dm: Call proper helper to determine dax support
[linux/fpc-iii.git] / drivers / md / bcache / request.c
blob4045ae748f17e40049075e56d44576bffff6097a
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Main bcache entry point - handle a read or a write request and decide what to
4 * do with it; the make_request functions are called by the block layer.
6 * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
7 * Copyright 2012 Google, Inc.
8 */
10 #include "bcache.h"
11 #include "btree.h"
12 #include "debug.h"
13 #include "request.h"
14 #include "writeback.h"
16 #include <linux/module.h>
17 #include <linux/hash.h>
18 #include <linux/random.h>
19 #include <linux/backing-dev.h>
21 #include <trace/events/bcache.h>
23 #define CUTOFF_CACHE_ADD 95
24 #define CUTOFF_CACHE_READA 90
26 struct kmem_cache *bch_search_cache;
28 static void bch_data_insert_start(struct closure *cl);
30 static unsigned int cache_mode(struct cached_dev *dc)
32 return BDEV_CACHE_MODE(&dc->sb);
35 static bool verify(struct cached_dev *dc)
37 return dc->verify;
40 static void bio_csum(struct bio *bio, struct bkey *k)
42 struct bio_vec bv;
43 struct bvec_iter iter;
44 uint64_t csum = 0;
46 bio_for_each_segment(bv, bio, iter) {
47 void *d = kmap(bv.bv_page) + bv.bv_offset;
49 csum = bch_crc64_update(csum, d, bv.bv_len);
50 kunmap(bv.bv_page);
53 k->ptr[KEY_PTRS(k)] = csum & (~0ULL >> 1);
56 /* Insert data into cache */
58 static void bch_data_insert_keys(struct closure *cl)
60 struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
61 atomic_t *journal_ref = NULL;
62 struct bkey *replace_key = op->replace ? &op->replace_key : NULL;
63 int ret;
66 * If we're looping, might already be waiting on
67 * another journal write - can't wait on more than one journal write at
68 * a time
70 * XXX: this looks wrong
72 #if 0
73 while (atomic_read(&s->cl.remaining) & CLOSURE_WAITING)
74 closure_sync(&s->cl);
75 #endif
77 if (!op->replace)
78 journal_ref = bch_journal(op->c, &op->insert_keys,
79 op->flush_journal ? cl : NULL);
81 ret = bch_btree_insert(op->c, &op->insert_keys,
82 journal_ref, replace_key);
83 if (ret == -ESRCH) {
84 op->replace_collision = true;
85 } else if (ret) {
86 op->status = BLK_STS_RESOURCE;
87 op->insert_data_done = true;
90 if (journal_ref)
91 atomic_dec_bug(journal_ref);
93 if (!op->insert_data_done) {
94 continue_at(cl, bch_data_insert_start, op->wq);
95 return;
98 bch_keylist_free(&op->insert_keys);
99 closure_return(cl);
102 static int bch_keylist_realloc(struct keylist *l, unsigned int u64s,
103 struct cache_set *c)
105 size_t oldsize = bch_keylist_nkeys(l);
106 size_t newsize = oldsize + u64s;
109 * The journalling code doesn't handle the case where the keys to insert
110 * is bigger than an empty write: If we just return -ENOMEM here,
111 * bch_data_insert_keys() will insert the keys created so far
112 * and finish the rest when the keylist is empty.
114 if (newsize * sizeof(uint64_t) > block_bytes(c) - sizeof(struct jset))
115 return -ENOMEM;
117 return __bch_keylist_realloc(l, u64s);
120 static void bch_data_invalidate(struct closure *cl)
122 struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
123 struct bio *bio = op->bio;
125 pr_debug("invalidating %i sectors from %llu",
126 bio_sectors(bio), (uint64_t) bio->bi_iter.bi_sector);
128 while (bio_sectors(bio)) {
129 unsigned int sectors = min(bio_sectors(bio),
130 1U << (KEY_SIZE_BITS - 1));
132 if (bch_keylist_realloc(&op->insert_keys, 2, op->c))
133 goto out;
135 bio->bi_iter.bi_sector += sectors;
136 bio->bi_iter.bi_size -= sectors << 9;
138 bch_keylist_add(&op->insert_keys,
139 &KEY(op->inode,
140 bio->bi_iter.bi_sector,
141 sectors));
144 op->insert_data_done = true;
145 /* get in bch_data_insert() */
146 bio_put(bio);
147 out:
148 continue_at(cl, bch_data_insert_keys, op->wq);
151 static void bch_data_insert_error(struct closure *cl)
153 struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
156 * Our data write just errored, which means we've got a bunch of keys to
157 * insert that point to data that wasn't successfully written.
159 * We don't have to insert those keys but we still have to invalidate
160 * that region of the cache - so, if we just strip off all the pointers
161 * from the keys we'll accomplish just that.
164 struct bkey *src = op->insert_keys.keys, *dst = op->insert_keys.keys;
166 while (src != op->insert_keys.top) {
167 struct bkey *n = bkey_next(src);
169 SET_KEY_PTRS(src, 0);
170 memmove(dst, src, bkey_bytes(src));
172 dst = bkey_next(dst);
173 src = n;
176 op->insert_keys.top = dst;
178 bch_data_insert_keys(cl);
181 static void bch_data_insert_endio(struct bio *bio)
183 struct closure *cl = bio->bi_private;
184 struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
186 if (bio->bi_status) {
187 /* TODO: We could try to recover from this. */
188 if (op->writeback)
189 op->status = bio->bi_status;
190 else if (!op->replace)
191 set_closure_fn(cl, bch_data_insert_error, op->wq);
192 else
193 set_closure_fn(cl, NULL, NULL);
196 bch_bbio_endio(op->c, bio, bio->bi_status, "writing data to cache");
199 static void bch_data_insert_start(struct closure *cl)
201 struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
202 struct bio *bio = op->bio, *n;
204 if (op->bypass)
205 return bch_data_invalidate(cl);
207 if (atomic_sub_return(bio_sectors(bio), &op->c->sectors_to_gc) < 0)
208 wake_up_gc(op->c);
211 * Journal writes are marked REQ_PREFLUSH; if the original write was a
212 * flush, it'll wait on the journal write.
214 bio->bi_opf &= ~(REQ_PREFLUSH|REQ_FUA);
216 do {
217 unsigned int i;
218 struct bkey *k;
219 struct bio_set *split = &op->c->bio_split;
221 /* 1 for the device pointer and 1 for the chksum */
222 if (bch_keylist_realloc(&op->insert_keys,
223 3 + (op->csum ? 1 : 0),
224 op->c)) {
225 continue_at(cl, bch_data_insert_keys, op->wq);
226 return;
229 k = op->insert_keys.top;
230 bkey_init(k);
231 SET_KEY_INODE(k, op->inode);
232 SET_KEY_OFFSET(k, bio->bi_iter.bi_sector);
234 if (!bch_alloc_sectors(op->c, k, bio_sectors(bio),
235 op->write_point, op->write_prio,
236 op->writeback))
237 goto err;
239 n = bio_next_split(bio, KEY_SIZE(k), GFP_NOIO, split);
241 n->bi_end_io = bch_data_insert_endio;
242 n->bi_private = cl;
244 if (op->writeback) {
245 SET_KEY_DIRTY(k, true);
247 for (i = 0; i < KEY_PTRS(k); i++)
248 SET_GC_MARK(PTR_BUCKET(op->c, k, i),
249 GC_MARK_DIRTY);
252 SET_KEY_CSUM(k, op->csum);
253 if (KEY_CSUM(k))
254 bio_csum(n, k);
256 trace_bcache_cache_insert(k);
257 bch_keylist_push(&op->insert_keys);
259 bio_set_op_attrs(n, REQ_OP_WRITE, 0);
260 bch_submit_bbio(n, op->c, k, 0);
261 } while (n != bio);
263 op->insert_data_done = true;
264 continue_at(cl, bch_data_insert_keys, op->wq);
265 return;
266 err:
267 /* bch_alloc_sectors() blocks if s->writeback = true */
268 BUG_ON(op->writeback);
271 * But if it's not a writeback write we'd rather just bail out if
272 * there aren't any buckets ready to write to - it might take awhile and
273 * we might be starving btree writes for gc or something.
276 if (!op->replace) {
278 * Writethrough write: We can't complete the write until we've
279 * updated the index. But we don't want to delay the write while
280 * we wait for buckets to be freed up, so just invalidate the
281 * rest of the write.
283 op->bypass = true;
284 return bch_data_invalidate(cl);
285 } else {
287 * From a cache miss, we can just insert the keys for the data
288 * we have written or bail out if we didn't do anything.
290 op->insert_data_done = true;
291 bio_put(bio);
293 if (!bch_keylist_empty(&op->insert_keys))
294 continue_at(cl, bch_data_insert_keys, op->wq);
295 else
296 closure_return(cl);
301 * bch_data_insert - stick some data in the cache
302 * @cl: closure pointer.
304 * This is the starting point for any data to end up in a cache device; it could
305 * be from a normal write, or a writeback write, or a write to a flash only
306 * volume - it's also used by the moving garbage collector to compact data in
307 * mostly empty buckets.
309 * It first writes the data to the cache, creating a list of keys to be inserted
310 * (if the data had to be fragmented there will be multiple keys); after the
311 * data is written it calls bch_journal, and after the keys have been added to
312 * the next journal write they're inserted into the btree.
314 * It inserts the data in op->bio; bi_sector is used for the key offset,
315 * and op->inode is used for the key inode.
317 * If op->bypass is true, instead of inserting the data it invalidates the
318 * region of the cache represented by op->bio and op->inode.
320 void bch_data_insert(struct closure *cl)
322 struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
324 trace_bcache_write(op->c, op->inode, op->bio,
325 op->writeback, op->bypass);
327 bch_keylist_init(&op->insert_keys);
328 bio_get(op->bio);
329 bch_data_insert_start(cl);
333 * Congested? Return 0 (not congested) or the limit (in sectors)
334 * beyond which we should bypass the cache due to congestion.
336 unsigned int bch_get_congested(const struct cache_set *c)
338 int i;
340 if (!c->congested_read_threshold_us &&
341 !c->congested_write_threshold_us)
342 return 0;
344 i = (local_clock_us() - c->congested_last_us) / 1024;
345 if (i < 0)
346 return 0;
348 i += atomic_read(&c->congested);
349 if (i >= 0)
350 return 0;
352 i += CONGESTED_MAX;
354 if (i > 0)
355 i = fract_exp_two(i, 6);
357 i -= hweight32(get_random_u32());
359 return i > 0 ? i : 1;
362 static void add_sequential(struct task_struct *t)
364 ewma_add(t->sequential_io_avg,
365 t->sequential_io, 8, 0);
367 t->sequential_io = 0;
370 static struct hlist_head *iohash(struct cached_dev *dc, uint64_t k)
372 return &dc->io_hash[hash_64(k, RECENT_IO_BITS)];
375 static bool check_should_bypass(struct cached_dev *dc, struct bio *bio)
377 struct cache_set *c = dc->disk.c;
378 unsigned int mode = cache_mode(dc);
379 unsigned int sectors, congested;
380 struct task_struct *task = current;
381 struct io *i;
383 if (test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags) ||
384 c->gc_stats.in_use > CUTOFF_CACHE_ADD ||
385 (bio_op(bio) == REQ_OP_DISCARD))
386 goto skip;
388 if (mode == CACHE_MODE_NONE ||
389 (mode == CACHE_MODE_WRITEAROUND &&
390 op_is_write(bio_op(bio))))
391 goto skip;
394 * If the bio is for read-ahead or background IO, bypass it or
395 * not depends on the following situations,
396 * - If the IO is for meta data, always cache it and no bypass
397 * - If the IO is not meta data, check dc->cache_reada_policy,
398 * BCH_CACHE_READA_ALL: cache it and not bypass
399 * BCH_CACHE_READA_META_ONLY: not cache it and bypass
400 * That is, read-ahead request for metadata always get cached
401 * (eg, for gfs2 or xfs).
403 if ((bio->bi_opf & (REQ_RAHEAD|REQ_BACKGROUND))) {
404 if (!(bio->bi_opf & (REQ_META|REQ_PRIO)) &&
405 (dc->cache_readahead_policy != BCH_CACHE_READA_ALL))
406 goto skip;
409 if (bio->bi_iter.bi_sector & (c->sb.block_size - 1) ||
410 bio_sectors(bio) & (c->sb.block_size - 1)) {
411 pr_debug("skipping unaligned io");
412 goto skip;
415 if (bypass_torture_test(dc)) {
416 if ((get_random_int() & 3) == 3)
417 goto skip;
418 else
419 goto rescale;
422 congested = bch_get_congested(c);
423 if (!congested && !dc->sequential_cutoff)
424 goto rescale;
426 spin_lock(&dc->io_lock);
428 hlist_for_each_entry(i, iohash(dc, bio->bi_iter.bi_sector), hash)
429 if (i->last == bio->bi_iter.bi_sector &&
430 time_before(jiffies, i->jiffies))
431 goto found;
433 i = list_first_entry(&dc->io_lru, struct io, lru);
435 add_sequential(task);
436 i->sequential = 0;
437 found:
438 if (i->sequential + bio->bi_iter.bi_size > i->sequential)
439 i->sequential += bio->bi_iter.bi_size;
441 i->last = bio_end_sector(bio);
442 i->jiffies = jiffies + msecs_to_jiffies(5000);
443 task->sequential_io = i->sequential;
445 hlist_del(&i->hash);
446 hlist_add_head(&i->hash, iohash(dc, i->last));
447 list_move_tail(&i->lru, &dc->io_lru);
449 spin_unlock(&dc->io_lock);
451 sectors = max(task->sequential_io,
452 task->sequential_io_avg) >> 9;
454 if (dc->sequential_cutoff &&
455 sectors >= dc->sequential_cutoff >> 9) {
456 trace_bcache_bypass_sequential(bio);
457 goto skip;
460 if (congested && sectors >= congested) {
461 trace_bcache_bypass_congested(bio);
462 goto skip;
465 rescale:
466 bch_rescale_priorities(c, bio_sectors(bio));
467 return false;
468 skip:
469 bch_mark_sectors_bypassed(c, dc, bio_sectors(bio));
470 return true;
473 /* Cache lookup */
475 struct search {
476 /* Stack frame for bio_complete */
477 struct closure cl;
479 struct bbio bio;
480 struct bio *orig_bio;
481 struct bio *cache_miss;
482 struct bcache_device *d;
484 unsigned int insert_bio_sectors;
485 unsigned int recoverable:1;
486 unsigned int write:1;
487 unsigned int read_dirty_data:1;
488 unsigned int cache_missed:1;
490 unsigned long start_time;
492 struct btree_op op;
493 struct data_insert_op iop;
496 static void bch_cache_read_endio(struct bio *bio)
498 struct bbio *b = container_of(bio, struct bbio, bio);
499 struct closure *cl = bio->bi_private;
500 struct search *s = container_of(cl, struct search, cl);
503 * If the bucket was reused while our bio was in flight, we might have
504 * read the wrong data. Set s->error but not error so it doesn't get
505 * counted against the cache device, but we'll still reread the data
506 * from the backing device.
509 if (bio->bi_status)
510 s->iop.status = bio->bi_status;
511 else if (!KEY_DIRTY(&b->key) &&
512 ptr_stale(s->iop.c, &b->key, 0)) {
513 atomic_long_inc(&s->iop.c->cache_read_races);
514 s->iop.status = BLK_STS_IOERR;
517 bch_bbio_endio(s->iop.c, bio, bio->bi_status, "reading from cache");
521 * Read from a single key, handling the initial cache miss if the key starts in
522 * the middle of the bio
524 static int cache_lookup_fn(struct btree_op *op, struct btree *b, struct bkey *k)
526 struct search *s = container_of(op, struct search, op);
527 struct bio *n, *bio = &s->bio.bio;
528 struct bkey *bio_key;
529 unsigned int ptr;
531 if (bkey_cmp(k, &KEY(s->iop.inode, bio->bi_iter.bi_sector, 0)) <= 0)
532 return MAP_CONTINUE;
534 if (KEY_INODE(k) != s->iop.inode ||
535 KEY_START(k) > bio->bi_iter.bi_sector) {
536 unsigned int bio_sectors = bio_sectors(bio);
537 unsigned int sectors = KEY_INODE(k) == s->iop.inode
538 ? min_t(uint64_t, INT_MAX,
539 KEY_START(k) - bio->bi_iter.bi_sector)
540 : INT_MAX;
541 int ret = s->d->cache_miss(b, s, bio, sectors);
543 if (ret != MAP_CONTINUE)
544 return ret;
546 /* if this was a complete miss we shouldn't get here */
547 BUG_ON(bio_sectors <= sectors);
550 if (!KEY_SIZE(k))
551 return MAP_CONTINUE;
553 /* XXX: figure out best pointer - for multiple cache devices */
554 ptr = 0;
556 PTR_BUCKET(b->c, k, ptr)->prio = INITIAL_PRIO;
558 if (KEY_DIRTY(k))
559 s->read_dirty_data = true;
561 n = bio_next_split(bio, min_t(uint64_t, INT_MAX,
562 KEY_OFFSET(k) - bio->bi_iter.bi_sector),
563 GFP_NOIO, &s->d->bio_split);
565 bio_key = &container_of(n, struct bbio, bio)->key;
566 bch_bkey_copy_single_ptr(bio_key, k, ptr);
568 bch_cut_front(&KEY(s->iop.inode, n->bi_iter.bi_sector, 0), bio_key);
569 bch_cut_back(&KEY(s->iop.inode, bio_end_sector(n), 0), bio_key);
571 n->bi_end_io = bch_cache_read_endio;
572 n->bi_private = &s->cl;
575 * The bucket we're reading from might be reused while our bio
576 * is in flight, and we could then end up reading the wrong
577 * data.
579 * We guard against this by checking (in cache_read_endio()) if
580 * the pointer is stale again; if so, we treat it as an error
581 * and reread from the backing device (but we don't pass that
582 * error up anywhere).
585 __bch_submit_bbio(n, b->c);
586 return n == bio ? MAP_DONE : MAP_CONTINUE;
589 static void cache_lookup(struct closure *cl)
591 struct search *s = container_of(cl, struct search, iop.cl);
592 struct bio *bio = &s->bio.bio;
593 struct cached_dev *dc;
594 int ret;
596 bch_btree_op_init(&s->op, -1);
598 ret = bch_btree_map_keys(&s->op, s->iop.c,
599 &KEY(s->iop.inode, bio->bi_iter.bi_sector, 0),
600 cache_lookup_fn, MAP_END_KEY);
601 if (ret == -EAGAIN) {
602 continue_at(cl, cache_lookup, bcache_wq);
603 return;
607 * We might meet err when searching the btree, If that happens, we will
608 * get negative ret, in this scenario we should not recover data from
609 * backing device (when cache device is dirty) because we don't know
610 * whether bkeys the read request covered are all clean.
612 * And after that happened, s->iop.status is still its initial value
613 * before we submit s->bio.bio
615 if (ret < 0) {
616 BUG_ON(ret == -EINTR);
617 if (s->d && s->d->c &&
618 !UUID_FLASH_ONLY(&s->d->c->uuids[s->d->id])) {
619 dc = container_of(s->d, struct cached_dev, disk);
620 if (dc && atomic_read(&dc->has_dirty))
621 s->recoverable = false;
623 if (!s->iop.status)
624 s->iop.status = BLK_STS_IOERR;
627 closure_return(cl);
630 /* Common code for the make_request functions */
632 static void request_endio(struct bio *bio)
634 struct closure *cl = bio->bi_private;
636 if (bio->bi_status) {
637 struct search *s = container_of(cl, struct search, cl);
639 s->iop.status = bio->bi_status;
640 /* Only cache read errors are recoverable */
641 s->recoverable = false;
644 bio_put(bio);
645 closure_put(cl);
648 static void backing_request_endio(struct bio *bio)
650 struct closure *cl = bio->bi_private;
652 if (bio->bi_status) {
653 struct search *s = container_of(cl, struct search, cl);
654 struct cached_dev *dc = container_of(s->d,
655 struct cached_dev, disk);
657 * If a bio has REQ_PREFLUSH for writeback mode, it is
658 * speically assembled in cached_dev_write() for a non-zero
659 * write request which has REQ_PREFLUSH. we don't set
660 * s->iop.status by this failure, the status will be decided
661 * by result of bch_data_insert() operation.
663 if (unlikely(s->iop.writeback &&
664 bio->bi_opf & REQ_PREFLUSH)) {
665 pr_err("Can't flush %s: returned bi_status %i",
666 dc->backing_dev_name, bio->bi_status);
667 } else {
668 /* set to orig_bio->bi_status in bio_complete() */
669 s->iop.status = bio->bi_status;
671 s->recoverable = false;
672 /* should count I/O error for backing device here */
673 bch_count_backing_io_errors(dc, bio);
676 bio_put(bio);
677 closure_put(cl);
680 static void bio_complete(struct search *s)
682 if (s->orig_bio) {
683 generic_end_io_acct(s->d->disk->queue, bio_op(s->orig_bio),
684 &s->d->disk->part0, s->start_time);
686 trace_bcache_request_end(s->d, s->orig_bio);
687 s->orig_bio->bi_status = s->iop.status;
688 bio_endio(s->orig_bio);
689 s->orig_bio = NULL;
693 static void do_bio_hook(struct search *s,
694 struct bio *orig_bio,
695 bio_end_io_t *end_io_fn)
697 struct bio *bio = &s->bio.bio;
699 bio_init(bio, NULL, 0);
700 __bio_clone_fast(bio, orig_bio);
702 * bi_end_io can be set separately somewhere else, e.g. the
703 * variants in,
704 * - cache_bio->bi_end_io from cached_dev_cache_miss()
705 * - n->bi_end_io from cache_lookup_fn()
707 bio->bi_end_io = end_io_fn;
708 bio->bi_private = &s->cl;
710 bio_cnt_set(bio, 3);
713 static void search_free(struct closure *cl)
715 struct search *s = container_of(cl, struct search, cl);
717 atomic_dec(&s->iop.c->search_inflight);
719 if (s->iop.bio)
720 bio_put(s->iop.bio);
722 bio_complete(s);
723 closure_debug_destroy(cl);
724 mempool_free(s, &s->iop.c->search);
727 static inline struct search *search_alloc(struct bio *bio,
728 struct bcache_device *d)
730 struct search *s;
732 s = mempool_alloc(&d->c->search, GFP_NOIO);
734 closure_init(&s->cl, NULL);
735 do_bio_hook(s, bio, request_endio);
736 atomic_inc(&d->c->search_inflight);
738 s->orig_bio = bio;
739 s->cache_miss = NULL;
740 s->cache_missed = 0;
741 s->d = d;
742 s->recoverable = 1;
743 s->write = op_is_write(bio_op(bio));
744 s->read_dirty_data = 0;
745 s->start_time = jiffies;
747 s->iop.c = d->c;
748 s->iop.bio = NULL;
749 s->iop.inode = d->id;
750 s->iop.write_point = hash_long((unsigned long) current, 16);
751 s->iop.write_prio = 0;
752 s->iop.status = 0;
753 s->iop.flags = 0;
754 s->iop.flush_journal = op_is_flush(bio->bi_opf);
755 s->iop.wq = bcache_wq;
757 return s;
760 /* Cached devices */
762 static void cached_dev_bio_complete(struct closure *cl)
764 struct search *s = container_of(cl, struct search, cl);
765 struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
767 cached_dev_put(dc);
768 search_free(cl);
771 /* Process reads */
773 static void cached_dev_read_error_done(struct closure *cl)
775 struct search *s = container_of(cl, struct search, cl);
777 if (s->iop.replace_collision)
778 bch_mark_cache_miss_collision(s->iop.c, s->d);
780 if (s->iop.bio)
781 bio_free_pages(s->iop.bio);
783 cached_dev_bio_complete(cl);
786 static void cached_dev_read_error(struct closure *cl)
788 struct search *s = container_of(cl, struct search, cl);
789 struct bio *bio = &s->bio.bio;
792 * If read request hit dirty data (s->read_dirty_data is true),
793 * then recovery a failed read request from cached device may
794 * get a stale data back. So read failure recovery is only
795 * permitted when read request hit clean data in cache device,
796 * or when cache read race happened.
798 if (s->recoverable && !s->read_dirty_data) {
799 /* Retry from the backing device: */
800 trace_bcache_read_retry(s->orig_bio);
802 s->iop.status = 0;
803 do_bio_hook(s, s->orig_bio, backing_request_endio);
805 /* XXX: invalidate cache */
807 /* I/O request sent to backing device */
808 closure_bio_submit(s->iop.c, bio, cl);
811 continue_at(cl, cached_dev_read_error_done, NULL);
814 static void cached_dev_cache_miss_done(struct closure *cl)
816 struct search *s = container_of(cl, struct search, cl);
817 struct bcache_device *d = s->d;
819 if (s->iop.replace_collision)
820 bch_mark_cache_miss_collision(s->iop.c, s->d);
822 if (s->iop.bio)
823 bio_free_pages(s->iop.bio);
825 cached_dev_bio_complete(cl);
826 closure_put(&d->cl);
829 static void cached_dev_read_done(struct closure *cl)
831 struct search *s = container_of(cl, struct search, cl);
832 struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
835 * We had a cache miss; cache_bio now contains data ready to be inserted
836 * into the cache.
838 * First, we copy the data we just read from cache_bio's bounce buffers
839 * to the buffers the original bio pointed to:
842 if (s->iop.bio) {
843 bio_reset(s->iop.bio);
844 s->iop.bio->bi_iter.bi_sector =
845 s->cache_miss->bi_iter.bi_sector;
846 bio_copy_dev(s->iop.bio, s->cache_miss);
847 s->iop.bio->bi_iter.bi_size = s->insert_bio_sectors << 9;
848 bch_bio_map(s->iop.bio, NULL);
850 bio_copy_data(s->cache_miss, s->iop.bio);
852 bio_put(s->cache_miss);
853 s->cache_miss = NULL;
856 if (verify(dc) && s->recoverable && !s->read_dirty_data)
857 bch_data_verify(dc, s->orig_bio);
859 closure_get(&dc->disk.cl);
860 bio_complete(s);
862 if (s->iop.bio &&
863 !test_bit(CACHE_SET_STOPPING, &s->iop.c->flags)) {
864 BUG_ON(!s->iop.replace);
865 closure_call(&s->iop.cl, bch_data_insert, NULL, cl);
868 continue_at(cl, cached_dev_cache_miss_done, NULL);
871 static void cached_dev_read_done_bh(struct closure *cl)
873 struct search *s = container_of(cl, struct search, cl);
874 struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
876 bch_mark_cache_accounting(s->iop.c, s->d,
877 !s->cache_missed, s->iop.bypass);
878 trace_bcache_read(s->orig_bio, !s->cache_missed, s->iop.bypass);
880 if (s->iop.status)
881 continue_at_nobarrier(cl, cached_dev_read_error, bcache_wq);
882 else if (s->iop.bio || verify(dc))
883 continue_at_nobarrier(cl, cached_dev_read_done, bcache_wq);
884 else
885 continue_at_nobarrier(cl, cached_dev_bio_complete, NULL);
888 static int cached_dev_cache_miss(struct btree *b, struct search *s,
889 struct bio *bio, unsigned int sectors)
891 int ret = MAP_CONTINUE;
892 unsigned int reada = 0;
893 struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
894 struct bio *miss, *cache_bio;
896 s->cache_missed = 1;
898 if (s->cache_miss || s->iop.bypass) {
899 miss = bio_next_split(bio, sectors, GFP_NOIO, &s->d->bio_split);
900 ret = miss == bio ? MAP_DONE : MAP_CONTINUE;
901 goto out_submit;
904 if (!(bio->bi_opf & REQ_RAHEAD) &&
905 !(bio->bi_opf & (REQ_META|REQ_PRIO)) &&
906 s->iop.c->gc_stats.in_use < CUTOFF_CACHE_READA)
907 reada = min_t(sector_t, dc->readahead >> 9,
908 get_capacity(bio->bi_disk) - bio_end_sector(bio));
910 s->insert_bio_sectors = min(sectors, bio_sectors(bio) + reada);
912 s->iop.replace_key = KEY(s->iop.inode,
913 bio->bi_iter.bi_sector + s->insert_bio_sectors,
914 s->insert_bio_sectors);
916 ret = bch_btree_insert_check_key(b, &s->op, &s->iop.replace_key);
917 if (ret)
918 return ret;
920 s->iop.replace = true;
922 miss = bio_next_split(bio, sectors, GFP_NOIO, &s->d->bio_split);
924 /* btree_search_recurse()'s btree iterator is no good anymore */
925 ret = miss == bio ? MAP_DONE : -EINTR;
927 cache_bio = bio_alloc_bioset(GFP_NOWAIT,
928 DIV_ROUND_UP(s->insert_bio_sectors, PAGE_SECTORS),
929 &dc->disk.bio_split);
930 if (!cache_bio)
931 goto out_submit;
933 cache_bio->bi_iter.bi_sector = miss->bi_iter.bi_sector;
934 bio_copy_dev(cache_bio, miss);
935 cache_bio->bi_iter.bi_size = s->insert_bio_sectors << 9;
937 cache_bio->bi_end_io = backing_request_endio;
938 cache_bio->bi_private = &s->cl;
940 bch_bio_map(cache_bio, NULL);
941 if (bch_bio_alloc_pages(cache_bio, __GFP_NOWARN|GFP_NOIO))
942 goto out_put;
944 if (reada)
945 bch_mark_cache_readahead(s->iop.c, s->d);
947 s->cache_miss = miss;
948 s->iop.bio = cache_bio;
949 bio_get(cache_bio);
950 /* I/O request sent to backing device */
951 closure_bio_submit(s->iop.c, cache_bio, &s->cl);
953 return ret;
954 out_put:
955 bio_put(cache_bio);
956 out_submit:
957 miss->bi_end_io = backing_request_endio;
958 miss->bi_private = &s->cl;
959 /* I/O request sent to backing device */
960 closure_bio_submit(s->iop.c, miss, &s->cl);
961 return ret;
964 static void cached_dev_read(struct cached_dev *dc, struct search *s)
966 struct closure *cl = &s->cl;
968 closure_call(&s->iop.cl, cache_lookup, NULL, cl);
969 continue_at(cl, cached_dev_read_done_bh, NULL);
972 /* Process writes */
974 static void cached_dev_write_complete(struct closure *cl)
976 struct search *s = container_of(cl, struct search, cl);
977 struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
979 up_read_non_owner(&dc->writeback_lock);
980 cached_dev_bio_complete(cl);
983 static void cached_dev_write(struct cached_dev *dc, struct search *s)
985 struct closure *cl = &s->cl;
986 struct bio *bio = &s->bio.bio;
987 struct bkey start = KEY(dc->disk.id, bio->bi_iter.bi_sector, 0);
988 struct bkey end = KEY(dc->disk.id, bio_end_sector(bio), 0);
990 bch_keybuf_check_overlapping(&s->iop.c->moving_gc_keys, &start, &end);
992 down_read_non_owner(&dc->writeback_lock);
993 if (bch_keybuf_check_overlapping(&dc->writeback_keys, &start, &end)) {
995 * We overlap with some dirty data undergoing background
996 * writeback, force this write to writeback
998 s->iop.bypass = false;
999 s->iop.writeback = true;
1003 * Discards aren't _required_ to do anything, so skipping if
1004 * check_overlapping returned true is ok
1006 * But check_overlapping drops dirty keys for which io hasn't started,
1007 * so we still want to call it.
1009 if (bio_op(bio) == REQ_OP_DISCARD)
1010 s->iop.bypass = true;
1012 if (should_writeback(dc, s->orig_bio,
1013 cache_mode(dc),
1014 s->iop.bypass)) {
1015 s->iop.bypass = false;
1016 s->iop.writeback = true;
1019 if (s->iop.bypass) {
1020 s->iop.bio = s->orig_bio;
1021 bio_get(s->iop.bio);
1023 if (bio_op(bio) == REQ_OP_DISCARD &&
1024 !blk_queue_discard(bdev_get_queue(dc->bdev)))
1025 goto insert_data;
1027 /* I/O request sent to backing device */
1028 bio->bi_end_io = backing_request_endio;
1029 closure_bio_submit(s->iop.c, bio, cl);
1031 } else if (s->iop.writeback) {
1032 bch_writeback_add(dc);
1033 s->iop.bio = bio;
1035 if (bio->bi_opf & REQ_PREFLUSH) {
1037 * Also need to send a flush to the backing
1038 * device.
1040 struct bio *flush;
1042 flush = bio_alloc_bioset(GFP_NOIO, 0,
1043 &dc->disk.bio_split);
1044 if (!flush) {
1045 s->iop.status = BLK_STS_RESOURCE;
1046 goto insert_data;
1048 bio_copy_dev(flush, bio);
1049 flush->bi_end_io = backing_request_endio;
1050 flush->bi_private = cl;
1051 flush->bi_opf = REQ_OP_WRITE | REQ_PREFLUSH;
1052 /* I/O request sent to backing device */
1053 closure_bio_submit(s->iop.c, flush, cl);
1055 } else {
1056 s->iop.bio = bio_clone_fast(bio, GFP_NOIO, &dc->disk.bio_split);
1057 /* I/O request sent to backing device */
1058 bio->bi_end_io = backing_request_endio;
1059 closure_bio_submit(s->iop.c, bio, cl);
1062 insert_data:
1063 closure_call(&s->iop.cl, bch_data_insert, NULL, cl);
1064 continue_at(cl, cached_dev_write_complete, NULL);
1067 static void cached_dev_nodata(struct closure *cl)
1069 struct search *s = container_of(cl, struct search, cl);
1070 struct bio *bio = &s->bio.bio;
1072 if (s->iop.flush_journal)
1073 bch_journal_meta(s->iop.c, cl);
1075 /* If it's a flush, we send the flush to the backing device too */
1076 bio->bi_end_io = backing_request_endio;
1077 closure_bio_submit(s->iop.c, bio, cl);
1079 continue_at(cl, cached_dev_bio_complete, NULL);
1082 struct detached_dev_io_private {
1083 struct bcache_device *d;
1084 unsigned long start_time;
1085 bio_end_io_t *bi_end_io;
1086 void *bi_private;
1089 static void detached_dev_end_io(struct bio *bio)
1091 struct detached_dev_io_private *ddip;
1093 ddip = bio->bi_private;
1094 bio->bi_end_io = ddip->bi_end_io;
1095 bio->bi_private = ddip->bi_private;
1097 generic_end_io_acct(ddip->d->disk->queue, bio_op(bio),
1098 &ddip->d->disk->part0, ddip->start_time);
1100 if (bio->bi_status) {
1101 struct cached_dev *dc = container_of(ddip->d,
1102 struct cached_dev, disk);
1103 /* should count I/O error for backing device here */
1104 bch_count_backing_io_errors(dc, bio);
1107 kfree(ddip);
1108 bio->bi_end_io(bio);
1111 static void detached_dev_do_request(struct bcache_device *d, struct bio *bio)
1113 struct detached_dev_io_private *ddip;
1114 struct cached_dev *dc = container_of(d, struct cached_dev, disk);
1117 * no need to call closure_get(&dc->disk.cl),
1118 * because upper layer had already opened bcache device,
1119 * which would call closure_get(&dc->disk.cl)
1121 ddip = kzalloc(sizeof(struct detached_dev_io_private), GFP_NOIO);
1122 ddip->d = d;
1123 ddip->start_time = jiffies;
1124 ddip->bi_end_io = bio->bi_end_io;
1125 ddip->bi_private = bio->bi_private;
1126 bio->bi_end_io = detached_dev_end_io;
1127 bio->bi_private = ddip;
1129 if ((bio_op(bio) == REQ_OP_DISCARD) &&
1130 !blk_queue_discard(bdev_get_queue(dc->bdev)))
1131 bio->bi_end_io(bio);
1132 else
1133 generic_make_request(bio);
1136 static void quit_max_writeback_rate(struct cache_set *c,
1137 struct cached_dev *this_dc)
1139 int i;
1140 struct bcache_device *d;
1141 struct cached_dev *dc;
1144 * mutex bch_register_lock may compete with other parallel requesters,
1145 * or attach/detach operations on other backing device. Waiting to
1146 * the mutex lock may increase I/O request latency for seconds or more.
1147 * To avoid such situation, if mutext_trylock() failed, only writeback
1148 * rate of current cached device is set to 1, and __update_write_back()
1149 * will decide writeback rate of other cached devices (remember now
1150 * c->idle_counter is 0 already).
1152 if (mutex_trylock(&bch_register_lock)) {
1153 for (i = 0; i < c->devices_max_used; i++) {
1154 if (!c->devices[i])
1155 continue;
1157 if (UUID_FLASH_ONLY(&c->uuids[i]))
1158 continue;
1160 d = c->devices[i];
1161 dc = container_of(d, struct cached_dev, disk);
1163 * set writeback rate to default minimum value,
1164 * then let update_writeback_rate() to decide the
1165 * upcoming rate.
1167 atomic_long_set(&dc->writeback_rate.rate, 1);
1169 mutex_unlock(&bch_register_lock);
1170 } else
1171 atomic_long_set(&this_dc->writeback_rate.rate, 1);
1174 /* Cached devices - read & write stuff */
1176 static blk_qc_t cached_dev_make_request(struct request_queue *q,
1177 struct bio *bio)
1179 struct search *s;
1180 struct bcache_device *d = bio->bi_disk->private_data;
1181 struct cached_dev *dc = container_of(d, struct cached_dev, disk);
1182 int rw = bio_data_dir(bio);
1184 if (unlikely((d->c && test_bit(CACHE_SET_IO_DISABLE, &d->c->flags)) ||
1185 dc->io_disable)) {
1186 bio->bi_status = BLK_STS_IOERR;
1187 bio_endio(bio);
1188 return BLK_QC_T_NONE;
1191 if (likely(d->c)) {
1192 if (atomic_read(&d->c->idle_counter))
1193 atomic_set(&d->c->idle_counter, 0);
1195 * If at_max_writeback_rate of cache set is true and new I/O
1196 * comes, quit max writeback rate of all cached devices
1197 * attached to this cache set, and set at_max_writeback_rate
1198 * to false.
1200 if (unlikely(atomic_read(&d->c->at_max_writeback_rate) == 1)) {
1201 atomic_set(&d->c->at_max_writeback_rate, 0);
1202 quit_max_writeback_rate(d->c, dc);
1206 generic_start_io_acct(q,
1207 bio_op(bio),
1208 bio_sectors(bio),
1209 &d->disk->part0);
1211 bio_set_dev(bio, dc->bdev);
1212 bio->bi_iter.bi_sector += dc->sb.data_offset;
1214 if (cached_dev_get(dc)) {
1215 s = search_alloc(bio, d);
1216 trace_bcache_request_start(s->d, bio);
1218 if (!bio->bi_iter.bi_size) {
1220 * can't call bch_journal_meta from under
1221 * generic_make_request
1223 continue_at_nobarrier(&s->cl,
1224 cached_dev_nodata,
1225 bcache_wq);
1226 } else {
1227 s->iop.bypass = check_should_bypass(dc, bio);
1229 if (rw)
1230 cached_dev_write(dc, s);
1231 else
1232 cached_dev_read(dc, s);
1234 } else
1235 /* I/O request sent to backing device */
1236 detached_dev_do_request(d, bio);
1238 return BLK_QC_T_NONE;
1241 static int cached_dev_ioctl(struct bcache_device *d, fmode_t mode,
1242 unsigned int cmd, unsigned long arg)
1244 struct cached_dev *dc = container_of(d, struct cached_dev, disk);
1246 if (dc->io_disable)
1247 return -EIO;
1249 return __blkdev_driver_ioctl(dc->bdev, mode, cmd, arg);
1252 static int cached_dev_congested(void *data, int bits)
1254 struct bcache_device *d = data;
1255 struct cached_dev *dc = container_of(d, struct cached_dev, disk);
1256 struct request_queue *q = bdev_get_queue(dc->bdev);
1257 int ret = 0;
1259 if (bdi_congested(q->backing_dev_info, bits))
1260 return 1;
1262 if (cached_dev_get(dc)) {
1263 unsigned int i;
1264 struct cache *ca;
1266 for_each_cache(ca, d->c, i) {
1267 q = bdev_get_queue(ca->bdev);
1268 ret |= bdi_congested(q->backing_dev_info, bits);
1271 cached_dev_put(dc);
1274 return ret;
1277 void bch_cached_dev_request_init(struct cached_dev *dc)
1279 struct gendisk *g = dc->disk.disk;
1281 g->queue->make_request_fn = cached_dev_make_request;
1282 g->queue->backing_dev_info->congested_fn = cached_dev_congested;
1283 dc->disk.cache_miss = cached_dev_cache_miss;
1284 dc->disk.ioctl = cached_dev_ioctl;
1287 /* Flash backed devices */
1289 static int flash_dev_cache_miss(struct btree *b, struct search *s,
1290 struct bio *bio, unsigned int sectors)
1292 unsigned int bytes = min(sectors, bio_sectors(bio)) << 9;
1294 swap(bio->bi_iter.bi_size, bytes);
1295 zero_fill_bio(bio);
1296 swap(bio->bi_iter.bi_size, bytes);
1298 bio_advance(bio, bytes);
1300 if (!bio->bi_iter.bi_size)
1301 return MAP_DONE;
1303 return MAP_CONTINUE;
1306 static void flash_dev_nodata(struct closure *cl)
1308 struct search *s = container_of(cl, struct search, cl);
1310 if (s->iop.flush_journal)
1311 bch_journal_meta(s->iop.c, cl);
1313 continue_at(cl, search_free, NULL);
1316 static blk_qc_t flash_dev_make_request(struct request_queue *q,
1317 struct bio *bio)
1319 struct search *s;
1320 struct closure *cl;
1321 struct bcache_device *d = bio->bi_disk->private_data;
1323 if (unlikely(d->c && test_bit(CACHE_SET_IO_DISABLE, &d->c->flags))) {
1324 bio->bi_status = BLK_STS_IOERR;
1325 bio_endio(bio);
1326 return BLK_QC_T_NONE;
1329 generic_start_io_acct(q, bio_op(bio), bio_sectors(bio), &d->disk->part0);
1331 s = search_alloc(bio, d);
1332 cl = &s->cl;
1333 bio = &s->bio.bio;
1335 trace_bcache_request_start(s->d, bio);
1337 if (!bio->bi_iter.bi_size) {
1339 * can't call bch_journal_meta from under
1340 * generic_make_request
1342 continue_at_nobarrier(&s->cl,
1343 flash_dev_nodata,
1344 bcache_wq);
1345 return BLK_QC_T_NONE;
1346 } else if (bio_data_dir(bio)) {
1347 bch_keybuf_check_overlapping(&s->iop.c->moving_gc_keys,
1348 &KEY(d->id, bio->bi_iter.bi_sector, 0),
1349 &KEY(d->id, bio_end_sector(bio), 0));
1351 s->iop.bypass = (bio_op(bio) == REQ_OP_DISCARD) != 0;
1352 s->iop.writeback = true;
1353 s->iop.bio = bio;
1355 closure_call(&s->iop.cl, bch_data_insert, NULL, cl);
1356 } else {
1357 closure_call(&s->iop.cl, cache_lookup, NULL, cl);
1360 continue_at(cl, search_free, NULL);
1361 return BLK_QC_T_NONE;
1364 static int flash_dev_ioctl(struct bcache_device *d, fmode_t mode,
1365 unsigned int cmd, unsigned long arg)
1367 return -ENOTTY;
1370 static int flash_dev_congested(void *data, int bits)
1372 struct bcache_device *d = data;
1373 struct request_queue *q;
1374 struct cache *ca;
1375 unsigned int i;
1376 int ret = 0;
1378 for_each_cache(ca, d->c, i) {
1379 q = bdev_get_queue(ca->bdev);
1380 ret |= bdi_congested(q->backing_dev_info, bits);
1383 return ret;
1386 void bch_flash_dev_request_init(struct bcache_device *d)
1388 struct gendisk *g = d->disk;
1390 g->queue->make_request_fn = flash_dev_make_request;
1391 g->queue->backing_dev_info->congested_fn = flash_dev_congested;
1392 d->cache_miss = flash_dev_cache_miss;
1393 d->ioctl = flash_dev_ioctl;
1396 void bch_request_exit(void)
1398 kmem_cache_destroy(bch_search_cache);
1401 int __init bch_request_init(void)
1403 bch_search_cache = KMEM_CACHE(search, 0);
1404 if (!bch_search_cache)
1405 return -ENOMEM;
1407 return 0;