dm: Call proper helper to determine dax support
[linux/fpc-iii.git] / drivers / md / bcache / journal.c
blob8250d2d1d780c1a08a206040c2198f9a47b3a0bb
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * bcache journalling code, for btree insertions
5 * Copyright 2012 Google, Inc.
6 */
8 #include "bcache.h"
9 #include "btree.h"
10 #include "debug.h"
11 #include "extents.h"
13 #include <trace/events/bcache.h>
16 * Journal replay/recovery:
18 * This code is all driven from run_cache_set(); we first read the journal
19 * entries, do some other stuff, then we mark all the keys in the journal
20 * entries (same as garbage collection would), then we replay them - reinserting
21 * them into the cache in precisely the same order as they appear in the
22 * journal.
24 * We only journal keys that go in leaf nodes, which simplifies things quite a
25 * bit.
28 static void journal_read_endio(struct bio *bio)
30 struct closure *cl = bio->bi_private;
32 closure_put(cl);
35 static int journal_read_bucket(struct cache *ca, struct list_head *list,
36 unsigned int bucket_index)
38 struct journal_device *ja = &ca->journal;
39 struct bio *bio = &ja->bio;
41 struct journal_replay *i;
42 struct jset *j, *data = ca->set->journal.w[0].data;
43 struct closure cl;
44 unsigned int len, left, offset = 0;
45 int ret = 0;
46 sector_t bucket = bucket_to_sector(ca->set, ca->sb.d[bucket_index]);
48 closure_init_stack(&cl);
50 pr_debug("reading %u", bucket_index);
52 while (offset < ca->sb.bucket_size) {
53 reread: left = ca->sb.bucket_size - offset;
54 len = min_t(unsigned int, left, PAGE_SECTORS << JSET_BITS);
56 bio_reset(bio);
57 bio->bi_iter.bi_sector = bucket + offset;
58 bio_set_dev(bio, ca->bdev);
59 bio->bi_iter.bi_size = len << 9;
61 bio->bi_end_io = journal_read_endio;
62 bio->bi_private = &cl;
63 bio_set_op_attrs(bio, REQ_OP_READ, 0);
64 bch_bio_map(bio, data);
66 closure_bio_submit(ca->set, bio, &cl);
67 closure_sync(&cl);
69 /* This function could be simpler now since we no longer write
70 * journal entries that overlap bucket boundaries; this means
71 * the start of a bucket will always have a valid journal entry
72 * if it has any journal entries at all.
75 j = data;
76 while (len) {
77 struct list_head *where;
78 size_t blocks, bytes = set_bytes(j);
80 if (j->magic != jset_magic(&ca->sb)) {
81 pr_debug("%u: bad magic", bucket_index);
82 return ret;
85 if (bytes > left << 9 ||
86 bytes > PAGE_SIZE << JSET_BITS) {
87 pr_info("%u: too big, %zu bytes, offset %u",
88 bucket_index, bytes, offset);
89 return ret;
92 if (bytes > len << 9)
93 goto reread;
95 if (j->csum != csum_set(j)) {
96 pr_info("%u: bad csum, %zu bytes, offset %u",
97 bucket_index, bytes, offset);
98 return ret;
101 blocks = set_blocks(j, block_bytes(ca->set));
104 * Nodes in 'list' are in linear increasing order of
105 * i->j.seq, the node on head has the smallest (oldest)
106 * journal seq, the node on tail has the biggest
107 * (latest) journal seq.
111 * Check from the oldest jset for last_seq. If
112 * i->j.seq < j->last_seq, it means the oldest jset
113 * in list is expired and useless, remove it from
114 * this list. Otherwise, j is a condidate jset for
115 * further following checks.
117 while (!list_empty(list)) {
118 i = list_first_entry(list,
119 struct journal_replay, list);
120 if (i->j.seq >= j->last_seq)
121 break;
122 list_del(&i->list);
123 kfree(i);
126 /* iterate list in reverse order (from latest jset) */
127 list_for_each_entry_reverse(i, list, list) {
128 if (j->seq == i->j.seq)
129 goto next_set;
132 * if j->seq is less than any i->j.last_seq
133 * in list, j is an expired and useless jset.
135 if (j->seq < i->j.last_seq)
136 goto next_set;
139 * 'where' points to first jset in list which
140 * is elder then j.
142 if (j->seq > i->j.seq) {
143 where = &i->list;
144 goto add;
148 where = list;
149 add:
150 i = kmalloc(offsetof(struct journal_replay, j) +
151 bytes, GFP_KERNEL);
152 if (!i)
153 return -ENOMEM;
154 memcpy(&i->j, j, bytes);
155 /* Add to the location after 'where' points to */
156 list_add(&i->list, where);
157 ret = 1;
159 if (j->seq > ja->seq[bucket_index])
160 ja->seq[bucket_index] = j->seq;
161 next_set:
162 offset += blocks * ca->sb.block_size;
163 len -= blocks * ca->sb.block_size;
164 j = ((void *) j) + blocks * block_bytes(ca);
168 return ret;
171 int bch_journal_read(struct cache_set *c, struct list_head *list)
173 #define read_bucket(b) \
174 ({ \
175 ret = journal_read_bucket(ca, list, b); \
176 __set_bit(b, bitmap); \
177 if (ret < 0) \
178 return ret; \
179 ret; \
182 struct cache *ca;
183 unsigned int iter;
184 int ret = 0;
186 for_each_cache(ca, c, iter) {
187 struct journal_device *ja = &ca->journal;
188 DECLARE_BITMAP(bitmap, SB_JOURNAL_BUCKETS);
189 unsigned int i, l, r, m;
190 uint64_t seq;
192 bitmap_zero(bitmap, SB_JOURNAL_BUCKETS);
193 pr_debug("%u journal buckets", ca->sb.njournal_buckets);
196 * Read journal buckets ordered by golden ratio hash to quickly
197 * find a sequence of buckets with valid journal entries
199 for (i = 0; i < ca->sb.njournal_buckets; i++) {
201 * We must try the index l with ZERO first for
202 * correctness due to the scenario that the journal
203 * bucket is circular buffer which might have wrapped
205 l = (i * 2654435769U) % ca->sb.njournal_buckets;
207 if (test_bit(l, bitmap))
208 break;
210 if (read_bucket(l))
211 goto bsearch;
215 * If that fails, check all the buckets we haven't checked
216 * already
218 pr_debug("falling back to linear search");
220 for (l = find_first_zero_bit(bitmap, ca->sb.njournal_buckets);
221 l < ca->sb.njournal_buckets;
222 l = find_next_zero_bit(bitmap, ca->sb.njournal_buckets,
223 l + 1))
224 if (read_bucket(l))
225 goto bsearch;
227 /* no journal entries on this device? */
228 if (l == ca->sb.njournal_buckets)
229 continue;
230 bsearch:
231 BUG_ON(list_empty(list));
233 /* Binary search */
234 m = l;
235 r = find_next_bit(bitmap, ca->sb.njournal_buckets, l + 1);
236 pr_debug("starting binary search, l %u r %u", l, r);
238 while (l + 1 < r) {
239 seq = list_entry(list->prev, struct journal_replay,
240 list)->j.seq;
242 m = (l + r) >> 1;
243 read_bucket(m);
245 if (seq != list_entry(list->prev, struct journal_replay,
246 list)->j.seq)
247 l = m;
248 else
249 r = m;
253 * Read buckets in reverse order until we stop finding more
254 * journal entries
256 pr_debug("finishing up: m %u njournal_buckets %u",
257 m, ca->sb.njournal_buckets);
258 l = m;
260 while (1) {
261 if (!l--)
262 l = ca->sb.njournal_buckets - 1;
264 if (l == m)
265 break;
267 if (test_bit(l, bitmap))
268 continue;
270 if (!read_bucket(l))
271 break;
274 seq = 0;
276 for (i = 0; i < ca->sb.njournal_buckets; i++)
277 if (ja->seq[i] > seq) {
278 seq = ja->seq[i];
280 * When journal_reclaim() goes to allocate for
281 * the first time, it'll use the bucket after
282 * ja->cur_idx
284 ja->cur_idx = i;
285 ja->last_idx = ja->discard_idx = (i + 1) %
286 ca->sb.njournal_buckets;
291 if (!list_empty(list))
292 c->journal.seq = list_entry(list->prev,
293 struct journal_replay,
294 list)->j.seq;
296 return 0;
297 #undef read_bucket
300 void bch_journal_mark(struct cache_set *c, struct list_head *list)
302 atomic_t p = { 0 };
303 struct bkey *k;
304 struct journal_replay *i;
305 struct journal *j = &c->journal;
306 uint64_t last = j->seq;
309 * journal.pin should never fill up - we never write a journal
310 * entry when it would fill up. But if for some reason it does, we
311 * iterate over the list in reverse order so that we can just skip that
312 * refcount instead of bugging.
315 list_for_each_entry_reverse(i, list, list) {
316 BUG_ON(last < i->j.seq);
317 i->pin = NULL;
319 while (last-- != i->j.seq)
320 if (fifo_free(&j->pin) > 1) {
321 fifo_push_front(&j->pin, p);
322 atomic_set(&fifo_front(&j->pin), 0);
325 if (fifo_free(&j->pin) > 1) {
326 fifo_push_front(&j->pin, p);
327 i->pin = &fifo_front(&j->pin);
328 atomic_set(i->pin, 1);
331 for (k = i->j.start;
332 k < bset_bkey_last(&i->j);
333 k = bkey_next(k))
334 if (!__bch_extent_invalid(c, k)) {
335 unsigned int j;
337 for (j = 0; j < KEY_PTRS(k); j++)
338 if (ptr_available(c, k, j))
339 atomic_inc(&PTR_BUCKET(c, k, j)->pin);
341 bch_initial_mark_key(c, 0, k);
346 static bool is_discard_enabled(struct cache_set *s)
348 struct cache *ca;
349 unsigned int i;
351 for_each_cache(ca, s, i)
352 if (ca->discard)
353 return true;
355 return false;
358 int bch_journal_replay(struct cache_set *s, struct list_head *list)
360 int ret = 0, keys = 0, entries = 0;
361 struct bkey *k;
362 struct journal_replay *i =
363 list_entry(list->prev, struct journal_replay, list);
365 uint64_t start = i->j.last_seq, end = i->j.seq, n = start;
366 struct keylist keylist;
368 list_for_each_entry(i, list, list) {
369 BUG_ON(i->pin && atomic_read(i->pin) != 1);
371 if (n != i->j.seq) {
372 if (n == start && is_discard_enabled(s))
373 pr_info("bcache: journal entries %llu-%llu may be discarded! (replaying %llu-%llu)",
374 n, i->j.seq - 1, start, end);
375 else {
376 pr_err("bcache: journal entries %llu-%llu missing! (replaying %llu-%llu)",
377 n, i->j.seq - 1, start, end);
378 ret = -EIO;
379 goto err;
383 for (k = i->j.start;
384 k < bset_bkey_last(&i->j);
385 k = bkey_next(k)) {
386 trace_bcache_journal_replay_key(k);
388 bch_keylist_init_single(&keylist, k);
390 ret = bch_btree_insert(s, &keylist, i->pin, NULL);
391 if (ret)
392 goto err;
394 BUG_ON(!bch_keylist_empty(&keylist));
395 keys++;
397 cond_resched();
400 if (i->pin)
401 atomic_dec(i->pin);
402 n = i->j.seq + 1;
403 entries++;
406 pr_info("journal replay done, %i keys in %i entries, seq %llu",
407 keys, entries, end);
408 err:
409 while (!list_empty(list)) {
410 i = list_first_entry(list, struct journal_replay, list);
411 list_del(&i->list);
412 kfree(i);
415 return ret;
418 /* Journalling */
420 #define nr_to_fifo_front(p, front_p, mask) (((p) - (front_p)) & (mask))
422 static void btree_flush_write(struct cache_set *c)
424 struct btree *b, *t, *btree_nodes[BTREE_FLUSH_NR];
425 unsigned int i, nr;
426 int ref_nr;
427 atomic_t *fifo_front_p, *now_fifo_front_p;
428 size_t mask;
430 if (c->journal.btree_flushing)
431 return;
433 spin_lock(&c->journal.flush_write_lock);
434 if (c->journal.btree_flushing) {
435 spin_unlock(&c->journal.flush_write_lock);
436 return;
438 c->journal.btree_flushing = true;
439 spin_unlock(&c->journal.flush_write_lock);
441 /* get the oldest journal entry and check its refcount */
442 spin_lock(&c->journal.lock);
443 fifo_front_p = &fifo_front(&c->journal.pin);
444 ref_nr = atomic_read(fifo_front_p);
445 if (ref_nr <= 0) {
447 * do nothing if no btree node references
448 * the oldest journal entry
450 spin_unlock(&c->journal.lock);
451 goto out;
453 spin_unlock(&c->journal.lock);
455 mask = c->journal.pin.mask;
456 nr = 0;
457 atomic_long_inc(&c->flush_write);
458 memset(btree_nodes, 0, sizeof(btree_nodes));
460 mutex_lock(&c->bucket_lock);
461 list_for_each_entry_safe_reverse(b, t, &c->btree_cache, list) {
463 * It is safe to get now_fifo_front_p without holding
464 * c->journal.lock here, because we don't need to know
465 * the exactly accurate value, just check whether the
466 * front pointer of c->journal.pin is changed.
468 now_fifo_front_p = &fifo_front(&c->journal.pin);
470 * If the oldest journal entry is reclaimed and front
471 * pointer of c->journal.pin changes, it is unnecessary
472 * to scan c->btree_cache anymore, just quit the loop and
473 * flush out what we have already.
475 if (now_fifo_front_p != fifo_front_p)
476 break;
478 * quit this loop if all matching btree nodes are
479 * scanned and record in btree_nodes[] already.
481 ref_nr = atomic_read(fifo_front_p);
482 if (nr >= ref_nr)
483 break;
485 if (btree_node_journal_flush(b))
486 pr_err("BUG: flush_write bit should not be set here!");
488 mutex_lock(&b->write_lock);
490 if (!btree_node_dirty(b)) {
491 mutex_unlock(&b->write_lock);
492 continue;
495 if (!btree_current_write(b)->journal) {
496 mutex_unlock(&b->write_lock);
497 continue;
501 * Only select the btree node which exactly references
502 * the oldest journal entry.
504 * If the journal entry pointed by fifo_front_p is
505 * reclaimed in parallel, don't worry:
506 * - the list_for_each_xxx loop will quit when checking
507 * next now_fifo_front_p.
508 * - If there are matched nodes recorded in btree_nodes[],
509 * they are clean now (this is why and how the oldest
510 * journal entry can be reclaimed). These selected nodes
511 * will be ignored and skipped in the folowing for-loop.
513 if (nr_to_fifo_front(btree_current_write(b)->journal,
514 fifo_front_p,
515 mask) != 0) {
516 mutex_unlock(&b->write_lock);
517 continue;
520 set_btree_node_journal_flush(b);
522 mutex_unlock(&b->write_lock);
524 btree_nodes[nr++] = b;
526 * To avoid holding c->bucket_lock too long time,
527 * only scan for BTREE_FLUSH_NR matched btree nodes
528 * at most. If there are more btree nodes reference
529 * the oldest journal entry, try to flush them next
530 * time when btree_flush_write() is called.
532 if (nr == BTREE_FLUSH_NR)
533 break;
535 mutex_unlock(&c->bucket_lock);
537 for (i = 0; i < nr; i++) {
538 b = btree_nodes[i];
539 if (!b) {
540 pr_err("BUG: btree_nodes[%d] is NULL", i);
541 continue;
544 /* safe to check without holding b->write_lock */
545 if (!btree_node_journal_flush(b)) {
546 pr_err("BUG: bnode %p: journal_flush bit cleaned", b);
547 continue;
550 mutex_lock(&b->write_lock);
551 if (!btree_current_write(b)->journal) {
552 clear_bit(BTREE_NODE_journal_flush, &b->flags);
553 mutex_unlock(&b->write_lock);
554 pr_debug("bnode %p: written by others", b);
555 continue;
558 if (!btree_node_dirty(b)) {
559 clear_bit(BTREE_NODE_journal_flush, &b->flags);
560 mutex_unlock(&b->write_lock);
561 pr_debug("bnode %p: dirty bit cleaned by others", b);
562 continue;
565 __bch_btree_node_write(b, NULL);
566 clear_bit(BTREE_NODE_journal_flush, &b->flags);
567 mutex_unlock(&b->write_lock);
570 out:
571 spin_lock(&c->journal.flush_write_lock);
572 c->journal.btree_flushing = false;
573 spin_unlock(&c->journal.flush_write_lock);
576 #define last_seq(j) ((j)->seq - fifo_used(&(j)->pin) + 1)
578 static void journal_discard_endio(struct bio *bio)
580 struct journal_device *ja =
581 container_of(bio, struct journal_device, discard_bio);
582 struct cache *ca = container_of(ja, struct cache, journal);
584 atomic_set(&ja->discard_in_flight, DISCARD_DONE);
586 closure_wake_up(&ca->set->journal.wait);
587 closure_put(&ca->set->cl);
590 static void journal_discard_work(struct work_struct *work)
592 struct journal_device *ja =
593 container_of(work, struct journal_device, discard_work);
595 submit_bio(&ja->discard_bio);
598 static void do_journal_discard(struct cache *ca)
600 struct journal_device *ja = &ca->journal;
601 struct bio *bio = &ja->discard_bio;
603 if (!ca->discard) {
604 ja->discard_idx = ja->last_idx;
605 return;
608 switch (atomic_read(&ja->discard_in_flight)) {
609 case DISCARD_IN_FLIGHT:
610 return;
612 case DISCARD_DONE:
613 ja->discard_idx = (ja->discard_idx + 1) %
614 ca->sb.njournal_buckets;
616 atomic_set(&ja->discard_in_flight, DISCARD_READY);
617 /* fallthrough */
619 case DISCARD_READY:
620 if (ja->discard_idx == ja->last_idx)
621 return;
623 atomic_set(&ja->discard_in_flight, DISCARD_IN_FLIGHT);
625 bio_init(bio, bio->bi_inline_vecs, 1);
626 bio_set_op_attrs(bio, REQ_OP_DISCARD, 0);
627 bio->bi_iter.bi_sector = bucket_to_sector(ca->set,
628 ca->sb.d[ja->discard_idx]);
629 bio_set_dev(bio, ca->bdev);
630 bio->bi_iter.bi_size = bucket_bytes(ca);
631 bio->bi_end_io = journal_discard_endio;
633 closure_get(&ca->set->cl);
634 INIT_WORK(&ja->discard_work, journal_discard_work);
635 queue_work(bch_journal_wq, &ja->discard_work);
639 static void journal_reclaim(struct cache_set *c)
641 struct bkey *k = &c->journal.key;
642 struct cache *ca;
643 uint64_t last_seq;
644 unsigned int iter, n = 0;
645 atomic_t p __maybe_unused;
647 atomic_long_inc(&c->reclaim);
649 while (!atomic_read(&fifo_front(&c->journal.pin)))
650 fifo_pop(&c->journal.pin, p);
652 last_seq = last_seq(&c->journal);
654 /* Update last_idx */
656 for_each_cache(ca, c, iter) {
657 struct journal_device *ja = &ca->journal;
659 while (ja->last_idx != ja->cur_idx &&
660 ja->seq[ja->last_idx] < last_seq)
661 ja->last_idx = (ja->last_idx + 1) %
662 ca->sb.njournal_buckets;
665 for_each_cache(ca, c, iter)
666 do_journal_discard(ca);
668 if (c->journal.blocks_free)
669 goto out;
672 * Allocate:
673 * XXX: Sort by free journal space
676 for_each_cache(ca, c, iter) {
677 struct journal_device *ja = &ca->journal;
678 unsigned int next = (ja->cur_idx + 1) % ca->sb.njournal_buckets;
680 /* No space available on this device */
681 if (next == ja->discard_idx)
682 continue;
684 ja->cur_idx = next;
685 k->ptr[n++] = MAKE_PTR(0,
686 bucket_to_sector(c, ca->sb.d[ja->cur_idx]),
687 ca->sb.nr_this_dev);
688 atomic_long_inc(&c->reclaimed_journal_buckets);
691 if (n) {
692 bkey_init(k);
693 SET_KEY_PTRS(k, n);
694 c->journal.blocks_free = c->sb.bucket_size >> c->block_bits;
696 out:
697 if (!journal_full(&c->journal))
698 __closure_wake_up(&c->journal.wait);
701 void bch_journal_next(struct journal *j)
703 atomic_t p = { 1 };
705 j->cur = (j->cur == j->w)
706 ? &j->w[1]
707 : &j->w[0];
710 * The fifo_push() needs to happen at the same time as j->seq is
711 * incremented for last_seq() to be calculated correctly
713 BUG_ON(!fifo_push(&j->pin, p));
714 atomic_set(&fifo_back(&j->pin), 1);
716 j->cur->data->seq = ++j->seq;
717 j->cur->dirty = false;
718 j->cur->need_write = false;
719 j->cur->data->keys = 0;
721 if (fifo_full(&j->pin))
722 pr_debug("journal_pin full (%zu)", fifo_used(&j->pin));
725 static void journal_write_endio(struct bio *bio)
727 struct journal_write *w = bio->bi_private;
729 cache_set_err_on(bio->bi_status, w->c, "journal io error");
730 closure_put(&w->c->journal.io);
733 static void journal_write(struct closure *cl);
735 static void journal_write_done(struct closure *cl)
737 struct journal *j = container_of(cl, struct journal, io);
738 struct journal_write *w = (j->cur == j->w)
739 ? &j->w[1]
740 : &j->w[0];
742 __closure_wake_up(&w->wait);
743 continue_at_nobarrier(cl, journal_write, bch_journal_wq);
746 static void journal_write_unlock(struct closure *cl)
747 __releases(&c->journal.lock)
749 struct cache_set *c = container_of(cl, struct cache_set, journal.io);
751 c->journal.io_in_flight = 0;
752 spin_unlock(&c->journal.lock);
755 static void journal_write_unlocked(struct closure *cl)
756 __releases(c->journal.lock)
758 struct cache_set *c = container_of(cl, struct cache_set, journal.io);
759 struct cache *ca;
760 struct journal_write *w = c->journal.cur;
761 struct bkey *k = &c->journal.key;
762 unsigned int i, sectors = set_blocks(w->data, block_bytes(c)) *
763 c->sb.block_size;
765 struct bio *bio;
766 struct bio_list list;
768 bio_list_init(&list);
770 if (!w->need_write) {
771 closure_return_with_destructor(cl, journal_write_unlock);
772 return;
773 } else if (journal_full(&c->journal)) {
774 journal_reclaim(c);
775 spin_unlock(&c->journal.lock);
777 btree_flush_write(c);
778 continue_at(cl, journal_write, bch_journal_wq);
779 return;
782 c->journal.blocks_free -= set_blocks(w->data, block_bytes(c));
784 w->data->btree_level = c->root->level;
786 bkey_copy(&w->data->btree_root, &c->root->key);
787 bkey_copy(&w->data->uuid_bucket, &c->uuid_bucket);
789 for_each_cache(ca, c, i)
790 w->data->prio_bucket[ca->sb.nr_this_dev] = ca->prio_buckets[0];
792 w->data->magic = jset_magic(&c->sb);
793 w->data->version = BCACHE_JSET_VERSION;
794 w->data->last_seq = last_seq(&c->journal);
795 w->data->csum = csum_set(w->data);
797 for (i = 0; i < KEY_PTRS(k); i++) {
798 ca = PTR_CACHE(c, k, i);
799 bio = &ca->journal.bio;
801 atomic_long_add(sectors, &ca->meta_sectors_written);
803 bio_reset(bio);
804 bio->bi_iter.bi_sector = PTR_OFFSET(k, i);
805 bio_set_dev(bio, ca->bdev);
806 bio->bi_iter.bi_size = sectors << 9;
808 bio->bi_end_io = journal_write_endio;
809 bio->bi_private = w;
810 bio_set_op_attrs(bio, REQ_OP_WRITE,
811 REQ_SYNC|REQ_META|REQ_PREFLUSH|REQ_FUA);
812 bch_bio_map(bio, w->data);
814 trace_bcache_journal_write(bio, w->data->keys);
815 bio_list_add(&list, bio);
817 SET_PTR_OFFSET(k, i, PTR_OFFSET(k, i) + sectors);
819 ca->journal.seq[ca->journal.cur_idx] = w->data->seq;
822 /* If KEY_PTRS(k) == 0, this jset gets lost in air */
823 BUG_ON(i == 0);
825 atomic_dec_bug(&fifo_back(&c->journal.pin));
826 bch_journal_next(&c->journal);
827 journal_reclaim(c);
829 spin_unlock(&c->journal.lock);
831 while ((bio = bio_list_pop(&list)))
832 closure_bio_submit(c, bio, cl);
834 continue_at(cl, journal_write_done, NULL);
837 static void journal_write(struct closure *cl)
839 struct cache_set *c = container_of(cl, struct cache_set, journal.io);
841 spin_lock(&c->journal.lock);
842 journal_write_unlocked(cl);
845 static void journal_try_write(struct cache_set *c)
846 __releases(c->journal.lock)
848 struct closure *cl = &c->journal.io;
849 struct journal_write *w = c->journal.cur;
851 w->need_write = true;
853 if (!c->journal.io_in_flight) {
854 c->journal.io_in_flight = 1;
855 closure_call(cl, journal_write_unlocked, NULL, &c->cl);
856 } else {
857 spin_unlock(&c->journal.lock);
861 static struct journal_write *journal_wait_for_write(struct cache_set *c,
862 unsigned int nkeys)
863 __acquires(&c->journal.lock)
865 size_t sectors;
866 struct closure cl;
867 bool wait = false;
869 closure_init_stack(&cl);
871 spin_lock(&c->journal.lock);
873 while (1) {
874 struct journal_write *w = c->journal.cur;
876 sectors = __set_blocks(w->data, w->data->keys + nkeys,
877 block_bytes(c)) * c->sb.block_size;
879 if (sectors <= min_t(size_t,
880 c->journal.blocks_free * c->sb.block_size,
881 PAGE_SECTORS << JSET_BITS))
882 return w;
884 if (wait)
885 closure_wait(&c->journal.wait, &cl);
887 if (!journal_full(&c->journal)) {
888 if (wait)
889 trace_bcache_journal_entry_full(c);
892 * XXX: If we were inserting so many keys that they
893 * won't fit in an _empty_ journal write, we'll
894 * deadlock. For now, handle this in
895 * bch_keylist_realloc() - but something to think about.
897 BUG_ON(!w->data->keys);
899 journal_try_write(c); /* unlocks */
900 } else {
901 if (wait)
902 trace_bcache_journal_full(c);
904 journal_reclaim(c);
905 spin_unlock(&c->journal.lock);
907 btree_flush_write(c);
910 closure_sync(&cl);
911 spin_lock(&c->journal.lock);
912 wait = true;
916 static void journal_write_work(struct work_struct *work)
918 struct cache_set *c = container_of(to_delayed_work(work),
919 struct cache_set,
920 journal.work);
921 spin_lock(&c->journal.lock);
922 if (c->journal.cur->dirty)
923 journal_try_write(c);
924 else
925 spin_unlock(&c->journal.lock);
929 * Entry point to the journalling code - bio_insert() and btree_invalidate()
930 * pass bch_journal() a list of keys to be journalled, and then
931 * bch_journal() hands those same keys off to btree_insert_async()
934 atomic_t *bch_journal(struct cache_set *c,
935 struct keylist *keys,
936 struct closure *parent)
938 struct journal_write *w;
939 atomic_t *ret;
941 /* No journaling if CACHE_SET_IO_DISABLE set already */
942 if (unlikely(test_bit(CACHE_SET_IO_DISABLE, &c->flags)))
943 return NULL;
945 if (!CACHE_SYNC(&c->sb))
946 return NULL;
948 w = journal_wait_for_write(c, bch_keylist_nkeys(keys));
950 memcpy(bset_bkey_last(w->data), keys->keys, bch_keylist_bytes(keys));
951 w->data->keys += bch_keylist_nkeys(keys);
953 ret = &fifo_back(&c->journal.pin);
954 atomic_inc(ret);
956 if (parent) {
957 closure_wait(&w->wait, parent);
958 journal_try_write(c);
959 } else if (!w->dirty) {
960 w->dirty = true;
961 schedule_delayed_work(&c->journal.work,
962 msecs_to_jiffies(c->journal_delay_ms));
963 spin_unlock(&c->journal.lock);
964 } else {
965 spin_unlock(&c->journal.lock);
969 return ret;
972 void bch_journal_meta(struct cache_set *c, struct closure *cl)
974 struct keylist keys;
975 atomic_t *ref;
977 bch_keylist_init(&keys);
979 ref = bch_journal(c, &keys, cl);
980 if (ref)
981 atomic_dec_bug(ref);
984 void bch_journal_free(struct cache_set *c)
986 free_pages((unsigned long) c->journal.w[1].data, JSET_BITS);
987 free_pages((unsigned long) c->journal.w[0].data, JSET_BITS);
988 free_fifo(&c->journal.pin);
991 int bch_journal_alloc(struct cache_set *c)
993 struct journal *j = &c->journal;
995 spin_lock_init(&j->lock);
996 spin_lock_init(&j->flush_write_lock);
997 INIT_DELAYED_WORK(&j->work, journal_write_work);
999 c->journal_delay_ms = 100;
1001 j->w[0].c = c;
1002 j->w[1].c = c;
1004 if (!(init_fifo(&j->pin, JOURNAL_PIN, GFP_KERNEL)) ||
1005 !(j->w[0].data = (void *) __get_free_pages(GFP_KERNEL|__GFP_COMP, JSET_BITS)) ||
1006 !(j->w[1].data = (void *) __get_free_pages(GFP_KERNEL|__GFP_COMP, JSET_BITS)))
1007 return -ENOMEM;
1009 return 0;