dm: Call proper helper to determine dax support
[linux/fpc-iii.git] / drivers / spi / spi-fsl-qspi.c
blob43078ba3def5df74aeb5d12f72f5045e2cc701e8
1 // SPDX-License-Identifier: GPL-2.0+
3 /*
4 * Freescale QuadSPI driver.
6 * Copyright (C) 2013 Freescale Semiconductor, Inc.
7 * Copyright (C) 2018 Bootlin
8 * Copyright (C) 2018 exceet electronics GmbH
9 * Copyright (C) 2018 Kontron Electronics GmbH
11 * Transition to SPI MEM interface:
12 * Authors:
13 * Boris Brezillon <bbrezillon@kernel.org>
14 * Frieder Schrempf <frieder.schrempf@kontron.de>
15 * Yogesh Gaur <yogeshnarayan.gaur@nxp.com>
16 * Suresh Gupta <suresh.gupta@nxp.com>
18 * Based on the original fsl-quadspi.c spi-nor driver:
19 * Author: Freescale Semiconductor, Inc.
23 #include <linux/bitops.h>
24 #include <linux/clk.h>
25 #include <linux/completion.h>
26 #include <linux/delay.h>
27 #include <linux/err.h>
28 #include <linux/errno.h>
29 #include <linux/interrupt.h>
30 #include <linux/io.h>
31 #include <linux/iopoll.h>
32 #include <linux/jiffies.h>
33 #include <linux/kernel.h>
34 #include <linux/module.h>
35 #include <linux/mutex.h>
36 #include <linux/of.h>
37 #include <linux/of_device.h>
38 #include <linux/platform_device.h>
39 #include <linux/pm_qos.h>
40 #include <linux/sizes.h>
42 #include <linux/spi/spi.h>
43 #include <linux/spi/spi-mem.h>
46 * The driver only uses one single LUT entry, that is updated on
47 * each call of exec_op(). Index 0 is preset at boot with a basic
48 * read operation, so let's use the last entry (15).
50 #define SEQID_LUT 15
52 /* Registers used by the driver */
53 #define QUADSPI_MCR 0x00
54 #define QUADSPI_MCR_RESERVED_MASK GENMASK(19, 16)
55 #define QUADSPI_MCR_MDIS_MASK BIT(14)
56 #define QUADSPI_MCR_CLR_TXF_MASK BIT(11)
57 #define QUADSPI_MCR_CLR_RXF_MASK BIT(10)
58 #define QUADSPI_MCR_DDR_EN_MASK BIT(7)
59 #define QUADSPI_MCR_END_CFG_MASK GENMASK(3, 2)
60 #define QUADSPI_MCR_SWRSTHD_MASK BIT(1)
61 #define QUADSPI_MCR_SWRSTSD_MASK BIT(0)
63 #define QUADSPI_IPCR 0x08
64 #define QUADSPI_IPCR_SEQID(x) ((x) << 24)
66 #define QUADSPI_FLSHCR 0x0c
67 #define QUADSPI_FLSHCR_TCSS_MASK GENMASK(3, 0)
68 #define QUADSPI_FLSHCR_TCSH_MASK GENMASK(11, 8)
69 #define QUADSPI_FLSHCR_TDH_MASK GENMASK(17, 16)
71 #define QUADSPI_BUF3CR 0x1c
72 #define QUADSPI_BUF3CR_ALLMST_MASK BIT(31)
73 #define QUADSPI_BUF3CR_ADATSZ(x) ((x) << 8)
74 #define QUADSPI_BUF3CR_ADATSZ_MASK GENMASK(15, 8)
76 #define QUADSPI_BFGENCR 0x20
77 #define QUADSPI_BFGENCR_SEQID(x) ((x) << 12)
79 #define QUADSPI_BUF0IND 0x30
80 #define QUADSPI_BUF1IND 0x34
81 #define QUADSPI_BUF2IND 0x38
82 #define QUADSPI_SFAR 0x100
84 #define QUADSPI_SMPR 0x108
85 #define QUADSPI_SMPR_DDRSMP_MASK GENMASK(18, 16)
86 #define QUADSPI_SMPR_FSDLY_MASK BIT(6)
87 #define QUADSPI_SMPR_FSPHS_MASK BIT(5)
88 #define QUADSPI_SMPR_HSENA_MASK BIT(0)
90 #define QUADSPI_RBCT 0x110
91 #define QUADSPI_RBCT_WMRK_MASK GENMASK(4, 0)
92 #define QUADSPI_RBCT_RXBRD_USEIPS BIT(8)
94 #define QUADSPI_TBDR 0x154
96 #define QUADSPI_SR 0x15c
97 #define QUADSPI_SR_IP_ACC_MASK BIT(1)
98 #define QUADSPI_SR_AHB_ACC_MASK BIT(2)
100 #define QUADSPI_FR 0x160
101 #define QUADSPI_FR_TFF_MASK BIT(0)
103 #define QUADSPI_RSER 0x164
104 #define QUADSPI_RSER_TFIE BIT(0)
106 #define QUADSPI_SPTRCLR 0x16c
107 #define QUADSPI_SPTRCLR_IPPTRC BIT(8)
108 #define QUADSPI_SPTRCLR_BFPTRC BIT(0)
110 #define QUADSPI_SFA1AD 0x180
111 #define QUADSPI_SFA2AD 0x184
112 #define QUADSPI_SFB1AD 0x188
113 #define QUADSPI_SFB2AD 0x18c
114 #define QUADSPI_RBDR(x) (0x200 + ((x) * 4))
116 #define QUADSPI_LUTKEY 0x300
117 #define QUADSPI_LUTKEY_VALUE 0x5AF05AF0
119 #define QUADSPI_LCKCR 0x304
120 #define QUADSPI_LCKER_LOCK BIT(0)
121 #define QUADSPI_LCKER_UNLOCK BIT(1)
123 #define QUADSPI_LUT_BASE 0x310
124 #define QUADSPI_LUT_OFFSET (SEQID_LUT * 4 * 4)
125 #define QUADSPI_LUT_REG(idx) \
126 (QUADSPI_LUT_BASE + QUADSPI_LUT_OFFSET + (idx) * 4)
128 /* Instruction set for the LUT register */
129 #define LUT_STOP 0
130 #define LUT_CMD 1
131 #define LUT_ADDR 2
132 #define LUT_DUMMY 3
133 #define LUT_MODE 4
134 #define LUT_MODE2 5
135 #define LUT_MODE4 6
136 #define LUT_FSL_READ 7
137 #define LUT_FSL_WRITE 8
138 #define LUT_JMP_ON_CS 9
139 #define LUT_ADDR_DDR 10
140 #define LUT_MODE_DDR 11
141 #define LUT_MODE2_DDR 12
142 #define LUT_MODE4_DDR 13
143 #define LUT_FSL_READ_DDR 14
144 #define LUT_FSL_WRITE_DDR 15
145 #define LUT_DATA_LEARN 16
148 * The PAD definitions for LUT register.
150 * The pad stands for the number of IO lines [0:3].
151 * For example, the quad read needs four IO lines,
152 * so you should use LUT_PAD(4).
154 #define LUT_PAD(x) (fls(x) - 1)
157 * Macro for constructing the LUT entries with the following
158 * register layout:
160 * ---------------------------------------------------
161 * | INSTR1 | PAD1 | OPRND1 | INSTR0 | PAD0 | OPRND0 |
162 * ---------------------------------------------------
164 #define LUT_DEF(idx, ins, pad, opr) \
165 ((((ins) << 10) | ((pad) << 8) | (opr)) << (((idx) % 2) * 16))
167 /* Controller needs driver to swap endianness */
168 #define QUADSPI_QUIRK_SWAP_ENDIAN BIT(0)
170 /* Controller needs 4x internal clock */
171 #define QUADSPI_QUIRK_4X_INT_CLK BIT(1)
174 * TKT253890, the controller needs the driver to fill the txfifo with
175 * 16 bytes at least to trigger a data transfer, even though the extra
176 * data won't be transferred.
178 #define QUADSPI_QUIRK_TKT253890 BIT(2)
180 /* TKT245618, the controller cannot wake up from wait mode */
181 #define QUADSPI_QUIRK_TKT245618 BIT(3)
184 * Controller adds QSPI_AMBA_BASE (base address of the mapped memory)
185 * internally. No need to add it when setting SFXXAD and SFAR registers
187 #define QUADSPI_QUIRK_BASE_INTERNAL BIT(4)
190 * Controller uses TDH bits in register QUADSPI_FLSHCR.
191 * They need to be set in accordance with the DDR/SDR mode.
193 #define QUADSPI_QUIRK_USE_TDH_SETTING BIT(5)
195 struct fsl_qspi_devtype_data {
196 unsigned int rxfifo;
197 unsigned int txfifo;
198 unsigned int ahb_buf_size;
199 unsigned int quirks;
200 bool little_endian;
203 static const struct fsl_qspi_devtype_data vybrid_data = {
204 .rxfifo = SZ_128,
205 .txfifo = SZ_64,
206 .ahb_buf_size = SZ_1K,
207 .quirks = QUADSPI_QUIRK_SWAP_ENDIAN,
208 .little_endian = true,
211 static const struct fsl_qspi_devtype_data imx6sx_data = {
212 .rxfifo = SZ_128,
213 .txfifo = SZ_512,
214 .ahb_buf_size = SZ_1K,
215 .quirks = QUADSPI_QUIRK_4X_INT_CLK | QUADSPI_QUIRK_TKT245618,
216 .little_endian = true,
219 static const struct fsl_qspi_devtype_data imx7d_data = {
220 .rxfifo = SZ_128,
221 .txfifo = SZ_512,
222 .ahb_buf_size = SZ_1K,
223 .quirks = QUADSPI_QUIRK_TKT253890 | QUADSPI_QUIRK_4X_INT_CLK |
224 QUADSPI_QUIRK_USE_TDH_SETTING,
225 .little_endian = true,
228 static const struct fsl_qspi_devtype_data imx6ul_data = {
229 .rxfifo = SZ_128,
230 .txfifo = SZ_512,
231 .ahb_buf_size = SZ_1K,
232 .quirks = QUADSPI_QUIRK_TKT253890 | QUADSPI_QUIRK_4X_INT_CLK |
233 QUADSPI_QUIRK_USE_TDH_SETTING,
234 .little_endian = true,
237 static const struct fsl_qspi_devtype_data ls1021a_data = {
238 .rxfifo = SZ_128,
239 .txfifo = SZ_64,
240 .ahb_buf_size = SZ_1K,
241 .quirks = 0,
242 .little_endian = false,
245 static const struct fsl_qspi_devtype_data ls2080a_data = {
246 .rxfifo = SZ_128,
247 .txfifo = SZ_64,
248 .ahb_buf_size = SZ_1K,
249 .quirks = QUADSPI_QUIRK_TKT253890 | QUADSPI_QUIRK_BASE_INTERNAL,
250 .little_endian = true,
253 struct fsl_qspi {
254 void __iomem *iobase;
255 void __iomem *ahb_addr;
256 u32 memmap_phy;
257 struct clk *clk, *clk_en;
258 struct device *dev;
259 struct completion c;
260 const struct fsl_qspi_devtype_data *devtype_data;
261 struct mutex lock;
262 struct pm_qos_request pm_qos_req;
263 int selected;
266 static inline int needs_swap_endian(struct fsl_qspi *q)
268 return q->devtype_data->quirks & QUADSPI_QUIRK_SWAP_ENDIAN;
271 static inline int needs_4x_clock(struct fsl_qspi *q)
273 return q->devtype_data->quirks & QUADSPI_QUIRK_4X_INT_CLK;
276 static inline int needs_fill_txfifo(struct fsl_qspi *q)
278 return q->devtype_data->quirks & QUADSPI_QUIRK_TKT253890;
281 static inline int needs_wakeup_wait_mode(struct fsl_qspi *q)
283 return q->devtype_data->quirks & QUADSPI_QUIRK_TKT245618;
286 static inline int needs_amba_base_offset(struct fsl_qspi *q)
288 return !(q->devtype_data->quirks & QUADSPI_QUIRK_BASE_INTERNAL);
291 static inline int needs_tdh_setting(struct fsl_qspi *q)
293 return q->devtype_data->quirks & QUADSPI_QUIRK_USE_TDH_SETTING;
297 * An IC bug makes it necessary to rearrange the 32-bit data.
298 * Later chips, such as IMX6SLX, have fixed this bug.
300 static inline u32 fsl_qspi_endian_xchg(struct fsl_qspi *q, u32 a)
302 return needs_swap_endian(q) ? __swab32(a) : a;
306 * R/W functions for big- or little-endian registers:
307 * The QSPI controller's endianness is independent of
308 * the CPU core's endianness. So far, although the CPU
309 * core is little-endian the QSPI controller can use
310 * big-endian or little-endian.
312 static void qspi_writel(struct fsl_qspi *q, u32 val, void __iomem *addr)
314 if (q->devtype_data->little_endian)
315 iowrite32(val, addr);
316 else
317 iowrite32be(val, addr);
320 static u32 qspi_readl(struct fsl_qspi *q, void __iomem *addr)
322 if (q->devtype_data->little_endian)
323 return ioread32(addr);
325 return ioread32be(addr);
328 static irqreturn_t fsl_qspi_irq_handler(int irq, void *dev_id)
330 struct fsl_qspi *q = dev_id;
331 u32 reg;
333 /* clear interrupt */
334 reg = qspi_readl(q, q->iobase + QUADSPI_FR);
335 qspi_writel(q, reg, q->iobase + QUADSPI_FR);
337 if (reg & QUADSPI_FR_TFF_MASK)
338 complete(&q->c);
340 dev_dbg(q->dev, "QUADSPI_FR : 0x%.8x:0x%.8x\n", 0, reg);
341 return IRQ_HANDLED;
344 static int fsl_qspi_check_buswidth(struct fsl_qspi *q, u8 width)
346 switch (width) {
347 case 1:
348 case 2:
349 case 4:
350 return 0;
353 return -ENOTSUPP;
356 static bool fsl_qspi_supports_op(struct spi_mem *mem,
357 const struct spi_mem_op *op)
359 struct fsl_qspi *q = spi_controller_get_devdata(mem->spi->master);
360 int ret;
362 ret = fsl_qspi_check_buswidth(q, op->cmd.buswidth);
364 if (op->addr.nbytes)
365 ret |= fsl_qspi_check_buswidth(q, op->addr.buswidth);
367 if (op->dummy.nbytes)
368 ret |= fsl_qspi_check_buswidth(q, op->dummy.buswidth);
370 if (op->data.nbytes)
371 ret |= fsl_qspi_check_buswidth(q, op->data.buswidth);
373 if (ret)
374 return false;
377 * The number of instructions needed for the op, needs
378 * to fit into a single LUT entry.
380 if (op->addr.nbytes +
381 (op->dummy.nbytes ? 1:0) +
382 (op->data.nbytes ? 1:0) > 6)
383 return false;
385 /* Max 64 dummy clock cycles supported */
386 if (op->dummy.nbytes &&
387 (op->dummy.nbytes * 8 / op->dummy.buswidth > 64))
388 return false;
390 /* Max data length, check controller limits and alignment */
391 if (op->data.dir == SPI_MEM_DATA_IN &&
392 (op->data.nbytes > q->devtype_data->ahb_buf_size ||
393 (op->data.nbytes > q->devtype_data->rxfifo - 4 &&
394 !IS_ALIGNED(op->data.nbytes, 8))))
395 return false;
397 if (op->data.dir == SPI_MEM_DATA_OUT &&
398 op->data.nbytes > q->devtype_data->txfifo)
399 return false;
401 return spi_mem_default_supports_op(mem, op);
404 static void fsl_qspi_prepare_lut(struct fsl_qspi *q,
405 const struct spi_mem_op *op)
407 void __iomem *base = q->iobase;
408 u32 lutval[4] = {};
409 int lutidx = 1, i;
411 lutval[0] |= LUT_DEF(0, LUT_CMD, LUT_PAD(op->cmd.buswidth),
412 op->cmd.opcode);
415 * For some unknown reason, using LUT_ADDR doesn't work in some
416 * cases (at least with only one byte long addresses), so
417 * let's use LUT_MODE to write the address bytes one by one
419 for (i = 0; i < op->addr.nbytes; i++) {
420 u8 addrbyte = op->addr.val >> (8 * (op->addr.nbytes - i - 1));
422 lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_MODE,
423 LUT_PAD(op->addr.buswidth),
424 addrbyte);
425 lutidx++;
428 if (op->dummy.nbytes) {
429 lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_DUMMY,
430 LUT_PAD(op->dummy.buswidth),
431 op->dummy.nbytes * 8 /
432 op->dummy.buswidth);
433 lutidx++;
436 if (op->data.nbytes) {
437 lutval[lutidx / 2] |= LUT_DEF(lutidx,
438 op->data.dir == SPI_MEM_DATA_IN ?
439 LUT_FSL_READ : LUT_FSL_WRITE,
440 LUT_PAD(op->data.buswidth),
442 lutidx++;
445 lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_STOP, 0, 0);
447 /* unlock LUT */
448 qspi_writel(q, QUADSPI_LUTKEY_VALUE, q->iobase + QUADSPI_LUTKEY);
449 qspi_writel(q, QUADSPI_LCKER_UNLOCK, q->iobase + QUADSPI_LCKCR);
451 /* fill LUT */
452 for (i = 0; i < ARRAY_SIZE(lutval); i++)
453 qspi_writel(q, lutval[i], base + QUADSPI_LUT_REG(i));
455 /* lock LUT */
456 qspi_writel(q, QUADSPI_LUTKEY_VALUE, q->iobase + QUADSPI_LUTKEY);
457 qspi_writel(q, QUADSPI_LCKER_LOCK, q->iobase + QUADSPI_LCKCR);
460 static int fsl_qspi_clk_prep_enable(struct fsl_qspi *q)
462 int ret;
464 ret = clk_prepare_enable(q->clk_en);
465 if (ret)
466 return ret;
468 ret = clk_prepare_enable(q->clk);
469 if (ret) {
470 clk_disable_unprepare(q->clk_en);
471 return ret;
474 if (needs_wakeup_wait_mode(q))
475 pm_qos_add_request(&q->pm_qos_req, PM_QOS_CPU_DMA_LATENCY, 0);
477 return 0;
480 static void fsl_qspi_clk_disable_unprep(struct fsl_qspi *q)
482 if (needs_wakeup_wait_mode(q))
483 pm_qos_remove_request(&q->pm_qos_req);
485 clk_disable_unprepare(q->clk);
486 clk_disable_unprepare(q->clk_en);
490 * If we have changed the content of the flash by writing or erasing, or if we
491 * read from flash with a different offset into the page buffer, we need to
492 * invalidate the AHB buffer. If we do not do so, we may read out the wrong
493 * data. The spec tells us reset the AHB domain and Serial Flash domain at
494 * the same time.
496 static void fsl_qspi_invalidate(struct fsl_qspi *q)
498 u32 reg;
500 reg = qspi_readl(q, q->iobase + QUADSPI_MCR);
501 reg |= QUADSPI_MCR_SWRSTHD_MASK | QUADSPI_MCR_SWRSTSD_MASK;
502 qspi_writel(q, reg, q->iobase + QUADSPI_MCR);
505 * The minimum delay : 1 AHB + 2 SFCK clocks.
506 * Delay 1 us is enough.
508 udelay(1);
510 reg &= ~(QUADSPI_MCR_SWRSTHD_MASK | QUADSPI_MCR_SWRSTSD_MASK);
511 qspi_writel(q, reg, q->iobase + QUADSPI_MCR);
514 static void fsl_qspi_select_mem(struct fsl_qspi *q, struct spi_device *spi)
516 unsigned long rate = spi->max_speed_hz;
517 int ret;
519 if (q->selected == spi->chip_select)
520 return;
522 if (needs_4x_clock(q))
523 rate *= 4;
525 fsl_qspi_clk_disable_unprep(q);
527 ret = clk_set_rate(q->clk, rate);
528 if (ret)
529 return;
531 ret = fsl_qspi_clk_prep_enable(q);
532 if (ret)
533 return;
535 q->selected = spi->chip_select;
537 fsl_qspi_invalidate(q);
540 static void fsl_qspi_read_ahb(struct fsl_qspi *q, const struct spi_mem_op *op)
542 memcpy_fromio(op->data.buf.in,
543 q->ahb_addr + q->selected * q->devtype_data->ahb_buf_size,
544 op->data.nbytes);
547 static void fsl_qspi_fill_txfifo(struct fsl_qspi *q,
548 const struct spi_mem_op *op)
550 void __iomem *base = q->iobase;
551 int i;
552 u32 val;
554 for (i = 0; i < ALIGN_DOWN(op->data.nbytes, 4); i += 4) {
555 memcpy(&val, op->data.buf.out + i, 4);
556 val = fsl_qspi_endian_xchg(q, val);
557 qspi_writel(q, val, base + QUADSPI_TBDR);
560 if (i < op->data.nbytes) {
561 memcpy(&val, op->data.buf.out + i, op->data.nbytes - i);
562 val = fsl_qspi_endian_xchg(q, val);
563 qspi_writel(q, val, base + QUADSPI_TBDR);
566 if (needs_fill_txfifo(q)) {
567 for (i = op->data.nbytes; i < 16; i += 4)
568 qspi_writel(q, 0, base + QUADSPI_TBDR);
572 static void fsl_qspi_read_rxfifo(struct fsl_qspi *q,
573 const struct spi_mem_op *op)
575 void __iomem *base = q->iobase;
576 int i;
577 u8 *buf = op->data.buf.in;
578 u32 val;
580 for (i = 0; i < ALIGN_DOWN(op->data.nbytes, 4); i += 4) {
581 val = qspi_readl(q, base + QUADSPI_RBDR(i / 4));
582 val = fsl_qspi_endian_xchg(q, val);
583 memcpy(buf + i, &val, 4);
586 if (i < op->data.nbytes) {
587 val = qspi_readl(q, base + QUADSPI_RBDR(i / 4));
588 val = fsl_qspi_endian_xchg(q, val);
589 memcpy(buf + i, &val, op->data.nbytes - i);
593 static int fsl_qspi_do_op(struct fsl_qspi *q, const struct spi_mem_op *op)
595 void __iomem *base = q->iobase;
596 int err = 0;
598 init_completion(&q->c);
601 * Always start the sequence at the same index since we update
602 * the LUT at each exec_op() call. And also specify the DATA
603 * length, since it's has not been specified in the LUT.
605 qspi_writel(q, op->data.nbytes | QUADSPI_IPCR_SEQID(SEQID_LUT),
606 base + QUADSPI_IPCR);
608 /* Wait for the interrupt. */
609 if (!wait_for_completion_timeout(&q->c, msecs_to_jiffies(1000)))
610 err = -ETIMEDOUT;
612 if (!err && op->data.nbytes && op->data.dir == SPI_MEM_DATA_IN)
613 fsl_qspi_read_rxfifo(q, op);
615 return err;
618 static int fsl_qspi_readl_poll_tout(struct fsl_qspi *q, void __iomem *base,
619 u32 mask, u32 delay_us, u32 timeout_us)
621 u32 reg;
623 if (!q->devtype_data->little_endian)
624 mask = (u32)cpu_to_be32(mask);
626 return readl_poll_timeout(base, reg, !(reg & mask), delay_us,
627 timeout_us);
630 static int fsl_qspi_exec_op(struct spi_mem *mem, const struct spi_mem_op *op)
632 struct fsl_qspi *q = spi_controller_get_devdata(mem->spi->master);
633 void __iomem *base = q->iobase;
634 u32 addr_offset = 0;
635 int err = 0;
637 mutex_lock(&q->lock);
639 /* wait for the controller being ready */
640 fsl_qspi_readl_poll_tout(q, base + QUADSPI_SR, (QUADSPI_SR_IP_ACC_MASK |
641 QUADSPI_SR_AHB_ACC_MASK), 10, 1000);
643 fsl_qspi_select_mem(q, mem->spi);
645 if (needs_amba_base_offset(q))
646 addr_offset = q->memmap_phy;
648 qspi_writel(q,
649 q->selected * q->devtype_data->ahb_buf_size + addr_offset,
650 base + QUADSPI_SFAR);
652 qspi_writel(q, qspi_readl(q, base + QUADSPI_MCR) |
653 QUADSPI_MCR_CLR_RXF_MASK | QUADSPI_MCR_CLR_TXF_MASK,
654 base + QUADSPI_MCR);
656 qspi_writel(q, QUADSPI_SPTRCLR_BFPTRC | QUADSPI_SPTRCLR_IPPTRC,
657 base + QUADSPI_SPTRCLR);
659 fsl_qspi_prepare_lut(q, op);
662 * If we have large chunks of data, we read them through the AHB bus
663 * by accessing the mapped memory. In all other cases we use
664 * IP commands to access the flash.
666 if (op->data.nbytes > (q->devtype_data->rxfifo - 4) &&
667 op->data.dir == SPI_MEM_DATA_IN) {
668 fsl_qspi_read_ahb(q, op);
669 } else {
670 qspi_writel(q, QUADSPI_RBCT_WMRK_MASK |
671 QUADSPI_RBCT_RXBRD_USEIPS, base + QUADSPI_RBCT);
673 if (op->data.nbytes && op->data.dir == SPI_MEM_DATA_OUT)
674 fsl_qspi_fill_txfifo(q, op);
676 err = fsl_qspi_do_op(q, op);
679 /* Invalidate the data in the AHB buffer. */
680 fsl_qspi_invalidate(q);
682 mutex_unlock(&q->lock);
684 return err;
687 static int fsl_qspi_adjust_op_size(struct spi_mem *mem, struct spi_mem_op *op)
689 struct fsl_qspi *q = spi_controller_get_devdata(mem->spi->master);
691 if (op->data.dir == SPI_MEM_DATA_OUT) {
692 if (op->data.nbytes > q->devtype_data->txfifo)
693 op->data.nbytes = q->devtype_data->txfifo;
694 } else {
695 if (op->data.nbytes > q->devtype_data->ahb_buf_size)
696 op->data.nbytes = q->devtype_data->ahb_buf_size;
697 else if (op->data.nbytes > (q->devtype_data->rxfifo - 4))
698 op->data.nbytes = ALIGN_DOWN(op->data.nbytes, 8);
701 return 0;
704 static int fsl_qspi_default_setup(struct fsl_qspi *q)
706 void __iomem *base = q->iobase;
707 u32 reg, addr_offset = 0;
708 int ret;
710 /* disable and unprepare clock to avoid glitch pass to controller */
711 fsl_qspi_clk_disable_unprep(q);
713 /* the default frequency, we will change it later if necessary. */
714 ret = clk_set_rate(q->clk, 66000000);
715 if (ret)
716 return ret;
718 ret = fsl_qspi_clk_prep_enable(q);
719 if (ret)
720 return ret;
722 /* Reset the module */
723 qspi_writel(q, QUADSPI_MCR_SWRSTSD_MASK | QUADSPI_MCR_SWRSTHD_MASK,
724 base + QUADSPI_MCR);
725 udelay(1);
727 /* Disable the module */
728 qspi_writel(q, QUADSPI_MCR_MDIS_MASK | QUADSPI_MCR_RESERVED_MASK,
729 base + QUADSPI_MCR);
732 * Previous boot stages (BootROM, bootloader) might have used DDR
733 * mode and did not clear the TDH bits. As we currently use SDR mode
734 * only, clear the TDH bits if necessary.
736 if (needs_tdh_setting(q))
737 qspi_writel(q, qspi_readl(q, base + QUADSPI_FLSHCR) &
738 ~QUADSPI_FLSHCR_TDH_MASK,
739 base + QUADSPI_FLSHCR);
741 reg = qspi_readl(q, base + QUADSPI_SMPR);
742 qspi_writel(q, reg & ~(QUADSPI_SMPR_FSDLY_MASK
743 | QUADSPI_SMPR_FSPHS_MASK
744 | QUADSPI_SMPR_HSENA_MASK
745 | QUADSPI_SMPR_DDRSMP_MASK), base + QUADSPI_SMPR);
747 /* We only use the buffer3 for AHB read */
748 qspi_writel(q, 0, base + QUADSPI_BUF0IND);
749 qspi_writel(q, 0, base + QUADSPI_BUF1IND);
750 qspi_writel(q, 0, base + QUADSPI_BUF2IND);
752 qspi_writel(q, QUADSPI_BFGENCR_SEQID(SEQID_LUT),
753 q->iobase + QUADSPI_BFGENCR);
754 qspi_writel(q, QUADSPI_RBCT_WMRK_MASK, base + QUADSPI_RBCT);
755 qspi_writel(q, QUADSPI_BUF3CR_ALLMST_MASK |
756 QUADSPI_BUF3CR_ADATSZ(q->devtype_data->ahb_buf_size / 8),
757 base + QUADSPI_BUF3CR);
759 if (needs_amba_base_offset(q))
760 addr_offset = q->memmap_phy;
763 * In HW there can be a maximum of four chips on two buses with
764 * two chip selects on each bus. We use four chip selects in SW
765 * to differentiate between the four chips.
766 * We use ahb_buf_size for each chip and set SFA1AD, SFA2AD, SFB1AD,
767 * SFB2AD accordingly.
769 qspi_writel(q, q->devtype_data->ahb_buf_size + addr_offset,
770 base + QUADSPI_SFA1AD);
771 qspi_writel(q, q->devtype_data->ahb_buf_size * 2 + addr_offset,
772 base + QUADSPI_SFA2AD);
773 qspi_writel(q, q->devtype_data->ahb_buf_size * 3 + addr_offset,
774 base + QUADSPI_SFB1AD);
775 qspi_writel(q, q->devtype_data->ahb_buf_size * 4 + addr_offset,
776 base + QUADSPI_SFB2AD);
778 q->selected = -1;
780 /* Enable the module */
781 qspi_writel(q, QUADSPI_MCR_RESERVED_MASK | QUADSPI_MCR_END_CFG_MASK,
782 base + QUADSPI_MCR);
784 /* clear all interrupt status */
785 qspi_writel(q, 0xffffffff, q->iobase + QUADSPI_FR);
787 /* enable the interrupt */
788 qspi_writel(q, QUADSPI_RSER_TFIE, q->iobase + QUADSPI_RSER);
790 return 0;
793 static const char *fsl_qspi_get_name(struct spi_mem *mem)
795 struct fsl_qspi *q = spi_controller_get_devdata(mem->spi->master);
796 struct device *dev = &mem->spi->dev;
797 const char *name;
800 * In order to keep mtdparts compatible with the old MTD driver at
801 * mtd/spi-nor/fsl-quadspi.c, we set a custom name derived from the
802 * platform_device of the controller.
804 if (of_get_available_child_count(q->dev->of_node) == 1)
805 return dev_name(q->dev);
807 name = devm_kasprintf(dev, GFP_KERNEL,
808 "%s-%d", dev_name(q->dev),
809 mem->spi->chip_select);
811 if (!name) {
812 dev_err(dev, "failed to get memory for custom flash name\n");
813 return ERR_PTR(-ENOMEM);
816 return name;
819 static const struct spi_controller_mem_ops fsl_qspi_mem_ops = {
820 .adjust_op_size = fsl_qspi_adjust_op_size,
821 .supports_op = fsl_qspi_supports_op,
822 .exec_op = fsl_qspi_exec_op,
823 .get_name = fsl_qspi_get_name,
826 static int fsl_qspi_probe(struct platform_device *pdev)
828 struct spi_controller *ctlr;
829 struct device *dev = &pdev->dev;
830 struct device_node *np = dev->of_node;
831 struct resource *res;
832 struct fsl_qspi *q;
833 int ret;
835 ctlr = spi_alloc_master(&pdev->dev, sizeof(*q));
836 if (!ctlr)
837 return -ENOMEM;
839 ctlr->mode_bits = SPI_RX_DUAL | SPI_RX_QUAD |
840 SPI_TX_DUAL | SPI_TX_QUAD;
842 q = spi_controller_get_devdata(ctlr);
843 q->dev = dev;
844 q->devtype_data = of_device_get_match_data(dev);
845 if (!q->devtype_data) {
846 ret = -ENODEV;
847 goto err_put_ctrl;
850 platform_set_drvdata(pdev, q);
852 /* find the resources */
853 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "QuadSPI");
854 q->iobase = devm_ioremap_resource(dev, res);
855 if (IS_ERR(q->iobase)) {
856 ret = PTR_ERR(q->iobase);
857 goto err_put_ctrl;
860 res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
861 "QuadSPI-memory");
862 q->ahb_addr = devm_ioremap_resource(dev, res);
863 if (IS_ERR(q->ahb_addr)) {
864 ret = PTR_ERR(q->ahb_addr);
865 goto err_put_ctrl;
868 q->memmap_phy = res->start;
870 /* find the clocks */
871 q->clk_en = devm_clk_get(dev, "qspi_en");
872 if (IS_ERR(q->clk_en)) {
873 ret = PTR_ERR(q->clk_en);
874 goto err_put_ctrl;
877 q->clk = devm_clk_get(dev, "qspi");
878 if (IS_ERR(q->clk)) {
879 ret = PTR_ERR(q->clk);
880 goto err_put_ctrl;
883 ret = fsl_qspi_clk_prep_enable(q);
884 if (ret) {
885 dev_err(dev, "can not enable the clock\n");
886 goto err_put_ctrl;
889 /* find the irq */
890 ret = platform_get_irq(pdev, 0);
891 if (ret < 0)
892 goto err_disable_clk;
894 ret = devm_request_irq(dev, ret,
895 fsl_qspi_irq_handler, 0, pdev->name, q);
896 if (ret) {
897 dev_err(dev, "failed to request irq: %d\n", ret);
898 goto err_disable_clk;
901 mutex_init(&q->lock);
903 ctlr->bus_num = -1;
904 ctlr->num_chipselect = 4;
905 ctlr->mem_ops = &fsl_qspi_mem_ops;
907 fsl_qspi_default_setup(q);
909 ctlr->dev.of_node = np;
911 ret = devm_spi_register_controller(dev, ctlr);
912 if (ret)
913 goto err_destroy_mutex;
915 return 0;
917 err_destroy_mutex:
918 mutex_destroy(&q->lock);
920 err_disable_clk:
921 fsl_qspi_clk_disable_unprep(q);
923 err_put_ctrl:
924 spi_controller_put(ctlr);
926 dev_err(dev, "Freescale QuadSPI probe failed\n");
927 return ret;
930 static int fsl_qspi_remove(struct platform_device *pdev)
932 struct fsl_qspi *q = platform_get_drvdata(pdev);
934 /* disable the hardware */
935 qspi_writel(q, QUADSPI_MCR_MDIS_MASK, q->iobase + QUADSPI_MCR);
936 qspi_writel(q, 0x0, q->iobase + QUADSPI_RSER);
938 fsl_qspi_clk_disable_unprep(q);
940 mutex_destroy(&q->lock);
942 return 0;
945 static int fsl_qspi_suspend(struct device *dev)
947 return 0;
950 static int fsl_qspi_resume(struct device *dev)
952 struct fsl_qspi *q = dev_get_drvdata(dev);
954 fsl_qspi_default_setup(q);
956 return 0;
959 static const struct of_device_id fsl_qspi_dt_ids[] = {
960 { .compatible = "fsl,vf610-qspi", .data = &vybrid_data, },
961 { .compatible = "fsl,imx6sx-qspi", .data = &imx6sx_data, },
962 { .compatible = "fsl,imx7d-qspi", .data = &imx7d_data, },
963 { .compatible = "fsl,imx6ul-qspi", .data = &imx6ul_data, },
964 { .compatible = "fsl,ls1021a-qspi", .data = &ls1021a_data, },
965 { .compatible = "fsl,ls2080a-qspi", .data = &ls2080a_data, },
966 { /* sentinel */ }
968 MODULE_DEVICE_TABLE(of, fsl_qspi_dt_ids);
970 static const struct dev_pm_ops fsl_qspi_pm_ops = {
971 .suspend = fsl_qspi_suspend,
972 .resume = fsl_qspi_resume,
975 static struct platform_driver fsl_qspi_driver = {
976 .driver = {
977 .name = "fsl-quadspi",
978 .of_match_table = fsl_qspi_dt_ids,
979 .pm = &fsl_qspi_pm_ops,
981 .probe = fsl_qspi_probe,
982 .remove = fsl_qspi_remove,
984 module_platform_driver(fsl_qspi_driver);
986 MODULE_DESCRIPTION("Freescale QuadSPI Controller Driver");
987 MODULE_AUTHOR("Freescale Semiconductor Inc.");
988 MODULE_AUTHOR("Boris Brezillon <bbrezillon@kernel.org>");
989 MODULE_AUTHOR("Frieder Schrempf <frieder.schrempf@kontron.de>");
990 MODULE_AUTHOR("Yogesh Gaur <yogeshnarayan.gaur@nxp.com>");
991 MODULE_AUTHOR("Suresh Gupta <suresh.gupta@nxp.com>");
992 MODULE_LICENSE("GPL v2");