Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jmorris...
[linux/fpc-iii.git] / lib / radix-tree.c
blob86516f5588e31782676087fd49fe45fd87538c03
1 /*
2 * Copyright (C) 2001 Momchil Velikov
3 * Portions Copyright (C) 2001 Christoph Hellwig
4 * Copyright (C) 2005 SGI, Christoph Lameter
5 * Copyright (C) 2006 Nick Piggin
6 * Copyright (C) 2012 Konstantin Khlebnikov
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License as
10 * published by the Free Software Foundation; either version 2, or (at
11 * your option) any later version.
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * General Public License for more details.
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
23 #include <linux/errno.h>
24 #include <linux/init.h>
25 #include <linux/kernel.h>
26 #include <linux/export.h>
27 #include <linux/radix-tree.h>
28 #include <linux/percpu.h>
29 #include <linux/slab.h>
30 #include <linux/notifier.h>
31 #include <linux/cpu.h>
32 #include <linux/string.h>
33 #include <linux/bitops.h>
34 #include <linux/rcupdate.h>
37 #ifdef __KERNEL__
38 #define RADIX_TREE_MAP_SHIFT (CONFIG_BASE_SMALL ? 4 : 6)
39 #else
40 #define RADIX_TREE_MAP_SHIFT 3 /* For more stressful testing */
41 #endif
43 #define RADIX_TREE_MAP_SIZE (1UL << RADIX_TREE_MAP_SHIFT)
44 #define RADIX_TREE_MAP_MASK (RADIX_TREE_MAP_SIZE-1)
46 #define RADIX_TREE_TAG_LONGS \
47 ((RADIX_TREE_MAP_SIZE + BITS_PER_LONG - 1) / BITS_PER_LONG)
49 struct radix_tree_node {
50 unsigned int height; /* Height from the bottom */
51 unsigned int count;
52 union {
53 struct radix_tree_node *parent; /* Used when ascending tree */
54 struct rcu_head rcu_head; /* Used when freeing node */
56 void __rcu *slots[RADIX_TREE_MAP_SIZE];
57 unsigned long tags[RADIX_TREE_MAX_TAGS][RADIX_TREE_TAG_LONGS];
60 #define RADIX_TREE_INDEX_BITS (8 /* CHAR_BIT */ * sizeof(unsigned long))
61 #define RADIX_TREE_MAX_PATH (DIV_ROUND_UP(RADIX_TREE_INDEX_BITS, \
62 RADIX_TREE_MAP_SHIFT))
65 * The height_to_maxindex array needs to be one deeper than the maximum
66 * path as height 0 holds only 1 entry.
68 static unsigned long height_to_maxindex[RADIX_TREE_MAX_PATH + 1] __read_mostly;
71 * Radix tree node cache.
73 static struct kmem_cache *radix_tree_node_cachep;
76 * Per-cpu pool of preloaded nodes
78 struct radix_tree_preload {
79 int nr;
80 struct radix_tree_node *nodes[RADIX_TREE_MAX_PATH];
82 static DEFINE_PER_CPU(struct radix_tree_preload, radix_tree_preloads) = { 0, };
84 static inline void *ptr_to_indirect(void *ptr)
86 return (void *)((unsigned long)ptr | RADIX_TREE_INDIRECT_PTR);
89 static inline void *indirect_to_ptr(void *ptr)
91 return (void *)((unsigned long)ptr & ~RADIX_TREE_INDIRECT_PTR);
94 static inline gfp_t root_gfp_mask(struct radix_tree_root *root)
96 return root->gfp_mask & __GFP_BITS_MASK;
99 static inline void tag_set(struct radix_tree_node *node, unsigned int tag,
100 int offset)
102 __set_bit(offset, node->tags[tag]);
105 static inline void tag_clear(struct radix_tree_node *node, unsigned int tag,
106 int offset)
108 __clear_bit(offset, node->tags[tag]);
111 static inline int tag_get(struct radix_tree_node *node, unsigned int tag,
112 int offset)
114 return test_bit(offset, node->tags[tag]);
117 static inline void root_tag_set(struct radix_tree_root *root, unsigned int tag)
119 root->gfp_mask |= (__force gfp_t)(1 << (tag + __GFP_BITS_SHIFT));
122 static inline void root_tag_clear(struct radix_tree_root *root, unsigned int tag)
124 root->gfp_mask &= (__force gfp_t)~(1 << (tag + __GFP_BITS_SHIFT));
127 static inline void root_tag_clear_all(struct radix_tree_root *root)
129 root->gfp_mask &= __GFP_BITS_MASK;
132 static inline int root_tag_get(struct radix_tree_root *root, unsigned int tag)
134 return (__force unsigned)root->gfp_mask & (1 << (tag + __GFP_BITS_SHIFT));
138 * Returns 1 if any slot in the node has this tag set.
139 * Otherwise returns 0.
141 static inline int any_tag_set(struct radix_tree_node *node, unsigned int tag)
143 int idx;
144 for (idx = 0; idx < RADIX_TREE_TAG_LONGS; idx++) {
145 if (node->tags[tag][idx])
146 return 1;
148 return 0;
152 * radix_tree_find_next_bit - find the next set bit in a memory region
154 * @addr: The address to base the search on
155 * @size: The bitmap size in bits
156 * @offset: The bitnumber to start searching at
158 * Unrollable variant of find_next_bit() for constant size arrays.
159 * Tail bits starting from size to roundup(size, BITS_PER_LONG) must be zero.
160 * Returns next bit offset, or size if nothing found.
162 static __always_inline unsigned long
163 radix_tree_find_next_bit(const unsigned long *addr,
164 unsigned long size, unsigned long offset)
166 if (!__builtin_constant_p(size))
167 return find_next_bit(addr, size, offset);
169 if (offset < size) {
170 unsigned long tmp;
172 addr += offset / BITS_PER_LONG;
173 tmp = *addr >> (offset % BITS_PER_LONG);
174 if (tmp)
175 return __ffs(tmp) + offset;
176 offset = (offset + BITS_PER_LONG) & ~(BITS_PER_LONG - 1);
177 while (offset < size) {
178 tmp = *++addr;
179 if (tmp)
180 return __ffs(tmp) + offset;
181 offset += BITS_PER_LONG;
184 return size;
188 * This assumes that the caller has performed appropriate preallocation, and
189 * that the caller has pinned this thread of control to the current CPU.
191 static struct radix_tree_node *
192 radix_tree_node_alloc(struct radix_tree_root *root)
194 struct radix_tree_node *ret = NULL;
195 gfp_t gfp_mask = root_gfp_mask(root);
197 if (!(gfp_mask & __GFP_WAIT)) {
198 struct radix_tree_preload *rtp;
201 * Provided the caller has preloaded here, we will always
202 * succeed in getting a node here (and never reach
203 * kmem_cache_alloc)
205 rtp = &__get_cpu_var(radix_tree_preloads);
206 if (rtp->nr) {
207 ret = rtp->nodes[rtp->nr - 1];
208 rtp->nodes[rtp->nr - 1] = NULL;
209 rtp->nr--;
212 if (ret == NULL)
213 ret = kmem_cache_alloc(radix_tree_node_cachep, gfp_mask);
215 BUG_ON(radix_tree_is_indirect_ptr(ret));
216 return ret;
219 static void radix_tree_node_rcu_free(struct rcu_head *head)
221 struct radix_tree_node *node =
222 container_of(head, struct radix_tree_node, rcu_head);
223 int i;
226 * must only free zeroed nodes into the slab. radix_tree_shrink
227 * can leave us with a non-NULL entry in the first slot, so clear
228 * that here to make sure.
230 for (i = 0; i < RADIX_TREE_MAX_TAGS; i++)
231 tag_clear(node, i, 0);
233 node->slots[0] = NULL;
234 node->count = 0;
236 kmem_cache_free(radix_tree_node_cachep, node);
239 static inline void
240 radix_tree_node_free(struct radix_tree_node *node)
242 call_rcu(&node->rcu_head, radix_tree_node_rcu_free);
246 * Load up this CPU's radix_tree_node buffer with sufficient objects to
247 * ensure that the addition of a single element in the tree cannot fail. On
248 * success, return zero, with preemption disabled. On error, return -ENOMEM
249 * with preemption not disabled.
251 * To make use of this facility, the radix tree must be initialised without
252 * __GFP_WAIT being passed to INIT_RADIX_TREE().
254 int radix_tree_preload(gfp_t gfp_mask)
256 struct radix_tree_preload *rtp;
257 struct radix_tree_node *node;
258 int ret = -ENOMEM;
260 preempt_disable();
261 rtp = &__get_cpu_var(radix_tree_preloads);
262 while (rtp->nr < ARRAY_SIZE(rtp->nodes)) {
263 preempt_enable();
264 node = kmem_cache_alloc(radix_tree_node_cachep, gfp_mask);
265 if (node == NULL)
266 goto out;
267 preempt_disable();
268 rtp = &__get_cpu_var(radix_tree_preloads);
269 if (rtp->nr < ARRAY_SIZE(rtp->nodes))
270 rtp->nodes[rtp->nr++] = node;
271 else
272 kmem_cache_free(radix_tree_node_cachep, node);
274 ret = 0;
275 out:
276 return ret;
278 EXPORT_SYMBOL(radix_tree_preload);
281 * Return the maximum key which can be store into a
282 * radix tree with height HEIGHT.
284 static inline unsigned long radix_tree_maxindex(unsigned int height)
286 return height_to_maxindex[height];
290 * Extend a radix tree so it can store key @index.
292 static int radix_tree_extend(struct radix_tree_root *root, unsigned long index)
294 struct radix_tree_node *node;
295 struct radix_tree_node *slot;
296 unsigned int height;
297 int tag;
299 /* Figure out what the height should be. */
300 height = root->height + 1;
301 while (index > radix_tree_maxindex(height))
302 height++;
304 if (root->rnode == NULL) {
305 root->height = height;
306 goto out;
309 do {
310 unsigned int newheight;
311 if (!(node = radix_tree_node_alloc(root)))
312 return -ENOMEM;
314 /* Propagate the aggregated tag info into the new root */
315 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) {
316 if (root_tag_get(root, tag))
317 tag_set(node, tag, 0);
320 /* Increase the height. */
321 newheight = root->height+1;
322 node->height = newheight;
323 node->count = 1;
324 node->parent = NULL;
325 slot = root->rnode;
326 if (newheight > 1) {
327 slot = indirect_to_ptr(slot);
328 slot->parent = node;
330 node->slots[0] = slot;
331 node = ptr_to_indirect(node);
332 rcu_assign_pointer(root->rnode, node);
333 root->height = newheight;
334 } while (height > root->height);
335 out:
336 return 0;
340 * radix_tree_insert - insert into a radix tree
341 * @root: radix tree root
342 * @index: index key
343 * @item: item to insert
345 * Insert an item into the radix tree at position @index.
347 int radix_tree_insert(struct radix_tree_root *root,
348 unsigned long index, void *item)
350 struct radix_tree_node *node = NULL, *slot;
351 unsigned int height, shift;
352 int offset;
353 int error;
355 BUG_ON(radix_tree_is_indirect_ptr(item));
357 /* Make sure the tree is high enough. */
358 if (index > radix_tree_maxindex(root->height)) {
359 error = radix_tree_extend(root, index);
360 if (error)
361 return error;
364 slot = indirect_to_ptr(root->rnode);
366 height = root->height;
367 shift = (height-1) * RADIX_TREE_MAP_SHIFT;
369 offset = 0; /* uninitialised var warning */
370 while (height > 0) {
371 if (slot == NULL) {
372 /* Have to add a child node. */
373 if (!(slot = radix_tree_node_alloc(root)))
374 return -ENOMEM;
375 slot->height = height;
376 slot->parent = node;
377 if (node) {
378 rcu_assign_pointer(node->slots[offset], slot);
379 node->count++;
380 } else
381 rcu_assign_pointer(root->rnode, ptr_to_indirect(slot));
384 /* Go a level down */
385 offset = (index >> shift) & RADIX_TREE_MAP_MASK;
386 node = slot;
387 slot = node->slots[offset];
388 shift -= RADIX_TREE_MAP_SHIFT;
389 height--;
392 if (slot != NULL)
393 return -EEXIST;
395 if (node) {
396 node->count++;
397 rcu_assign_pointer(node->slots[offset], item);
398 BUG_ON(tag_get(node, 0, offset));
399 BUG_ON(tag_get(node, 1, offset));
400 } else {
401 rcu_assign_pointer(root->rnode, item);
402 BUG_ON(root_tag_get(root, 0));
403 BUG_ON(root_tag_get(root, 1));
406 return 0;
408 EXPORT_SYMBOL(radix_tree_insert);
411 * is_slot == 1 : search for the slot.
412 * is_slot == 0 : search for the node.
414 static void *radix_tree_lookup_element(struct radix_tree_root *root,
415 unsigned long index, int is_slot)
417 unsigned int height, shift;
418 struct radix_tree_node *node, **slot;
420 node = rcu_dereference_raw(root->rnode);
421 if (node == NULL)
422 return NULL;
424 if (!radix_tree_is_indirect_ptr(node)) {
425 if (index > 0)
426 return NULL;
427 return is_slot ? (void *)&root->rnode : node;
429 node = indirect_to_ptr(node);
431 height = node->height;
432 if (index > radix_tree_maxindex(height))
433 return NULL;
435 shift = (height-1) * RADIX_TREE_MAP_SHIFT;
437 do {
438 slot = (struct radix_tree_node **)
439 (node->slots + ((index>>shift) & RADIX_TREE_MAP_MASK));
440 node = rcu_dereference_raw(*slot);
441 if (node == NULL)
442 return NULL;
444 shift -= RADIX_TREE_MAP_SHIFT;
445 height--;
446 } while (height > 0);
448 return is_slot ? (void *)slot : indirect_to_ptr(node);
452 * radix_tree_lookup_slot - lookup a slot in a radix tree
453 * @root: radix tree root
454 * @index: index key
456 * Returns: the slot corresponding to the position @index in the
457 * radix tree @root. This is useful for update-if-exists operations.
459 * This function can be called under rcu_read_lock iff the slot is not
460 * modified by radix_tree_replace_slot, otherwise it must be called
461 * exclusive from other writers. Any dereference of the slot must be done
462 * using radix_tree_deref_slot.
464 void **radix_tree_lookup_slot(struct radix_tree_root *root, unsigned long index)
466 return (void **)radix_tree_lookup_element(root, index, 1);
468 EXPORT_SYMBOL(radix_tree_lookup_slot);
471 * radix_tree_lookup - perform lookup operation on a radix tree
472 * @root: radix tree root
473 * @index: index key
475 * Lookup the item at the position @index in the radix tree @root.
477 * This function can be called under rcu_read_lock, however the caller
478 * must manage lifetimes of leaf nodes (eg. RCU may also be used to free
479 * them safely). No RCU barriers are required to access or modify the
480 * returned item, however.
482 void *radix_tree_lookup(struct radix_tree_root *root, unsigned long index)
484 return radix_tree_lookup_element(root, index, 0);
486 EXPORT_SYMBOL(radix_tree_lookup);
489 * radix_tree_tag_set - set a tag on a radix tree node
490 * @root: radix tree root
491 * @index: index key
492 * @tag: tag index
494 * Set the search tag (which must be < RADIX_TREE_MAX_TAGS)
495 * corresponding to @index in the radix tree. From
496 * the root all the way down to the leaf node.
498 * Returns the address of the tagged item. Setting a tag on a not-present
499 * item is a bug.
501 void *radix_tree_tag_set(struct radix_tree_root *root,
502 unsigned long index, unsigned int tag)
504 unsigned int height, shift;
505 struct radix_tree_node *slot;
507 height = root->height;
508 BUG_ON(index > radix_tree_maxindex(height));
510 slot = indirect_to_ptr(root->rnode);
511 shift = (height - 1) * RADIX_TREE_MAP_SHIFT;
513 while (height > 0) {
514 int offset;
516 offset = (index >> shift) & RADIX_TREE_MAP_MASK;
517 if (!tag_get(slot, tag, offset))
518 tag_set(slot, tag, offset);
519 slot = slot->slots[offset];
520 BUG_ON(slot == NULL);
521 shift -= RADIX_TREE_MAP_SHIFT;
522 height--;
525 /* set the root's tag bit */
526 if (slot && !root_tag_get(root, tag))
527 root_tag_set(root, tag);
529 return slot;
531 EXPORT_SYMBOL(radix_tree_tag_set);
534 * radix_tree_tag_clear - clear a tag on a radix tree node
535 * @root: radix tree root
536 * @index: index key
537 * @tag: tag index
539 * Clear the search tag (which must be < RADIX_TREE_MAX_TAGS)
540 * corresponding to @index in the radix tree. If
541 * this causes the leaf node to have no tags set then clear the tag in the
542 * next-to-leaf node, etc.
544 * Returns the address of the tagged item on success, else NULL. ie:
545 * has the same return value and semantics as radix_tree_lookup().
547 void *radix_tree_tag_clear(struct radix_tree_root *root,
548 unsigned long index, unsigned int tag)
550 struct radix_tree_node *node = NULL;
551 struct radix_tree_node *slot = NULL;
552 unsigned int height, shift;
553 int uninitialized_var(offset);
555 height = root->height;
556 if (index > radix_tree_maxindex(height))
557 goto out;
559 shift = height * RADIX_TREE_MAP_SHIFT;
560 slot = indirect_to_ptr(root->rnode);
562 while (shift) {
563 if (slot == NULL)
564 goto out;
566 shift -= RADIX_TREE_MAP_SHIFT;
567 offset = (index >> shift) & RADIX_TREE_MAP_MASK;
568 node = slot;
569 slot = slot->slots[offset];
572 if (slot == NULL)
573 goto out;
575 while (node) {
576 if (!tag_get(node, tag, offset))
577 goto out;
578 tag_clear(node, tag, offset);
579 if (any_tag_set(node, tag))
580 goto out;
582 index >>= RADIX_TREE_MAP_SHIFT;
583 offset = index & RADIX_TREE_MAP_MASK;
584 node = node->parent;
587 /* clear the root's tag bit */
588 if (root_tag_get(root, tag))
589 root_tag_clear(root, tag);
591 out:
592 return slot;
594 EXPORT_SYMBOL(radix_tree_tag_clear);
597 * radix_tree_tag_get - get a tag on a radix tree node
598 * @root: radix tree root
599 * @index: index key
600 * @tag: tag index (< RADIX_TREE_MAX_TAGS)
602 * Return values:
604 * 0: tag not present or not set
605 * 1: tag set
607 * Note that the return value of this function may not be relied on, even if
608 * the RCU lock is held, unless tag modification and node deletion are excluded
609 * from concurrency.
611 int radix_tree_tag_get(struct radix_tree_root *root,
612 unsigned long index, unsigned int tag)
614 unsigned int height, shift;
615 struct radix_tree_node *node;
617 /* check the root's tag bit */
618 if (!root_tag_get(root, tag))
619 return 0;
621 node = rcu_dereference_raw(root->rnode);
622 if (node == NULL)
623 return 0;
625 if (!radix_tree_is_indirect_ptr(node))
626 return (index == 0);
627 node = indirect_to_ptr(node);
629 height = node->height;
630 if (index > radix_tree_maxindex(height))
631 return 0;
633 shift = (height - 1) * RADIX_TREE_MAP_SHIFT;
635 for ( ; ; ) {
636 int offset;
638 if (node == NULL)
639 return 0;
641 offset = (index >> shift) & RADIX_TREE_MAP_MASK;
642 if (!tag_get(node, tag, offset))
643 return 0;
644 if (height == 1)
645 return 1;
646 node = rcu_dereference_raw(node->slots[offset]);
647 shift -= RADIX_TREE_MAP_SHIFT;
648 height--;
651 EXPORT_SYMBOL(radix_tree_tag_get);
654 * radix_tree_next_chunk - find next chunk of slots for iteration
656 * @root: radix tree root
657 * @iter: iterator state
658 * @flags: RADIX_TREE_ITER_* flags and tag index
659 * Returns: pointer to chunk first slot, or NULL if iteration is over
661 void **radix_tree_next_chunk(struct radix_tree_root *root,
662 struct radix_tree_iter *iter, unsigned flags)
664 unsigned shift, tag = flags & RADIX_TREE_ITER_TAG_MASK;
665 struct radix_tree_node *rnode, *node;
666 unsigned long index, offset;
668 if ((flags & RADIX_TREE_ITER_TAGGED) && !root_tag_get(root, tag))
669 return NULL;
672 * Catch next_index overflow after ~0UL. iter->index never overflows
673 * during iterating; it can be zero only at the beginning.
674 * And we cannot overflow iter->next_index in a single step,
675 * because RADIX_TREE_MAP_SHIFT < BITS_PER_LONG.
677 index = iter->next_index;
678 if (!index && iter->index)
679 return NULL;
681 rnode = rcu_dereference_raw(root->rnode);
682 if (radix_tree_is_indirect_ptr(rnode)) {
683 rnode = indirect_to_ptr(rnode);
684 } else if (rnode && !index) {
685 /* Single-slot tree */
686 iter->index = 0;
687 iter->next_index = 1;
688 iter->tags = 1;
689 return (void **)&root->rnode;
690 } else
691 return NULL;
693 restart:
694 shift = (rnode->height - 1) * RADIX_TREE_MAP_SHIFT;
695 offset = index >> shift;
697 /* Index outside of the tree */
698 if (offset >= RADIX_TREE_MAP_SIZE)
699 return NULL;
701 node = rnode;
702 while (1) {
703 if ((flags & RADIX_TREE_ITER_TAGGED) ?
704 !test_bit(offset, node->tags[tag]) :
705 !node->slots[offset]) {
706 /* Hole detected */
707 if (flags & RADIX_TREE_ITER_CONTIG)
708 return NULL;
710 if (flags & RADIX_TREE_ITER_TAGGED)
711 offset = radix_tree_find_next_bit(
712 node->tags[tag],
713 RADIX_TREE_MAP_SIZE,
714 offset + 1);
715 else
716 while (++offset < RADIX_TREE_MAP_SIZE) {
717 if (node->slots[offset])
718 break;
720 index &= ~((RADIX_TREE_MAP_SIZE << shift) - 1);
721 index += offset << shift;
722 /* Overflow after ~0UL */
723 if (!index)
724 return NULL;
725 if (offset == RADIX_TREE_MAP_SIZE)
726 goto restart;
729 /* This is leaf-node */
730 if (!shift)
731 break;
733 node = rcu_dereference_raw(node->slots[offset]);
734 if (node == NULL)
735 goto restart;
736 shift -= RADIX_TREE_MAP_SHIFT;
737 offset = (index >> shift) & RADIX_TREE_MAP_MASK;
740 /* Update the iterator state */
741 iter->index = index;
742 iter->next_index = (index | RADIX_TREE_MAP_MASK) + 1;
744 /* Construct iter->tags bit-mask from node->tags[tag] array */
745 if (flags & RADIX_TREE_ITER_TAGGED) {
746 unsigned tag_long, tag_bit;
748 tag_long = offset / BITS_PER_LONG;
749 tag_bit = offset % BITS_PER_LONG;
750 iter->tags = node->tags[tag][tag_long] >> tag_bit;
751 /* This never happens if RADIX_TREE_TAG_LONGS == 1 */
752 if (tag_long < RADIX_TREE_TAG_LONGS - 1) {
753 /* Pick tags from next element */
754 if (tag_bit)
755 iter->tags |= node->tags[tag][tag_long + 1] <<
756 (BITS_PER_LONG - tag_bit);
757 /* Clip chunk size, here only BITS_PER_LONG tags */
758 iter->next_index = index + BITS_PER_LONG;
762 return node->slots + offset;
764 EXPORT_SYMBOL(radix_tree_next_chunk);
767 * radix_tree_range_tag_if_tagged - for each item in given range set given
768 * tag if item has another tag set
769 * @root: radix tree root
770 * @first_indexp: pointer to a starting index of a range to scan
771 * @last_index: last index of a range to scan
772 * @nr_to_tag: maximum number items to tag
773 * @iftag: tag index to test
774 * @settag: tag index to set if tested tag is set
776 * This function scans range of radix tree from first_index to last_index
777 * (inclusive). For each item in the range if iftag is set, the function sets
778 * also settag. The function stops either after tagging nr_to_tag items or
779 * after reaching last_index.
781 * The tags must be set from the leaf level only and propagated back up the
782 * path to the root. We must do this so that we resolve the full path before
783 * setting any tags on intermediate nodes. If we set tags as we descend, then
784 * we can get to the leaf node and find that the index that has the iftag
785 * set is outside the range we are scanning. This reults in dangling tags and
786 * can lead to problems with later tag operations (e.g. livelocks on lookups).
788 * The function returns number of leaves where the tag was set and sets
789 * *first_indexp to the first unscanned index.
790 * WARNING! *first_indexp can wrap if last_index is ULONG_MAX. Caller must
791 * be prepared to handle that.
793 unsigned long radix_tree_range_tag_if_tagged(struct radix_tree_root *root,
794 unsigned long *first_indexp, unsigned long last_index,
795 unsigned long nr_to_tag,
796 unsigned int iftag, unsigned int settag)
798 unsigned int height = root->height;
799 struct radix_tree_node *node = NULL;
800 struct radix_tree_node *slot;
801 unsigned int shift;
802 unsigned long tagged = 0;
803 unsigned long index = *first_indexp;
805 last_index = min(last_index, radix_tree_maxindex(height));
806 if (index > last_index)
807 return 0;
808 if (!nr_to_tag)
809 return 0;
810 if (!root_tag_get(root, iftag)) {
811 *first_indexp = last_index + 1;
812 return 0;
814 if (height == 0) {
815 *first_indexp = last_index + 1;
816 root_tag_set(root, settag);
817 return 1;
820 shift = (height - 1) * RADIX_TREE_MAP_SHIFT;
821 slot = indirect_to_ptr(root->rnode);
823 for (;;) {
824 unsigned long upindex;
825 int offset;
827 offset = (index >> shift) & RADIX_TREE_MAP_MASK;
828 if (!slot->slots[offset])
829 goto next;
830 if (!tag_get(slot, iftag, offset))
831 goto next;
832 if (shift) {
833 /* Go down one level */
834 shift -= RADIX_TREE_MAP_SHIFT;
835 node = slot;
836 slot = slot->slots[offset];
837 continue;
840 /* tag the leaf */
841 tagged++;
842 tag_set(slot, settag, offset);
844 /* walk back up the path tagging interior nodes */
845 upindex = index;
846 while (node) {
847 upindex >>= RADIX_TREE_MAP_SHIFT;
848 offset = upindex & RADIX_TREE_MAP_MASK;
850 /* stop if we find a node with the tag already set */
851 if (tag_get(node, settag, offset))
852 break;
853 tag_set(node, settag, offset);
854 node = node->parent;
858 * Small optimization: now clear that node pointer.
859 * Since all of this slot's ancestors now have the tag set
860 * from setting it above, we have no further need to walk
861 * back up the tree setting tags, until we update slot to
862 * point to another radix_tree_node.
864 node = NULL;
866 next:
867 /* Go to next item at level determined by 'shift' */
868 index = ((index >> shift) + 1) << shift;
869 /* Overflow can happen when last_index is ~0UL... */
870 if (index > last_index || !index)
871 break;
872 if (tagged >= nr_to_tag)
873 break;
874 while (((index >> shift) & RADIX_TREE_MAP_MASK) == 0) {
876 * We've fully scanned this node. Go up. Because
877 * last_index is guaranteed to be in the tree, what
878 * we do below cannot wander astray.
880 slot = slot->parent;
881 shift += RADIX_TREE_MAP_SHIFT;
885 * We need not to tag the root tag if there is no tag which is set with
886 * settag within the range from *first_indexp to last_index.
888 if (tagged > 0)
889 root_tag_set(root, settag);
890 *first_indexp = index;
892 return tagged;
894 EXPORT_SYMBOL(radix_tree_range_tag_if_tagged);
898 * radix_tree_next_hole - find the next hole (not-present entry)
899 * @root: tree root
900 * @index: index key
901 * @max_scan: maximum range to search
903 * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the lowest
904 * indexed hole.
906 * Returns: the index of the hole if found, otherwise returns an index
907 * outside of the set specified (in which case 'return - index >= max_scan'
908 * will be true). In rare cases of index wrap-around, 0 will be returned.
910 * radix_tree_next_hole may be called under rcu_read_lock. However, like
911 * radix_tree_gang_lookup, this will not atomically search a snapshot of
912 * the tree at a single point in time. For example, if a hole is created
913 * at index 5, then subsequently a hole is created at index 10,
914 * radix_tree_next_hole covering both indexes may return 10 if called
915 * under rcu_read_lock.
917 unsigned long radix_tree_next_hole(struct radix_tree_root *root,
918 unsigned long index, unsigned long max_scan)
920 unsigned long i;
922 for (i = 0; i < max_scan; i++) {
923 if (!radix_tree_lookup(root, index))
924 break;
925 index++;
926 if (index == 0)
927 break;
930 return index;
932 EXPORT_SYMBOL(radix_tree_next_hole);
935 * radix_tree_prev_hole - find the prev hole (not-present entry)
936 * @root: tree root
937 * @index: index key
938 * @max_scan: maximum range to search
940 * Search backwards in the range [max(index-max_scan+1, 0), index]
941 * for the first hole.
943 * Returns: the index of the hole if found, otherwise returns an index
944 * outside of the set specified (in which case 'index - return >= max_scan'
945 * will be true). In rare cases of wrap-around, ULONG_MAX will be returned.
947 * radix_tree_next_hole may be called under rcu_read_lock. However, like
948 * radix_tree_gang_lookup, this will not atomically search a snapshot of
949 * the tree at a single point in time. For example, if a hole is created
950 * at index 10, then subsequently a hole is created at index 5,
951 * radix_tree_prev_hole covering both indexes may return 5 if called under
952 * rcu_read_lock.
954 unsigned long radix_tree_prev_hole(struct radix_tree_root *root,
955 unsigned long index, unsigned long max_scan)
957 unsigned long i;
959 for (i = 0; i < max_scan; i++) {
960 if (!radix_tree_lookup(root, index))
961 break;
962 index--;
963 if (index == ULONG_MAX)
964 break;
967 return index;
969 EXPORT_SYMBOL(radix_tree_prev_hole);
972 * radix_tree_gang_lookup - perform multiple lookup on a radix tree
973 * @root: radix tree root
974 * @results: where the results of the lookup are placed
975 * @first_index: start the lookup from this key
976 * @max_items: place up to this many items at *results
978 * Performs an index-ascending scan of the tree for present items. Places
979 * them at *@results and returns the number of items which were placed at
980 * *@results.
982 * The implementation is naive.
984 * Like radix_tree_lookup, radix_tree_gang_lookup may be called under
985 * rcu_read_lock. In this case, rather than the returned results being
986 * an atomic snapshot of the tree at a single point in time, the semantics
987 * of an RCU protected gang lookup are as though multiple radix_tree_lookups
988 * have been issued in individual locks, and results stored in 'results'.
990 unsigned int
991 radix_tree_gang_lookup(struct radix_tree_root *root, void **results,
992 unsigned long first_index, unsigned int max_items)
994 struct radix_tree_iter iter;
995 void **slot;
996 unsigned int ret = 0;
998 if (unlikely(!max_items))
999 return 0;
1001 radix_tree_for_each_slot(slot, root, &iter, first_index) {
1002 results[ret] = indirect_to_ptr(rcu_dereference_raw(*slot));
1003 if (!results[ret])
1004 continue;
1005 if (++ret == max_items)
1006 break;
1009 return ret;
1011 EXPORT_SYMBOL(radix_tree_gang_lookup);
1014 * radix_tree_gang_lookup_slot - perform multiple slot lookup on radix tree
1015 * @root: radix tree root
1016 * @results: where the results of the lookup are placed
1017 * @indices: where their indices should be placed (but usually NULL)
1018 * @first_index: start the lookup from this key
1019 * @max_items: place up to this many items at *results
1021 * Performs an index-ascending scan of the tree for present items. Places
1022 * their slots at *@results and returns the number of items which were
1023 * placed at *@results.
1025 * The implementation is naive.
1027 * Like radix_tree_gang_lookup as far as RCU and locking goes. Slots must
1028 * be dereferenced with radix_tree_deref_slot, and if using only RCU
1029 * protection, radix_tree_deref_slot may fail requiring a retry.
1031 unsigned int
1032 radix_tree_gang_lookup_slot(struct radix_tree_root *root,
1033 void ***results, unsigned long *indices,
1034 unsigned long first_index, unsigned int max_items)
1036 struct radix_tree_iter iter;
1037 void **slot;
1038 unsigned int ret = 0;
1040 if (unlikely(!max_items))
1041 return 0;
1043 radix_tree_for_each_slot(slot, root, &iter, first_index) {
1044 results[ret] = slot;
1045 if (indices)
1046 indices[ret] = iter.index;
1047 if (++ret == max_items)
1048 break;
1051 return ret;
1053 EXPORT_SYMBOL(radix_tree_gang_lookup_slot);
1056 * radix_tree_gang_lookup_tag - perform multiple lookup on a radix tree
1057 * based on a tag
1058 * @root: radix tree root
1059 * @results: where the results of the lookup are placed
1060 * @first_index: start the lookup from this key
1061 * @max_items: place up to this many items at *results
1062 * @tag: the tag index (< RADIX_TREE_MAX_TAGS)
1064 * Performs an index-ascending scan of the tree for present items which
1065 * have the tag indexed by @tag set. Places the items at *@results and
1066 * returns the number of items which were placed at *@results.
1068 unsigned int
1069 radix_tree_gang_lookup_tag(struct radix_tree_root *root, void **results,
1070 unsigned long first_index, unsigned int max_items,
1071 unsigned int tag)
1073 struct radix_tree_iter iter;
1074 void **slot;
1075 unsigned int ret = 0;
1077 if (unlikely(!max_items))
1078 return 0;
1080 radix_tree_for_each_tagged(slot, root, &iter, first_index, tag) {
1081 results[ret] = indirect_to_ptr(rcu_dereference_raw(*slot));
1082 if (!results[ret])
1083 continue;
1084 if (++ret == max_items)
1085 break;
1088 return ret;
1090 EXPORT_SYMBOL(radix_tree_gang_lookup_tag);
1093 * radix_tree_gang_lookup_tag_slot - perform multiple slot lookup on a
1094 * radix tree based on a tag
1095 * @root: radix tree root
1096 * @results: where the results of the lookup are placed
1097 * @first_index: start the lookup from this key
1098 * @max_items: place up to this many items at *results
1099 * @tag: the tag index (< RADIX_TREE_MAX_TAGS)
1101 * Performs an index-ascending scan of the tree for present items which
1102 * have the tag indexed by @tag set. Places the slots at *@results and
1103 * returns the number of slots which were placed at *@results.
1105 unsigned int
1106 radix_tree_gang_lookup_tag_slot(struct radix_tree_root *root, void ***results,
1107 unsigned long first_index, unsigned int max_items,
1108 unsigned int tag)
1110 struct radix_tree_iter iter;
1111 void **slot;
1112 unsigned int ret = 0;
1114 if (unlikely(!max_items))
1115 return 0;
1117 radix_tree_for_each_tagged(slot, root, &iter, first_index, tag) {
1118 results[ret] = slot;
1119 if (++ret == max_items)
1120 break;
1123 return ret;
1125 EXPORT_SYMBOL(radix_tree_gang_lookup_tag_slot);
1127 #if defined(CONFIG_SHMEM) && defined(CONFIG_SWAP)
1128 #include <linux/sched.h> /* for cond_resched() */
1131 * This linear search is at present only useful to shmem_unuse_inode().
1133 static unsigned long __locate(struct radix_tree_node *slot, void *item,
1134 unsigned long index, unsigned long *found_index)
1136 unsigned int shift, height;
1137 unsigned long i;
1139 height = slot->height;
1140 shift = (height-1) * RADIX_TREE_MAP_SHIFT;
1142 for ( ; height > 1; height--) {
1143 i = (index >> shift) & RADIX_TREE_MAP_MASK;
1144 for (;;) {
1145 if (slot->slots[i] != NULL)
1146 break;
1147 index &= ~((1UL << shift) - 1);
1148 index += 1UL << shift;
1149 if (index == 0)
1150 goto out; /* 32-bit wraparound */
1151 i++;
1152 if (i == RADIX_TREE_MAP_SIZE)
1153 goto out;
1156 shift -= RADIX_TREE_MAP_SHIFT;
1157 slot = rcu_dereference_raw(slot->slots[i]);
1158 if (slot == NULL)
1159 goto out;
1162 /* Bottom level: check items */
1163 for (i = 0; i < RADIX_TREE_MAP_SIZE; i++) {
1164 if (slot->slots[i] == item) {
1165 *found_index = index + i;
1166 index = 0;
1167 goto out;
1170 index += RADIX_TREE_MAP_SIZE;
1171 out:
1172 return index;
1176 * radix_tree_locate_item - search through radix tree for item
1177 * @root: radix tree root
1178 * @item: item to be found
1180 * Returns index where item was found, or -1 if not found.
1181 * Caller must hold no lock (since this time-consuming function needs
1182 * to be preemptible), and must check afterwards if item is still there.
1184 unsigned long radix_tree_locate_item(struct radix_tree_root *root, void *item)
1186 struct radix_tree_node *node;
1187 unsigned long max_index;
1188 unsigned long cur_index = 0;
1189 unsigned long found_index = -1;
1191 do {
1192 rcu_read_lock();
1193 node = rcu_dereference_raw(root->rnode);
1194 if (!radix_tree_is_indirect_ptr(node)) {
1195 rcu_read_unlock();
1196 if (node == item)
1197 found_index = 0;
1198 break;
1201 node = indirect_to_ptr(node);
1202 max_index = radix_tree_maxindex(node->height);
1203 if (cur_index > max_index)
1204 break;
1206 cur_index = __locate(node, item, cur_index, &found_index);
1207 rcu_read_unlock();
1208 cond_resched();
1209 } while (cur_index != 0 && cur_index <= max_index);
1211 return found_index;
1213 #else
1214 unsigned long radix_tree_locate_item(struct radix_tree_root *root, void *item)
1216 return -1;
1218 #endif /* CONFIG_SHMEM && CONFIG_SWAP */
1221 * radix_tree_shrink - shrink height of a radix tree to minimal
1222 * @root radix tree root
1224 static inline void radix_tree_shrink(struct radix_tree_root *root)
1226 /* try to shrink tree height */
1227 while (root->height > 0) {
1228 struct radix_tree_node *to_free = root->rnode;
1229 struct radix_tree_node *slot;
1231 BUG_ON(!radix_tree_is_indirect_ptr(to_free));
1232 to_free = indirect_to_ptr(to_free);
1235 * The candidate node has more than one child, or its child
1236 * is not at the leftmost slot, we cannot shrink.
1238 if (to_free->count != 1)
1239 break;
1240 if (!to_free->slots[0])
1241 break;
1244 * We don't need rcu_assign_pointer(), since we are simply
1245 * moving the node from one part of the tree to another: if it
1246 * was safe to dereference the old pointer to it
1247 * (to_free->slots[0]), it will be safe to dereference the new
1248 * one (root->rnode) as far as dependent read barriers go.
1250 slot = to_free->slots[0];
1251 if (root->height > 1) {
1252 slot->parent = NULL;
1253 slot = ptr_to_indirect(slot);
1255 root->rnode = slot;
1256 root->height--;
1259 * We have a dilemma here. The node's slot[0] must not be
1260 * NULLed in case there are concurrent lookups expecting to
1261 * find the item. However if this was a bottom-level node,
1262 * then it may be subject to the slot pointer being visible
1263 * to callers dereferencing it. If item corresponding to
1264 * slot[0] is subsequently deleted, these callers would expect
1265 * their slot to become empty sooner or later.
1267 * For example, lockless pagecache will look up a slot, deref
1268 * the page pointer, and if the page is 0 refcount it means it
1269 * was concurrently deleted from pagecache so try the deref
1270 * again. Fortunately there is already a requirement for logic
1271 * to retry the entire slot lookup -- the indirect pointer
1272 * problem (replacing direct root node with an indirect pointer
1273 * also results in a stale slot). So tag the slot as indirect
1274 * to force callers to retry.
1276 if (root->height == 0)
1277 *((unsigned long *)&to_free->slots[0]) |=
1278 RADIX_TREE_INDIRECT_PTR;
1280 radix_tree_node_free(to_free);
1285 * radix_tree_delete - delete an item from a radix tree
1286 * @root: radix tree root
1287 * @index: index key
1289 * Remove the item at @index from the radix tree rooted at @root.
1291 * Returns the address of the deleted item, or NULL if it was not present.
1293 void *radix_tree_delete(struct radix_tree_root *root, unsigned long index)
1295 struct radix_tree_node *node = NULL;
1296 struct radix_tree_node *slot = NULL;
1297 struct radix_tree_node *to_free;
1298 unsigned int height, shift;
1299 int tag;
1300 int uninitialized_var(offset);
1302 height = root->height;
1303 if (index > radix_tree_maxindex(height))
1304 goto out;
1306 slot = root->rnode;
1307 if (height == 0) {
1308 root_tag_clear_all(root);
1309 root->rnode = NULL;
1310 goto out;
1312 slot = indirect_to_ptr(slot);
1313 shift = height * RADIX_TREE_MAP_SHIFT;
1315 do {
1316 if (slot == NULL)
1317 goto out;
1319 shift -= RADIX_TREE_MAP_SHIFT;
1320 offset = (index >> shift) & RADIX_TREE_MAP_MASK;
1321 node = slot;
1322 slot = slot->slots[offset];
1323 } while (shift);
1325 if (slot == NULL)
1326 goto out;
1329 * Clear all tags associated with the item to be deleted.
1330 * This way of doing it would be inefficient, but seldom is any set.
1332 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) {
1333 if (tag_get(node, tag, offset))
1334 radix_tree_tag_clear(root, index, tag);
1337 to_free = NULL;
1338 /* Now free the nodes we do not need anymore */
1339 while (node) {
1340 node->slots[offset] = NULL;
1341 node->count--;
1343 * Queue the node for deferred freeing after the
1344 * last reference to it disappears (set NULL, above).
1346 if (to_free)
1347 radix_tree_node_free(to_free);
1349 if (node->count) {
1350 if (node == indirect_to_ptr(root->rnode))
1351 radix_tree_shrink(root);
1352 goto out;
1355 /* Node with zero slots in use so free it */
1356 to_free = node;
1358 index >>= RADIX_TREE_MAP_SHIFT;
1359 offset = index & RADIX_TREE_MAP_MASK;
1360 node = node->parent;
1363 root_tag_clear_all(root);
1364 root->height = 0;
1365 root->rnode = NULL;
1366 if (to_free)
1367 radix_tree_node_free(to_free);
1369 out:
1370 return slot;
1372 EXPORT_SYMBOL(radix_tree_delete);
1375 * radix_tree_tagged - test whether any items in the tree are tagged
1376 * @root: radix tree root
1377 * @tag: tag to test
1379 int radix_tree_tagged(struct radix_tree_root *root, unsigned int tag)
1381 return root_tag_get(root, tag);
1383 EXPORT_SYMBOL(radix_tree_tagged);
1385 static void
1386 radix_tree_node_ctor(void *node)
1388 memset(node, 0, sizeof(struct radix_tree_node));
1391 static __init unsigned long __maxindex(unsigned int height)
1393 unsigned int width = height * RADIX_TREE_MAP_SHIFT;
1394 int shift = RADIX_TREE_INDEX_BITS - width;
1396 if (shift < 0)
1397 return ~0UL;
1398 if (shift >= BITS_PER_LONG)
1399 return 0UL;
1400 return ~0UL >> shift;
1403 static __init void radix_tree_init_maxindex(void)
1405 unsigned int i;
1407 for (i = 0; i < ARRAY_SIZE(height_to_maxindex); i++)
1408 height_to_maxindex[i] = __maxindex(i);
1411 static int radix_tree_callback(struct notifier_block *nfb,
1412 unsigned long action,
1413 void *hcpu)
1415 int cpu = (long)hcpu;
1416 struct radix_tree_preload *rtp;
1418 /* Free per-cpu pool of perloaded nodes */
1419 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
1420 rtp = &per_cpu(radix_tree_preloads, cpu);
1421 while (rtp->nr) {
1422 kmem_cache_free(radix_tree_node_cachep,
1423 rtp->nodes[rtp->nr-1]);
1424 rtp->nodes[rtp->nr-1] = NULL;
1425 rtp->nr--;
1428 return NOTIFY_OK;
1431 void __init radix_tree_init(void)
1433 radix_tree_node_cachep = kmem_cache_create("radix_tree_node",
1434 sizeof(struct radix_tree_node), 0,
1435 SLAB_PANIC | SLAB_RECLAIM_ACCOUNT,
1436 radix_tree_node_ctor);
1437 radix_tree_init_maxindex();
1438 hotcpu_notifier(radix_tree_callback, 0);