dm: Call proper helper to determine dax support
[linux/fpc-iii.git] / drivers / md / dm-integrity.c
blobd6edfe84e7490f70165078a7cb616e29e03f09a0
1 /*
2 * Copyright (C) 2016-2017 Red Hat, Inc. All rights reserved.
3 * Copyright (C) 2016-2017 Milan Broz
4 * Copyright (C) 2016-2017 Mikulas Patocka
6 * This file is released under the GPL.
7 */
9 #include "dm-bio-record.h"
11 #include <linux/compiler.h>
12 #include <linux/module.h>
13 #include <linux/device-mapper.h>
14 #include <linux/dm-io.h>
15 #include <linux/vmalloc.h>
16 #include <linux/sort.h>
17 #include <linux/rbtree.h>
18 #include <linux/delay.h>
19 #include <linux/random.h>
20 #include <linux/reboot.h>
21 #include <crypto/hash.h>
22 #include <crypto/skcipher.h>
23 #include <linux/async_tx.h>
24 #include <linux/dm-bufio.h>
26 #define DM_MSG_PREFIX "integrity"
28 #define DEFAULT_INTERLEAVE_SECTORS 32768
29 #define DEFAULT_JOURNAL_SIZE_FACTOR 7
30 #define DEFAULT_SECTORS_PER_BITMAP_BIT 32768
31 #define DEFAULT_BUFFER_SECTORS 128
32 #define DEFAULT_JOURNAL_WATERMARK 50
33 #define DEFAULT_SYNC_MSEC 10000
34 #define DEFAULT_MAX_JOURNAL_SECTORS 131072
35 #define MIN_LOG2_INTERLEAVE_SECTORS 3
36 #define MAX_LOG2_INTERLEAVE_SECTORS 31
37 #define METADATA_WORKQUEUE_MAX_ACTIVE 16
38 #define RECALC_SECTORS 8192
39 #define RECALC_WRITE_SUPER 16
40 #define BITMAP_BLOCK_SIZE 4096 /* don't change it */
41 #define BITMAP_FLUSH_INTERVAL (10 * HZ)
44 * Warning - DEBUG_PRINT prints security-sensitive data to the log,
45 * so it should not be enabled in the official kernel
47 //#define DEBUG_PRINT
48 //#define INTERNAL_VERIFY
51 * On disk structures
54 #define SB_MAGIC "integrt"
55 #define SB_VERSION_1 1
56 #define SB_VERSION_2 2
57 #define SB_VERSION_3 3
58 #define SB_SECTORS 8
59 #define MAX_SECTORS_PER_BLOCK 8
61 struct superblock {
62 __u8 magic[8];
63 __u8 version;
64 __u8 log2_interleave_sectors;
65 __u16 integrity_tag_size;
66 __u32 journal_sections;
67 __u64 provided_data_sectors; /* userspace uses this value */
68 __u32 flags;
69 __u8 log2_sectors_per_block;
70 __u8 log2_blocks_per_bitmap_bit;
71 __u8 pad[2];
72 __u64 recalc_sector;
75 #define SB_FLAG_HAVE_JOURNAL_MAC 0x1
76 #define SB_FLAG_RECALCULATING 0x2
77 #define SB_FLAG_DIRTY_BITMAP 0x4
79 #define JOURNAL_ENTRY_ROUNDUP 8
81 typedef __u64 commit_id_t;
82 #define JOURNAL_MAC_PER_SECTOR 8
84 struct journal_entry {
85 union {
86 struct {
87 __u32 sector_lo;
88 __u32 sector_hi;
89 } s;
90 __u64 sector;
91 } u;
92 commit_id_t last_bytes[0];
93 /* __u8 tag[0]; */
96 #define journal_entry_tag(ic, je) ((__u8 *)&(je)->last_bytes[(ic)->sectors_per_block])
98 #if BITS_PER_LONG == 64
99 #define journal_entry_set_sector(je, x) do { smp_wmb(); WRITE_ONCE((je)->u.sector, cpu_to_le64(x)); } while (0)
100 #else
101 #define journal_entry_set_sector(je, x) do { (je)->u.s.sector_lo = cpu_to_le32(x); smp_wmb(); WRITE_ONCE((je)->u.s.sector_hi, cpu_to_le32((x) >> 32)); } while (0)
102 #endif
103 #define journal_entry_get_sector(je) le64_to_cpu((je)->u.sector)
104 #define journal_entry_is_unused(je) ((je)->u.s.sector_hi == cpu_to_le32(-1))
105 #define journal_entry_set_unused(je) do { ((je)->u.s.sector_hi = cpu_to_le32(-1)); } while (0)
106 #define journal_entry_is_inprogress(je) ((je)->u.s.sector_hi == cpu_to_le32(-2))
107 #define journal_entry_set_inprogress(je) do { ((je)->u.s.sector_hi = cpu_to_le32(-2)); } while (0)
109 #define JOURNAL_BLOCK_SECTORS 8
110 #define JOURNAL_SECTOR_DATA ((1 << SECTOR_SHIFT) - sizeof(commit_id_t))
111 #define JOURNAL_MAC_SIZE (JOURNAL_MAC_PER_SECTOR * JOURNAL_BLOCK_SECTORS)
113 struct journal_sector {
114 __u8 entries[JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR];
115 __u8 mac[JOURNAL_MAC_PER_SECTOR];
116 commit_id_t commit_id;
119 #define MAX_TAG_SIZE (JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR - offsetof(struct journal_entry, last_bytes[MAX_SECTORS_PER_BLOCK]))
121 #define METADATA_PADDING_SECTORS 8
123 #define N_COMMIT_IDS 4
125 static unsigned char prev_commit_seq(unsigned char seq)
127 return (seq + N_COMMIT_IDS - 1) % N_COMMIT_IDS;
130 static unsigned char next_commit_seq(unsigned char seq)
132 return (seq + 1) % N_COMMIT_IDS;
136 * In-memory structures
139 struct journal_node {
140 struct rb_node node;
141 sector_t sector;
144 struct alg_spec {
145 char *alg_string;
146 char *key_string;
147 __u8 *key;
148 unsigned key_size;
151 struct dm_integrity_c {
152 struct dm_dev *dev;
153 struct dm_dev *meta_dev;
154 unsigned tag_size;
155 __s8 log2_tag_size;
156 sector_t start;
157 mempool_t journal_io_mempool;
158 struct dm_io_client *io;
159 struct dm_bufio_client *bufio;
160 struct workqueue_struct *metadata_wq;
161 struct superblock *sb;
162 unsigned journal_pages;
163 unsigned n_bitmap_blocks;
165 struct page_list *journal;
166 struct page_list *journal_io;
167 struct page_list *journal_xor;
168 struct page_list *recalc_bitmap;
169 struct page_list *may_write_bitmap;
170 struct bitmap_block_status *bbs;
171 unsigned bitmap_flush_interval;
172 int synchronous_mode;
173 struct bio_list synchronous_bios;
174 struct delayed_work bitmap_flush_work;
176 struct crypto_skcipher *journal_crypt;
177 struct scatterlist **journal_scatterlist;
178 struct scatterlist **journal_io_scatterlist;
179 struct skcipher_request **sk_requests;
181 struct crypto_shash *journal_mac;
183 struct journal_node *journal_tree;
184 struct rb_root journal_tree_root;
186 sector_t provided_data_sectors;
188 unsigned short journal_entry_size;
189 unsigned char journal_entries_per_sector;
190 unsigned char journal_section_entries;
191 unsigned short journal_section_sectors;
192 unsigned journal_sections;
193 unsigned journal_entries;
194 sector_t data_device_sectors;
195 sector_t meta_device_sectors;
196 unsigned initial_sectors;
197 unsigned metadata_run;
198 __s8 log2_metadata_run;
199 __u8 log2_buffer_sectors;
200 __u8 sectors_per_block;
201 __u8 log2_blocks_per_bitmap_bit;
203 unsigned char mode;
205 int failed;
207 struct crypto_shash *internal_hash;
209 struct dm_target *ti;
211 /* these variables are locked with endio_wait.lock */
212 struct rb_root in_progress;
213 struct list_head wait_list;
214 wait_queue_head_t endio_wait;
215 struct workqueue_struct *wait_wq;
216 struct workqueue_struct *offload_wq;
218 unsigned char commit_seq;
219 commit_id_t commit_ids[N_COMMIT_IDS];
221 unsigned committed_section;
222 unsigned n_committed_sections;
224 unsigned uncommitted_section;
225 unsigned n_uncommitted_sections;
227 unsigned free_section;
228 unsigned char free_section_entry;
229 unsigned free_sectors;
231 unsigned free_sectors_threshold;
233 struct workqueue_struct *commit_wq;
234 struct work_struct commit_work;
236 struct workqueue_struct *writer_wq;
237 struct work_struct writer_work;
239 struct workqueue_struct *recalc_wq;
240 struct work_struct recalc_work;
241 u8 *recalc_buffer;
242 u8 *recalc_tags;
244 struct bio_list flush_bio_list;
246 unsigned long autocommit_jiffies;
247 struct timer_list autocommit_timer;
248 unsigned autocommit_msec;
250 wait_queue_head_t copy_to_journal_wait;
252 struct completion crypto_backoff;
254 bool journal_uptodate;
255 bool just_formatted;
256 bool recalculate_flag;
258 struct alg_spec internal_hash_alg;
259 struct alg_spec journal_crypt_alg;
260 struct alg_spec journal_mac_alg;
262 atomic64_t number_of_mismatches;
264 struct notifier_block reboot_notifier;
267 struct dm_integrity_range {
268 sector_t logical_sector;
269 sector_t n_sectors;
270 bool waiting;
271 union {
272 struct rb_node node;
273 struct {
274 struct task_struct *task;
275 struct list_head wait_entry;
280 struct dm_integrity_io {
281 struct work_struct work;
283 struct dm_integrity_c *ic;
284 bool write;
285 bool fua;
287 struct dm_integrity_range range;
289 sector_t metadata_block;
290 unsigned metadata_offset;
292 atomic_t in_flight;
293 blk_status_t bi_status;
295 struct completion *completion;
297 struct dm_bio_details bio_details;
300 struct journal_completion {
301 struct dm_integrity_c *ic;
302 atomic_t in_flight;
303 struct completion comp;
306 struct journal_io {
307 struct dm_integrity_range range;
308 struct journal_completion *comp;
311 struct bitmap_block_status {
312 struct work_struct work;
313 struct dm_integrity_c *ic;
314 unsigned idx;
315 unsigned long *bitmap;
316 struct bio_list bio_queue;
317 spinlock_t bio_queue_lock;
321 static struct kmem_cache *journal_io_cache;
323 #define JOURNAL_IO_MEMPOOL 32
325 #ifdef DEBUG_PRINT
326 #define DEBUG_print(x, ...) printk(KERN_DEBUG x, ##__VA_ARGS__)
327 static void __DEBUG_bytes(__u8 *bytes, size_t len, const char *msg, ...)
329 va_list args;
330 va_start(args, msg);
331 vprintk(msg, args);
332 va_end(args);
333 if (len)
334 pr_cont(":");
335 while (len) {
336 pr_cont(" %02x", *bytes);
337 bytes++;
338 len--;
340 pr_cont("\n");
342 #define DEBUG_bytes(bytes, len, msg, ...) __DEBUG_bytes(bytes, len, KERN_DEBUG msg, ##__VA_ARGS__)
343 #else
344 #define DEBUG_print(x, ...) do { } while (0)
345 #define DEBUG_bytes(bytes, len, msg, ...) do { } while (0)
346 #endif
348 static void dm_integrity_prepare(struct request *rq)
352 static void dm_integrity_complete(struct request *rq, unsigned int nr_bytes)
357 * DM Integrity profile, protection is performed layer above (dm-crypt)
359 static const struct blk_integrity_profile dm_integrity_profile = {
360 .name = "DM-DIF-EXT-TAG",
361 .generate_fn = NULL,
362 .verify_fn = NULL,
363 .prepare_fn = dm_integrity_prepare,
364 .complete_fn = dm_integrity_complete,
367 static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map);
368 static void integrity_bio_wait(struct work_struct *w);
369 static void dm_integrity_dtr(struct dm_target *ti);
371 static void dm_integrity_io_error(struct dm_integrity_c *ic, const char *msg, int err)
373 if (err == -EILSEQ)
374 atomic64_inc(&ic->number_of_mismatches);
375 if (!cmpxchg(&ic->failed, 0, err))
376 DMERR("Error on %s: %d", msg, err);
379 static int dm_integrity_failed(struct dm_integrity_c *ic)
381 return READ_ONCE(ic->failed);
384 static commit_id_t dm_integrity_commit_id(struct dm_integrity_c *ic, unsigned i,
385 unsigned j, unsigned char seq)
388 * Xor the number with section and sector, so that if a piece of
389 * journal is written at wrong place, it is detected.
391 return ic->commit_ids[seq] ^ cpu_to_le64(((__u64)i << 32) ^ j);
394 static void get_area_and_offset(struct dm_integrity_c *ic, sector_t data_sector,
395 sector_t *area, sector_t *offset)
397 if (!ic->meta_dev) {
398 __u8 log2_interleave_sectors = ic->sb->log2_interleave_sectors;
399 *area = data_sector >> log2_interleave_sectors;
400 *offset = (unsigned)data_sector & ((1U << log2_interleave_sectors) - 1);
401 } else {
402 *area = 0;
403 *offset = data_sector;
407 #define sector_to_block(ic, n) \
408 do { \
409 BUG_ON((n) & (unsigned)((ic)->sectors_per_block - 1)); \
410 (n) >>= (ic)->sb->log2_sectors_per_block; \
411 } while (0)
413 static __u64 get_metadata_sector_and_offset(struct dm_integrity_c *ic, sector_t area,
414 sector_t offset, unsigned *metadata_offset)
416 __u64 ms;
417 unsigned mo;
419 ms = area << ic->sb->log2_interleave_sectors;
420 if (likely(ic->log2_metadata_run >= 0))
421 ms += area << ic->log2_metadata_run;
422 else
423 ms += area * ic->metadata_run;
424 ms >>= ic->log2_buffer_sectors;
426 sector_to_block(ic, offset);
428 if (likely(ic->log2_tag_size >= 0)) {
429 ms += offset >> (SECTOR_SHIFT + ic->log2_buffer_sectors - ic->log2_tag_size);
430 mo = (offset << ic->log2_tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1);
431 } else {
432 ms += (__u64)offset * ic->tag_size >> (SECTOR_SHIFT + ic->log2_buffer_sectors);
433 mo = (offset * ic->tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1);
435 *metadata_offset = mo;
436 return ms;
439 static sector_t get_data_sector(struct dm_integrity_c *ic, sector_t area, sector_t offset)
441 sector_t result;
443 if (ic->meta_dev)
444 return offset;
446 result = area << ic->sb->log2_interleave_sectors;
447 if (likely(ic->log2_metadata_run >= 0))
448 result += (area + 1) << ic->log2_metadata_run;
449 else
450 result += (area + 1) * ic->metadata_run;
452 result += (sector_t)ic->initial_sectors + offset;
453 result += ic->start;
455 return result;
458 static void wraparound_section(struct dm_integrity_c *ic, unsigned *sec_ptr)
460 if (unlikely(*sec_ptr >= ic->journal_sections))
461 *sec_ptr -= ic->journal_sections;
464 static void sb_set_version(struct dm_integrity_c *ic)
466 if (ic->mode == 'B' || ic->sb->flags & cpu_to_le32(SB_FLAG_DIRTY_BITMAP))
467 ic->sb->version = SB_VERSION_3;
468 else if (ic->meta_dev || ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
469 ic->sb->version = SB_VERSION_2;
470 else
471 ic->sb->version = SB_VERSION_1;
474 static int sync_rw_sb(struct dm_integrity_c *ic, int op, int op_flags)
476 struct dm_io_request io_req;
477 struct dm_io_region io_loc;
479 io_req.bi_op = op;
480 io_req.bi_op_flags = op_flags;
481 io_req.mem.type = DM_IO_KMEM;
482 io_req.mem.ptr.addr = ic->sb;
483 io_req.notify.fn = NULL;
484 io_req.client = ic->io;
485 io_loc.bdev = ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev;
486 io_loc.sector = ic->start;
487 io_loc.count = SB_SECTORS;
489 if (op == REQ_OP_WRITE)
490 sb_set_version(ic);
492 return dm_io(&io_req, 1, &io_loc, NULL);
495 #define BITMAP_OP_TEST_ALL_SET 0
496 #define BITMAP_OP_TEST_ALL_CLEAR 1
497 #define BITMAP_OP_SET 2
498 #define BITMAP_OP_CLEAR 3
500 static bool block_bitmap_op(struct dm_integrity_c *ic, struct page_list *bitmap,
501 sector_t sector, sector_t n_sectors, int mode)
503 unsigned long bit, end_bit, this_end_bit, page, end_page;
504 unsigned long *data;
506 if (unlikely(((sector | n_sectors) & ((1 << ic->sb->log2_sectors_per_block) - 1)) != 0)) {
507 DMCRIT("invalid bitmap access (%llx,%llx,%d,%d,%d)",
508 (unsigned long long)sector,
509 (unsigned long long)n_sectors,
510 ic->sb->log2_sectors_per_block,
511 ic->log2_blocks_per_bitmap_bit,
512 mode);
513 BUG();
516 if (unlikely(!n_sectors))
517 return true;
519 bit = sector >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
520 end_bit = (sector + n_sectors - 1) >>
521 (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
523 page = bit / (PAGE_SIZE * 8);
524 bit %= PAGE_SIZE * 8;
526 end_page = end_bit / (PAGE_SIZE * 8);
527 end_bit %= PAGE_SIZE * 8;
529 repeat:
530 if (page < end_page) {
531 this_end_bit = PAGE_SIZE * 8 - 1;
532 } else {
533 this_end_bit = end_bit;
536 data = lowmem_page_address(bitmap[page].page);
538 if (mode == BITMAP_OP_TEST_ALL_SET) {
539 while (bit <= this_end_bit) {
540 if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
541 do {
542 if (data[bit / BITS_PER_LONG] != -1)
543 return false;
544 bit += BITS_PER_LONG;
545 } while (this_end_bit >= bit + BITS_PER_LONG - 1);
546 continue;
548 if (!test_bit(bit, data))
549 return false;
550 bit++;
552 } else if (mode == BITMAP_OP_TEST_ALL_CLEAR) {
553 while (bit <= this_end_bit) {
554 if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
555 do {
556 if (data[bit / BITS_PER_LONG] != 0)
557 return false;
558 bit += BITS_PER_LONG;
559 } while (this_end_bit >= bit + BITS_PER_LONG - 1);
560 continue;
562 if (test_bit(bit, data))
563 return false;
564 bit++;
566 } else if (mode == BITMAP_OP_SET) {
567 while (bit <= this_end_bit) {
568 if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
569 do {
570 data[bit / BITS_PER_LONG] = -1;
571 bit += BITS_PER_LONG;
572 } while (this_end_bit >= bit + BITS_PER_LONG - 1);
573 continue;
575 __set_bit(bit, data);
576 bit++;
578 } else if (mode == BITMAP_OP_CLEAR) {
579 if (!bit && this_end_bit == PAGE_SIZE * 8 - 1)
580 clear_page(data);
581 else while (bit <= this_end_bit) {
582 if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
583 do {
584 data[bit / BITS_PER_LONG] = 0;
585 bit += BITS_PER_LONG;
586 } while (this_end_bit >= bit + BITS_PER_LONG - 1);
587 continue;
589 __clear_bit(bit, data);
590 bit++;
592 } else {
593 BUG();
596 if (unlikely(page < end_page)) {
597 bit = 0;
598 page++;
599 goto repeat;
602 return true;
605 static void block_bitmap_copy(struct dm_integrity_c *ic, struct page_list *dst, struct page_list *src)
607 unsigned n_bitmap_pages = DIV_ROUND_UP(ic->n_bitmap_blocks, PAGE_SIZE / BITMAP_BLOCK_SIZE);
608 unsigned i;
610 for (i = 0; i < n_bitmap_pages; i++) {
611 unsigned long *dst_data = lowmem_page_address(dst[i].page);
612 unsigned long *src_data = lowmem_page_address(src[i].page);
613 copy_page(dst_data, src_data);
617 static struct bitmap_block_status *sector_to_bitmap_block(struct dm_integrity_c *ic, sector_t sector)
619 unsigned bit = sector >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
620 unsigned bitmap_block = bit / (BITMAP_BLOCK_SIZE * 8);
622 BUG_ON(bitmap_block >= ic->n_bitmap_blocks);
623 return &ic->bbs[bitmap_block];
626 static void access_journal_check(struct dm_integrity_c *ic, unsigned section, unsigned offset,
627 bool e, const char *function)
629 #if defined(CONFIG_DM_DEBUG) || defined(INTERNAL_VERIFY)
630 unsigned limit = e ? ic->journal_section_entries : ic->journal_section_sectors;
632 if (unlikely(section >= ic->journal_sections) ||
633 unlikely(offset >= limit)) {
634 DMCRIT("%s: invalid access at (%u,%u), limit (%u,%u)",
635 function, section, offset, ic->journal_sections, limit);
636 BUG();
638 #endif
641 static void page_list_location(struct dm_integrity_c *ic, unsigned section, unsigned offset,
642 unsigned *pl_index, unsigned *pl_offset)
644 unsigned sector;
646 access_journal_check(ic, section, offset, false, "page_list_location");
648 sector = section * ic->journal_section_sectors + offset;
650 *pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
651 *pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
654 static struct journal_sector *access_page_list(struct dm_integrity_c *ic, struct page_list *pl,
655 unsigned section, unsigned offset, unsigned *n_sectors)
657 unsigned pl_index, pl_offset;
658 char *va;
660 page_list_location(ic, section, offset, &pl_index, &pl_offset);
662 if (n_sectors)
663 *n_sectors = (PAGE_SIZE - pl_offset) >> SECTOR_SHIFT;
665 va = lowmem_page_address(pl[pl_index].page);
667 return (struct journal_sector *)(va + pl_offset);
670 static struct journal_sector *access_journal(struct dm_integrity_c *ic, unsigned section, unsigned offset)
672 return access_page_list(ic, ic->journal, section, offset, NULL);
675 static struct journal_entry *access_journal_entry(struct dm_integrity_c *ic, unsigned section, unsigned n)
677 unsigned rel_sector, offset;
678 struct journal_sector *js;
680 access_journal_check(ic, section, n, true, "access_journal_entry");
682 rel_sector = n % JOURNAL_BLOCK_SECTORS;
683 offset = n / JOURNAL_BLOCK_SECTORS;
685 js = access_journal(ic, section, rel_sector);
686 return (struct journal_entry *)((char *)js + offset * ic->journal_entry_size);
689 static struct journal_sector *access_journal_data(struct dm_integrity_c *ic, unsigned section, unsigned n)
691 n <<= ic->sb->log2_sectors_per_block;
693 n += JOURNAL_BLOCK_SECTORS;
695 access_journal_check(ic, section, n, false, "access_journal_data");
697 return access_journal(ic, section, n);
700 static void section_mac(struct dm_integrity_c *ic, unsigned section, __u8 result[JOURNAL_MAC_SIZE])
702 SHASH_DESC_ON_STACK(desc, ic->journal_mac);
703 int r;
704 unsigned j, size;
706 desc->tfm = ic->journal_mac;
708 r = crypto_shash_init(desc);
709 if (unlikely(r)) {
710 dm_integrity_io_error(ic, "crypto_shash_init", r);
711 goto err;
714 for (j = 0; j < ic->journal_section_entries; j++) {
715 struct journal_entry *je = access_journal_entry(ic, section, j);
716 r = crypto_shash_update(desc, (__u8 *)&je->u.sector, sizeof je->u.sector);
717 if (unlikely(r)) {
718 dm_integrity_io_error(ic, "crypto_shash_update", r);
719 goto err;
723 size = crypto_shash_digestsize(ic->journal_mac);
725 if (likely(size <= JOURNAL_MAC_SIZE)) {
726 r = crypto_shash_final(desc, result);
727 if (unlikely(r)) {
728 dm_integrity_io_error(ic, "crypto_shash_final", r);
729 goto err;
731 memset(result + size, 0, JOURNAL_MAC_SIZE - size);
732 } else {
733 __u8 digest[HASH_MAX_DIGESTSIZE];
735 if (WARN_ON(size > sizeof(digest))) {
736 dm_integrity_io_error(ic, "digest_size", -EINVAL);
737 goto err;
739 r = crypto_shash_final(desc, digest);
740 if (unlikely(r)) {
741 dm_integrity_io_error(ic, "crypto_shash_final", r);
742 goto err;
744 memcpy(result, digest, JOURNAL_MAC_SIZE);
747 return;
748 err:
749 memset(result, 0, JOURNAL_MAC_SIZE);
752 static void rw_section_mac(struct dm_integrity_c *ic, unsigned section, bool wr)
754 __u8 result[JOURNAL_MAC_SIZE];
755 unsigned j;
757 if (!ic->journal_mac)
758 return;
760 section_mac(ic, section, result);
762 for (j = 0; j < JOURNAL_BLOCK_SECTORS; j++) {
763 struct journal_sector *js = access_journal(ic, section, j);
765 if (likely(wr))
766 memcpy(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR);
767 else {
768 if (memcmp(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR))
769 dm_integrity_io_error(ic, "journal mac", -EILSEQ);
774 static void complete_journal_op(void *context)
776 struct journal_completion *comp = context;
777 BUG_ON(!atomic_read(&comp->in_flight));
778 if (likely(atomic_dec_and_test(&comp->in_flight)))
779 complete(&comp->comp);
782 static void xor_journal(struct dm_integrity_c *ic, bool encrypt, unsigned section,
783 unsigned n_sections, struct journal_completion *comp)
785 struct async_submit_ctl submit;
786 size_t n_bytes = (size_t)(n_sections * ic->journal_section_sectors) << SECTOR_SHIFT;
787 unsigned pl_index, pl_offset, section_index;
788 struct page_list *source_pl, *target_pl;
790 if (likely(encrypt)) {
791 source_pl = ic->journal;
792 target_pl = ic->journal_io;
793 } else {
794 source_pl = ic->journal_io;
795 target_pl = ic->journal;
798 page_list_location(ic, section, 0, &pl_index, &pl_offset);
800 atomic_add(roundup(pl_offset + n_bytes, PAGE_SIZE) >> PAGE_SHIFT, &comp->in_flight);
802 init_async_submit(&submit, ASYNC_TX_XOR_ZERO_DST, NULL, complete_journal_op, comp, NULL);
804 section_index = pl_index;
806 do {
807 size_t this_step;
808 struct page *src_pages[2];
809 struct page *dst_page;
811 while (unlikely(pl_index == section_index)) {
812 unsigned dummy;
813 if (likely(encrypt))
814 rw_section_mac(ic, section, true);
815 section++;
816 n_sections--;
817 if (!n_sections)
818 break;
819 page_list_location(ic, section, 0, &section_index, &dummy);
822 this_step = min(n_bytes, (size_t)PAGE_SIZE - pl_offset);
823 dst_page = target_pl[pl_index].page;
824 src_pages[0] = source_pl[pl_index].page;
825 src_pages[1] = ic->journal_xor[pl_index].page;
827 async_xor(dst_page, src_pages, pl_offset, 2, this_step, &submit);
829 pl_index++;
830 pl_offset = 0;
831 n_bytes -= this_step;
832 } while (n_bytes);
834 BUG_ON(n_sections);
836 async_tx_issue_pending_all();
839 static void complete_journal_encrypt(struct crypto_async_request *req, int err)
841 struct journal_completion *comp = req->data;
842 if (unlikely(err)) {
843 if (likely(err == -EINPROGRESS)) {
844 complete(&comp->ic->crypto_backoff);
845 return;
847 dm_integrity_io_error(comp->ic, "asynchronous encrypt", err);
849 complete_journal_op(comp);
852 static bool do_crypt(bool encrypt, struct skcipher_request *req, struct journal_completion *comp)
854 int r;
855 skcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
856 complete_journal_encrypt, comp);
857 if (likely(encrypt))
858 r = crypto_skcipher_encrypt(req);
859 else
860 r = crypto_skcipher_decrypt(req);
861 if (likely(!r))
862 return false;
863 if (likely(r == -EINPROGRESS))
864 return true;
865 if (likely(r == -EBUSY)) {
866 wait_for_completion(&comp->ic->crypto_backoff);
867 reinit_completion(&comp->ic->crypto_backoff);
868 return true;
870 dm_integrity_io_error(comp->ic, "encrypt", r);
871 return false;
874 static void crypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned section,
875 unsigned n_sections, struct journal_completion *comp)
877 struct scatterlist **source_sg;
878 struct scatterlist **target_sg;
880 atomic_add(2, &comp->in_flight);
882 if (likely(encrypt)) {
883 source_sg = ic->journal_scatterlist;
884 target_sg = ic->journal_io_scatterlist;
885 } else {
886 source_sg = ic->journal_io_scatterlist;
887 target_sg = ic->journal_scatterlist;
890 do {
891 struct skcipher_request *req;
892 unsigned ivsize;
893 char *iv;
895 if (likely(encrypt))
896 rw_section_mac(ic, section, true);
898 req = ic->sk_requests[section];
899 ivsize = crypto_skcipher_ivsize(ic->journal_crypt);
900 iv = req->iv;
902 memcpy(iv, iv + ivsize, ivsize);
904 req->src = source_sg[section];
905 req->dst = target_sg[section];
907 if (unlikely(do_crypt(encrypt, req, comp)))
908 atomic_inc(&comp->in_flight);
910 section++;
911 n_sections--;
912 } while (n_sections);
914 atomic_dec(&comp->in_flight);
915 complete_journal_op(comp);
918 static void encrypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned section,
919 unsigned n_sections, struct journal_completion *comp)
921 if (ic->journal_xor)
922 return xor_journal(ic, encrypt, section, n_sections, comp);
923 else
924 return crypt_journal(ic, encrypt, section, n_sections, comp);
927 static void complete_journal_io(unsigned long error, void *context)
929 struct journal_completion *comp = context;
930 if (unlikely(error != 0))
931 dm_integrity_io_error(comp->ic, "writing journal", -EIO);
932 complete_journal_op(comp);
935 static void rw_journal_sectors(struct dm_integrity_c *ic, int op, int op_flags,
936 unsigned sector, unsigned n_sectors, struct journal_completion *comp)
938 struct dm_io_request io_req;
939 struct dm_io_region io_loc;
940 unsigned pl_index, pl_offset;
941 int r;
943 if (unlikely(dm_integrity_failed(ic))) {
944 if (comp)
945 complete_journal_io(-1UL, comp);
946 return;
949 pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
950 pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
952 io_req.bi_op = op;
953 io_req.bi_op_flags = op_flags;
954 io_req.mem.type = DM_IO_PAGE_LIST;
955 if (ic->journal_io)
956 io_req.mem.ptr.pl = &ic->journal_io[pl_index];
957 else
958 io_req.mem.ptr.pl = &ic->journal[pl_index];
959 io_req.mem.offset = pl_offset;
960 if (likely(comp != NULL)) {
961 io_req.notify.fn = complete_journal_io;
962 io_req.notify.context = comp;
963 } else {
964 io_req.notify.fn = NULL;
966 io_req.client = ic->io;
967 io_loc.bdev = ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev;
968 io_loc.sector = ic->start + SB_SECTORS + sector;
969 io_loc.count = n_sectors;
971 r = dm_io(&io_req, 1, &io_loc, NULL);
972 if (unlikely(r)) {
973 dm_integrity_io_error(ic, op == REQ_OP_READ ? "reading journal" : "writing journal", r);
974 if (comp) {
975 WARN_ONCE(1, "asynchronous dm_io failed: %d", r);
976 complete_journal_io(-1UL, comp);
981 static void rw_journal(struct dm_integrity_c *ic, int op, int op_flags, unsigned section,
982 unsigned n_sections, struct journal_completion *comp)
984 unsigned sector, n_sectors;
986 sector = section * ic->journal_section_sectors;
987 n_sectors = n_sections * ic->journal_section_sectors;
989 rw_journal_sectors(ic, op, op_flags, sector, n_sectors, comp);
992 static void write_journal(struct dm_integrity_c *ic, unsigned commit_start, unsigned commit_sections)
994 struct journal_completion io_comp;
995 struct journal_completion crypt_comp_1;
996 struct journal_completion crypt_comp_2;
997 unsigned i;
999 io_comp.ic = ic;
1000 init_completion(&io_comp.comp);
1002 if (commit_start + commit_sections <= ic->journal_sections) {
1003 io_comp.in_flight = (atomic_t)ATOMIC_INIT(1);
1004 if (ic->journal_io) {
1005 crypt_comp_1.ic = ic;
1006 init_completion(&crypt_comp_1.comp);
1007 crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
1008 encrypt_journal(ic, true, commit_start, commit_sections, &crypt_comp_1);
1009 wait_for_completion_io(&crypt_comp_1.comp);
1010 } else {
1011 for (i = 0; i < commit_sections; i++)
1012 rw_section_mac(ic, commit_start + i, true);
1014 rw_journal(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, commit_start,
1015 commit_sections, &io_comp);
1016 } else {
1017 unsigned to_end;
1018 io_comp.in_flight = (atomic_t)ATOMIC_INIT(2);
1019 to_end = ic->journal_sections - commit_start;
1020 if (ic->journal_io) {
1021 crypt_comp_1.ic = ic;
1022 init_completion(&crypt_comp_1.comp);
1023 crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
1024 encrypt_journal(ic, true, commit_start, to_end, &crypt_comp_1);
1025 if (try_wait_for_completion(&crypt_comp_1.comp)) {
1026 rw_journal(ic, REQ_OP_WRITE, REQ_FUA, commit_start, to_end, &io_comp);
1027 reinit_completion(&crypt_comp_1.comp);
1028 crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
1029 encrypt_journal(ic, true, 0, commit_sections - to_end, &crypt_comp_1);
1030 wait_for_completion_io(&crypt_comp_1.comp);
1031 } else {
1032 crypt_comp_2.ic = ic;
1033 init_completion(&crypt_comp_2.comp);
1034 crypt_comp_2.in_flight = (atomic_t)ATOMIC_INIT(0);
1035 encrypt_journal(ic, true, 0, commit_sections - to_end, &crypt_comp_2);
1036 wait_for_completion_io(&crypt_comp_1.comp);
1037 rw_journal(ic, REQ_OP_WRITE, REQ_FUA, commit_start, to_end, &io_comp);
1038 wait_for_completion_io(&crypt_comp_2.comp);
1040 } else {
1041 for (i = 0; i < to_end; i++)
1042 rw_section_mac(ic, commit_start + i, true);
1043 rw_journal(ic, REQ_OP_WRITE, REQ_FUA, commit_start, to_end, &io_comp);
1044 for (i = 0; i < commit_sections - to_end; i++)
1045 rw_section_mac(ic, i, true);
1047 rw_journal(ic, REQ_OP_WRITE, REQ_FUA, 0, commit_sections - to_end, &io_comp);
1050 wait_for_completion_io(&io_comp.comp);
1053 static void copy_from_journal(struct dm_integrity_c *ic, unsigned section, unsigned offset,
1054 unsigned n_sectors, sector_t target, io_notify_fn fn, void *data)
1056 struct dm_io_request io_req;
1057 struct dm_io_region io_loc;
1058 int r;
1059 unsigned sector, pl_index, pl_offset;
1061 BUG_ON((target | n_sectors | offset) & (unsigned)(ic->sectors_per_block - 1));
1063 if (unlikely(dm_integrity_failed(ic))) {
1064 fn(-1UL, data);
1065 return;
1068 sector = section * ic->journal_section_sectors + JOURNAL_BLOCK_SECTORS + offset;
1070 pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
1071 pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
1073 io_req.bi_op = REQ_OP_WRITE;
1074 io_req.bi_op_flags = 0;
1075 io_req.mem.type = DM_IO_PAGE_LIST;
1076 io_req.mem.ptr.pl = &ic->journal[pl_index];
1077 io_req.mem.offset = pl_offset;
1078 io_req.notify.fn = fn;
1079 io_req.notify.context = data;
1080 io_req.client = ic->io;
1081 io_loc.bdev = ic->dev->bdev;
1082 io_loc.sector = target;
1083 io_loc.count = n_sectors;
1085 r = dm_io(&io_req, 1, &io_loc, NULL);
1086 if (unlikely(r)) {
1087 WARN_ONCE(1, "asynchronous dm_io failed: %d", r);
1088 fn(-1UL, data);
1092 static bool ranges_overlap(struct dm_integrity_range *range1, struct dm_integrity_range *range2)
1094 return range1->logical_sector < range2->logical_sector + range2->n_sectors &&
1095 range1->logical_sector + range1->n_sectors > range2->logical_sector;
1098 static bool add_new_range(struct dm_integrity_c *ic, struct dm_integrity_range *new_range, bool check_waiting)
1100 struct rb_node **n = &ic->in_progress.rb_node;
1101 struct rb_node *parent;
1103 BUG_ON((new_range->logical_sector | new_range->n_sectors) & (unsigned)(ic->sectors_per_block - 1));
1105 if (likely(check_waiting)) {
1106 struct dm_integrity_range *range;
1107 list_for_each_entry(range, &ic->wait_list, wait_entry) {
1108 if (unlikely(ranges_overlap(range, new_range)))
1109 return false;
1113 parent = NULL;
1115 while (*n) {
1116 struct dm_integrity_range *range = container_of(*n, struct dm_integrity_range, node);
1118 parent = *n;
1119 if (new_range->logical_sector + new_range->n_sectors <= range->logical_sector) {
1120 n = &range->node.rb_left;
1121 } else if (new_range->logical_sector >= range->logical_sector + range->n_sectors) {
1122 n = &range->node.rb_right;
1123 } else {
1124 return false;
1128 rb_link_node(&new_range->node, parent, n);
1129 rb_insert_color(&new_range->node, &ic->in_progress);
1131 return true;
1134 static void remove_range_unlocked(struct dm_integrity_c *ic, struct dm_integrity_range *range)
1136 rb_erase(&range->node, &ic->in_progress);
1137 while (unlikely(!list_empty(&ic->wait_list))) {
1138 struct dm_integrity_range *last_range =
1139 list_first_entry(&ic->wait_list, struct dm_integrity_range, wait_entry);
1140 struct task_struct *last_range_task;
1141 last_range_task = last_range->task;
1142 list_del(&last_range->wait_entry);
1143 if (!add_new_range(ic, last_range, false)) {
1144 last_range->task = last_range_task;
1145 list_add(&last_range->wait_entry, &ic->wait_list);
1146 break;
1148 last_range->waiting = false;
1149 wake_up_process(last_range_task);
1153 static void remove_range(struct dm_integrity_c *ic, struct dm_integrity_range *range)
1155 unsigned long flags;
1157 spin_lock_irqsave(&ic->endio_wait.lock, flags);
1158 remove_range_unlocked(ic, range);
1159 spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
1162 static void wait_and_add_new_range(struct dm_integrity_c *ic, struct dm_integrity_range *new_range)
1164 new_range->waiting = true;
1165 list_add_tail(&new_range->wait_entry, &ic->wait_list);
1166 new_range->task = current;
1167 do {
1168 __set_current_state(TASK_UNINTERRUPTIBLE);
1169 spin_unlock_irq(&ic->endio_wait.lock);
1170 io_schedule();
1171 spin_lock_irq(&ic->endio_wait.lock);
1172 } while (unlikely(new_range->waiting));
1175 static void add_new_range_and_wait(struct dm_integrity_c *ic, struct dm_integrity_range *new_range)
1177 if (unlikely(!add_new_range(ic, new_range, true)))
1178 wait_and_add_new_range(ic, new_range);
1181 static void init_journal_node(struct journal_node *node)
1183 RB_CLEAR_NODE(&node->node);
1184 node->sector = (sector_t)-1;
1187 static void add_journal_node(struct dm_integrity_c *ic, struct journal_node *node, sector_t sector)
1189 struct rb_node **link;
1190 struct rb_node *parent;
1192 node->sector = sector;
1193 BUG_ON(!RB_EMPTY_NODE(&node->node));
1195 link = &ic->journal_tree_root.rb_node;
1196 parent = NULL;
1198 while (*link) {
1199 struct journal_node *j;
1200 parent = *link;
1201 j = container_of(parent, struct journal_node, node);
1202 if (sector < j->sector)
1203 link = &j->node.rb_left;
1204 else
1205 link = &j->node.rb_right;
1208 rb_link_node(&node->node, parent, link);
1209 rb_insert_color(&node->node, &ic->journal_tree_root);
1212 static void remove_journal_node(struct dm_integrity_c *ic, struct journal_node *node)
1214 BUG_ON(RB_EMPTY_NODE(&node->node));
1215 rb_erase(&node->node, &ic->journal_tree_root);
1216 init_journal_node(node);
1219 #define NOT_FOUND (-1U)
1221 static unsigned find_journal_node(struct dm_integrity_c *ic, sector_t sector, sector_t *next_sector)
1223 struct rb_node *n = ic->journal_tree_root.rb_node;
1224 unsigned found = NOT_FOUND;
1225 *next_sector = (sector_t)-1;
1226 while (n) {
1227 struct journal_node *j = container_of(n, struct journal_node, node);
1228 if (sector == j->sector) {
1229 found = j - ic->journal_tree;
1231 if (sector < j->sector) {
1232 *next_sector = j->sector;
1233 n = j->node.rb_left;
1234 } else {
1235 n = j->node.rb_right;
1239 return found;
1242 static bool test_journal_node(struct dm_integrity_c *ic, unsigned pos, sector_t sector)
1244 struct journal_node *node, *next_node;
1245 struct rb_node *next;
1247 if (unlikely(pos >= ic->journal_entries))
1248 return false;
1249 node = &ic->journal_tree[pos];
1250 if (unlikely(RB_EMPTY_NODE(&node->node)))
1251 return false;
1252 if (unlikely(node->sector != sector))
1253 return false;
1255 next = rb_next(&node->node);
1256 if (unlikely(!next))
1257 return true;
1259 next_node = container_of(next, struct journal_node, node);
1260 return next_node->sector != sector;
1263 static bool find_newer_committed_node(struct dm_integrity_c *ic, struct journal_node *node)
1265 struct rb_node *next;
1266 struct journal_node *next_node;
1267 unsigned next_section;
1269 BUG_ON(RB_EMPTY_NODE(&node->node));
1271 next = rb_next(&node->node);
1272 if (unlikely(!next))
1273 return false;
1275 next_node = container_of(next, struct journal_node, node);
1277 if (next_node->sector != node->sector)
1278 return false;
1280 next_section = (unsigned)(next_node - ic->journal_tree) / ic->journal_section_entries;
1281 if (next_section >= ic->committed_section &&
1282 next_section < ic->committed_section + ic->n_committed_sections)
1283 return true;
1284 if (next_section + ic->journal_sections < ic->committed_section + ic->n_committed_sections)
1285 return true;
1287 return false;
1290 #define TAG_READ 0
1291 #define TAG_WRITE 1
1292 #define TAG_CMP 2
1294 static int dm_integrity_rw_tag(struct dm_integrity_c *ic, unsigned char *tag, sector_t *metadata_block,
1295 unsigned *metadata_offset, unsigned total_size, int op)
1297 do {
1298 unsigned char *data, *dp;
1299 struct dm_buffer *b;
1300 unsigned to_copy;
1301 int r;
1303 r = dm_integrity_failed(ic);
1304 if (unlikely(r))
1305 return r;
1307 data = dm_bufio_read(ic->bufio, *metadata_block, &b);
1308 if (IS_ERR(data))
1309 return PTR_ERR(data);
1311 to_copy = min((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - *metadata_offset, total_size);
1312 dp = data + *metadata_offset;
1313 if (op == TAG_READ) {
1314 memcpy(tag, dp, to_copy);
1315 } else if (op == TAG_WRITE) {
1316 memcpy(dp, tag, to_copy);
1317 dm_bufio_mark_partial_buffer_dirty(b, *metadata_offset, *metadata_offset + to_copy);
1318 } else {
1319 /* e.g.: op == TAG_CMP */
1320 if (unlikely(memcmp(dp, tag, to_copy))) {
1321 unsigned i;
1323 for (i = 0; i < to_copy; i++) {
1324 if (dp[i] != tag[i])
1325 break;
1326 total_size--;
1328 dm_bufio_release(b);
1329 return total_size;
1332 dm_bufio_release(b);
1334 tag += to_copy;
1335 *metadata_offset += to_copy;
1336 if (unlikely(*metadata_offset == 1U << SECTOR_SHIFT << ic->log2_buffer_sectors)) {
1337 (*metadata_block)++;
1338 *metadata_offset = 0;
1340 total_size -= to_copy;
1341 } while (unlikely(total_size));
1343 return 0;
1346 static void dm_integrity_flush_buffers(struct dm_integrity_c *ic)
1348 int r;
1349 r = dm_bufio_write_dirty_buffers(ic->bufio);
1350 if (unlikely(r))
1351 dm_integrity_io_error(ic, "writing tags", r);
1354 static void sleep_on_endio_wait(struct dm_integrity_c *ic)
1356 DECLARE_WAITQUEUE(wait, current);
1357 __add_wait_queue(&ic->endio_wait, &wait);
1358 __set_current_state(TASK_UNINTERRUPTIBLE);
1359 spin_unlock_irq(&ic->endio_wait.lock);
1360 io_schedule();
1361 spin_lock_irq(&ic->endio_wait.lock);
1362 __remove_wait_queue(&ic->endio_wait, &wait);
1365 static void autocommit_fn(struct timer_list *t)
1367 struct dm_integrity_c *ic = from_timer(ic, t, autocommit_timer);
1369 if (likely(!dm_integrity_failed(ic)))
1370 queue_work(ic->commit_wq, &ic->commit_work);
1373 static void schedule_autocommit(struct dm_integrity_c *ic)
1375 if (!timer_pending(&ic->autocommit_timer))
1376 mod_timer(&ic->autocommit_timer, jiffies + ic->autocommit_jiffies);
1379 static void submit_flush_bio(struct dm_integrity_c *ic, struct dm_integrity_io *dio)
1381 struct bio *bio;
1382 unsigned long flags;
1384 spin_lock_irqsave(&ic->endio_wait.lock, flags);
1385 bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1386 bio_list_add(&ic->flush_bio_list, bio);
1387 spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
1389 queue_work(ic->commit_wq, &ic->commit_work);
1392 static void do_endio(struct dm_integrity_c *ic, struct bio *bio)
1394 int r = dm_integrity_failed(ic);
1395 if (unlikely(r) && !bio->bi_status)
1396 bio->bi_status = errno_to_blk_status(r);
1397 if (unlikely(ic->synchronous_mode) && bio_op(bio) == REQ_OP_WRITE) {
1398 unsigned long flags;
1399 spin_lock_irqsave(&ic->endio_wait.lock, flags);
1400 bio_list_add(&ic->synchronous_bios, bio);
1401 queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0);
1402 spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
1403 return;
1405 bio_endio(bio);
1408 static void do_endio_flush(struct dm_integrity_c *ic, struct dm_integrity_io *dio)
1410 struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1412 if (unlikely(dio->fua) && likely(!bio->bi_status) && likely(!dm_integrity_failed(ic)))
1413 submit_flush_bio(ic, dio);
1414 else
1415 do_endio(ic, bio);
1418 static void dec_in_flight(struct dm_integrity_io *dio)
1420 if (atomic_dec_and_test(&dio->in_flight)) {
1421 struct dm_integrity_c *ic = dio->ic;
1422 struct bio *bio;
1424 remove_range(ic, &dio->range);
1426 if (unlikely(dio->write))
1427 schedule_autocommit(ic);
1429 bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1431 if (unlikely(dio->bi_status) && !bio->bi_status)
1432 bio->bi_status = dio->bi_status;
1433 if (likely(!bio->bi_status) && unlikely(bio_sectors(bio) != dio->range.n_sectors)) {
1434 dio->range.logical_sector += dio->range.n_sectors;
1435 bio_advance(bio, dio->range.n_sectors << SECTOR_SHIFT);
1436 INIT_WORK(&dio->work, integrity_bio_wait);
1437 queue_work(ic->offload_wq, &dio->work);
1438 return;
1440 do_endio_flush(ic, dio);
1444 static void integrity_end_io(struct bio *bio)
1446 struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
1448 dm_bio_restore(&dio->bio_details, bio);
1449 if (bio->bi_integrity)
1450 bio->bi_opf |= REQ_INTEGRITY;
1452 if (dio->completion)
1453 complete(dio->completion);
1455 dec_in_flight(dio);
1458 static void integrity_sector_checksum(struct dm_integrity_c *ic, sector_t sector,
1459 const char *data, char *result)
1461 __u64 sector_le = cpu_to_le64(sector);
1462 SHASH_DESC_ON_STACK(req, ic->internal_hash);
1463 int r;
1464 unsigned digest_size;
1466 req->tfm = ic->internal_hash;
1468 r = crypto_shash_init(req);
1469 if (unlikely(r < 0)) {
1470 dm_integrity_io_error(ic, "crypto_shash_init", r);
1471 goto failed;
1474 r = crypto_shash_update(req, (const __u8 *)&sector_le, sizeof sector_le);
1475 if (unlikely(r < 0)) {
1476 dm_integrity_io_error(ic, "crypto_shash_update", r);
1477 goto failed;
1480 r = crypto_shash_update(req, data, ic->sectors_per_block << SECTOR_SHIFT);
1481 if (unlikely(r < 0)) {
1482 dm_integrity_io_error(ic, "crypto_shash_update", r);
1483 goto failed;
1486 r = crypto_shash_final(req, result);
1487 if (unlikely(r < 0)) {
1488 dm_integrity_io_error(ic, "crypto_shash_final", r);
1489 goto failed;
1492 digest_size = crypto_shash_digestsize(ic->internal_hash);
1493 if (unlikely(digest_size < ic->tag_size))
1494 memset(result + digest_size, 0, ic->tag_size - digest_size);
1496 return;
1498 failed:
1499 /* this shouldn't happen anyway, the hash functions have no reason to fail */
1500 get_random_bytes(result, ic->tag_size);
1503 static void integrity_metadata(struct work_struct *w)
1505 struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work);
1506 struct dm_integrity_c *ic = dio->ic;
1508 int r;
1510 if (ic->internal_hash) {
1511 struct bvec_iter iter;
1512 struct bio_vec bv;
1513 unsigned digest_size = crypto_shash_digestsize(ic->internal_hash);
1514 struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1515 char *checksums;
1516 unsigned extra_space = unlikely(digest_size > ic->tag_size) ? digest_size - ic->tag_size : 0;
1517 char checksums_onstack[max((size_t)HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)];
1518 unsigned sectors_to_process = dio->range.n_sectors;
1519 sector_t sector = dio->range.logical_sector;
1521 if (unlikely(ic->mode == 'R'))
1522 goto skip_io;
1524 checksums = kmalloc((PAGE_SIZE >> SECTOR_SHIFT >> ic->sb->log2_sectors_per_block) * ic->tag_size + extra_space,
1525 GFP_NOIO | __GFP_NORETRY | __GFP_NOWARN);
1526 if (!checksums) {
1527 checksums = checksums_onstack;
1528 if (WARN_ON(extra_space &&
1529 digest_size > sizeof(checksums_onstack))) {
1530 r = -EINVAL;
1531 goto error;
1535 __bio_for_each_segment(bv, bio, iter, dio->bio_details.bi_iter) {
1536 unsigned pos;
1537 char *mem, *checksums_ptr;
1539 again:
1540 mem = (char *)kmap_atomic(bv.bv_page) + bv.bv_offset;
1541 pos = 0;
1542 checksums_ptr = checksums;
1543 do {
1544 integrity_sector_checksum(ic, sector, mem + pos, checksums_ptr);
1545 checksums_ptr += ic->tag_size;
1546 sectors_to_process -= ic->sectors_per_block;
1547 pos += ic->sectors_per_block << SECTOR_SHIFT;
1548 sector += ic->sectors_per_block;
1549 } while (pos < bv.bv_len && sectors_to_process && checksums != checksums_onstack);
1550 kunmap_atomic(mem);
1552 r = dm_integrity_rw_tag(ic, checksums, &dio->metadata_block, &dio->metadata_offset,
1553 checksums_ptr - checksums, !dio->write ? TAG_CMP : TAG_WRITE);
1554 if (unlikely(r)) {
1555 if (r > 0) {
1556 DMERR_LIMIT("Checksum failed at sector 0x%llx",
1557 (unsigned long long)(sector - ((r + ic->tag_size - 1) / ic->tag_size)));
1558 r = -EILSEQ;
1559 atomic64_inc(&ic->number_of_mismatches);
1561 if (likely(checksums != checksums_onstack))
1562 kfree(checksums);
1563 goto error;
1566 if (!sectors_to_process)
1567 break;
1569 if (unlikely(pos < bv.bv_len)) {
1570 bv.bv_offset += pos;
1571 bv.bv_len -= pos;
1572 goto again;
1576 if (likely(checksums != checksums_onstack))
1577 kfree(checksums);
1578 } else {
1579 struct bio_integrity_payload *bip = dio->bio_details.bi_integrity;
1581 if (bip) {
1582 struct bio_vec biv;
1583 struct bvec_iter iter;
1584 unsigned data_to_process = dio->range.n_sectors;
1585 sector_to_block(ic, data_to_process);
1586 data_to_process *= ic->tag_size;
1588 bip_for_each_vec(biv, bip, iter) {
1589 unsigned char *tag;
1590 unsigned this_len;
1592 BUG_ON(PageHighMem(biv.bv_page));
1593 tag = lowmem_page_address(biv.bv_page) + biv.bv_offset;
1594 this_len = min(biv.bv_len, data_to_process);
1595 r = dm_integrity_rw_tag(ic, tag, &dio->metadata_block, &dio->metadata_offset,
1596 this_len, !dio->write ? TAG_READ : TAG_WRITE);
1597 if (unlikely(r))
1598 goto error;
1599 data_to_process -= this_len;
1600 if (!data_to_process)
1601 break;
1605 skip_io:
1606 dec_in_flight(dio);
1607 return;
1608 error:
1609 dio->bi_status = errno_to_blk_status(r);
1610 dec_in_flight(dio);
1613 static int dm_integrity_map(struct dm_target *ti, struct bio *bio)
1615 struct dm_integrity_c *ic = ti->private;
1616 struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
1617 struct bio_integrity_payload *bip;
1619 sector_t area, offset;
1621 dio->ic = ic;
1622 dio->bi_status = 0;
1624 if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
1625 submit_flush_bio(ic, dio);
1626 return DM_MAPIO_SUBMITTED;
1629 dio->range.logical_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
1630 dio->write = bio_op(bio) == REQ_OP_WRITE;
1631 dio->fua = dio->write && bio->bi_opf & REQ_FUA;
1632 if (unlikely(dio->fua)) {
1634 * Don't pass down the FUA flag because we have to flush
1635 * disk cache anyway.
1637 bio->bi_opf &= ~REQ_FUA;
1639 if (unlikely(dio->range.logical_sector + bio_sectors(bio) > ic->provided_data_sectors)) {
1640 DMERR("Too big sector number: 0x%llx + 0x%x > 0x%llx",
1641 (unsigned long long)dio->range.logical_sector, bio_sectors(bio),
1642 (unsigned long long)ic->provided_data_sectors);
1643 return DM_MAPIO_KILL;
1645 if (unlikely((dio->range.logical_sector | bio_sectors(bio)) & (unsigned)(ic->sectors_per_block - 1))) {
1646 DMERR("Bio not aligned on %u sectors: 0x%llx, 0x%x",
1647 ic->sectors_per_block,
1648 (unsigned long long)dio->range.logical_sector, bio_sectors(bio));
1649 return DM_MAPIO_KILL;
1652 if (ic->sectors_per_block > 1) {
1653 struct bvec_iter iter;
1654 struct bio_vec bv;
1655 bio_for_each_segment(bv, bio, iter) {
1656 if (unlikely(bv.bv_len & ((ic->sectors_per_block << SECTOR_SHIFT) - 1))) {
1657 DMERR("Bio vector (%u,%u) is not aligned on %u-sector boundary",
1658 bv.bv_offset, bv.bv_len, ic->sectors_per_block);
1659 return DM_MAPIO_KILL;
1664 bip = bio_integrity(bio);
1665 if (!ic->internal_hash) {
1666 if (bip) {
1667 unsigned wanted_tag_size = bio_sectors(bio) >> ic->sb->log2_sectors_per_block;
1668 if (ic->log2_tag_size >= 0)
1669 wanted_tag_size <<= ic->log2_tag_size;
1670 else
1671 wanted_tag_size *= ic->tag_size;
1672 if (unlikely(wanted_tag_size != bip->bip_iter.bi_size)) {
1673 DMERR("Invalid integrity data size %u, expected %u",
1674 bip->bip_iter.bi_size, wanted_tag_size);
1675 return DM_MAPIO_KILL;
1678 } else {
1679 if (unlikely(bip != NULL)) {
1680 DMERR("Unexpected integrity data when using internal hash");
1681 return DM_MAPIO_KILL;
1685 if (unlikely(ic->mode == 'R') && unlikely(dio->write))
1686 return DM_MAPIO_KILL;
1688 get_area_and_offset(ic, dio->range.logical_sector, &area, &offset);
1689 dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, &dio->metadata_offset);
1690 bio->bi_iter.bi_sector = get_data_sector(ic, area, offset);
1692 dm_integrity_map_continue(dio, true);
1693 return DM_MAPIO_SUBMITTED;
1696 static bool __journal_read_write(struct dm_integrity_io *dio, struct bio *bio,
1697 unsigned journal_section, unsigned journal_entry)
1699 struct dm_integrity_c *ic = dio->ic;
1700 sector_t logical_sector;
1701 unsigned n_sectors;
1703 logical_sector = dio->range.logical_sector;
1704 n_sectors = dio->range.n_sectors;
1705 do {
1706 struct bio_vec bv = bio_iovec(bio);
1707 char *mem;
1709 if (unlikely(bv.bv_len >> SECTOR_SHIFT > n_sectors))
1710 bv.bv_len = n_sectors << SECTOR_SHIFT;
1711 n_sectors -= bv.bv_len >> SECTOR_SHIFT;
1712 bio_advance_iter(bio, &bio->bi_iter, bv.bv_len);
1713 retry_kmap:
1714 mem = kmap_atomic(bv.bv_page);
1715 if (likely(dio->write))
1716 flush_dcache_page(bv.bv_page);
1718 do {
1719 struct journal_entry *je = access_journal_entry(ic, journal_section, journal_entry);
1721 if (unlikely(!dio->write)) {
1722 struct journal_sector *js;
1723 char *mem_ptr;
1724 unsigned s;
1726 if (unlikely(journal_entry_is_inprogress(je))) {
1727 flush_dcache_page(bv.bv_page);
1728 kunmap_atomic(mem);
1730 __io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je));
1731 goto retry_kmap;
1733 smp_rmb();
1734 BUG_ON(journal_entry_get_sector(je) != logical_sector);
1735 js = access_journal_data(ic, journal_section, journal_entry);
1736 mem_ptr = mem + bv.bv_offset;
1737 s = 0;
1738 do {
1739 memcpy(mem_ptr, js, JOURNAL_SECTOR_DATA);
1740 *(commit_id_t *)(mem_ptr + JOURNAL_SECTOR_DATA) = je->last_bytes[s];
1741 js++;
1742 mem_ptr += 1 << SECTOR_SHIFT;
1743 } while (++s < ic->sectors_per_block);
1744 #ifdef INTERNAL_VERIFY
1745 if (ic->internal_hash) {
1746 char checksums_onstack[max((size_t)HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)];
1748 integrity_sector_checksum(ic, logical_sector, mem + bv.bv_offset, checksums_onstack);
1749 if (unlikely(memcmp(checksums_onstack, journal_entry_tag(ic, je), ic->tag_size))) {
1750 DMERR_LIMIT("Checksum failed when reading from journal, at sector 0x%llx",
1751 (unsigned long long)logical_sector);
1754 #endif
1757 if (!ic->internal_hash) {
1758 struct bio_integrity_payload *bip = bio_integrity(bio);
1759 unsigned tag_todo = ic->tag_size;
1760 char *tag_ptr = journal_entry_tag(ic, je);
1762 if (bip) do {
1763 struct bio_vec biv = bvec_iter_bvec(bip->bip_vec, bip->bip_iter);
1764 unsigned tag_now = min(biv.bv_len, tag_todo);
1765 char *tag_addr;
1766 BUG_ON(PageHighMem(biv.bv_page));
1767 tag_addr = lowmem_page_address(biv.bv_page) + biv.bv_offset;
1768 if (likely(dio->write))
1769 memcpy(tag_ptr, tag_addr, tag_now);
1770 else
1771 memcpy(tag_addr, tag_ptr, tag_now);
1772 bvec_iter_advance(bip->bip_vec, &bip->bip_iter, tag_now);
1773 tag_ptr += tag_now;
1774 tag_todo -= tag_now;
1775 } while (unlikely(tag_todo)); else {
1776 if (likely(dio->write))
1777 memset(tag_ptr, 0, tag_todo);
1781 if (likely(dio->write)) {
1782 struct journal_sector *js;
1783 unsigned s;
1785 js = access_journal_data(ic, journal_section, journal_entry);
1786 memcpy(js, mem + bv.bv_offset, ic->sectors_per_block << SECTOR_SHIFT);
1788 s = 0;
1789 do {
1790 je->last_bytes[s] = js[s].commit_id;
1791 } while (++s < ic->sectors_per_block);
1793 if (ic->internal_hash) {
1794 unsigned digest_size = crypto_shash_digestsize(ic->internal_hash);
1795 if (unlikely(digest_size > ic->tag_size)) {
1796 char checksums_onstack[HASH_MAX_DIGESTSIZE];
1797 integrity_sector_checksum(ic, logical_sector, (char *)js, checksums_onstack);
1798 memcpy(journal_entry_tag(ic, je), checksums_onstack, ic->tag_size);
1799 } else
1800 integrity_sector_checksum(ic, logical_sector, (char *)js, journal_entry_tag(ic, je));
1803 journal_entry_set_sector(je, logical_sector);
1805 logical_sector += ic->sectors_per_block;
1807 journal_entry++;
1808 if (unlikely(journal_entry == ic->journal_section_entries)) {
1809 journal_entry = 0;
1810 journal_section++;
1811 wraparound_section(ic, &journal_section);
1814 bv.bv_offset += ic->sectors_per_block << SECTOR_SHIFT;
1815 } while (bv.bv_len -= ic->sectors_per_block << SECTOR_SHIFT);
1817 if (unlikely(!dio->write))
1818 flush_dcache_page(bv.bv_page);
1819 kunmap_atomic(mem);
1820 } while (n_sectors);
1822 if (likely(dio->write)) {
1823 smp_mb();
1824 if (unlikely(waitqueue_active(&ic->copy_to_journal_wait)))
1825 wake_up(&ic->copy_to_journal_wait);
1826 if (READ_ONCE(ic->free_sectors) <= ic->free_sectors_threshold) {
1827 queue_work(ic->commit_wq, &ic->commit_work);
1828 } else {
1829 schedule_autocommit(ic);
1831 } else {
1832 remove_range(ic, &dio->range);
1835 if (unlikely(bio->bi_iter.bi_size)) {
1836 sector_t area, offset;
1838 dio->range.logical_sector = logical_sector;
1839 get_area_and_offset(ic, dio->range.logical_sector, &area, &offset);
1840 dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, &dio->metadata_offset);
1841 return true;
1844 return false;
1847 static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map)
1849 struct dm_integrity_c *ic = dio->ic;
1850 struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1851 unsigned journal_section, journal_entry;
1852 unsigned journal_read_pos;
1853 struct completion read_comp;
1854 bool need_sync_io = ic->internal_hash && !dio->write;
1856 if (need_sync_io && from_map) {
1857 INIT_WORK(&dio->work, integrity_bio_wait);
1858 queue_work(ic->offload_wq, &dio->work);
1859 return;
1862 lock_retry:
1863 spin_lock_irq(&ic->endio_wait.lock);
1864 retry:
1865 if (unlikely(dm_integrity_failed(ic))) {
1866 spin_unlock_irq(&ic->endio_wait.lock);
1867 do_endio(ic, bio);
1868 return;
1870 dio->range.n_sectors = bio_sectors(bio);
1871 journal_read_pos = NOT_FOUND;
1872 if (likely(ic->mode == 'J')) {
1873 if (dio->write) {
1874 unsigned next_entry, i, pos;
1875 unsigned ws, we, range_sectors;
1877 dio->range.n_sectors = min(dio->range.n_sectors,
1878 (sector_t)ic->free_sectors << ic->sb->log2_sectors_per_block);
1879 if (unlikely(!dio->range.n_sectors)) {
1880 if (from_map)
1881 goto offload_to_thread;
1882 sleep_on_endio_wait(ic);
1883 goto retry;
1885 range_sectors = dio->range.n_sectors >> ic->sb->log2_sectors_per_block;
1886 ic->free_sectors -= range_sectors;
1887 journal_section = ic->free_section;
1888 journal_entry = ic->free_section_entry;
1890 next_entry = ic->free_section_entry + range_sectors;
1891 ic->free_section_entry = next_entry % ic->journal_section_entries;
1892 ic->free_section += next_entry / ic->journal_section_entries;
1893 ic->n_uncommitted_sections += next_entry / ic->journal_section_entries;
1894 wraparound_section(ic, &ic->free_section);
1896 pos = journal_section * ic->journal_section_entries + journal_entry;
1897 ws = journal_section;
1898 we = journal_entry;
1899 i = 0;
1900 do {
1901 struct journal_entry *je;
1903 add_journal_node(ic, &ic->journal_tree[pos], dio->range.logical_sector + i);
1904 pos++;
1905 if (unlikely(pos >= ic->journal_entries))
1906 pos = 0;
1908 je = access_journal_entry(ic, ws, we);
1909 BUG_ON(!journal_entry_is_unused(je));
1910 journal_entry_set_inprogress(je);
1911 we++;
1912 if (unlikely(we == ic->journal_section_entries)) {
1913 we = 0;
1914 ws++;
1915 wraparound_section(ic, &ws);
1917 } while ((i += ic->sectors_per_block) < dio->range.n_sectors);
1919 spin_unlock_irq(&ic->endio_wait.lock);
1920 goto journal_read_write;
1921 } else {
1922 sector_t next_sector;
1923 journal_read_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector);
1924 if (likely(journal_read_pos == NOT_FOUND)) {
1925 if (unlikely(dio->range.n_sectors > next_sector - dio->range.logical_sector))
1926 dio->range.n_sectors = next_sector - dio->range.logical_sector;
1927 } else {
1928 unsigned i;
1929 unsigned jp = journal_read_pos + 1;
1930 for (i = ic->sectors_per_block; i < dio->range.n_sectors; i += ic->sectors_per_block, jp++) {
1931 if (!test_journal_node(ic, jp, dio->range.logical_sector + i))
1932 break;
1934 dio->range.n_sectors = i;
1938 if (unlikely(!add_new_range(ic, &dio->range, true))) {
1940 * We must not sleep in the request routine because it could
1941 * stall bios on current->bio_list.
1942 * So, we offload the bio to a workqueue if we have to sleep.
1944 if (from_map) {
1945 offload_to_thread:
1946 spin_unlock_irq(&ic->endio_wait.lock);
1947 INIT_WORK(&dio->work, integrity_bio_wait);
1948 queue_work(ic->wait_wq, &dio->work);
1949 return;
1951 if (journal_read_pos != NOT_FOUND)
1952 dio->range.n_sectors = ic->sectors_per_block;
1953 wait_and_add_new_range(ic, &dio->range);
1955 * wait_and_add_new_range drops the spinlock, so the journal
1956 * may have been changed arbitrarily. We need to recheck.
1957 * To simplify the code, we restrict I/O size to just one block.
1959 if (journal_read_pos != NOT_FOUND) {
1960 sector_t next_sector;
1961 unsigned new_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector);
1962 if (unlikely(new_pos != journal_read_pos)) {
1963 remove_range_unlocked(ic, &dio->range);
1964 goto retry;
1968 spin_unlock_irq(&ic->endio_wait.lock);
1970 if (unlikely(journal_read_pos != NOT_FOUND)) {
1971 journal_section = journal_read_pos / ic->journal_section_entries;
1972 journal_entry = journal_read_pos % ic->journal_section_entries;
1973 goto journal_read_write;
1976 if (ic->mode == 'B' && dio->write) {
1977 if (!block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector,
1978 dio->range.n_sectors, BITMAP_OP_TEST_ALL_SET)) {
1979 struct bitmap_block_status *bbs;
1981 bbs = sector_to_bitmap_block(ic, dio->range.logical_sector);
1982 spin_lock(&bbs->bio_queue_lock);
1983 bio_list_add(&bbs->bio_queue, bio);
1984 spin_unlock(&bbs->bio_queue_lock);
1985 queue_work(ic->writer_wq, &bbs->work);
1986 return;
1990 dio->in_flight = (atomic_t)ATOMIC_INIT(2);
1992 if (need_sync_io) {
1993 init_completion(&read_comp);
1994 dio->completion = &read_comp;
1995 } else
1996 dio->completion = NULL;
1998 dm_bio_record(&dio->bio_details, bio);
1999 bio_set_dev(bio, ic->dev->bdev);
2000 bio->bi_integrity = NULL;
2001 bio->bi_opf &= ~REQ_INTEGRITY;
2002 bio->bi_end_io = integrity_end_io;
2003 bio->bi_iter.bi_size = dio->range.n_sectors << SECTOR_SHIFT;
2005 generic_make_request(bio);
2007 if (need_sync_io) {
2008 wait_for_completion_io(&read_comp);
2009 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) &&
2010 dio->range.logical_sector + dio->range.n_sectors > le64_to_cpu(ic->sb->recalc_sector))
2011 goto skip_check;
2012 if (ic->mode == 'B') {
2013 if (!block_bitmap_op(ic, ic->recalc_bitmap, dio->range.logical_sector,
2014 dio->range.n_sectors, BITMAP_OP_TEST_ALL_CLEAR))
2015 goto skip_check;
2018 if (likely(!bio->bi_status))
2019 integrity_metadata(&dio->work);
2020 else
2021 skip_check:
2022 dec_in_flight(dio);
2024 } else {
2025 INIT_WORK(&dio->work, integrity_metadata);
2026 queue_work(ic->metadata_wq, &dio->work);
2029 return;
2031 journal_read_write:
2032 if (unlikely(__journal_read_write(dio, bio, journal_section, journal_entry)))
2033 goto lock_retry;
2035 do_endio_flush(ic, dio);
2039 static void integrity_bio_wait(struct work_struct *w)
2041 struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work);
2043 dm_integrity_map_continue(dio, false);
2046 static void pad_uncommitted(struct dm_integrity_c *ic)
2048 if (ic->free_section_entry) {
2049 ic->free_sectors -= ic->journal_section_entries - ic->free_section_entry;
2050 ic->free_section_entry = 0;
2051 ic->free_section++;
2052 wraparound_section(ic, &ic->free_section);
2053 ic->n_uncommitted_sections++;
2055 if (WARN_ON(ic->journal_sections * ic->journal_section_entries !=
2056 (ic->n_uncommitted_sections + ic->n_committed_sections) *
2057 ic->journal_section_entries + ic->free_sectors)) {
2058 DMCRIT("journal_sections %u, journal_section_entries %u, "
2059 "n_uncommitted_sections %u, n_committed_sections %u, "
2060 "journal_section_entries %u, free_sectors %u",
2061 ic->journal_sections, ic->journal_section_entries,
2062 ic->n_uncommitted_sections, ic->n_committed_sections,
2063 ic->journal_section_entries, ic->free_sectors);
2067 static void integrity_commit(struct work_struct *w)
2069 struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, commit_work);
2070 unsigned commit_start, commit_sections;
2071 unsigned i, j, n;
2072 struct bio *flushes;
2074 del_timer(&ic->autocommit_timer);
2076 spin_lock_irq(&ic->endio_wait.lock);
2077 flushes = bio_list_get(&ic->flush_bio_list);
2078 if (unlikely(ic->mode != 'J')) {
2079 spin_unlock_irq(&ic->endio_wait.lock);
2080 dm_integrity_flush_buffers(ic);
2081 goto release_flush_bios;
2084 pad_uncommitted(ic);
2085 commit_start = ic->uncommitted_section;
2086 commit_sections = ic->n_uncommitted_sections;
2087 spin_unlock_irq(&ic->endio_wait.lock);
2089 if (!commit_sections)
2090 goto release_flush_bios;
2092 i = commit_start;
2093 for (n = 0; n < commit_sections; n++) {
2094 for (j = 0; j < ic->journal_section_entries; j++) {
2095 struct journal_entry *je;
2096 je = access_journal_entry(ic, i, j);
2097 io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je));
2099 for (j = 0; j < ic->journal_section_sectors; j++) {
2100 struct journal_sector *js;
2101 js = access_journal(ic, i, j);
2102 js->commit_id = dm_integrity_commit_id(ic, i, j, ic->commit_seq);
2104 i++;
2105 if (unlikely(i >= ic->journal_sections))
2106 ic->commit_seq = next_commit_seq(ic->commit_seq);
2107 wraparound_section(ic, &i);
2109 smp_rmb();
2111 write_journal(ic, commit_start, commit_sections);
2113 spin_lock_irq(&ic->endio_wait.lock);
2114 ic->uncommitted_section += commit_sections;
2115 wraparound_section(ic, &ic->uncommitted_section);
2116 ic->n_uncommitted_sections -= commit_sections;
2117 ic->n_committed_sections += commit_sections;
2118 spin_unlock_irq(&ic->endio_wait.lock);
2120 if (READ_ONCE(ic->free_sectors) <= ic->free_sectors_threshold)
2121 queue_work(ic->writer_wq, &ic->writer_work);
2123 release_flush_bios:
2124 while (flushes) {
2125 struct bio *next = flushes->bi_next;
2126 flushes->bi_next = NULL;
2127 do_endio(ic, flushes);
2128 flushes = next;
2132 static void complete_copy_from_journal(unsigned long error, void *context)
2134 struct journal_io *io = context;
2135 struct journal_completion *comp = io->comp;
2136 struct dm_integrity_c *ic = comp->ic;
2137 remove_range(ic, &io->range);
2138 mempool_free(io, &ic->journal_io_mempool);
2139 if (unlikely(error != 0))
2140 dm_integrity_io_error(ic, "copying from journal", -EIO);
2141 complete_journal_op(comp);
2144 static void restore_last_bytes(struct dm_integrity_c *ic, struct journal_sector *js,
2145 struct journal_entry *je)
2147 unsigned s = 0;
2148 do {
2149 js->commit_id = je->last_bytes[s];
2150 js++;
2151 } while (++s < ic->sectors_per_block);
2154 static void do_journal_write(struct dm_integrity_c *ic, unsigned write_start,
2155 unsigned write_sections, bool from_replay)
2157 unsigned i, j, n;
2158 struct journal_completion comp;
2159 struct blk_plug plug;
2161 blk_start_plug(&plug);
2163 comp.ic = ic;
2164 comp.in_flight = (atomic_t)ATOMIC_INIT(1);
2165 init_completion(&comp.comp);
2167 i = write_start;
2168 for (n = 0; n < write_sections; n++, i++, wraparound_section(ic, &i)) {
2169 #ifndef INTERNAL_VERIFY
2170 if (unlikely(from_replay))
2171 #endif
2172 rw_section_mac(ic, i, false);
2173 for (j = 0; j < ic->journal_section_entries; j++) {
2174 struct journal_entry *je = access_journal_entry(ic, i, j);
2175 sector_t sec, area, offset;
2176 unsigned k, l, next_loop;
2177 sector_t metadata_block;
2178 unsigned metadata_offset;
2179 struct journal_io *io;
2181 if (journal_entry_is_unused(je))
2182 continue;
2183 BUG_ON(unlikely(journal_entry_is_inprogress(je)) && !from_replay);
2184 sec = journal_entry_get_sector(je);
2185 if (unlikely(from_replay)) {
2186 if (unlikely(sec & (unsigned)(ic->sectors_per_block - 1))) {
2187 dm_integrity_io_error(ic, "invalid sector in journal", -EIO);
2188 sec &= ~(sector_t)(ic->sectors_per_block - 1);
2191 get_area_and_offset(ic, sec, &area, &offset);
2192 restore_last_bytes(ic, access_journal_data(ic, i, j), je);
2193 for (k = j + 1; k < ic->journal_section_entries; k++) {
2194 struct journal_entry *je2 = access_journal_entry(ic, i, k);
2195 sector_t sec2, area2, offset2;
2196 if (journal_entry_is_unused(je2))
2197 break;
2198 BUG_ON(unlikely(journal_entry_is_inprogress(je2)) && !from_replay);
2199 sec2 = journal_entry_get_sector(je2);
2200 get_area_and_offset(ic, sec2, &area2, &offset2);
2201 if (area2 != area || offset2 != offset + ((k - j) << ic->sb->log2_sectors_per_block))
2202 break;
2203 restore_last_bytes(ic, access_journal_data(ic, i, k), je2);
2205 next_loop = k - 1;
2207 io = mempool_alloc(&ic->journal_io_mempool, GFP_NOIO);
2208 io->comp = &comp;
2209 io->range.logical_sector = sec;
2210 io->range.n_sectors = (k - j) << ic->sb->log2_sectors_per_block;
2212 spin_lock_irq(&ic->endio_wait.lock);
2213 add_new_range_and_wait(ic, &io->range);
2215 if (likely(!from_replay)) {
2216 struct journal_node *section_node = &ic->journal_tree[i * ic->journal_section_entries];
2218 /* don't write if there is newer committed sector */
2219 while (j < k && find_newer_committed_node(ic, &section_node[j])) {
2220 struct journal_entry *je2 = access_journal_entry(ic, i, j);
2222 journal_entry_set_unused(je2);
2223 remove_journal_node(ic, &section_node[j]);
2224 j++;
2225 sec += ic->sectors_per_block;
2226 offset += ic->sectors_per_block;
2228 while (j < k && find_newer_committed_node(ic, &section_node[k - 1])) {
2229 struct journal_entry *je2 = access_journal_entry(ic, i, k - 1);
2231 journal_entry_set_unused(je2);
2232 remove_journal_node(ic, &section_node[k - 1]);
2233 k--;
2235 if (j == k) {
2236 remove_range_unlocked(ic, &io->range);
2237 spin_unlock_irq(&ic->endio_wait.lock);
2238 mempool_free(io, &ic->journal_io_mempool);
2239 goto skip_io;
2241 for (l = j; l < k; l++) {
2242 remove_journal_node(ic, &section_node[l]);
2245 spin_unlock_irq(&ic->endio_wait.lock);
2247 metadata_block = get_metadata_sector_and_offset(ic, area, offset, &metadata_offset);
2248 for (l = j; l < k; l++) {
2249 int r;
2250 struct journal_entry *je2 = access_journal_entry(ic, i, l);
2252 if (
2253 #ifndef INTERNAL_VERIFY
2254 unlikely(from_replay) &&
2255 #endif
2256 ic->internal_hash) {
2257 char test_tag[max_t(size_t, HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)];
2259 integrity_sector_checksum(ic, sec + ((l - j) << ic->sb->log2_sectors_per_block),
2260 (char *)access_journal_data(ic, i, l), test_tag);
2261 if (unlikely(memcmp(test_tag, journal_entry_tag(ic, je2), ic->tag_size)))
2262 dm_integrity_io_error(ic, "tag mismatch when replaying journal", -EILSEQ);
2265 journal_entry_set_unused(je2);
2266 r = dm_integrity_rw_tag(ic, journal_entry_tag(ic, je2), &metadata_block, &metadata_offset,
2267 ic->tag_size, TAG_WRITE);
2268 if (unlikely(r)) {
2269 dm_integrity_io_error(ic, "reading tags", r);
2273 atomic_inc(&comp.in_flight);
2274 copy_from_journal(ic, i, j << ic->sb->log2_sectors_per_block,
2275 (k - j) << ic->sb->log2_sectors_per_block,
2276 get_data_sector(ic, area, offset),
2277 complete_copy_from_journal, io);
2278 skip_io:
2279 j = next_loop;
2283 dm_bufio_write_dirty_buffers_async(ic->bufio);
2285 blk_finish_plug(&plug);
2287 complete_journal_op(&comp);
2288 wait_for_completion_io(&comp.comp);
2290 dm_integrity_flush_buffers(ic);
2293 static void integrity_writer(struct work_struct *w)
2295 struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, writer_work);
2296 unsigned write_start, write_sections;
2298 unsigned prev_free_sectors;
2300 /* the following test is not needed, but it tests the replay code */
2301 if (unlikely(dm_post_suspending(ic->ti)) && !ic->meta_dev)
2302 return;
2304 spin_lock_irq(&ic->endio_wait.lock);
2305 write_start = ic->committed_section;
2306 write_sections = ic->n_committed_sections;
2307 spin_unlock_irq(&ic->endio_wait.lock);
2309 if (!write_sections)
2310 return;
2312 do_journal_write(ic, write_start, write_sections, false);
2314 spin_lock_irq(&ic->endio_wait.lock);
2316 ic->committed_section += write_sections;
2317 wraparound_section(ic, &ic->committed_section);
2318 ic->n_committed_sections -= write_sections;
2320 prev_free_sectors = ic->free_sectors;
2321 ic->free_sectors += write_sections * ic->journal_section_entries;
2322 if (unlikely(!prev_free_sectors))
2323 wake_up_locked(&ic->endio_wait);
2325 spin_unlock_irq(&ic->endio_wait.lock);
2328 static void recalc_write_super(struct dm_integrity_c *ic)
2330 int r;
2332 dm_integrity_flush_buffers(ic);
2333 if (dm_integrity_failed(ic))
2334 return;
2336 r = sync_rw_sb(ic, REQ_OP_WRITE, 0);
2337 if (unlikely(r))
2338 dm_integrity_io_error(ic, "writing superblock", r);
2341 static void integrity_recalc(struct work_struct *w)
2343 struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, recalc_work);
2344 struct dm_integrity_range range;
2345 struct dm_io_request io_req;
2346 struct dm_io_region io_loc;
2347 sector_t area, offset;
2348 sector_t metadata_block;
2349 unsigned metadata_offset;
2350 sector_t logical_sector, n_sectors;
2351 __u8 *t;
2352 unsigned i;
2353 int r;
2354 unsigned super_counter = 0;
2356 DEBUG_print("start recalculation... (position %llx)\n", le64_to_cpu(ic->sb->recalc_sector));
2358 spin_lock_irq(&ic->endio_wait.lock);
2360 next_chunk:
2362 if (unlikely(dm_post_suspending(ic->ti)))
2363 goto unlock_ret;
2365 range.logical_sector = le64_to_cpu(ic->sb->recalc_sector);
2366 if (unlikely(range.logical_sector >= ic->provided_data_sectors)) {
2367 if (ic->mode == 'B') {
2368 block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
2369 DEBUG_print("queue_delayed_work: bitmap_flush_work\n");
2370 queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0);
2372 goto unlock_ret;
2375 get_area_and_offset(ic, range.logical_sector, &area, &offset);
2376 range.n_sectors = min((sector_t)RECALC_SECTORS, ic->provided_data_sectors - range.logical_sector);
2377 if (!ic->meta_dev)
2378 range.n_sectors = min(range.n_sectors, ((sector_t)1U << ic->sb->log2_interleave_sectors) - (unsigned)offset);
2380 add_new_range_and_wait(ic, &range);
2381 spin_unlock_irq(&ic->endio_wait.lock);
2382 logical_sector = range.logical_sector;
2383 n_sectors = range.n_sectors;
2385 if (ic->mode == 'B') {
2386 if (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector, n_sectors, BITMAP_OP_TEST_ALL_CLEAR)) {
2387 goto advance_and_next;
2389 while (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector,
2390 ic->sectors_per_block, BITMAP_OP_TEST_ALL_CLEAR)) {
2391 logical_sector += ic->sectors_per_block;
2392 n_sectors -= ic->sectors_per_block;
2393 cond_resched();
2395 while (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector + n_sectors - ic->sectors_per_block,
2396 ic->sectors_per_block, BITMAP_OP_TEST_ALL_CLEAR)) {
2397 n_sectors -= ic->sectors_per_block;
2398 cond_resched();
2400 get_area_and_offset(ic, logical_sector, &area, &offset);
2403 DEBUG_print("recalculating: %lx, %lx\n", logical_sector, n_sectors);
2405 if (unlikely(++super_counter == RECALC_WRITE_SUPER)) {
2406 recalc_write_super(ic);
2407 if (ic->mode == 'B') {
2408 queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, ic->bitmap_flush_interval);
2410 super_counter = 0;
2413 if (unlikely(dm_integrity_failed(ic)))
2414 goto err;
2416 io_req.bi_op = REQ_OP_READ;
2417 io_req.bi_op_flags = 0;
2418 io_req.mem.type = DM_IO_VMA;
2419 io_req.mem.ptr.addr = ic->recalc_buffer;
2420 io_req.notify.fn = NULL;
2421 io_req.client = ic->io;
2422 io_loc.bdev = ic->dev->bdev;
2423 io_loc.sector = get_data_sector(ic, area, offset);
2424 io_loc.count = n_sectors;
2426 r = dm_io(&io_req, 1, &io_loc, NULL);
2427 if (unlikely(r)) {
2428 dm_integrity_io_error(ic, "reading data", r);
2429 goto err;
2432 t = ic->recalc_tags;
2433 for (i = 0; i < n_sectors; i += ic->sectors_per_block) {
2434 integrity_sector_checksum(ic, logical_sector + i, ic->recalc_buffer + (i << SECTOR_SHIFT), t);
2435 t += ic->tag_size;
2438 metadata_block = get_metadata_sector_and_offset(ic, area, offset, &metadata_offset);
2440 r = dm_integrity_rw_tag(ic, ic->recalc_tags, &metadata_block, &metadata_offset, t - ic->recalc_tags, TAG_WRITE);
2441 if (unlikely(r)) {
2442 dm_integrity_io_error(ic, "writing tags", r);
2443 goto err;
2446 if (ic->mode == 'B') {
2447 sector_t start, end;
2448 start = (range.logical_sector >>
2449 (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit)) <<
2450 (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
2451 end = ((range.logical_sector + range.n_sectors) >>
2452 (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit)) <<
2453 (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
2454 block_bitmap_op(ic, ic->recalc_bitmap, start, end - start, BITMAP_OP_CLEAR);
2457 advance_and_next:
2458 cond_resched();
2460 spin_lock_irq(&ic->endio_wait.lock);
2461 remove_range_unlocked(ic, &range);
2462 ic->sb->recalc_sector = cpu_to_le64(range.logical_sector + range.n_sectors);
2463 goto next_chunk;
2465 err:
2466 remove_range(ic, &range);
2467 return;
2469 unlock_ret:
2470 spin_unlock_irq(&ic->endio_wait.lock);
2472 recalc_write_super(ic);
2475 static void bitmap_block_work(struct work_struct *w)
2477 struct bitmap_block_status *bbs = container_of(w, struct bitmap_block_status, work);
2478 struct dm_integrity_c *ic = bbs->ic;
2479 struct bio *bio;
2480 struct bio_list bio_queue;
2481 struct bio_list waiting;
2483 bio_list_init(&waiting);
2485 spin_lock(&bbs->bio_queue_lock);
2486 bio_queue = bbs->bio_queue;
2487 bio_list_init(&bbs->bio_queue);
2488 spin_unlock(&bbs->bio_queue_lock);
2490 while ((bio = bio_list_pop(&bio_queue))) {
2491 struct dm_integrity_io *dio;
2493 dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
2495 if (block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector,
2496 dio->range.n_sectors, BITMAP_OP_TEST_ALL_SET)) {
2497 remove_range(ic, &dio->range);
2498 INIT_WORK(&dio->work, integrity_bio_wait);
2499 queue_work(ic->offload_wq, &dio->work);
2500 } else {
2501 block_bitmap_op(ic, ic->journal, dio->range.logical_sector,
2502 dio->range.n_sectors, BITMAP_OP_SET);
2503 bio_list_add(&waiting, bio);
2507 if (bio_list_empty(&waiting))
2508 return;
2510 rw_journal_sectors(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC,
2511 bbs->idx * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT),
2512 BITMAP_BLOCK_SIZE >> SECTOR_SHIFT, NULL);
2514 while ((bio = bio_list_pop(&waiting))) {
2515 struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
2517 block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector,
2518 dio->range.n_sectors, BITMAP_OP_SET);
2520 remove_range(ic, &dio->range);
2521 INIT_WORK(&dio->work, integrity_bio_wait);
2522 queue_work(ic->offload_wq, &dio->work);
2525 queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, ic->bitmap_flush_interval);
2528 static void bitmap_flush_work(struct work_struct *work)
2530 struct dm_integrity_c *ic = container_of(work, struct dm_integrity_c, bitmap_flush_work.work);
2531 struct dm_integrity_range range;
2532 unsigned long limit;
2533 struct bio *bio;
2535 dm_integrity_flush_buffers(ic);
2537 range.logical_sector = 0;
2538 range.n_sectors = ic->provided_data_sectors;
2540 spin_lock_irq(&ic->endio_wait.lock);
2541 add_new_range_and_wait(ic, &range);
2542 spin_unlock_irq(&ic->endio_wait.lock);
2544 dm_integrity_flush_buffers(ic);
2545 if (ic->meta_dev)
2546 blkdev_issue_flush(ic->dev->bdev, GFP_NOIO, NULL);
2548 limit = ic->provided_data_sectors;
2549 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) {
2550 limit = le64_to_cpu(ic->sb->recalc_sector)
2551 >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit)
2552 << (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
2554 /*DEBUG_print("zeroing journal\n");*/
2555 block_bitmap_op(ic, ic->journal, 0, limit, BITMAP_OP_CLEAR);
2556 block_bitmap_op(ic, ic->may_write_bitmap, 0, limit, BITMAP_OP_CLEAR);
2558 rw_journal_sectors(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, 0,
2559 ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
2561 spin_lock_irq(&ic->endio_wait.lock);
2562 remove_range_unlocked(ic, &range);
2563 while (unlikely((bio = bio_list_pop(&ic->synchronous_bios)) != NULL)) {
2564 bio_endio(bio);
2565 spin_unlock_irq(&ic->endio_wait.lock);
2566 spin_lock_irq(&ic->endio_wait.lock);
2568 spin_unlock_irq(&ic->endio_wait.lock);
2572 static void init_journal(struct dm_integrity_c *ic, unsigned start_section,
2573 unsigned n_sections, unsigned char commit_seq)
2575 unsigned i, j, n;
2577 if (!n_sections)
2578 return;
2580 for (n = 0; n < n_sections; n++) {
2581 i = start_section + n;
2582 wraparound_section(ic, &i);
2583 for (j = 0; j < ic->journal_section_sectors; j++) {
2584 struct journal_sector *js = access_journal(ic, i, j);
2585 memset(&js->entries, 0, JOURNAL_SECTOR_DATA);
2586 js->commit_id = dm_integrity_commit_id(ic, i, j, commit_seq);
2588 for (j = 0; j < ic->journal_section_entries; j++) {
2589 struct journal_entry *je = access_journal_entry(ic, i, j);
2590 journal_entry_set_unused(je);
2594 write_journal(ic, start_section, n_sections);
2597 static int find_commit_seq(struct dm_integrity_c *ic, unsigned i, unsigned j, commit_id_t id)
2599 unsigned char k;
2600 for (k = 0; k < N_COMMIT_IDS; k++) {
2601 if (dm_integrity_commit_id(ic, i, j, k) == id)
2602 return k;
2604 dm_integrity_io_error(ic, "journal commit id", -EIO);
2605 return -EIO;
2608 static void replay_journal(struct dm_integrity_c *ic)
2610 unsigned i, j;
2611 bool used_commit_ids[N_COMMIT_IDS];
2612 unsigned max_commit_id_sections[N_COMMIT_IDS];
2613 unsigned write_start, write_sections;
2614 unsigned continue_section;
2615 bool journal_empty;
2616 unsigned char unused, last_used, want_commit_seq;
2618 if (ic->mode == 'R')
2619 return;
2621 if (ic->journal_uptodate)
2622 return;
2624 last_used = 0;
2625 write_start = 0;
2627 if (!ic->just_formatted) {
2628 DEBUG_print("reading journal\n");
2629 rw_journal(ic, REQ_OP_READ, 0, 0, ic->journal_sections, NULL);
2630 if (ic->journal_io)
2631 DEBUG_bytes(lowmem_page_address(ic->journal_io[0].page), 64, "read journal");
2632 if (ic->journal_io) {
2633 struct journal_completion crypt_comp;
2634 crypt_comp.ic = ic;
2635 init_completion(&crypt_comp.comp);
2636 crypt_comp.in_flight = (atomic_t)ATOMIC_INIT(0);
2637 encrypt_journal(ic, false, 0, ic->journal_sections, &crypt_comp);
2638 wait_for_completion(&crypt_comp.comp);
2640 DEBUG_bytes(lowmem_page_address(ic->journal[0].page), 64, "decrypted journal");
2643 if (dm_integrity_failed(ic))
2644 goto clear_journal;
2646 journal_empty = true;
2647 memset(used_commit_ids, 0, sizeof used_commit_ids);
2648 memset(max_commit_id_sections, 0, sizeof max_commit_id_sections);
2649 for (i = 0; i < ic->journal_sections; i++) {
2650 for (j = 0; j < ic->journal_section_sectors; j++) {
2651 int k;
2652 struct journal_sector *js = access_journal(ic, i, j);
2653 k = find_commit_seq(ic, i, j, js->commit_id);
2654 if (k < 0)
2655 goto clear_journal;
2656 used_commit_ids[k] = true;
2657 max_commit_id_sections[k] = i;
2659 if (journal_empty) {
2660 for (j = 0; j < ic->journal_section_entries; j++) {
2661 struct journal_entry *je = access_journal_entry(ic, i, j);
2662 if (!journal_entry_is_unused(je)) {
2663 journal_empty = false;
2664 break;
2670 if (!used_commit_ids[N_COMMIT_IDS - 1]) {
2671 unused = N_COMMIT_IDS - 1;
2672 while (unused && !used_commit_ids[unused - 1])
2673 unused--;
2674 } else {
2675 for (unused = 0; unused < N_COMMIT_IDS; unused++)
2676 if (!used_commit_ids[unused])
2677 break;
2678 if (unused == N_COMMIT_IDS) {
2679 dm_integrity_io_error(ic, "journal commit ids", -EIO);
2680 goto clear_journal;
2683 DEBUG_print("first unused commit seq %d [%d,%d,%d,%d]\n",
2684 unused, used_commit_ids[0], used_commit_ids[1],
2685 used_commit_ids[2], used_commit_ids[3]);
2687 last_used = prev_commit_seq(unused);
2688 want_commit_seq = prev_commit_seq(last_used);
2690 if (!used_commit_ids[want_commit_seq] && used_commit_ids[prev_commit_seq(want_commit_seq)])
2691 journal_empty = true;
2693 write_start = max_commit_id_sections[last_used] + 1;
2694 if (unlikely(write_start >= ic->journal_sections))
2695 want_commit_seq = next_commit_seq(want_commit_seq);
2696 wraparound_section(ic, &write_start);
2698 i = write_start;
2699 for (write_sections = 0; write_sections < ic->journal_sections; write_sections++) {
2700 for (j = 0; j < ic->journal_section_sectors; j++) {
2701 struct journal_sector *js = access_journal(ic, i, j);
2703 if (js->commit_id != dm_integrity_commit_id(ic, i, j, want_commit_seq)) {
2705 * This could be caused by crash during writing.
2706 * We won't replay the inconsistent part of the
2707 * journal.
2709 DEBUG_print("commit id mismatch at position (%u, %u): %d != %d\n",
2710 i, j, find_commit_seq(ic, i, j, js->commit_id), want_commit_seq);
2711 goto brk;
2714 i++;
2715 if (unlikely(i >= ic->journal_sections))
2716 want_commit_seq = next_commit_seq(want_commit_seq);
2717 wraparound_section(ic, &i);
2719 brk:
2721 if (!journal_empty) {
2722 DEBUG_print("replaying %u sections, starting at %u, commit seq %d\n",
2723 write_sections, write_start, want_commit_seq);
2724 do_journal_write(ic, write_start, write_sections, true);
2727 if (write_sections == ic->journal_sections && (ic->mode == 'J' || journal_empty)) {
2728 continue_section = write_start;
2729 ic->commit_seq = want_commit_seq;
2730 DEBUG_print("continuing from section %u, commit seq %d\n", write_start, ic->commit_seq);
2731 } else {
2732 unsigned s;
2733 unsigned char erase_seq;
2734 clear_journal:
2735 DEBUG_print("clearing journal\n");
2737 erase_seq = prev_commit_seq(prev_commit_seq(last_used));
2738 s = write_start;
2739 init_journal(ic, s, 1, erase_seq);
2740 s++;
2741 wraparound_section(ic, &s);
2742 if (ic->journal_sections >= 2) {
2743 init_journal(ic, s, ic->journal_sections - 2, erase_seq);
2744 s += ic->journal_sections - 2;
2745 wraparound_section(ic, &s);
2746 init_journal(ic, s, 1, erase_seq);
2749 continue_section = 0;
2750 ic->commit_seq = next_commit_seq(erase_seq);
2753 ic->committed_section = continue_section;
2754 ic->n_committed_sections = 0;
2756 ic->uncommitted_section = continue_section;
2757 ic->n_uncommitted_sections = 0;
2759 ic->free_section = continue_section;
2760 ic->free_section_entry = 0;
2761 ic->free_sectors = ic->journal_entries;
2763 ic->journal_tree_root = RB_ROOT;
2764 for (i = 0; i < ic->journal_entries; i++)
2765 init_journal_node(&ic->journal_tree[i]);
2768 static void dm_integrity_enter_synchronous_mode(struct dm_integrity_c *ic)
2770 DEBUG_print("dm_integrity_enter_synchronous_mode\n");
2772 if (ic->mode == 'B') {
2773 ic->bitmap_flush_interval = msecs_to_jiffies(10) + 1;
2774 ic->synchronous_mode = 1;
2776 cancel_delayed_work_sync(&ic->bitmap_flush_work);
2777 queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0);
2778 flush_workqueue(ic->commit_wq);
2782 static int dm_integrity_reboot(struct notifier_block *n, unsigned long code, void *x)
2784 struct dm_integrity_c *ic = container_of(n, struct dm_integrity_c, reboot_notifier);
2786 DEBUG_print("dm_integrity_reboot\n");
2788 dm_integrity_enter_synchronous_mode(ic);
2790 return NOTIFY_DONE;
2793 static void dm_integrity_postsuspend(struct dm_target *ti)
2795 struct dm_integrity_c *ic = (struct dm_integrity_c *)ti->private;
2796 int r;
2798 WARN_ON(unregister_reboot_notifier(&ic->reboot_notifier));
2800 del_timer_sync(&ic->autocommit_timer);
2802 if (ic->recalc_wq)
2803 drain_workqueue(ic->recalc_wq);
2805 if (ic->mode == 'B')
2806 cancel_delayed_work_sync(&ic->bitmap_flush_work);
2808 queue_work(ic->commit_wq, &ic->commit_work);
2809 drain_workqueue(ic->commit_wq);
2811 if (ic->mode == 'J') {
2812 if (ic->meta_dev)
2813 queue_work(ic->writer_wq, &ic->writer_work);
2814 drain_workqueue(ic->writer_wq);
2815 dm_integrity_flush_buffers(ic);
2818 if (ic->mode == 'B') {
2819 dm_integrity_flush_buffers(ic);
2820 #if 1
2821 /* set to 0 to test bitmap replay code */
2822 init_journal(ic, 0, ic->journal_sections, 0);
2823 ic->sb->flags &= ~cpu_to_le32(SB_FLAG_DIRTY_BITMAP);
2824 r = sync_rw_sb(ic, REQ_OP_WRITE, REQ_FUA);
2825 if (unlikely(r))
2826 dm_integrity_io_error(ic, "writing superblock", r);
2827 #endif
2830 BUG_ON(!RB_EMPTY_ROOT(&ic->in_progress));
2832 ic->journal_uptodate = true;
2835 static void dm_integrity_resume(struct dm_target *ti)
2837 struct dm_integrity_c *ic = (struct dm_integrity_c *)ti->private;
2838 int r;
2839 DEBUG_print("resume\n");
2841 if (ic->sb->flags & cpu_to_le32(SB_FLAG_DIRTY_BITMAP)) {
2842 DEBUG_print("resume dirty_bitmap\n");
2843 rw_journal_sectors(ic, REQ_OP_READ, 0, 0,
2844 ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
2845 if (ic->mode == 'B') {
2846 if (ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit) {
2847 block_bitmap_copy(ic, ic->recalc_bitmap, ic->journal);
2848 block_bitmap_copy(ic, ic->may_write_bitmap, ic->journal);
2849 if (!block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors,
2850 BITMAP_OP_TEST_ALL_CLEAR)) {
2851 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
2852 ic->sb->recalc_sector = cpu_to_le64(0);
2854 } else {
2855 DEBUG_print("non-matching blocks_per_bitmap_bit: %u, %u\n",
2856 ic->sb->log2_blocks_per_bitmap_bit, ic->log2_blocks_per_bitmap_bit);
2857 ic->sb->log2_blocks_per_bitmap_bit = ic->log2_blocks_per_bitmap_bit;
2858 block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_SET);
2859 block_bitmap_op(ic, ic->may_write_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_SET);
2860 block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_SET);
2861 rw_journal_sectors(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, 0,
2862 ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
2863 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
2864 ic->sb->recalc_sector = cpu_to_le64(0);
2866 } else {
2867 if (!(ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit &&
2868 block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_TEST_ALL_CLEAR))) {
2869 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
2870 ic->sb->recalc_sector = cpu_to_le64(0);
2872 init_journal(ic, 0, ic->journal_sections, 0);
2873 replay_journal(ic);
2874 ic->sb->flags &= ~cpu_to_le32(SB_FLAG_DIRTY_BITMAP);
2876 r = sync_rw_sb(ic, REQ_OP_WRITE, REQ_FUA);
2877 if (unlikely(r))
2878 dm_integrity_io_error(ic, "writing superblock", r);
2879 } else {
2880 replay_journal(ic);
2881 if (ic->mode == 'B') {
2882 ic->sb->flags |= cpu_to_le32(SB_FLAG_DIRTY_BITMAP);
2883 ic->sb->log2_blocks_per_bitmap_bit = ic->log2_blocks_per_bitmap_bit;
2884 r = sync_rw_sb(ic, REQ_OP_WRITE, REQ_FUA);
2885 if (unlikely(r))
2886 dm_integrity_io_error(ic, "writing superblock", r);
2888 block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
2889 block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
2890 block_bitmap_op(ic, ic->may_write_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
2891 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) &&
2892 le64_to_cpu(ic->sb->recalc_sector) < ic->provided_data_sectors) {
2893 block_bitmap_op(ic, ic->journal, le64_to_cpu(ic->sb->recalc_sector),
2894 ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET);
2895 block_bitmap_op(ic, ic->recalc_bitmap, le64_to_cpu(ic->sb->recalc_sector),
2896 ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET);
2897 block_bitmap_op(ic, ic->may_write_bitmap, le64_to_cpu(ic->sb->recalc_sector),
2898 ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET);
2900 rw_journal_sectors(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, 0,
2901 ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
2905 DEBUG_print("testing recalc: %x\n", ic->sb->flags);
2906 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) {
2907 __u64 recalc_pos = le64_to_cpu(ic->sb->recalc_sector);
2908 DEBUG_print("recalc pos: %lx / %lx\n", (long)recalc_pos, ic->provided_data_sectors);
2909 if (recalc_pos < ic->provided_data_sectors) {
2910 queue_work(ic->recalc_wq, &ic->recalc_work);
2911 } else if (recalc_pos > ic->provided_data_sectors) {
2912 ic->sb->recalc_sector = cpu_to_le64(ic->provided_data_sectors);
2913 recalc_write_super(ic);
2917 ic->reboot_notifier.notifier_call = dm_integrity_reboot;
2918 ic->reboot_notifier.next = NULL;
2919 ic->reboot_notifier.priority = INT_MAX - 1; /* be notified after md and before hardware drivers */
2920 WARN_ON(register_reboot_notifier(&ic->reboot_notifier));
2922 #if 0
2923 /* set to 1 to stress test synchronous mode */
2924 dm_integrity_enter_synchronous_mode(ic);
2925 #endif
2928 static void dm_integrity_status(struct dm_target *ti, status_type_t type,
2929 unsigned status_flags, char *result, unsigned maxlen)
2931 struct dm_integrity_c *ic = (struct dm_integrity_c *)ti->private;
2932 unsigned arg_count;
2933 size_t sz = 0;
2935 switch (type) {
2936 case STATUSTYPE_INFO:
2937 DMEMIT("%llu %llu",
2938 (unsigned long long)atomic64_read(&ic->number_of_mismatches),
2939 (unsigned long long)ic->provided_data_sectors);
2940 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
2941 DMEMIT(" %llu", (unsigned long long)le64_to_cpu(ic->sb->recalc_sector));
2942 else
2943 DMEMIT(" -");
2944 break;
2946 case STATUSTYPE_TABLE: {
2947 __u64 watermark_percentage = (__u64)(ic->journal_entries - ic->free_sectors_threshold) * 100;
2948 watermark_percentage += ic->journal_entries / 2;
2949 do_div(watermark_percentage, ic->journal_entries);
2950 arg_count = 3;
2951 arg_count += !!ic->meta_dev;
2952 arg_count += ic->sectors_per_block != 1;
2953 arg_count += !!(ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING));
2954 arg_count += ic->mode == 'J';
2955 arg_count += ic->mode == 'J';
2956 arg_count += ic->mode == 'B';
2957 arg_count += ic->mode == 'B';
2958 arg_count += !!ic->internal_hash_alg.alg_string;
2959 arg_count += !!ic->journal_crypt_alg.alg_string;
2960 arg_count += !!ic->journal_mac_alg.alg_string;
2961 DMEMIT("%s %llu %u %c %u", ic->dev->name, (unsigned long long)ic->start,
2962 ic->tag_size, ic->mode, arg_count);
2963 if (ic->meta_dev)
2964 DMEMIT(" meta_device:%s", ic->meta_dev->name);
2965 if (ic->sectors_per_block != 1)
2966 DMEMIT(" block_size:%u", ic->sectors_per_block << SECTOR_SHIFT);
2967 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
2968 DMEMIT(" recalculate");
2969 DMEMIT(" journal_sectors:%u", ic->initial_sectors - SB_SECTORS);
2970 DMEMIT(" interleave_sectors:%u", 1U << ic->sb->log2_interleave_sectors);
2971 DMEMIT(" buffer_sectors:%u", 1U << ic->log2_buffer_sectors);
2972 if (ic->mode == 'J') {
2973 DMEMIT(" journal_watermark:%u", (unsigned)watermark_percentage);
2974 DMEMIT(" commit_time:%u", ic->autocommit_msec);
2976 if (ic->mode == 'B') {
2977 DMEMIT(" sectors_per_bit:%llu", (unsigned long long)ic->sectors_per_block << ic->log2_blocks_per_bitmap_bit);
2978 DMEMIT(" bitmap_flush_interval:%u", jiffies_to_msecs(ic->bitmap_flush_interval));
2981 #define EMIT_ALG(a, n) \
2982 do { \
2983 if (ic->a.alg_string) { \
2984 DMEMIT(" %s:%s", n, ic->a.alg_string); \
2985 if (ic->a.key_string) \
2986 DMEMIT(":%s", ic->a.key_string);\
2988 } while (0)
2989 EMIT_ALG(internal_hash_alg, "internal_hash");
2990 EMIT_ALG(journal_crypt_alg, "journal_crypt");
2991 EMIT_ALG(journal_mac_alg, "journal_mac");
2992 break;
2997 static int dm_integrity_iterate_devices(struct dm_target *ti,
2998 iterate_devices_callout_fn fn, void *data)
3000 struct dm_integrity_c *ic = ti->private;
3002 if (!ic->meta_dev)
3003 return fn(ti, ic->dev, ic->start + ic->initial_sectors + ic->metadata_run, ti->len, data);
3004 else
3005 return fn(ti, ic->dev, 0, ti->len, data);
3008 static void dm_integrity_io_hints(struct dm_target *ti, struct queue_limits *limits)
3010 struct dm_integrity_c *ic = ti->private;
3012 if (ic->sectors_per_block > 1) {
3013 limits->logical_block_size = ic->sectors_per_block << SECTOR_SHIFT;
3014 limits->physical_block_size = ic->sectors_per_block << SECTOR_SHIFT;
3015 blk_limits_io_min(limits, ic->sectors_per_block << SECTOR_SHIFT);
3019 static void calculate_journal_section_size(struct dm_integrity_c *ic)
3021 unsigned sector_space = JOURNAL_SECTOR_DATA;
3023 ic->journal_sections = le32_to_cpu(ic->sb->journal_sections);
3024 ic->journal_entry_size = roundup(offsetof(struct journal_entry, last_bytes[ic->sectors_per_block]) + ic->tag_size,
3025 JOURNAL_ENTRY_ROUNDUP);
3027 if (ic->sb->flags & cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC))
3028 sector_space -= JOURNAL_MAC_PER_SECTOR;
3029 ic->journal_entries_per_sector = sector_space / ic->journal_entry_size;
3030 ic->journal_section_entries = ic->journal_entries_per_sector * JOURNAL_BLOCK_SECTORS;
3031 ic->journal_section_sectors = (ic->journal_section_entries << ic->sb->log2_sectors_per_block) + JOURNAL_BLOCK_SECTORS;
3032 ic->journal_entries = ic->journal_section_entries * ic->journal_sections;
3035 static int calculate_device_limits(struct dm_integrity_c *ic)
3037 __u64 initial_sectors;
3039 calculate_journal_section_size(ic);
3040 initial_sectors = SB_SECTORS + (__u64)ic->journal_section_sectors * ic->journal_sections;
3041 if (initial_sectors + METADATA_PADDING_SECTORS >= ic->meta_device_sectors || initial_sectors > UINT_MAX)
3042 return -EINVAL;
3043 ic->initial_sectors = initial_sectors;
3045 if (!ic->meta_dev) {
3046 sector_t last_sector, last_area, last_offset;
3048 ic->metadata_run = roundup((__u64)ic->tag_size << (ic->sb->log2_interleave_sectors - ic->sb->log2_sectors_per_block),
3049 (__u64)(1 << SECTOR_SHIFT << METADATA_PADDING_SECTORS)) >> SECTOR_SHIFT;
3050 if (!(ic->metadata_run & (ic->metadata_run - 1)))
3051 ic->log2_metadata_run = __ffs(ic->metadata_run);
3052 else
3053 ic->log2_metadata_run = -1;
3055 get_area_and_offset(ic, ic->provided_data_sectors - 1, &last_area, &last_offset);
3056 last_sector = get_data_sector(ic, last_area, last_offset);
3057 if (last_sector < ic->start || last_sector >= ic->meta_device_sectors)
3058 return -EINVAL;
3059 } else {
3060 __u64 meta_size = (ic->provided_data_sectors >> ic->sb->log2_sectors_per_block) * ic->tag_size;
3061 meta_size = (meta_size + ((1U << (ic->log2_buffer_sectors + SECTOR_SHIFT)) - 1))
3062 >> (ic->log2_buffer_sectors + SECTOR_SHIFT);
3063 meta_size <<= ic->log2_buffer_sectors;
3064 if (ic->initial_sectors + meta_size < ic->initial_sectors ||
3065 ic->initial_sectors + meta_size > ic->meta_device_sectors)
3066 return -EINVAL;
3067 ic->metadata_run = 1;
3068 ic->log2_metadata_run = 0;
3071 return 0;
3074 static int initialize_superblock(struct dm_integrity_c *ic, unsigned journal_sectors, unsigned interleave_sectors)
3076 unsigned journal_sections;
3077 int test_bit;
3079 memset(ic->sb, 0, SB_SECTORS << SECTOR_SHIFT);
3080 memcpy(ic->sb->magic, SB_MAGIC, 8);
3081 ic->sb->integrity_tag_size = cpu_to_le16(ic->tag_size);
3082 ic->sb->log2_sectors_per_block = __ffs(ic->sectors_per_block);
3083 if (ic->journal_mac_alg.alg_string)
3084 ic->sb->flags |= cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC);
3086 calculate_journal_section_size(ic);
3087 journal_sections = journal_sectors / ic->journal_section_sectors;
3088 if (!journal_sections)
3089 journal_sections = 1;
3091 if (!ic->meta_dev) {
3092 ic->sb->journal_sections = cpu_to_le32(journal_sections);
3093 if (!interleave_sectors)
3094 interleave_sectors = DEFAULT_INTERLEAVE_SECTORS;
3095 ic->sb->log2_interleave_sectors = __fls(interleave_sectors);
3096 ic->sb->log2_interleave_sectors = max((__u8)MIN_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors);
3097 ic->sb->log2_interleave_sectors = min((__u8)MAX_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors);
3099 ic->provided_data_sectors = 0;
3100 for (test_bit = fls64(ic->meta_device_sectors) - 1; test_bit >= 3; test_bit--) {
3101 __u64 prev_data_sectors = ic->provided_data_sectors;
3103 ic->provided_data_sectors |= (sector_t)1 << test_bit;
3104 if (calculate_device_limits(ic))
3105 ic->provided_data_sectors = prev_data_sectors;
3107 if (!ic->provided_data_sectors)
3108 return -EINVAL;
3109 } else {
3110 ic->sb->log2_interleave_sectors = 0;
3111 ic->provided_data_sectors = ic->data_device_sectors;
3112 ic->provided_data_sectors &= ~(sector_t)(ic->sectors_per_block - 1);
3114 try_smaller_buffer:
3115 ic->sb->journal_sections = cpu_to_le32(0);
3116 for (test_bit = fls(journal_sections) - 1; test_bit >= 0; test_bit--) {
3117 __u32 prev_journal_sections = le32_to_cpu(ic->sb->journal_sections);
3118 __u32 test_journal_sections = prev_journal_sections | (1U << test_bit);
3119 if (test_journal_sections > journal_sections)
3120 continue;
3121 ic->sb->journal_sections = cpu_to_le32(test_journal_sections);
3122 if (calculate_device_limits(ic))
3123 ic->sb->journal_sections = cpu_to_le32(prev_journal_sections);
3126 if (!le32_to_cpu(ic->sb->journal_sections)) {
3127 if (ic->log2_buffer_sectors > 3) {
3128 ic->log2_buffer_sectors--;
3129 goto try_smaller_buffer;
3131 return -EINVAL;
3135 ic->sb->provided_data_sectors = cpu_to_le64(ic->provided_data_sectors);
3137 sb_set_version(ic);
3139 return 0;
3142 static void dm_integrity_set(struct dm_target *ti, struct dm_integrity_c *ic)
3144 struct gendisk *disk = dm_disk(dm_table_get_md(ti->table));
3145 struct blk_integrity bi;
3147 memset(&bi, 0, sizeof(bi));
3148 bi.profile = &dm_integrity_profile;
3149 bi.tuple_size = ic->tag_size;
3150 bi.tag_size = bi.tuple_size;
3151 bi.interval_exp = ic->sb->log2_sectors_per_block + SECTOR_SHIFT;
3153 blk_integrity_register(disk, &bi);
3154 blk_queue_max_integrity_segments(disk->queue, UINT_MAX);
3157 static void dm_integrity_free_page_list(struct page_list *pl)
3159 unsigned i;
3161 if (!pl)
3162 return;
3163 for (i = 0; pl[i].page; i++)
3164 __free_page(pl[i].page);
3165 kvfree(pl);
3168 static struct page_list *dm_integrity_alloc_page_list(unsigned n_pages)
3170 struct page_list *pl;
3171 unsigned i;
3173 pl = kvmalloc_array(n_pages + 1, sizeof(struct page_list), GFP_KERNEL | __GFP_ZERO);
3174 if (!pl)
3175 return NULL;
3177 for (i = 0; i < n_pages; i++) {
3178 pl[i].page = alloc_page(GFP_KERNEL);
3179 if (!pl[i].page) {
3180 dm_integrity_free_page_list(pl);
3181 return NULL;
3183 if (i)
3184 pl[i - 1].next = &pl[i];
3186 pl[i].page = NULL;
3187 pl[i].next = NULL;
3189 return pl;
3192 static void dm_integrity_free_journal_scatterlist(struct dm_integrity_c *ic, struct scatterlist **sl)
3194 unsigned i;
3195 for (i = 0; i < ic->journal_sections; i++)
3196 kvfree(sl[i]);
3197 kvfree(sl);
3200 static struct scatterlist **dm_integrity_alloc_journal_scatterlist(struct dm_integrity_c *ic,
3201 struct page_list *pl)
3203 struct scatterlist **sl;
3204 unsigned i;
3206 sl = kvmalloc_array(ic->journal_sections,
3207 sizeof(struct scatterlist *),
3208 GFP_KERNEL | __GFP_ZERO);
3209 if (!sl)
3210 return NULL;
3212 for (i = 0; i < ic->journal_sections; i++) {
3213 struct scatterlist *s;
3214 unsigned start_index, start_offset;
3215 unsigned end_index, end_offset;
3216 unsigned n_pages;
3217 unsigned idx;
3219 page_list_location(ic, i, 0, &start_index, &start_offset);
3220 page_list_location(ic, i, ic->journal_section_sectors - 1,
3221 &end_index, &end_offset);
3223 n_pages = (end_index - start_index + 1);
3225 s = kvmalloc_array(n_pages, sizeof(struct scatterlist),
3226 GFP_KERNEL);
3227 if (!s) {
3228 dm_integrity_free_journal_scatterlist(ic, sl);
3229 return NULL;
3232 sg_init_table(s, n_pages);
3233 for (idx = start_index; idx <= end_index; idx++) {
3234 char *va = lowmem_page_address(pl[idx].page);
3235 unsigned start = 0, end = PAGE_SIZE;
3236 if (idx == start_index)
3237 start = start_offset;
3238 if (idx == end_index)
3239 end = end_offset + (1 << SECTOR_SHIFT);
3240 sg_set_buf(&s[idx - start_index], va + start, end - start);
3243 sl[i] = s;
3246 return sl;
3249 static void free_alg(struct alg_spec *a)
3251 kzfree(a->alg_string);
3252 kzfree(a->key);
3253 memset(a, 0, sizeof *a);
3256 static int get_alg_and_key(const char *arg, struct alg_spec *a, char **error, char *error_inval)
3258 char *k;
3260 free_alg(a);
3262 a->alg_string = kstrdup(strchr(arg, ':') + 1, GFP_KERNEL);
3263 if (!a->alg_string)
3264 goto nomem;
3266 k = strchr(a->alg_string, ':');
3267 if (k) {
3268 *k = 0;
3269 a->key_string = k + 1;
3270 if (strlen(a->key_string) & 1)
3271 goto inval;
3273 a->key_size = strlen(a->key_string) / 2;
3274 a->key = kmalloc(a->key_size, GFP_KERNEL);
3275 if (!a->key)
3276 goto nomem;
3277 if (hex2bin(a->key, a->key_string, a->key_size))
3278 goto inval;
3281 return 0;
3282 inval:
3283 *error = error_inval;
3284 return -EINVAL;
3285 nomem:
3286 *error = "Out of memory for an argument";
3287 return -ENOMEM;
3290 static int get_mac(struct crypto_shash **hash, struct alg_spec *a, char **error,
3291 char *error_alg, char *error_key)
3293 int r;
3295 if (a->alg_string) {
3296 *hash = crypto_alloc_shash(a->alg_string, 0, 0);
3297 if (IS_ERR(*hash)) {
3298 *error = error_alg;
3299 r = PTR_ERR(*hash);
3300 *hash = NULL;
3301 return r;
3304 if (a->key) {
3305 r = crypto_shash_setkey(*hash, a->key, a->key_size);
3306 if (r) {
3307 *error = error_key;
3308 return r;
3310 } else if (crypto_shash_get_flags(*hash) & CRYPTO_TFM_NEED_KEY) {
3311 *error = error_key;
3312 return -ENOKEY;
3316 return 0;
3319 static int create_journal(struct dm_integrity_c *ic, char **error)
3321 int r = 0;
3322 unsigned i;
3323 __u64 journal_pages, journal_desc_size, journal_tree_size;
3324 unsigned char *crypt_data = NULL, *crypt_iv = NULL;
3325 struct skcipher_request *req = NULL;
3327 ic->commit_ids[0] = cpu_to_le64(0x1111111111111111ULL);
3328 ic->commit_ids[1] = cpu_to_le64(0x2222222222222222ULL);
3329 ic->commit_ids[2] = cpu_to_le64(0x3333333333333333ULL);
3330 ic->commit_ids[3] = cpu_to_le64(0x4444444444444444ULL);
3332 journal_pages = roundup((__u64)ic->journal_sections * ic->journal_section_sectors,
3333 PAGE_SIZE >> SECTOR_SHIFT) >> (PAGE_SHIFT - SECTOR_SHIFT);
3334 journal_desc_size = journal_pages * sizeof(struct page_list);
3335 if (journal_pages >= totalram_pages() - totalhigh_pages() || journal_desc_size > ULONG_MAX) {
3336 *error = "Journal doesn't fit into memory";
3337 r = -ENOMEM;
3338 goto bad;
3340 ic->journal_pages = journal_pages;
3342 ic->journal = dm_integrity_alloc_page_list(ic->journal_pages);
3343 if (!ic->journal) {
3344 *error = "Could not allocate memory for journal";
3345 r = -ENOMEM;
3346 goto bad;
3348 if (ic->journal_crypt_alg.alg_string) {
3349 unsigned ivsize, blocksize;
3350 struct journal_completion comp;
3352 comp.ic = ic;
3353 ic->journal_crypt = crypto_alloc_skcipher(ic->journal_crypt_alg.alg_string, 0, 0);
3354 if (IS_ERR(ic->journal_crypt)) {
3355 *error = "Invalid journal cipher";
3356 r = PTR_ERR(ic->journal_crypt);
3357 ic->journal_crypt = NULL;
3358 goto bad;
3360 ivsize = crypto_skcipher_ivsize(ic->journal_crypt);
3361 blocksize = crypto_skcipher_blocksize(ic->journal_crypt);
3363 if (ic->journal_crypt_alg.key) {
3364 r = crypto_skcipher_setkey(ic->journal_crypt, ic->journal_crypt_alg.key,
3365 ic->journal_crypt_alg.key_size);
3366 if (r) {
3367 *error = "Error setting encryption key";
3368 goto bad;
3371 DEBUG_print("cipher %s, block size %u iv size %u\n",
3372 ic->journal_crypt_alg.alg_string, blocksize, ivsize);
3374 ic->journal_io = dm_integrity_alloc_page_list(ic->journal_pages);
3375 if (!ic->journal_io) {
3376 *error = "Could not allocate memory for journal io";
3377 r = -ENOMEM;
3378 goto bad;
3381 if (blocksize == 1) {
3382 struct scatterlist *sg;
3384 req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
3385 if (!req) {
3386 *error = "Could not allocate crypt request";
3387 r = -ENOMEM;
3388 goto bad;
3391 crypt_iv = kzalloc(ivsize, GFP_KERNEL);
3392 if (!crypt_iv) {
3393 *error = "Could not allocate iv";
3394 r = -ENOMEM;
3395 goto bad;
3398 ic->journal_xor = dm_integrity_alloc_page_list(ic->journal_pages);
3399 if (!ic->journal_xor) {
3400 *error = "Could not allocate memory for journal xor";
3401 r = -ENOMEM;
3402 goto bad;
3405 sg = kvmalloc_array(ic->journal_pages + 1,
3406 sizeof(struct scatterlist),
3407 GFP_KERNEL);
3408 if (!sg) {
3409 *error = "Unable to allocate sg list";
3410 r = -ENOMEM;
3411 goto bad;
3413 sg_init_table(sg, ic->journal_pages + 1);
3414 for (i = 0; i < ic->journal_pages; i++) {
3415 char *va = lowmem_page_address(ic->journal_xor[i].page);
3416 clear_page(va);
3417 sg_set_buf(&sg[i], va, PAGE_SIZE);
3419 sg_set_buf(&sg[i], &ic->commit_ids, sizeof ic->commit_ids);
3421 skcipher_request_set_crypt(req, sg, sg,
3422 PAGE_SIZE * ic->journal_pages + sizeof ic->commit_ids, crypt_iv);
3423 init_completion(&comp.comp);
3424 comp.in_flight = (atomic_t)ATOMIC_INIT(1);
3425 if (do_crypt(true, req, &comp))
3426 wait_for_completion(&comp.comp);
3427 kvfree(sg);
3428 r = dm_integrity_failed(ic);
3429 if (r) {
3430 *error = "Unable to encrypt journal";
3431 goto bad;
3433 DEBUG_bytes(lowmem_page_address(ic->journal_xor[0].page), 64, "xor data");
3435 crypto_free_skcipher(ic->journal_crypt);
3436 ic->journal_crypt = NULL;
3437 } else {
3438 unsigned crypt_len = roundup(ivsize, blocksize);
3440 req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
3441 if (!req) {
3442 *error = "Could not allocate crypt request";
3443 r = -ENOMEM;
3444 goto bad;
3447 crypt_iv = kmalloc(ivsize, GFP_KERNEL);
3448 if (!crypt_iv) {
3449 *error = "Could not allocate iv";
3450 r = -ENOMEM;
3451 goto bad;
3454 crypt_data = kmalloc(crypt_len, GFP_KERNEL);
3455 if (!crypt_data) {
3456 *error = "Unable to allocate crypt data";
3457 r = -ENOMEM;
3458 goto bad;
3461 ic->journal_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, ic->journal);
3462 if (!ic->journal_scatterlist) {
3463 *error = "Unable to allocate sg list";
3464 r = -ENOMEM;
3465 goto bad;
3467 ic->journal_io_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, ic->journal_io);
3468 if (!ic->journal_io_scatterlist) {
3469 *error = "Unable to allocate sg list";
3470 r = -ENOMEM;
3471 goto bad;
3473 ic->sk_requests = kvmalloc_array(ic->journal_sections,
3474 sizeof(struct skcipher_request *),
3475 GFP_KERNEL | __GFP_ZERO);
3476 if (!ic->sk_requests) {
3477 *error = "Unable to allocate sk requests";
3478 r = -ENOMEM;
3479 goto bad;
3481 for (i = 0; i < ic->journal_sections; i++) {
3482 struct scatterlist sg;
3483 struct skcipher_request *section_req;
3484 __u32 section_le = cpu_to_le32(i);
3486 memset(crypt_iv, 0x00, ivsize);
3487 memset(crypt_data, 0x00, crypt_len);
3488 memcpy(crypt_data, &section_le, min((size_t)crypt_len, sizeof(section_le)));
3490 sg_init_one(&sg, crypt_data, crypt_len);
3491 skcipher_request_set_crypt(req, &sg, &sg, crypt_len, crypt_iv);
3492 init_completion(&comp.comp);
3493 comp.in_flight = (atomic_t)ATOMIC_INIT(1);
3494 if (do_crypt(true, req, &comp))
3495 wait_for_completion(&comp.comp);
3497 r = dm_integrity_failed(ic);
3498 if (r) {
3499 *error = "Unable to generate iv";
3500 goto bad;
3503 section_req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
3504 if (!section_req) {
3505 *error = "Unable to allocate crypt request";
3506 r = -ENOMEM;
3507 goto bad;
3509 section_req->iv = kmalloc_array(ivsize, 2,
3510 GFP_KERNEL);
3511 if (!section_req->iv) {
3512 skcipher_request_free(section_req);
3513 *error = "Unable to allocate iv";
3514 r = -ENOMEM;
3515 goto bad;
3517 memcpy(section_req->iv + ivsize, crypt_data, ivsize);
3518 section_req->cryptlen = (size_t)ic->journal_section_sectors << SECTOR_SHIFT;
3519 ic->sk_requests[i] = section_req;
3520 DEBUG_bytes(crypt_data, ivsize, "iv(%u)", i);
3525 for (i = 0; i < N_COMMIT_IDS; i++) {
3526 unsigned j;
3527 retest_commit_id:
3528 for (j = 0; j < i; j++) {
3529 if (ic->commit_ids[j] == ic->commit_ids[i]) {
3530 ic->commit_ids[i] = cpu_to_le64(le64_to_cpu(ic->commit_ids[i]) + 1);
3531 goto retest_commit_id;
3534 DEBUG_print("commit id %u: %016llx\n", i, ic->commit_ids[i]);
3537 journal_tree_size = (__u64)ic->journal_entries * sizeof(struct journal_node);
3538 if (journal_tree_size > ULONG_MAX) {
3539 *error = "Journal doesn't fit into memory";
3540 r = -ENOMEM;
3541 goto bad;
3543 ic->journal_tree = kvmalloc(journal_tree_size, GFP_KERNEL);
3544 if (!ic->journal_tree) {
3545 *error = "Could not allocate memory for journal tree";
3546 r = -ENOMEM;
3548 bad:
3549 kfree(crypt_data);
3550 kfree(crypt_iv);
3551 skcipher_request_free(req);
3553 return r;
3557 * Construct a integrity mapping
3559 * Arguments:
3560 * device
3561 * offset from the start of the device
3562 * tag size
3563 * D - direct writes, J - journal writes, B - bitmap mode, R - recovery mode
3564 * number of optional arguments
3565 * optional arguments:
3566 * journal_sectors
3567 * interleave_sectors
3568 * buffer_sectors
3569 * journal_watermark
3570 * commit_time
3571 * meta_device
3572 * block_size
3573 * sectors_per_bit
3574 * bitmap_flush_interval
3575 * internal_hash
3576 * journal_crypt
3577 * journal_mac
3578 * recalculate
3580 static int dm_integrity_ctr(struct dm_target *ti, unsigned argc, char **argv)
3582 struct dm_integrity_c *ic;
3583 char dummy;
3584 int r;
3585 unsigned extra_args;
3586 struct dm_arg_set as;
3587 static const struct dm_arg _args[] = {
3588 {0, 9, "Invalid number of feature args"},
3590 unsigned journal_sectors, interleave_sectors, buffer_sectors, journal_watermark, sync_msec;
3591 bool should_write_sb;
3592 __u64 threshold;
3593 unsigned long long start;
3594 __s8 log2_sectors_per_bitmap_bit = -1;
3595 __s8 log2_blocks_per_bitmap_bit;
3596 __u64 bits_in_journal;
3597 __u64 n_bitmap_bits;
3599 #define DIRECT_ARGUMENTS 4
3601 if (argc <= DIRECT_ARGUMENTS) {
3602 ti->error = "Invalid argument count";
3603 return -EINVAL;
3606 ic = kzalloc(sizeof(struct dm_integrity_c), GFP_KERNEL);
3607 if (!ic) {
3608 ti->error = "Cannot allocate integrity context";
3609 return -ENOMEM;
3611 ti->private = ic;
3612 ti->per_io_data_size = sizeof(struct dm_integrity_io);
3613 ic->ti = ti;
3615 ic->in_progress = RB_ROOT;
3616 INIT_LIST_HEAD(&ic->wait_list);
3617 init_waitqueue_head(&ic->endio_wait);
3618 bio_list_init(&ic->flush_bio_list);
3619 init_waitqueue_head(&ic->copy_to_journal_wait);
3620 init_completion(&ic->crypto_backoff);
3621 atomic64_set(&ic->number_of_mismatches, 0);
3622 ic->bitmap_flush_interval = BITMAP_FLUSH_INTERVAL;
3624 r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &ic->dev);
3625 if (r) {
3626 ti->error = "Device lookup failed";
3627 goto bad;
3630 if (sscanf(argv[1], "%llu%c", &start, &dummy) != 1 || start != (sector_t)start) {
3631 ti->error = "Invalid starting offset";
3632 r = -EINVAL;
3633 goto bad;
3635 ic->start = start;
3637 if (strcmp(argv[2], "-")) {
3638 if (sscanf(argv[2], "%u%c", &ic->tag_size, &dummy) != 1 || !ic->tag_size) {
3639 ti->error = "Invalid tag size";
3640 r = -EINVAL;
3641 goto bad;
3645 if (!strcmp(argv[3], "J") || !strcmp(argv[3], "B") ||
3646 !strcmp(argv[3], "D") || !strcmp(argv[3], "R")) {
3647 ic->mode = argv[3][0];
3648 } else {
3649 ti->error = "Invalid mode (expecting J, B, D, R)";
3650 r = -EINVAL;
3651 goto bad;
3654 journal_sectors = 0;
3655 interleave_sectors = DEFAULT_INTERLEAVE_SECTORS;
3656 buffer_sectors = DEFAULT_BUFFER_SECTORS;
3657 journal_watermark = DEFAULT_JOURNAL_WATERMARK;
3658 sync_msec = DEFAULT_SYNC_MSEC;
3659 ic->sectors_per_block = 1;
3661 as.argc = argc - DIRECT_ARGUMENTS;
3662 as.argv = argv + DIRECT_ARGUMENTS;
3663 r = dm_read_arg_group(_args, &as, &extra_args, &ti->error);
3664 if (r)
3665 goto bad;
3667 while (extra_args--) {
3668 const char *opt_string;
3669 unsigned val;
3670 unsigned long long llval;
3671 opt_string = dm_shift_arg(&as);
3672 if (!opt_string) {
3673 r = -EINVAL;
3674 ti->error = "Not enough feature arguments";
3675 goto bad;
3677 if (sscanf(opt_string, "journal_sectors:%u%c", &val, &dummy) == 1)
3678 journal_sectors = val ? val : 1;
3679 else if (sscanf(opt_string, "interleave_sectors:%u%c", &val, &dummy) == 1)
3680 interleave_sectors = val;
3681 else if (sscanf(opt_string, "buffer_sectors:%u%c", &val, &dummy) == 1)
3682 buffer_sectors = val;
3683 else if (sscanf(opt_string, "journal_watermark:%u%c", &val, &dummy) == 1 && val <= 100)
3684 journal_watermark = val;
3685 else if (sscanf(opt_string, "commit_time:%u%c", &val, &dummy) == 1)
3686 sync_msec = val;
3687 else if (!strncmp(opt_string, "meta_device:", strlen("meta_device:"))) {
3688 if (ic->meta_dev) {
3689 dm_put_device(ti, ic->meta_dev);
3690 ic->meta_dev = NULL;
3692 r = dm_get_device(ti, strchr(opt_string, ':') + 1,
3693 dm_table_get_mode(ti->table), &ic->meta_dev);
3694 if (r) {
3695 ti->error = "Device lookup failed";
3696 goto bad;
3698 } else if (sscanf(opt_string, "block_size:%u%c", &val, &dummy) == 1) {
3699 if (val < 1 << SECTOR_SHIFT ||
3700 val > MAX_SECTORS_PER_BLOCK << SECTOR_SHIFT ||
3701 (val & (val -1))) {
3702 r = -EINVAL;
3703 ti->error = "Invalid block_size argument";
3704 goto bad;
3706 ic->sectors_per_block = val >> SECTOR_SHIFT;
3707 } else if (sscanf(opt_string, "sectors_per_bit:%llu%c", &llval, &dummy) == 1) {
3708 log2_sectors_per_bitmap_bit = !llval ? 0 : __ilog2_u64(llval);
3709 } else if (sscanf(opt_string, "bitmap_flush_interval:%u%c", &val, &dummy) == 1) {
3710 if (val >= (uint64_t)UINT_MAX * 1000 / HZ) {
3711 r = -EINVAL;
3712 ti->error = "Invalid bitmap_flush_interval argument";
3714 ic->bitmap_flush_interval = msecs_to_jiffies(val);
3715 } else if (!strncmp(opt_string, "internal_hash:", strlen("internal_hash:"))) {
3716 r = get_alg_and_key(opt_string, &ic->internal_hash_alg, &ti->error,
3717 "Invalid internal_hash argument");
3718 if (r)
3719 goto bad;
3720 } else if (!strncmp(opt_string, "journal_crypt:", strlen("journal_crypt:"))) {
3721 r = get_alg_and_key(opt_string, &ic->journal_crypt_alg, &ti->error,
3722 "Invalid journal_crypt argument");
3723 if (r)
3724 goto bad;
3725 } else if (!strncmp(opt_string, "journal_mac:", strlen("journal_mac:"))) {
3726 r = get_alg_and_key(opt_string, &ic->journal_mac_alg, &ti->error,
3727 "Invalid journal_mac argument");
3728 if (r)
3729 goto bad;
3730 } else if (!strcmp(opt_string, "recalculate")) {
3731 ic->recalculate_flag = true;
3732 } else {
3733 r = -EINVAL;
3734 ti->error = "Invalid argument";
3735 goto bad;
3739 ic->data_device_sectors = i_size_read(ic->dev->bdev->bd_inode) >> SECTOR_SHIFT;
3740 if (!ic->meta_dev)
3741 ic->meta_device_sectors = ic->data_device_sectors;
3742 else
3743 ic->meta_device_sectors = i_size_read(ic->meta_dev->bdev->bd_inode) >> SECTOR_SHIFT;
3745 if (!journal_sectors) {
3746 journal_sectors = min((sector_t)DEFAULT_MAX_JOURNAL_SECTORS,
3747 ic->data_device_sectors >> DEFAULT_JOURNAL_SIZE_FACTOR);
3750 if (!buffer_sectors)
3751 buffer_sectors = 1;
3752 ic->log2_buffer_sectors = min((int)__fls(buffer_sectors), 31 - SECTOR_SHIFT);
3754 r = get_mac(&ic->internal_hash, &ic->internal_hash_alg, &ti->error,
3755 "Invalid internal hash", "Error setting internal hash key");
3756 if (r)
3757 goto bad;
3759 r = get_mac(&ic->journal_mac, &ic->journal_mac_alg, &ti->error,
3760 "Invalid journal mac", "Error setting journal mac key");
3761 if (r)
3762 goto bad;
3764 if (!ic->tag_size) {
3765 if (!ic->internal_hash) {
3766 ti->error = "Unknown tag size";
3767 r = -EINVAL;
3768 goto bad;
3770 ic->tag_size = crypto_shash_digestsize(ic->internal_hash);
3772 if (ic->tag_size > MAX_TAG_SIZE) {
3773 ti->error = "Too big tag size";
3774 r = -EINVAL;
3775 goto bad;
3777 if (!(ic->tag_size & (ic->tag_size - 1)))
3778 ic->log2_tag_size = __ffs(ic->tag_size);
3779 else
3780 ic->log2_tag_size = -1;
3782 if (ic->mode == 'B' && !ic->internal_hash) {
3783 r = -EINVAL;
3784 ti->error = "Bitmap mode can be only used with internal hash";
3785 goto bad;
3788 ic->autocommit_jiffies = msecs_to_jiffies(sync_msec);
3789 ic->autocommit_msec = sync_msec;
3790 timer_setup(&ic->autocommit_timer, autocommit_fn, 0);
3792 ic->io = dm_io_client_create();
3793 if (IS_ERR(ic->io)) {
3794 r = PTR_ERR(ic->io);
3795 ic->io = NULL;
3796 ti->error = "Cannot allocate dm io";
3797 goto bad;
3800 r = mempool_init_slab_pool(&ic->journal_io_mempool, JOURNAL_IO_MEMPOOL, journal_io_cache);
3801 if (r) {
3802 ti->error = "Cannot allocate mempool";
3803 goto bad;
3806 ic->metadata_wq = alloc_workqueue("dm-integrity-metadata",
3807 WQ_MEM_RECLAIM, METADATA_WORKQUEUE_MAX_ACTIVE);
3808 if (!ic->metadata_wq) {
3809 ti->error = "Cannot allocate workqueue";
3810 r = -ENOMEM;
3811 goto bad;
3815 * If this workqueue were percpu, it would cause bio reordering
3816 * and reduced performance.
3818 ic->wait_wq = alloc_workqueue("dm-integrity-wait", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
3819 if (!ic->wait_wq) {
3820 ti->error = "Cannot allocate workqueue";
3821 r = -ENOMEM;
3822 goto bad;
3825 ic->offload_wq = alloc_workqueue("dm-integrity-offload", WQ_MEM_RECLAIM,
3826 METADATA_WORKQUEUE_MAX_ACTIVE);
3827 if (!ic->offload_wq) {
3828 ti->error = "Cannot allocate workqueue";
3829 r = -ENOMEM;
3830 goto bad;
3833 ic->commit_wq = alloc_workqueue("dm-integrity-commit", WQ_MEM_RECLAIM, 1);
3834 if (!ic->commit_wq) {
3835 ti->error = "Cannot allocate workqueue";
3836 r = -ENOMEM;
3837 goto bad;
3839 INIT_WORK(&ic->commit_work, integrity_commit);
3841 if (ic->mode == 'J' || ic->mode == 'B') {
3842 ic->writer_wq = alloc_workqueue("dm-integrity-writer", WQ_MEM_RECLAIM, 1);
3843 if (!ic->writer_wq) {
3844 ti->error = "Cannot allocate workqueue";
3845 r = -ENOMEM;
3846 goto bad;
3848 INIT_WORK(&ic->writer_work, integrity_writer);
3851 ic->sb = alloc_pages_exact(SB_SECTORS << SECTOR_SHIFT, GFP_KERNEL);
3852 if (!ic->sb) {
3853 r = -ENOMEM;
3854 ti->error = "Cannot allocate superblock area";
3855 goto bad;
3858 r = sync_rw_sb(ic, REQ_OP_READ, 0);
3859 if (r) {
3860 ti->error = "Error reading superblock";
3861 goto bad;
3863 should_write_sb = false;
3864 if (memcmp(ic->sb->magic, SB_MAGIC, 8)) {
3865 if (ic->mode != 'R') {
3866 if (memchr_inv(ic->sb, 0, SB_SECTORS << SECTOR_SHIFT)) {
3867 r = -EINVAL;
3868 ti->error = "The device is not initialized";
3869 goto bad;
3873 r = initialize_superblock(ic, journal_sectors, interleave_sectors);
3874 if (r) {
3875 ti->error = "Could not initialize superblock";
3876 goto bad;
3878 if (ic->mode != 'R')
3879 should_write_sb = true;
3882 if (!ic->sb->version || ic->sb->version > SB_VERSION_3) {
3883 r = -EINVAL;
3884 ti->error = "Unknown version";
3885 goto bad;
3887 if (le16_to_cpu(ic->sb->integrity_tag_size) != ic->tag_size) {
3888 r = -EINVAL;
3889 ti->error = "Tag size doesn't match the information in superblock";
3890 goto bad;
3892 if (ic->sb->log2_sectors_per_block != __ffs(ic->sectors_per_block)) {
3893 r = -EINVAL;
3894 ti->error = "Block size doesn't match the information in superblock";
3895 goto bad;
3897 if (!le32_to_cpu(ic->sb->journal_sections)) {
3898 r = -EINVAL;
3899 ti->error = "Corrupted superblock, journal_sections is 0";
3900 goto bad;
3902 /* make sure that ti->max_io_len doesn't overflow */
3903 if (!ic->meta_dev) {
3904 if (ic->sb->log2_interleave_sectors < MIN_LOG2_INTERLEAVE_SECTORS ||
3905 ic->sb->log2_interleave_sectors > MAX_LOG2_INTERLEAVE_SECTORS) {
3906 r = -EINVAL;
3907 ti->error = "Invalid interleave_sectors in the superblock";
3908 goto bad;
3910 } else {
3911 if (ic->sb->log2_interleave_sectors) {
3912 r = -EINVAL;
3913 ti->error = "Invalid interleave_sectors in the superblock";
3914 goto bad;
3917 ic->provided_data_sectors = le64_to_cpu(ic->sb->provided_data_sectors);
3918 if (ic->provided_data_sectors != le64_to_cpu(ic->sb->provided_data_sectors)) {
3919 /* test for overflow */
3920 r = -EINVAL;
3921 ti->error = "The superblock has 64-bit device size, but the kernel was compiled with 32-bit sectors";
3922 goto bad;
3924 if (!!(ic->sb->flags & cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC)) != !!ic->journal_mac_alg.alg_string) {
3925 r = -EINVAL;
3926 ti->error = "Journal mac mismatch";
3927 goto bad;
3930 try_smaller_buffer:
3931 r = calculate_device_limits(ic);
3932 if (r) {
3933 if (ic->meta_dev) {
3934 if (ic->log2_buffer_sectors > 3) {
3935 ic->log2_buffer_sectors--;
3936 goto try_smaller_buffer;
3939 ti->error = "The device is too small";
3940 goto bad;
3943 if (log2_sectors_per_bitmap_bit < 0)
3944 log2_sectors_per_bitmap_bit = __fls(DEFAULT_SECTORS_PER_BITMAP_BIT);
3945 if (log2_sectors_per_bitmap_bit < ic->sb->log2_sectors_per_block)
3946 log2_sectors_per_bitmap_bit = ic->sb->log2_sectors_per_block;
3948 bits_in_journal = ((__u64)ic->journal_section_sectors * ic->journal_sections) << (SECTOR_SHIFT + 3);
3949 if (bits_in_journal > UINT_MAX)
3950 bits_in_journal = UINT_MAX;
3951 while (bits_in_journal < (ic->provided_data_sectors + ((sector_t)1 << log2_sectors_per_bitmap_bit) - 1) >> log2_sectors_per_bitmap_bit)
3952 log2_sectors_per_bitmap_bit++;
3954 log2_blocks_per_bitmap_bit = log2_sectors_per_bitmap_bit - ic->sb->log2_sectors_per_block;
3955 ic->log2_blocks_per_bitmap_bit = log2_blocks_per_bitmap_bit;
3956 if (should_write_sb) {
3957 ic->sb->log2_blocks_per_bitmap_bit = log2_blocks_per_bitmap_bit;
3959 n_bitmap_bits = ((ic->provided_data_sectors >> ic->sb->log2_sectors_per_block)
3960 + (((sector_t)1 << log2_blocks_per_bitmap_bit) - 1)) >> log2_blocks_per_bitmap_bit;
3961 ic->n_bitmap_blocks = DIV_ROUND_UP(n_bitmap_bits, BITMAP_BLOCK_SIZE * 8);
3963 if (!ic->meta_dev)
3964 ic->log2_buffer_sectors = min(ic->log2_buffer_sectors, (__u8)__ffs(ic->metadata_run));
3966 if (ti->len > ic->provided_data_sectors) {
3967 r = -EINVAL;
3968 ti->error = "Not enough provided sectors for requested mapping size";
3969 goto bad;
3973 threshold = (__u64)ic->journal_entries * (100 - journal_watermark);
3974 threshold += 50;
3975 do_div(threshold, 100);
3976 ic->free_sectors_threshold = threshold;
3978 DEBUG_print("initialized:\n");
3979 DEBUG_print(" integrity_tag_size %u\n", le16_to_cpu(ic->sb->integrity_tag_size));
3980 DEBUG_print(" journal_entry_size %u\n", ic->journal_entry_size);
3981 DEBUG_print(" journal_entries_per_sector %u\n", ic->journal_entries_per_sector);
3982 DEBUG_print(" journal_section_entries %u\n", ic->journal_section_entries);
3983 DEBUG_print(" journal_section_sectors %u\n", ic->journal_section_sectors);
3984 DEBUG_print(" journal_sections %u\n", (unsigned)le32_to_cpu(ic->sb->journal_sections));
3985 DEBUG_print(" journal_entries %u\n", ic->journal_entries);
3986 DEBUG_print(" log2_interleave_sectors %d\n", ic->sb->log2_interleave_sectors);
3987 DEBUG_print(" data_device_sectors 0x%llx\n", i_size_read(ic->dev->bdev->bd_inode) >> SECTOR_SHIFT);
3988 DEBUG_print(" initial_sectors 0x%x\n", ic->initial_sectors);
3989 DEBUG_print(" metadata_run 0x%x\n", ic->metadata_run);
3990 DEBUG_print(" log2_metadata_run %d\n", ic->log2_metadata_run);
3991 DEBUG_print(" provided_data_sectors 0x%llx (%llu)\n", (unsigned long long)ic->provided_data_sectors,
3992 (unsigned long long)ic->provided_data_sectors);
3993 DEBUG_print(" log2_buffer_sectors %u\n", ic->log2_buffer_sectors);
3994 DEBUG_print(" bits_in_journal %llu\n", (unsigned long long)bits_in_journal);
3996 if (ic->recalculate_flag && !(ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))) {
3997 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
3998 ic->sb->recalc_sector = cpu_to_le64(0);
4001 if (ic->internal_hash) {
4002 ic->recalc_wq = alloc_workqueue("dm-integrity-recalc", WQ_MEM_RECLAIM, 1);
4003 if (!ic->recalc_wq ) {
4004 ti->error = "Cannot allocate workqueue";
4005 r = -ENOMEM;
4006 goto bad;
4008 INIT_WORK(&ic->recalc_work, integrity_recalc);
4009 ic->recalc_buffer = vmalloc(RECALC_SECTORS << SECTOR_SHIFT);
4010 if (!ic->recalc_buffer) {
4011 ti->error = "Cannot allocate buffer for recalculating";
4012 r = -ENOMEM;
4013 goto bad;
4015 ic->recalc_tags = kvmalloc_array(RECALC_SECTORS >> ic->sb->log2_sectors_per_block,
4016 ic->tag_size, GFP_KERNEL);
4017 if (!ic->recalc_tags) {
4018 ti->error = "Cannot allocate tags for recalculating";
4019 r = -ENOMEM;
4020 goto bad;
4024 ic->bufio = dm_bufio_client_create(ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev,
4025 1U << (SECTOR_SHIFT + ic->log2_buffer_sectors), 1, 0, NULL, NULL);
4026 if (IS_ERR(ic->bufio)) {
4027 r = PTR_ERR(ic->bufio);
4028 ti->error = "Cannot initialize dm-bufio";
4029 ic->bufio = NULL;
4030 goto bad;
4032 dm_bufio_set_sector_offset(ic->bufio, ic->start + ic->initial_sectors);
4034 if (ic->mode != 'R') {
4035 r = create_journal(ic, &ti->error);
4036 if (r)
4037 goto bad;
4041 if (ic->mode == 'B') {
4042 unsigned i;
4043 unsigned n_bitmap_pages = DIV_ROUND_UP(ic->n_bitmap_blocks, PAGE_SIZE / BITMAP_BLOCK_SIZE);
4045 ic->recalc_bitmap = dm_integrity_alloc_page_list(n_bitmap_pages);
4046 if (!ic->recalc_bitmap) {
4047 r = -ENOMEM;
4048 goto bad;
4050 ic->may_write_bitmap = dm_integrity_alloc_page_list(n_bitmap_pages);
4051 if (!ic->may_write_bitmap) {
4052 r = -ENOMEM;
4053 goto bad;
4055 ic->bbs = kvmalloc_array(ic->n_bitmap_blocks, sizeof(struct bitmap_block_status), GFP_KERNEL);
4056 if (!ic->bbs) {
4057 r = -ENOMEM;
4058 goto bad;
4060 INIT_DELAYED_WORK(&ic->bitmap_flush_work, bitmap_flush_work);
4061 for (i = 0; i < ic->n_bitmap_blocks; i++) {
4062 struct bitmap_block_status *bbs = &ic->bbs[i];
4063 unsigned sector, pl_index, pl_offset;
4065 INIT_WORK(&bbs->work, bitmap_block_work);
4066 bbs->ic = ic;
4067 bbs->idx = i;
4068 bio_list_init(&bbs->bio_queue);
4069 spin_lock_init(&bbs->bio_queue_lock);
4071 sector = i * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT);
4072 pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
4073 pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
4075 bbs->bitmap = lowmem_page_address(ic->journal[pl_index].page) + pl_offset;
4079 if (should_write_sb) {
4080 int r;
4082 init_journal(ic, 0, ic->journal_sections, 0);
4083 r = dm_integrity_failed(ic);
4084 if (unlikely(r)) {
4085 ti->error = "Error initializing journal";
4086 goto bad;
4088 r = sync_rw_sb(ic, REQ_OP_WRITE, REQ_FUA);
4089 if (r) {
4090 ti->error = "Error initializing superblock";
4091 goto bad;
4093 ic->just_formatted = true;
4096 if (!ic->meta_dev) {
4097 r = dm_set_target_max_io_len(ti, 1U << ic->sb->log2_interleave_sectors);
4098 if (r)
4099 goto bad;
4101 if (ic->mode == 'B') {
4102 unsigned max_io_len = ((sector_t)ic->sectors_per_block << ic->log2_blocks_per_bitmap_bit) * (BITMAP_BLOCK_SIZE * 8);
4103 if (!max_io_len)
4104 max_io_len = 1U << 31;
4105 DEBUG_print("max_io_len: old %u, new %u\n", ti->max_io_len, max_io_len);
4106 if (!ti->max_io_len || ti->max_io_len > max_io_len) {
4107 r = dm_set_target_max_io_len(ti, max_io_len);
4108 if (r)
4109 goto bad;
4113 if (!ic->internal_hash)
4114 dm_integrity_set(ti, ic);
4116 ti->num_flush_bios = 1;
4117 ti->flush_supported = true;
4119 return 0;
4121 bad:
4122 dm_integrity_dtr(ti);
4123 return r;
4126 static void dm_integrity_dtr(struct dm_target *ti)
4128 struct dm_integrity_c *ic = ti->private;
4130 BUG_ON(!RB_EMPTY_ROOT(&ic->in_progress));
4131 BUG_ON(!list_empty(&ic->wait_list));
4133 if (ic->metadata_wq)
4134 destroy_workqueue(ic->metadata_wq);
4135 if (ic->wait_wq)
4136 destroy_workqueue(ic->wait_wq);
4137 if (ic->offload_wq)
4138 destroy_workqueue(ic->offload_wq);
4139 if (ic->commit_wq)
4140 destroy_workqueue(ic->commit_wq);
4141 if (ic->writer_wq)
4142 destroy_workqueue(ic->writer_wq);
4143 if (ic->recalc_wq)
4144 destroy_workqueue(ic->recalc_wq);
4145 vfree(ic->recalc_buffer);
4146 kvfree(ic->recalc_tags);
4147 kvfree(ic->bbs);
4148 if (ic->bufio)
4149 dm_bufio_client_destroy(ic->bufio);
4150 mempool_exit(&ic->journal_io_mempool);
4151 if (ic->io)
4152 dm_io_client_destroy(ic->io);
4153 if (ic->dev)
4154 dm_put_device(ti, ic->dev);
4155 if (ic->meta_dev)
4156 dm_put_device(ti, ic->meta_dev);
4157 dm_integrity_free_page_list(ic->journal);
4158 dm_integrity_free_page_list(ic->journal_io);
4159 dm_integrity_free_page_list(ic->journal_xor);
4160 dm_integrity_free_page_list(ic->recalc_bitmap);
4161 dm_integrity_free_page_list(ic->may_write_bitmap);
4162 if (ic->journal_scatterlist)
4163 dm_integrity_free_journal_scatterlist(ic, ic->journal_scatterlist);
4164 if (ic->journal_io_scatterlist)
4165 dm_integrity_free_journal_scatterlist(ic, ic->journal_io_scatterlist);
4166 if (ic->sk_requests) {
4167 unsigned i;
4169 for (i = 0; i < ic->journal_sections; i++) {
4170 struct skcipher_request *req = ic->sk_requests[i];
4171 if (req) {
4172 kzfree(req->iv);
4173 skcipher_request_free(req);
4176 kvfree(ic->sk_requests);
4178 kvfree(ic->journal_tree);
4179 if (ic->sb)
4180 free_pages_exact(ic->sb, SB_SECTORS << SECTOR_SHIFT);
4182 if (ic->internal_hash)
4183 crypto_free_shash(ic->internal_hash);
4184 free_alg(&ic->internal_hash_alg);
4186 if (ic->journal_crypt)
4187 crypto_free_skcipher(ic->journal_crypt);
4188 free_alg(&ic->journal_crypt_alg);
4190 if (ic->journal_mac)
4191 crypto_free_shash(ic->journal_mac);
4192 free_alg(&ic->journal_mac_alg);
4194 kfree(ic);
4197 static struct target_type integrity_target = {
4198 .name = "integrity",
4199 .version = {1, 3, 0},
4200 .module = THIS_MODULE,
4201 .features = DM_TARGET_SINGLETON | DM_TARGET_INTEGRITY,
4202 .ctr = dm_integrity_ctr,
4203 .dtr = dm_integrity_dtr,
4204 .map = dm_integrity_map,
4205 .postsuspend = dm_integrity_postsuspend,
4206 .resume = dm_integrity_resume,
4207 .status = dm_integrity_status,
4208 .iterate_devices = dm_integrity_iterate_devices,
4209 .io_hints = dm_integrity_io_hints,
4212 static int __init dm_integrity_init(void)
4214 int r;
4216 journal_io_cache = kmem_cache_create("integrity_journal_io",
4217 sizeof(struct journal_io), 0, 0, NULL);
4218 if (!journal_io_cache) {
4219 DMERR("can't allocate journal io cache");
4220 return -ENOMEM;
4223 r = dm_register_target(&integrity_target);
4225 if (r < 0)
4226 DMERR("register failed %d", r);
4228 return r;
4231 static void __exit dm_integrity_exit(void)
4233 dm_unregister_target(&integrity_target);
4234 kmem_cache_destroy(journal_io_cache);
4237 module_init(dm_integrity_init);
4238 module_exit(dm_integrity_exit);
4240 MODULE_AUTHOR("Milan Broz");
4241 MODULE_AUTHOR("Mikulas Patocka");
4242 MODULE_DESCRIPTION(DM_NAME " target for integrity tags extension");
4243 MODULE_LICENSE("GPL");