 static void __blk_rq_prep_clone(struct request *dst, struct request *src)
2918 dst->cpu = src->cpu;
2919 dst->cmd_flags |= (src->cmd_flags & REQ_CLONE_MASK) | REQ_NOMERGE;
2920 dst->cmd_type = src->cmd_type;
2921 dst->__sector = blk_rq_pos(src);
2922 dst->__data_len = blk_rq_bytes(src);
2923 dst->nr_phys_segments = src->nr_phys_segments;
2924 dst->ioprio = src->ioprio;
2925 dst->extra_len = src->extra_len;
2929 * blk_rq_prep_clone - Helper function to setup clone request
2930 * @rq: the request to be setup
2931 * @rq_src: original request to be cloned
2932 * @bs: bio_set that bios for clone are allocated from
2933 * @gfp_mask: memory allocation mask for bio
2934 * @bio_ctr: setup function to be called for each clone bio.
2935 * Returns %0 for success, non %0 for failure.
2936 * @data: private data to be passed to @bio_ctr
2938 * Description:
2939 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
2940 * The actual data parts of @rq_src (e.g. ->cmd, ->sense)
2941 * are not copied, and copying such parts is the caller's responsibility.
2942 * Also, pages which the original bios are pointing to are not copied
2943 * and the cloned bios just point same pages.
2944 * So cloned bios must be completed before original bios, which means
2945 * the caller must complete @rq before @rq_src.
2947 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
2948 struct bio_set *bs, gfp_t gfp_mask,
2949 int (*bio_ctr)(struct bio *, struct bio *, void *),
2950 void *data)
2952 struct bio *bio, *bio_src;
2954 if (!bs)
2955 bs = fs_bio_set;
2957 __rq_for_each_bio(bio_src, rq_src) {
2958 bio = bio_clone_fast(bio_src, gfp_mask, bs);
2959 if (!bio)
2960 goto free_and_out;
2962 if (bio_ctr && bio_ctr(bio, bio_src, data))
2963 goto free_and_out;
2965 if (rq->bio) {
2966 rq->biotail->bi_next = bio;
2967 rq->biotail = bio;
2968 } else
2969 rq->bio = rq->biotail = bio;
2972 __blk_rq_prep_clone(rq, rq_src);
2974 return 0;
2976 free_and_out:
2977 if (bio)
2978 bio_put(bio);
2979 blk_rq_unprep_clone(rq);
2981 return -ENOMEM;
2983 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
2985 int kblockd_schedule_work(struct work_struct *work)
2987 return queue_work(kblockd_workqueue, work);
2989 EXPORT_SYMBOL(kblockd_schedule_work);
2991 int kblockd_schedule_delayed_work(struct delayed_work *dwork,
2992 unsigned long delay)
2994 return queue_delayed_work(kblockd_workqueue, dwork, delay);
2996 EXPORT_SYMBOL(kblockd_schedule_delayed_work);
2998 int kblockd_schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
2999 unsigned long delay)
3001 return queue_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
3003 EXPORT_SYMBOL(kblockd_schedule_delayed_work_on);
3006 * blk_start_plug - initialize blk_plug and track it inside the task_struct
3007 * @plug: The &struct blk_plug that needs to be initialized
3009 * Description:
3010 * Tracking blk_plug inside the task_struct will help with auto-flushing the
3011 * pending I/O should the task end up blocking between blk_start_plug() and
3012 * blk_finish_plug(). This is important from a performance perspective, but
3013 * also ensures that we don't deadlock. For instance, if the task is blocking
3014 * for a memory allocation, memory reclaim could end up wanting to free a
3015 * page belonging to that request that is currently residing in our private
3016 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
3017 * this kind of deadlock.
3019 void blk_start_plug(struct blk_plug *plug)
3021 struct task_struct *tsk = current;
3023 INIT_LIST_HEAD(&plug->list);
3024 INIT_LIST_HEAD(&plug->mq_list);
3025 INIT_LIST_HEAD(&plug->cb_list);
3028 * If this is a nested plug, don't actually assign it. It will be
3029 * flushed on its own.
3031 if (!tsk->plug) {
3033 * Store ordering should not be needed here, since a potential
3034 * preempt will imply a full memory barrier
3036 tsk->plug = plug;
3039 EXPORT_SYMBOL(blk_start_plug);
3041 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
3043 struct request *rqa = container_of(a, struct request, queuelist);
3044 struct request *rqb = container_of(b, struct request, queuelist);
3046 return !(rqa->q < rqb->q ||
3047 (rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb)));
3051 * If 'from_schedule' is true, then postpone the dispatch of requests
3052 * until a safe kblockd context. We due this to avoid accidental big
3053 * additional stack usage in driver dispatch, in places where the originally
3054 * plugger did not intend it.
3056 static void queue_unplugged(struct request_queue *q, unsigned int depth,
3057 bool from_schedule)
3058 __releases(q->queue_lock)
3060 trace_block_unplug(q, depth, !from_schedule);
3062 if (from_schedule)
3063 blk_run_queue_async(q);
3064 else
3065 __blk_run_queue(q);
3066 spin_unlock(q->queue_lock);
3069 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
3071 LIST_HEAD(callbacks);
3073 while (!list_empty(&plug->cb_list)) {
3074 list_splice_init(&plug->cb_list, &callbacks);
3076 while (!list_empty(&callbacks)) {
3077 struct blk_plug_cb *cb = list_first_entry(&callbacks,
3078 struct blk_plug_cb,
3079 list);
3080 list_del(&cb->list);
3081 cb->callback(cb, from_schedule);
3086 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
3087 int size)
3089 struct blk_plug *plug = current->plug;
3090 struct blk_plug_cb *cb;
3092 if (!plug)
3093 return NULL;
3095 list_for_each_entry(cb, &plug->cb_list, list)
3096 if (cb->callback == unplug && cb->data == data)
3097 return cb;
3099 /* Not currently on the callback list */
3100 BUG_ON(size < sizeof(*cb));
3101 cb = kzalloc(size, GFP_ATOMIC);
3102 if (cb) {
3103 cb->data = data;
3104 cb->callback = unplug;
3105 list_add(&cb->list, &plug->cb_list);
3107 return cb;
3109 EXPORT_SYMBOL(blk_check_plugged);
3111 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
3113 struct request_queue *q;
3114 unsigned long flags;
3115 struct request *rq;
3116 LIST_HEAD(list);
3117 unsigned int depth;
3119 flush_plug_callbacks(plug, from_schedule);
3121 if (!list_empty(&plug->mq_list))
3122 blk_mq_flush_plug_list(plug, from_schedule);
3124 if (list_empty(&plug->list))
3125 return;
3127 list_splice_init(&plug->list, &list);
3129 list_sort(NULL, &list, plug_rq_cmp);
3131 q = NULL;
3132 depth = 0;
3135 * Save and disable interrupts here, to avoid doing it for every
3136 * queue lock we have to take.
3138 local_irq_save(flags);
3139 while (!list_empty(&list)) {
3140 rq = list_entry_rq(list.next);
3141 list_del_init(&rq->queuelist);
3142 BUG_ON(!rq->q);
3143 if (rq->q != q) {
3145 * This drops the queue lock
3147 if (q)
3148 queue_unplugged(q, depth, from_schedule);
3149 q = rq->q;
3150 depth = 0;
3151 spin_lock(q->queue_lock);
3155 * Short-circuit if @q is dead
3157 if (unlikely(blk_queue_dying(q))) {
3158 __blk_end_request_all(rq, -ENODEV);
3159 continue;
3163 * rq is already accounted, so use raw insert
3165 if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA))
3166 __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
3167 else
3168 __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
3170 depth++;
3174 * This drops the queue lock
3176 if (q)
3177 queue_unplugged(q, depth, from_schedule);
3179 local_irq_restore(flags);
3182 void blk_finish_plug(struct blk_plug *plug)
3184 blk_flush_plug_list(plug, false);
3186 if (plug == current->plug)
3187 current->plug = NULL;
3189 EXPORT_SYMBOL(blk_finish_plug);
3191 #ifdef CONFIG_PM
3193 * blk_pm_runtime_init - Block layer runtime PM initialization routine
3194 * @q: the queue of the device
3195 * @dev: the device the queue belongs to
3197 * Description:
3198 * Initialize runtime-PM-related fields for @q and start auto suspend for
3199 * @dev. Drivers that want to take advantage of request-based runtime PM
3200 * should call this function after @dev has been initialized, and its
3201 * request queue @q has been allocated, and runtime PM for it can not happen
3202 * yet(either due to disabled/forbidden or its usage_count > 0). In most
3203 * cases, driver should call this function before any I/O has taken place.
3205 * This function takes care of setting up using auto suspend for the device,
3206 * the autosuspend delay is set to -1 to make runtime suspend impossible
3207 * until an updated value is either set by user or by driver. Drivers do
3208 * not need to touch other autosuspend settings.
3210 * The block layer runtime PM is request based, so only works for drivers
3211 * that use request as their IO unit instead of those directly use bio's.
3213 void blk_pm_runtime_init(struct request_queue *q, struct device *dev)
3215 q->dev = dev;
3216 q->rpm_status = RPM_ACTIVE;
3217 pm_runtime_set_autosuspend_delay(q->dev, -1);
3218 pm_runtime_use_autosuspend(q->dev);
3220 EXPORT_SYMBOL(blk_pm_runtime_init);
3223 * blk_pre_runtime_suspend - Pre runtime suspend check
3224 * @q: the queue of the device
3226 * Description:
3227 * This function will check if runtime suspend is allowed for the device
3228 * by examining if there are any requests pending in the queue. If there
3229 * are requests pending, the device can not be runtime suspended; otherwise,
3230 * the queue's status will be updated to SUSPENDING and the driver can
3231 * proceed to suspend the device.
3233 * For the not allowed case, we mark last busy for the device so that
3234 * runtime PM core will try to autosuspend it some time later.
3236 * This function should be called near the start of the device's
3237 * runtime_suspend callback.
3239 * Return:
3240 * 0 - OK to runtime suspend the device
3241 * -EBUSY - Device should not be runtime suspended
3243 int blk_pre_runtime_suspend(struct request_queue *q)
3245 int ret = 0;
3247 spin_lock_irq(q->queue_lock);
3248 if (q->nr_pending) {
3249 ret = -EBUSY;
3250 pm_runtime_mark_last_busy(q->dev);
3251 } else {
3252 q->rpm_status = RPM_SUSPENDING;
3254 spin_unlock_irq(q->queue_lock);
3255 return ret;
3257 EXPORT_SYMBOL(blk_pre_runtime_suspend);
3260 * blk_post_runtime_suspend - Post runtime suspend processing
3261 * @q: the queue of the device
3262 * @err: return value of the device's runtime_suspend function
3264 * Description:
3265 * Update the queue's runtime status according to the return value of the
3266 * device's runtime suspend function and mark last busy for the device so
3267 * that PM core will try to auto suspend the device at a later time.
3269 * This function should be called near the end of the device's
3270 * runtime_suspend callback.
3272 void blk_post_runtime_suspend(struct request_queue *q, int err)
3274 spin_lock_irq(q->queue_lock);
3275 if (!err) {
3276 q->rpm_status = RPM_SUSPENDED;
3277 } else {
3278 q->rpm_status = RPM_ACTIVE;
3279 pm_runtime_mark_last_busy(q->dev);
3281 spin_unlock_irq(q->queue_lock);
3283 EXPORT_SYMBOL(blk_post_runtime_suspend);
3286 * blk_pre_runtime_resume - Pre runtime resume processing
3287 * @q: the queue of the device
3289 * Description:
3290 * Update the queue's runtime status to RESUMING in preparation for the
3291 * runtime resume of the device.
3293 * This function should be called near the start of the device's
3294 * runtime_resume callback.
3296 void blk_pre_runtime_resume(struct request_queue *q)
3298 spin_lock_irq(q->queue_lock);
3299 q->rpm_status = RPM_RESUMING;
3300 spin_unlock_irq(q->queue_lock);
3302 EXPORT_SYMBOL(blk_pre_runtime_resume);
3305 * blk_post_runtime_resume - Post runtime resume processing
3306 * @q: the queue of the device
3307 * @err: return value of the device's runtime_resume function
3309 * Description:
3310 * Update the queue's runtime status according to the return value of the
3311 * device's runtime_resume function. If it is successfully resumed, process
3312 * the requests that are queued into the device's queue when it is resuming
3313 * and then mark last busy and initiate autosuspend for it.
3315 * This function should be called near the end of the device's
3316 * runtime_resume callback.
3318 void blk_post_runtime_resume(struct request_queue *q, int err)
3320 spin_lock_irq(q->queue_lock);
3321 if (!err) {
3322 q->rpm_status = RPM_ACTIVE;
3323 __blk_run_queue(q);
3324 pm_runtime_mark_last_busy(q->dev);
3325 pm_request_autosuspend(q->dev);
3326 } else {
3327 q->rpm_status = RPM_SUSPENDED;
3329 spin_unlock_irq(q->queue_lock);
3331 EXPORT_SYMBOL(blk_post_runtime_resume);
3332 #endif
3334 int __init blk_dev_init(void)
3336 BUILD_BUG_ON(__REQ_NR_BITS > 8 *
3337 sizeof(((struct request *)0)->cmd_flags));
3339 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
3340 kblockd_workqueue = alloc_workqueue("kblockd",
3341 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
3342 if (!kblockd_workqueue)
3343 panic("Failed to create kblockd\n");
3345 request_cachep = kmem_cache_create("blkdev_requests",
3346 sizeof(struct request), 0, SLAB_PANIC, NULL);
3348 blk_requestq_cachep = kmem_cache_create("blkdev_queue",
3349 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
3351 return 0;