xhci: Prevent U1/U2 link pm states if exit latency is too long
[linux/fpc-iii.git] / drivers / dma / cppi41.c
blob2ceb5a26f860fab1f3450819bbf08f89f5626f47
1 #include <linux/delay.h>
2 #include <linux/dmaengine.h>
3 #include <linux/dma-mapping.h>
4 #include <linux/platform_device.h>
5 #include <linux/module.h>
6 #include <linux/of.h>
7 #include <linux/slab.h>
8 #include <linux/of_dma.h>
9 #include <linux/of_irq.h>
10 #include <linux/dmapool.h>
11 #include <linux/interrupt.h>
12 #include <linux/of_address.h>
13 #include <linux/pm_runtime.h>
14 #include "dmaengine.h"
16 #define DESC_TYPE 27
17 #define DESC_TYPE_HOST 0x10
18 #define DESC_TYPE_TEARD 0x13
20 #define TD_DESC_IS_RX (1 << 16)
21 #define TD_DESC_DMA_NUM 10
23 #define DESC_LENGTH_BITS_NUM 21
25 #define DESC_TYPE_USB (5 << 26)
26 #define DESC_PD_COMPLETE (1 << 31)
28 /* DMA engine */
29 #define DMA_TDFDQ 4
30 #define DMA_TXGCR(x) (0x800 + (x) * 0x20)
31 #define DMA_RXGCR(x) (0x808 + (x) * 0x20)
32 #define RXHPCRA0 4
34 #define GCR_CHAN_ENABLE (1 << 31)
35 #define GCR_TEARDOWN (1 << 30)
36 #define GCR_STARV_RETRY (1 << 24)
37 #define GCR_DESC_TYPE_HOST (1 << 14)
39 /* DMA scheduler */
40 #define DMA_SCHED_CTRL 0
41 #define DMA_SCHED_CTRL_EN (1 << 31)
42 #define DMA_SCHED_WORD(x) ((x) * 4 + 0x800)
44 #define SCHED_ENTRY0_CHAN(x) ((x) << 0)
45 #define SCHED_ENTRY0_IS_RX (1 << 7)
47 #define SCHED_ENTRY1_CHAN(x) ((x) << 8)
48 #define SCHED_ENTRY1_IS_RX (1 << 15)
50 #define SCHED_ENTRY2_CHAN(x) ((x) << 16)
51 #define SCHED_ENTRY2_IS_RX (1 << 23)
53 #define SCHED_ENTRY3_CHAN(x) ((x) << 24)
54 #define SCHED_ENTRY3_IS_RX (1 << 31)
56 /* Queue manager */
57 /* 4 KiB of memory for descriptors, 2 for each endpoint */
58 #define ALLOC_DECS_NUM 128
59 #define DESCS_AREAS 1
60 #define TOTAL_DESCS_NUM (ALLOC_DECS_NUM * DESCS_AREAS)
61 #define QMGR_SCRATCH_SIZE (TOTAL_DESCS_NUM * 4)
63 #define QMGR_LRAM0_BASE 0x80
64 #define QMGR_LRAM_SIZE 0x84
65 #define QMGR_LRAM1_BASE 0x88
66 #define QMGR_MEMBASE(x) (0x1000 + (x) * 0x10)
67 #define QMGR_MEMCTRL(x) (0x1004 + (x) * 0x10)
68 #define QMGR_MEMCTRL_IDX_SH 16
69 #define QMGR_MEMCTRL_DESC_SH 8
71 #define QMGR_NUM_PEND 5
72 #define QMGR_PEND(x) (0x90 + (x) * 4)
74 #define QMGR_PENDING_SLOT_Q(x) (x / 32)
75 #define QMGR_PENDING_BIT_Q(x) (x % 32)
77 #define QMGR_QUEUE_A(n) (0x2000 + (n) * 0x10)
78 #define QMGR_QUEUE_B(n) (0x2004 + (n) * 0x10)
79 #define QMGR_QUEUE_C(n) (0x2008 + (n) * 0x10)
80 #define QMGR_QUEUE_D(n) (0x200c + (n) * 0x10)
82 /* Glue layer specific */
83 /* USBSS / USB AM335x */
84 #define USBSS_IRQ_STATUS 0x28
85 #define USBSS_IRQ_ENABLER 0x2c
86 #define USBSS_IRQ_CLEARR 0x30
88 #define USBSS_IRQ_PD_COMP (1 << 2)
90 /* Packet Descriptor */
91 #define PD2_ZERO_LENGTH (1 << 19)
93 struct cppi41_channel {
94 struct dma_chan chan;
95 struct dma_async_tx_descriptor txd;
96 struct cppi41_dd *cdd;
97 struct cppi41_desc *desc;
98 dma_addr_t desc_phys;
99 void __iomem *gcr_reg;
100 int is_tx;
101 u32 residue;
103 unsigned int q_num;
104 unsigned int q_comp_num;
105 unsigned int port_num;
107 unsigned td_retry;
108 unsigned td_queued:1;
109 unsigned td_seen:1;
110 unsigned td_desc_seen:1;
112 struct list_head node; /* Node for pending list */
115 struct cppi41_desc {
116 u32 pd0;
117 u32 pd1;
118 u32 pd2;
119 u32 pd3;
120 u32 pd4;
121 u32 pd5;
122 u32 pd6;
123 u32 pd7;
124 } __aligned(32);
126 struct chan_queues {
127 u16 submit;
128 u16 complete;
131 struct cppi41_dd {
132 struct dma_device ddev;
134 void *qmgr_scratch;
135 dma_addr_t scratch_phys;
137 struct cppi41_desc *cd;
138 dma_addr_t descs_phys;
139 u32 first_td_desc;
140 struct cppi41_channel *chan_busy[ALLOC_DECS_NUM];
142 void __iomem *usbss_mem;
143 void __iomem *ctrl_mem;
144 void __iomem *sched_mem;
145 void __iomem *qmgr_mem;
146 unsigned int irq;
147 const struct chan_queues *queues_rx;
148 const struct chan_queues *queues_tx;
149 struct chan_queues td_queue;
151 struct list_head pending; /* Pending queued transfers */
152 spinlock_t lock; /* Lock for pending list */
154 /* context for suspend/resume */
155 unsigned int dma_tdfdq;
157 bool is_suspended;
160 #define FIST_COMPLETION_QUEUE 93
161 static struct chan_queues usb_queues_tx[] = {
162 /* USB0 ENDP 1 */
163 [ 0] = { .submit = 32, .complete = 93},
164 [ 1] = { .submit = 34, .complete = 94},
165 [ 2] = { .submit = 36, .complete = 95},
166 [ 3] = { .submit = 38, .complete = 96},
167 [ 4] = { .submit = 40, .complete = 97},
168 [ 5] = { .submit = 42, .complete = 98},
169 [ 6] = { .submit = 44, .complete = 99},
170 [ 7] = { .submit = 46, .complete = 100},
171 [ 8] = { .submit = 48, .complete = 101},
172 [ 9] = { .submit = 50, .complete = 102},
173 [10] = { .submit = 52, .complete = 103},
174 [11] = { .submit = 54, .complete = 104},
175 [12] = { .submit = 56, .complete = 105},
176 [13] = { .submit = 58, .complete = 106},
177 [14] = { .submit = 60, .complete = 107},
179 /* USB1 ENDP1 */
180 [15] = { .submit = 62, .complete = 125},
181 [16] = { .submit = 64, .complete = 126},
182 [17] = { .submit = 66, .complete = 127},
183 [18] = { .submit = 68, .complete = 128},
184 [19] = { .submit = 70, .complete = 129},
185 [20] = { .submit = 72, .complete = 130},
186 [21] = { .submit = 74, .complete = 131},
187 [22] = { .submit = 76, .complete = 132},
188 [23] = { .submit = 78, .complete = 133},
189 [24] = { .submit = 80, .complete = 134},
190 [25] = { .submit = 82, .complete = 135},
191 [26] = { .submit = 84, .complete = 136},
192 [27] = { .submit = 86, .complete = 137},
193 [28] = { .submit = 88, .complete = 138},
194 [29] = { .submit = 90, .complete = 139},
197 static const struct chan_queues usb_queues_rx[] = {
198 /* USB0 ENDP 1 */
199 [ 0] = { .submit = 1, .complete = 109},
200 [ 1] = { .submit = 2, .complete = 110},
201 [ 2] = { .submit = 3, .complete = 111},
202 [ 3] = { .submit = 4, .complete = 112},
203 [ 4] = { .submit = 5, .complete = 113},
204 [ 5] = { .submit = 6, .complete = 114},
205 [ 6] = { .submit = 7, .complete = 115},
206 [ 7] = { .submit = 8, .complete = 116},
207 [ 8] = { .submit = 9, .complete = 117},
208 [ 9] = { .submit = 10, .complete = 118},
209 [10] = { .submit = 11, .complete = 119},
210 [11] = { .submit = 12, .complete = 120},
211 [12] = { .submit = 13, .complete = 121},
212 [13] = { .submit = 14, .complete = 122},
213 [14] = { .submit = 15, .complete = 123},
215 /* USB1 ENDP 1 */
216 [15] = { .submit = 16, .complete = 141},
217 [16] = { .submit = 17, .complete = 142},
218 [17] = { .submit = 18, .complete = 143},
219 [18] = { .submit = 19, .complete = 144},
220 [19] = { .submit = 20, .complete = 145},
221 [20] = { .submit = 21, .complete = 146},
222 [21] = { .submit = 22, .complete = 147},
223 [22] = { .submit = 23, .complete = 148},
224 [23] = { .submit = 24, .complete = 149},
225 [24] = { .submit = 25, .complete = 150},
226 [25] = { .submit = 26, .complete = 151},
227 [26] = { .submit = 27, .complete = 152},
228 [27] = { .submit = 28, .complete = 153},
229 [28] = { .submit = 29, .complete = 154},
230 [29] = { .submit = 30, .complete = 155},
233 struct cppi_glue_infos {
234 irqreturn_t (*isr)(int irq, void *data);
235 const struct chan_queues *queues_rx;
236 const struct chan_queues *queues_tx;
237 struct chan_queues td_queue;
240 static struct cppi41_channel *to_cpp41_chan(struct dma_chan *c)
242 return container_of(c, struct cppi41_channel, chan);
245 static struct cppi41_channel *desc_to_chan(struct cppi41_dd *cdd, u32 desc)
247 struct cppi41_channel *c;
248 u32 descs_size;
249 u32 desc_num;
251 descs_size = sizeof(struct cppi41_desc) * ALLOC_DECS_NUM;
253 if (!((desc >= cdd->descs_phys) &&
254 (desc < (cdd->descs_phys + descs_size)))) {
255 return NULL;
258 desc_num = (desc - cdd->descs_phys) / sizeof(struct cppi41_desc);
259 BUG_ON(desc_num >= ALLOC_DECS_NUM);
260 c = cdd->chan_busy[desc_num];
261 cdd->chan_busy[desc_num] = NULL;
263 /* Usecount for chan_busy[], paired with push_desc_queue() */
264 pm_runtime_put(cdd->ddev.dev);
266 return c;
269 static void cppi_writel(u32 val, void *__iomem *mem)
271 __raw_writel(val, mem);
274 static u32 cppi_readl(void *__iomem *mem)
276 return __raw_readl(mem);
279 static u32 pd_trans_len(u32 val)
281 return val & ((1 << (DESC_LENGTH_BITS_NUM + 1)) - 1);
284 static u32 cppi41_pop_desc(struct cppi41_dd *cdd, unsigned queue_num)
286 u32 desc;
288 desc = cppi_readl(cdd->qmgr_mem + QMGR_QUEUE_D(queue_num));
289 desc &= ~0x1f;
290 return desc;
293 static irqreturn_t cppi41_irq(int irq, void *data)
295 struct cppi41_dd *cdd = data;
296 struct cppi41_channel *c;
297 u32 status;
298 int i;
300 status = cppi_readl(cdd->usbss_mem + USBSS_IRQ_STATUS);
301 if (!(status & USBSS_IRQ_PD_COMP))
302 return IRQ_NONE;
303 cppi_writel(status, cdd->usbss_mem + USBSS_IRQ_STATUS);
305 for (i = QMGR_PENDING_SLOT_Q(FIST_COMPLETION_QUEUE); i < QMGR_NUM_PEND;
306 i++) {
307 u32 val;
308 u32 q_num;
310 val = cppi_readl(cdd->qmgr_mem + QMGR_PEND(i));
311 if (i == QMGR_PENDING_SLOT_Q(FIST_COMPLETION_QUEUE) && val) {
312 u32 mask;
313 /* set corresponding bit for completetion Q 93 */
314 mask = 1 << QMGR_PENDING_BIT_Q(FIST_COMPLETION_QUEUE);
315 /* not set all bits for queues less than Q 93 */
316 mask--;
317 /* now invert and keep only Q 93+ set */
318 val &= ~mask;
321 if (val)
322 __iormb();
324 while (val) {
325 u32 desc, len;
326 int error;
328 error = pm_runtime_get(cdd->ddev.dev);
329 if (error < 0)
330 dev_err(cdd->ddev.dev, "%s pm runtime get: %i\n",
331 __func__, error);
333 q_num = __fls(val);
334 val &= ~(1 << q_num);
335 q_num += 32 * i;
336 desc = cppi41_pop_desc(cdd, q_num);
337 c = desc_to_chan(cdd, desc);
338 if (WARN_ON(!c)) {
339 pr_err("%s() q %d desc %08x\n", __func__,
340 q_num, desc);
341 continue;
344 if (c->desc->pd2 & PD2_ZERO_LENGTH)
345 len = 0;
346 else
347 len = pd_trans_len(c->desc->pd0);
349 c->residue = pd_trans_len(c->desc->pd6) - len;
350 dma_cookie_complete(&c->txd);
351 dmaengine_desc_get_callback_invoke(&c->txd, NULL);
353 pm_runtime_mark_last_busy(cdd->ddev.dev);
354 pm_runtime_put_autosuspend(cdd->ddev.dev);
357 return IRQ_HANDLED;
360 static dma_cookie_t cppi41_tx_submit(struct dma_async_tx_descriptor *tx)
362 dma_cookie_t cookie;
364 cookie = dma_cookie_assign(tx);
366 return cookie;
369 static int cppi41_dma_alloc_chan_resources(struct dma_chan *chan)
371 struct cppi41_channel *c = to_cpp41_chan(chan);
372 struct cppi41_dd *cdd = c->cdd;
373 int error;
375 error = pm_runtime_get_sync(cdd->ddev.dev);
376 if (error < 0) {
377 dev_err(cdd->ddev.dev, "%s pm runtime get: %i\n",
378 __func__, error);
379 pm_runtime_put_noidle(cdd->ddev.dev);
381 return error;
384 dma_cookie_init(chan);
385 dma_async_tx_descriptor_init(&c->txd, chan);
386 c->txd.tx_submit = cppi41_tx_submit;
388 if (!c->is_tx)
389 cppi_writel(c->q_num, c->gcr_reg + RXHPCRA0);
391 pm_runtime_mark_last_busy(cdd->ddev.dev);
392 pm_runtime_put_autosuspend(cdd->ddev.dev);
394 return 0;
397 static void cppi41_dma_free_chan_resources(struct dma_chan *chan)
399 struct cppi41_channel *c = to_cpp41_chan(chan);
400 struct cppi41_dd *cdd = c->cdd;
401 int error;
403 error = pm_runtime_get_sync(cdd->ddev.dev);
404 if (error < 0) {
405 pm_runtime_put_noidle(cdd->ddev.dev);
407 return;
410 WARN_ON(!list_empty(&cdd->pending));
412 pm_runtime_mark_last_busy(cdd->ddev.dev);
413 pm_runtime_put_autosuspend(cdd->ddev.dev);
416 static enum dma_status cppi41_dma_tx_status(struct dma_chan *chan,
417 dma_cookie_t cookie, struct dma_tx_state *txstate)
419 struct cppi41_channel *c = to_cpp41_chan(chan);
420 enum dma_status ret;
422 /* lock */
423 ret = dma_cookie_status(chan, cookie, txstate);
424 if (txstate && ret == DMA_COMPLETE)
425 txstate->residue = c->residue;
426 /* unlock */
428 return ret;
431 static void push_desc_queue(struct cppi41_channel *c)
433 struct cppi41_dd *cdd = c->cdd;
434 u32 desc_num;
435 u32 desc_phys;
436 u32 reg;
438 c->residue = 0;
440 reg = GCR_CHAN_ENABLE;
441 if (!c->is_tx) {
442 reg |= GCR_STARV_RETRY;
443 reg |= GCR_DESC_TYPE_HOST;
444 reg |= c->q_comp_num;
447 cppi_writel(reg, c->gcr_reg);
450 * We don't use writel() but __raw_writel() so we have to make sure
451 * that the DMA descriptor in coherent memory made to the main memory
452 * before starting the dma engine.
454 __iowmb();
457 * DMA transfers can take at least 200ms to complete with USB mass
458 * storage connected. To prevent autosuspend timeouts, we must use
459 * pm_runtime_get/put() when chan_busy[] is modified. This will get
460 * cleared in desc_to_chan() or cppi41_stop_chan() depending on the
461 * outcome of the transfer.
463 pm_runtime_get(cdd->ddev.dev);
465 desc_phys = lower_32_bits(c->desc_phys);
466 desc_num = (desc_phys - cdd->descs_phys) / sizeof(struct cppi41_desc);
467 WARN_ON(cdd->chan_busy[desc_num]);
468 cdd->chan_busy[desc_num] = c;
470 reg = (sizeof(struct cppi41_desc) - 24) / 4;
471 reg |= desc_phys;
472 cppi_writel(reg, cdd->qmgr_mem + QMGR_QUEUE_D(c->q_num));
476 * Caller must hold cdd->lock to prevent push_desc_queue()
477 * getting called out of order. We have both cppi41_dma_issue_pending()
478 * and cppi41_runtime_resume() call this function.
480 static void cppi41_run_queue(struct cppi41_dd *cdd)
482 struct cppi41_channel *c, *_c;
484 list_for_each_entry_safe(c, _c, &cdd->pending, node) {
485 push_desc_queue(c);
486 list_del(&c->node);
490 static void cppi41_dma_issue_pending(struct dma_chan *chan)
492 struct cppi41_channel *c = to_cpp41_chan(chan);
493 struct cppi41_dd *cdd = c->cdd;
494 unsigned long flags;
495 int error;
497 error = pm_runtime_get(cdd->ddev.dev);
498 if ((error != -EINPROGRESS) && error < 0) {
499 pm_runtime_put_noidle(cdd->ddev.dev);
500 dev_err(cdd->ddev.dev, "Failed to pm_runtime_get: %i\n",
501 error);
503 return;
506 spin_lock_irqsave(&cdd->lock, flags);
507 list_add_tail(&c->node, &cdd->pending);
508 if (!cdd->is_suspended)
509 cppi41_run_queue(cdd);
510 spin_unlock_irqrestore(&cdd->lock, flags);
512 pm_runtime_mark_last_busy(cdd->ddev.dev);
513 pm_runtime_put_autosuspend(cdd->ddev.dev);
516 static u32 get_host_pd0(u32 length)
518 u32 reg;
520 reg = DESC_TYPE_HOST << DESC_TYPE;
521 reg |= length;
523 return reg;
526 static u32 get_host_pd1(struct cppi41_channel *c)
528 u32 reg;
530 reg = 0;
532 return reg;
535 static u32 get_host_pd2(struct cppi41_channel *c)
537 u32 reg;
539 reg = DESC_TYPE_USB;
540 reg |= c->q_comp_num;
542 return reg;
545 static u32 get_host_pd3(u32 length)
547 u32 reg;
549 /* PD3 = packet size */
550 reg = length;
552 return reg;
555 static u32 get_host_pd6(u32 length)
557 u32 reg;
559 /* PD6 buffer size */
560 reg = DESC_PD_COMPLETE;
561 reg |= length;
563 return reg;
566 static u32 get_host_pd4_or_7(u32 addr)
568 u32 reg;
570 reg = addr;
572 return reg;
575 static u32 get_host_pd5(void)
577 u32 reg;
579 reg = 0;
581 return reg;
584 static struct dma_async_tx_descriptor *cppi41_dma_prep_slave_sg(
585 struct dma_chan *chan, struct scatterlist *sgl, unsigned sg_len,
586 enum dma_transfer_direction dir, unsigned long tx_flags, void *context)
588 struct cppi41_channel *c = to_cpp41_chan(chan);
589 struct cppi41_desc *d;
590 struct scatterlist *sg;
591 unsigned int i;
593 d = c->desc;
594 for_each_sg(sgl, sg, sg_len, i) {
595 u32 addr;
596 u32 len;
598 /* We need to use more than one desc once musb supports sg */
599 addr = lower_32_bits(sg_dma_address(sg));
600 len = sg_dma_len(sg);
602 d->pd0 = get_host_pd0(len);
603 d->pd1 = get_host_pd1(c);
604 d->pd2 = get_host_pd2(c);
605 d->pd3 = get_host_pd3(len);
606 d->pd4 = get_host_pd4_or_7(addr);
607 d->pd5 = get_host_pd5();
608 d->pd6 = get_host_pd6(len);
609 d->pd7 = get_host_pd4_or_7(addr);
611 d++;
614 return &c->txd;
617 static void cppi41_compute_td_desc(struct cppi41_desc *d)
619 d->pd0 = DESC_TYPE_TEARD << DESC_TYPE;
622 static int cppi41_tear_down_chan(struct cppi41_channel *c)
624 struct cppi41_dd *cdd = c->cdd;
625 struct cppi41_desc *td;
626 u32 reg;
627 u32 desc_phys;
628 u32 td_desc_phys;
630 td = cdd->cd;
631 td += cdd->first_td_desc;
633 td_desc_phys = cdd->descs_phys;
634 td_desc_phys += cdd->first_td_desc * sizeof(struct cppi41_desc);
636 if (!c->td_queued) {
637 cppi41_compute_td_desc(td);
638 __iowmb();
640 reg = (sizeof(struct cppi41_desc) - 24) / 4;
641 reg |= td_desc_phys;
642 cppi_writel(reg, cdd->qmgr_mem +
643 QMGR_QUEUE_D(cdd->td_queue.submit));
645 reg = GCR_CHAN_ENABLE;
646 if (!c->is_tx) {
647 reg |= GCR_STARV_RETRY;
648 reg |= GCR_DESC_TYPE_HOST;
649 reg |= c->q_comp_num;
651 reg |= GCR_TEARDOWN;
652 cppi_writel(reg, c->gcr_reg);
653 c->td_queued = 1;
654 c->td_retry = 500;
657 if (!c->td_seen || !c->td_desc_seen) {
659 desc_phys = cppi41_pop_desc(cdd, cdd->td_queue.complete);
660 if (!desc_phys)
661 desc_phys = cppi41_pop_desc(cdd, c->q_comp_num);
663 if (desc_phys == c->desc_phys) {
664 c->td_desc_seen = 1;
666 } else if (desc_phys == td_desc_phys) {
667 u32 pd0;
669 __iormb();
670 pd0 = td->pd0;
671 WARN_ON((pd0 >> DESC_TYPE) != DESC_TYPE_TEARD);
672 WARN_ON(!c->is_tx && !(pd0 & TD_DESC_IS_RX));
673 WARN_ON((pd0 & 0x1f) != c->port_num);
674 c->td_seen = 1;
675 } else if (desc_phys) {
676 WARN_ON_ONCE(1);
679 c->td_retry--;
681 * If the TX descriptor / channel is in use, the caller needs to poke
682 * his TD bit multiple times. After that he hardware releases the
683 * transfer descriptor followed by TD descriptor. Waiting seems not to
684 * cause any difference.
685 * RX seems to be thrown out right away. However once the TearDown
686 * descriptor gets through we are done. If we have seens the transfer
687 * descriptor before the TD we fetch it from enqueue, it has to be
688 * there waiting for us.
690 if (!c->td_seen && c->td_retry) {
691 udelay(1);
692 return -EAGAIN;
694 WARN_ON(!c->td_retry);
696 if (!c->td_desc_seen) {
697 desc_phys = cppi41_pop_desc(cdd, c->q_num);
698 if (!desc_phys)
699 desc_phys = cppi41_pop_desc(cdd, c->q_comp_num);
700 WARN_ON(!desc_phys);
703 c->td_queued = 0;
704 c->td_seen = 0;
705 c->td_desc_seen = 0;
706 cppi_writel(0, c->gcr_reg);
707 return 0;
710 static int cppi41_stop_chan(struct dma_chan *chan)
712 struct cppi41_channel *c = to_cpp41_chan(chan);
713 struct cppi41_dd *cdd = c->cdd;
714 u32 desc_num;
715 u32 desc_phys;
716 int ret;
718 desc_phys = lower_32_bits(c->desc_phys);
719 desc_num = (desc_phys - cdd->descs_phys) / sizeof(struct cppi41_desc);
720 if (!cdd->chan_busy[desc_num]) {
721 struct cppi41_channel *cc, *_ct;
724 * channels might still be in the pendling list if
725 * cppi41_dma_issue_pending() is called after
726 * cppi41_runtime_suspend() is called
728 list_for_each_entry_safe(cc, _ct, &cdd->pending, node) {
729 if (cc != c)
730 continue;
731 list_del(&cc->node);
732 break;
734 return 0;
737 ret = cppi41_tear_down_chan(c);
738 if (ret)
739 return ret;
741 WARN_ON(!cdd->chan_busy[desc_num]);
742 cdd->chan_busy[desc_num] = NULL;
744 /* Usecount for chan_busy[], paired with push_desc_queue() */
745 pm_runtime_put(cdd->ddev.dev);
747 return 0;
750 static void cleanup_chans(struct cppi41_dd *cdd)
752 while (!list_empty(&cdd->ddev.channels)) {
753 struct cppi41_channel *cchan;
755 cchan = list_first_entry(&cdd->ddev.channels,
756 struct cppi41_channel, chan.device_node);
757 list_del(&cchan->chan.device_node);
758 kfree(cchan);
762 static int cppi41_add_chans(struct device *dev, struct cppi41_dd *cdd)
764 struct cppi41_channel *cchan;
765 int i;
766 int ret;
767 u32 n_chans;
769 ret = of_property_read_u32(dev->of_node, "#dma-channels",
770 &n_chans);
771 if (ret)
772 return ret;
774 * The channels can only be used as TX or as RX. So we add twice
775 * that much dma channels because USB can only do RX or TX.
777 n_chans *= 2;
779 for (i = 0; i < n_chans; i++) {
780 cchan = kzalloc(sizeof(*cchan), GFP_KERNEL);
781 if (!cchan)
782 goto err;
784 cchan->cdd = cdd;
785 if (i & 1) {
786 cchan->gcr_reg = cdd->ctrl_mem + DMA_TXGCR(i >> 1);
787 cchan->is_tx = 1;
788 } else {
789 cchan->gcr_reg = cdd->ctrl_mem + DMA_RXGCR(i >> 1);
790 cchan->is_tx = 0;
792 cchan->port_num = i >> 1;
793 cchan->desc = &cdd->cd[i];
794 cchan->desc_phys = cdd->descs_phys;
795 cchan->desc_phys += i * sizeof(struct cppi41_desc);
796 cchan->chan.device = &cdd->ddev;
797 list_add_tail(&cchan->chan.device_node, &cdd->ddev.channels);
799 cdd->first_td_desc = n_chans;
801 return 0;
802 err:
803 cleanup_chans(cdd);
804 return -ENOMEM;
807 static void purge_descs(struct device *dev, struct cppi41_dd *cdd)
809 unsigned int mem_decs;
810 int i;
812 mem_decs = ALLOC_DECS_NUM * sizeof(struct cppi41_desc);
814 for (i = 0; i < DESCS_AREAS; i++) {
816 cppi_writel(0, cdd->qmgr_mem + QMGR_MEMBASE(i));
817 cppi_writel(0, cdd->qmgr_mem + QMGR_MEMCTRL(i));
819 dma_free_coherent(dev, mem_decs, cdd->cd,
820 cdd->descs_phys);
824 static void disable_sched(struct cppi41_dd *cdd)
826 cppi_writel(0, cdd->sched_mem + DMA_SCHED_CTRL);
829 static void deinit_cppi41(struct device *dev, struct cppi41_dd *cdd)
831 disable_sched(cdd);
833 purge_descs(dev, cdd);
835 cppi_writel(0, cdd->qmgr_mem + QMGR_LRAM0_BASE);
836 cppi_writel(0, cdd->qmgr_mem + QMGR_LRAM0_BASE);
837 dma_free_coherent(dev, QMGR_SCRATCH_SIZE, cdd->qmgr_scratch,
838 cdd->scratch_phys);
841 static int init_descs(struct device *dev, struct cppi41_dd *cdd)
843 unsigned int desc_size;
844 unsigned int mem_decs;
845 int i;
846 u32 reg;
847 u32 idx;
849 BUILD_BUG_ON(sizeof(struct cppi41_desc) &
850 (sizeof(struct cppi41_desc) - 1));
851 BUILD_BUG_ON(sizeof(struct cppi41_desc) < 32);
852 BUILD_BUG_ON(ALLOC_DECS_NUM < 32);
854 desc_size = sizeof(struct cppi41_desc);
855 mem_decs = ALLOC_DECS_NUM * desc_size;
857 idx = 0;
858 for (i = 0; i < DESCS_AREAS; i++) {
860 reg = idx << QMGR_MEMCTRL_IDX_SH;
861 reg |= (ilog2(desc_size) - 5) << QMGR_MEMCTRL_DESC_SH;
862 reg |= ilog2(ALLOC_DECS_NUM) - 5;
864 BUILD_BUG_ON(DESCS_AREAS != 1);
865 cdd->cd = dma_alloc_coherent(dev, mem_decs,
866 &cdd->descs_phys, GFP_KERNEL);
867 if (!cdd->cd)
868 return -ENOMEM;
870 cppi_writel(cdd->descs_phys, cdd->qmgr_mem + QMGR_MEMBASE(i));
871 cppi_writel(reg, cdd->qmgr_mem + QMGR_MEMCTRL(i));
873 idx += ALLOC_DECS_NUM;
875 return 0;
878 static void init_sched(struct cppi41_dd *cdd)
880 unsigned ch;
881 unsigned word;
882 u32 reg;
884 word = 0;
885 cppi_writel(0, cdd->sched_mem + DMA_SCHED_CTRL);
886 for (ch = 0; ch < 15 * 2; ch += 2) {
888 reg = SCHED_ENTRY0_CHAN(ch);
889 reg |= SCHED_ENTRY1_CHAN(ch) | SCHED_ENTRY1_IS_RX;
891 reg |= SCHED_ENTRY2_CHAN(ch + 1);
892 reg |= SCHED_ENTRY3_CHAN(ch + 1) | SCHED_ENTRY3_IS_RX;
893 cppi_writel(reg, cdd->sched_mem + DMA_SCHED_WORD(word));
894 word++;
896 reg = 15 * 2 * 2 - 1;
897 reg |= DMA_SCHED_CTRL_EN;
898 cppi_writel(reg, cdd->sched_mem + DMA_SCHED_CTRL);
901 static int init_cppi41(struct device *dev, struct cppi41_dd *cdd)
903 int ret;
905 BUILD_BUG_ON(QMGR_SCRATCH_SIZE > ((1 << 14) - 1));
906 cdd->qmgr_scratch = dma_alloc_coherent(dev, QMGR_SCRATCH_SIZE,
907 &cdd->scratch_phys, GFP_KERNEL);
908 if (!cdd->qmgr_scratch)
909 return -ENOMEM;
911 cppi_writel(cdd->scratch_phys, cdd->qmgr_mem + QMGR_LRAM0_BASE);
912 cppi_writel(QMGR_SCRATCH_SIZE, cdd->qmgr_mem + QMGR_LRAM_SIZE);
913 cppi_writel(0, cdd->qmgr_mem + QMGR_LRAM1_BASE);
915 ret = init_descs(dev, cdd);
916 if (ret)
917 goto err_td;
919 cppi_writel(cdd->td_queue.submit, cdd->ctrl_mem + DMA_TDFDQ);
920 init_sched(cdd);
921 return 0;
922 err_td:
923 deinit_cppi41(dev, cdd);
924 return ret;
927 static struct platform_driver cpp41_dma_driver;
929 * The param format is:
930 * X Y
931 * X: Port
932 * Y: 0 = RX else TX
934 #define INFO_PORT 0
935 #define INFO_IS_TX 1
937 static bool cpp41_dma_filter_fn(struct dma_chan *chan, void *param)
939 struct cppi41_channel *cchan;
940 struct cppi41_dd *cdd;
941 const struct chan_queues *queues;
942 u32 *num = param;
944 if (chan->device->dev->driver != &cpp41_dma_driver.driver)
945 return false;
947 cchan = to_cpp41_chan(chan);
949 if (cchan->port_num != num[INFO_PORT])
950 return false;
952 if (cchan->is_tx && !num[INFO_IS_TX])
953 return false;
954 cdd = cchan->cdd;
955 if (cchan->is_tx)
956 queues = cdd->queues_tx;
957 else
958 queues = cdd->queues_rx;
960 BUILD_BUG_ON(ARRAY_SIZE(usb_queues_rx) != ARRAY_SIZE(usb_queues_tx));
961 if (WARN_ON(cchan->port_num > ARRAY_SIZE(usb_queues_rx)))
962 return false;
964 cchan->q_num = queues[cchan->port_num].submit;
965 cchan->q_comp_num = queues[cchan->port_num].complete;
966 return true;
969 static struct of_dma_filter_info cpp41_dma_info = {
970 .filter_fn = cpp41_dma_filter_fn,
973 static struct dma_chan *cppi41_dma_xlate(struct of_phandle_args *dma_spec,
974 struct of_dma *ofdma)
976 int count = dma_spec->args_count;
977 struct of_dma_filter_info *info = ofdma->of_dma_data;
979 if (!info || !info->filter_fn)
980 return NULL;
982 if (count != 2)
983 return NULL;
985 return dma_request_channel(info->dma_cap, info->filter_fn,
986 &dma_spec->args[0]);
989 static const struct cppi_glue_infos usb_infos = {
990 .isr = cppi41_irq,
991 .queues_rx = usb_queues_rx,
992 .queues_tx = usb_queues_tx,
993 .td_queue = { .submit = 31, .complete = 0 },
996 static const struct of_device_id cppi41_dma_ids[] = {
997 { .compatible = "ti,am3359-cppi41", .data = &usb_infos},
1000 MODULE_DEVICE_TABLE(of, cppi41_dma_ids);
1002 static const struct cppi_glue_infos *get_glue_info(struct device *dev)
1004 const struct of_device_id *of_id;
1006 of_id = of_match_node(cppi41_dma_ids, dev->of_node);
1007 if (!of_id)
1008 return NULL;
1009 return of_id->data;
1012 #define CPPI41_DMA_BUSWIDTHS (BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
1013 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
1014 BIT(DMA_SLAVE_BUSWIDTH_3_BYTES) | \
1015 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES))
1017 static int cppi41_dma_probe(struct platform_device *pdev)
1019 struct cppi41_dd *cdd;
1020 struct device *dev = &pdev->dev;
1021 const struct cppi_glue_infos *glue_info;
1022 int irq;
1023 int ret;
1025 glue_info = get_glue_info(dev);
1026 if (!glue_info)
1027 return -EINVAL;
1029 cdd = devm_kzalloc(&pdev->dev, sizeof(*cdd), GFP_KERNEL);
1030 if (!cdd)
1031 return -ENOMEM;
1033 dma_cap_set(DMA_SLAVE, cdd->ddev.cap_mask);
1034 cdd->ddev.device_alloc_chan_resources = cppi41_dma_alloc_chan_resources;
1035 cdd->ddev.device_free_chan_resources = cppi41_dma_free_chan_resources;
1036 cdd->ddev.device_tx_status = cppi41_dma_tx_status;
1037 cdd->ddev.device_issue_pending = cppi41_dma_issue_pending;
1038 cdd->ddev.device_prep_slave_sg = cppi41_dma_prep_slave_sg;
1039 cdd->ddev.device_terminate_all = cppi41_stop_chan;
1040 cdd->ddev.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
1041 cdd->ddev.src_addr_widths = CPPI41_DMA_BUSWIDTHS;
1042 cdd->ddev.dst_addr_widths = CPPI41_DMA_BUSWIDTHS;
1043 cdd->ddev.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
1044 cdd->ddev.dev = dev;
1045 INIT_LIST_HEAD(&cdd->ddev.channels);
1046 cpp41_dma_info.dma_cap = cdd->ddev.cap_mask;
1048 cdd->usbss_mem = of_iomap(dev->of_node, 0);
1049 cdd->ctrl_mem = of_iomap(dev->of_node, 1);
1050 cdd->sched_mem = of_iomap(dev->of_node, 2);
1051 cdd->qmgr_mem = of_iomap(dev->of_node, 3);
1052 spin_lock_init(&cdd->lock);
1053 INIT_LIST_HEAD(&cdd->pending);
1055 platform_set_drvdata(pdev, cdd);
1057 if (!cdd->usbss_mem || !cdd->ctrl_mem || !cdd->sched_mem ||
1058 !cdd->qmgr_mem)
1059 return -ENXIO;
1061 pm_runtime_enable(dev);
1062 pm_runtime_set_autosuspend_delay(dev, 100);
1063 pm_runtime_use_autosuspend(dev);
1064 ret = pm_runtime_get_sync(dev);
1065 if (ret < 0)
1066 goto err_get_sync;
1068 cdd->queues_rx = glue_info->queues_rx;
1069 cdd->queues_tx = glue_info->queues_tx;
1070 cdd->td_queue = glue_info->td_queue;
1072 ret = init_cppi41(dev, cdd);
1073 if (ret)
1074 goto err_init_cppi;
1076 ret = cppi41_add_chans(dev, cdd);
1077 if (ret)
1078 goto err_chans;
1080 irq = irq_of_parse_and_map(dev->of_node, 0);
1081 if (!irq) {
1082 ret = -EINVAL;
1083 goto err_irq;
1086 cppi_writel(USBSS_IRQ_PD_COMP, cdd->usbss_mem + USBSS_IRQ_ENABLER);
1088 ret = devm_request_irq(&pdev->dev, irq, glue_info->isr, IRQF_SHARED,
1089 dev_name(dev), cdd);
1090 if (ret)
1091 goto err_irq;
1092 cdd->irq = irq;
1094 ret = dma_async_device_register(&cdd->ddev);
1095 if (ret)
1096 goto err_dma_reg;
1098 ret = of_dma_controller_register(dev->of_node,
1099 cppi41_dma_xlate, &cpp41_dma_info);
1100 if (ret)
1101 goto err_of;
1103 pm_runtime_mark_last_busy(dev);
1104 pm_runtime_put_autosuspend(dev);
1106 return 0;
1107 err_of:
1108 dma_async_device_unregister(&cdd->ddev);
1109 err_dma_reg:
1110 err_irq:
1111 cppi_writel(0, cdd->usbss_mem + USBSS_IRQ_CLEARR);
1112 cleanup_chans(cdd);
1113 err_chans:
1114 deinit_cppi41(dev, cdd);
1115 err_init_cppi:
1116 pm_runtime_dont_use_autosuspend(dev);
1117 err_get_sync:
1118 pm_runtime_put_sync(dev);
1119 pm_runtime_disable(dev);
1120 iounmap(cdd->usbss_mem);
1121 iounmap(cdd->ctrl_mem);
1122 iounmap(cdd->sched_mem);
1123 iounmap(cdd->qmgr_mem);
1124 return ret;
1127 static int cppi41_dma_remove(struct platform_device *pdev)
1129 struct cppi41_dd *cdd = platform_get_drvdata(pdev);
1130 int error;
1132 error = pm_runtime_get_sync(&pdev->dev);
1133 if (error < 0)
1134 dev_err(&pdev->dev, "%s could not pm_runtime_get: %i\n",
1135 __func__, error);
1136 of_dma_controller_free(pdev->dev.of_node);
1137 dma_async_device_unregister(&cdd->ddev);
1139 cppi_writel(0, cdd->usbss_mem + USBSS_IRQ_CLEARR);
1140 devm_free_irq(&pdev->dev, cdd->irq, cdd);
1141 cleanup_chans(cdd);
1142 deinit_cppi41(&pdev->dev, cdd);
1143 iounmap(cdd->usbss_mem);
1144 iounmap(cdd->ctrl_mem);
1145 iounmap(cdd->sched_mem);
1146 iounmap(cdd->qmgr_mem);
1147 pm_runtime_dont_use_autosuspend(&pdev->dev);
1148 pm_runtime_put_sync(&pdev->dev);
1149 pm_runtime_disable(&pdev->dev);
1150 return 0;
1153 static int __maybe_unused cppi41_suspend(struct device *dev)
1155 struct cppi41_dd *cdd = dev_get_drvdata(dev);
1157 cdd->dma_tdfdq = cppi_readl(cdd->ctrl_mem + DMA_TDFDQ);
1158 cppi_writel(0, cdd->usbss_mem + USBSS_IRQ_CLEARR);
1159 disable_sched(cdd);
1161 return 0;
1164 static int __maybe_unused cppi41_resume(struct device *dev)
1166 struct cppi41_dd *cdd = dev_get_drvdata(dev);
1167 struct cppi41_channel *c;
1168 int i;
1170 for (i = 0; i < DESCS_AREAS; i++)
1171 cppi_writel(cdd->descs_phys, cdd->qmgr_mem + QMGR_MEMBASE(i));
1173 list_for_each_entry(c, &cdd->ddev.channels, chan.device_node)
1174 if (!c->is_tx)
1175 cppi_writel(c->q_num, c->gcr_reg + RXHPCRA0);
1177 init_sched(cdd);
1179 cppi_writel(cdd->dma_tdfdq, cdd->ctrl_mem + DMA_TDFDQ);
1180 cppi_writel(cdd->scratch_phys, cdd->qmgr_mem + QMGR_LRAM0_BASE);
1181 cppi_writel(QMGR_SCRATCH_SIZE, cdd->qmgr_mem + QMGR_LRAM_SIZE);
1182 cppi_writel(0, cdd->qmgr_mem + QMGR_LRAM1_BASE);
1184 cppi_writel(USBSS_IRQ_PD_COMP, cdd->usbss_mem + USBSS_IRQ_ENABLER);
1186 return 0;
1189 static int __maybe_unused cppi41_runtime_suspend(struct device *dev)
1191 struct cppi41_dd *cdd = dev_get_drvdata(dev);
1192 unsigned long flags;
1194 spin_lock_irqsave(&cdd->lock, flags);
1195 cdd->is_suspended = true;
1196 WARN_ON(!list_empty(&cdd->pending));
1197 spin_unlock_irqrestore(&cdd->lock, flags);
1199 return 0;
1202 static int __maybe_unused cppi41_runtime_resume(struct device *dev)
1204 struct cppi41_dd *cdd = dev_get_drvdata(dev);
1205 unsigned long flags;
1207 spin_lock_irqsave(&cdd->lock, flags);
1208 cdd->is_suspended = false;
1209 cppi41_run_queue(cdd);
1210 spin_unlock_irqrestore(&cdd->lock, flags);
1212 return 0;
1215 static const struct dev_pm_ops cppi41_pm_ops = {
1216 SET_LATE_SYSTEM_SLEEP_PM_OPS(cppi41_suspend, cppi41_resume)
1217 SET_RUNTIME_PM_OPS(cppi41_runtime_suspend,
1218 cppi41_runtime_resume,
1219 NULL)
1222 static struct platform_driver cpp41_dma_driver = {
1223 .probe = cppi41_dma_probe,
1224 .remove = cppi41_dma_remove,
1225 .driver = {
1226 .name = "cppi41-dma-engine",
1227 .pm = &cppi41_pm_ops,
1228 .of_match_table = of_match_ptr(cppi41_dma_ids),
1232 module_platform_driver(cpp41_dma_driver);
1233 MODULE_LICENSE("GPL");
1234 MODULE_AUTHOR("Sebastian Andrzej Siewior <bigeasy@linutronix.de>");