dm: Call proper helper to determine dax support
[linux/fpc-iii.git] / drivers / acpi / acpi_lpss.c
blob751ed38f2a10e7759a1a00adb2204494a69d9dac
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * ACPI support for Intel Lynxpoint LPSS.
5 * Copyright (C) 2013, Intel Corporation
6 * Authors: Mika Westerberg <mika.westerberg@linux.intel.com>
7 * Rafael J. Wysocki <rafael.j.wysocki@intel.com>
8 */
10 #include <linux/acpi.h>
11 #include <linux/clkdev.h>
12 #include <linux/clk-provider.h>
13 #include <linux/dmi.h>
14 #include <linux/err.h>
15 #include <linux/io.h>
16 #include <linux/mutex.h>
17 #include <linux/pci.h>
18 #include <linux/platform_device.h>
19 #include <linux/platform_data/x86/clk-lpss.h>
20 #include <linux/platform_data/x86/pmc_atom.h>
21 #include <linux/pm_domain.h>
22 #include <linux/pm_runtime.h>
23 #include <linux/pwm.h>
24 #include <linux/suspend.h>
25 #include <linux/delay.h>
27 #include "internal.h"
29 ACPI_MODULE_NAME("acpi_lpss");
31 #ifdef CONFIG_X86_INTEL_LPSS
33 #include <asm/cpu_device_id.h>
34 #include <asm/intel-family.h>
35 #include <asm/iosf_mbi.h>
37 #define LPSS_ADDR(desc) ((unsigned long)&desc)
39 #define LPSS_CLK_SIZE 0x04
40 #define LPSS_LTR_SIZE 0x18
42 /* Offsets relative to LPSS_PRIVATE_OFFSET */
43 #define LPSS_CLK_DIVIDER_DEF_MASK (BIT(1) | BIT(16))
44 #define LPSS_RESETS 0x04
45 #define LPSS_RESETS_RESET_FUNC BIT(0)
46 #define LPSS_RESETS_RESET_APB BIT(1)
47 #define LPSS_GENERAL 0x08
48 #define LPSS_GENERAL_LTR_MODE_SW BIT(2)
49 #define LPSS_GENERAL_UART_RTS_OVRD BIT(3)
50 #define LPSS_SW_LTR 0x10
51 #define LPSS_AUTO_LTR 0x14
52 #define LPSS_LTR_SNOOP_REQ BIT(15)
53 #define LPSS_LTR_SNOOP_MASK 0x0000FFFF
54 #define LPSS_LTR_SNOOP_LAT_1US 0x800
55 #define LPSS_LTR_SNOOP_LAT_32US 0xC00
56 #define LPSS_LTR_SNOOP_LAT_SHIFT 5
57 #define LPSS_LTR_SNOOP_LAT_CUTOFF 3000
58 #define LPSS_LTR_MAX_VAL 0x3FF
59 #define LPSS_TX_INT 0x20
60 #define LPSS_TX_INT_MASK BIT(1)
62 #define LPSS_PRV_REG_COUNT 9
64 /* LPSS Flags */
65 #define LPSS_CLK BIT(0)
66 #define LPSS_CLK_GATE BIT(1)
67 #define LPSS_CLK_DIVIDER BIT(2)
68 #define LPSS_LTR BIT(3)
69 #define LPSS_SAVE_CTX BIT(4)
70 #define LPSS_NO_D3_DELAY BIT(5)
72 /* Crystal Cove PMIC shares same ACPI ID between different platforms */
73 #define BYT_CRC_HRV 2
74 #define CHT_CRC_HRV 3
76 struct lpss_private_data;
78 struct lpss_device_desc {
79 unsigned int flags;
80 const char *clk_con_id;
81 unsigned int prv_offset;
82 size_t prv_size_override;
83 struct property_entry *properties;
84 void (*setup)(struct lpss_private_data *pdata);
85 bool resume_from_noirq;
88 static const struct lpss_device_desc lpss_dma_desc = {
89 .flags = LPSS_CLK,
92 struct lpss_private_data {
93 struct acpi_device *adev;
94 void __iomem *mmio_base;
95 resource_size_t mmio_size;
96 unsigned int fixed_clk_rate;
97 struct clk *clk;
98 const struct lpss_device_desc *dev_desc;
99 u32 prv_reg_ctx[LPSS_PRV_REG_COUNT];
102 /* Devices which need to be in D3 before lpss_iosf_enter_d3_state() proceeds */
103 static u32 pmc_atom_d3_mask = 0xfe000ffe;
105 /* LPSS run time quirks */
106 static unsigned int lpss_quirks;
109 * LPSS_QUIRK_ALWAYS_POWER_ON: override power state for LPSS DMA device.
111 * The LPSS DMA controller has neither _PS0 nor _PS3 method. Moreover
112 * it can be powered off automatically whenever the last LPSS device goes down.
113 * In case of no power any access to the DMA controller will hang the system.
114 * The behaviour is reproduced on some HP laptops based on Intel BayTrail as
115 * well as on ASuS T100TA transformer.
117 * This quirk overrides power state of entire LPSS island to keep DMA powered
118 * on whenever we have at least one other device in use.
120 #define LPSS_QUIRK_ALWAYS_POWER_ON BIT(0)
122 /* UART Component Parameter Register */
123 #define LPSS_UART_CPR 0xF4
124 #define LPSS_UART_CPR_AFCE BIT(4)
126 static void lpss_uart_setup(struct lpss_private_data *pdata)
128 unsigned int offset;
129 u32 val;
131 offset = pdata->dev_desc->prv_offset + LPSS_TX_INT;
132 val = readl(pdata->mmio_base + offset);
133 writel(val | LPSS_TX_INT_MASK, pdata->mmio_base + offset);
135 val = readl(pdata->mmio_base + LPSS_UART_CPR);
136 if (!(val & LPSS_UART_CPR_AFCE)) {
137 offset = pdata->dev_desc->prv_offset + LPSS_GENERAL;
138 val = readl(pdata->mmio_base + offset);
139 val |= LPSS_GENERAL_UART_RTS_OVRD;
140 writel(val, pdata->mmio_base + offset);
144 static void lpss_deassert_reset(struct lpss_private_data *pdata)
146 unsigned int offset;
147 u32 val;
149 offset = pdata->dev_desc->prv_offset + LPSS_RESETS;
150 val = readl(pdata->mmio_base + offset);
151 val |= LPSS_RESETS_RESET_APB | LPSS_RESETS_RESET_FUNC;
152 writel(val, pdata->mmio_base + offset);
156 * BYT PWM used for backlight control by the i915 driver on systems without
157 * the Crystal Cove PMIC.
159 static struct pwm_lookup byt_pwm_lookup[] = {
160 PWM_LOOKUP_WITH_MODULE("80860F09:00", 0, "0000:00:02.0",
161 "pwm_backlight", 0, PWM_POLARITY_NORMAL,
162 "pwm-lpss-platform"),
165 static void byt_pwm_setup(struct lpss_private_data *pdata)
167 struct acpi_device *adev = pdata->adev;
169 /* Only call pwm_add_table for the first PWM controller */
170 if (!adev->pnp.unique_id || strcmp(adev->pnp.unique_id, "1"))
171 return;
173 if (!acpi_dev_present("INT33FD", NULL, BYT_CRC_HRV))
174 pwm_add_table(byt_pwm_lookup, ARRAY_SIZE(byt_pwm_lookup));
177 #define LPSS_I2C_ENABLE 0x6c
179 static void byt_i2c_setup(struct lpss_private_data *pdata)
181 const char *uid_str = acpi_device_uid(pdata->adev);
182 acpi_handle handle = pdata->adev->handle;
183 unsigned long long shared_host = 0;
184 acpi_status status;
185 long uid = 0;
187 /* Expected to always be true, but better safe then sorry */
188 if (uid_str)
189 uid = simple_strtol(uid_str, NULL, 10);
191 /* Detect I2C bus shared with PUNIT and ignore its d3 status */
192 status = acpi_evaluate_integer(handle, "_SEM", NULL, &shared_host);
193 if (ACPI_SUCCESS(status) && shared_host && uid)
194 pmc_atom_d3_mask &= ~(BIT_LPSS2_F1_I2C1 << (uid - 1));
196 lpss_deassert_reset(pdata);
198 if (readl(pdata->mmio_base + pdata->dev_desc->prv_offset))
199 pdata->fixed_clk_rate = 133000000;
201 writel(0, pdata->mmio_base + LPSS_I2C_ENABLE);
204 /* BSW PWM used for backlight control by the i915 driver */
205 static struct pwm_lookup bsw_pwm_lookup[] = {
206 PWM_LOOKUP_WITH_MODULE("80862288:00", 0, "0000:00:02.0",
207 "pwm_backlight", 0, PWM_POLARITY_NORMAL,
208 "pwm-lpss-platform"),
211 static void bsw_pwm_setup(struct lpss_private_data *pdata)
213 struct acpi_device *adev = pdata->adev;
215 /* Only call pwm_add_table for the first PWM controller */
216 if (!adev->pnp.unique_id || strcmp(adev->pnp.unique_id, "1"))
217 return;
219 pwm_add_table(bsw_pwm_lookup, ARRAY_SIZE(bsw_pwm_lookup));
222 static const struct lpss_device_desc lpt_dev_desc = {
223 .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_LTR
224 | LPSS_SAVE_CTX,
225 .prv_offset = 0x800,
228 static const struct lpss_device_desc lpt_i2c_dev_desc = {
229 .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_LTR | LPSS_SAVE_CTX,
230 .prv_offset = 0x800,
233 static struct property_entry uart_properties[] = {
234 PROPERTY_ENTRY_U32("reg-io-width", 4),
235 PROPERTY_ENTRY_U32("reg-shift", 2),
236 PROPERTY_ENTRY_BOOL("snps,uart-16550-compatible"),
237 { },
240 static const struct lpss_device_desc lpt_uart_dev_desc = {
241 .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_LTR
242 | LPSS_SAVE_CTX,
243 .clk_con_id = "baudclk",
244 .prv_offset = 0x800,
245 .setup = lpss_uart_setup,
246 .properties = uart_properties,
249 static const struct lpss_device_desc lpt_sdio_dev_desc = {
250 .flags = LPSS_LTR,
251 .prv_offset = 0x1000,
252 .prv_size_override = 0x1018,
255 static const struct lpss_device_desc byt_pwm_dev_desc = {
256 .flags = LPSS_SAVE_CTX,
257 .prv_offset = 0x800,
258 .setup = byt_pwm_setup,
261 static const struct lpss_device_desc bsw_pwm_dev_desc = {
262 .flags = LPSS_SAVE_CTX | LPSS_NO_D3_DELAY,
263 .prv_offset = 0x800,
264 .setup = bsw_pwm_setup,
267 static const struct lpss_device_desc byt_uart_dev_desc = {
268 .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_SAVE_CTX,
269 .clk_con_id = "baudclk",
270 .prv_offset = 0x800,
271 .setup = lpss_uart_setup,
272 .properties = uart_properties,
275 static const struct lpss_device_desc bsw_uart_dev_desc = {
276 .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_SAVE_CTX
277 | LPSS_NO_D3_DELAY,
278 .clk_con_id = "baudclk",
279 .prv_offset = 0x800,
280 .setup = lpss_uart_setup,
281 .properties = uart_properties,
284 static const struct lpss_device_desc byt_spi_dev_desc = {
285 .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_SAVE_CTX,
286 .prv_offset = 0x400,
289 static const struct lpss_device_desc byt_sdio_dev_desc = {
290 .flags = LPSS_CLK,
293 static const struct lpss_device_desc byt_i2c_dev_desc = {
294 .flags = LPSS_CLK | LPSS_SAVE_CTX,
295 .prv_offset = 0x800,
296 .setup = byt_i2c_setup,
297 .resume_from_noirq = true,
300 static const struct lpss_device_desc bsw_i2c_dev_desc = {
301 .flags = LPSS_CLK | LPSS_SAVE_CTX | LPSS_NO_D3_DELAY,
302 .prv_offset = 0x800,
303 .setup = byt_i2c_setup,
304 .resume_from_noirq = true,
307 static const struct lpss_device_desc bsw_spi_dev_desc = {
308 .flags = LPSS_CLK | LPSS_CLK_GATE | LPSS_CLK_DIVIDER | LPSS_SAVE_CTX
309 | LPSS_NO_D3_DELAY,
310 .prv_offset = 0x400,
311 .setup = lpss_deassert_reset,
314 #define ICPU(model) { X86_VENDOR_INTEL, 6, model, X86_FEATURE_ANY, }
316 static const struct x86_cpu_id lpss_cpu_ids[] = {
317 ICPU(INTEL_FAM6_ATOM_SILVERMONT), /* Valleyview, Bay Trail */
318 ICPU(INTEL_FAM6_ATOM_AIRMONT), /* Braswell, Cherry Trail */
322 #else
324 #define LPSS_ADDR(desc) (0UL)
326 #endif /* CONFIG_X86_INTEL_LPSS */
328 static const struct acpi_device_id acpi_lpss_device_ids[] = {
329 /* Generic LPSS devices */
330 { "INTL9C60", LPSS_ADDR(lpss_dma_desc) },
332 /* Lynxpoint LPSS devices */
333 { "INT33C0", LPSS_ADDR(lpt_dev_desc) },
334 { "INT33C1", LPSS_ADDR(lpt_dev_desc) },
335 { "INT33C2", LPSS_ADDR(lpt_i2c_dev_desc) },
336 { "INT33C3", LPSS_ADDR(lpt_i2c_dev_desc) },
337 { "INT33C4", LPSS_ADDR(lpt_uart_dev_desc) },
338 { "INT33C5", LPSS_ADDR(lpt_uart_dev_desc) },
339 { "INT33C6", LPSS_ADDR(lpt_sdio_dev_desc) },
340 { "INT33C7", },
342 /* BayTrail LPSS devices */
343 { "80860F09", LPSS_ADDR(byt_pwm_dev_desc) },
344 { "80860F0A", LPSS_ADDR(byt_uart_dev_desc) },
345 { "80860F0E", LPSS_ADDR(byt_spi_dev_desc) },
346 { "80860F14", LPSS_ADDR(byt_sdio_dev_desc) },
347 { "80860F41", LPSS_ADDR(byt_i2c_dev_desc) },
348 { "INT33B2", },
349 { "INT33FC", },
351 /* Braswell LPSS devices */
352 { "80862286", LPSS_ADDR(lpss_dma_desc) },
353 { "80862288", LPSS_ADDR(bsw_pwm_dev_desc) },
354 { "8086228A", LPSS_ADDR(bsw_uart_dev_desc) },
355 { "8086228E", LPSS_ADDR(bsw_spi_dev_desc) },
356 { "808622C0", LPSS_ADDR(lpss_dma_desc) },
357 { "808622C1", LPSS_ADDR(bsw_i2c_dev_desc) },
359 /* Broadwell LPSS devices */
360 { "INT3430", LPSS_ADDR(lpt_dev_desc) },
361 { "INT3431", LPSS_ADDR(lpt_dev_desc) },
362 { "INT3432", LPSS_ADDR(lpt_i2c_dev_desc) },
363 { "INT3433", LPSS_ADDR(lpt_i2c_dev_desc) },
364 { "INT3434", LPSS_ADDR(lpt_uart_dev_desc) },
365 { "INT3435", LPSS_ADDR(lpt_uart_dev_desc) },
366 { "INT3436", LPSS_ADDR(lpt_sdio_dev_desc) },
367 { "INT3437", },
369 /* Wildcat Point LPSS devices */
370 { "INT3438", LPSS_ADDR(lpt_dev_desc) },
375 #ifdef CONFIG_X86_INTEL_LPSS
377 static int is_memory(struct acpi_resource *res, void *not_used)
379 struct resource r;
380 return !acpi_dev_resource_memory(res, &r);
383 /* LPSS main clock device. */
384 static struct platform_device *lpss_clk_dev;
386 static inline void lpt_register_clock_device(void)
388 lpss_clk_dev = platform_device_register_simple("clk-lpt", -1, NULL, 0);
391 static int register_device_clock(struct acpi_device *adev,
392 struct lpss_private_data *pdata)
394 const struct lpss_device_desc *dev_desc = pdata->dev_desc;
395 const char *devname = dev_name(&adev->dev);
396 struct clk *clk;
397 struct lpss_clk_data *clk_data;
398 const char *parent, *clk_name;
399 void __iomem *prv_base;
401 if (!lpss_clk_dev)
402 lpt_register_clock_device();
404 clk_data = platform_get_drvdata(lpss_clk_dev);
405 if (!clk_data)
406 return -ENODEV;
407 clk = clk_data->clk;
409 if (!pdata->mmio_base
410 || pdata->mmio_size < dev_desc->prv_offset + LPSS_CLK_SIZE)
411 return -ENODATA;
413 parent = clk_data->name;
414 prv_base = pdata->mmio_base + dev_desc->prv_offset;
416 if (pdata->fixed_clk_rate) {
417 clk = clk_register_fixed_rate(NULL, devname, parent, 0,
418 pdata->fixed_clk_rate);
419 goto out;
422 if (dev_desc->flags & LPSS_CLK_GATE) {
423 clk = clk_register_gate(NULL, devname, parent, 0,
424 prv_base, 0, 0, NULL);
425 parent = devname;
428 if (dev_desc->flags & LPSS_CLK_DIVIDER) {
429 /* Prevent division by zero */
430 if (!readl(prv_base))
431 writel(LPSS_CLK_DIVIDER_DEF_MASK, prv_base);
433 clk_name = kasprintf(GFP_KERNEL, "%s-div", devname);
434 if (!clk_name)
435 return -ENOMEM;
436 clk = clk_register_fractional_divider(NULL, clk_name, parent,
437 0, prv_base,
438 1, 15, 16, 15, 0, NULL);
439 parent = clk_name;
441 clk_name = kasprintf(GFP_KERNEL, "%s-update", devname);
442 if (!clk_name) {
443 kfree(parent);
444 return -ENOMEM;
446 clk = clk_register_gate(NULL, clk_name, parent,
447 CLK_SET_RATE_PARENT | CLK_SET_RATE_GATE,
448 prv_base, 31, 0, NULL);
449 kfree(parent);
450 kfree(clk_name);
452 out:
453 if (IS_ERR(clk))
454 return PTR_ERR(clk);
456 pdata->clk = clk;
457 clk_register_clkdev(clk, dev_desc->clk_con_id, devname);
458 return 0;
461 struct lpss_device_links {
462 const char *supplier_hid;
463 const char *supplier_uid;
464 const char *consumer_hid;
465 const char *consumer_uid;
466 u32 flags;
467 const struct dmi_system_id *dep_missing_ids;
470 /* Please keep this list sorted alphabetically by vendor and model */
471 static const struct dmi_system_id i2c1_dep_missing_dmi_ids[] = {
473 .matches = {
474 DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK COMPUTER INC."),
475 DMI_MATCH(DMI_PRODUCT_NAME, "T200TA"),
482 * The _DEP method is used to identify dependencies but instead of creating
483 * device links for every handle in _DEP, only links in the following list are
484 * created. That is necessary because, in the general case, _DEP can refer to
485 * devices that might not have drivers, or that are on different buses, or where
486 * the supplier is not enumerated until after the consumer is probed.
488 static const struct lpss_device_links lpss_device_links[] = {
489 /* CHT External sdcard slot controller depends on PMIC I2C ctrl */
490 {"808622C1", "7", "80860F14", "3", DL_FLAG_PM_RUNTIME},
491 /* CHT iGPU depends on PMIC I2C controller */
492 {"808622C1", "7", "LNXVIDEO", NULL, DL_FLAG_PM_RUNTIME},
493 /* BYT iGPU depends on the Embedded Controller I2C controller (UID 1) */
494 {"80860F41", "1", "LNXVIDEO", NULL, DL_FLAG_PM_RUNTIME,
495 i2c1_dep_missing_dmi_ids},
496 /* BYT CR iGPU depends on PMIC I2C controller (UID 5 on CR) */
497 {"80860F41", "5", "LNXVIDEO", NULL, DL_FLAG_PM_RUNTIME},
498 /* BYT iGPU depends on PMIC I2C controller (UID 7 on non CR) */
499 {"80860F41", "7", "LNXVIDEO", NULL, DL_FLAG_PM_RUNTIME},
502 static bool hid_uid_match(struct acpi_device *adev,
503 const char *hid2, const char *uid2)
505 const char *hid1 = acpi_device_hid(adev);
506 const char *uid1 = acpi_device_uid(adev);
508 if (strcmp(hid1, hid2))
509 return false;
511 if (!uid2)
512 return true;
514 return uid1 && !strcmp(uid1, uid2);
517 static bool acpi_lpss_is_supplier(struct acpi_device *adev,
518 const struct lpss_device_links *link)
520 return hid_uid_match(adev, link->supplier_hid, link->supplier_uid);
523 static bool acpi_lpss_is_consumer(struct acpi_device *adev,
524 const struct lpss_device_links *link)
526 return hid_uid_match(adev, link->consumer_hid, link->consumer_uid);
529 struct hid_uid {
530 const char *hid;
531 const char *uid;
534 static int match_hid_uid(struct device *dev, const void *data)
536 struct acpi_device *adev = ACPI_COMPANION(dev);
537 const struct hid_uid *id = data;
539 if (!adev)
540 return 0;
542 return hid_uid_match(adev, id->hid, id->uid);
545 static struct device *acpi_lpss_find_device(const char *hid, const char *uid)
547 struct device *dev;
549 struct hid_uid data = {
550 .hid = hid,
551 .uid = uid,
554 dev = bus_find_device(&platform_bus_type, NULL, &data, match_hid_uid);
555 if (dev)
556 return dev;
558 return bus_find_device(&pci_bus_type, NULL, &data, match_hid_uid);
561 static bool acpi_lpss_dep(struct acpi_device *adev, acpi_handle handle)
563 struct acpi_handle_list dep_devices;
564 acpi_status status;
565 int i;
567 if (!acpi_has_method(adev->handle, "_DEP"))
568 return false;
570 status = acpi_evaluate_reference(adev->handle, "_DEP", NULL,
571 &dep_devices);
572 if (ACPI_FAILURE(status)) {
573 dev_dbg(&adev->dev, "Failed to evaluate _DEP.\n");
574 return false;
577 for (i = 0; i < dep_devices.count; i++) {
578 if (dep_devices.handles[i] == handle)
579 return true;
582 return false;
585 static void acpi_lpss_link_consumer(struct device *dev1,
586 const struct lpss_device_links *link)
588 struct device *dev2;
590 dev2 = acpi_lpss_find_device(link->consumer_hid, link->consumer_uid);
591 if (!dev2)
592 return;
594 if ((link->dep_missing_ids && dmi_check_system(link->dep_missing_ids))
595 || acpi_lpss_dep(ACPI_COMPANION(dev2), ACPI_HANDLE(dev1)))
596 device_link_add(dev2, dev1, link->flags);
598 put_device(dev2);
601 static void acpi_lpss_link_supplier(struct device *dev1,
602 const struct lpss_device_links *link)
604 struct device *dev2;
606 dev2 = acpi_lpss_find_device(link->supplier_hid, link->supplier_uid);
607 if (!dev2)
608 return;
610 if ((link->dep_missing_ids && dmi_check_system(link->dep_missing_ids))
611 || acpi_lpss_dep(ACPI_COMPANION(dev1), ACPI_HANDLE(dev2)))
612 device_link_add(dev1, dev2, link->flags);
614 put_device(dev2);
617 static void acpi_lpss_create_device_links(struct acpi_device *adev,
618 struct platform_device *pdev)
620 int i;
622 for (i = 0; i < ARRAY_SIZE(lpss_device_links); i++) {
623 const struct lpss_device_links *link = &lpss_device_links[i];
625 if (acpi_lpss_is_supplier(adev, link))
626 acpi_lpss_link_consumer(&pdev->dev, link);
628 if (acpi_lpss_is_consumer(adev, link))
629 acpi_lpss_link_supplier(&pdev->dev, link);
633 static int acpi_lpss_create_device(struct acpi_device *adev,
634 const struct acpi_device_id *id)
636 const struct lpss_device_desc *dev_desc;
637 struct lpss_private_data *pdata;
638 struct resource_entry *rentry;
639 struct list_head resource_list;
640 struct platform_device *pdev;
641 int ret;
643 dev_desc = (const struct lpss_device_desc *)id->driver_data;
644 if (!dev_desc) {
645 pdev = acpi_create_platform_device(adev, NULL);
646 return IS_ERR_OR_NULL(pdev) ? PTR_ERR(pdev) : 1;
648 pdata = kzalloc(sizeof(*pdata), GFP_KERNEL);
649 if (!pdata)
650 return -ENOMEM;
652 INIT_LIST_HEAD(&resource_list);
653 ret = acpi_dev_get_resources(adev, &resource_list, is_memory, NULL);
654 if (ret < 0)
655 goto err_out;
657 list_for_each_entry(rentry, &resource_list, node)
658 if (resource_type(rentry->res) == IORESOURCE_MEM) {
659 if (dev_desc->prv_size_override)
660 pdata->mmio_size = dev_desc->prv_size_override;
661 else
662 pdata->mmio_size = resource_size(rentry->res);
663 pdata->mmio_base = ioremap(rentry->res->start,
664 pdata->mmio_size);
665 break;
668 acpi_dev_free_resource_list(&resource_list);
670 if (!pdata->mmio_base) {
671 /* Avoid acpi_bus_attach() instantiating a pdev for this dev. */
672 adev->pnp.type.platform_id = 0;
673 /* Skip the device, but continue the namespace scan. */
674 ret = 0;
675 goto err_out;
678 pdata->adev = adev;
679 pdata->dev_desc = dev_desc;
681 if (dev_desc->setup)
682 dev_desc->setup(pdata);
684 if (dev_desc->flags & LPSS_CLK) {
685 ret = register_device_clock(adev, pdata);
686 if (ret) {
687 /* Skip the device, but continue the namespace scan. */
688 ret = 0;
689 goto err_out;
694 * This works around a known issue in ACPI tables where LPSS devices
695 * have _PS0 and _PS3 without _PSC (and no power resources), so
696 * acpi_bus_init_power() will assume that the BIOS has put them into D0.
698 acpi_device_fix_up_power(adev);
700 adev->driver_data = pdata;
701 pdev = acpi_create_platform_device(adev, dev_desc->properties);
702 if (!IS_ERR_OR_NULL(pdev)) {
703 acpi_lpss_create_device_links(adev, pdev);
704 return 1;
707 ret = PTR_ERR(pdev);
708 adev->driver_data = NULL;
710 err_out:
711 kfree(pdata);
712 return ret;
715 static u32 __lpss_reg_read(struct lpss_private_data *pdata, unsigned int reg)
717 return readl(pdata->mmio_base + pdata->dev_desc->prv_offset + reg);
720 static void __lpss_reg_write(u32 val, struct lpss_private_data *pdata,
721 unsigned int reg)
723 writel(val, pdata->mmio_base + pdata->dev_desc->prv_offset + reg);
726 static int lpss_reg_read(struct device *dev, unsigned int reg, u32 *val)
728 struct acpi_device *adev;
729 struct lpss_private_data *pdata;
730 unsigned long flags;
731 int ret;
733 ret = acpi_bus_get_device(ACPI_HANDLE(dev), &adev);
734 if (WARN_ON(ret))
735 return ret;
737 spin_lock_irqsave(&dev->power.lock, flags);
738 if (pm_runtime_suspended(dev)) {
739 ret = -EAGAIN;
740 goto out;
742 pdata = acpi_driver_data(adev);
743 if (WARN_ON(!pdata || !pdata->mmio_base)) {
744 ret = -ENODEV;
745 goto out;
747 *val = __lpss_reg_read(pdata, reg);
749 out:
750 spin_unlock_irqrestore(&dev->power.lock, flags);
751 return ret;
754 static ssize_t lpss_ltr_show(struct device *dev, struct device_attribute *attr,
755 char *buf)
757 u32 ltr_value = 0;
758 unsigned int reg;
759 int ret;
761 reg = strcmp(attr->attr.name, "auto_ltr") ? LPSS_SW_LTR : LPSS_AUTO_LTR;
762 ret = lpss_reg_read(dev, reg, &ltr_value);
763 if (ret)
764 return ret;
766 return snprintf(buf, PAGE_SIZE, "%08x\n", ltr_value);
769 static ssize_t lpss_ltr_mode_show(struct device *dev,
770 struct device_attribute *attr, char *buf)
772 u32 ltr_mode = 0;
773 char *outstr;
774 int ret;
776 ret = lpss_reg_read(dev, LPSS_GENERAL, &ltr_mode);
777 if (ret)
778 return ret;
780 outstr = (ltr_mode & LPSS_GENERAL_LTR_MODE_SW) ? "sw" : "auto";
781 return sprintf(buf, "%s\n", outstr);
784 static DEVICE_ATTR(auto_ltr, S_IRUSR, lpss_ltr_show, NULL);
785 static DEVICE_ATTR(sw_ltr, S_IRUSR, lpss_ltr_show, NULL);
786 static DEVICE_ATTR(ltr_mode, S_IRUSR, lpss_ltr_mode_show, NULL);
788 static struct attribute *lpss_attrs[] = {
789 &dev_attr_auto_ltr.attr,
790 &dev_attr_sw_ltr.attr,
791 &dev_attr_ltr_mode.attr,
792 NULL,
795 static const struct attribute_group lpss_attr_group = {
796 .attrs = lpss_attrs,
797 .name = "lpss_ltr",
800 static void acpi_lpss_set_ltr(struct device *dev, s32 val)
802 struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
803 u32 ltr_mode, ltr_val;
805 ltr_mode = __lpss_reg_read(pdata, LPSS_GENERAL);
806 if (val < 0) {
807 if (ltr_mode & LPSS_GENERAL_LTR_MODE_SW) {
808 ltr_mode &= ~LPSS_GENERAL_LTR_MODE_SW;
809 __lpss_reg_write(ltr_mode, pdata, LPSS_GENERAL);
811 return;
813 ltr_val = __lpss_reg_read(pdata, LPSS_SW_LTR) & ~LPSS_LTR_SNOOP_MASK;
814 if (val >= LPSS_LTR_SNOOP_LAT_CUTOFF) {
815 ltr_val |= LPSS_LTR_SNOOP_LAT_32US;
816 val = LPSS_LTR_MAX_VAL;
817 } else if (val > LPSS_LTR_MAX_VAL) {
818 ltr_val |= LPSS_LTR_SNOOP_LAT_32US | LPSS_LTR_SNOOP_REQ;
819 val >>= LPSS_LTR_SNOOP_LAT_SHIFT;
820 } else {
821 ltr_val |= LPSS_LTR_SNOOP_LAT_1US | LPSS_LTR_SNOOP_REQ;
823 ltr_val |= val;
824 __lpss_reg_write(ltr_val, pdata, LPSS_SW_LTR);
825 if (!(ltr_mode & LPSS_GENERAL_LTR_MODE_SW)) {
826 ltr_mode |= LPSS_GENERAL_LTR_MODE_SW;
827 __lpss_reg_write(ltr_mode, pdata, LPSS_GENERAL);
831 #ifdef CONFIG_PM
833 * acpi_lpss_save_ctx() - Save the private registers of LPSS device
834 * @dev: LPSS device
835 * @pdata: pointer to the private data of the LPSS device
837 * Most LPSS devices have private registers which may loose their context when
838 * the device is powered down. acpi_lpss_save_ctx() saves those registers into
839 * prv_reg_ctx array.
841 static void acpi_lpss_save_ctx(struct device *dev,
842 struct lpss_private_data *pdata)
844 unsigned int i;
846 for (i = 0; i < LPSS_PRV_REG_COUNT; i++) {
847 unsigned long offset = i * sizeof(u32);
849 pdata->prv_reg_ctx[i] = __lpss_reg_read(pdata, offset);
850 dev_dbg(dev, "saving 0x%08x from LPSS reg at offset 0x%02lx\n",
851 pdata->prv_reg_ctx[i], offset);
856 * acpi_lpss_restore_ctx() - Restore the private registers of LPSS device
857 * @dev: LPSS device
858 * @pdata: pointer to the private data of the LPSS device
860 * Restores the registers that were previously stored with acpi_lpss_save_ctx().
862 static void acpi_lpss_restore_ctx(struct device *dev,
863 struct lpss_private_data *pdata)
865 unsigned int i;
867 for (i = 0; i < LPSS_PRV_REG_COUNT; i++) {
868 unsigned long offset = i * sizeof(u32);
870 __lpss_reg_write(pdata->prv_reg_ctx[i], pdata, offset);
871 dev_dbg(dev, "restoring 0x%08x to LPSS reg at offset 0x%02lx\n",
872 pdata->prv_reg_ctx[i], offset);
876 static void acpi_lpss_d3_to_d0_delay(struct lpss_private_data *pdata)
879 * The following delay is needed or the subsequent write operations may
880 * fail. The LPSS devices are actually PCI devices and the PCI spec
881 * expects 10ms delay before the device can be accessed after D3 to D0
882 * transition. However some platforms like BSW does not need this delay.
884 unsigned int delay = 10; /* default 10ms delay */
886 if (pdata->dev_desc->flags & LPSS_NO_D3_DELAY)
887 delay = 0;
889 msleep(delay);
892 static int acpi_lpss_activate(struct device *dev)
894 struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
895 int ret;
897 ret = acpi_dev_resume(dev);
898 if (ret)
899 return ret;
901 acpi_lpss_d3_to_d0_delay(pdata);
904 * This is called only on ->probe() stage where a device is either in
905 * known state defined by BIOS or most likely powered off. Due to this
906 * we have to deassert reset line to be sure that ->probe() will
907 * recognize the device.
909 if (pdata->dev_desc->flags & LPSS_SAVE_CTX)
910 lpss_deassert_reset(pdata);
912 return 0;
915 static void acpi_lpss_dismiss(struct device *dev)
917 acpi_dev_suspend(dev, false);
920 /* IOSF SB for LPSS island */
921 #define LPSS_IOSF_UNIT_LPIOEP 0xA0
922 #define LPSS_IOSF_UNIT_LPIO1 0xAB
923 #define LPSS_IOSF_UNIT_LPIO2 0xAC
925 #define LPSS_IOSF_PMCSR 0x84
926 #define LPSS_PMCSR_D0 0
927 #define LPSS_PMCSR_D3hot 3
928 #define LPSS_PMCSR_Dx_MASK GENMASK(1, 0)
930 #define LPSS_IOSF_GPIODEF0 0x154
931 #define LPSS_GPIODEF0_DMA1_D3 BIT(2)
932 #define LPSS_GPIODEF0_DMA2_D3 BIT(3)
933 #define LPSS_GPIODEF0_DMA_D3_MASK GENMASK(3, 2)
934 #define LPSS_GPIODEF0_DMA_LLP BIT(13)
936 static DEFINE_MUTEX(lpss_iosf_mutex);
937 static bool lpss_iosf_d3_entered = true;
939 static void lpss_iosf_enter_d3_state(void)
941 u32 value1 = 0;
942 u32 mask1 = LPSS_GPIODEF0_DMA_D3_MASK | LPSS_GPIODEF0_DMA_LLP;
943 u32 value2 = LPSS_PMCSR_D3hot;
944 u32 mask2 = LPSS_PMCSR_Dx_MASK;
946 * PMC provides an information about actual status of the LPSS devices.
947 * Here we read the values related to LPSS power island, i.e. LPSS
948 * devices, excluding both LPSS DMA controllers, along with SCC domain.
950 u32 func_dis, d3_sts_0, pmc_status;
951 int ret;
953 ret = pmc_atom_read(PMC_FUNC_DIS, &func_dis);
954 if (ret)
955 return;
957 mutex_lock(&lpss_iosf_mutex);
959 ret = pmc_atom_read(PMC_D3_STS_0, &d3_sts_0);
960 if (ret)
961 goto exit;
964 * Get the status of entire LPSS power island per device basis.
965 * Shutdown both LPSS DMA controllers if and only if all other devices
966 * are already in D3hot.
968 pmc_status = (~(d3_sts_0 | func_dis)) & pmc_atom_d3_mask;
969 if (pmc_status)
970 goto exit;
972 iosf_mbi_modify(LPSS_IOSF_UNIT_LPIO1, MBI_CFG_WRITE,
973 LPSS_IOSF_PMCSR, value2, mask2);
975 iosf_mbi_modify(LPSS_IOSF_UNIT_LPIO2, MBI_CFG_WRITE,
976 LPSS_IOSF_PMCSR, value2, mask2);
978 iosf_mbi_modify(LPSS_IOSF_UNIT_LPIOEP, MBI_CR_WRITE,
979 LPSS_IOSF_GPIODEF0, value1, mask1);
981 lpss_iosf_d3_entered = true;
983 exit:
984 mutex_unlock(&lpss_iosf_mutex);
987 static void lpss_iosf_exit_d3_state(void)
989 u32 value1 = LPSS_GPIODEF0_DMA1_D3 | LPSS_GPIODEF0_DMA2_D3 |
990 LPSS_GPIODEF0_DMA_LLP;
991 u32 mask1 = LPSS_GPIODEF0_DMA_D3_MASK | LPSS_GPIODEF0_DMA_LLP;
992 u32 value2 = LPSS_PMCSR_D0;
993 u32 mask2 = LPSS_PMCSR_Dx_MASK;
995 mutex_lock(&lpss_iosf_mutex);
997 if (!lpss_iosf_d3_entered)
998 goto exit;
1000 lpss_iosf_d3_entered = false;
1002 iosf_mbi_modify(LPSS_IOSF_UNIT_LPIOEP, MBI_CR_WRITE,
1003 LPSS_IOSF_GPIODEF0, value1, mask1);
1005 iosf_mbi_modify(LPSS_IOSF_UNIT_LPIO2, MBI_CFG_WRITE,
1006 LPSS_IOSF_PMCSR, value2, mask2);
1008 iosf_mbi_modify(LPSS_IOSF_UNIT_LPIO1, MBI_CFG_WRITE,
1009 LPSS_IOSF_PMCSR, value2, mask2);
1011 exit:
1012 mutex_unlock(&lpss_iosf_mutex);
1015 static int acpi_lpss_suspend(struct device *dev, bool wakeup)
1017 struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1018 int ret;
1020 if (pdata->dev_desc->flags & LPSS_SAVE_CTX)
1021 acpi_lpss_save_ctx(dev, pdata);
1023 ret = acpi_dev_suspend(dev, wakeup);
1026 * This call must be last in the sequence, otherwise PMC will return
1027 * wrong status for devices being about to be powered off. See
1028 * lpss_iosf_enter_d3_state() for further information.
1030 if (acpi_target_system_state() == ACPI_STATE_S0 &&
1031 lpss_quirks & LPSS_QUIRK_ALWAYS_POWER_ON && iosf_mbi_available())
1032 lpss_iosf_enter_d3_state();
1034 return ret;
1037 static int acpi_lpss_resume(struct device *dev)
1039 struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1040 int ret;
1043 * This call is kept first to be in symmetry with
1044 * acpi_lpss_runtime_suspend() one.
1046 if (lpss_quirks & LPSS_QUIRK_ALWAYS_POWER_ON && iosf_mbi_available())
1047 lpss_iosf_exit_d3_state();
1049 ret = acpi_dev_resume(dev);
1050 if (ret)
1051 return ret;
1053 acpi_lpss_d3_to_d0_delay(pdata);
1055 if (pdata->dev_desc->flags & LPSS_SAVE_CTX)
1056 acpi_lpss_restore_ctx(dev, pdata);
1058 return 0;
1061 #ifdef CONFIG_PM_SLEEP
1062 static int acpi_lpss_do_suspend_late(struct device *dev)
1064 int ret;
1066 if (dev_pm_smart_suspend_and_suspended(dev))
1067 return 0;
1069 ret = pm_generic_suspend_late(dev);
1070 return ret ? ret : acpi_lpss_suspend(dev, device_may_wakeup(dev));
1073 static int acpi_lpss_suspend_late(struct device *dev)
1075 struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1077 if (pdata->dev_desc->resume_from_noirq)
1078 return 0;
1080 return acpi_lpss_do_suspend_late(dev);
1083 static int acpi_lpss_suspend_noirq(struct device *dev)
1085 struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1086 int ret;
1088 if (pdata->dev_desc->resume_from_noirq) {
1090 * The driver's ->suspend_late callback will be invoked by
1091 * acpi_lpss_do_suspend_late(), with the assumption that the
1092 * driver really wanted to run that code in ->suspend_noirq, but
1093 * it could not run after acpi_dev_suspend() and the driver
1094 * expected the latter to be called in the "late" phase.
1096 ret = acpi_lpss_do_suspend_late(dev);
1097 if (ret)
1098 return ret;
1101 return acpi_subsys_suspend_noirq(dev);
1104 static int acpi_lpss_do_resume_early(struct device *dev)
1106 int ret = acpi_lpss_resume(dev);
1108 return ret ? ret : pm_generic_resume_early(dev);
1111 static int acpi_lpss_resume_early(struct device *dev)
1113 struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1115 if (pdata->dev_desc->resume_from_noirq)
1116 return 0;
1118 return acpi_lpss_do_resume_early(dev);
1121 static int acpi_lpss_resume_noirq(struct device *dev)
1123 struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1124 int ret;
1126 /* Follow acpi_subsys_resume_noirq(). */
1127 if (dev_pm_may_skip_resume(dev))
1128 return 0;
1130 if (dev_pm_smart_suspend_and_suspended(dev))
1131 pm_runtime_set_active(dev);
1133 ret = pm_generic_resume_noirq(dev);
1134 if (ret)
1135 return ret;
1137 if (!pdata->dev_desc->resume_from_noirq)
1138 return 0;
1141 * The driver's ->resume_early callback will be invoked by
1142 * acpi_lpss_do_resume_early(), with the assumption that the driver
1143 * really wanted to run that code in ->resume_noirq, but it could not
1144 * run before acpi_dev_resume() and the driver expected the latter to be
1145 * called in the "early" phase.
1147 return acpi_lpss_do_resume_early(dev);
1150 static int acpi_lpss_do_restore_early(struct device *dev)
1152 int ret = acpi_lpss_resume(dev);
1154 return ret ? ret : pm_generic_restore_early(dev);
1157 static int acpi_lpss_restore_early(struct device *dev)
1159 struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1161 if (pdata->dev_desc->resume_from_noirq)
1162 return 0;
1164 return acpi_lpss_do_restore_early(dev);
1167 static int acpi_lpss_restore_noirq(struct device *dev)
1169 struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1170 int ret;
1172 ret = pm_generic_restore_noirq(dev);
1173 if (ret)
1174 return ret;
1176 if (!pdata->dev_desc->resume_from_noirq)
1177 return 0;
1179 /* This is analogous to what happens in acpi_lpss_resume_noirq(). */
1180 return acpi_lpss_do_restore_early(dev);
1183 static int acpi_lpss_do_poweroff_late(struct device *dev)
1185 int ret = pm_generic_poweroff_late(dev);
1187 return ret ? ret : acpi_lpss_suspend(dev, device_may_wakeup(dev));
1190 static int acpi_lpss_poweroff_late(struct device *dev)
1192 struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1194 if (dev_pm_smart_suspend_and_suspended(dev))
1195 return 0;
1197 if (pdata->dev_desc->resume_from_noirq)
1198 return 0;
1200 return acpi_lpss_do_poweroff_late(dev);
1203 static int acpi_lpss_poweroff_noirq(struct device *dev)
1205 struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1207 if (dev_pm_smart_suspend_and_suspended(dev))
1208 return 0;
1210 if (pdata->dev_desc->resume_from_noirq) {
1211 /* This is analogous to the acpi_lpss_suspend_noirq() case. */
1212 int ret = acpi_lpss_do_poweroff_late(dev);
1213 if (ret)
1214 return ret;
1217 return pm_generic_poweroff_noirq(dev);
1219 #endif /* CONFIG_PM_SLEEP */
1221 static int acpi_lpss_runtime_suspend(struct device *dev)
1223 int ret = pm_generic_runtime_suspend(dev);
1225 return ret ? ret : acpi_lpss_suspend(dev, true);
1228 static int acpi_lpss_runtime_resume(struct device *dev)
1230 int ret = acpi_lpss_resume(dev);
1232 return ret ? ret : pm_generic_runtime_resume(dev);
1234 #endif /* CONFIG_PM */
1236 static struct dev_pm_domain acpi_lpss_pm_domain = {
1237 #ifdef CONFIG_PM
1238 .activate = acpi_lpss_activate,
1239 .dismiss = acpi_lpss_dismiss,
1240 #endif
1241 .ops = {
1242 #ifdef CONFIG_PM
1243 #ifdef CONFIG_PM_SLEEP
1244 .prepare = acpi_subsys_prepare,
1245 .complete = acpi_subsys_complete,
1246 .suspend = acpi_subsys_suspend,
1247 .suspend_late = acpi_lpss_suspend_late,
1248 .suspend_noirq = acpi_lpss_suspend_noirq,
1249 .resume_noirq = acpi_lpss_resume_noirq,
1250 .resume_early = acpi_lpss_resume_early,
1251 .freeze = acpi_subsys_freeze,
1252 .poweroff = acpi_subsys_poweroff,
1253 .poweroff_late = acpi_lpss_poweroff_late,
1254 .poweroff_noirq = acpi_lpss_poweroff_noirq,
1255 .restore_noirq = acpi_lpss_restore_noirq,
1256 .restore_early = acpi_lpss_restore_early,
1257 #endif
1258 .runtime_suspend = acpi_lpss_runtime_suspend,
1259 .runtime_resume = acpi_lpss_runtime_resume,
1260 #endif
1264 static int acpi_lpss_platform_notify(struct notifier_block *nb,
1265 unsigned long action, void *data)
1267 struct platform_device *pdev = to_platform_device(data);
1268 struct lpss_private_data *pdata;
1269 struct acpi_device *adev;
1270 const struct acpi_device_id *id;
1272 id = acpi_match_device(acpi_lpss_device_ids, &pdev->dev);
1273 if (!id || !id->driver_data)
1274 return 0;
1276 if (acpi_bus_get_device(ACPI_HANDLE(&pdev->dev), &adev))
1277 return 0;
1279 pdata = acpi_driver_data(adev);
1280 if (!pdata)
1281 return 0;
1283 if (pdata->mmio_base &&
1284 pdata->mmio_size < pdata->dev_desc->prv_offset + LPSS_LTR_SIZE) {
1285 dev_err(&pdev->dev, "MMIO size insufficient to access LTR\n");
1286 return 0;
1289 switch (action) {
1290 case BUS_NOTIFY_BIND_DRIVER:
1291 dev_pm_domain_set(&pdev->dev, &acpi_lpss_pm_domain);
1292 break;
1293 case BUS_NOTIFY_DRIVER_NOT_BOUND:
1294 case BUS_NOTIFY_UNBOUND_DRIVER:
1295 dev_pm_domain_set(&pdev->dev, NULL);
1296 break;
1297 case BUS_NOTIFY_ADD_DEVICE:
1298 dev_pm_domain_set(&pdev->dev, &acpi_lpss_pm_domain);
1299 if (pdata->dev_desc->flags & LPSS_LTR)
1300 return sysfs_create_group(&pdev->dev.kobj,
1301 &lpss_attr_group);
1302 break;
1303 case BUS_NOTIFY_DEL_DEVICE:
1304 if (pdata->dev_desc->flags & LPSS_LTR)
1305 sysfs_remove_group(&pdev->dev.kobj, &lpss_attr_group);
1306 dev_pm_domain_set(&pdev->dev, NULL);
1307 break;
1308 default:
1309 break;
1312 return 0;
1315 static struct notifier_block acpi_lpss_nb = {
1316 .notifier_call = acpi_lpss_platform_notify,
1319 static void acpi_lpss_bind(struct device *dev)
1321 struct lpss_private_data *pdata = acpi_driver_data(ACPI_COMPANION(dev));
1323 if (!pdata || !pdata->mmio_base || !(pdata->dev_desc->flags & LPSS_LTR))
1324 return;
1326 if (pdata->mmio_size >= pdata->dev_desc->prv_offset + LPSS_LTR_SIZE)
1327 dev->power.set_latency_tolerance = acpi_lpss_set_ltr;
1328 else
1329 dev_err(dev, "MMIO size insufficient to access LTR\n");
1332 static void acpi_lpss_unbind(struct device *dev)
1334 dev->power.set_latency_tolerance = NULL;
1337 static struct acpi_scan_handler lpss_handler = {
1338 .ids = acpi_lpss_device_ids,
1339 .attach = acpi_lpss_create_device,
1340 .bind = acpi_lpss_bind,
1341 .unbind = acpi_lpss_unbind,
1344 void __init acpi_lpss_init(void)
1346 const struct x86_cpu_id *id;
1347 int ret;
1349 ret = lpt_clk_init();
1350 if (ret)
1351 return;
1353 id = x86_match_cpu(lpss_cpu_ids);
1354 if (id)
1355 lpss_quirks |= LPSS_QUIRK_ALWAYS_POWER_ON;
1357 bus_register_notifier(&platform_bus_type, &acpi_lpss_nb);
1358 acpi_scan_add_handler(&lpss_handler);
1361 #else
1363 static struct acpi_scan_handler lpss_handler = {
1364 .ids = acpi_lpss_device_ids,
1367 void __init acpi_lpss_init(void)
1369 acpi_scan_add_handler(&lpss_handler);
1372 #endif /* CONFIG_X86_INTEL_LPSS */