xhci: Prevent U1/U2 link pm states if exit latency is too long
[linux/fpc-iii.git] / drivers / dma / mv_xor.c
blob23f75285a4d9cce9da54300ea4273e7df32ec133
1 /*
2 * offload engine driver for the Marvell XOR engine
3 * Copyright (C) 2007, 2008, Marvell International Ltd.
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
15 #include <linux/init.h>
16 #include <linux/slab.h>
17 #include <linux/delay.h>
18 #include <linux/dma-mapping.h>
19 #include <linux/spinlock.h>
20 #include <linux/interrupt.h>
21 #include <linux/of_device.h>
22 #include <linux/platform_device.h>
23 #include <linux/memory.h>
24 #include <linux/clk.h>
25 #include <linux/of.h>
26 #include <linux/of_irq.h>
27 #include <linux/irqdomain.h>
28 #include <linux/cpumask.h>
29 #include <linux/platform_data/dma-mv_xor.h>
31 #include "dmaengine.h"
32 #include "mv_xor.h"
34 enum mv_xor_type {
35 XOR_ORION,
36 XOR_ARMADA_38X,
37 XOR_ARMADA_37XX,
40 enum mv_xor_mode {
41 XOR_MODE_IN_REG,
42 XOR_MODE_IN_DESC,
45 static void mv_xor_issue_pending(struct dma_chan *chan);
47 #define to_mv_xor_chan(chan) \
48 container_of(chan, struct mv_xor_chan, dmachan)
50 #define to_mv_xor_slot(tx) \
51 container_of(tx, struct mv_xor_desc_slot, async_tx)
53 #define mv_chan_to_devp(chan) \
54 ((chan)->dmadev.dev)
56 static void mv_desc_init(struct mv_xor_desc_slot *desc,
57 dma_addr_t addr, u32 byte_count,
58 enum dma_ctrl_flags flags)
60 struct mv_xor_desc *hw_desc = desc->hw_desc;
62 hw_desc->status = XOR_DESC_DMA_OWNED;
63 hw_desc->phy_next_desc = 0;
64 /* Enable end-of-descriptor interrupts only for DMA_PREP_INTERRUPT */
65 hw_desc->desc_command = (flags & DMA_PREP_INTERRUPT) ?
66 XOR_DESC_EOD_INT_EN : 0;
67 hw_desc->phy_dest_addr = addr;
68 hw_desc->byte_count = byte_count;
71 static void mv_desc_set_mode(struct mv_xor_desc_slot *desc)
73 struct mv_xor_desc *hw_desc = desc->hw_desc;
75 switch (desc->type) {
76 case DMA_XOR:
77 case DMA_INTERRUPT:
78 hw_desc->desc_command |= XOR_DESC_OPERATION_XOR;
79 break;
80 case DMA_MEMCPY:
81 hw_desc->desc_command |= XOR_DESC_OPERATION_MEMCPY;
82 break;
83 default:
84 BUG();
85 return;
89 static void mv_desc_set_next_desc(struct mv_xor_desc_slot *desc,
90 u32 next_desc_addr)
92 struct mv_xor_desc *hw_desc = desc->hw_desc;
93 BUG_ON(hw_desc->phy_next_desc);
94 hw_desc->phy_next_desc = next_desc_addr;
97 static void mv_desc_set_src_addr(struct mv_xor_desc_slot *desc,
98 int index, dma_addr_t addr)
100 struct mv_xor_desc *hw_desc = desc->hw_desc;
101 hw_desc->phy_src_addr[mv_phy_src_idx(index)] = addr;
102 if (desc->type == DMA_XOR)
103 hw_desc->desc_command |= (1 << index);
106 static u32 mv_chan_get_current_desc(struct mv_xor_chan *chan)
108 return readl_relaxed(XOR_CURR_DESC(chan));
111 static void mv_chan_set_next_descriptor(struct mv_xor_chan *chan,
112 u32 next_desc_addr)
114 writel_relaxed(next_desc_addr, XOR_NEXT_DESC(chan));
117 static void mv_chan_unmask_interrupts(struct mv_xor_chan *chan)
119 u32 val = readl_relaxed(XOR_INTR_MASK(chan));
120 val |= XOR_INTR_MASK_VALUE << (chan->idx * 16);
121 writel_relaxed(val, XOR_INTR_MASK(chan));
124 static u32 mv_chan_get_intr_cause(struct mv_xor_chan *chan)
126 u32 intr_cause = readl_relaxed(XOR_INTR_CAUSE(chan));
127 intr_cause = (intr_cause >> (chan->idx * 16)) & 0xFFFF;
128 return intr_cause;
131 static void mv_chan_clear_eoc_cause(struct mv_xor_chan *chan)
133 u32 val;
135 val = XOR_INT_END_OF_DESC | XOR_INT_END_OF_CHAIN | XOR_INT_STOPPED;
136 val = ~(val << (chan->idx * 16));
137 dev_dbg(mv_chan_to_devp(chan), "%s, val 0x%08x\n", __func__, val);
138 writel_relaxed(val, XOR_INTR_CAUSE(chan));
141 static void mv_chan_clear_err_status(struct mv_xor_chan *chan)
143 u32 val = 0xFFFF0000 >> (chan->idx * 16);
144 writel_relaxed(val, XOR_INTR_CAUSE(chan));
147 static void mv_chan_set_mode(struct mv_xor_chan *chan,
148 u32 op_mode)
150 u32 config = readl_relaxed(XOR_CONFIG(chan));
152 config &= ~0x7;
153 config |= op_mode;
155 #if defined(__BIG_ENDIAN)
156 config |= XOR_DESCRIPTOR_SWAP;
157 #else
158 config &= ~XOR_DESCRIPTOR_SWAP;
159 #endif
161 writel_relaxed(config, XOR_CONFIG(chan));
164 static void mv_chan_activate(struct mv_xor_chan *chan)
166 dev_dbg(mv_chan_to_devp(chan), " activate chan.\n");
168 /* writel ensures all descriptors are flushed before activation */
169 writel(BIT(0), XOR_ACTIVATION(chan));
172 static char mv_chan_is_busy(struct mv_xor_chan *chan)
174 u32 state = readl_relaxed(XOR_ACTIVATION(chan));
176 state = (state >> 4) & 0x3;
178 return (state == 1) ? 1 : 0;
182 * mv_chan_start_new_chain - program the engine to operate on new
183 * chain headed by sw_desc
184 * Caller must hold &mv_chan->lock while calling this function
186 static void mv_chan_start_new_chain(struct mv_xor_chan *mv_chan,
187 struct mv_xor_desc_slot *sw_desc)
189 dev_dbg(mv_chan_to_devp(mv_chan), "%s %d: sw_desc %p\n",
190 __func__, __LINE__, sw_desc);
192 /* set the hardware chain */
193 mv_chan_set_next_descriptor(mv_chan, sw_desc->async_tx.phys);
195 mv_chan->pending++;
196 mv_xor_issue_pending(&mv_chan->dmachan);
199 static dma_cookie_t
200 mv_desc_run_tx_complete_actions(struct mv_xor_desc_slot *desc,
201 struct mv_xor_chan *mv_chan,
202 dma_cookie_t cookie)
204 BUG_ON(desc->async_tx.cookie < 0);
206 if (desc->async_tx.cookie > 0) {
207 cookie = desc->async_tx.cookie;
209 dma_descriptor_unmap(&desc->async_tx);
210 /* call the callback (must not sleep or submit new
211 * operations to this channel)
213 dmaengine_desc_get_callback_invoke(&desc->async_tx, NULL);
216 /* run dependent operations */
217 dma_run_dependencies(&desc->async_tx);
219 return cookie;
222 static int
223 mv_chan_clean_completed_slots(struct mv_xor_chan *mv_chan)
225 struct mv_xor_desc_slot *iter, *_iter;
227 dev_dbg(mv_chan_to_devp(mv_chan), "%s %d\n", __func__, __LINE__);
228 list_for_each_entry_safe(iter, _iter, &mv_chan->completed_slots,
229 node) {
231 if (async_tx_test_ack(&iter->async_tx))
232 list_move_tail(&iter->node, &mv_chan->free_slots);
234 return 0;
237 static int
238 mv_desc_clean_slot(struct mv_xor_desc_slot *desc,
239 struct mv_xor_chan *mv_chan)
241 dev_dbg(mv_chan_to_devp(mv_chan), "%s %d: desc %p flags %d\n",
242 __func__, __LINE__, desc, desc->async_tx.flags);
244 /* the client is allowed to attach dependent operations
245 * until 'ack' is set
247 if (!async_tx_test_ack(&desc->async_tx))
248 /* move this slot to the completed_slots */
249 list_move_tail(&desc->node, &mv_chan->completed_slots);
250 else
251 list_move_tail(&desc->node, &mv_chan->free_slots);
253 return 0;
256 /* This function must be called with the mv_xor_chan spinlock held */
257 static void mv_chan_slot_cleanup(struct mv_xor_chan *mv_chan)
259 struct mv_xor_desc_slot *iter, *_iter;
260 dma_cookie_t cookie = 0;
261 int busy = mv_chan_is_busy(mv_chan);
262 u32 current_desc = mv_chan_get_current_desc(mv_chan);
263 int current_cleaned = 0;
264 struct mv_xor_desc *hw_desc;
266 dev_dbg(mv_chan_to_devp(mv_chan), "%s %d\n", __func__, __LINE__);
267 dev_dbg(mv_chan_to_devp(mv_chan), "current_desc %x\n", current_desc);
268 mv_chan_clean_completed_slots(mv_chan);
270 /* free completed slots from the chain starting with
271 * the oldest descriptor
274 list_for_each_entry_safe(iter, _iter, &mv_chan->chain,
275 node) {
277 /* clean finished descriptors */
278 hw_desc = iter->hw_desc;
279 if (hw_desc->status & XOR_DESC_SUCCESS) {
280 cookie = mv_desc_run_tx_complete_actions(iter, mv_chan,
281 cookie);
283 /* done processing desc, clean slot */
284 mv_desc_clean_slot(iter, mv_chan);
286 /* break if we did cleaned the current */
287 if (iter->async_tx.phys == current_desc) {
288 current_cleaned = 1;
289 break;
291 } else {
292 if (iter->async_tx.phys == current_desc) {
293 current_cleaned = 0;
294 break;
299 if ((busy == 0) && !list_empty(&mv_chan->chain)) {
300 if (current_cleaned) {
302 * current descriptor cleaned and removed, run
303 * from list head
305 iter = list_entry(mv_chan->chain.next,
306 struct mv_xor_desc_slot,
307 node);
308 mv_chan_start_new_chain(mv_chan, iter);
309 } else {
310 if (!list_is_last(&iter->node, &mv_chan->chain)) {
312 * descriptors are still waiting after
313 * current, trigger them
315 iter = list_entry(iter->node.next,
316 struct mv_xor_desc_slot,
317 node);
318 mv_chan_start_new_chain(mv_chan, iter);
319 } else {
321 * some descriptors are still waiting
322 * to be cleaned
324 tasklet_schedule(&mv_chan->irq_tasklet);
329 if (cookie > 0)
330 mv_chan->dmachan.completed_cookie = cookie;
333 static void mv_xor_tasklet(unsigned long data)
335 struct mv_xor_chan *chan = (struct mv_xor_chan *) data;
337 spin_lock_bh(&chan->lock);
338 mv_chan_slot_cleanup(chan);
339 spin_unlock_bh(&chan->lock);
342 static struct mv_xor_desc_slot *
343 mv_chan_alloc_slot(struct mv_xor_chan *mv_chan)
345 struct mv_xor_desc_slot *iter;
347 spin_lock_bh(&mv_chan->lock);
349 if (!list_empty(&mv_chan->free_slots)) {
350 iter = list_first_entry(&mv_chan->free_slots,
351 struct mv_xor_desc_slot,
352 node);
354 list_move_tail(&iter->node, &mv_chan->allocated_slots);
356 spin_unlock_bh(&mv_chan->lock);
358 /* pre-ack descriptor */
359 async_tx_ack(&iter->async_tx);
360 iter->async_tx.cookie = -EBUSY;
362 return iter;
366 spin_unlock_bh(&mv_chan->lock);
368 /* try to free some slots if the allocation fails */
369 tasklet_schedule(&mv_chan->irq_tasklet);
371 return NULL;
374 /************************ DMA engine API functions ****************************/
375 static dma_cookie_t
376 mv_xor_tx_submit(struct dma_async_tx_descriptor *tx)
378 struct mv_xor_desc_slot *sw_desc = to_mv_xor_slot(tx);
379 struct mv_xor_chan *mv_chan = to_mv_xor_chan(tx->chan);
380 struct mv_xor_desc_slot *old_chain_tail;
381 dma_cookie_t cookie;
382 int new_hw_chain = 1;
384 dev_dbg(mv_chan_to_devp(mv_chan),
385 "%s sw_desc %p: async_tx %p\n",
386 __func__, sw_desc, &sw_desc->async_tx);
388 spin_lock_bh(&mv_chan->lock);
389 cookie = dma_cookie_assign(tx);
391 if (list_empty(&mv_chan->chain))
392 list_move_tail(&sw_desc->node, &mv_chan->chain);
393 else {
394 new_hw_chain = 0;
396 old_chain_tail = list_entry(mv_chan->chain.prev,
397 struct mv_xor_desc_slot,
398 node);
399 list_move_tail(&sw_desc->node, &mv_chan->chain);
401 dev_dbg(mv_chan_to_devp(mv_chan), "Append to last desc %pa\n",
402 &old_chain_tail->async_tx.phys);
404 /* fix up the hardware chain */
405 mv_desc_set_next_desc(old_chain_tail, sw_desc->async_tx.phys);
407 /* if the channel is not busy */
408 if (!mv_chan_is_busy(mv_chan)) {
409 u32 current_desc = mv_chan_get_current_desc(mv_chan);
411 * and the curren desc is the end of the chain before
412 * the append, then we need to start the channel
414 if (current_desc == old_chain_tail->async_tx.phys)
415 new_hw_chain = 1;
419 if (new_hw_chain)
420 mv_chan_start_new_chain(mv_chan, sw_desc);
422 spin_unlock_bh(&mv_chan->lock);
424 return cookie;
427 /* returns the number of allocated descriptors */
428 static int mv_xor_alloc_chan_resources(struct dma_chan *chan)
430 void *virt_desc;
431 dma_addr_t dma_desc;
432 int idx;
433 struct mv_xor_chan *mv_chan = to_mv_xor_chan(chan);
434 struct mv_xor_desc_slot *slot = NULL;
435 int num_descs_in_pool = MV_XOR_POOL_SIZE/MV_XOR_SLOT_SIZE;
437 /* Allocate descriptor slots */
438 idx = mv_chan->slots_allocated;
439 while (idx < num_descs_in_pool) {
440 slot = kzalloc(sizeof(*slot), GFP_KERNEL);
441 if (!slot) {
442 dev_info(mv_chan_to_devp(mv_chan),
443 "channel only initialized %d descriptor slots",
444 idx);
445 break;
447 virt_desc = mv_chan->dma_desc_pool_virt;
448 slot->hw_desc = virt_desc + idx * MV_XOR_SLOT_SIZE;
450 dma_async_tx_descriptor_init(&slot->async_tx, chan);
451 slot->async_tx.tx_submit = mv_xor_tx_submit;
452 INIT_LIST_HEAD(&slot->node);
453 dma_desc = mv_chan->dma_desc_pool;
454 slot->async_tx.phys = dma_desc + idx * MV_XOR_SLOT_SIZE;
455 slot->idx = idx++;
457 spin_lock_bh(&mv_chan->lock);
458 mv_chan->slots_allocated = idx;
459 list_add_tail(&slot->node, &mv_chan->free_slots);
460 spin_unlock_bh(&mv_chan->lock);
463 dev_dbg(mv_chan_to_devp(mv_chan),
464 "allocated %d descriptor slots\n",
465 mv_chan->slots_allocated);
467 return mv_chan->slots_allocated ? : -ENOMEM;
471 * Check if source or destination is an PCIe/IO address (non-SDRAM) and add
472 * a new MBus window if necessary. Use a cache for these check so that
473 * the MMIO mapped registers don't have to be accessed for this check
474 * to speed up this process.
476 static int mv_xor_add_io_win(struct mv_xor_chan *mv_chan, u32 addr)
478 struct mv_xor_device *xordev = mv_chan->xordev;
479 void __iomem *base = mv_chan->mmr_high_base;
480 u32 win_enable;
481 u32 size;
482 u8 target, attr;
483 int ret;
484 int i;
486 /* Nothing needs to get done for the Armada 3700 */
487 if (xordev->xor_type == XOR_ARMADA_37XX)
488 return 0;
491 * Loop over the cached windows to check, if the requested area
492 * is already mapped. If this the case, nothing needs to be done
493 * and we can return.
495 for (i = 0; i < WINDOW_COUNT; i++) {
496 if (addr >= xordev->win_start[i] &&
497 addr <= xordev->win_end[i]) {
498 /* Window is already mapped */
499 return 0;
504 * The window is not mapped, so we need to create the new mapping
507 /* If no IO window is found that addr has to be located in SDRAM */
508 ret = mvebu_mbus_get_io_win_info(addr, &size, &target, &attr);
509 if (ret < 0)
510 return 0;
513 * Mask the base addr 'addr' according to 'size' read back from the
514 * MBus window. Otherwise we might end up with an address located
515 * somewhere in the middle of this area here.
517 size -= 1;
518 addr &= ~size;
521 * Reading one of both enabled register is enough, as they are always
522 * programmed to the identical values
524 win_enable = readl(base + WINDOW_BAR_ENABLE(0));
526 /* Set 'i' to the first free window to write the new values to */
527 i = ffs(~win_enable) - 1;
528 if (i >= WINDOW_COUNT)
529 return -ENOMEM;
531 writel((addr & 0xffff0000) | (attr << 8) | target,
532 base + WINDOW_BASE(i));
533 writel(size & 0xffff0000, base + WINDOW_SIZE(i));
535 /* Fill the caching variables for later use */
536 xordev->win_start[i] = addr;
537 xordev->win_end[i] = addr + size;
539 win_enable |= (1 << i);
540 win_enable |= 3 << (16 + (2 * i));
541 writel(win_enable, base + WINDOW_BAR_ENABLE(0));
542 writel(win_enable, base + WINDOW_BAR_ENABLE(1));
544 return 0;
547 static struct dma_async_tx_descriptor *
548 mv_xor_prep_dma_xor(struct dma_chan *chan, dma_addr_t dest, dma_addr_t *src,
549 unsigned int src_cnt, size_t len, unsigned long flags)
551 struct mv_xor_chan *mv_chan = to_mv_xor_chan(chan);
552 struct mv_xor_desc_slot *sw_desc;
553 int ret;
555 if (unlikely(len < MV_XOR_MIN_BYTE_COUNT))
556 return NULL;
558 BUG_ON(len > MV_XOR_MAX_BYTE_COUNT);
560 dev_dbg(mv_chan_to_devp(mv_chan),
561 "%s src_cnt: %d len: %zu dest %pad flags: %ld\n",
562 __func__, src_cnt, len, &dest, flags);
564 /* Check if a new window needs to get added for 'dest' */
565 ret = mv_xor_add_io_win(mv_chan, dest);
566 if (ret)
567 return NULL;
569 sw_desc = mv_chan_alloc_slot(mv_chan);
570 if (sw_desc) {
571 sw_desc->type = DMA_XOR;
572 sw_desc->async_tx.flags = flags;
573 mv_desc_init(sw_desc, dest, len, flags);
574 if (mv_chan->op_in_desc == XOR_MODE_IN_DESC)
575 mv_desc_set_mode(sw_desc);
576 while (src_cnt--) {
577 /* Check if a new window needs to get added for 'src' */
578 ret = mv_xor_add_io_win(mv_chan, src[src_cnt]);
579 if (ret)
580 return NULL;
581 mv_desc_set_src_addr(sw_desc, src_cnt, src[src_cnt]);
585 dev_dbg(mv_chan_to_devp(mv_chan),
586 "%s sw_desc %p async_tx %p \n",
587 __func__, sw_desc, &sw_desc->async_tx);
588 return sw_desc ? &sw_desc->async_tx : NULL;
591 static struct dma_async_tx_descriptor *
592 mv_xor_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
593 size_t len, unsigned long flags)
596 * A MEMCPY operation is identical to an XOR operation with only
597 * a single source address.
599 return mv_xor_prep_dma_xor(chan, dest, &src, 1, len, flags);
602 static struct dma_async_tx_descriptor *
603 mv_xor_prep_dma_interrupt(struct dma_chan *chan, unsigned long flags)
605 struct mv_xor_chan *mv_chan = to_mv_xor_chan(chan);
606 dma_addr_t src, dest;
607 size_t len;
609 src = mv_chan->dummy_src_addr;
610 dest = mv_chan->dummy_dst_addr;
611 len = MV_XOR_MIN_BYTE_COUNT;
614 * We implement the DMA_INTERRUPT operation as a minimum sized
615 * XOR operation with a single dummy source address.
617 return mv_xor_prep_dma_xor(chan, dest, &src, 1, len, flags);
620 static void mv_xor_free_chan_resources(struct dma_chan *chan)
622 struct mv_xor_chan *mv_chan = to_mv_xor_chan(chan);
623 struct mv_xor_desc_slot *iter, *_iter;
624 int in_use_descs = 0;
626 spin_lock_bh(&mv_chan->lock);
628 mv_chan_slot_cleanup(mv_chan);
630 list_for_each_entry_safe(iter, _iter, &mv_chan->chain,
631 node) {
632 in_use_descs++;
633 list_move_tail(&iter->node, &mv_chan->free_slots);
635 list_for_each_entry_safe(iter, _iter, &mv_chan->completed_slots,
636 node) {
637 in_use_descs++;
638 list_move_tail(&iter->node, &mv_chan->free_slots);
640 list_for_each_entry_safe(iter, _iter, &mv_chan->allocated_slots,
641 node) {
642 in_use_descs++;
643 list_move_tail(&iter->node, &mv_chan->free_slots);
645 list_for_each_entry_safe_reverse(
646 iter, _iter, &mv_chan->free_slots, node) {
647 list_del(&iter->node);
648 kfree(iter);
649 mv_chan->slots_allocated--;
652 dev_dbg(mv_chan_to_devp(mv_chan), "%s slots_allocated %d\n",
653 __func__, mv_chan->slots_allocated);
654 spin_unlock_bh(&mv_chan->lock);
656 if (in_use_descs)
657 dev_err(mv_chan_to_devp(mv_chan),
658 "freeing %d in use descriptors!\n", in_use_descs);
662 * mv_xor_status - poll the status of an XOR transaction
663 * @chan: XOR channel handle
664 * @cookie: XOR transaction identifier
665 * @txstate: XOR transactions state holder (or NULL)
667 static enum dma_status mv_xor_status(struct dma_chan *chan,
668 dma_cookie_t cookie,
669 struct dma_tx_state *txstate)
671 struct mv_xor_chan *mv_chan = to_mv_xor_chan(chan);
672 enum dma_status ret;
674 ret = dma_cookie_status(chan, cookie, txstate);
675 if (ret == DMA_COMPLETE)
676 return ret;
678 spin_lock_bh(&mv_chan->lock);
679 mv_chan_slot_cleanup(mv_chan);
680 spin_unlock_bh(&mv_chan->lock);
682 return dma_cookie_status(chan, cookie, txstate);
685 static void mv_chan_dump_regs(struct mv_xor_chan *chan)
687 u32 val;
689 val = readl_relaxed(XOR_CONFIG(chan));
690 dev_err(mv_chan_to_devp(chan), "config 0x%08x\n", val);
692 val = readl_relaxed(XOR_ACTIVATION(chan));
693 dev_err(mv_chan_to_devp(chan), "activation 0x%08x\n", val);
695 val = readl_relaxed(XOR_INTR_CAUSE(chan));
696 dev_err(mv_chan_to_devp(chan), "intr cause 0x%08x\n", val);
698 val = readl_relaxed(XOR_INTR_MASK(chan));
699 dev_err(mv_chan_to_devp(chan), "intr mask 0x%08x\n", val);
701 val = readl_relaxed(XOR_ERROR_CAUSE(chan));
702 dev_err(mv_chan_to_devp(chan), "error cause 0x%08x\n", val);
704 val = readl_relaxed(XOR_ERROR_ADDR(chan));
705 dev_err(mv_chan_to_devp(chan), "error addr 0x%08x\n", val);
708 static void mv_chan_err_interrupt_handler(struct mv_xor_chan *chan,
709 u32 intr_cause)
711 if (intr_cause & XOR_INT_ERR_DECODE) {
712 dev_dbg(mv_chan_to_devp(chan), "ignoring address decode error\n");
713 return;
716 dev_err(mv_chan_to_devp(chan), "error on chan %d. intr cause 0x%08x\n",
717 chan->idx, intr_cause);
719 mv_chan_dump_regs(chan);
720 WARN_ON(1);
723 static irqreturn_t mv_xor_interrupt_handler(int irq, void *data)
725 struct mv_xor_chan *chan = data;
726 u32 intr_cause = mv_chan_get_intr_cause(chan);
728 dev_dbg(mv_chan_to_devp(chan), "intr cause %x\n", intr_cause);
730 if (intr_cause & XOR_INTR_ERRORS)
731 mv_chan_err_interrupt_handler(chan, intr_cause);
733 tasklet_schedule(&chan->irq_tasklet);
735 mv_chan_clear_eoc_cause(chan);
737 return IRQ_HANDLED;
740 static void mv_xor_issue_pending(struct dma_chan *chan)
742 struct mv_xor_chan *mv_chan = to_mv_xor_chan(chan);
744 if (mv_chan->pending >= MV_XOR_THRESHOLD) {
745 mv_chan->pending = 0;
746 mv_chan_activate(mv_chan);
751 * Perform a transaction to verify the HW works.
754 static int mv_chan_memcpy_self_test(struct mv_xor_chan *mv_chan)
756 int i, ret;
757 void *src, *dest;
758 dma_addr_t src_dma, dest_dma;
759 struct dma_chan *dma_chan;
760 dma_cookie_t cookie;
761 struct dma_async_tx_descriptor *tx;
762 struct dmaengine_unmap_data *unmap;
763 int err = 0;
765 src = kmalloc(sizeof(u8) * PAGE_SIZE, GFP_KERNEL);
766 if (!src)
767 return -ENOMEM;
769 dest = kzalloc(sizeof(u8) * PAGE_SIZE, GFP_KERNEL);
770 if (!dest) {
771 kfree(src);
772 return -ENOMEM;
775 /* Fill in src buffer */
776 for (i = 0; i < PAGE_SIZE; i++)
777 ((u8 *) src)[i] = (u8)i;
779 dma_chan = &mv_chan->dmachan;
780 if (mv_xor_alloc_chan_resources(dma_chan) < 1) {
781 err = -ENODEV;
782 goto out;
785 unmap = dmaengine_get_unmap_data(dma_chan->device->dev, 2, GFP_KERNEL);
786 if (!unmap) {
787 err = -ENOMEM;
788 goto free_resources;
791 src_dma = dma_map_page(dma_chan->device->dev, virt_to_page(src),
792 (size_t)src & ~PAGE_MASK, PAGE_SIZE,
793 DMA_TO_DEVICE);
794 unmap->addr[0] = src_dma;
796 ret = dma_mapping_error(dma_chan->device->dev, src_dma);
797 if (ret) {
798 err = -ENOMEM;
799 goto free_resources;
801 unmap->to_cnt = 1;
803 dest_dma = dma_map_page(dma_chan->device->dev, virt_to_page(dest),
804 (size_t)dest & ~PAGE_MASK, PAGE_SIZE,
805 DMA_FROM_DEVICE);
806 unmap->addr[1] = dest_dma;
808 ret = dma_mapping_error(dma_chan->device->dev, dest_dma);
809 if (ret) {
810 err = -ENOMEM;
811 goto free_resources;
813 unmap->from_cnt = 1;
814 unmap->len = PAGE_SIZE;
816 tx = mv_xor_prep_dma_memcpy(dma_chan, dest_dma, src_dma,
817 PAGE_SIZE, 0);
818 if (!tx) {
819 dev_err(dma_chan->device->dev,
820 "Self-test cannot prepare operation, disabling\n");
821 err = -ENODEV;
822 goto free_resources;
825 cookie = mv_xor_tx_submit(tx);
826 if (dma_submit_error(cookie)) {
827 dev_err(dma_chan->device->dev,
828 "Self-test submit error, disabling\n");
829 err = -ENODEV;
830 goto free_resources;
833 mv_xor_issue_pending(dma_chan);
834 async_tx_ack(tx);
835 msleep(1);
837 if (mv_xor_status(dma_chan, cookie, NULL) !=
838 DMA_COMPLETE) {
839 dev_err(dma_chan->device->dev,
840 "Self-test copy timed out, disabling\n");
841 err = -ENODEV;
842 goto free_resources;
845 dma_sync_single_for_cpu(dma_chan->device->dev, dest_dma,
846 PAGE_SIZE, DMA_FROM_DEVICE);
847 if (memcmp(src, dest, PAGE_SIZE)) {
848 dev_err(dma_chan->device->dev,
849 "Self-test copy failed compare, disabling\n");
850 err = -ENODEV;
851 goto free_resources;
854 free_resources:
855 dmaengine_unmap_put(unmap);
856 mv_xor_free_chan_resources(dma_chan);
857 out:
858 kfree(src);
859 kfree(dest);
860 return err;
863 #define MV_XOR_NUM_SRC_TEST 4 /* must be <= 15 */
864 static int
865 mv_chan_xor_self_test(struct mv_xor_chan *mv_chan)
867 int i, src_idx, ret;
868 struct page *dest;
869 struct page *xor_srcs[MV_XOR_NUM_SRC_TEST];
870 dma_addr_t dma_srcs[MV_XOR_NUM_SRC_TEST];
871 dma_addr_t dest_dma;
872 struct dma_async_tx_descriptor *tx;
873 struct dmaengine_unmap_data *unmap;
874 struct dma_chan *dma_chan;
875 dma_cookie_t cookie;
876 u8 cmp_byte = 0;
877 u32 cmp_word;
878 int err = 0;
879 int src_count = MV_XOR_NUM_SRC_TEST;
881 for (src_idx = 0; src_idx < src_count; src_idx++) {
882 xor_srcs[src_idx] = alloc_page(GFP_KERNEL);
883 if (!xor_srcs[src_idx]) {
884 while (src_idx--)
885 __free_page(xor_srcs[src_idx]);
886 return -ENOMEM;
890 dest = alloc_page(GFP_KERNEL);
891 if (!dest) {
892 while (src_idx--)
893 __free_page(xor_srcs[src_idx]);
894 return -ENOMEM;
897 /* Fill in src buffers */
898 for (src_idx = 0; src_idx < src_count; src_idx++) {
899 u8 *ptr = page_address(xor_srcs[src_idx]);
900 for (i = 0; i < PAGE_SIZE; i++)
901 ptr[i] = (1 << src_idx);
904 for (src_idx = 0; src_idx < src_count; src_idx++)
905 cmp_byte ^= (u8) (1 << src_idx);
907 cmp_word = (cmp_byte << 24) | (cmp_byte << 16) |
908 (cmp_byte << 8) | cmp_byte;
910 memset(page_address(dest), 0, PAGE_SIZE);
912 dma_chan = &mv_chan->dmachan;
913 if (mv_xor_alloc_chan_resources(dma_chan) < 1) {
914 err = -ENODEV;
915 goto out;
918 unmap = dmaengine_get_unmap_data(dma_chan->device->dev, src_count + 1,
919 GFP_KERNEL);
920 if (!unmap) {
921 err = -ENOMEM;
922 goto free_resources;
925 /* test xor */
926 for (i = 0; i < src_count; i++) {
927 unmap->addr[i] = dma_map_page(dma_chan->device->dev, xor_srcs[i],
928 0, PAGE_SIZE, DMA_TO_DEVICE);
929 dma_srcs[i] = unmap->addr[i];
930 ret = dma_mapping_error(dma_chan->device->dev, unmap->addr[i]);
931 if (ret) {
932 err = -ENOMEM;
933 goto free_resources;
935 unmap->to_cnt++;
938 unmap->addr[src_count] = dma_map_page(dma_chan->device->dev, dest, 0, PAGE_SIZE,
939 DMA_FROM_DEVICE);
940 dest_dma = unmap->addr[src_count];
941 ret = dma_mapping_error(dma_chan->device->dev, unmap->addr[src_count]);
942 if (ret) {
943 err = -ENOMEM;
944 goto free_resources;
946 unmap->from_cnt = 1;
947 unmap->len = PAGE_SIZE;
949 tx = mv_xor_prep_dma_xor(dma_chan, dest_dma, dma_srcs,
950 src_count, PAGE_SIZE, 0);
951 if (!tx) {
952 dev_err(dma_chan->device->dev,
953 "Self-test cannot prepare operation, disabling\n");
954 err = -ENODEV;
955 goto free_resources;
958 cookie = mv_xor_tx_submit(tx);
959 if (dma_submit_error(cookie)) {
960 dev_err(dma_chan->device->dev,
961 "Self-test submit error, disabling\n");
962 err = -ENODEV;
963 goto free_resources;
966 mv_xor_issue_pending(dma_chan);
967 async_tx_ack(tx);
968 msleep(8);
970 if (mv_xor_status(dma_chan, cookie, NULL) !=
971 DMA_COMPLETE) {
972 dev_err(dma_chan->device->dev,
973 "Self-test xor timed out, disabling\n");
974 err = -ENODEV;
975 goto free_resources;
978 dma_sync_single_for_cpu(dma_chan->device->dev, dest_dma,
979 PAGE_SIZE, DMA_FROM_DEVICE);
980 for (i = 0; i < (PAGE_SIZE / sizeof(u32)); i++) {
981 u32 *ptr = page_address(dest);
982 if (ptr[i] != cmp_word) {
983 dev_err(dma_chan->device->dev,
984 "Self-test xor failed compare, disabling. index %d, data %x, expected %x\n",
985 i, ptr[i], cmp_word);
986 err = -ENODEV;
987 goto free_resources;
991 free_resources:
992 dmaengine_unmap_put(unmap);
993 mv_xor_free_chan_resources(dma_chan);
994 out:
995 src_idx = src_count;
996 while (src_idx--)
997 __free_page(xor_srcs[src_idx]);
998 __free_page(dest);
999 return err;
1002 static int mv_xor_channel_remove(struct mv_xor_chan *mv_chan)
1004 struct dma_chan *chan, *_chan;
1005 struct device *dev = mv_chan->dmadev.dev;
1007 dma_async_device_unregister(&mv_chan->dmadev);
1009 dma_free_coherent(dev, MV_XOR_POOL_SIZE,
1010 mv_chan->dma_desc_pool_virt, mv_chan->dma_desc_pool);
1011 dma_unmap_single(dev, mv_chan->dummy_src_addr,
1012 MV_XOR_MIN_BYTE_COUNT, DMA_FROM_DEVICE);
1013 dma_unmap_single(dev, mv_chan->dummy_dst_addr,
1014 MV_XOR_MIN_BYTE_COUNT, DMA_TO_DEVICE);
1016 list_for_each_entry_safe(chan, _chan, &mv_chan->dmadev.channels,
1017 device_node) {
1018 list_del(&chan->device_node);
1021 free_irq(mv_chan->irq, mv_chan);
1023 return 0;
1026 static struct mv_xor_chan *
1027 mv_xor_channel_add(struct mv_xor_device *xordev,
1028 struct platform_device *pdev,
1029 int idx, dma_cap_mask_t cap_mask, int irq)
1031 int ret = 0;
1032 struct mv_xor_chan *mv_chan;
1033 struct dma_device *dma_dev;
1035 mv_chan = devm_kzalloc(&pdev->dev, sizeof(*mv_chan), GFP_KERNEL);
1036 if (!mv_chan)
1037 return ERR_PTR(-ENOMEM);
1039 mv_chan->idx = idx;
1040 mv_chan->irq = irq;
1041 if (xordev->xor_type == XOR_ORION)
1042 mv_chan->op_in_desc = XOR_MODE_IN_REG;
1043 else
1044 mv_chan->op_in_desc = XOR_MODE_IN_DESC;
1046 dma_dev = &mv_chan->dmadev;
1047 mv_chan->xordev = xordev;
1050 * These source and destination dummy buffers are used to implement
1051 * a DMA_INTERRUPT operation as a minimum-sized XOR operation.
1052 * Hence, we only need to map the buffers at initialization-time.
1054 mv_chan->dummy_src_addr = dma_map_single(dma_dev->dev,
1055 mv_chan->dummy_src, MV_XOR_MIN_BYTE_COUNT, DMA_FROM_DEVICE);
1056 mv_chan->dummy_dst_addr = dma_map_single(dma_dev->dev,
1057 mv_chan->dummy_dst, MV_XOR_MIN_BYTE_COUNT, DMA_TO_DEVICE);
1059 /* allocate coherent memory for hardware descriptors
1060 * note: writecombine gives slightly better performance, but
1061 * requires that we explicitly flush the writes
1063 mv_chan->dma_desc_pool_virt =
1064 dma_alloc_wc(&pdev->dev, MV_XOR_POOL_SIZE, &mv_chan->dma_desc_pool,
1065 GFP_KERNEL);
1066 if (!mv_chan->dma_desc_pool_virt)
1067 return ERR_PTR(-ENOMEM);
1069 /* discover transaction capabilites from the platform data */
1070 dma_dev->cap_mask = cap_mask;
1072 INIT_LIST_HEAD(&dma_dev->channels);
1074 /* set base routines */
1075 dma_dev->device_alloc_chan_resources = mv_xor_alloc_chan_resources;
1076 dma_dev->device_free_chan_resources = mv_xor_free_chan_resources;
1077 dma_dev->device_tx_status = mv_xor_status;
1078 dma_dev->device_issue_pending = mv_xor_issue_pending;
1079 dma_dev->dev = &pdev->dev;
1081 /* set prep routines based on capability */
1082 if (dma_has_cap(DMA_INTERRUPT, dma_dev->cap_mask))
1083 dma_dev->device_prep_dma_interrupt = mv_xor_prep_dma_interrupt;
1084 if (dma_has_cap(DMA_MEMCPY, dma_dev->cap_mask))
1085 dma_dev->device_prep_dma_memcpy = mv_xor_prep_dma_memcpy;
1086 if (dma_has_cap(DMA_XOR, dma_dev->cap_mask)) {
1087 dma_dev->max_xor = 8;
1088 dma_dev->device_prep_dma_xor = mv_xor_prep_dma_xor;
1091 mv_chan->mmr_base = xordev->xor_base;
1092 mv_chan->mmr_high_base = xordev->xor_high_base;
1093 tasklet_init(&mv_chan->irq_tasklet, mv_xor_tasklet, (unsigned long)
1094 mv_chan);
1096 /* clear errors before enabling interrupts */
1097 mv_chan_clear_err_status(mv_chan);
1099 ret = request_irq(mv_chan->irq, mv_xor_interrupt_handler,
1100 0, dev_name(&pdev->dev), mv_chan);
1101 if (ret)
1102 goto err_free_dma;
1104 mv_chan_unmask_interrupts(mv_chan);
1106 if (mv_chan->op_in_desc == XOR_MODE_IN_DESC)
1107 mv_chan_set_mode(mv_chan, XOR_OPERATION_MODE_IN_DESC);
1108 else
1109 mv_chan_set_mode(mv_chan, XOR_OPERATION_MODE_XOR);
1111 spin_lock_init(&mv_chan->lock);
1112 INIT_LIST_HEAD(&mv_chan->chain);
1113 INIT_LIST_HEAD(&mv_chan->completed_slots);
1114 INIT_LIST_HEAD(&mv_chan->free_slots);
1115 INIT_LIST_HEAD(&mv_chan->allocated_slots);
1116 mv_chan->dmachan.device = dma_dev;
1117 dma_cookie_init(&mv_chan->dmachan);
1119 list_add_tail(&mv_chan->dmachan.device_node, &dma_dev->channels);
1121 if (dma_has_cap(DMA_MEMCPY, dma_dev->cap_mask)) {
1122 ret = mv_chan_memcpy_self_test(mv_chan);
1123 dev_dbg(&pdev->dev, "memcpy self test returned %d\n", ret);
1124 if (ret)
1125 goto err_free_irq;
1128 if (dma_has_cap(DMA_XOR, dma_dev->cap_mask)) {
1129 ret = mv_chan_xor_self_test(mv_chan);
1130 dev_dbg(&pdev->dev, "xor self test returned %d\n", ret);
1131 if (ret)
1132 goto err_free_irq;
1135 dev_info(&pdev->dev, "Marvell XOR (%s): ( %s%s%s)\n",
1136 mv_chan->op_in_desc ? "Descriptor Mode" : "Registers Mode",
1137 dma_has_cap(DMA_XOR, dma_dev->cap_mask) ? "xor " : "",
1138 dma_has_cap(DMA_MEMCPY, dma_dev->cap_mask) ? "cpy " : "",
1139 dma_has_cap(DMA_INTERRUPT, dma_dev->cap_mask) ? "intr " : "");
1141 dma_async_device_register(dma_dev);
1142 return mv_chan;
1144 err_free_irq:
1145 free_irq(mv_chan->irq, mv_chan);
1146 err_free_dma:
1147 dma_free_coherent(&pdev->dev, MV_XOR_POOL_SIZE,
1148 mv_chan->dma_desc_pool_virt, mv_chan->dma_desc_pool);
1149 return ERR_PTR(ret);
1152 static void
1153 mv_xor_conf_mbus_windows(struct mv_xor_device *xordev,
1154 const struct mbus_dram_target_info *dram)
1156 void __iomem *base = xordev->xor_high_base;
1157 u32 win_enable = 0;
1158 int i;
1160 for (i = 0; i < 8; i++) {
1161 writel(0, base + WINDOW_BASE(i));
1162 writel(0, base + WINDOW_SIZE(i));
1163 if (i < 4)
1164 writel(0, base + WINDOW_REMAP_HIGH(i));
1167 for (i = 0; i < dram->num_cs; i++) {
1168 const struct mbus_dram_window *cs = dram->cs + i;
1170 writel((cs->base & 0xffff0000) |
1171 (cs->mbus_attr << 8) |
1172 dram->mbus_dram_target_id, base + WINDOW_BASE(i));
1173 writel((cs->size - 1) & 0xffff0000, base + WINDOW_SIZE(i));
1175 /* Fill the caching variables for later use */
1176 xordev->win_start[i] = cs->base;
1177 xordev->win_end[i] = cs->base + cs->size - 1;
1179 win_enable |= (1 << i);
1180 win_enable |= 3 << (16 + (2 * i));
1183 writel(win_enable, base + WINDOW_BAR_ENABLE(0));
1184 writel(win_enable, base + WINDOW_BAR_ENABLE(1));
1185 writel(0, base + WINDOW_OVERRIDE_CTRL(0));
1186 writel(0, base + WINDOW_OVERRIDE_CTRL(1));
1189 static void
1190 mv_xor_conf_mbus_windows_a3700(struct mv_xor_device *xordev)
1192 void __iomem *base = xordev->xor_high_base;
1193 u32 win_enable = 0;
1194 int i;
1196 for (i = 0; i < 8; i++) {
1197 writel(0, base + WINDOW_BASE(i));
1198 writel(0, base + WINDOW_SIZE(i));
1199 if (i < 4)
1200 writel(0, base + WINDOW_REMAP_HIGH(i));
1203 * For Armada3700 open default 4GB Mbus window. The dram
1204 * related configuration are done at AXIS level.
1206 writel(0xffff0000, base + WINDOW_SIZE(0));
1207 win_enable |= 1;
1208 win_enable |= 3 << 16;
1210 writel(win_enable, base + WINDOW_BAR_ENABLE(0));
1211 writel(win_enable, base + WINDOW_BAR_ENABLE(1));
1212 writel(0, base + WINDOW_OVERRIDE_CTRL(0));
1213 writel(0, base + WINDOW_OVERRIDE_CTRL(1));
1217 * Since this XOR driver is basically used only for RAID5, we don't
1218 * need to care about synchronizing ->suspend with DMA activity,
1219 * because the DMA engine will naturally be quiet due to the block
1220 * devices being suspended.
1222 static int mv_xor_suspend(struct platform_device *pdev, pm_message_t state)
1224 struct mv_xor_device *xordev = platform_get_drvdata(pdev);
1225 int i;
1227 for (i = 0; i < MV_XOR_MAX_CHANNELS; i++) {
1228 struct mv_xor_chan *mv_chan = xordev->channels[i];
1230 if (!mv_chan)
1231 continue;
1233 mv_chan->saved_config_reg =
1234 readl_relaxed(XOR_CONFIG(mv_chan));
1235 mv_chan->saved_int_mask_reg =
1236 readl_relaxed(XOR_INTR_MASK(mv_chan));
1239 return 0;
1242 static int mv_xor_resume(struct platform_device *dev)
1244 struct mv_xor_device *xordev = platform_get_drvdata(dev);
1245 const struct mbus_dram_target_info *dram;
1246 int i;
1248 for (i = 0; i < MV_XOR_MAX_CHANNELS; i++) {
1249 struct mv_xor_chan *mv_chan = xordev->channels[i];
1251 if (!mv_chan)
1252 continue;
1254 writel_relaxed(mv_chan->saved_config_reg,
1255 XOR_CONFIG(mv_chan));
1256 writel_relaxed(mv_chan->saved_int_mask_reg,
1257 XOR_INTR_MASK(mv_chan));
1260 if (xordev->xor_type == XOR_ARMADA_37XX) {
1261 mv_xor_conf_mbus_windows_a3700(xordev);
1262 return 0;
1265 dram = mv_mbus_dram_info();
1266 if (dram)
1267 mv_xor_conf_mbus_windows(xordev, dram);
1269 return 0;
1272 static const struct of_device_id mv_xor_dt_ids[] = {
1273 { .compatible = "marvell,orion-xor", .data = (void *)XOR_ORION },
1274 { .compatible = "marvell,armada-380-xor", .data = (void *)XOR_ARMADA_38X },
1275 { .compatible = "marvell,armada-3700-xor", .data = (void *)XOR_ARMADA_37XX },
1279 static unsigned int mv_xor_engine_count;
1281 static int mv_xor_probe(struct platform_device *pdev)
1283 const struct mbus_dram_target_info *dram;
1284 struct mv_xor_device *xordev;
1285 struct mv_xor_platform_data *pdata = dev_get_platdata(&pdev->dev);
1286 struct resource *res;
1287 unsigned int max_engines, max_channels;
1288 int i, ret;
1290 dev_notice(&pdev->dev, "Marvell shared XOR driver\n");
1292 xordev = devm_kzalloc(&pdev->dev, sizeof(*xordev), GFP_KERNEL);
1293 if (!xordev)
1294 return -ENOMEM;
1296 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1297 if (!res)
1298 return -ENODEV;
1300 xordev->xor_base = devm_ioremap(&pdev->dev, res->start,
1301 resource_size(res));
1302 if (!xordev->xor_base)
1303 return -EBUSY;
1305 res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1306 if (!res)
1307 return -ENODEV;
1309 xordev->xor_high_base = devm_ioremap(&pdev->dev, res->start,
1310 resource_size(res));
1311 if (!xordev->xor_high_base)
1312 return -EBUSY;
1314 platform_set_drvdata(pdev, xordev);
1318 * We need to know which type of XOR device we use before
1319 * setting up. In non-dt case it can only be the legacy one.
1321 xordev->xor_type = XOR_ORION;
1322 if (pdev->dev.of_node) {
1323 const struct of_device_id *of_id =
1324 of_match_device(mv_xor_dt_ids,
1325 &pdev->dev);
1327 xordev->xor_type = (uintptr_t)of_id->data;
1331 * (Re-)program MBUS remapping windows if we are asked to.
1333 if (xordev->xor_type == XOR_ARMADA_37XX) {
1334 mv_xor_conf_mbus_windows_a3700(xordev);
1335 } else {
1336 dram = mv_mbus_dram_info();
1337 if (dram)
1338 mv_xor_conf_mbus_windows(xordev, dram);
1341 /* Not all platforms can gate the clock, so it is not
1342 * an error if the clock does not exists.
1344 xordev->clk = clk_get(&pdev->dev, NULL);
1345 if (!IS_ERR(xordev->clk))
1346 clk_prepare_enable(xordev->clk);
1349 * We don't want to have more than one channel per CPU in
1350 * order for async_tx to perform well. So we limit the number
1351 * of engines and channels so that we take into account this
1352 * constraint. Note that we also want to use channels from
1353 * separate engines when possible. For dual-CPU Armada 3700
1354 * SoC with single XOR engine allow using its both channels.
1356 max_engines = num_present_cpus();
1357 if (xordev->xor_type == XOR_ARMADA_37XX)
1358 max_channels = num_present_cpus();
1359 else
1360 max_channels = min_t(unsigned int,
1361 MV_XOR_MAX_CHANNELS,
1362 DIV_ROUND_UP(num_present_cpus(), 2));
1364 if (mv_xor_engine_count >= max_engines)
1365 return 0;
1367 if (pdev->dev.of_node) {
1368 struct device_node *np;
1369 int i = 0;
1371 for_each_child_of_node(pdev->dev.of_node, np) {
1372 struct mv_xor_chan *chan;
1373 dma_cap_mask_t cap_mask;
1374 int irq;
1376 if (i >= max_channels)
1377 continue;
1379 dma_cap_zero(cap_mask);
1380 dma_cap_set(DMA_MEMCPY, cap_mask);
1381 dma_cap_set(DMA_XOR, cap_mask);
1382 dma_cap_set(DMA_INTERRUPT, cap_mask);
1384 irq = irq_of_parse_and_map(np, 0);
1385 if (!irq) {
1386 ret = -ENODEV;
1387 goto err_channel_add;
1390 chan = mv_xor_channel_add(xordev, pdev, i,
1391 cap_mask, irq);
1392 if (IS_ERR(chan)) {
1393 ret = PTR_ERR(chan);
1394 irq_dispose_mapping(irq);
1395 goto err_channel_add;
1398 xordev->channels[i] = chan;
1399 i++;
1401 } else if (pdata && pdata->channels) {
1402 for (i = 0; i < max_channels; i++) {
1403 struct mv_xor_channel_data *cd;
1404 struct mv_xor_chan *chan;
1405 int irq;
1407 cd = &pdata->channels[i];
1408 if (!cd) {
1409 ret = -ENODEV;
1410 goto err_channel_add;
1413 irq = platform_get_irq(pdev, i);
1414 if (irq < 0) {
1415 ret = irq;
1416 goto err_channel_add;
1419 chan = mv_xor_channel_add(xordev, pdev, i,
1420 cd->cap_mask, irq);
1421 if (IS_ERR(chan)) {
1422 ret = PTR_ERR(chan);
1423 goto err_channel_add;
1426 xordev->channels[i] = chan;
1430 return 0;
1432 err_channel_add:
1433 for (i = 0; i < MV_XOR_MAX_CHANNELS; i++)
1434 if (xordev->channels[i]) {
1435 mv_xor_channel_remove(xordev->channels[i]);
1436 if (pdev->dev.of_node)
1437 irq_dispose_mapping(xordev->channels[i]->irq);
1440 if (!IS_ERR(xordev->clk)) {
1441 clk_disable_unprepare(xordev->clk);
1442 clk_put(xordev->clk);
1445 return ret;
1448 static struct platform_driver mv_xor_driver = {
1449 .probe = mv_xor_probe,
1450 .suspend = mv_xor_suspend,
1451 .resume = mv_xor_resume,
1452 .driver = {
1453 .name = MV_XOR_NAME,
1454 .of_match_table = of_match_ptr(mv_xor_dt_ids),
1459 static int __init mv_xor_init(void)
1461 return platform_driver_register(&mv_xor_driver);
1463 device_initcall(mv_xor_init);
1466 MODULE_AUTHOR("Saeed Bishara <saeed@marvell.com>");
1467 MODULE_DESCRIPTION("DMA engine driver for Marvell's XOR engine");
1468 MODULE_LICENSE("GPL");