x86/vdso: Fix 'make bzImage' on older distros
[linux/fpc-iii.git] / lib / rhashtable.c
blobb5344ef4c6846c4f9256c1d0d418f774284c8fcc
1 /*
2 * Resizable, Scalable, Concurrent Hash Table
4 * Copyright (c) 2014-2015 Thomas Graf <tgraf@suug.ch>
5 * Copyright (c) 2008-2014 Patrick McHardy <kaber@trash.net>
7 * Based on the following paper:
8 * https://www.usenix.org/legacy/event/atc11/tech/final_files/Triplett.pdf
10 * Code partially derived from nft_hash
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License version 2 as
14 * published by the Free Software Foundation.
17 #include <linux/kernel.h>
18 #include <linux/init.h>
19 #include <linux/log2.h>
20 #include <linux/sched.h>
21 #include <linux/slab.h>
22 #include <linux/vmalloc.h>
23 #include <linux/mm.h>
24 #include <linux/jhash.h>
25 #include <linux/random.h>
26 #include <linux/rhashtable.h>
27 #include <linux/err.h>
29 #define HASH_DEFAULT_SIZE 64UL
30 #define HASH_MIN_SIZE 4UL
31 #define BUCKET_LOCKS_PER_CPU 128UL
33 /* Base bits plus 1 bit for nulls marker */
34 #define HASH_RESERVED_SPACE (RHT_BASE_BITS + 1)
36 enum {
37 RHT_LOCK_NORMAL,
38 RHT_LOCK_NESTED,
41 /* The bucket lock is selected based on the hash and protects mutations
42 * on a group of hash buckets.
44 * A maximum of tbl->size/2 bucket locks is allocated. This ensures that
45 * a single lock always covers both buckets which may both contains
46 * entries which link to the same bucket of the old table during resizing.
47 * This allows to simplify the locking as locking the bucket in both
48 * tables during resize always guarantee protection.
50 * IMPORTANT: When holding the bucket lock of both the old and new table
51 * during expansions and shrinking, the old bucket lock must always be
52 * acquired first.
54 static spinlock_t *bucket_lock(const struct bucket_table *tbl, u32 hash)
56 return &tbl->locks[hash & tbl->locks_mask];
59 static void *rht_obj(const struct rhashtable *ht, const struct rhash_head *he)
61 return (void *) he - ht->p.head_offset;
64 static u32 rht_bucket_index(const struct bucket_table *tbl, u32 hash)
66 return hash & (tbl->size - 1);
69 static u32 obj_raw_hashfn(const struct rhashtable *ht, const void *ptr)
71 u32 hash;
73 if (unlikely(!ht->p.key_len))
74 hash = ht->p.obj_hashfn(ptr, ht->p.hash_rnd);
75 else
76 hash = ht->p.hashfn(ptr + ht->p.key_offset, ht->p.key_len,
77 ht->p.hash_rnd);
79 return hash >> HASH_RESERVED_SPACE;
82 static u32 key_hashfn(struct rhashtable *ht, const void *key, u32 len)
84 return ht->p.hashfn(key, len, ht->p.hash_rnd) >> HASH_RESERVED_SPACE;
87 static u32 head_hashfn(const struct rhashtable *ht,
88 const struct bucket_table *tbl,
89 const struct rhash_head *he)
91 return rht_bucket_index(tbl, obj_raw_hashfn(ht, rht_obj(ht, he)));
94 #ifdef CONFIG_PROVE_LOCKING
95 static void debug_dump_buckets(const struct rhashtable *ht,
96 const struct bucket_table *tbl)
98 struct rhash_head *he;
99 unsigned int i, hash;
101 for (i = 0; i < tbl->size; i++) {
102 pr_warn(" [Bucket %d] ", i);
103 rht_for_each_rcu(he, tbl, i) {
104 hash = head_hashfn(ht, tbl, he);
105 pr_cont("[hash = %#x, lock = %p] ",
106 hash, bucket_lock(tbl, hash));
108 pr_cont("\n");
113 static void debug_dump_table(struct rhashtable *ht,
114 const struct bucket_table *tbl,
115 unsigned int hash)
117 struct bucket_table *old_tbl, *future_tbl;
119 pr_emerg("BUG: lock for hash %#x in table %p not held\n",
120 hash, tbl);
122 rcu_read_lock();
123 future_tbl = rht_dereference_rcu(ht->future_tbl, ht);
124 old_tbl = rht_dereference_rcu(ht->tbl, ht);
125 if (future_tbl != old_tbl) {
126 pr_warn("Future table %p (size: %zd)\n",
127 future_tbl, future_tbl->size);
128 debug_dump_buckets(ht, future_tbl);
131 pr_warn("Table %p (size: %zd)\n", old_tbl, old_tbl->size);
132 debug_dump_buckets(ht, old_tbl);
134 rcu_read_unlock();
137 #define ASSERT_RHT_MUTEX(HT) BUG_ON(!lockdep_rht_mutex_is_held(HT))
138 #define ASSERT_BUCKET_LOCK(HT, TBL, HASH) \
139 do { \
140 if (unlikely(!lockdep_rht_bucket_is_held(TBL, HASH))) { \
141 debug_dump_table(HT, TBL, HASH); \
142 BUG(); \
144 } while (0)
146 int lockdep_rht_mutex_is_held(struct rhashtable *ht)
148 return (debug_locks) ? lockdep_is_held(&ht->mutex) : 1;
150 EXPORT_SYMBOL_GPL(lockdep_rht_mutex_is_held);
152 int lockdep_rht_bucket_is_held(const struct bucket_table *tbl, u32 hash)
154 spinlock_t *lock = bucket_lock(tbl, hash);
156 return (debug_locks) ? lockdep_is_held(lock) : 1;
158 EXPORT_SYMBOL_GPL(lockdep_rht_bucket_is_held);
159 #else
160 #define ASSERT_RHT_MUTEX(HT)
161 #define ASSERT_BUCKET_LOCK(HT, TBL, HASH)
162 #endif
165 static struct rhash_head __rcu **bucket_tail(struct bucket_table *tbl, u32 n)
167 struct rhash_head __rcu **pprev;
169 for (pprev = &tbl->buckets[n];
170 !rht_is_a_nulls(rht_dereference_bucket(*pprev, tbl, n));
171 pprev = &rht_dereference_bucket(*pprev, tbl, n)->next)
174 return pprev;
177 static int alloc_bucket_locks(struct rhashtable *ht, struct bucket_table *tbl)
179 unsigned int i, size;
180 #if defined(CONFIG_PROVE_LOCKING)
181 unsigned int nr_pcpus = 2;
182 #else
183 unsigned int nr_pcpus = num_possible_cpus();
184 #endif
186 nr_pcpus = min_t(unsigned int, nr_pcpus, 32UL);
187 size = roundup_pow_of_two(nr_pcpus * ht->p.locks_mul);
189 /* Never allocate more than 0.5 locks per bucket */
190 size = min_t(unsigned int, size, tbl->size >> 1);
192 if (sizeof(spinlock_t) != 0) {
193 #ifdef CONFIG_NUMA
194 if (size * sizeof(spinlock_t) > PAGE_SIZE)
195 tbl->locks = vmalloc(size * sizeof(spinlock_t));
196 else
197 #endif
198 tbl->locks = kmalloc_array(size, sizeof(spinlock_t),
199 GFP_KERNEL);
200 if (!tbl->locks)
201 return -ENOMEM;
202 for (i = 0; i < size; i++)
203 spin_lock_init(&tbl->locks[i]);
205 tbl->locks_mask = size - 1;
207 return 0;
210 static void bucket_table_free(const struct bucket_table *tbl)
212 if (tbl)
213 kvfree(tbl->locks);
215 kvfree(tbl);
218 static struct bucket_table *bucket_table_alloc(struct rhashtable *ht,
219 size_t nbuckets)
221 struct bucket_table *tbl = NULL;
222 size_t size;
223 int i;
225 size = sizeof(*tbl) + nbuckets * sizeof(tbl->buckets[0]);
226 if (size <= (PAGE_SIZE << PAGE_ALLOC_COSTLY_ORDER))
227 tbl = kzalloc(size, GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY);
228 if (tbl == NULL)
229 tbl = vzalloc(size);
230 if (tbl == NULL)
231 return NULL;
233 tbl->size = nbuckets;
235 if (alloc_bucket_locks(ht, tbl) < 0) {
236 bucket_table_free(tbl);
237 return NULL;
240 for (i = 0; i < nbuckets; i++)
241 INIT_RHT_NULLS_HEAD(tbl->buckets[i], ht, i);
243 return tbl;
247 * rht_grow_above_75 - returns true if nelems > 0.75 * table-size
248 * @ht: hash table
249 * @new_size: new table size
251 static bool rht_grow_above_75(const struct rhashtable *ht, size_t new_size)
253 /* Expand table when exceeding 75% load */
254 return atomic_read(&ht->nelems) > (new_size / 4 * 3) &&
255 (!ht->p.max_shift || atomic_read(&ht->shift) < ht->p.max_shift);
259 * rht_shrink_below_30 - returns true if nelems < 0.3 * table-size
260 * @ht: hash table
261 * @new_size: new table size
263 static bool rht_shrink_below_30(const struct rhashtable *ht, size_t new_size)
265 /* Shrink table beneath 30% load */
266 return atomic_read(&ht->nelems) < (new_size * 3 / 10) &&
267 (atomic_read(&ht->shift) > ht->p.min_shift);
270 static void lock_buckets(struct bucket_table *new_tbl,
271 struct bucket_table *old_tbl, unsigned int hash)
272 __acquires(old_bucket_lock)
274 spin_lock_bh(bucket_lock(old_tbl, hash));
275 if (new_tbl != old_tbl)
276 spin_lock_bh_nested(bucket_lock(new_tbl, hash),
277 RHT_LOCK_NESTED);
280 static void unlock_buckets(struct bucket_table *new_tbl,
281 struct bucket_table *old_tbl, unsigned int hash)
282 __releases(old_bucket_lock)
284 if (new_tbl != old_tbl)
285 spin_unlock_bh(bucket_lock(new_tbl, hash));
286 spin_unlock_bh(bucket_lock(old_tbl, hash));
290 * Unlink entries on bucket which hash to different bucket.
292 * Returns true if no more work needs to be performed on the bucket.
294 static bool hashtable_chain_unzip(struct rhashtable *ht,
295 const struct bucket_table *new_tbl,
296 struct bucket_table *old_tbl,
297 size_t old_hash)
299 struct rhash_head *he, *p, *next;
300 unsigned int new_hash, new_hash2;
302 ASSERT_BUCKET_LOCK(ht, old_tbl, old_hash);
304 /* Old bucket empty, no work needed. */
305 p = rht_dereference_bucket(old_tbl->buckets[old_hash], old_tbl,
306 old_hash);
307 if (rht_is_a_nulls(p))
308 return false;
310 new_hash = head_hashfn(ht, new_tbl, p);
311 ASSERT_BUCKET_LOCK(ht, new_tbl, new_hash);
313 /* Advance the old bucket pointer one or more times until it
314 * reaches a node that doesn't hash to the same bucket as the
315 * previous node p. Call the previous node p;
317 rht_for_each_continue(he, p->next, old_tbl, old_hash) {
318 new_hash2 = head_hashfn(ht, new_tbl, he);
319 ASSERT_BUCKET_LOCK(ht, new_tbl, new_hash2);
321 if (new_hash != new_hash2)
322 break;
323 p = he;
325 rcu_assign_pointer(old_tbl->buckets[old_hash], p->next);
327 /* Find the subsequent node which does hash to the same
328 * bucket as node P, or NULL if no such node exists.
330 INIT_RHT_NULLS_HEAD(next, ht, old_hash);
331 if (!rht_is_a_nulls(he)) {
332 rht_for_each_continue(he, he->next, old_tbl, old_hash) {
333 if (head_hashfn(ht, new_tbl, he) == new_hash) {
334 next = he;
335 break;
340 /* Set p's next pointer to that subsequent node pointer,
341 * bypassing the nodes which do not hash to p's bucket
343 rcu_assign_pointer(p->next, next);
345 p = rht_dereference_bucket(old_tbl->buckets[old_hash], old_tbl,
346 old_hash);
348 return !rht_is_a_nulls(p);
351 static void link_old_to_new(struct rhashtable *ht, struct bucket_table *new_tbl,
352 unsigned int new_hash, struct rhash_head *entry)
354 ASSERT_BUCKET_LOCK(ht, new_tbl, new_hash);
356 rcu_assign_pointer(*bucket_tail(new_tbl, new_hash), entry);
360 * rhashtable_expand - Expand hash table while allowing concurrent lookups
361 * @ht: the hash table to expand
363 * A secondary bucket array is allocated and the hash entries are migrated
364 * while keeping them on both lists until the end of the RCU grace period.
366 * This function may only be called in a context where it is safe to call
367 * synchronize_rcu(), e.g. not within a rcu_read_lock() section.
369 * The caller must ensure that no concurrent resizing occurs by holding
370 * ht->mutex.
372 * It is valid to have concurrent insertions and deletions protected by per
373 * bucket locks or concurrent RCU protected lookups and traversals.
375 int rhashtable_expand(struct rhashtable *ht)
377 struct bucket_table *new_tbl, *old_tbl = rht_dereference(ht->tbl, ht);
378 struct rhash_head *he;
379 unsigned int new_hash, old_hash;
380 bool complete = false;
382 ASSERT_RHT_MUTEX(ht);
384 new_tbl = bucket_table_alloc(ht, old_tbl->size * 2);
385 if (new_tbl == NULL)
386 return -ENOMEM;
388 atomic_inc(&ht->shift);
390 /* Make insertions go into the new, empty table right away. Deletions
391 * and lookups will be attempted in both tables until we synchronize.
392 * The synchronize_rcu() guarantees for the new table to be picked up
393 * so no new additions go into the old table while we relink.
395 rcu_assign_pointer(ht->future_tbl, new_tbl);
396 synchronize_rcu();
398 /* For each new bucket, search the corresponding old bucket for the
399 * first entry that hashes to the new bucket, and link the end of
400 * newly formed bucket chain (containing entries added to future
401 * table) to that entry. Since all the entries which will end up in
402 * the new bucket appear in the same old bucket, this constructs an
403 * entirely valid new hash table, but with multiple buckets
404 * "zipped" together into a single imprecise chain.
406 for (new_hash = 0; new_hash < new_tbl->size; new_hash++) {
407 old_hash = rht_bucket_index(old_tbl, new_hash);
408 lock_buckets(new_tbl, old_tbl, new_hash);
409 rht_for_each(he, old_tbl, old_hash) {
410 if (head_hashfn(ht, new_tbl, he) == new_hash) {
411 link_old_to_new(ht, new_tbl, new_hash, he);
412 break;
415 unlock_buckets(new_tbl, old_tbl, new_hash);
416 cond_resched();
419 /* Unzip interleaved hash chains */
420 while (!complete && !ht->being_destroyed) {
421 /* Wait for readers. All new readers will see the new
422 * table, and thus no references to the old table will
423 * remain.
425 synchronize_rcu();
427 /* For each bucket in the old table (each of which
428 * contains items from multiple buckets of the new
429 * table): ...
431 complete = true;
432 for (old_hash = 0; old_hash < old_tbl->size; old_hash++) {
433 lock_buckets(new_tbl, old_tbl, old_hash);
435 if (hashtable_chain_unzip(ht, new_tbl, old_tbl,
436 old_hash))
437 complete = false;
439 unlock_buckets(new_tbl, old_tbl, old_hash);
440 cond_resched();
444 rcu_assign_pointer(ht->tbl, new_tbl);
445 synchronize_rcu();
447 bucket_table_free(old_tbl);
448 return 0;
450 EXPORT_SYMBOL_GPL(rhashtable_expand);
453 * rhashtable_shrink - Shrink hash table while allowing concurrent lookups
454 * @ht: the hash table to shrink
456 * This function may only be called in a context where it is safe to call
457 * synchronize_rcu(), e.g. not within a rcu_read_lock() section.
459 * The caller must ensure that no concurrent resizing occurs by holding
460 * ht->mutex.
462 * The caller must ensure that no concurrent table mutations take place.
463 * It is however valid to have concurrent lookups if they are RCU protected.
465 * It is valid to have concurrent insertions and deletions protected by per
466 * bucket locks or concurrent RCU protected lookups and traversals.
468 int rhashtable_shrink(struct rhashtable *ht)
470 struct bucket_table *new_tbl, *tbl = rht_dereference(ht->tbl, ht);
471 unsigned int new_hash;
473 ASSERT_RHT_MUTEX(ht);
475 new_tbl = bucket_table_alloc(ht, tbl->size / 2);
476 if (new_tbl == NULL)
477 return -ENOMEM;
479 rcu_assign_pointer(ht->future_tbl, new_tbl);
480 synchronize_rcu();
482 /* Link the first entry in the old bucket to the end of the
483 * bucket in the new table. As entries are concurrently being
484 * added to the new table, lock down the new bucket. As we
485 * always divide the size in half when shrinking, each bucket
486 * in the new table maps to exactly two buckets in the old
487 * table.
489 for (new_hash = 0; new_hash < new_tbl->size; new_hash++) {
490 lock_buckets(new_tbl, tbl, new_hash);
492 rcu_assign_pointer(*bucket_tail(new_tbl, new_hash),
493 tbl->buckets[new_hash]);
494 ASSERT_BUCKET_LOCK(ht, tbl, new_hash + new_tbl->size);
495 rcu_assign_pointer(*bucket_tail(new_tbl, new_hash),
496 tbl->buckets[new_hash + new_tbl->size]);
498 unlock_buckets(new_tbl, tbl, new_hash);
499 cond_resched();
502 /* Publish the new, valid hash table */
503 rcu_assign_pointer(ht->tbl, new_tbl);
504 atomic_dec(&ht->shift);
506 /* Wait for readers. No new readers will have references to the
507 * old hash table.
509 synchronize_rcu();
511 bucket_table_free(tbl);
513 return 0;
515 EXPORT_SYMBOL_GPL(rhashtable_shrink);
517 static void rht_deferred_worker(struct work_struct *work)
519 struct rhashtable *ht;
520 struct bucket_table *tbl;
521 struct rhashtable_walker *walker;
523 ht = container_of(work, struct rhashtable, run_work);
524 mutex_lock(&ht->mutex);
525 if (ht->being_destroyed)
526 goto unlock;
528 tbl = rht_dereference(ht->tbl, ht);
530 list_for_each_entry(walker, &ht->walkers, list)
531 walker->resize = true;
533 if (rht_grow_above_75(ht, tbl->size))
534 rhashtable_expand(ht);
535 else if (rht_shrink_below_30(ht, tbl->size))
536 rhashtable_shrink(ht);
537 unlock:
538 mutex_unlock(&ht->mutex);
541 static void __rhashtable_insert(struct rhashtable *ht, struct rhash_head *obj,
542 struct bucket_table *tbl,
543 const struct bucket_table *old_tbl, u32 hash)
545 bool no_resize_running = tbl == old_tbl;
546 struct rhash_head *head;
548 hash = rht_bucket_index(tbl, hash);
549 head = rht_dereference_bucket(tbl->buckets[hash], tbl, hash);
551 ASSERT_BUCKET_LOCK(ht, tbl, hash);
553 if (rht_is_a_nulls(head))
554 INIT_RHT_NULLS_HEAD(obj->next, ht, hash);
555 else
556 RCU_INIT_POINTER(obj->next, head);
558 rcu_assign_pointer(tbl->buckets[hash], obj);
560 atomic_inc(&ht->nelems);
561 if (no_resize_running && rht_grow_above_75(ht, tbl->size))
562 schedule_work(&ht->run_work);
566 * rhashtable_insert - insert object into hash table
567 * @ht: hash table
568 * @obj: pointer to hash head inside object
570 * Will take a per bucket spinlock to protect against mutual mutations
571 * on the same bucket. Multiple insertions may occur in parallel unless
572 * they map to the same bucket lock.
574 * It is safe to call this function from atomic context.
576 * Will trigger an automatic deferred table resizing if the size grows
577 * beyond the watermark indicated by grow_decision() which can be passed
578 * to rhashtable_init().
580 void rhashtable_insert(struct rhashtable *ht, struct rhash_head *obj)
582 struct bucket_table *tbl, *old_tbl;
583 unsigned hash;
585 rcu_read_lock();
587 tbl = rht_dereference_rcu(ht->future_tbl, ht);
588 old_tbl = rht_dereference_rcu(ht->tbl, ht);
589 hash = obj_raw_hashfn(ht, rht_obj(ht, obj));
591 lock_buckets(tbl, old_tbl, hash);
592 __rhashtable_insert(ht, obj, tbl, old_tbl, hash);
593 unlock_buckets(tbl, old_tbl, hash);
595 rcu_read_unlock();
597 EXPORT_SYMBOL_GPL(rhashtable_insert);
600 * rhashtable_remove - remove object from hash table
601 * @ht: hash table
602 * @obj: pointer to hash head inside object
604 * Since the hash chain is single linked, the removal operation needs to
605 * walk the bucket chain upon removal. The removal operation is thus
606 * considerable slow if the hash table is not correctly sized.
608 * Will automatically shrink the table via rhashtable_expand() if the
609 * shrink_decision function specified at rhashtable_init() returns true.
611 * The caller must ensure that no concurrent table mutations occur. It is
612 * however valid to have concurrent lookups if they are RCU protected.
614 bool rhashtable_remove(struct rhashtable *ht, struct rhash_head *obj)
616 struct bucket_table *tbl, *new_tbl, *old_tbl;
617 struct rhash_head __rcu **pprev;
618 struct rhash_head *he, *he2;
619 unsigned int hash, new_hash;
620 bool ret = false;
622 rcu_read_lock();
623 old_tbl = rht_dereference_rcu(ht->tbl, ht);
624 tbl = new_tbl = rht_dereference_rcu(ht->future_tbl, ht);
625 new_hash = obj_raw_hashfn(ht, rht_obj(ht, obj));
627 lock_buckets(new_tbl, old_tbl, new_hash);
628 restart:
629 hash = rht_bucket_index(tbl, new_hash);
630 pprev = &tbl->buckets[hash];
631 rht_for_each(he, tbl, hash) {
632 if (he != obj) {
633 pprev = &he->next;
634 continue;
637 ASSERT_BUCKET_LOCK(ht, tbl, hash);
639 if (old_tbl->size > new_tbl->size && tbl == old_tbl &&
640 !rht_is_a_nulls(obj->next) &&
641 head_hashfn(ht, tbl, obj->next) != hash) {
642 rcu_assign_pointer(*pprev, (struct rhash_head *) rht_marker(ht, hash));
643 } else if (unlikely(old_tbl->size < new_tbl->size && tbl == new_tbl)) {
644 rht_for_each_continue(he2, obj->next, tbl, hash) {
645 if (head_hashfn(ht, tbl, he2) == hash) {
646 rcu_assign_pointer(*pprev, he2);
647 goto found;
651 rcu_assign_pointer(*pprev, (struct rhash_head *) rht_marker(ht, hash));
652 } else {
653 rcu_assign_pointer(*pprev, obj->next);
656 found:
657 ret = true;
658 break;
661 /* The entry may be linked in either 'tbl', 'future_tbl', or both.
662 * 'future_tbl' only exists for a short period of time during
663 * resizing. Thus traversing both is fine and the added cost is
664 * very rare.
666 if (tbl != old_tbl) {
667 tbl = old_tbl;
668 goto restart;
671 unlock_buckets(new_tbl, old_tbl, new_hash);
673 if (ret) {
674 bool no_resize_running = new_tbl == old_tbl;
676 atomic_dec(&ht->nelems);
677 if (no_resize_running && rht_shrink_below_30(ht, new_tbl->size))
678 schedule_work(&ht->run_work);
681 rcu_read_unlock();
683 return ret;
685 EXPORT_SYMBOL_GPL(rhashtable_remove);
687 struct rhashtable_compare_arg {
688 struct rhashtable *ht;
689 const void *key;
692 static bool rhashtable_compare(void *ptr, void *arg)
694 struct rhashtable_compare_arg *x = arg;
695 struct rhashtable *ht = x->ht;
697 return !memcmp(ptr + ht->p.key_offset, x->key, ht->p.key_len);
701 * rhashtable_lookup - lookup key in hash table
702 * @ht: hash table
703 * @key: pointer to key
705 * Computes the hash value for the key and traverses the bucket chain looking
706 * for a entry with an identical key. The first matching entry is returned.
708 * This lookup function may only be used for fixed key hash table (key_len
709 * parameter set). It will BUG() if used inappropriately.
711 * Lookups may occur in parallel with hashtable mutations and resizing.
713 void *rhashtable_lookup(struct rhashtable *ht, const void *key)
715 struct rhashtable_compare_arg arg = {
716 .ht = ht,
717 .key = key,
720 BUG_ON(!ht->p.key_len);
722 return rhashtable_lookup_compare(ht, key, &rhashtable_compare, &arg);
724 EXPORT_SYMBOL_GPL(rhashtable_lookup);
727 * rhashtable_lookup_compare - search hash table with compare function
728 * @ht: hash table
729 * @key: the pointer to the key
730 * @compare: compare function, must return true on match
731 * @arg: argument passed on to compare function
733 * Traverses the bucket chain behind the provided hash value and calls the
734 * specified compare function for each entry.
736 * Lookups may occur in parallel with hashtable mutations and resizing.
738 * Returns the first entry on which the compare function returned true.
740 void *rhashtable_lookup_compare(struct rhashtable *ht, const void *key,
741 bool (*compare)(void *, void *), void *arg)
743 const struct bucket_table *tbl, *old_tbl;
744 struct rhash_head *he;
745 u32 hash;
747 rcu_read_lock();
749 old_tbl = rht_dereference_rcu(ht->tbl, ht);
750 tbl = rht_dereference_rcu(ht->future_tbl, ht);
751 hash = key_hashfn(ht, key, ht->p.key_len);
752 restart:
753 rht_for_each_rcu(he, tbl, rht_bucket_index(tbl, hash)) {
754 if (!compare(rht_obj(ht, he), arg))
755 continue;
756 rcu_read_unlock();
757 return rht_obj(ht, he);
760 if (unlikely(tbl != old_tbl)) {
761 tbl = old_tbl;
762 goto restart;
764 rcu_read_unlock();
766 return NULL;
768 EXPORT_SYMBOL_GPL(rhashtable_lookup_compare);
771 * rhashtable_lookup_insert - lookup and insert object into hash table
772 * @ht: hash table
773 * @obj: pointer to hash head inside object
775 * Locks down the bucket chain in both the old and new table if a resize
776 * is in progress to ensure that writers can't remove from the old table
777 * and can't insert to the new table during the atomic operation of search
778 * and insertion. Searches for duplicates in both the old and new table if
779 * a resize is in progress.
781 * This lookup function may only be used for fixed key hash table (key_len
782 * parameter set). It will BUG() if used inappropriately.
784 * It is safe to call this function from atomic context.
786 * Will trigger an automatic deferred table resizing if the size grows
787 * beyond the watermark indicated by grow_decision() which can be passed
788 * to rhashtable_init().
790 bool rhashtable_lookup_insert(struct rhashtable *ht, struct rhash_head *obj)
792 struct rhashtable_compare_arg arg = {
793 .ht = ht,
794 .key = rht_obj(ht, obj) + ht->p.key_offset,
797 BUG_ON(!ht->p.key_len);
799 return rhashtable_lookup_compare_insert(ht, obj, &rhashtable_compare,
800 &arg);
802 EXPORT_SYMBOL_GPL(rhashtable_lookup_insert);
805 * rhashtable_lookup_compare_insert - search and insert object to hash table
806 * with compare function
807 * @ht: hash table
808 * @obj: pointer to hash head inside object
809 * @compare: compare function, must return true on match
810 * @arg: argument passed on to compare function
812 * Locks down the bucket chain in both the old and new table if a resize
813 * is in progress to ensure that writers can't remove from the old table
814 * and can't insert to the new table during the atomic operation of search
815 * and insertion. Searches for duplicates in both the old and new table if
816 * a resize is in progress.
818 * Lookups may occur in parallel with hashtable mutations and resizing.
820 * Will trigger an automatic deferred table resizing if the size grows
821 * beyond the watermark indicated by grow_decision() which can be passed
822 * to rhashtable_init().
824 bool rhashtable_lookup_compare_insert(struct rhashtable *ht,
825 struct rhash_head *obj,
826 bool (*compare)(void *, void *),
827 void *arg)
829 struct bucket_table *new_tbl, *old_tbl;
830 u32 new_hash;
831 bool success = true;
833 BUG_ON(!ht->p.key_len);
835 rcu_read_lock();
836 old_tbl = rht_dereference_rcu(ht->tbl, ht);
837 new_tbl = rht_dereference_rcu(ht->future_tbl, ht);
838 new_hash = obj_raw_hashfn(ht, rht_obj(ht, obj));
840 lock_buckets(new_tbl, old_tbl, new_hash);
842 if (rhashtable_lookup_compare(ht, rht_obj(ht, obj) + ht->p.key_offset,
843 compare, arg)) {
844 success = false;
845 goto exit;
848 __rhashtable_insert(ht, obj, new_tbl, old_tbl, new_hash);
850 exit:
851 unlock_buckets(new_tbl, old_tbl, new_hash);
852 rcu_read_unlock();
854 return success;
856 EXPORT_SYMBOL_GPL(rhashtable_lookup_compare_insert);
859 * rhashtable_walk_init - Initialise an iterator
860 * @ht: Table to walk over
861 * @iter: Hash table Iterator
863 * This function prepares a hash table walk.
865 * Note that if you restart a walk after rhashtable_walk_stop you
866 * may see the same object twice. Also, you may miss objects if
867 * there are removals in between rhashtable_walk_stop and the next
868 * call to rhashtable_walk_start.
870 * For a completely stable walk you should construct your own data
871 * structure outside the hash table.
873 * This function may sleep so you must not call it from interrupt
874 * context or with spin locks held.
876 * You must call rhashtable_walk_exit if this function returns
877 * successfully.
879 int rhashtable_walk_init(struct rhashtable *ht, struct rhashtable_iter *iter)
881 iter->ht = ht;
882 iter->p = NULL;
883 iter->slot = 0;
884 iter->skip = 0;
886 iter->walker = kmalloc(sizeof(*iter->walker), GFP_KERNEL);
887 if (!iter->walker)
888 return -ENOMEM;
890 INIT_LIST_HEAD(&iter->walker->list);
891 iter->walker->resize = false;
893 mutex_lock(&ht->mutex);
894 list_add(&iter->walker->list, &ht->walkers);
895 mutex_unlock(&ht->mutex);
897 return 0;
899 EXPORT_SYMBOL_GPL(rhashtable_walk_init);
902 * rhashtable_walk_exit - Free an iterator
903 * @iter: Hash table Iterator
905 * This function frees resources allocated by rhashtable_walk_init.
907 void rhashtable_walk_exit(struct rhashtable_iter *iter)
909 mutex_lock(&iter->ht->mutex);
910 list_del(&iter->walker->list);
911 mutex_unlock(&iter->ht->mutex);
912 kfree(iter->walker);
914 EXPORT_SYMBOL_GPL(rhashtable_walk_exit);
917 * rhashtable_walk_start - Start a hash table walk
918 * @iter: Hash table iterator
920 * Start a hash table walk. Note that we take the RCU lock in all
921 * cases including when we return an error. So you must always call
922 * rhashtable_walk_stop to clean up.
924 * Returns zero if successful.
926 * Returns -EAGAIN if resize event occured. Note that the iterator
927 * will rewind back to the beginning and you may use it immediately
928 * by calling rhashtable_walk_next.
930 int rhashtable_walk_start(struct rhashtable_iter *iter)
932 rcu_read_lock();
934 if (iter->walker->resize) {
935 iter->slot = 0;
936 iter->skip = 0;
937 iter->walker->resize = false;
938 return -EAGAIN;
941 return 0;
943 EXPORT_SYMBOL_GPL(rhashtable_walk_start);
946 * rhashtable_walk_next - Return the next object and advance the iterator
947 * @iter: Hash table iterator
949 * Note that you must call rhashtable_walk_stop when you are finished
950 * with the walk.
952 * Returns the next object or NULL when the end of the table is reached.
954 * Returns -EAGAIN if resize event occured. Note that the iterator
955 * will rewind back to the beginning and you may continue to use it.
957 void *rhashtable_walk_next(struct rhashtable_iter *iter)
959 const struct bucket_table *tbl;
960 struct rhashtable *ht = iter->ht;
961 struct rhash_head *p = iter->p;
962 void *obj = NULL;
964 tbl = rht_dereference_rcu(ht->tbl, ht);
966 if (p) {
967 p = rht_dereference_bucket_rcu(p->next, tbl, iter->slot);
968 goto next;
971 for (; iter->slot < tbl->size; iter->slot++) {
972 int skip = iter->skip;
974 rht_for_each_rcu(p, tbl, iter->slot) {
975 if (!skip)
976 break;
977 skip--;
980 next:
981 if (!rht_is_a_nulls(p)) {
982 iter->skip++;
983 iter->p = p;
984 obj = rht_obj(ht, p);
985 goto out;
988 iter->skip = 0;
991 iter->p = NULL;
993 out:
994 if (iter->walker->resize) {
995 iter->p = NULL;
996 iter->slot = 0;
997 iter->skip = 0;
998 iter->walker->resize = false;
999 return ERR_PTR(-EAGAIN);
1002 return obj;
1004 EXPORT_SYMBOL_GPL(rhashtable_walk_next);
1007 * rhashtable_walk_stop - Finish a hash table walk
1008 * @iter: Hash table iterator
1010 * Finish a hash table walk.
1012 void rhashtable_walk_stop(struct rhashtable_iter *iter)
1014 rcu_read_unlock();
1015 iter->p = NULL;
1017 EXPORT_SYMBOL_GPL(rhashtable_walk_stop);
1019 static size_t rounded_hashtable_size(struct rhashtable_params *params)
1021 return max(roundup_pow_of_two(params->nelem_hint * 4 / 3),
1022 1UL << params->min_shift);
1026 * rhashtable_init - initialize a new hash table
1027 * @ht: hash table to be initialized
1028 * @params: configuration parameters
1030 * Initializes a new hash table based on the provided configuration
1031 * parameters. A table can be configured either with a variable or
1032 * fixed length key:
1034 * Configuration Example 1: Fixed length keys
1035 * struct test_obj {
1036 * int key;
1037 * void * my_member;
1038 * struct rhash_head node;
1039 * };
1041 * struct rhashtable_params params = {
1042 * .head_offset = offsetof(struct test_obj, node),
1043 * .key_offset = offsetof(struct test_obj, key),
1044 * .key_len = sizeof(int),
1045 * .hashfn = jhash,
1046 * .nulls_base = (1U << RHT_BASE_SHIFT),
1047 * };
1049 * Configuration Example 2: Variable length keys
1050 * struct test_obj {
1051 * [...]
1052 * struct rhash_head node;
1053 * };
1055 * u32 my_hash_fn(const void *data, u32 seed)
1057 * struct test_obj *obj = data;
1059 * return [... hash ...];
1062 * struct rhashtable_params params = {
1063 * .head_offset = offsetof(struct test_obj, node),
1064 * .hashfn = jhash,
1065 * .obj_hashfn = my_hash_fn,
1066 * };
1068 int rhashtable_init(struct rhashtable *ht, struct rhashtable_params *params)
1070 struct bucket_table *tbl;
1071 size_t size;
1073 size = HASH_DEFAULT_SIZE;
1075 if ((params->key_len && !params->hashfn) ||
1076 (!params->key_len && !params->obj_hashfn))
1077 return -EINVAL;
1079 if (params->nulls_base && params->nulls_base < (1U << RHT_BASE_SHIFT))
1080 return -EINVAL;
1082 params->min_shift = max_t(size_t, params->min_shift,
1083 ilog2(HASH_MIN_SIZE));
1085 if (params->nelem_hint)
1086 size = rounded_hashtable_size(params);
1088 memset(ht, 0, sizeof(*ht));
1089 mutex_init(&ht->mutex);
1090 memcpy(&ht->p, params, sizeof(*params));
1091 INIT_LIST_HEAD(&ht->walkers);
1093 if (params->locks_mul)
1094 ht->p.locks_mul = roundup_pow_of_two(params->locks_mul);
1095 else
1096 ht->p.locks_mul = BUCKET_LOCKS_PER_CPU;
1098 tbl = bucket_table_alloc(ht, size);
1099 if (tbl == NULL)
1100 return -ENOMEM;
1102 atomic_set(&ht->nelems, 0);
1103 atomic_set(&ht->shift, ilog2(tbl->size));
1104 RCU_INIT_POINTER(ht->tbl, tbl);
1105 RCU_INIT_POINTER(ht->future_tbl, tbl);
1107 if (!ht->p.hash_rnd)
1108 get_random_bytes(&ht->p.hash_rnd, sizeof(ht->p.hash_rnd));
1110 INIT_WORK(&ht->run_work, rht_deferred_worker);
1112 return 0;
1114 EXPORT_SYMBOL_GPL(rhashtable_init);
1117 * rhashtable_destroy - destroy hash table
1118 * @ht: the hash table to destroy
1120 * Frees the bucket array. This function is not rcu safe, therefore the caller
1121 * has to make sure that no resizing may happen by unpublishing the hashtable
1122 * and waiting for the quiescent cycle before releasing the bucket array.
1124 void rhashtable_destroy(struct rhashtable *ht)
1126 ht->being_destroyed = true;
1128 cancel_work_sync(&ht->run_work);
1130 mutex_lock(&ht->mutex);
1131 bucket_table_free(rht_dereference(ht->tbl, ht));
1132 mutex_unlock(&ht->mutex);
1134 EXPORT_SYMBOL_GPL(rhashtable_destroy);