dm: Call proper helper to determine dax support
[linux/fpc-iii.git] / drivers / media / i2c / adv7604.c
blob2dedd6ebb2361277ec3b8e916d000c0625861f11
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * adv7604 - Analog Devices ADV7604 video decoder driver
5 * Copyright 2012 Cisco Systems, Inc. and/or its affiliates. All rights reserved.
7 */
9 /*
10 * References (c = chapter, p = page):
11 * REF_01 - Analog devices, ADV7604, Register Settings Recommendations,
12 * Revision 2.5, June 2010
13 * REF_02 - Analog devices, Register map documentation, Documentation of
14 * the register maps, Software manual, Rev. F, June 2010
15 * REF_03 - Analog devices, ADV7604, Hardware Manual, Rev. F, August 2010
18 #include <linux/delay.h>
19 #include <linux/gpio/consumer.h>
20 #include <linux/hdmi.h>
21 #include <linux/i2c.h>
22 #include <linux/kernel.h>
23 #include <linux/module.h>
24 #include <linux/of_graph.h>
25 #include <linux/slab.h>
26 #include <linux/v4l2-dv-timings.h>
27 #include <linux/videodev2.h>
28 #include <linux/workqueue.h>
29 #include <linux/regmap.h>
30 #include <linux/interrupt.h>
32 #include <media/i2c/adv7604.h>
33 #include <media/cec.h>
34 #include <media/v4l2-ctrls.h>
35 #include <media/v4l2-device.h>
36 #include <media/v4l2-event.h>
37 #include <media/v4l2-dv-timings.h>
38 #include <media/v4l2-fwnode.h>
40 static int debug;
41 module_param(debug, int, 0644);
42 MODULE_PARM_DESC(debug, "debug level (0-2)");
44 MODULE_DESCRIPTION("Analog Devices ADV7604 video decoder driver");
45 MODULE_AUTHOR("Hans Verkuil <hans.verkuil@cisco.com>");
46 MODULE_AUTHOR("Mats Randgaard <mats.randgaard@cisco.com>");
47 MODULE_LICENSE("GPL");
49 /* ADV7604 system clock frequency */
50 #define ADV76XX_FSC (28636360)
52 #define ADV76XX_RGB_OUT (1 << 1)
54 #define ADV76XX_OP_FORMAT_SEL_8BIT (0 << 0)
55 #define ADV7604_OP_FORMAT_SEL_10BIT (1 << 0)
56 #define ADV76XX_OP_FORMAT_SEL_12BIT (2 << 0)
58 #define ADV76XX_OP_MODE_SEL_SDR_422 (0 << 5)
59 #define ADV7604_OP_MODE_SEL_DDR_422 (1 << 5)
60 #define ADV76XX_OP_MODE_SEL_SDR_444 (2 << 5)
61 #define ADV7604_OP_MODE_SEL_DDR_444 (3 << 5)
62 #define ADV76XX_OP_MODE_SEL_SDR_422_2X (4 << 5)
63 #define ADV7604_OP_MODE_SEL_ADI_CM (5 << 5)
65 #define ADV76XX_OP_CH_SEL_GBR (0 << 5)
66 #define ADV76XX_OP_CH_SEL_GRB (1 << 5)
67 #define ADV76XX_OP_CH_SEL_BGR (2 << 5)
68 #define ADV76XX_OP_CH_SEL_RGB (3 << 5)
69 #define ADV76XX_OP_CH_SEL_BRG (4 << 5)
70 #define ADV76XX_OP_CH_SEL_RBG (5 << 5)
72 #define ADV76XX_OP_SWAP_CB_CR (1 << 0)
74 #define ADV76XX_MAX_ADDRS (3)
76 enum adv76xx_type {
77 ADV7604,
78 ADV7611,
79 ADV7612,
82 struct adv76xx_reg_seq {
83 unsigned int reg;
84 u8 val;
87 struct adv76xx_format_info {
88 u32 code;
89 u8 op_ch_sel;
90 bool rgb_out;
91 bool swap_cb_cr;
92 u8 op_format_sel;
95 struct adv76xx_cfg_read_infoframe {
96 const char *desc;
97 u8 present_mask;
98 u8 head_addr;
99 u8 payload_addr;
102 struct adv76xx_chip_info {
103 enum adv76xx_type type;
105 bool has_afe;
106 unsigned int max_port;
107 unsigned int num_dv_ports;
109 unsigned int edid_enable_reg;
110 unsigned int edid_status_reg;
111 unsigned int lcf_reg;
113 unsigned int cable_det_mask;
114 unsigned int tdms_lock_mask;
115 unsigned int fmt_change_digital_mask;
116 unsigned int cp_csc;
118 unsigned int cec_irq_status;
119 unsigned int cec_rx_enable;
120 unsigned int cec_rx_enable_mask;
121 bool cec_irq_swap;
123 const struct adv76xx_format_info *formats;
124 unsigned int nformats;
126 void (*set_termination)(struct v4l2_subdev *sd, bool enable);
127 void (*setup_irqs)(struct v4l2_subdev *sd);
128 unsigned int (*read_hdmi_pixelclock)(struct v4l2_subdev *sd);
129 unsigned int (*read_cable_det)(struct v4l2_subdev *sd);
131 /* 0 = AFE, 1 = HDMI */
132 const struct adv76xx_reg_seq *recommended_settings[2];
133 unsigned int num_recommended_settings[2];
135 unsigned long page_mask;
137 /* Masks for timings */
138 unsigned int linewidth_mask;
139 unsigned int field0_height_mask;
140 unsigned int field1_height_mask;
141 unsigned int hfrontporch_mask;
142 unsigned int hsync_mask;
143 unsigned int hbackporch_mask;
144 unsigned int field0_vfrontporch_mask;
145 unsigned int field1_vfrontporch_mask;
146 unsigned int field0_vsync_mask;
147 unsigned int field1_vsync_mask;
148 unsigned int field0_vbackporch_mask;
149 unsigned int field1_vbackporch_mask;
153 **********************************************************************
155 * Arrays with configuration parameters for the ADV7604
157 **********************************************************************
160 struct adv76xx_state {
161 const struct adv76xx_chip_info *info;
162 struct adv76xx_platform_data pdata;
164 struct gpio_desc *hpd_gpio[4];
165 struct gpio_desc *reset_gpio;
167 struct v4l2_subdev sd;
168 struct media_pad pads[ADV76XX_PAD_MAX];
169 unsigned int source_pad;
171 struct v4l2_ctrl_handler hdl;
173 enum adv76xx_pad selected_input;
175 struct v4l2_dv_timings timings;
176 const struct adv76xx_format_info *format;
178 struct {
179 u8 edid[256];
180 u32 present;
181 unsigned blocks;
182 } edid;
183 u16 spa_port_a[2];
184 struct v4l2_fract aspect_ratio;
185 u32 rgb_quantization_range;
186 struct delayed_work delayed_work_enable_hotplug;
187 bool restart_stdi_once;
189 /* CEC */
190 struct cec_adapter *cec_adap;
191 u8 cec_addr[ADV76XX_MAX_ADDRS];
192 u8 cec_valid_addrs;
193 bool cec_enabled_adap;
195 /* i2c clients */
196 struct i2c_client *i2c_clients[ADV76XX_PAGE_MAX];
198 /* Regmaps */
199 struct regmap *regmap[ADV76XX_PAGE_MAX];
201 /* controls */
202 struct v4l2_ctrl *detect_tx_5v_ctrl;
203 struct v4l2_ctrl *analog_sampling_phase_ctrl;
204 struct v4l2_ctrl *free_run_color_manual_ctrl;
205 struct v4l2_ctrl *free_run_color_ctrl;
206 struct v4l2_ctrl *rgb_quantization_range_ctrl;
209 static bool adv76xx_has_afe(struct adv76xx_state *state)
211 return state->info->has_afe;
214 /* Unsupported timings. This device cannot support 720p30. */
215 static const struct v4l2_dv_timings adv76xx_timings_exceptions[] = {
216 V4L2_DV_BT_CEA_1280X720P30,
220 static bool adv76xx_check_dv_timings(const struct v4l2_dv_timings *t, void *hdl)
222 int i;
224 for (i = 0; adv76xx_timings_exceptions[i].bt.width; i++)
225 if (v4l2_match_dv_timings(t, adv76xx_timings_exceptions + i, 0, false))
226 return false;
227 return true;
230 struct adv76xx_video_standards {
231 struct v4l2_dv_timings timings;
232 u8 vid_std;
233 u8 v_freq;
236 /* sorted by number of lines */
237 static const struct adv76xx_video_standards adv7604_prim_mode_comp[] = {
238 /* { V4L2_DV_BT_CEA_720X480P59_94, 0x0a, 0x00 }, TODO flickering */
239 { V4L2_DV_BT_CEA_720X576P50, 0x0b, 0x00 },
240 { V4L2_DV_BT_CEA_1280X720P50, 0x19, 0x01 },
241 { V4L2_DV_BT_CEA_1280X720P60, 0x19, 0x00 },
242 { V4L2_DV_BT_CEA_1920X1080P24, 0x1e, 0x04 },
243 { V4L2_DV_BT_CEA_1920X1080P25, 0x1e, 0x03 },
244 { V4L2_DV_BT_CEA_1920X1080P30, 0x1e, 0x02 },
245 { V4L2_DV_BT_CEA_1920X1080P50, 0x1e, 0x01 },
246 { V4L2_DV_BT_CEA_1920X1080P60, 0x1e, 0x00 },
247 /* TODO add 1920x1080P60_RB (CVT timing) */
248 { },
251 /* sorted by number of lines */
252 static const struct adv76xx_video_standards adv7604_prim_mode_gr[] = {
253 { V4L2_DV_BT_DMT_640X480P60, 0x08, 0x00 },
254 { V4L2_DV_BT_DMT_640X480P72, 0x09, 0x00 },
255 { V4L2_DV_BT_DMT_640X480P75, 0x0a, 0x00 },
256 { V4L2_DV_BT_DMT_640X480P85, 0x0b, 0x00 },
257 { V4L2_DV_BT_DMT_800X600P56, 0x00, 0x00 },
258 { V4L2_DV_BT_DMT_800X600P60, 0x01, 0x00 },
259 { V4L2_DV_BT_DMT_800X600P72, 0x02, 0x00 },
260 { V4L2_DV_BT_DMT_800X600P75, 0x03, 0x00 },
261 { V4L2_DV_BT_DMT_800X600P85, 0x04, 0x00 },
262 { V4L2_DV_BT_DMT_1024X768P60, 0x0c, 0x00 },
263 { V4L2_DV_BT_DMT_1024X768P70, 0x0d, 0x00 },
264 { V4L2_DV_BT_DMT_1024X768P75, 0x0e, 0x00 },
265 { V4L2_DV_BT_DMT_1024X768P85, 0x0f, 0x00 },
266 { V4L2_DV_BT_DMT_1280X1024P60, 0x05, 0x00 },
267 { V4L2_DV_BT_DMT_1280X1024P75, 0x06, 0x00 },
268 { V4L2_DV_BT_DMT_1360X768P60, 0x12, 0x00 },
269 { V4L2_DV_BT_DMT_1366X768P60, 0x13, 0x00 },
270 { V4L2_DV_BT_DMT_1400X1050P60, 0x14, 0x00 },
271 { V4L2_DV_BT_DMT_1400X1050P75, 0x15, 0x00 },
272 { V4L2_DV_BT_DMT_1600X1200P60, 0x16, 0x00 }, /* TODO not tested */
273 /* TODO add 1600X1200P60_RB (not a DMT timing) */
274 { V4L2_DV_BT_DMT_1680X1050P60, 0x18, 0x00 },
275 { V4L2_DV_BT_DMT_1920X1200P60_RB, 0x19, 0x00 }, /* TODO not tested */
276 { },
279 /* sorted by number of lines */
280 static const struct adv76xx_video_standards adv76xx_prim_mode_hdmi_comp[] = {
281 { V4L2_DV_BT_CEA_720X480P59_94, 0x0a, 0x00 },
282 { V4L2_DV_BT_CEA_720X576P50, 0x0b, 0x00 },
283 { V4L2_DV_BT_CEA_1280X720P50, 0x13, 0x01 },
284 { V4L2_DV_BT_CEA_1280X720P60, 0x13, 0x00 },
285 { V4L2_DV_BT_CEA_1920X1080P24, 0x1e, 0x04 },
286 { V4L2_DV_BT_CEA_1920X1080P25, 0x1e, 0x03 },
287 { V4L2_DV_BT_CEA_1920X1080P30, 0x1e, 0x02 },
288 { V4L2_DV_BT_CEA_1920X1080P50, 0x1e, 0x01 },
289 { V4L2_DV_BT_CEA_1920X1080P60, 0x1e, 0x00 },
290 { },
293 /* sorted by number of lines */
294 static const struct adv76xx_video_standards adv76xx_prim_mode_hdmi_gr[] = {
295 { V4L2_DV_BT_DMT_640X480P60, 0x08, 0x00 },
296 { V4L2_DV_BT_DMT_640X480P72, 0x09, 0x00 },
297 { V4L2_DV_BT_DMT_640X480P75, 0x0a, 0x00 },
298 { V4L2_DV_BT_DMT_640X480P85, 0x0b, 0x00 },
299 { V4L2_DV_BT_DMT_800X600P56, 0x00, 0x00 },
300 { V4L2_DV_BT_DMT_800X600P60, 0x01, 0x00 },
301 { V4L2_DV_BT_DMT_800X600P72, 0x02, 0x00 },
302 { V4L2_DV_BT_DMT_800X600P75, 0x03, 0x00 },
303 { V4L2_DV_BT_DMT_800X600P85, 0x04, 0x00 },
304 { V4L2_DV_BT_DMT_1024X768P60, 0x0c, 0x00 },
305 { V4L2_DV_BT_DMT_1024X768P70, 0x0d, 0x00 },
306 { V4L2_DV_BT_DMT_1024X768P75, 0x0e, 0x00 },
307 { V4L2_DV_BT_DMT_1024X768P85, 0x0f, 0x00 },
308 { V4L2_DV_BT_DMT_1280X1024P60, 0x05, 0x00 },
309 { V4L2_DV_BT_DMT_1280X1024P75, 0x06, 0x00 },
310 { },
313 static const struct v4l2_event adv76xx_ev_fmt = {
314 .type = V4L2_EVENT_SOURCE_CHANGE,
315 .u.src_change.changes = V4L2_EVENT_SRC_CH_RESOLUTION,
318 /* ----------------------------------------------------------------------- */
320 static inline struct adv76xx_state *to_state(struct v4l2_subdev *sd)
322 return container_of(sd, struct adv76xx_state, sd);
325 static inline unsigned htotal(const struct v4l2_bt_timings *t)
327 return V4L2_DV_BT_FRAME_WIDTH(t);
330 static inline unsigned vtotal(const struct v4l2_bt_timings *t)
332 return V4L2_DV_BT_FRAME_HEIGHT(t);
335 /* ----------------------------------------------------------------------- */
337 static int adv76xx_read_check(struct adv76xx_state *state,
338 int client_page, u8 reg)
340 struct i2c_client *client = state->i2c_clients[client_page];
341 int err;
342 unsigned int val;
344 err = regmap_read(state->regmap[client_page], reg, &val);
346 if (err) {
347 v4l_err(client, "error reading %02x, %02x\n",
348 client->addr, reg);
349 return err;
351 return val;
354 /* adv76xx_write_block(): Write raw data with a maximum of I2C_SMBUS_BLOCK_MAX
355 * size to one or more registers.
357 * A value of zero will be returned on success, a negative errno will
358 * be returned in error cases.
360 static int adv76xx_write_block(struct adv76xx_state *state, int client_page,
361 unsigned int init_reg, const void *val,
362 size_t val_len)
364 struct regmap *regmap = state->regmap[client_page];
366 if (val_len > I2C_SMBUS_BLOCK_MAX)
367 val_len = I2C_SMBUS_BLOCK_MAX;
369 return regmap_raw_write(regmap, init_reg, val, val_len);
372 /* ----------------------------------------------------------------------- */
374 static inline int io_read(struct v4l2_subdev *sd, u8 reg)
376 struct adv76xx_state *state = to_state(sd);
378 return adv76xx_read_check(state, ADV76XX_PAGE_IO, reg);
381 static inline int io_write(struct v4l2_subdev *sd, u8 reg, u8 val)
383 struct adv76xx_state *state = to_state(sd);
385 return regmap_write(state->regmap[ADV76XX_PAGE_IO], reg, val);
388 static inline int io_write_clr_set(struct v4l2_subdev *sd, u8 reg, u8 mask,
389 u8 val)
391 return io_write(sd, reg, (io_read(sd, reg) & ~mask) | val);
394 static inline int avlink_read(struct v4l2_subdev *sd, u8 reg)
396 struct adv76xx_state *state = to_state(sd);
398 return adv76xx_read_check(state, ADV7604_PAGE_AVLINK, reg);
401 static inline int avlink_write(struct v4l2_subdev *sd, u8 reg, u8 val)
403 struct adv76xx_state *state = to_state(sd);
405 return regmap_write(state->regmap[ADV7604_PAGE_AVLINK], reg, val);
408 static inline int cec_read(struct v4l2_subdev *sd, u8 reg)
410 struct adv76xx_state *state = to_state(sd);
412 return adv76xx_read_check(state, ADV76XX_PAGE_CEC, reg);
415 static inline int cec_write(struct v4l2_subdev *sd, u8 reg, u8 val)
417 struct adv76xx_state *state = to_state(sd);
419 return regmap_write(state->regmap[ADV76XX_PAGE_CEC], reg, val);
422 static inline int cec_write_clr_set(struct v4l2_subdev *sd, u8 reg, u8 mask,
423 u8 val)
425 return cec_write(sd, reg, (cec_read(sd, reg) & ~mask) | val);
428 static inline int infoframe_read(struct v4l2_subdev *sd, u8 reg)
430 struct adv76xx_state *state = to_state(sd);
432 return adv76xx_read_check(state, ADV76XX_PAGE_INFOFRAME, reg);
435 static inline int infoframe_write(struct v4l2_subdev *sd, u8 reg, u8 val)
437 struct adv76xx_state *state = to_state(sd);
439 return regmap_write(state->regmap[ADV76XX_PAGE_INFOFRAME], reg, val);
442 static inline int afe_read(struct v4l2_subdev *sd, u8 reg)
444 struct adv76xx_state *state = to_state(sd);
446 return adv76xx_read_check(state, ADV76XX_PAGE_AFE, reg);
449 static inline int afe_write(struct v4l2_subdev *sd, u8 reg, u8 val)
451 struct adv76xx_state *state = to_state(sd);
453 return regmap_write(state->regmap[ADV76XX_PAGE_AFE], reg, val);
456 static inline int rep_read(struct v4l2_subdev *sd, u8 reg)
458 struct adv76xx_state *state = to_state(sd);
460 return adv76xx_read_check(state, ADV76XX_PAGE_REP, reg);
463 static inline int rep_write(struct v4l2_subdev *sd, u8 reg, u8 val)
465 struct adv76xx_state *state = to_state(sd);
467 return regmap_write(state->regmap[ADV76XX_PAGE_REP], reg, val);
470 static inline int rep_write_clr_set(struct v4l2_subdev *sd, u8 reg, u8 mask, u8 val)
472 return rep_write(sd, reg, (rep_read(sd, reg) & ~mask) | val);
475 static inline int edid_read(struct v4l2_subdev *sd, u8 reg)
477 struct adv76xx_state *state = to_state(sd);
479 return adv76xx_read_check(state, ADV76XX_PAGE_EDID, reg);
482 static inline int edid_write(struct v4l2_subdev *sd, u8 reg, u8 val)
484 struct adv76xx_state *state = to_state(sd);
486 return regmap_write(state->regmap[ADV76XX_PAGE_EDID], reg, val);
489 static inline int edid_write_block(struct v4l2_subdev *sd,
490 unsigned int total_len, const u8 *val)
492 struct adv76xx_state *state = to_state(sd);
493 int err = 0;
494 int i = 0;
495 int len = 0;
497 v4l2_dbg(2, debug, sd, "%s: write EDID block (%d byte)\n",
498 __func__, total_len);
500 while (!err && i < total_len) {
501 len = (total_len - i) > I2C_SMBUS_BLOCK_MAX ?
502 I2C_SMBUS_BLOCK_MAX :
503 (total_len - i);
505 err = adv76xx_write_block(state, ADV76XX_PAGE_EDID,
506 i, val + i, len);
507 i += len;
510 return err;
513 static void adv76xx_set_hpd(struct adv76xx_state *state, unsigned int hpd)
515 unsigned int i;
517 for (i = 0; i < state->info->num_dv_ports; ++i)
518 gpiod_set_value_cansleep(state->hpd_gpio[i], hpd & BIT(i));
520 v4l2_subdev_notify(&state->sd, ADV76XX_HOTPLUG, &hpd);
523 static void adv76xx_delayed_work_enable_hotplug(struct work_struct *work)
525 struct delayed_work *dwork = to_delayed_work(work);
526 struct adv76xx_state *state = container_of(dwork, struct adv76xx_state,
527 delayed_work_enable_hotplug);
528 struct v4l2_subdev *sd = &state->sd;
530 v4l2_dbg(2, debug, sd, "%s: enable hotplug\n", __func__);
532 adv76xx_set_hpd(state, state->edid.present);
535 static inline int hdmi_read(struct v4l2_subdev *sd, u8 reg)
537 struct adv76xx_state *state = to_state(sd);
539 return adv76xx_read_check(state, ADV76XX_PAGE_HDMI, reg);
542 static u16 hdmi_read16(struct v4l2_subdev *sd, u8 reg, u16 mask)
544 return ((hdmi_read(sd, reg) << 8) | hdmi_read(sd, reg + 1)) & mask;
547 static inline int hdmi_write(struct v4l2_subdev *sd, u8 reg, u8 val)
549 struct adv76xx_state *state = to_state(sd);
551 return regmap_write(state->regmap[ADV76XX_PAGE_HDMI], reg, val);
554 static inline int hdmi_write_clr_set(struct v4l2_subdev *sd, u8 reg, u8 mask, u8 val)
556 return hdmi_write(sd, reg, (hdmi_read(sd, reg) & ~mask) | val);
559 static inline int test_write(struct v4l2_subdev *sd, u8 reg, u8 val)
561 struct adv76xx_state *state = to_state(sd);
563 return regmap_write(state->regmap[ADV76XX_PAGE_TEST], reg, val);
566 static inline int cp_read(struct v4l2_subdev *sd, u8 reg)
568 struct adv76xx_state *state = to_state(sd);
570 return adv76xx_read_check(state, ADV76XX_PAGE_CP, reg);
573 static u16 cp_read16(struct v4l2_subdev *sd, u8 reg, u16 mask)
575 return ((cp_read(sd, reg) << 8) | cp_read(sd, reg + 1)) & mask;
578 static inline int cp_write(struct v4l2_subdev *sd, u8 reg, u8 val)
580 struct adv76xx_state *state = to_state(sd);
582 return regmap_write(state->regmap[ADV76XX_PAGE_CP], reg, val);
585 static inline int cp_write_clr_set(struct v4l2_subdev *sd, u8 reg, u8 mask, u8 val)
587 return cp_write(sd, reg, (cp_read(sd, reg) & ~mask) | val);
590 static inline int vdp_read(struct v4l2_subdev *sd, u8 reg)
592 struct adv76xx_state *state = to_state(sd);
594 return adv76xx_read_check(state, ADV7604_PAGE_VDP, reg);
597 static inline int vdp_write(struct v4l2_subdev *sd, u8 reg, u8 val)
599 struct adv76xx_state *state = to_state(sd);
601 return regmap_write(state->regmap[ADV7604_PAGE_VDP], reg, val);
604 #define ADV76XX_REG(page, offset) (((page) << 8) | (offset))
605 #define ADV76XX_REG_SEQ_TERM 0xffff
607 #ifdef CONFIG_VIDEO_ADV_DEBUG
608 static int adv76xx_read_reg(struct v4l2_subdev *sd, unsigned int reg)
610 struct adv76xx_state *state = to_state(sd);
611 unsigned int page = reg >> 8;
612 unsigned int val;
613 int err;
615 if (page >= ADV76XX_PAGE_MAX || !(BIT(page) & state->info->page_mask))
616 return -EINVAL;
618 reg &= 0xff;
619 err = regmap_read(state->regmap[page], reg, &val);
621 return err ? err : val;
623 #endif
625 static int adv76xx_write_reg(struct v4l2_subdev *sd, unsigned int reg, u8 val)
627 struct adv76xx_state *state = to_state(sd);
628 unsigned int page = reg >> 8;
630 if (page >= ADV76XX_PAGE_MAX || !(BIT(page) & state->info->page_mask))
631 return -EINVAL;
633 reg &= 0xff;
635 return regmap_write(state->regmap[page], reg, val);
638 static void adv76xx_write_reg_seq(struct v4l2_subdev *sd,
639 const struct adv76xx_reg_seq *reg_seq)
641 unsigned int i;
643 for (i = 0; reg_seq[i].reg != ADV76XX_REG_SEQ_TERM; i++)
644 adv76xx_write_reg(sd, reg_seq[i].reg, reg_seq[i].val);
647 /* -----------------------------------------------------------------------------
648 * Format helpers
651 static const struct adv76xx_format_info adv7604_formats[] = {
652 { MEDIA_BUS_FMT_RGB888_1X24, ADV76XX_OP_CH_SEL_RGB, true, false,
653 ADV76XX_OP_MODE_SEL_SDR_444 | ADV76XX_OP_FORMAT_SEL_8BIT },
654 { MEDIA_BUS_FMT_YUYV8_2X8, ADV76XX_OP_CH_SEL_RGB, false, false,
655 ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_8BIT },
656 { MEDIA_BUS_FMT_YVYU8_2X8, ADV76XX_OP_CH_SEL_RGB, false, true,
657 ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_8BIT },
658 { MEDIA_BUS_FMT_YUYV10_2X10, ADV76XX_OP_CH_SEL_RGB, false, false,
659 ADV76XX_OP_MODE_SEL_SDR_422 | ADV7604_OP_FORMAT_SEL_10BIT },
660 { MEDIA_BUS_FMT_YVYU10_2X10, ADV76XX_OP_CH_SEL_RGB, false, true,
661 ADV76XX_OP_MODE_SEL_SDR_422 | ADV7604_OP_FORMAT_SEL_10BIT },
662 { MEDIA_BUS_FMT_YUYV12_2X12, ADV76XX_OP_CH_SEL_RGB, false, false,
663 ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_12BIT },
664 { MEDIA_BUS_FMT_YVYU12_2X12, ADV76XX_OP_CH_SEL_RGB, false, true,
665 ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_12BIT },
666 { MEDIA_BUS_FMT_UYVY8_1X16, ADV76XX_OP_CH_SEL_RBG, false, false,
667 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
668 { MEDIA_BUS_FMT_VYUY8_1X16, ADV76XX_OP_CH_SEL_RBG, false, true,
669 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
670 { MEDIA_BUS_FMT_YUYV8_1X16, ADV76XX_OP_CH_SEL_RGB, false, false,
671 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
672 { MEDIA_BUS_FMT_YVYU8_1X16, ADV76XX_OP_CH_SEL_RGB, false, true,
673 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
674 { MEDIA_BUS_FMT_UYVY10_1X20, ADV76XX_OP_CH_SEL_RBG, false, false,
675 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV7604_OP_FORMAT_SEL_10BIT },
676 { MEDIA_BUS_FMT_VYUY10_1X20, ADV76XX_OP_CH_SEL_RBG, false, true,
677 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV7604_OP_FORMAT_SEL_10BIT },
678 { MEDIA_BUS_FMT_YUYV10_1X20, ADV76XX_OP_CH_SEL_RGB, false, false,
679 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV7604_OP_FORMAT_SEL_10BIT },
680 { MEDIA_BUS_FMT_YVYU10_1X20, ADV76XX_OP_CH_SEL_RGB, false, true,
681 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV7604_OP_FORMAT_SEL_10BIT },
682 { MEDIA_BUS_FMT_UYVY12_1X24, ADV76XX_OP_CH_SEL_RBG, false, false,
683 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
684 { MEDIA_BUS_FMT_VYUY12_1X24, ADV76XX_OP_CH_SEL_RBG, false, true,
685 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
686 { MEDIA_BUS_FMT_YUYV12_1X24, ADV76XX_OP_CH_SEL_RGB, false, false,
687 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
688 { MEDIA_BUS_FMT_YVYU12_1X24, ADV76XX_OP_CH_SEL_RGB, false, true,
689 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
692 static const struct adv76xx_format_info adv7611_formats[] = {
693 { MEDIA_BUS_FMT_RGB888_1X24, ADV76XX_OP_CH_SEL_RGB, true, false,
694 ADV76XX_OP_MODE_SEL_SDR_444 | ADV76XX_OP_FORMAT_SEL_8BIT },
695 { MEDIA_BUS_FMT_YUYV8_2X8, ADV76XX_OP_CH_SEL_RGB, false, false,
696 ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_8BIT },
697 { MEDIA_BUS_FMT_YVYU8_2X8, ADV76XX_OP_CH_SEL_RGB, false, true,
698 ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_8BIT },
699 { MEDIA_BUS_FMT_YUYV12_2X12, ADV76XX_OP_CH_SEL_RGB, false, false,
700 ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_12BIT },
701 { MEDIA_BUS_FMT_YVYU12_2X12, ADV76XX_OP_CH_SEL_RGB, false, true,
702 ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_12BIT },
703 { MEDIA_BUS_FMT_UYVY8_1X16, ADV76XX_OP_CH_SEL_RBG, false, false,
704 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
705 { MEDIA_BUS_FMT_VYUY8_1X16, ADV76XX_OP_CH_SEL_RBG, false, true,
706 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
707 { MEDIA_BUS_FMT_YUYV8_1X16, ADV76XX_OP_CH_SEL_RGB, false, false,
708 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
709 { MEDIA_BUS_FMT_YVYU8_1X16, ADV76XX_OP_CH_SEL_RGB, false, true,
710 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
711 { MEDIA_BUS_FMT_UYVY12_1X24, ADV76XX_OP_CH_SEL_RBG, false, false,
712 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
713 { MEDIA_BUS_FMT_VYUY12_1X24, ADV76XX_OP_CH_SEL_RBG, false, true,
714 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
715 { MEDIA_BUS_FMT_YUYV12_1X24, ADV76XX_OP_CH_SEL_RGB, false, false,
716 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
717 { MEDIA_BUS_FMT_YVYU12_1X24, ADV76XX_OP_CH_SEL_RGB, false, true,
718 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
721 static const struct adv76xx_format_info adv7612_formats[] = {
722 { MEDIA_BUS_FMT_RGB888_1X24, ADV76XX_OP_CH_SEL_RGB, true, false,
723 ADV76XX_OP_MODE_SEL_SDR_444 | ADV76XX_OP_FORMAT_SEL_8BIT },
724 { MEDIA_BUS_FMT_YUYV8_2X8, ADV76XX_OP_CH_SEL_RGB, false, false,
725 ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_8BIT },
726 { MEDIA_BUS_FMT_YVYU8_2X8, ADV76XX_OP_CH_SEL_RGB, false, true,
727 ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_8BIT },
728 { MEDIA_BUS_FMT_UYVY8_1X16, ADV76XX_OP_CH_SEL_RBG, false, false,
729 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
730 { MEDIA_BUS_FMT_VYUY8_1X16, ADV76XX_OP_CH_SEL_RBG, false, true,
731 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
732 { MEDIA_BUS_FMT_YUYV8_1X16, ADV76XX_OP_CH_SEL_RGB, false, false,
733 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
734 { MEDIA_BUS_FMT_YVYU8_1X16, ADV76XX_OP_CH_SEL_RGB, false, true,
735 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
738 static const struct adv76xx_format_info *
739 adv76xx_format_info(struct adv76xx_state *state, u32 code)
741 unsigned int i;
743 for (i = 0; i < state->info->nformats; ++i) {
744 if (state->info->formats[i].code == code)
745 return &state->info->formats[i];
748 return NULL;
751 /* ----------------------------------------------------------------------- */
753 static inline bool is_analog_input(struct v4l2_subdev *sd)
755 struct adv76xx_state *state = to_state(sd);
757 return state->selected_input == ADV7604_PAD_VGA_RGB ||
758 state->selected_input == ADV7604_PAD_VGA_COMP;
761 static inline bool is_digital_input(struct v4l2_subdev *sd)
763 struct adv76xx_state *state = to_state(sd);
765 return state->selected_input == ADV76XX_PAD_HDMI_PORT_A ||
766 state->selected_input == ADV7604_PAD_HDMI_PORT_B ||
767 state->selected_input == ADV7604_PAD_HDMI_PORT_C ||
768 state->selected_input == ADV7604_PAD_HDMI_PORT_D;
771 static const struct v4l2_dv_timings_cap adv7604_timings_cap_analog = {
772 .type = V4L2_DV_BT_656_1120,
773 /* keep this initialization for compatibility with GCC < 4.4.6 */
774 .reserved = { 0 },
775 V4L2_INIT_BT_TIMINGS(640, 1920, 350, 1200, 25000000, 170000000,
776 V4L2_DV_BT_STD_CEA861 | V4L2_DV_BT_STD_DMT |
777 V4L2_DV_BT_STD_GTF | V4L2_DV_BT_STD_CVT,
778 V4L2_DV_BT_CAP_PROGRESSIVE | V4L2_DV_BT_CAP_REDUCED_BLANKING |
779 V4L2_DV_BT_CAP_CUSTOM)
782 static const struct v4l2_dv_timings_cap adv76xx_timings_cap_digital = {
783 .type = V4L2_DV_BT_656_1120,
784 /* keep this initialization for compatibility with GCC < 4.4.6 */
785 .reserved = { 0 },
786 V4L2_INIT_BT_TIMINGS(640, 1920, 350, 1200, 25000000, 225000000,
787 V4L2_DV_BT_STD_CEA861 | V4L2_DV_BT_STD_DMT |
788 V4L2_DV_BT_STD_GTF | V4L2_DV_BT_STD_CVT,
789 V4L2_DV_BT_CAP_PROGRESSIVE | V4L2_DV_BT_CAP_REDUCED_BLANKING |
790 V4L2_DV_BT_CAP_CUSTOM)
794 * Return the DV timings capabilities for the requested sink pad. As a special
795 * case, pad value -1 returns the capabilities for the currently selected input.
797 static const struct v4l2_dv_timings_cap *
798 adv76xx_get_dv_timings_cap(struct v4l2_subdev *sd, int pad)
800 if (pad == -1) {
801 struct adv76xx_state *state = to_state(sd);
803 pad = state->selected_input;
806 switch (pad) {
807 case ADV76XX_PAD_HDMI_PORT_A:
808 case ADV7604_PAD_HDMI_PORT_B:
809 case ADV7604_PAD_HDMI_PORT_C:
810 case ADV7604_PAD_HDMI_PORT_D:
811 return &adv76xx_timings_cap_digital;
813 case ADV7604_PAD_VGA_RGB:
814 case ADV7604_PAD_VGA_COMP:
815 default:
816 return &adv7604_timings_cap_analog;
821 /* ----------------------------------------------------------------------- */
823 #ifdef CONFIG_VIDEO_ADV_DEBUG
824 static void adv76xx_inv_register(struct v4l2_subdev *sd)
826 v4l2_info(sd, "0x000-0x0ff: IO Map\n");
827 v4l2_info(sd, "0x100-0x1ff: AVLink Map\n");
828 v4l2_info(sd, "0x200-0x2ff: CEC Map\n");
829 v4l2_info(sd, "0x300-0x3ff: InfoFrame Map\n");
830 v4l2_info(sd, "0x400-0x4ff: ESDP Map\n");
831 v4l2_info(sd, "0x500-0x5ff: DPP Map\n");
832 v4l2_info(sd, "0x600-0x6ff: AFE Map\n");
833 v4l2_info(sd, "0x700-0x7ff: Repeater Map\n");
834 v4l2_info(sd, "0x800-0x8ff: EDID Map\n");
835 v4l2_info(sd, "0x900-0x9ff: HDMI Map\n");
836 v4l2_info(sd, "0xa00-0xaff: Test Map\n");
837 v4l2_info(sd, "0xb00-0xbff: CP Map\n");
838 v4l2_info(sd, "0xc00-0xcff: VDP Map\n");
841 static int adv76xx_g_register(struct v4l2_subdev *sd,
842 struct v4l2_dbg_register *reg)
844 int ret;
846 ret = adv76xx_read_reg(sd, reg->reg);
847 if (ret < 0) {
848 v4l2_info(sd, "Register %03llx not supported\n", reg->reg);
849 adv76xx_inv_register(sd);
850 return ret;
853 reg->size = 1;
854 reg->val = ret;
856 return 0;
859 static int adv76xx_s_register(struct v4l2_subdev *sd,
860 const struct v4l2_dbg_register *reg)
862 int ret;
864 ret = adv76xx_write_reg(sd, reg->reg, reg->val);
865 if (ret < 0) {
866 v4l2_info(sd, "Register %03llx not supported\n", reg->reg);
867 adv76xx_inv_register(sd);
868 return ret;
871 return 0;
873 #endif
875 static unsigned int adv7604_read_cable_det(struct v4l2_subdev *sd)
877 u8 value = io_read(sd, 0x6f);
879 return ((value & 0x10) >> 4)
880 | ((value & 0x08) >> 2)
881 | ((value & 0x04) << 0)
882 | ((value & 0x02) << 2);
885 static unsigned int adv7611_read_cable_det(struct v4l2_subdev *sd)
887 u8 value = io_read(sd, 0x6f);
889 return value & 1;
892 static unsigned int adv7612_read_cable_det(struct v4l2_subdev *sd)
894 /* Reads CABLE_DET_A_RAW. For input B support, need to
895 * account for bit 7 [MSB] of 0x6a (ie. CABLE_DET_B_RAW)
897 u8 value = io_read(sd, 0x6f);
899 return value & 1;
902 static int adv76xx_s_detect_tx_5v_ctrl(struct v4l2_subdev *sd)
904 struct adv76xx_state *state = to_state(sd);
905 const struct adv76xx_chip_info *info = state->info;
906 u16 cable_det = info->read_cable_det(sd);
908 return v4l2_ctrl_s_ctrl(state->detect_tx_5v_ctrl, cable_det);
911 static int find_and_set_predefined_video_timings(struct v4l2_subdev *sd,
912 u8 prim_mode,
913 const struct adv76xx_video_standards *predef_vid_timings,
914 const struct v4l2_dv_timings *timings)
916 int i;
918 for (i = 0; predef_vid_timings[i].timings.bt.width; i++) {
919 if (!v4l2_match_dv_timings(timings, &predef_vid_timings[i].timings,
920 is_digital_input(sd) ? 250000 : 1000000, false))
921 continue;
922 io_write(sd, 0x00, predef_vid_timings[i].vid_std); /* video std */
923 io_write(sd, 0x01, (predef_vid_timings[i].v_freq << 4) +
924 prim_mode); /* v_freq and prim mode */
925 return 0;
928 return -1;
931 static int configure_predefined_video_timings(struct v4l2_subdev *sd,
932 struct v4l2_dv_timings *timings)
934 struct adv76xx_state *state = to_state(sd);
935 int err;
937 v4l2_dbg(1, debug, sd, "%s", __func__);
939 if (adv76xx_has_afe(state)) {
940 /* reset to default values */
941 io_write(sd, 0x16, 0x43);
942 io_write(sd, 0x17, 0x5a);
944 /* disable embedded syncs for auto graphics mode */
945 cp_write_clr_set(sd, 0x81, 0x10, 0x00);
946 cp_write(sd, 0x8f, 0x00);
947 cp_write(sd, 0x90, 0x00);
948 cp_write(sd, 0xa2, 0x00);
949 cp_write(sd, 0xa3, 0x00);
950 cp_write(sd, 0xa4, 0x00);
951 cp_write(sd, 0xa5, 0x00);
952 cp_write(sd, 0xa6, 0x00);
953 cp_write(sd, 0xa7, 0x00);
954 cp_write(sd, 0xab, 0x00);
955 cp_write(sd, 0xac, 0x00);
957 if (is_analog_input(sd)) {
958 err = find_and_set_predefined_video_timings(sd,
959 0x01, adv7604_prim_mode_comp, timings);
960 if (err)
961 err = find_and_set_predefined_video_timings(sd,
962 0x02, adv7604_prim_mode_gr, timings);
963 } else if (is_digital_input(sd)) {
964 err = find_and_set_predefined_video_timings(sd,
965 0x05, adv76xx_prim_mode_hdmi_comp, timings);
966 if (err)
967 err = find_and_set_predefined_video_timings(sd,
968 0x06, adv76xx_prim_mode_hdmi_gr, timings);
969 } else {
970 v4l2_dbg(2, debug, sd, "%s: Unknown port %d selected\n",
971 __func__, state->selected_input);
972 err = -1;
976 return err;
979 static void configure_custom_video_timings(struct v4l2_subdev *sd,
980 const struct v4l2_bt_timings *bt)
982 struct adv76xx_state *state = to_state(sd);
983 u32 width = htotal(bt);
984 u32 height = vtotal(bt);
985 u16 cp_start_sav = bt->hsync + bt->hbackporch - 4;
986 u16 cp_start_eav = width - bt->hfrontporch;
987 u16 cp_start_vbi = height - bt->vfrontporch;
988 u16 cp_end_vbi = bt->vsync + bt->vbackporch;
989 u16 ch1_fr_ll = (((u32)bt->pixelclock / 100) > 0) ?
990 ((width * (ADV76XX_FSC / 100)) / ((u32)bt->pixelclock / 100)) : 0;
991 const u8 pll[2] = {
992 0xc0 | ((width >> 8) & 0x1f),
993 width & 0xff
996 v4l2_dbg(2, debug, sd, "%s\n", __func__);
998 if (is_analog_input(sd)) {
999 /* auto graphics */
1000 io_write(sd, 0x00, 0x07); /* video std */
1001 io_write(sd, 0x01, 0x02); /* prim mode */
1002 /* enable embedded syncs for auto graphics mode */
1003 cp_write_clr_set(sd, 0x81, 0x10, 0x10);
1005 /* Should only be set in auto-graphics mode [REF_02, p. 91-92] */
1006 /* setup PLL_DIV_MAN_EN and PLL_DIV_RATIO */
1007 /* IO-map reg. 0x16 and 0x17 should be written in sequence */
1008 if (regmap_raw_write(state->regmap[ADV76XX_PAGE_IO],
1009 0x16, pll, 2))
1010 v4l2_err(sd, "writing to reg 0x16 and 0x17 failed\n");
1012 /* active video - horizontal timing */
1013 cp_write(sd, 0xa2, (cp_start_sav >> 4) & 0xff);
1014 cp_write(sd, 0xa3, ((cp_start_sav & 0x0f) << 4) |
1015 ((cp_start_eav >> 8) & 0x0f));
1016 cp_write(sd, 0xa4, cp_start_eav & 0xff);
1018 /* active video - vertical timing */
1019 cp_write(sd, 0xa5, (cp_start_vbi >> 4) & 0xff);
1020 cp_write(sd, 0xa6, ((cp_start_vbi & 0xf) << 4) |
1021 ((cp_end_vbi >> 8) & 0xf));
1022 cp_write(sd, 0xa7, cp_end_vbi & 0xff);
1023 } else if (is_digital_input(sd)) {
1024 /* set default prim_mode/vid_std for HDMI
1025 according to [REF_03, c. 4.2] */
1026 io_write(sd, 0x00, 0x02); /* video std */
1027 io_write(sd, 0x01, 0x06); /* prim mode */
1028 } else {
1029 v4l2_dbg(2, debug, sd, "%s: Unknown port %d selected\n",
1030 __func__, state->selected_input);
1033 cp_write(sd, 0x8f, (ch1_fr_ll >> 8) & 0x7);
1034 cp_write(sd, 0x90, ch1_fr_ll & 0xff);
1035 cp_write(sd, 0xab, (height >> 4) & 0xff);
1036 cp_write(sd, 0xac, (height & 0x0f) << 4);
1039 static void adv76xx_set_offset(struct v4l2_subdev *sd, bool auto_offset, u16 offset_a, u16 offset_b, u16 offset_c)
1041 struct adv76xx_state *state = to_state(sd);
1042 u8 offset_buf[4];
1044 if (auto_offset) {
1045 offset_a = 0x3ff;
1046 offset_b = 0x3ff;
1047 offset_c = 0x3ff;
1050 v4l2_dbg(2, debug, sd, "%s: %s offset: a = 0x%x, b = 0x%x, c = 0x%x\n",
1051 __func__, auto_offset ? "Auto" : "Manual",
1052 offset_a, offset_b, offset_c);
1054 offset_buf[0] = (cp_read(sd, 0x77) & 0xc0) | ((offset_a & 0x3f0) >> 4);
1055 offset_buf[1] = ((offset_a & 0x00f) << 4) | ((offset_b & 0x3c0) >> 6);
1056 offset_buf[2] = ((offset_b & 0x03f) << 2) | ((offset_c & 0x300) >> 8);
1057 offset_buf[3] = offset_c & 0x0ff;
1059 /* Registers must be written in this order with no i2c access in between */
1060 if (regmap_raw_write(state->regmap[ADV76XX_PAGE_CP],
1061 0x77, offset_buf, 4))
1062 v4l2_err(sd, "%s: i2c error writing to CP reg 0x77, 0x78, 0x79, 0x7a\n", __func__);
1065 static void adv76xx_set_gain(struct v4l2_subdev *sd, bool auto_gain, u16 gain_a, u16 gain_b, u16 gain_c)
1067 struct adv76xx_state *state = to_state(sd);
1068 u8 gain_buf[4];
1069 u8 gain_man = 1;
1070 u8 agc_mode_man = 1;
1072 if (auto_gain) {
1073 gain_man = 0;
1074 agc_mode_man = 0;
1075 gain_a = 0x100;
1076 gain_b = 0x100;
1077 gain_c = 0x100;
1080 v4l2_dbg(2, debug, sd, "%s: %s gain: a = 0x%x, b = 0x%x, c = 0x%x\n",
1081 __func__, auto_gain ? "Auto" : "Manual",
1082 gain_a, gain_b, gain_c);
1084 gain_buf[0] = ((gain_man << 7) | (agc_mode_man << 6) | ((gain_a & 0x3f0) >> 4));
1085 gain_buf[1] = (((gain_a & 0x00f) << 4) | ((gain_b & 0x3c0) >> 6));
1086 gain_buf[2] = (((gain_b & 0x03f) << 2) | ((gain_c & 0x300) >> 8));
1087 gain_buf[3] = ((gain_c & 0x0ff));
1089 /* Registers must be written in this order with no i2c access in between */
1090 if (regmap_raw_write(state->regmap[ADV76XX_PAGE_CP],
1091 0x73, gain_buf, 4))
1092 v4l2_err(sd, "%s: i2c error writing to CP reg 0x73, 0x74, 0x75, 0x76\n", __func__);
1095 static void set_rgb_quantization_range(struct v4l2_subdev *sd)
1097 struct adv76xx_state *state = to_state(sd);
1098 bool rgb_output = io_read(sd, 0x02) & 0x02;
1099 bool hdmi_signal = hdmi_read(sd, 0x05) & 0x80;
1100 u8 y = HDMI_COLORSPACE_RGB;
1102 if (hdmi_signal && (io_read(sd, 0x60) & 1))
1103 y = infoframe_read(sd, 0x01) >> 5;
1105 v4l2_dbg(2, debug, sd, "%s: RGB quantization range: %d, RGB out: %d, HDMI: %d\n",
1106 __func__, state->rgb_quantization_range,
1107 rgb_output, hdmi_signal);
1109 adv76xx_set_gain(sd, true, 0x0, 0x0, 0x0);
1110 adv76xx_set_offset(sd, true, 0x0, 0x0, 0x0);
1111 io_write_clr_set(sd, 0x02, 0x04, rgb_output ? 0 : 4);
1113 switch (state->rgb_quantization_range) {
1114 case V4L2_DV_RGB_RANGE_AUTO:
1115 if (state->selected_input == ADV7604_PAD_VGA_RGB) {
1116 /* Receiving analog RGB signal
1117 * Set RGB full range (0-255) */
1118 io_write_clr_set(sd, 0x02, 0xf0, 0x10);
1119 break;
1122 if (state->selected_input == ADV7604_PAD_VGA_COMP) {
1123 /* Receiving analog YPbPr signal
1124 * Set automode */
1125 io_write_clr_set(sd, 0x02, 0xf0, 0xf0);
1126 break;
1129 if (hdmi_signal) {
1130 /* Receiving HDMI signal
1131 * Set automode */
1132 io_write_clr_set(sd, 0x02, 0xf0, 0xf0);
1133 break;
1136 /* Receiving DVI-D signal
1137 * ADV7604 selects RGB limited range regardless of
1138 * input format (CE/IT) in automatic mode */
1139 if (state->timings.bt.flags & V4L2_DV_FL_IS_CE_VIDEO) {
1140 /* RGB limited range (16-235) */
1141 io_write_clr_set(sd, 0x02, 0xf0, 0x00);
1142 } else {
1143 /* RGB full range (0-255) */
1144 io_write_clr_set(sd, 0x02, 0xf0, 0x10);
1146 if (is_digital_input(sd) && rgb_output) {
1147 adv76xx_set_offset(sd, false, 0x40, 0x40, 0x40);
1148 } else {
1149 adv76xx_set_gain(sd, false, 0xe0, 0xe0, 0xe0);
1150 adv76xx_set_offset(sd, false, 0x70, 0x70, 0x70);
1153 break;
1154 case V4L2_DV_RGB_RANGE_LIMITED:
1155 if (state->selected_input == ADV7604_PAD_VGA_COMP) {
1156 /* YCrCb limited range (16-235) */
1157 io_write_clr_set(sd, 0x02, 0xf0, 0x20);
1158 break;
1161 if (y != HDMI_COLORSPACE_RGB)
1162 break;
1164 /* RGB limited range (16-235) */
1165 io_write_clr_set(sd, 0x02, 0xf0, 0x00);
1167 break;
1168 case V4L2_DV_RGB_RANGE_FULL:
1169 if (state->selected_input == ADV7604_PAD_VGA_COMP) {
1170 /* YCrCb full range (0-255) */
1171 io_write_clr_set(sd, 0x02, 0xf0, 0x60);
1172 break;
1175 if (y != HDMI_COLORSPACE_RGB)
1176 break;
1178 /* RGB full range (0-255) */
1179 io_write_clr_set(sd, 0x02, 0xf0, 0x10);
1181 if (is_analog_input(sd) || hdmi_signal)
1182 break;
1184 /* Adjust gain/offset for DVI-D signals only */
1185 if (rgb_output) {
1186 adv76xx_set_offset(sd, false, 0x40, 0x40, 0x40);
1187 } else {
1188 adv76xx_set_gain(sd, false, 0xe0, 0xe0, 0xe0);
1189 adv76xx_set_offset(sd, false, 0x70, 0x70, 0x70);
1191 break;
1195 static int adv76xx_s_ctrl(struct v4l2_ctrl *ctrl)
1197 struct v4l2_subdev *sd =
1198 &container_of(ctrl->handler, struct adv76xx_state, hdl)->sd;
1200 struct adv76xx_state *state = to_state(sd);
1202 switch (ctrl->id) {
1203 case V4L2_CID_BRIGHTNESS:
1204 cp_write(sd, 0x3c, ctrl->val);
1205 return 0;
1206 case V4L2_CID_CONTRAST:
1207 cp_write(sd, 0x3a, ctrl->val);
1208 return 0;
1209 case V4L2_CID_SATURATION:
1210 cp_write(sd, 0x3b, ctrl->val);
1211 return 0;
1212 case V4L2_CID_HUE:
1213 cp_write(sd, 0x3d, ctrl->val);
1214 return 0;
1215 case V4L2_CID_DV_RX_RGB_RANGE:
1216 state->rgb_quantization_range = ctrl->val;
1217 set_rgb_quantization_range(sd);
1218 return 0;
1219 case V4L2_CID_ADV_RX_ANALOG_SAMPLING_PHASE:
1220 if (!adv76xx_has_afe(state))
1221 return -EINVAL;
1222 /* Set the analog sampling phase. This is needed to find the
1223 best sampling phase for analog video: an application or
1224 driver has to try a number of phases and analyze the picture
1225 quality before settling on the best performing phase. */
1226 afe_write(sd, 0xc8, ctrl->val);
1227 return 0;
1228 case V4L2_CID_ADV_RX_FREE_RUN_COLOR_MANUAL:
1229 /* Use the default blue color for free running mode,
1230 or supply your own. */
1231 cp_write_clr_set(sd, 0xbf, 0x04, ctrl->val << 2);
1232 return 0;
1233 case V4L2_CID_ADV_RX_FREE_RUN_COLOR:
1234 cp_write(sd, 0xc0, (ctrl->val & 0xff0000) >> 16);
1235 cp_write(sd, 0xc1, (ctrl->val & 0x00ff00) >> 8);
1236 cp_write(sd, 0xc2, (u8)(ctrl->val & 0x0000ff));
1237 return 0;
1239 return -EINVAL;
1242 static int adv76xx_g_volatile_ctrl(struct v4l2_ctrl *ctrl)
1244 struct v4l2_subdev *sd =
1245 &container_of(ctrl->handler, struct adv76xx_state, hdl)->sd;
1247 if (ctrl->id == V4L2_CID_DV_RX_IT_CONTENT_TYPE) {
1248 ctrl->val = V4L2_DV_IT_CONTENT_TYPE_NO_ITC;
1249 if ((io_read(sd, 0x60) & 1) && (infoframe_read(sd, 0x03) & 0x80))
1250 ctrl->val = (infoframe_read(sd, 0x05) >> 4) & 3;
1251 return 0;
1253 return -EINVAL;
1256 /* ----------------------------------------------------------------------- */
1258 static inline bool no_power(struct v4l2_subdev *sd)
1260 /* Entire chip or CP powered off */
1261 return io_read(sd, 0x0c) & 0x24;
1264 static inline bool no_signal_tmds(struct v4l2_subdev *sd)
1266 struct adv76xx_state *state = to_state(sd);
1268 return !(io_read(sd, 0x6a) & (0x10 >> state->selected_input));
1271 static inline bool no_lock_tmds(struct v4l2_subdev *sd)
1273 struct adv76xx_state *state = to_state(sd);
1274 const struct adv76xx_chip_info *info = state->info;
1276 return (io_read(sd, 0x6a) & info->tdms_lock_mask) != info->tdms_lock_mask;
1279 static inline bool is_hdmi(struct v4l2_subdev *sd)
1281 return hdmi_read(sd, 0x05) & 0x80;
1284 static inline bool no_lock_sspd(struct v4l2_subdev *sd)
1286 struct adv76xx_state *state = to_state(sd);
1289 * Chips without a AFE don't expose registers for the SSPD, so just assume
1290 * that we have a lock.
1292 if (adv76xx_has_afe(state))
1293 return false;
1295 /* TODO channel 2 */
1296 return ((cp_read(sd, 0xb5) & 0xd0) != 0xd0);
1299 static inline bool no_lock_stdi(struct v4l2_subdev *sd)
1301 /* TODO channel 2 */
1302 return !(cp_read(sd, 0xb1) & 0x80);
1305 static inline bool no_signal(struct v4l2_subdev *sd)
1307 bool ret;
1309 ret = no_power(sd);
1311 ret |= no_lock_stdi(sd);
1312 ret |= no_lock_sspd(sd);
1314 if (is_digital_input(sd)) {
1315 ret |= no_lock_tmds(sd);
1316 ret |= no_signal_tmds(sd);
1319 return ret;
1322 static inline bool no_lock_cp(struct v4l2_subdev *sd)
1324 struct adv76xx_state *state = to_state(sd);
1326 if (!adv76xx_has_afe(state))
1327 return false;
1329 /* CP has detected a non standard number of lines on the incoming
1330 video compared to what it is configured to receive by s_dv_timings */
1331 return io_read(sd, 0x12) & 0x01;
1334 static inline bool in_free_run(struct v4l2_subdev *sd)
1336 return cp_read(sd, 0xff) & 0x10;
1339 static int adv76xx_g_input_status(struct v4l2_subdev *sd, u32 *status)
1341 *status = 0;
1342 *status |= no_power(sd) ? V4L2_IN_ST_NO_POWER : 0;
1343 *status |= no_signal(sd) ? V4L2_IN_ST_NO_SIGNAL : 0;
1344 if (!in_free_run(sd) && no_lock_cp(sd))
1345 *status |= is_digital_input(sd) ?
1346 V4L2_IN_ST_NO_SYNC : V4L2_IN_ST_NO_H_LOCK;
1348 v4l2_dbg(1, debug, sd, "%s: status = 0x%x\n", __func__, *status);
1350 return 0;
1353 /* ----------------------------------------------------------------------- */
1355 struct stdi_readback {
1356 u16 bl, lcf, lcvs;
1357 u8 hs_pol, vs_pol;
1358 bool interlaced;
1361 static int stdi2dv_timings(struct v4l2_subdev *sd,
1362 struct stdi_readback *stdi,
1363 struct v4l2_dv_timings *timings)
1365 struct adv76xx_state *state = to_state(sd);
1366 u32 hfreq = (ADV76XX_FSC * 8) / stdi->bl;
1367 u32 pix_clk;
1368 int i;
1370 for (i = 0; v4l2_dv_timings_presets[i].bt.width; i++) {
1371 const struct v4l2_bt_timings *bt = &v4l2_dv_timings_presets[i].bt;
1373 if (!v4l2_valid_dv_timings(&v4l2_dv_timings_presets[i],
1374 adv76xx_get_dv_timings_cap(sd, -1),
1375 adv76xx_check_dv_timings, NULL))
1376 continue;
1377 if (vtotal(bt) != stdi->lcf + 1)
1378 continue;
1379 if (bt->vsync != stdi->lcvs)
1380 continue;
1382 pix_clk = hfreq * htotal(bt);
1384 if ((pix_clk < bt->pixelclock + 1000000) &&
1385 (pix_clk > bt->pixelclock - 1000000)) {
1386 *timings = v4l2_dv_timings_presets[i];
1387 return 0;
1391 if (v4l2_detect_cvt(stdi->lcf + 1, hfreq, stdi->lcvs, 0,
1392 (stdi->hs_pol == '+' ? V4L2_DV_HSYNC_POS_POL : 0) |
1393 (stdi->vs_pol == '+' ? V4L2_DV_VSYNC_POS_POL : 0),
1394 false, timings))
1395 return 0;
1396 if (v4l2_detect_gtf(stdi->lcf + 1, hfreq, stdi->lcvs,
1397 (stdi->hs_pol == '+' ? V4L2_DV_HSYNC_POS_POL : 0) |
1398 (stdi->vs_pol == '+' ? V4L2_DV_VSYNC_POS_POL : 0),
1399 false, state->aspect_ratio, timings))
1400 return 0;
1402 v4l2_dbg(2, debug, sd,
1403 "%s: No format candidate found for lcvs = %d, lcf=%d, bl = %d, %chsync, %cvsync\n",
1404 __func__, stdi->lcvs, stdi->lcf, stdi->bl,
1405 stdi->hs_pol, stdi->vs_pol);
1406 return -1;
1410 static int read_stdi(struct v4l2_subdev *sd, struct stdi_readback *stdi)
1412 struct adv76xx_state *state = to_state(sd);
1413 const struct adv76xx_chip_info *info = state->info;
1414 u8 polarity;
1416 if (no_lock_stdi(sd) || no_lock_sspd(sd)) {
1417 v4l2_dbg(2, debug, sd, "%s: STDI and/or SSPD not locked\n", __func__);
1418 return -1;
1421 /* read STDI */
1422 stdi->bl = cp_read16(sd, 0xb1, 0x3fff);
1423 stdi->lcf = cp_read16(sd, info->lcf_reg, 0x7ff);
1424 stdi->lcvs = cp_read(sd, 0xb3) >> 3;
1425 stdi->interlaced = io_read(sd, 0x12) & 0x10;
1427 if (adv76xx_has_afe(state)) {
1428 /* read SSPD */
1429 polarity = cp_read(sd, 0xb5);
1430 if ((polarity & 0x03) == 0x01) {
1431 stdi->hs_pol = polarity & 0x10
1432 ? (polarity & 0x08 ? '+' : '-') : 'x';
1433 stdi->vs_pol = polarity & 0x40
1434 ? (polarity & 0x20 ? '+' : '-') : 'x';
1435 } else {
1436 stdi->hs_pol = 'x';
1437 stdi->vs_pol = 'x';
1439 } else {
1440 polarity = hdmi_read(sd, 0x05);
1441 stdi->hs_pol = polarity & 0x20 ? '+' : '-';
1442 stdi->vs_pol = polarity & 0x10 ? '+' : '-';
1445 if (no_lock_stdi(sd) || no_lock_sspd(sd)) {
1446 v4l2_dbg(2, debug, sd,
1447 "%s: signal lost during readout of STDI/SSPD\n", __func__);
1448 return -1;
1451 if (stdi->lcf < 239 || stdi->bl < 8 || stdi->bl == 0x3fff) {
1452 v4l2_dbg(2, debug, sd, "%s: invalid signal\n", __func__);
1453 memset(stdi, 0, sizeof(struct stdi_readback));
1454 return -1;
1457 v4l2_dbg(2, debug, sd,
1458 "%s: lcf (frame height - 1) = %d, bl = %d, lcvs (vsync) = %d, %chsync, %cvsync, %s\n",
1459 __func__, stdi->lcf, stdi->bl, stdi->lcvs,
1460 stdi->hs_pol, stdi->vs_pol,
1461 stdi->interlaced ? "interlaced" : "progressive");
1463 return 0;
1466 static int adv76xx_enum_dv_timings(struct v4l2_subdev *sd,
1467 struct v4l2_enum_dv_timings *timings)
1469 struct adv76xx_state *state = to_state(sd);
1471 if (timings->pad >= state->source_pad)
1472 return -EINVAL;
1474 return v4l2_enum_dv_timings_cap(timings,
1475 adv76xx_get_dv_timings_cap(sd, timings->pad),
1476 adv76xx_check_dv_timings, NULL);
1479 static int adv76xx_dv_timings_cap(struct v4l2_subdev *sd,
1480 struct v4l2_dv_timings_cap *cap)
1482 struct adv76xx_state *state = to_state(sd);
1483 unsigned int pad = cap->pad;
1485 if (cap->pad >= state->source_pad)
1486 return -EINVAL;
1488 *cap = *adv76xx_get_dv_timings_cap(sd, pad);
1489 cap->pad = pad;
1491 return 0;
1494 /* Fill the optional fields .standards and .flags in struct v4l2_dv_timings
1495 if the format is listed in adv76xx_timings[] */
1496 static void adv76xx_fill_optional_dv_timings_fields(struct v4l2_subdev *sd,
1497 struct v4l2_dv_timings *timings)
1499 v4l2_find_dv_timings_cap(timings, adv76xx_get_dv_timings_cap(sd, -1),
1500 is_digital_input(sd) ? 250000 : 1000000,
1501 adv76xx_check_dv_timings, NULL);
1504 static unsigned int adv7604_read_hdmi_pixelclock(struct v4l2_subdev *sd)
1506 unsigned int freq;
1507 int a, b;
1509 a = hdmi_read(sd, 0x06);
1510 b = hdmi_read(sd, 0x3b);
1511 if (a < 0 || b < 0)
1512 return 0;
1513 freq = a * 1000000 + ((b & 0x30) >> 4) * 250000;
1515 if (is_hdmi(sd)) {
1516 /* adjust for deep color mode */
1517 unsigned bits_per_channel = ((hdmi_read(sd, 0x0b) & 0x60) >> 4) + 8;
1519 freq = freq * 8 / bits_per_channel;
1522 return freq;
1525 static unsigned int adv7611_read_hdmi_pixelclock(struct v4l2_subdev *sd)
1527 int a, b;
1529 a = hdmi_read(sd, 0x51);
1530 b = hdmi_read(sd, 0x52);
1531 if (a < 0 || b < 0)
1532 return 0;
1533 return ((a << 1) | (b >> 7)) * 1000000 + (b & 0x7f) * 1000000 / 128;
1536 static int adv76xx_query_dv_timings(struct v4l2_subdev *sd,
1537 struct v4l2_dv_timings *timings)
1539 struct adv76xx_state *state = to_state(sd);
1540 const struct adv76xx_chip_info *info = state->info;
1541 struct v4l2_bt_timings *bt = &timings->bt;
1542 struct stdi_readback stdi;
1544 if (!timings)
1545 return -EINVAL;
1547 memset(timings, 0, sizeof(struct v4l2_dv_timings));
1549 if (no_signal(sd)) {
1550 state->restart_stdi_once = true;
1551 v4l2_dbg(1, debug, sd, "%s: no valid signal\n", __func__);
1552 return -ENOLINK;
1555 /* read STDI */
1556 if (read_stdi(sd, &stdi)) {
1557 v4l2_dbg(1, debug, sd, "%s: STDI/SSPD not locked\n", __func__);
1558 return -ENOLINK;
1560 bt->interlaced = stdi.interlaced ?
1561 V4L2_DV_INTERLACED : V4L2_DV_PROGRESSIVE;
1563 if (is_digital_input(sd)) {
1564 bool hdmi_signal = hdmi_read(sd, 0x05) & 0x80;
1565 u8 vic = 0;
1566 u32 w, h;
1568 w = hdmi_read16(sd, 0x07, info->linewidth_mask);
1569 h = hdmi_read16(sd, 0x09, info->field0_height_mask);
1571 if (hdmi_signal && (io_read(sd, 0x60) & 1))
1572 vic = infoframe_read(sd, 0x04);
1574 if (vic && v4l2_find_dv_timings_cea861_vic(timings, vic) &&
1575 bt->width == w && bt->height == h)
1576 goto found;
1578 timings->type = V4L2_DV_BT_656_1120;
1580 bt->width = w;
1581 bt->height = h;
1582 bt->pixelclock = info->read_hdmi_pixelclock(sd);
1583 bt->hfrontporch = hdmi_read16(sd, 0x20, info->hfrontporch_mask);
1584 bt->hsync = hdmi_read16(sd, 0x22, info->hsync_mask);
1585 bt->hbackporch = hdmi_read16(sd, 0x24, info->hbackporch_mask);
1586 bt->vfrontporch = hdmi_read16(sd, 0x2a,
1587 info->field0_vfrontporch_mask) / 2;
1588 bt->vsync = hdmi_read16(sd, 0x2e, info->field0_vsync_mask) / 2;
1589 bt->vbackporch = hdmi_read16(sd, 0x32,
1590 info->field0_vbackporch_mask) / 2;
1591 bt->polarities = ((hdmi_read(sd, 0x05) & 0x10) ? V4L2_DV_VSYNC_POS_POL : 0) |
1592 ((hdmi_read(sd, 0x05) & 0x20) ? V4L2_DV_HSYNC_POS_POL : 0);
1593 if (bt->interlaced == V4L2_DV_INTERLACED) {
1594 bt->height += hdmi_read16(sd, 0x0b,
1595 info->field1_height_mask);
1596 bt->il_vfrontporch = hdmi_read16(sd, 0x2c,
1597 info->field1_vfrontporch_mask) / 2;
1598 bt->il_vsync = hdmi_read16(sd, 0x30,
1599 info->field1_vsync_mask) / 2;
1600 bt->il_vbackporch = hdmi_read16(sd, 0x34,
1601 info->field1_vbackporch_mask) / 2;
1603 adv76xx_fill_optional_dv_timings_fields(sd, timings);
1604 } else {
1605 /* find format
1606 * Since LCVS values are inaccurate [REF_03, p. 275-276],
1607 * stdi2dv_timings() is called with lcvs +-1 if the first attempt fails.
1609 if (!stdi2dv_timings(sd, &stdi, timings))
1610 goto found;
1611 stdi.lcvs += 1;
1612 v4l2_dbg(1, debug, sd, "%s: lcvs + 1 = %d\n", __func__, stdi.lcvs);
1613 if (!stdi2dv_timings(sd, &stdi, timings))
1614 goto found;
1615 stdi.lcvs -= 2;
1616 v4l2_dbg(1, debug, sd, "%s: lcvs - 1 = %d\n", __func__, stdi.lcvs);
1617 if (stdi2dv_timings(sd, &stdi, timings)) {
1619 * The STDI block may measure wrong values, especially
1620 * for lcvs and lcf. If the driver can not find any
1621 * valid timing, the STDI block is restarted to measure
1622 * the video timings again. The function will return an
1623 * error, but the restart of STDI will generate a new
1624 * STDI interrupt and the format detection process will
1625 * restart.
1627 if (state->restart_stdi_once) {
1628 v4l2_dbg(1, debug, sd, "%s: restart STDI\n", __func__);
1629 /* TODO restart STDI for Sync Channel 2 */
1630 /* enter one-shot mode */
1631 cp_write_clr_set(sd, 0x86, 0x06, 0x00);
1632 /* trigger STDI restart */
1633 cp_write_clr_set(sd, 0x86, 0x06, 0x04);
1634 /* reset to continuous mode */
1635 cp_write_clr_set(sd, 0x86, 0x06, 0x02);
1636 state->restart_stdi_once = false;
1637 return -ENOLINK;
1639 v4l2_dbg(1, debug, sd, "%s: format not supported\n", __func__);
1640 return -ERANGE;
1642 state->restart_stdi_once = true;
1644 found:
1646 if (no_signal(sd)) {
1647 v4l2_dbg(1, debug, sd, "%s: signal lost during readout\n", __func__);
1648 memset(timings, 0, sizeof(struct v4l2_dv_timings));
1649 return -ENOLINK;
1652 if ((is_analog_input(sd) && bt->pixelclock > 170000000) ||
1653 (is_digital_input(sd) && bt->pixelclock > 225000000)) {
1654 v4l2_dbg(1, debug, sd, "%s: pixelclock out of range %d\n",
1655 __func__, (u32)bt->pixelclock);
1656 return -ERANGE;
1659 if (debug > 1)
1660 v4l2_print_dv_timings(sd->name, "adv76xx_query_dv_timings: ",
1661 timings, true);
1663 return 0;
1666 static int adv76xx_s_dv_timings(struct v4l2_subdev *sd,
1667 struct v4l2_dv_timings *timings)
1669 struct adv76xx_state *state = to_state(sd);
1670 struct v4l2_bt_timings *bt;
1671 int err;
1673 if (!timings)
1674 return -EINVAL;
1676 if (v4l2_match_dv_timings(&state->timings, timings, 0, false)) {
1677 v4l2_dbg(1, debug, sd, "%s: no change\n", __func__);
1678 return 0;
1681 bt = &timings->bt;
1683 if (!v4l2_valid_dv_timings(timings, adv76xx_get_dv_timings_cap(sd, -1),
1684 adv76xx_check_dv_timings, NULL))
1685 return -ERANGE;
1687 adv76xx_fill_optional_dv_timings_fields(sd, timings);
1689 state->timings = *timings;
1691 cp_write_clr_set(sd, 0x91, 0x40, bt->interlaced ? 0x40 : 0x00);
1693 /* Use prim_mode and vid_std when available */
1694 err = configure_predefined_video_timings(sd, timings);
1695 if (err) {
1696 /* custom settings when the video format
1697 does not have prim_mode/vid_std */
1698 configure_custom_video_timings(sd, bt);
1701 set_rgb_quantization_range(sd);
1703 if (debug > 1)
1704 v4l2_print_dv_timings(sd->name, "adv76xx_s_dv_timings: ",
1705 timings, true);
1706 return 0;
1709 static int adv76xx_g_dv_timings(struct v4l2_subdev *sd,
1710 struct v4l2_dv_timings *timings)
1712 struct adv76xx_state *state = to_state(sd);
1714 *timings = state->timings;
1715 return 0;
1718 static void adv7604_set_termination(struct v4l2_subdev *sd, bool enable)
1720 hdmi_write(sd, 0x01, enable ? 0x00 : 0x78);
1723 static void adv7611_set_termination(struct v4l2_subdev *sd, bool enable)
1725 hdmi_write(sd, 0x83, enable ? 0xfe : 0xff);
1728 static void enable_input(struct v4l2_subdev *sd)
1730 struct adv76xx_state *state = to_state(sd);
1732 if (is_analog_input(sd)) {
1733 io_write(sd, 0x15, 0xb0); /* Disable Tristate of Pins (no audio) */
1734 } else if (is_digital_input(sd)) {
1735 hdmi_write_clr_set(sd, 0x00, 0x03, state->selected_input);
1736 state->info->set_termination(sd, true);
1737 io_write(sd, 0x15, 0xa0); /* Disable Tristate of Pins */
1738 hdmi_write_clr_set(sd, 0x1a, 0x10, 0x00); /* Unmute audio */
1739 } else {
1740 v4l2_dbg(2, debug, sd, "%s: Unknown port %d selected\n",
1741 __func__, state->selected_input);
1745 static void disable_input(struct v4l2_subdev *sd)
1747 struct adv76xx_state *state = to_state(sd);
1749 hdmi_write_clr_set(sd, 0x1a, 0x10, 0x10); /* Mute audio */
1750 msleep(16); /* 512 samples with >= 32 kHz sample rate [REF_03, c. 7.16.10] */
1751 io_write(sd, 0x15, 0xbe); /* Tristate all outputs from video core */
1752 state->info->set_termination(sd, false);
1755 static void select_input(struct v4l2_subdev *sd)
1757 struct adv76xx_state *state = to_state(sd);
1758 const struct adv76xx_chip_info *info = state->info;
1760 if (is_analog_input(sd)) {
1761 adv76xx_write_reg_seq(sd, info->recommended_settings[0]);
1763 afe_write(sd, 0x00, 0x08); /* power up ADC */
1764 afe_write(sd, 0x01, 0x06); /* power up Analog Front End */
1765 afe_write(sd, 0xc8, 0x00); /* phase control */
1766 } else if (is_digital_input(sd)) {
1767 hdmi_write(sd, 0x00, state->selected_input & 0x03);
1769 adv76xx_write_reg_seq(sd, info->recommended_settings[1]);
1771 if (adv76xx_has_afe(state)) {
1772 afe_write(sd, 0x00, 0xff); /* power down ADC */
1773 afe_write(sd, 0x01, 0xfe); /* power down Analog Front End */
1774 afe_write(sd, 0xc8, 0x40); /* phase control */
1777 cp_write(sd, 0x3e, 0x00); /* CP core pre-gain control */
1778 cp_write(sd, 0xc3, 0x39); /* CP coast control. Graphics mode */
1779 cp_write(sd, 0x40, 0x80); /* CP core pre-gain control. Graphics mode */
1780 } else {
1781 v4l2_dbg(2, debug, sd, "%s: Unknown port %d selected\n",
1782 __func__, state->selected_input);
1786 static int adv76xx_s_routing(struct v4l2_subdev *sd,
1787 u32 input, u32 output, u32 config)
1789 struct adv76xx_state *state = to_state(sd);
1791 v4l2_dbg(2, debug, sd, "%s: input %d, selected input %d",
1792 __func__, input, state->selected_input);
1794 if (input == state->selected_input)
1795 return 0;
1797 if (input > state->info->max_port)
1798 return -EINVAL;
1800 state->selected_input = input;
1802 disable_input(sd);
1803 select_input(sd);
1804 enable_input(sd);
1806 v4l2_subdev_notify_event(sd, &adv76xx_ev_fmt);
1808 return 0;
1811 static int adv76xx_enum_mbus_code(struct v4l2_subdev *sd,
1812 struct v4l2_subdev_pad_config *cfg,
1813 struct v4l2_subdev_mbus_code_enum *code)
1815 struct adv76xx_state *state = to_state(sd);
1817 if (code->index >= state->info->nformats)
1818 return -EINVAL;
1820 code->code = state->info->formats[code->index].code;
1822 return 0;
1825 static void adv76xx_fill_format(struct adv76xx_state *state,
1826 struct v4l2_mbus_framefmt *format)
1828 memset(format, 0, sizeof(*format));
1830 format->width = state->timings.bt.width;
1831 format->height = state->timings.bt.height;
1832 format->field = V4L2_FIELD_NONE;
1833 format->colorspace = V4L2_COLORSPACE_SRGB;
1835 if (state->timings.bt.flags & V4L2_DV_FL_IS_CE_VIDEO)
1836 format->colorspace = (state->timings.bt.height <= 576) ?
1837 V4L2_COLORSPACE_SMPTE170M : V4L2_COLORSPACE_REC709;
1841 * Compute the op_ch_sel value required to obtain on the bus the component order
1842 * corresponding to the selected format taking into account bus reordering
1843 * applied by the board at the output of the device.
1845 * The following table gives the op_ch_value from the format component order
1846 * (expressed as op_ch_sel value in column) and the bus reordering (expressed as
1847 * adv76xx_bus_order value in row).
1849 * | GBR(0) GRB(1) BGR(2) RGB(3) BRG(4) RBG(5)
1850 * ----------+-------------------------------------------------
1851 * RGB (NOP) | GBR GRB BGR RGB BRG RBG
1852 * GRB (1-2) | BGR RGB GBR GRB RBG BRG
1853 * RBG (2-3) | GRB GBR BRG RBG BGR RGB
1854 * BGR (1-3) | RBG BRG RGB BGR GRB GBR
1855 * BRG (ROR) | BRG RBG GRB GBR RGB BGR
1856 * GBR (ROL) | RGB BGR RBG BRG GBR GRB
1858 static unsigned int adv76xx_op_ch_sel(struct adv76xx_state *state)
1860 #define _SEL(a,b,c,d,e,f) { \
1861 ADV76XX_OP_CH_SEL_##a, ADV76XX_OP_CH_SEL_##b, ADV76XX_OP_CH_SEL_##c, \
1862 ADV76XX_OP_CH_SEL_##d, ADV76XX_OP_CH_SEL_##e, ADV76XX_OP_CH_SEL_##f }
1863 #define _BUS(x) [ADV7604_BUS_ORDER_##x]
1865 static const unsigned int op_ch_sel[6][6] = {
1866 _BUS(RGB) /* NOP */ = _SEL(GBR, GRB, BGR, RGB, BRG, RBG),
1867 _BUS(GRB) /* 1-2 */ = _SEL(BGR, RGB, GBR, GRB, RBG, BRG),
1868 _BUS(RBG) /* 2-3 */ = _SEL(GRB, GBR, BRG, RBG, BGR, RGB),
1869 _BUS(BGR) /* 1-3 */ = _SEL(RBG, BRG, RGB, BGR, GRB, GBR),
1870 _BUS(BRG) /* ROR */ = _SEL(BRG, RBG, GRB, GBR, RGB, BGR),
1871 _BUS(GBR) /* ROL */ = _SEL(RGB, BGR, RBG, BRG, GBR, GRB),
1874 return op_ch_sel[state->pdata.bus_order][state->format->op_ch_sel >> 5];
1877 static void adv76xx_setup_format(struct adv76xx_state *state)
1879 struct v4l2_subdev *sd = &state->sd;
1881 io_write_clr_set(sd, 0x02, 0x02,
1882 state->format->rgb_out ? ADV76XX_RGB_OUT : 0);
1883 io_write(sd, 0x03, state->format->op_format_sel |
1884 state->pdata.op_format_mode_sel);
1885 io_write_clr_set(sd, 0x04, 0xe0, adv76xx_op_ch_sel(state));
1886 io_write_clr_set(sd, 0x05, 0x01,
1887 state->format->swap_cb_cr ? ADV76XX_OP_SWAP_CB_CR : 0);
1888 set_rgb_quantization_range(sd);
1891 static int adv76xx_get_format(struct v4l2_subdev *sd,
1892 struct v4l2_subdev_pad_config *cfg,
1893 struct v4l2_subdev_format *format)
1895 struct adv76xx_state *state = to_state(sd);
1897 if (format->pad != state->source_pad)
1898 return -EINVAL;
1900 adv76xx_fill_format(state, &format->format);
1902 if (format->which == V4L2_SUBDEV_FORMAT_TRY) {
1903 struct v4l2_mbus_framefmt *fmt;
1905 fmt = v4l2_subdev_get_try_format(sd, cfg, format->pad);
1906 format->format.code = fmt->code;
1907 } else {
1908 format->format.code = state->format->code;
1911 return 0;
1914 static int adv76xx_get_selection(struct v4l2_subdev *sd,
1915 struct v4l2_subdev_pad_config *cfg,
1916 struct v4l2_subdev_selection *sel)
1918 struct adv76xx_state *state = to_state(sd);
1920 if (sel->which != V4L2_SUBDEV_FORMAT_ACTIVE)
1921 return -EINVAL;
1922 /* Only CROP, CROP_DEFAULT and CROP_BOUNDS are supported */
1923 if (sel->target > V4L2_SEL_TGT_CROP_BOUNDS)
1924 return -EINVAL;
1926 sel->r.left = 0;
1927 sel->r.top = 0;
1928 sel->r.width = state->timings.bt.width;
1929 sel->r.height = state->timings.bt.height;
1931 return 0;
1934 static int adv76xx_set_format(struct v4l2_subdev *sd,
1935 struct v4l2_subdev_pad_config *cfg,
1936 struct v4l2_subdev_format *format)
1938 struct adv76xx_state *state = to_state(sd);
1939 const struct adv76xx_format_info *info;
1941 if (format->pad != state->source_pad)
1942 return -EINVAL;
1944 info = adv76xx_format_info(state, format->format.code);
1945 if (!info)
1946 info = adv76xx_format_info(state, MEDIA_BUS_FMT_YUYV8_2X8);
1948 adv76xx_fill_format(state, &format->format);
1949 format->format.code = info->code;
1951 if (format->which == V4L2_SUBDEV_FORMAT_TRY) {
1952 struct v4l2_mbus_framefmt *fmt;
1954 fmt = v4l2_subdev_get_try_format(sd, cfg, format->pad);
1955 fmt->code = format->format.code;
1956 } else {
1957 state->format = info;
1958 adv76xx_setup_format(state);
1961 return 0;
1964 #if IS_ENABLED(CONFIG_VIDEO_ADV7604_CEC)
1965 static void adv76xx_cec_tx_raw_status(struct v4l2_subdev *sd, u8 tx_raw_status)
1967 struct adv76xx_state *state = to_state(sd);
1969 if ((cec_read(sd, 0x11) & 0x01) == 0) {
1970 v4l2_dbg(1, debug, sd, "%s: tx raw: tx disabled\n", __func__);
1971 return;
1974 if (tx_raw_status & 0x02) {
1975 v4l2_dbg(1, debug, sd, "%s: tx raw: arbitration lost\n",
1976 __func__);
1977 cec_transmit_done(state->cec_adap, CEC_TX_STATUS_ARB_LOST,
1978 1, 0, 0, 0);
1979 return;
1981 if (tx_raw_status & 0x04) {
1982 u8 status;
1983 u8 nack_cnt;
1984 u8 low_drive_cnt;
1986 v4l2_dbg(1, debug, sd, "%s: tx raw: retry failed\n", __func__);
1988 * We set this status bit since this hardware performs
1989 * retransmissions.
1991 status = CEC_TX_STATUS_MAX_RETRIES;
1992 nack_cnt = cec_read(sd, 0x14) & 0xf;
1993 if (nack_cnt)
1994 status |= CEC_TX_STATUS_NACK;
1995 low_drive_cnt = cec_read(sd, 0x14) >> 4;
1996 if (low_drive_cnt)
1997 status |= CEC_TX_STATUS_LOW_DRIVE;
1998 cec_transmit_done(state->cec_adap, status,
1999 0, nack_cnt, low_drive_cnt, 0);
2000 return;
2002 if (tx_raw_status & 0x01) {
2003 v4l2_dbg(1, debug, sd, "%s: tx raw: ready ok\n", __func__);
2004 cec_transmit_done(state->cec_adap, CEC_TX_STATUS_OK, 0, 0, 0, 0);
2005 return;
2009 static void adv76xx_cec_isr(struct v4l2_subdev *sd, bool *handled)
2011 struct adv76xx_state *state = to_state(sd);
2012 const struct adv76xx_chip_info *info = state->info;
2013 u8 cec_irq;
2015 /* cec controller */
2016 cec_irq = io_read(sd, info->cec_irq_status) & 0x0f;
2017 if (!cec_irq)
2018 return;
2020 v4l2_dbg(1, debug, sd, "%s: cec: irq 0x%x\n", __func__, cec_irq);
2021 adv76xx_cec_tx_raw_status(sd, cec_irq);
2022 if (cec_irq & 0x08) {
2023 struct cec_msg msg;
2025 msg.len = cec_read(sd, 0x25) & 0x1f;
2026 if (msg.len > 16)
2027 msg.len = 16;
2029 if (msg.len) {
2030 u8 i;
2032 for (i = 0; i < msg.len; i++)
2033 msg.msg[i] = cec_read(sd, i + 0x15);
2034 cec_write(sd, info->cec_rx_enable,
2035 info->cec_rx_enable_mask); /* re-enable rx */
2036 cec_received_msg(state->cec_adap, &msg);
2040 if (info->cec_irq_swap) {
2042 * Note: the bit order is swapped between 0x4d and 0x4e
2043 * on adv7604
2045 cec_irq = ((cec_irq & 0x08) >> 3) | ((cec_irq & 0x04) >> 1) |
2046 ((cec_irq & 0x02) << 1) | ((cec_irq & 0x01) << 3);
2048 io_write(sd, info->cec_irq_status + 1, cec_irq);
2050 if (handled)
2051 *handled = true;
2054 static int adv76xx_cec_adap_enable(struct cec_adapter *adap, bool enable)
2056 struct adv76xx_state *state = cec_get_drvdata(adap);
2057 const struct adv76xx_chip_info *info = state->info;
2058 struct v4l2_subdev *sd = &state->sd;
2060 if (!state->cec_enabled_adap && enable) {
2061 cec_write_clr_set(sd, 0x2a, 0x01, 0x01); /* power up cec */
2062 cec_write(sd, 0x2c, 0x01); /* cec soft reset */
2063 cec_write_clr_set(sd, 0x11, 0x01, 0); /* initially disable tx */
2064 /* enabled irqs: */
2065 /* tx: ready */
2066 /* tx: arbitration lost */
2067 /* tx: retry timeout */
2068 /* rx: ready */
2069 io_write_clr_set(sd, info->cec_irq_status + 3, 0x0f, 0x0f);
2070 cec_write(sd, info->cec_rx_enable, info->cec_rx_enable_mask);
2071 } else if (state->cec_enabled_adap && !enable) {
2072 /* disable cec interrupts */
2073 io_write_clr_set(sd, info->cec_irq_status + 3, 0x0f, 0x00);
2074 /* disable address mask 1-3 */
2075 cec_write_clr_set(sd, 0x27, 0x70, 0x00);
2076 /* power down cec section */
2077 cec_write_clr_set(sd, 0x2a, 0x01, 0x00);
2078 state->cec_valid_addrs = 0;
2080 state->cec_enabled_adap = enable;
2081 adv76xx_s_detect_tx_5v_ctrl(sd);
2082 return 0;
2085 static int adv76xx_cec_adap_log_addr(struct cec_adapter *adap, u8 addr)
2087 struct adv76xx_state *state = cec_get_drvdata(adap);
2088 struct v4l2_subdev *sd = &state->sd;
2089 unsigned int i, free_idx = ADV76XX_MAX_ADDRS;
2091 if (!state->cec_enabled_adap)
2092 return addr == CEC_LOG_ADDR_INVALID ? 0 : -EIO;
2094 if (addr == CEC_LOG_ADDR_INVALID) {
2095 cec_write_clr_set(sd, 0x27, 0x70, 0);
2096 state->cec_valid_addrs = 0;
2097 return 0;
2100 for (i = 0; i < ADV76XX_MAX_ADDRS; i++) {
2101 bool is_valid = state->cec_valid_addrs & (1 << i);
2103 if (free_idx == ADV76XX_MAX_ADDRS && !is_valid)
2104 free_idx = i;
2105 if (is_valid && state->cec_addr[i] == addr)
2106 return 0;
2108 if (i == ADV76XX_MAX_ADDRS) {
2109 i = free_idx;
2110 if (i == ADV76XX_MAX_ADDRS)
2111 return -ENXIO;
2113 state->cec_addr[i] = addr;
2114 state->cec_valid_addrs |= 1 << i;
2116 switch (i) {
2117 case 0:
2118 /* enable address mask 0 */
2119 cec_write_clr_set(sd, 0x27, 0x10, 0x10);
2120 /* set address for mask 0 */
2121 cec_write_clr_set(sd, 0x28, 0x0f, addr);
2122 break;
2123 case 1:
2124 /* enable address mask 1 */
2125 cec_write_clr_set(sd, 0x27, 0x20, 0x20);
2126 /* set address for mask 1 */
2127 cec_write_clr_set(sd, 0x28, 0xf0, addr << 4);
2128 break;
2129 case 2:
2130 /* enable address mask 2 */
2131 cec_write_clr_set(sd, 0x27, 0x40, 0x40);
2132 /* set address for mask 1 */
2133 cec_write_clr_set(sd, 0x29, 0x0f, addr);
2134 break;
2136 return 0;
2139 static int adv76xx_cec_adap_transmit(struct cec_adapter *adap, u8 attempts,
2140 u32 signal_free_time, struct cec_msg *msg)
2142 struct adv76xx_state *state = cec_get_drvdata(adap);
2143 struct v4l2_subdev *sd = &state->sd;
2144 u8 len = msg->len;
2145 unsigned int i;
2148 * The number of retries is the number of attempts - 1, but retry
2149 * at least once. It's not clear if a value of 0 is allowed, so
2150 * let's do at least one retry.
2152 cec_write_clr_set(sd, 0x12, 0x70, max(1, attempts - 1) << 4);
2154 if (len > 16) {
2155 v4l2_err(sd, "%s: len exceeded 16 (%d)\n", __func__, len);
2156 return -EINVAL;
2159 /* write data */
2160 for (i = 0; i < len; i++)
2161 cec_write(sd, i, msg->msg[i]);
2163 /* set length (data + header) */
2164 cec_write(sd, 0x10, len);
2165 /* start transmit, enable tx */
2166 cec_write(sd, 0x11, 0x01);
2167 return 0;
2170 static const struct cec_adap_ops adv76xx_cec_adap_ops = {
2171 .adap_enable = adv76xx_cec_adap_enable,
2172 .adap_log_addr = adv76xx_cec_adap_log_addr,
2173 .adap_transmit = adv76xx_cec_adap_transmit,
2175 #endif
2177 static int adv76xx_isr(struct v4l2_subdev *sd, u32 status, bool *handled)
2179 struct adv76xx_state *state = to_state(sd);
2180 const struct adv76xx_chip_info *info = state->info;
2181 const u8 irq_reg_0x43 = io_read(sd, 0x43);
2182 const u8 irq_reg_0x6b = io_read(sd, 0x6b);
2183 const u8 irq_reg_0x70 = io_read(sd, 0x70);
2184 u8 fmt_change_digital;
2185 u8 fmt_change;
2186 u8 tx_5v;
2188 if (irq_reg_0x43)
2189 io_write(sd, 0x44, irq_reg_0x43);
2190 if (irq_reg_0x70)
2191 io_write(sd, 0x71, irq_reg_0x70);
2192 if (irq_reg_0x6b)
2193 io_write(sd, 0x6c, irq_reg_0x6b);
2195 v4l2_dbg(2, debug, sd, "%s: ", __func__);
2197 /* format change */
2198 fmt_change = irq_reg_0x43 & 0x98;
2199 fmt_change_digital = is_digital_input(sd)
2200 ? irq_reg_0x6b & info->fmt_change_digital_mask
2201 : 0;
2203 if (fmt_change || fmt_change_digital) {
2204 v4l2_dbg(1, debug, sd,
2205 "%s: fmt_change = 0x%x, fmt_change_digital = 0x%x\n",
2206 __func__, fmt_change, fmt_change_digital);
2208 v4l2_subdev_notify_event(sd, &adv76xx_ev_fmt);
2210 if (handled)
2211 *handled = true;
2213 /* HDMI/DVI mode */
2214 if (irq_reg_0x6b & 0x01) {
2215 v4l2_dbg(1, debug, sd, "%s: irq %s mode\n", __func__,
2216 (io_read(sd, 0x6a) & 0x01) ? "HDMI" : "DVI");
2217 set_rgb_quantization_range(sd);
2218 if (handled)
2219 *handled = true;
2222 #if IS_ENABLED(CONFIG_VIDEO_ADV7604_CEC)
2223 /* cec */
2224 adv76xx_cec_isr(sd, handled);
2225 #endif
2227 /* tx 5v detect */
2228 tx_5v = irq_reg_0x70 & info->cable_det_mask;
2229 if (tx_5v) {
2230 v4l2_dbg(1, debug, sd, "%s: tx_5v: 0x%x\n", __func__, tx_5v);
2231 adv76xx_s_detect_tx_5v_ctrl(sd);
2232 if (handled)
2233 *handled = true;
2235 return 0;
2238 static irqreturn_t adv76xx_irq_handler(int irq, void *dev_id)
2240 struct adv76xx_state *state = dev_id;
2241 bool handled = false;
2243 adv76xx_isr(&state->sd, 0, &handled);
2245 return handled ? IRQ_HANDLED : IRQ_NONE;
2248 static int adv76xx_get_edid(struct v4l2_subdev *sd, struct v4l2_edid *edid)
2250 struct adv76xx_state *state = to_state(sd);
2251 u8 *data = NULL;
2253 memset(edid->reserved, 0, sizeof(edid->reserved));
2255 switch (edid->pad) {
2256 case ADV76XX_PAD_HDMI_PORT_A:
2257 case ADV7604_PAD_HDMI_PORT_B:
2258 case ADV7604_PAD_HDMI_PORT_C:
2259 case ADV7604_PAD_HDMI_PORT_D:
2260 if (state->edid.present & (1 << edid->pad))
2261 data = state->edid.edid;
2262 break;
2263 default:
2264 return -EINVAL;
2267 if (edid->start_block == 0 && edid->blocks == 0) {
2268 edid->blocks = data ? state->edid.blocks : 0;
2269 return 0;
2272 if (!data)
2273 return -ENODATA;
2275 if (edid->start_block >= state->edid.blocks)
2276 return -EINVAL;
2278 if (edid->start_block + edid->blocks > state->edid.blocks)
2279 edid->blocks = state->edid.blocks - edid->start_block;
2281 memcpy(edid->edid, data + edid->start_block * 128, edid->blocks * 128);
2283 return 0;
2286 static int adv76xx_set_edid(struct v4l2_subdev *sd, struct v4l2_edid *edid)
2288 struct adv76xx_state *state = to_state(sd);
2289 const struct adv76xx_chip_info *info = state->info;
2290 unsigned int spa_loc;
2291 u16 pa;
2292 int err;
2293 int i;
2295 memset(edid->reserved, 0, sizeof(edid->reserved));
2297 if (edid->pad > ADV7604_PAD_HDMI_PORT_D)
2298 return -EINVAL;
2299 if (edid->start_block != 0)
2300 return -EINVAL;
2301 if (edid->blocks == 0) {
2302 /* Disable hotplug and I2C access to EDID RAM from DDC port */
2303 state->edid.present &= ~(1 << edid->pad);
2304 adv76xx_set_hpd(state, state->edid.present);
2305 rep_write_clr_set(sd, info->edid_enable_reg, 0x0f, state->edid.present);
2307 /* Fall back to a 16:9 aspect ratio */
2308 state->aspect_ratio.numerator = 16;
2309 state->aspect_ratio.denominator = 9;
2311 if (!state->edid.present) {
2312 state->edid.blocks = 0;
2313 cec_phys_addr_invalidate(state->cec_adap);
2316 v4l2_dbg(2, debug, sd, "%s: clear EDID pad %d, edid.present = 0x%x\n",
2317 __func__, edid->pad, state->edid.present);
2318 return 0;
2320 if (edid->blocks > 2) {
2321 edid->blocks = 2;
2322 return -E2BIG;
2324 pa = v4l2_get_edid_phys_addr(edid->edid, edid->blocks * 128, &spa_loc);
2325 err = v4l2_phys_addr_validate(pa, &pa, NULL);
2326 if (err)
2327 return err;
2329 v4l2_dbg(2, debug, sd, "%s: write EDID pad %d, edid.present = 0x%x\n",
2330 __func__, edid->pad, state->edid.present);
2332 /* Disable hotplug and I2C access to EDID RAM from DDC port */
2333 cancel_delayed_work_sync(&state->delayed_work_enable_hotplug);
2334 adv76xx_set_hpd(state, 0);
2335 rep_write_clr_set(sd, info->edid_enable_reg, 0x0f, 0x00);
2338 * Return an error if no location of the source physical address
2339 * was found.
2341 if (spa_loc == 0)
2342 return -EINVAL;
2344 switch (edid->pad) {
2345 case ADV76XX_PAD_HDMI_PORT_A:
2346 state->spa_port_a[0] = edid->edid[spa_loc];
2347 state->spa_port_a[1] = edid->edid[spa_loc + 1];
2348 break;
2349 case ADV7604_PAD_HDMI_PORT_B:
2350 rep_write(sd, 0x70, edid->edid[spa_loc]);
2351 rep_write(sd, 0x71, edid->edid[spa_loc + 1]);
2352 break;
2353 case ADV7604_PAD_HDMI_PORT_C:
2354 rep_write(sd, 0x72, edid->edid[spa_loc]);
2355 rep_write(sd, 0x73, edid->edid[spa_loc + 1]);
2356 break;
2357 case ADV7604_PAD_HDMI_PORT_D:
2358 rep_write(sd, 0x74, edid->edid[spa_loc]);
2359 rep_write(sd, 0x75, edid->edid[spa_loc + 1]);
2360 break;
2361 default:
2362 return -EINVAL;
2365 if (info->type == ADV7604) {
2366 rep_write(sd, 0x76, spa_loc & 0xff);
2367 rep_write_clr_set(sd, 0x77, 0x40, (spa_loc & 0x100) >> 2);
2368 } else {
2369 /* ADV7612 Software Manual Rev. A, p. 15 */
2370 rep_write(sd, 0x70, spa_loc & 0xff);
2371 rep_write_clr_set(sd, 0x71, 0x01, (spa_loc & 0x100) >> 8);
2374 edid->edid[spa_loc] = state->spa_port_a[0];
2375 edid->edid[spa_loc + 1] = state->spa_port_a[1];
2377 memcpy(state->edid.edid, edid->edid, 128 * edid->blocks);
2378 state->edid.blocks = edid->blocks;
2379 state->aspect_ratio = v4l2_calc_aspect_ratio(edid->edid[0x15],
2380 edid->edid[0x16]);
2381 state->edid.present |= 1 << edid->pad;
2383 err = edid_write_block(sd, 128 * edid->blocks, state->edid.edid);
2384 if (err < 0) {
2385 v4l2_err(sd, "error %d writing edid pad %d\n", err, edid->pad);
2386 return err;
2389 /* adv76xx calculates the checksums and enables I2C access to internal
2390 EDID RAM from DDC port. */
2391 rep_write_clr_set(sd, info->edid_enable_reg, 0x0f, state->edid.present);
2393 for (i = 0; i < 1000; i++) {
2394 if (rep_read(sd, info->edid_status_reg) & state->edid.present)
2395 break;
2396 mdelay(1);
2398 if (i == 1000) {
2399 v4l2_err(sd, "error enabling edid (0x%x)\n", state->edid.present);
2400 return -EIO;
2402 cec_s_phys_addr(state->cec_adap, pa, false);
2404 /* enable hotplug after 100 ms */
2405 schedule_delayed_work(&state->delayed_work_enable_hotplug, HZ / 10);
2406 return 0;
2409 /*********** avi info frame CEA-861-E **************/
2411 static const struct adv76xx_cfg_read_infoframe adv76xx_cri[] = {
2412 { "AVI", 0x01, 0xe0, 0x00 },
2413 { "Audio", 0x02, 0xe3, 0x1c },
2414 { "SDP", 0x04, 0xe6, 0x2a },
2415 { "Vendor", 0x10, 0xec, 0x54 }
2418 static int adv76xx_read_infoframe(struct v4l2_subdev *sd, int index,
2419 union hdmi_infoframe *frame)
2421 uint8_t buffer[32];
2422 u8 len;
2423 int i;
2425 if (!(io_read(sd, 0x60) & adv76xx_cri[index].present_mask)) {
2426 v4l2_info(sd, "%s infoframe not received\n",
2427 adv76xx_cri[index].desc);
2428 return -ENOENT;
2431 for (i = 0; i < 3; i++)
2432 buffer[i] = infoframe_read(sd,
2433 adv76xx_cri[index].head_addr + i);
2435 len = buffer[2] + 1;
2437 if (len + 3 > sizeof(buffer)) {
2438 v4l2_err(sd, "%s: invalid %s infoframe length %d\n", __func__,
2439 adv76xx_cri[index].desc, len);
2440 return -ENOENT;
2443 for (i = 0; i < len; i++)
2444 buffer[i + 3] = infoframe_read(sd,
2445 adv76xx_cri[index].payload_addr + i);
2447 if (hdmi_infoframe_unpack(frame, buffer, sizeof(buffer)) < 0) {
2448 v4l2_err(sd, "%s: unpack of %s infoframe failed\n", __func__,
2449 adv76xx_cri[index].desc);
2450 return -ENOENT;
2452 return 0;
2455 static void adv76xx_log_infoframes(struct v4l2_subdev *sd)
2457 int i;
2459 if (!is_hdmi(sd)) {
2460 v4l2_info(sd, "receive DVI-D signal, no infoframes\n");
2461 return;
2464 for (i = 0; i < ARRAY_SIZE(adv76xx_cri); i++) {
2465 union hdmi_infoframe frame;
2466 struct i2c_client *client = v4l2_get_subdevdata(sd);
2468 if (adv76xx_read_infoframe(sd, i, &frame))
2469 return;
2470 hdmi_infoframe_log(KERN_INFO, &client->dev, &frame);
2474 static int adv76xx_log_status(struct v4l2_subdev *sd)
2476 struct adv76xx_state *state = to_state(sd);
2477 const struct adv76xx_chip_info *info = state->info;
2478 struct v4l2_dv_timings timings;
2479 struct stdi_readback stdi;
2480 u8 reg_io_0x02 = io_read(sd, 0x02);
2481 u8 edid_enabled;
2482 u8 cable_det;
2484 static const char * const csc_coeff_sel_rb[16] = {
2485 "bypassed", "YPbPr601 -> RGB", "reserved", "YPbPr709 -> RGB",
2486 "reserved", "RGB -> YPbPr601", "reserved", "RGB -> YPbPr709",
2487 "reserved", "YPbPr709 -> YPbPr601", "YPbPr601 -> YPbPr709",
2488 "reserved", "reserved", "reserved", "reserved", "manual"
2490 static const char * const input_color_space_txt[16] = {
2491 "RGB limited range (16-235)", "RGB full range (0-255)",
2492 "YCbCr Bt.601 (16-235)", "YCbCr Bt.709 (16-235)",
2493 "xvYCC Bt.601", "xvYCC Bt.709",
2494 "YCbCr Bt.601 (0-255)", "YCbCr Bt.709 (0-255)",
2495 "invalid", "invalid", "invalid", "invalid", "invalid",
2496 "invalid", "invalid", "automatic"
2498 static const char * const hdmi_color_space_txt[16] = {
2499 "RGB limited range (16-235)", "RGB full range (0-255)",
2500 "YCbCr Bt.601 (16-235)", "YCbCr Bt.709 (16-235)",
2501 "xvYCC Bt.601", "xvYCC Bt.709",
2502 "YCbCr Bt.601 (0-255)", "YCbCr Bt.709 (0-255)",
2503 "sYCC", "opYCC 601", "opRGB", "invalid", "invalid",
2504 "invalid", "invalid", "invalid"
2506 static const char * const rgb_quantization_range_txt[] = {
2507 "Automatic",
2508 "RGB limited range (16-235)",
2509 "RGB full range (0-255)",
2511 static const char * const deep_color_mode_txt[4] = {
2512 "8-bits per channel",
2513 "10-bits per channel",
2514 "12-bits per channel",
2515 "16-bits per channel (not supported)"
2518 v4l2_info(sd, "-----Chip status-----\n");
2519 v4l2_info(sd, "Chip power: %s\n", no_power(sd) ? "off" : "on");
2520 edid_enabled = rep_read(sd, info->edid_status_reg);
2521 v4l2_info(sd, "EDID enabled port A: %s, B: %s, C: %s, D: %s\n",
2522 ((edid_enabled & 0x01) ? "Yes" : "No"),
2523 ((edid_enabled & 0x02) ? "Yes" : "No"),
2524 ((edid_enabled & 0x04) ? "Yes" : "No"),
2525 ((edid_enabled & 0x08) ? "Yes" : "No"));
2526 v4l2_info(sd, "CEC: %s\n", state->cec_enabled_adap ?
2527 "enabled" : "disabled");
2528 if (state->cec_enabled_adap) {
2529 int i;
2531 for (i = 0; i < ADV76XX_MAX_ADDRS; i++) {
2532 bool is_valid = state->cec_valid_addrs & (1 << i);
2534 if (is_valid)
2535 v4l2_info(sd, "CEC Logical Address: 0x%x\n",
2536 state->cec_addr[i]);
2540 v4l2_info(sd, "-----Signal status-----\n");
2541 cable_det = info->read_cable_det(sd);
2542 v4l2_info(sd, "Cable detected (+5V power) port A: %s, B: %s, C: %s, D: %s\n",
2543 ((cable_det & 0x01) ? "Yes" : "No"),
2544 ((cable_det & 0x02) ? "Yes" : "No"),
2545 ((cable_det & 0x04) ? "Yes" : "No"),
2546 ((cable_det & 0x08) ? "Yes" : "No"));
2547 v4l2_info(sd, "TMDS signal detected: %s\n",
2548 no_signal_tmds(sd) ? "false" : "true");
2549 v4l2_info(sd, "TMDS signal locked: %s\n",
2550 no_lock_tmds(sd) ? "false" : "true");
2551 v4l2_info(sd, "SSPD locked: %s\n", no_lock_sspd(sd) ? "false" : "true");
2552 v4l2_info(sd, "STDI locked: %s\n", no_lock_stdi(sd) ? "false" : "true");
2553 v4l2_info(sd, "CP locked: %s\n", no_lock_cp(sd) ? "false" : "true");
2554 v4l2_info(sd, "CP free run: %s\n",
2555 (in_free_run(sd)) ? "on" : "off");
2556 v4l2_info(sd, "Prim-mode = 0x%x, video std = 0x%x, v_freq = 0x%x\n",
2557 io_read(sd, 0x01) & 0x0f, io_read(sd, 0x00) & 0x3f,
2558 (io_read(sd, 0x01) & 0x70) >> 4);
2560 v4l2_info(sd, "-----Video Timings-----\n");
2561 if (read_stdi(sd, &stdi))
2562 v4l2_info(sd, "STDI: not locked\n");
2563 else
2564 v4l2_info(sd, "STDI: lcf (frame height - 1) = %d, bl = %d, lcvs (vsync) = %d, %s, %chsync, %cvsync\n",
2565 stdi.lcf, stdi.bl, stdi.lcvs,
2566 stdi.interlaced ? "interlaced" : "progressive",
2567 stdi.hs_pol, stdi.vs_pol);
2568 if (adv76xx_query_dv_timings(sd, &timings))
2569 v4l2_info(sd, "No video detected\n");
2570 else
2571 v4l2_print_dv_timings(sd->name, "Detected format: ",
2572 &timings, true);
2573 v4l2_print_dv_timings(sd->name, "Configured format: ",
2574 &state->timings, true);
2576 if (no_signal(sd))
2577 return 0;
2579 v4l2_info(sd, "-----Color space-----\n");
2580 v4l2_info(sd, "RGB quantization range ctrl: %s\n",
2581 rgb_quantization_range_txt[state->rgb_quantization_range]);
2582 v4l2_info(sd, "Input color space: %s\n",
2583 input_color_space_txt[reg_io_0x02 >> 4]);
2584 v4l2_info(sd, "Output color space: %s %s, alt-gamma %s\n",
2585 (reg_io_0x02 & 0x02) ? "RGB" : "YCbCr",
2586 (((reg_io_0x02 >> 2) & 0x01) ^ (reg_io_0x02 & 0x01)) ?
2587 "(16-235)" : "(0-255)",
2588 (reg_io_0x02 & 0x08) ? "enabled" : "disabled");
2589 v4l2_info(sd, "Color space conversion: %s\n",
2590 csc_coeff_sel_rb[cp_read(sd, info->cp_csc) >> 4]);
2592 if (!is_digital_input(sd))
2593 return 0;
2595 v4l2_info(sd, "-----%s status-----\n", is_hdmi(sd) ? "HDMI" : "DVI-D");
2596 v4l2_info(sd, "Digital video port selected: %c\n",
2597 (hdmi_read(sd, 0x00) & 0x03) + 'A');
2598 v4l2_info(sd, "HDCP encrypted content: %s\n",
2599 (hdmi_read(sd, 0x05) & 0x40) ? "true" : "false");
2600 v4l2_info(sd, "HDCP keys read: %s%s\n",
2601 (hdmi_read(sd, 0x04) & 0x20) ? "yes" : "no",
2602 (hdmi_read(sd, 0x04) & 0x10) ? "ERROR" : "");
2603 if (is_hdmi(sd)) {
2604 bool audio_pll_locked = hdmi_read(sd, 0x04) & 0x01;
2605 bool audio_sample_packet_detect = hdmi_read(sd, 0x18) & 0x01;
2606 bool audio_mute = io_read(sd, 0x65) & 0x40;
2608 v4l2_info(sd, "Audio: pll %s, samples %s, %s\n",
2609 audio_pll_locked ? "locked" : "not locked",
2610 audio_sample_packet_detect ? "detected" : "not detected",
2611 audio_mute ? "muted" : "enabled");
2612 if (audio_pll_locked && audio_sample_packet_detect) {
2613 v4l2_info(sd, "Audio format: %s\n",
2614 (hdmi_read(sd, 0x07) & 0x20) ? "multi-channel" : "stereo");
2616 v4l2_info(sd, "Audio CTS: %u\n", (hdmi_read(sd, 0x5b) << 12) +
2617 (hdmi_read(sd, 0x5c) << 8) +
2618 (hdmi_read(sd, 0x5d) & 0xf0));
2619 v4l2_info(sd, "Audio N: %u\n", ((hdmi_read(sd, 0x5d) & 0x0f) << 16) +
2620 (hdmi_read(sd, 0x5e) << 8) +
2621 hdmi_read(sd, 0x5f));
2622 v4l2_info(sd, "AV Mute: %s\n", (hdmi_read(sd, 0x04) & 0x40) ? "on" : "off");
2624 v4l2_info(sd, "Deep color mode: %s\n", deep_color_mode_txt[(hdmi_read(sd, 0x0b) & 0x60) >> 5]);
2625 v4l2_info(sd, "HDMI colorspace: %s\n", hdmi_color_space_txt[hdmi_read(sd, 0x53) & 0xf]);
2627 adv76xx_log_infoframes(sd);
2630 return 0;
2633 static int adv76xx_subscribe_event(struct v4l2_subdev *sd,
2634 struct v4l2_fh *fh,
2635 struct v4l2_event_subscription *sub)
2637 switch (sub->type) {
2638 case V4L2_EVENT_SOURCE_CHANGE:
2639 return v4l2_src_change_event_subdev_subscribe(sd, fh, sub);
2640 case V4L2_EVENT_CTRL:
2641 return v4l2_ctrl_subdev_subscribe_event(sd, fh, sub);
2642 default:
2643 return -EINVAL;
2647 static int adv76xx_registered(struct v4l2_subdev *sd)
2649 struct adv76xx_state *state = to_state(sd);
2650 struct i2c_client *client = v4l2_get_subdevdata(sd);
2651 int err;
2653 err = cec_register_adapter(state->cec_adap, &client->dev);
2654 if (err)
2655 cec_delete_adapter(state->cec_adap);
2656 return err;
2659 static void adv76xx_unregistered(struct v4l2_subdev *sd)
2661 struct adv76xx_state *state = to_state(sd);
2663 cec_unregister_adapter(state->cec_adap);
2666 /* ----------------------------------------------------------------------- */
2668 static const struct v4l2_ctrl_ops adv76xx_ctrl_ops = {
2669 .s_ctrl = adv76xx_s_ctrl,
2670 .g_volatile_ctrl = adv76xx_g_volatile_ctrl,
2673 static const struct v4l2_subdev_core_ops adv76xx_core_ops = {
2674 .log_status = adv76xx_log_status,
2675 .interrupt_service_routine = adv76xx_isr,
2676 .subscribe_event = adv76xx_subscribe_event,
2677 .unsubscribe_event = v4l2_event_subdev_unsubscribe,
2678 #ifdef CONFIG_VIDEO_ADV_DEBUG
2679 .g_register = adv76xx_g_register,
2680 .s_register = adv76xx_s_register,
2681 #endif
2684 static const struct v4l2_subdev_video_ops adv76xx_video_ops = {
2685 .s_routing = adv76xx_s_routing,
2686 .g_input_status = adv76xx_g_input_status,
2687 .s_dv_timings = adv76xx_s_dv_timings,
2688 .g_dv_timings = adv76xx_g_dv_timings,
2689 .query_dv_timings = adv76xx_query_dv_timings,
2692 static const struct v4l2_subdev_pad_ops adv76xx_pad_ops = {
2693 .enum_mbus_code = adv76xx_enum_mbus_code,
2694 .get_selection = adv76xx_get_selection,
2695 .get_fmt = adv76xx_get_format,
2696 .set_fmt = adv76xx_set_format,
2697 .get_edid = adv76xx_get_edid,
2698 .set_edid = adv76xx_set_edid,
2699 .dv_timings_cap = adv76xx_dv_timings_cap,
2700 .enum_dv_timings = adv76xx_enum_dv_timings,
2703 static const struct v4l2_subdev_ops adv76xx_ops = {
2704 .core = &adv76xx_core_ops,
2705 .video = &adv76xx_video_ops,
2706 .pad = &adv76xx_pad_ops,
2709 static const struct v4l2_subdev_internal_ops adv76xx_int_ops = {
2710 .registered = adv76xx_registered,
2711 .unregistered = adv76xx_unregistered,
2714 /* -------------------------- custom ctrls ---------------------------------- */
2716 static const struct v4l2_ctrl_config adv7604_ctrl_analog_sampling_phase = {
2717 .ops = &adv76xx_ctrl_ops,
2718 .id = V4L2_CID_ADV_RX_ANALOG_SAMPLING_PHASE,
2719 .name = "Analog Sampling Phase",
2720 .type = V4L2_CTRL_TYPE_INTEGER,
2721 .min = 0,
2722 .max = 0x1f,
2723 .step = 1,
2724 .def = 0,
2727 static const struct v4l2_ctrl_config adv76xx_ctrl_free_run_color_manual = {
2728 .ops = &adv76xx_ctrl_ops,
2729 .id = V4L2_CID_ADV_RX_FREE_RUN_COLOR_MANUAL,
2730 .name = "Free Running Color, Manual",
2731 .type = V4L2_CTRL_TYPE_BOOLEAN,
2732 .min = false,
2733 .max = true,
2734 .step = 1,
2735 .def = false,
2738 static const struct v4l2_ctrl_config adv76xx_ctrl_free_run_color = {
2739 .ops = &adv76xx_ctrl_ops,
2740 .id = V4L2_CID_ADV_RX_FREE_RUN_COLOR,
2741 .name = "Free Running Color",
2742 .type = V4L2_CTRL_TYPE_INTEGER,
2743 .min = 0x0,
2744 .max = 0xffffff,
2745 .step = 0x1,
2746 .def = 0x0,
2749 /* ----------------------------------------------------------------------- */
2751 struct adv76xx_register_map {
2752 const char *name;
2753 u8 default_addr;
2756 static const struct adv76xx_register_map adv76xx_default_addresses[] = {
2757 [ADV76XX_PAGE_IO] = { "main", 0x4c },
2758 [ADV7604_PAGE_AVLINK] = { "avlink", 0x42 },
2759 [ADV76XX_PAGE_CEC] = { "cec", 0x40 },
2760 [ADV76XX_PAGE_INFOFRAME] = { "infoframe", 0x3e },
2761 [ADV7604_PAGE_ESDP] = { "esdp", 0x38 },
2762 [ADV7604_PAGE_DPP] = { "dpp", 0x3c },
2763 [ADV76XX_PAGE_AFE] = { "afe", 0x26 },
2764 [ADV76XX_PAGE_REP] = { "rep", 0x32 },
2765 [ADV76XX_PAGE_EDID] = { "edid", 0x36 },
2766 [ADV76XX_PAGE_HDMI] = { "hdmi", 0x34 },
2767 [ADV76XX_PAGE_TEST] = { "test", 0x30 },
2768 [ADV76XX_PAGE_CP] = { "cp", 0x22 },
2769 [ADV7604_PAGE_VDP] = { "vdp", 0x24 },
2772 static int adv76xx_core_init(struct v4l2_subdev *sd)
2774 struct adv76xx_state *state = to_state(sd);
2775 const struct adv76xx_chip_info *info = state->info;
2776 struct adv76xx_platform_data *pdata = &state->pdata;
2778 hdmi_write(sd, 0x48,
2779 (pdata->disable_pwrdnb ? 0x80 : 0) |
2780 (pdata->disable_cable_det_rst ? 0x40 : 0));
2782 disable_input(sd);
2784 if (pdata->default_input >= 0 &&
2785 pdata->default_input < state->source_pad) {
2786 state->selected_input = pdata->default_input;
2787 select_input(sd);
2788 enable_input(sd);
2791 /* power */
2792 io_write(sd, 0x0c, 0x42); /* Power up part and power down VDP */
2793 io_write(sd, 0x0b, 0x44); /* Power down ESDP block */
2794 cp_write(sd, 0xcf, 0x01); /* Power down macrovision */
2796 /* video format */
2797 io_write_clr_set(sd, 0x02, 0x0f, pdata->alt_gamma << 3);
2798 io_write_clr_set(sd, 0x05, 0x0e, pdata->blank_data << 3 |
2799 pdata->insert_av_codes << 2 |
2800 pdata->replicate_av_codes << 1);
2801 adv76xx_setup_format(state);
2803 cp_write(sd, 0x69, 0x30); /* Enable CP CSC */
2805 /* VS, HS polarities */
2806 io_write(sd, 0x06, 0xa0 | pdata->inv_vs_pol << 2 |
2807 pdata->inv_hs_pol << 1 | pdata->inv_llc_pol);
2809 /* Adjust drive strength */
2810 io_write(sd, 0x14, 0x40 | pdata->dr_str_data << 4 |
2811 pdata->dr_str_clk << 2 |
2812 pdata->dr_str_sync);
2814 cp_write(sd, 0xba, (pdata->hdmi_free_run_mode << 1) | 0x01); /* HDMI free run */
2815 cp_write(sd, 0xf3, 0xdc); /* Low threshold to enter/exit free run mode */
2816 cp_write(sd, 0xf9, 0x23); /* STDI ch. 1 - LCVS change threshold -
2817 ADI recommended setting [REF_01, c. 2.3.3] */
2818 cp_write(sd, 0x45, 0x23); /* STDI ch. 2 - LCVS change threshold -
2819 ADI recommended setting [REF_01, c. 2.3.3] */
2820 cp_write(sd, 0xc9, 0x2d); /* use prim_mode and vid_std as free run resolution
2821 for digital formats */
2823 /* HDMI audio */
2824 hdmi_write_clr_set(sd, 0x15, 0x03, 0x03); /* Mute on FIFO over-/underflow [REF_01, c. 1.2.18] */
2825 hdmi_write_clr_set(sd, 0x1a, 0x0e, 0x08); /* Wait 1 s before unmute */
2826 hdmi_write_clr_set(sd, 0x68, 0x06, 0x06); /* FIFO reset on over-/underflow [REF_01, c. 1.2.19] */
2828 /* TODO from platform data */
2829 afe_write(sd, 0xb5, 0x01); /* Setting MCLK to 256Fs */
2831 if (adv76xx_has_afe(state)) {
2832 afe_write(sd, 0x02, pdata->ain_sel); /* Select analog input muxing mode */
2833 io_write_clr_set(sd, 0x30, 1 << 4, pdata->output_bus_lsb_to_msb << 4);
2836 /* interrupts */
2837 io_write(sd, 0x40, 0xc0 | pdata->int1_config); /* Configure INT1 */
2838 io_write(sd, 0x46, 0x98); /* Enable SSPD, STDI and CP unlocked interrupts */
2839 io_write(sd, 0x6e, info->fmt_change_digital_mask); /* Enable V_LOCKED and DE_REGEN_LCK interrupts */
2840 io_write(sd, 0x73, info->cable_det_mask); /* Enable cable detection (+5v) interrupts */
2841 info->setup_irqs(sd);
2843 return v4l2_ctrl_handler_setup(sd->ctrl_handler);
2846 static void adv7604_setup_irqs(struct v4l2_subdev *sd)
2848 io_write(sd, 0x41, 0xd7); /* STDI irq for any change, disable INT2 */
2851 static void adv7611_setup_irqs(struct v4l2_subdev *sd)
2853 io_write(sd, 0x41, 0xd0); /* STDI irq for any change, disable INT2 */
2856 static void adv7612_setup_irqs(struct v4l2_subdev *sd)
2858 io_write(sd, 0x41, 0xd0); /* disable INT2 */
2861 static void adv76xx_unregister_clients(struct adv76xx_state *state)
2863 unsigned int i;
2865 for (i = 1; i < ARRAY_SIZE(state->i2c_clients); ++i)
2866 i2c_unregister_device(state->i2c_clients[i]);
2869 static struct i2c_client *adv76xx_dummy_client(struct v4l2_subdev *sd,
2870 unsigned int page)
2872 struct i2c_client *client = v4l2_get_subdevdata(sd);
2873 struct adv76xx_state *state = to_state(sd);
2874 struct adv76xx_platform_data *pdata = &state->pdata;
2875 unsigned int io_reg = 0xf2 + page;
2876 struct i2c_client *new_client;
2878 if (pdata && pdata->i2c_addresses[page])
2879 new_client = i2c_new_dummy_device(client->adapter,
2880 pdata->i2c_addresses[page]);
2881 else
2882 new_client = i2c_new_ancillary_device(client,
2883 adv76xx_default_addresses[page].name,
2884 adv76xx_default_addresses[page].default_addr);
2886 if (!IS_ERR(new_client))
2887 io_write(sd, io_reg, new_client->addr << 1);
2889 return new_client;
2892 static const struct adv76xx_reg_seq adv7604_recommended_settings_afe[] = {
2893 /* reset ADI recommended settings for HDMI: */
2894 /* "ADV7604 Register Settings Recommendations (rev. 2.5, June 2010)" p. 4. */
2895 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x0d), 0x04 }, /* HDMI filter optimization */
2896 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x0d), 0x04 }, /* HDMI filter optimization */
2897 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x3d), 0x00 }, /* DDC bus active pull-up control */
2898 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x3e), 0x74 }, /* TMDS PLL optimization */
2899 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x4e), 0x3b }, /* TMDS PLL optimization */
2900 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x57), 0x74 }, /* TMDS PLL optimization */
2901 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x58), 0x63 }, /* TMDS PLL optimization */
2902 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8d), 0x18 }, /* equaliser */
2903 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8e), 0x34 }, /* equaliser */
2904 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x93), 0x88 }, /* equaliser */
2905 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x94), 0x2e }, /* equaliser */
2906 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x96), 0x00 }, /* enable automatic EQ changing */
2908 /* set ADI recommended settings for digitizer */
2909 /* "ADV7604 Register Settings Recommendations (rev. 2.5, June 2010)" p. 17. */
2910 { ADV76XX_REG(ADV76XX_PAGE_AFE, 0x12), 0x7b }, /* ADC noise shaping filter controls */
2911 { ADV76XX_REG(ADV76XX_PAGE_AFE, 0x0c), 0x1f }, /* CP core gain controls */
2912 { ADV76XX_REG(ADV76XX_PAGE_CP, 0x3e), 0x04 }, /* CP core pre-gain control */
2913 { ADV76XX_REG(ADV76XX_PAGE_CP, 0xc3), 0x39 }, /* CP coast control. Graphics mode */
2914 { ADV76XX_REG(ADV76XX_PAGE_CP, 0x40), 0x5c }, /* CP core pre-gain control. Graphics mode */
2916 { ADV76XX_REG_SEQ_TERM, 0 },
2919 static const struct adv76xx_reg_seq adv7604_recommended_settings_hdmi[] = {
2920 /* set ADI recommended settings for HDMI: */
2921 /* "ADV7604 Register Settings Recommendations (rev. 2.5, June 2010)" p. 4. */
2922 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x0d), 0x84 }, /* HDMI filter optimization */
2923 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x3d), 0x10 }, /* DDC bus active pull-up control */
2924 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x3e), 0x39 }, /* TMDS PLL optimization */
2925 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x4e), 0x3b }, /* TMDS PLL optimization */
2926 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x57), 0xb6 }, /* TMDS PLL optimization */
2927 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x58), 0x03 }, /* TMDS PLL optimization */
2928 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8d), 0x18 }, /* equaliser */
2929 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8e), 0x34 }, /* equaliser */
2930 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x93), 0x8b }, /* equaliser */
2931 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x94), 0x2d }, /* equaliser */
2932 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x96), 0x01 }, /* enable automatic EQ changing */
2934 /* reset ADI recommended settings for digitizer */
2935 /* "ADV7604 Register Settings Recommendations (rev. 2.5, June 2010)" p. 17. */
2936 { ADV76XX_REG(ADV76XX_PAGE_AFE, 0x12), 0xfb }, /* ADC noise shaping filter controls */
2937 { ADV76XX_REG(ADV76XX_PAGE_AFE, 0x0c), 0x0d }, /* CP core gain controls */
2939 { ADV76XX_REG_SEQ_TERM, 0 },
2942 static const struct adv76xx_reg_seq adv7611_recommended_settings_hdmi[] = {
2943 /* ADV7611 Register Settings Recommendations Rev 1.5, May 2014 */
2944 { ADV76XX_REG(ADV76XX_PAGE_CP, 0x6c), 0x00 },
2945 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x9b), 0x03 },
2946 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x6f), 0x08 },
2947 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x85), 0x1f },
2948 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x87), 0x70 },
2949 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x57), 0xda },
2950 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x58), 0x01 },
2951 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x03), 0x98 },
2952 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x4c), 0x44 },
2953 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8d), 0x04 },
2954 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8e), 0x1e },
2956 { ADV76XX_REG_SEQ_TERM, 0 },
2959 static const struct adv76xx_reg_seq adv7612_recommended_settings_hdmi[] = {
2960 { ADV76XX_REG(ADV76XX_PAGE_CP, 0x6c), 0x00 },
2961 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x9b), 0x03 },
2962 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x6f), 0x08 },
2963 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x85), 0x1f },
2964 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x87), 0x70 },
2965 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x57), 0xda },
2966 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x58), 0x01 },
2967 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x03), 0x98 },
2968 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x4c), 0x44 },
2969 { ADV76XX_REG_SEQ_TERM, 0 },
2972 static const struct adv76xx_chip_info adv76xx_chip_info[] = {
2973 [ADV7604] = {
2974 .type = ADV7604,
2975 .has_afe = true,
2976 .max_port = ADV7604_PAD_VGA_COMP,
2977 .num_dv_ports = 4,
2978 .edid_enable_reg = 0x77,
2979 .edid_status_reg = 0x7d,
2980 .lcf_reg = 0xb3,
2981 .tdms_lock_mask = 0xe0,
2982 .cable_det_mask = 0x1e,
2983 .fmt_change_digital_mask = 0xc1,
2984 .cp_csc = 0xfc,
2985 .cec_irq_status = 0x4d,
2986 .cec_rx_enable = 0x26,
2987 .cec_rx_enable_mask = 0x01,
2988 .cec_irq_swap = true,
2989 .formats = adv7604_formats,
2990 .nformats = ARRAY_SIZE(adv7604_formats),
2991 .set_termination = adv7604_set_termination,
2992 .setup_irqs = adv7604_setup_irqs,
2993 .read_hdmi_pixelclock = adv7604_read_hdmi_pixelclock,
2994 .read_cable_det = adv7604_read_cable_det,
2995 .recommended_settings = {
2996 [0] = adv7604_recommended_settings_afe,
2997 [1] = adv7604_recommended_settings_hdmi,
2999 .num_recommended_settings = {
3000 [0] = ARRAY_SIZE(adv7604_recommended_settings_afe),
3001 [1] = ARRAY_SIZE(adv7604_recommended_settings_hdmi),
3003 .page_mask = BIT(ADV76XX_PAGE_IO) | BIT(ADV7604_PAGE_AVLINK) |
3004 BIT(ADV76XX_PAGE_CEC) | BIT(ADV76XX_PAGE_INFOFRAME) |
3005 BIT(ADV7604_PAGE_ESDP) | BIT(ADV7604_PAGE_DPP) |
3006 BIT(ADV76XX_PAGE_AFE) | BIT(ADV76XX_PAGE_REP) |
3007 BIT(ADV76XX_PAGE_EDID) | BIT(ADV76XX_PAGE_HDMI) |
3008 BIT(ADV76XX_PAGE_TEST) | BIT(ADV76XX_PAGE_CP) |
3009 BIT(ADV7604_PAGE_VDP),
3010 .linewidth_mask = 0xfff,
3011 .field0_height_mask = 0xfff,
3012 .field1_height_mask = 0xfff,
3013 .hfrontporch_mask = 0x3ff,
3014 .hsync_mask = 0x3ff,
3015 .hbackporch_mask = 0x3ff,
3016 .field0_vfrontporch_mask = 0x1fff,
3017 .field0_vsync_mask = 0x1fff,
3018 .field0_vbackporch_mask = 0x1fff,
3019 .field1_vfrontporch_mask = 0x1fff,
3020 .field1_vsync_mask = 0x1fff,
3021 .field1_vbackporch_mask = 0x1fff,
3023 [ADV7611] = {
3024 .type = ADV7611,
3025 .has_afe = false,
3026 .max_port = ADV76XX_PAD_HDMI_PORT_A,
3027 .num_dv_ports = 1,
3028 .edid_enable_reg = 0x74,
3029 .edid_status_reg = 0x76,
3030 .lcf_reg = 0xa3,
3031 .tdms_lock_mask = 0x43,
3032 .cable_det_mask = 0x01,
3033 .fmt_change_digital_mask = 0x03,
3034 .cp_csc = 0xf4,
3035 .cec_irq_status = 0x93,
3036 .cec_rx_enable = 0x2c,
3037 .cec_rx_enable_mask = 0x02,
3038 .formats = adv7611_formats,
3039 .nformats = ARRAY_SIZE(adv7611_formats),
3040 .set_termination = adv7611_set_termination,
3041 .setup_irqs = adv7611_setup_irqs,
3042 .read_hdmi_pixelclock = adv7611_read_hdmi_pixelclock,
3043 .read_cable_det = adv7611_read_cable_det,
3044 .recommended_settings = {
3045 [1] = adv7611_recommended_settings_hdmi,
3047 .num_recommended_settings = {
3048 [1] = ARRAY_SIZE(adv7611_recommended_settings_hdmi),
3050 .page_mask = BIT(ADV76XX_PAGE_IO) | BIT(ADV76XX_PAGE_CEC) |
3051 BIT(ADV76XX_PAGE_INFOFRAME) | BIT(ADV76XX_PAGE_AFE) |
3052 BIT(ADV76XX_PAGE_REP) | BIT(ADV76XX_PAGE_EDID) |
3053 BIT(ADV76XX_PAGE_HDMI) | BIT(ADV76XX_PAGE_CP),
3054 .linewidth_mask = 0x1fff,
3055 .field0_height_mask = 0x1fff,
3056 .field1_height_mask = 0x1fff,
3057 .hfrontporch_mask = 0x1fff,
3058 .hsync_mask = 0x1fff,
3059 .hbackporch_mask = 0x1fff,
3060 .field0_vfrontporch_mask = 0x3fff,
3061 .field0_vsync_mask = 0x3fff,
3062 .field0_vbackporch_mask = 0x3fff,
3063 .field1_vfrontporch_mask = 0x3fff,
3064 .field1_vsync_mask = 0x3fff,
3065 .field1_vbackporch_mask = 0x3fff,
3067 [ADV7612] = {
3068 .type = ADV7612,
3069 .has_afe = false,
3070 .max_port = ADV76XX_PAD_HDMI_PORT_A, /* B not supported */
3071 .num_dv_ports = 1, /* normally 2 */
3072 .edid_enable_reg = 0x74,
3073 .edid_status_reg = 0x76,
3074 .lcf_reg = 0xa3,
3075 .tdms_lock_mask = 0x43,
3076 .cable_det_mask = 0x01,
3077 .fmt_change_digital_mask = 0x03,
3078 .cp_csc = 0xf4,
3079 .cec_irq_status = 0x93,
3080 .cec_rx_enable = 0x2c,
3081 .cec_rx_enable_mask = 0x02,
3082 .formats = adv7612_formats,
3083 .nformats = ARRAY_SIZE(adv7612_formats),
3084 .set_termination = adv7611_set_termination,
3085 .setup_irqs = adv7612_setup_irqs,
3086 .read_hdmi_pixelclock = adv7611_read_hdmi_pixelclock,
3087 .read_cable_det = adv7612_read_cable_det,
3088 .recommended_settings = {
3089 [1] = adv7612_recommended_settings_hdmi,
3091 .num_recommended_settings = {
3092 [1] = ARRAY_SIZE(adv7612_recommended_settings_hdmi),
3094 .page_mask = BIT(ADV76XX_PAGE_IO) | BIT(ADV76XX_PAGE_CEC) |
3095 BIT(ADV76XX_PAGE_INFOFRAME) | BIT(ADV76XX_PAGE_AFE) |
3096 BIT(ADV76XX_PAGE_REP) | BIT(ADV76XX_PAGE_EDID) |
3097 BIT(ADV76XX_PAGE_HDMI) | BIT(ADV76XX_PAGE_CP),
3098 .linewidth_mask = 0x1fff,
3099 .field0_height_mask = 0x1fff,
3100 .field1_height_mask = 0x1fff,
3101 .hfrontporch_mask = 0x1fff,
3102 .hsync_mask = 0x1fff,
3103 .hbackporch_mask = 0x1fff,
3104 .field0_vfrontporch_mask = 0x3fff,
3105 .field0_vsync_mask = 0x3fff,
3106 .field0_vbackporch_mask = 0x3fff,
3107 .field1_vfrontporch_mask = 0x3fff,
3108 .field1_vsync_mask = 0x3fff,
3109 .field1_vbackporch_mask = 0x3fff,
3113 static const struct i2c_device_id adv76xx_i2c_id[] = {
3114 { "adv7604", (kernel_ulong_t)&adv76xx_chip_info[ADV7604] },
3115 { "adv7611", (kernel_ulong_t)&adv76xx_chip_info[ADV7611] },
3116 { "adv7612", (kernel_ulong_t)&adv76xx_chip_info[ADV7612] },
3119 MODULE_DEVICE_TABLE(i2c, adv76xx_i2c_id);
3121 static const struct of_device_id adv76xx_of_id[] __maybe_unused = {
3122 { .compatible = "adi,adv7611", .data = &adv76xx_chip_info[ADV7611] },
3123 { .compatible = "adi,adv7612", .data = &adv76xx_chip_info[ADV7612] },
3126 MODULE_DEVICE_TABLE(of, adv76xx_of_id);
3128 static int adv76xx_parse_dt(struct adv76xx_state *state)
3130 struct v4l2_fwnode_endpoint bus_cfg = { .bus_type = 0 };
3131 struct device_node *endpoint;
3132 struct device_node *np;
3133 unsigned int flags;
3134 int ret;
3135 u32 v;
3137 np = state->i2c_clients[ADV76XX_PAGE_IO]->dev.of_node;
3139 /* Parse the endpoint. */
3140 endpoint = of_graph_get_next_endpoint(np, NULL);
3141 if (!endpoint)
3142 return -EINVAL;
3144 ret = v4l2_fwnode_endpoint_parse(of_fwnode_handle(endpoint), &bus_cfg);
3145 of_node_put(endpoint);
3146 if (ret)
3147 return ret;
3149 if (!of_property_read_u32(np, "default-input", &v))
3150 state->pdata.default_input = v;
3151 else
3152 state->pdata.default_input = -1;
3154 flags = bus_cfg.bus.parallel.flags;
3156 if (flags & V4L2_MBUS_HSYNC_ACTIVE_HIGH)
3157 state->pdata.inv_hs_pol = 1;
3159 if (flags & V4L2_MBUS_VSYNC_ACTIVE_HIGH)
3160 state->pdata.inv_vs_pol = 1;
3162 if (flags & V4L2_MBUS_PCLK_SAMPLE_RISING)
3163 state->pdata.inv_llc_pol = 1;
3165 if (bus_cfg.bus_type == V4L2_MBUS_BT656)
3166 state->pdata.insert_av_codes = 1;
3168 /* Disable the interrupt for now as no DT-based board uses it. */
3169 state->pdata.int1_config = ADV76XX_INT1_CONFIG_ACTIVE_HIGH;
3171 /* Hardcode the remaining platform data fields. */
3172 state->pdata.disable_pwrdnb = 0;
3173 state->pdata.disable_cable_det_rst = 0;
3174 state->pdata.blank_data = 1;
3175 state->pdata.op_format_mode_sel = ADV7604_OP_FORMAT_MODE0;
3176 state->pdata.bus_order = ADV7604_BUS_ORDER_RGB;
3177 state->pdata.dr_str_data = ADV76XX_DR_STR_MEDIUM_HIGH;
3178 state->pdata.dr_str_clk = ADV76XX_DR_STR_MEDIUM_HIGH;
3179 state->pdata.dr_str_sync = ADV76XX_DR_STR_MEDIUM_HIGH;
3181 return 0;
3184 static const struct regmap_config adv76xx_regmap_cnf[] = {
3186 .name = "io",
3187 .reg_bits = 8,
3188 .val_bits = 8,
3190 .max_register = 0xff,
3191 .cache_type = REGCACHE_NONE,
3194 .name = "avlink",
3195 .reg_bits = 8,
3196 .val_bits = 8,
3198 .max_register = 0xff,
3199 .cache_type = REGCACHE_NONE,
3202 .name = "cec",
3203 .reg_bits = 8,
3204 .val_bits = 8,
3206 .max_register = 0xff,
3207 .cache_type = REGCACHE_NONE,
3210 .name = "infoframe",
3211 .reg_bits = 8,
3212 .val_bits = 8,
3214 .max_register = 0xff,
3215 .cache_type = REGCACHE_NONE,
3218 .name = "esdp",
3219 .reg_bits = 8,
3220 .val_bits = 8,
3222 .max_register = 0xff,
3223 .cache_type = REGCACHE_NONE,
3226 .name = "epp",
3227 .reg_bits = 8,
3228 .val_bits = 8,
3230 .max_register = 0xff,
3231 .cache_type = REGCACHE_NONE,
3234 .name = "afe",
3235 .reg_bits = 8,
3236 .val_bits = 8,
3238 .max_register = 0xff,
3239 .cache_type = REGCACHE_NONE,
3242 .name = "rep",
3243 .reg_bits = 8,
3244 .val_bits = 8,
3246 .max_register = 0xff,
3247 .cache_type = REGCACHE_NONE,
3250 .name = "edid",
3251 .reg_bits = 8,
3252 .val_bits = 8,
3254 .max_register = 0xff,
3255 .cache_type = REGCACHE_NONE,
3259 .name = "hdmi",
3260 .reg_bits = 8,
3261 .val_bits = 8,
3263 .max_register = 0xff,
3264 .cache_type = REGCACHE_NONE,
3267 .name = "test",
3268 .reg_bits = 8,
3269 .val_bits = 8,
3271 .max_register = 0xff,
3272 .cache_type = REGCACHE_NONE,
3275 .name = "cp",
3276 .reg_bits = 8,
3277 .val_bits = 8,
3279 .max_register = 0xff,
3280 .cache_type = REGCACHE_NONE,
3283 .name = "vdp",
3284 .reg_bits = 8,
3285 .val_bits = 8,
3287 .max_register = 0xff,
3288 .cache_type = REGCACHE_NONE,
3292 static int configure_regmap(struct adv76xx_state *state, int region)
3294 int err;
3296 if (!state->i2c_clients[region])
3297 return -ENODEV;
3299 state->regmap[region] =
3300 devm_regmap_init_i2c(state->i2c_clients[region],
3301 &adv76xx_regmap_cnf[region]);
3303 if (IS_ERR(state->regmap[region])) {
3304 err = PTR_ERR(state->regmap[region]);
3305 v4l_err(state->i2c_clients[region],
3306 "Error initializing regmap %d with error %d\n",
3307 region, err);
3308 return -EINVAL;
3311 return 0;
3314 static int configure_regmaps(struct adv76xx_state *state)
3316 int i, err;
3318 for (i = ADV7604_PAGE_AVLINK ; i < ADV76XX_PAGE_MAX; i++) {
3319 err = configure_regmap(state, i);
3320 if (err && (err != -ENODEV))
3321 return err;
3323 return 0;
3326 static void adv76xx_reset(struct adv76xx_state *state)
3328 if (state->reset_gpio) {
3329 /* ADV76XX can be reset by a low reset pulse of minimum 5 ms. */
3330 gpiod_set_value_cansleep(state->reset_gpio, 0);
3331 usleep_range(5000, 10000);
3332 gpiod_set_value_cansleep(state->reset_gpio, 1);
3333 /* It is recommended to wait 5 ms after the low pulse before */
3334 /* an I2C write is performed to the ADV76XX. */
3335 usleep_range(5000, 10000);
3339 static int adv76xx_probe(struct i2c_client *client,
3340 const struct i2c_device_id *id)
3342 static const struct v4l2_dv_timings cea640x480 =
3343 V4L2_DV_BT_CEA_640X480P59_94;
3344 struct adv76xx_state *state;
3345 struct v4l2_ctrl_handler *hdl;
3346 struct v4l2_ctrl *ctrl;
3347 struct v4l2_subdev *sd;
3348 unsigned int i;
3349 unsigned int val, val2;
3350 int err;
3352 /* Check if the adapter supports the needed features */
3353 if (!i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_BYTE_DATA))
3354 return -EIO;
3355 v4l_dbg(1, debug, client, "detecting adv76xx client on address 0x%x\n",
3356 client->addr << 1);
3358 state = devm_kzalloc(&client->dev, sizeof(*state), GFP_KERNEL);
3359 if (!state)
3360 return -ENOMEM;
3362 state->i2c_clients[ADV76XX_PAGE_IO] = client;
3364 /* initialize variables */
3365 state->restart_stdi_once = true;
3366 state->selected_input = ~0;
3368 if (IS_ENABLED(CONFIG_OF) && client->dev.of_node) {
3369 const struct of_device_id *oid;
3371 oid = of_match_node(adv76xx_of_id, client->dev.of_node);
3372 state->info = oid->data;
3374 err = adv76xx_parse_dt(state);
3375 if (err < 0) {
3376 v4l_err(client, "DT parsing error\n");
3377 return err;
3379 } else if (client->dev.platform_data) {
3380 struct adv76xx_platform_data *pdata = client->dev.platform_data;
3382 state->info = (const struct adv76xx_chip_info *)id->driver_data;
3383 state->pdata = *pdata;
3384 } else {
3385 v4l_err(client, "No platform data!\n");
3386 return -ENODEV;
3389 /* Request GPIOs. */
3390 for (i = 0; i < state->info->num_dv_ports; ++i) {
3391 state->hpd_gpio[i] =
3392 devm_gpiod_get_index_optional(&client->dev, "hpd", i,
3393 GPIOD_OUT_LOW);
3394 if (IS_ERR(state->hpd_gpio[i]))
3395 return PTR_ERR(state->hpd_gpio[i]);
3397 if (state->hpd_gpio[i])
3398 v4l_info(client, "Handling HPD %u GPIO\n", i);
3400 state->reset_gpio = devm_gpiod_get_optional(&client->dev, "reset",
3401 GPIOD_OUT_HIGH);
3402 if (IS_ERR(state->reset_gpio))
3403 return PTR_ERR(state->reset_gpio);
3405 adv76xx_reset(state);
3407 state->timings = cea640x480;
3408 state->format = adv76xx_format_info(state, MEDIA_BUS_FMT_YUYV8_2X8);
3410 sd = &state->sd;
3411 v4l2_i2c_subdev_init(sd, client, &adv76xx_ops);
3412 snprintf(sd->name, sizeof(sd->name), "%s %d-%04x",
3413 id->name, i2c_adapter_id(client->adapter),
3414 client->addr);
3415 sd->flags |= V4L2_SUBDEV_FL_HAS_DEVNODE | V4L2_SUBDEV_FL_HAS_EVENTS;
3416 sd->internal_ops = &adv76xx_int_ops;
3418 /* Configure IO Regmap region */
3419 err = configure_regmap(state, ADV76XX_PAGE_IO);
3421 if (err) {
3422 v4l2_err(sd, "Error configuring IO regmap region\n");
3423 return -ENODEV;
3427 * Verify that the chip is present. On ADV7604 the RD_INFO register only
3428 * identifies the revision, while on ADV7611 it identifies the model as
3429 * well. Use the HDMI slave address on ADV7604 and RD_INFO on ADV7611.
3431 switch (state->info->type) {
3432 case ADV7604:
3433 err = regmap_read(state->regmap[ADV76XX_PAGE_IO], 0xfb, &val);
3434 if (err) {
3435 v4l2_err(sd, "Error %d reading IO Regmap\n", err);
3436 return -ENODEV;
3438 if (val != 0x68) {
3439 v4l2_err(sd, "not an adv7604 on address 0x%x\n",
3440 client->addr << 1);
3441 return -ENODEV;
3443 break;
3444 case ADV7611:
3445 case ADV7612:
3446 err = regmap_read(state->regmap[ADV76XX_PAGE_IO],
3447 0xea,
3448 &val);
3449 if (err) {
3450 v4l2_err(sd, "Error %d reading IO Regmap\n", err);
3451 return -ENODEV;
3453 val2 = val << 8;
3454 err = regmap_read(state->regmap[ADV76XX_PAGE_IO],
3455 0xeb,
3456 &val);
3457 if (err) {
3458 v4l2_err(sd, "Error %d reading IO Regmap\n", err);
3459 return -ENODEV;
3461 val |= val2;
3462 if ((state->info->type == ADV7611 && val != 0x2051) ||
3463 (state->info->type == ADV7612 && val != 0x2041)) {
3464 v4l2_err(sd, "not an adv761x on address 0x%x\n",
3465 client->addr << 1);
3466 return -ENODEV;
3468 break;
3471 /* control handlers */
3472 hdl = &state->hdl;
3473 v4l2_ctrl_handler_init(hdl, adv76xx_has_afe(state) ? 9 : 8);
3475 v4l2_ctrl_new_std(hdl, &adv76xx_ctrl_ops,
3476 V4L2_CID_BRIGHTNESS, -128, 127, 1, 0);
3477 v4l2_ctrl_new_std(hdl, &adv76xx_ctrl_ops,
3478 V4L2_CID_CONTRAST, 0, 255, 1, 128);
3479 v4l2_ctrl_new_std(hdl, &adv76xx_ctrl_ops,
3480 V4L2_CID_SATURATION, 0, 255, 1, 128);
3481 v4l2_ctrl_new_std(hdl, &adv76xx_ctrl_ops,
3482 V4L2_CID_HUE, 0, 128, 1, 0);
3483 ctrl = v4l2_ctrl_new_std_menu(hdl, &adv76xx_ctrl_ops,
3484 V4L2_CID_DV_RX_IT_CONTENT_TYPE, V4L2_DV_IT_CONTENT_TYPE_NO_ITC,
3485 0, V4L2_DV_IT_CONTENT_TYPE_NO_ITC);
3486 if (ctrl)
3487 ctrl->flags |= V4L2_CTRL_FLAG_VOLATILE;
3489 state->detect_tx_5v_ctrl = v4l2_ctrl_new_std(hdl, NULL,
3490 V4L2_CID_DV_RX_POWER_PRESENT, 0,
3491 (1 << state->info->num_dv_ports) - 1, 0, 0);
3492 state->rgb_quantization_range_ctrl =
3493 v4l2_ctrl_new_std_menu(hdl, &adv76xx_ctrl_ops,
3494 V4L2_CID_DV_RX_RGB_RANGE, V4L2_DV_RGB_RANGE_FULL,
3495 0, V4L2_DV_RGB_RANGE_AUTO);
3497 /* custom controls */
3498 if (adv76xx_has_afe(state))
3499 state->analog_sampling_phase_ctrl =
3500 v4l2_ctrl_new_custom(hdl, &adv7604_ctrl_analog_sampling_phase, NULL);
3501 state->free_run_color_manual_ctrl =
3502 v4l2_ctrl_new_custom(hdl, &adv76xx_ctrl_free_run_color_manual, NULL);
3503 state->free_run_color_ctrl =
3504 v4l2_ctrl_new_custom(hdl, &adv76xx_ctrl_free_run_color, NULL);
3506 sd->ctrl_handler = hdl;
3507 if (hdl->error) {
3508 err = hdl->error;
3509 goto err_hdl;
3511 if (adv76xx_s_detect_tx_5v_ctrl(sd)) {
3512 err = -ENODEV;
3513 goto err_hdl;
3516 for (i = 1; i < ADV76XX_PAGE_MAX; ++i) {
3517 struct i2c_client *dummy_client;
3519 if (!(BIT(i) & state->info->page_mask))
3520 continue;
3522 dummy_client = adv76xx_dummy_client(sd, i);
3523 if (IS_ERR(dummy_client)) {
3524 err = PTR_ERR(dummy_client);
3525 v4l2_err(sd, "failed to create i2c client %u\n", i);
3526 goto err_i2c;
3529 state->i2c_clients[i] = dummy_client;
3532 INIT_DELAYED_WORK(&state->delayed_work_enable_hotplug,
3533 adv76xx_delayed_work_enable_hotplug);
3535 state->source_pad = state->info->num_dv_ports
3536 + (state->info->has_afe ? 2 : 0);
3537 for (i = 0; i < state->source_pad; ++i)
3538 state->pads[i].flags = MEDIA_PAD_FL_SINK;
3539 state->pads[state->source_pad].flags = MEDIA_PAD_FL_SOURCE;
3540 sd->entity.function = MEDIA_ENT_F_DV_DECODER;
3542 err = media_entity_pads_init(&sd->entity, state->source_pad + 1,
3543 state->pads);
3544 if (err)
3545 goto err_work_queues;
3547 /* Configure regmaps */
3548 err = configure_regmaps(state);
3549 if (err)
3550 goto err_entity;
3552 err = adv76xx_core_init(sd);
3553 if (err)
3554 goto err_entity;
3556 if (client->irq) {
3557 err = devm_request_threaded_irq(&client->dev,
3558 client->irq,
3559 NULL, adv76xx_irq_handler,
3560 IRQF_TRIGGER_HIGH | IRQF_ONESHOT,
3561 client->name, state);
3562 if (err)
3563 goto err_entity;
3566 #if IS_ENABLED(CONFIG_VIDEO_ADV7604_CEC)
3567 state->cec_adap = cec_allocate_adapter(&adv76xx_cec_adap_ops,
3568 state, dev_name(&client->dev),
3569 CEC_CAP_DEFAULTS, ADV76XX_MAX_ADDRS);
3570 err = PTR_ERR_OR_ZERO(state->cec_adap);
3571 if (err)
3572 goto err_entity;
3573 #endif
3575 v4l2_info(sd, "%s found @ 0x%x (%s)\n", client->name,
3576 client->addr << 1, client->adapter->name);
3578 err = v4l2_async_register_subdev(sd);
3579 if (err)
3580 goto err_entity;
3582 return 0;
3584 err_entity:
3585 media_entity_cleanup(&sd->entity);
3586 err_work_queues:
3587 cancel_delayed_work(&state->delayed_work_enable_hotplug);
3588 err_i2c:
3589 adv76xx_unregister_clients(state);
3590 err_hdl:
3591 v4l2_ctrl_handler_free(hdl);
3592 return err;
3595 /* ----------------------------------------------------------------------- */
3597 static int adv76xx_remove(struct i2c_client *client)
3599 struct v4l2_subdev *sd = i2c_get_clientdata(client);
3600 struct adv76xx_state *state = to_state(sd);
3602 /* disable interrupts */
3603 io_write(sd, 0x40, 0);
3604 io_write(sd, 0x41, 0);
3605 io_write(sd, 0x46, 0);
3606 io_write(sd, 0x6e, 0);
3607 io_write(sd, 0x73, 0);
3609 cancel_delayed_work(&state->delayed_work_enable_hotplug);
3610 v4l2_async_unregister_subdev(sd);
3611 media_entity_cleanup(&sd->entity);
3612 adv76xx_unregister_clients(to_state(sd));
3613 v4l2_ctrl_handler_free(sd->ctrl_handler);
3614 return 0;
3617 /* ----------------------------------------------------------------------- */
3619 static struct i2c_driver adv76xx_driver = {
3620 .driver = {
3621 .name = "adv7604",
3622 .of_match_table = of_match_ptr(adv76xx_of_id),
3624 .probe = adv76xx_probe,
3625 .remove = adv76xx_remove,
3626 .id_table = adv76xx_i2c_id,
3629 module_i2c_driver(adv76xx_driver);