1 #include "ceph_debug.h"
3 #include <linux/wait.h>
4 #include <linux/slab.h>
5 #include <linux/sched.h>
7 #include "mds_client.h"
8 #include "mon_client.h"
10 #include "messenger.h"
16 * A cluster of MDS (metadata server) daemons is responsible for
17 * managing the file system namespace (the directory hierarchy and
18 * inodes) and for coordinating shared access to storage. Metadata is
19 * partitioning hierarchically across a number of servers, and that
20 * partition varies over time as the cluster adjusts the distribution
21 * in order to balance load.
23 * The MDS client is primarily responsible to managing synchronous
24 * metadata requests for operations like open, unlink, and so forth.
25 * If there is a MDS failure, we find out about it when we (possibly
26 * request and) receive a new MDS map, and can resubmit affected
29 * For the most part, though, we take advantage of a lossless
30 * communications channel to the MDS, and do not need to worry about
31 * timing out or resubmitting requests.
33 * We maintain a stateful "session" with each MDS we interact with.
34 * Within each session, we sent periodic heartbeat messages to ensure
35 * any capabilities or leases we have been issues remain valid. If
36 * the session times out and goes stale, our leases and capabilities
37 * are no longer valid.
40 static void __wake_requests(struct ceph_mds_client
*mdsc
,
41 struct list_head
*head
);
43 static const struct ceph_connection_operations mds_con_ops
;
51 * parse individual inode info
53 static int parse_reply_info_in(void **p
, void *end
,
54 struct ceph_mds_reply_info_in
*info
)
59 *p
+= sizeof(struct ceph_mds_reply_inode
) +
60 sizeof(*info
->in
->fragtree
.splits
) *
61 le32_to_cpu(info
->in
->fragtree
.nsplits
);
63 ceph_decode_32_safe(p
, end
, info
->symlink_len
, bad
);
64 ceph_decode_need(p
, end
, info
->symlink_len
, bad
);
66 *p
+= info
->symlink_len
;
68 ceph_decode_32_safe(p
, end
, info
->xattr_len
, bad
);
69 ceph_decode_need(p
, end
, info
->xattr_len
, bad
);
70 info
->xattr_data
= *p
;
71 *p
+= info
->xattr_len
;
78 * parse a normal reply, which may contain a (dir+)dentry and/or a
81 static int parse_reply_info_trace(void **p
, void *end
,
82 struct ceph_mds_reply_info_parsed
*info
)
86 if (info
->head
->is_dentry
) {
87 err
= parse_reply_info_in(p
, end
, &info
->diri
);
91 if (unlikely(*p
+ sizeof(*info
->dirfrag
) > end
))
94 *p
+= sizeof(*info
->dirfrag
) +
95 sizeof(u32
)*le32_to_cpu(info
->dirfrag
->ndist
);
96 if (unlikely(*p
> end
))
99 ceph_decode_32_safe(p
, end
, info
->dname_len
, bad
);
100 ceph_decode_need(p
, end
, info
->dname_len
, bad
);
102 *p
+= info
->dname_len
;
104 *p
+= sizeof(*info
->dlease
);
107 if (info
->head
->is_target
) {
108 err
= parse_reply_info_in(p
, end
, &info
->targeti
);
113 if (unlikely(*p
!= end
))
120 pr_err("problem parsing mds trace %d\n", err
);
125 * parse readdir results
127 static int parse_reply_info_dir(void **p
, void *end
,
128 struct ceph_mds_reply_info_parsed
*info
)
134 if (*p
+ sizeof(*info
->dir_dir
) > end
)
136 *p
+= sizeof(*info
->dir_dir
) +
137 sizeof(u32
)*le32_to_cpu(info
->dir_dir
->ndist
);
141 ceph_decode_need(p
, end
, sizeof(num
) + 2, bad
);
142 num
= ceph_decode_32(p
);
143 info
->dir_end
= ceph_decode_8(p
);
144 info
->dir_complete
= ceph_decode_8(p
);
148 /* alloc large array */
150 info
->dir_in
= kcalloc(num
, sizeof(*info
->dir_in
) +
151 sizeof(*info
->dir_dname
) +
152 sizeof(*info
->dir_dname_len
) +
153 sizeof(*info
->dir_dlease
),
155 if (info
->dir_in
== NULL
) {
159 info
->dir_dname
= (void *)(info
->dir_in
+ num
);
160 info
->dir_dname_len
= (void *)(info
->dir_dname
+ num
);
161 info
->dir_dlease
= (void *)(info
->dir_dname_len
+ num
);
165 ceph_decode_need(p
, end
, sizeof(u32
)*2, bad
);
166 info
->dir_dname_len
[i
] = ceph_decode_32(p
);
167 ceph_decode_need(p
, end
, info
->dir_dname_len
[i
], bad
);
168 info
->dir_dname
[i
] = *p
;
169 *p
+= info
->dir_dname_len
[i
];
170 dout("parsed dir dname '%.*s'\n", info
->dir_dname_len
[i
],
172 info
->dir_dlease
[i
] = *p
;
173 *p
+= sizeof(struct ceph_mds_reply_lease
);
176 err
= parse_reply_info_in(p
, end
, &info
->dir_in
[i
]);
191 pr_err("problem parsing dir contents %d\n", err
);
196 * parse entire mds reply
198 static int parse_reply_info(struct ceph_msg
*msg
,
199 struct ceph_mds_reply_info_parsed
*info
)
205 info
->head
= msg
->front
.iov_base
;
206 p
= msg
->front
.iov_base
+ sizeof(struct ceph_mds_reply_head
);
207 end
= p
+ msg
->front
.iov_len
- sizeof(struct ceph_mds_reply_head
);
210 ceph_decode_32_safe(&p
, end
, len
, bad
);
212 err
= parse_reply_info_trace(&p
, p
+len
, info
);
218 ceph_decode_32_safe(&p
, end
, len
, bad
);
220 err
= parse_reply_info_dir(&p
, p
+len
, info
);
226 ceph_decode_32_safe(&p
, end
, len
, bad
);
227 info
->snapblob_len
= len
;
238 pr_err("mds parse_reply err %d\n", err
);
242 static void destroy_reply_info(struct ceph_mds_reply_info_parsed
*info
)
251 static const char *session_state_name(int s
)
254 case CEPH_MDS_SESSION_NEW
: return "new";
255 case CEPH_MDS_SESSION_OPENING
: return "opening";
256 case CEPH_MDS_SESSION_OPEN
: return "open";
257 case CEPH_MDS_SESSION_HUNG
: return "hung";
258 case CEPH_MDS_SESSION_CLOSING
: return "closing";
259 case CEPH_MDS_SESSION_RESTARTING
: return "restarting";
260 case CEPH_MDS_SESSION_RECONNECTING
: return "reconnecting";
261 default: return "???";
265 static struct ceph_mds_session
*get_session(struct ceph_mds_session
*s
)
267 if (atomic_inc_not_zero(&s
->s_ref
)) {
268 dout("mdsc get_session %p %d -> %d\n", s
,
269 atomic_read(&s
->s_ref
)-1, atomic_read(&s
->s_ref
));
272 dout("mdsc get_session %p 0 -- FAIL", s
);
277 void ceph_put_mds_session(struct ceph_mds_session
*s
)
279 dout("mdsc put_session %p %d -> %d\n", s
,
280 atomic_read(&s
->s_ref
), atomic_read(&s
->s_ref
)-1);
281 if (atomic_dec_and_test(&s
->s_ref
)) {
283 s
->s_mdsc
->client
->monc
.auth
->ops
->destroy_authorizer(
284 s
->s_mdsc
->client
->monc
.auth
, s
->s_authorizer
);
290 * called under mdsc->mutex
292 struct ceph_mds_session
*__ceph_lookup_mds_session(struct ceph_mds_client
*mdsc
,
295 struct ceph_mds_session
*session
;
297 if (mds
>= mdsc
->max_sessions
|| mdsc
->sessions
[mds
] == NULL
)
299 session
= mdsc
->sessions
[mds
];
300 dout("lookup_mds_session %p %d\n", session
,
301 atomic_read(&session
->s_ref
));
302 get_session(session
);
306 static bool __have_session(struct ceph_mds_client
*mdsc
, int mds
)
308 if (mds
>= mdsc
->max_sessions
)
310 return mdsc
->sessions
[mds
];
313 static int __verify_registered_session(struct ceph_mds_client
*mdsc
,
314 struct ceph_mds_session
*s
)
316 if (s
->s_mds
>= mdsc
->max_sessions
||
317 mdsc
->sessions
[s
->s_mds
] != s
)
323 * create+register a new session for given mds.
324 * called under mdsc->mutex.
326 static struct ceph_mds_session
*register_session(struct ceph_mds_client
*mdsc
,
329 struct ceph_mds_session
*s
;
331 s
= kzalloc(sizeof(*s
), GFP_NOFS
);
333 return ERR_PTR(-ENOMEM
);
336 s
->s_state
= CEPH_MDS_SESSION_NEW
;
339 mutex_init(&s
->s_mutex
);
341 ceph_con_init(mdsc
->client
->msgr
, &s
->s_con
);
342 s
->s_con
.private = s
;
343 s
->s_con
.ops
= &mds_con_ops
;
344 s
->s_con
.peer_name
.type
= CEPH_ENTITY_TYPE_MDS
;
345 s
->s_con
.peer_name
.num
= cpu_to_le64(mds
);
347 spin_lock_init(&s
->s_cap_lock
);
350 s
->s_renew_requested
= 0;
352 INIT_LIST_HEAD(&s
->s_caps
);
355 atomic_set(&s
->s_ref
, 1);
356 INIT_LIST_HEAD(&s
->s_waiting
);
357 INIT_LIST_HEAD(&s
->s_unsafe
);
358 s
->s_num_cap_releases
= 0;
359 s
->s_cap_iterator
= NULL
;
360 INIT_LIST_HEAD(&s
->s_cap_releases
);
361 INIT_LIST_HEAD(&s
->s_cap_releases_done
);
362 INIT_LIST_HEAD(&s
->s_cap_flushing
);
363 INIT_LIST_HEAD(&s
->s_cap_snaps_flushing
);
365 dout("register_session mds%d\n", mds
);
366 if (mds
>= mdsc
->max_sessions
) {
367 int newmax
= 1 << get_count_order(mds
+1);
368 struct ceph_mds_session
**sa
;
370 dout("register_session realloc to %d\n", newmax
);
371 sa
= kcalloc(newmax
, sizeof(void *), GFP_NOFS
);
374 if (mdsc
->sessions
) {
375 memcpy(sa
, mdsc
->sessions
,
376 mdsc
->max_sessions
* sizeof(void *));
377 kfree(mdsc
->sessions
);
380 mdsc
->max_sessions
= newmax
;
382 mdsc
->sessions
[mds
] = s
;
383 atomic_inc(&s
->s_ref
); /* one ref to sessions[], one to caller */
385 ceph_con_open(&s
->s_con
, ceph_mdsmap_get_addr(mdsc
->mdsmap
, mds
));
391 return ERR_PTR(-ENOMEM
);
395 * called under mdsc->mutex
397 static void __unregister_session(struct ceph_mds_client
*mdsc
,
398 struct ceph_mds_session
*s
)
400 dout("__unregister_session mds%d %p\n", s
->s_mds
, s
);
401 BUG_ON(mdsc
->sessions
[s
->s_mds
] != s
);
402 mdsc
->sessions
[s
->s_mds
] = NULL
;
403 ceph_con_close(&s
->s_con
);
404 ceph_put_mds_session(s
);
408 * drop session refs in request.
410 * should be last request ref, or hold mdsc->mutex
412 static void put_request_session(struct ceph_mds_request
*req
)
414 if (req
->r_session
) {
415 ceph_put_mds_session(req
->r_session
);
416 req
->r_session
= NULL
;
420 void ceph_mdsc_release_request(struct kref
*kref
)
422 struct ceph_mds_request
*req
= container_of(kref
,
423 struct ceph_mds_request
,
426 ceph_msg_put(req
->r_request
);
428 ceph_msg_put(req
->r_reply
);
429 destroy_reply_info(&req
->r_reply_info
);
432 ceph_put_cap_refs(ceph_inode(req
->r_inode
),
436 if (req
->r_locked_dir
)
437 ceph_put_cap_refs(ceph_inode(req
->r_locked_dir
),
439 if (req
->r_target_inode
)
440 iput(req
->r_target_inode
);
443 if (req
->r_old_dentry
) {
445 ceph_inode(req
->r_old_dentry
->d_parent
->d_inode
),
447 dput(req
->r_old_dentry
);
451 put_request_session(req
);
452 ceph_unreserve_caps(&req
->r_caps_reservation
);
457 * lookup session, bump ref if found.
459 * called under mdsc->mutex.
461 static struct ceph_mds_request
*__lookup_request(struct ceph_mds_client
*mdsc
,
464 struct ceph_mds_request
*req
;
465 struct rb_node
*n
= mdsc
->request_tree
.rb_node
;
468 req
= rb_entry(n
, struct ceph_mds_request
, r_node
);
469 if (tid
< req
->r_tid
)
471 else if (tid
> req
->r_tid
)
474 ceph_mdsc_get_request(req
);
481 static void __insert_request(struct ceph_mds_client
*mdsc
,
482 struct ceph_mds_request
*new)
484 struct rb_node
**p
= &mdsc
->request_tree
.rb_node
;
485 struct rb_node
*parent
= NULL
;
486 struct ceph_mds_request
*req
= NULL
;
490 req
= rb_entry(parent
, struct ceph_mds_request
, r_node
);
491 if (new->r_tid
< req
->r_tid
)
493 else if (new->r_tid
> req
->r_tid
)
499 rb_link_node(&new->r_node
, parent
, p
);
500 rb_insert_color(&new->r_node
, &mdsc
->request_tree
);
504 * Register an in-flight request, and assign a tid. Link to directory
505 * are modifying (if any).
507 * Called under mdsc->mutex.
509 static void __register_request(struct ceph_mds_client
*mdsc
,
510 struct ceph_mds_request
*req
,
513 req
->r_tid
= ++mdsc
->last_tid
;
515 ceph_reserve_caps(&req
->r_caps_reservation
, req
->r_num_caps
);
516 dout("__register_request %p tid %lld\n", req
, req
->r_tid
);
517 ceph_mdsc_get_request(req
);
518 __insert_request(mdsc
, req
);
521 struct ceph_inode_info
*ci
= ceph_inode(dir
);
523 spin_lock(&ci
->i_unsafe_lock
);
524 req
->r_unsafe_dir
= dir
;
525 list_add_tail(&req
->r_unsafe_dir_item
, &ci
->i_unsafe_dirops
);
526 spin_unlock(&ci
->i_unsafe_lock
);
530 static void __unregister_request(struct ceph_mds_client
*mdsc
,
531 struct ceph_mds_request
*req
)
533 dout("__unregister_request %p tid %lld\n", req
, req
->r_tid
);
534 rb_erase(&req
->r_node
, &mdsc
->request_tree
);
535 RB_CLEAR_NODE(&req
->r_node
);
537 if (req
->r_unsafe_dir
) {
538 struct ceph_inode_info
*ci
= ceph_inode(req
->r_unsafe_dir
);
540 spin_lock(&ci
->i_unsafe_lock
);
541 list_del_init(&req
->r_unsafe_dir_item
);
542 spin_unlock(&ci
->i_unsafe_lock
);
545 ceph_mdsc_put_request(req
);
549 * Choose mds to send request to next. If there is a hint set in the
550 * request (e.g., due to a prior forward hint from the mds), use that.
551 * Otherwise, consult frag tree and/or caps to identify the
552 * appropriate mds. If all else fails, choose randomly.
554 * Called under mdsc->mutex.
556 static int __choose_mds(struct ceph_mds_client
*mdsc
,
557 struct ceph_mds_request
*req
)
560 struct ceph_inode_info
*ci
;
561 struct ceph_cap
*cap
;
562 int mode
= req
->r_direct_mode
;
564 u32 hash
= req
->r_direct_hash
;
565 bool is_hash
= req
->r_direct_is_hash
;
568 * is there a specific mds we should try? ignore hint if we have
569 * no session and the mds is not up (active or recovering).
571 if (req
->r_resend_mds
>= 0 &&
572 (__have_session(mdsc
, req
->r_resend_mds
) ||
573 ceph_mdsmap_get_state(mdsc
->mdsmap
, req
->r_resend_mds
) > 0)) {
574 dout("choose_mds using resend_mds mds%d\n",
576 return req
->r_resend_mds
;
579 if (mode
== USE_RANDOM_MDS
)
584 inode
= req
->r_inode
;
585 } else if (req
->r_dentry
) {
586 if (req
->r_dentry
->d_inode
) {
587 inode
= req
->r_dentry
->d_inode
;
589 inode
= req
->r_dentry
->d_parent
->d_inode
;
590 hash
= req
->r_dentry
->d_name
.hash
;
594 dout("__choose_mds %p is_hash=%d (%d) mode %d\n", inode
, (int)is_hash
,
598 ci
= ceph_inode(inode
);
600 if (is_hash
&& S_ISDIR(inode
->i_mode
)) {
601 struct ceph_inode_frag frag
;
604 ceph_choose_frag(ci
, hash
, &frag
, &found
);
606 if (mode
== USE_ANY_MDS
&& frag
.ndist
> 0) {
609 /* choose a random replica */
610 get_random_bytes(&r
, 1);
613 dout("choose_mds %p %llx.%llx "
614 "frag %u mds%d (%d/%d)\n",
615 inode
, ceph_vinop(inode
),
621 /* since this file/dir wasn't known to be
622 * replicated, then we want to look for the
623 * authoritative mds. */
626 /* choose auth mds */
628 dout("choose_mds %p %llx.%llx "
629 "frag %u mds%d (auth)\n",
630 inode
, ceph_vinop(inode
), frag
.frag
, mds
);
636 spin_lock(&inode
->i_lock
);
638 if (mode
== USE_AUTH_MDS
)
639 cap
= ci
->i_auth_cap
;
640 if (!cap
&& !RB_EMPTY_ROOT(&ci
->i_caps
))
641 cap
= rb_entry(rb_first(&ci
->i_caps
), struct ceph_cap
, ci_node
);
643 spin_unlock(&inode
->i_lock
);
646 mds
= cap
->session
->s_mds
;
647 dout("choose_mds %p %llx.%llx mds%d (%scap %p)\n",
648 inode
, ceph_vinop(inode
), mds
,
649 cap
== ci
->i_auth_cap
? "auth " : "", cap
);
650 spin_unlock(&inode
->i_lock
);
654 mds
= ceph_mdsmap_get_random_mds(mdsc
->mdsmap
);
655 dout("choose_mds chose random mds%d\n", mds
);
663 static struct ceph_msg
*create_session_msg(u32 op
, u64 seq
)
665 struct ceph_msg
*msg
;
666 struct ceph_mds_session_head
*h
;
668 msg
= ceph_msg_new(CEPH_MSG_CLIENT_SESSION
, sizeof(*h
), GFP_NOFS
);
670 pr_err("create_session_msg ENOMEM creating msg\n");
673 h
= msg
->front
.iov_base
;
674 h
->op
= cpu_to_le32(op
);
675 h
->seq
= cpu_to_le64(seq
);
680 * send session open request.
682 * called under mdsc->mutex
684 static int __open_session(struct ceph_mds_client
*mdsc
,
685 struct ceph_mds_session
*session
)
687 struct ceph_msg
*msg
;
689 int mds
= session
->s_mds
;
691 /* wait for mds to go active? */
692 mstate
= ceph_mdsmap_get_state(mdsc
->mdsmap
, mds
);
693 dout("open_session to mds%d (%s)\n", mds
,
694 ceph_mds_state_name(mstate
));
695 session
->s_state
= CEPH_MDS_SESSION_OPENING
;
696 session
->s_renew_requested
= jiffies
;
698 /* send connect message */
699 msg
= create_session_msg(CEPH_SESSION_REQUEST_OPEN
, session
->s_seq
);
702 ceph_con_send(&session
->s_con
, msg
);
711 * Free preallocated cap messages assigned to this session
713 static void cleanup_cap_releases(struct ceph_mds_session
*session
)
715 struct ceph_msg
*msg
;
717 spin_lock(&session
->s_cap_lock
);
718 while (!list_empty(&session
->s_cap_releases
)) {
719 msg
= list_first_entry(&session
->s_cap_releases
,
720 struct ceph_msg
, list_head
);
721 list_del_init(&msg
->list_head
);
724 while (!list_empty(&session
->s_cap_releases_done
)) {
725 msg
= list_first_entry(&session
->s_cap_releases_done
,
726 struct ceph_msg
, list_head
);
727 list_del_init(&msg
->list_head
);
730 spin_unlock(&session
->s_cap_lock
);
734 * Helper to safely iterate over all caps associated with a session, with
735 * special care taken to handle a racing __ceph_remove_cap().
737 * Caller must hold session s_mutex.
739 static int iterate_session_caps(struct ceph_mds_session
*session
,
740 int (*cb
)(struct inode
*, struct ceph_cap
*,
744 struct ceph_cap
*cap
;
745 struct inode
*inode
, *last_inode
= NULL
;
746 struct ceph_cap
*old_cap
= NULL
;
749 dout("iterate_session_caps %p mds%d\n", session
, session
->s_mds
);
750 spin_lock(&session
->s_cap_lock
);
751 p
= session
->s_caps
.next
;
752 while (p
!= &session
->s_caps
) {
753 cap
= list_entry(p
, struct ceph_cap
, session_caps
);
754 inode
= igrab(&cap
->ci
->vfs_inode
);
759 session
->s_cap_iterator
= cap
;
760 spin_unlock(&session
->s_cap_lock
);
767 ceph_put_cap(old_cap
);
771 ret
= cb(inode
, cap
, arg
);
774 spin_lock(&session
->s_cap_lock
);
776 if (cap
->ci
== NULL
) {
777 dout("iterate_session_caps finishing cap %p removal\n",
779 BUG_ON(cap
->session
!= session
);
780 list_del_init(&cap
->session_caps
);
781 session
->s_nr_caps
--;
783 old_cap
= cap
; /* put_cap it w/o locks held */
790 session
->s_cap_iterator
= NULL
;
791 spin_unlock(&session
->s_cap_lock
);
796 ceph_put_cap(old_cap
);
801 static int remove_session_caps_cb(struct inode
*inode
, struct ceph_cap
*cap
,
804 struct ceph_inode_info
*ci
= ceph_inode(inode
);
807 dout("removing cap %p, ci is %p, inode is %p\n",
808 cap
, ci
, &ci
->vfs_inode
);
809 spin_lock(&inode
->i_lock
);
810 __ceph_remove_cap(cap
);
811 if (!__ceph_is_any_real_caps(ci
)) {
812 struct ceph_mds_client
*mdsc
=
813 &ceph_sb_to_client(inode
->i_sb
)->mdsc
;
815 spin_lock(&mdsc
->cap_dirty_lock
);
816 if (!list_empty(&ci
->i_dirty_item
)) {
817 pr_info(" dropping dirty %s state for %p %lld\n",
818 ceph_cap_string(ci
->i_dirty_caps
),
819 inode
, ceph_ino(inode
));
820 ci
->i_dirty_caps
= 0;
821 list_del_init(&ci
->i_dirty_item
);
824 if (!list_empty(&ci
->i_flushing_item
)) {
825 pr_info(" dropping dirty+flushing %s state for %p %lld\n",
826 ceph_cap_string(ci
->i_flushing_caps
),
827 inode
, ceph_ino(inode
));
828 ci
->i_flushing_caps
= 0;
829 list_del_init(&ci
->i_flushing_item
);
830 mdsc
->num_cap_flushing
--;
833 if (drop
&& ci
->i_wrbuffer_ref
) {
834 pr_info(" dropping dirty data for %p %lld\n",
835 inode
, ceph_ino(inode
));
836 ci
->i_wrbuffer_ref
= 0;
837 ci
->i_wrbuffer_ref_head
= 0;
840 spin_unlock(&mdsc
->cap_dirty_lock
);
842 spin_unlock(&inode
->i_lock
);
849 * caller must hold session s_mutex
851 static void remove_session_caps(struct ceph_mds_session
*session
)
853 dout("remove_session_caps on %p\n", session
);
854 iterate_session_caps(session
, remove_session_caps_cb
, NULL
);
855 BUG_ON(session
->s_nr_caps
> 0);
856 BUG_ON(!list_empty(&session
->s_cap_flushing
));
857 cleanup_cap_releases(session
);
861 * wake up any threads waiting on this session's caps. if the cap is
862 * old (didn't get renewed on the client reconnect), remove it now.
864 * caller must hold s_mutex.
866 static int wake_up_session_cb(struct inode
*inode
, struct ceph_cap
*cap
,
869 struct ceph_inode_info
*ci
= ceph_inode(inode
);
871 wake_up_all(&ci
->i_cap_wq
);
873 spin_lock(&inode
->i_lock
);
874 ci
->i_wanted_max_size
= 0;
875 ci
->i_requested_max_size
= 0;
876 spin_unlock(&inode
->i_lock
);
881 static void wake_up_session_caps(struct ceph_mds_session
*session
,
884 dout("wake_up_session_caps %p mds%d\n", session
, session
->s_mds
);
885 iterate_session_caps(session
, wake_up_session_cb
,
886 (void *)(unsigned long)reconnect
);
890 * Send periodic message to MDS renewing all currently held caps. The
891 * ack will reset the expiration for all caps from this session.
893 * caller holds s_mutex
895 static int send_renew_caps(struct ceph_mds_client
*mdsc
,
896 struct ceph_mds_session
*session
)
898 struct ceph_msg
*msg
;
901 if (time_after_eq(jiffies
, session
->s_cap_ttl
) &&
902 time_after_eq(session
->s_cap_ttl
, session
->s_renew_requested
))
903 pr_info("mds%d caps stale\n", session
->s_mds
);
904 session
->s_renew_requested
= jiffies
;
906 /* do not try to renew caps until a recovering mds has reconnected
907 * with its clients. */
908 state
= ceph_mdsmap_get_state(mdsc
->mdsmap
, session
->s_mds
);
909 if (state
< CEPH_MDS_STATE_RECONNECT
) {
910 dout("send_renew_caps ignoring mds%d (%s)\n",
911 session
->s_mds
, ceph_mds_state_name(state
));
915 dout("send_renew_caps to mds%d (%s)\n", session
->s_mds
,
916 ceph_mds_state_name(state
));
917 msg
= create_session_msg(CEPH_SESSION_REQUEST_RENEWCAPS
,
918 ++session
->s_renew_seq
);
921 ceph_con_send(&session
->s_con
, msg
);
926 * Note new cap ttl, and any transition from stale -> not stale (fresh?).
928 * Called under session->s_mutex
930 static void renewed_caps(struct ceph_mds_client
*mdsc
,
931 struct ceph_mds_session
*session
, int is_renew
)
936 spin_lock(&session
->s_cap_lock
);
937 was_stale
= is_renew
&& (session
->s_cap_ttl
== 0 ||
938 time_after_eq(jiffies
, session
->s_cap_ttl
));
940 session
->s_cap_ttl
= session
->s_renew_requested
+
941 mdsc
->mdsmap
->m_session_timeout
*HZ
;
944 if (time_before(jiffies
, session
->s_cap_ttl
)) {
945 pr_info("mds%d caps renewed\n", session
->s_mds
);
948 pr_info("mds%d caps still stale\n", session
->s_mds
);
951 dout("renewed_caps mds%d ttl now %lu, was %s, now %s\n",
952 session
->s_mds
, session
->s_cap_ttl
, was_stale
? "stale" : "fresh",
953 time_before(jiffies
, session
->s_cap_ttl
) ? "stale" : "fresh");
954 spin_unlock(&session
->s_cap_lock
);
957 wake_up_session_caps(session
, 0);
961 * send a session close request
963 static int request_close_session(struct ceph_mds_client
*mdsc
,
964 struct ceph_mds_session
*session
)
966 struct ceph_msg
*msg
;
968 dout("request_close_session mds%d state %s seq %lld\n",
969 session
->s_mds
, session_state_name(session
->s_state
),
971 msg
= create_session_msg(CEPH_SESSION_REQUEST_CLOSE
, session
->s_seq
);
974 ceph_con_send(&session
->s_con
, msg
);
979 * Called with s_mutex held.
981 static int __close_session(struct ceph_mds_client
*mdsc
,
982 struct ceph_mds_session
*session
)
984 if (session
->s_state
>= CEPH_MDS_SESSION_CLOSING
)
986 session
->s_state
= CEPH_MDS_SESSION_CLOSING
;
987 return request_close_session(mdsc
, session
);
993 * Because we can't cache an inode without one or more caps, we do
994 * this indirectly: if a cap is unused, we prune its aliases, at which
995 * point the inode will hopefully get dropped to.
997 * Yes, this is a bit sloppy. Our only real goal here is to respond to
998 * memory pressure from the MDS, though, so it needn't be perfect.
1000 static int trim_caps_cb(struct inode
*inode
, struct ceph_cap
*cap
, void *arg
)
1002 struct ceph_mds_session
*session
= arg
;
1003 struct ceph_inode_info
*ci
= ceph_inode(inode
);
1004 int used
, oissued
, mine
;
1006 if (session
->s_trim_caps
<= 0)
1009 spin_lock(&inode
->i_lock
);
1010 mine
= cap
->issued
| cap
->implemented
;
1011 used
= __ceph_caps_used(ci
);
1012 oissued
= __ceph_caps_issued_other(ci
, cap
);
1014 dout("trim_caps_cb %p cap %p mine %s oissued %s used %s\n",
1015 inode
, cap
, ceph_cap_string(mine
), ceph_cap_string(oissued
),
1016 ceph_cap_string(used
));
1017 if (ci
->i_dirty_caps
)
1018 goto out
; /* dirty caps */
1019 if ((used
& ~oissued
) & mine
)
1020 goto out
; /* we need these caps */
1022 session
->s_trim_caps
--;
1024 /* we aren't the only cap.. just remove us */
1025 __ceph_remove_cap(cap
);
1027 /* try to drop referring dentries */
1028 spin_unlock(&inode
->i_lock
);
1029 d_prune_aliases(inode
);
1030 dout("trim_caps_cb %p cap %p pruned, count now %d\n",
1031 inode
, cap
, atomic_read(&inode
->i_count
));
1036 spin_unlock(&inode
->i_lock
);
1041 * Trim session cap count down to some max number.
1043 static int trim_caps(struct ceph_mds_client
*mdsc
,
1044 struct ceph_mds_session
*session
,
1047 int trim_caps
= session
->s_nr_caps
- max_caps
;
1049 dout("trim_caps mds%d start: %d / %d, trim %d\n",
1050 session
->s_mds
, session
->s_nr_caps
, max_caps
, trim_caps
);
1051 if (trim_caps
> 0) {
1052 session
->s_trim_caps
= trim_caps
;
1053 iterate_session_caps(session
, trim_caps_cb
, session
);
1054 dout("trim_caps mds%d done: %d / %d, trimmed %d\n",
1055 session
->s_mds
, session
->s_nr_caps
, max_caps
,
1056 trim_caps
- session
->s_trim_caps
);
1057 session
->s_trim_caps
= 0;
1063 * Allocate cap_release messages. If there is a partially full message
1064 * in the queue, try to allocate enough to cover it's remainder, so that
1065 * we can send it immediately.
1067 * Called under s_mutex.
1069 int ceph_add_cap_releases(struct ceph_mds_client
*mdsc
,
1070 struct ceph_mds_session
*session
,
1073 struct ceph_msg
*msg
;
1074 struct ceph_mds_cap_release
*head
;
1078 extra
= mdsc
->client
->mount_args
->cap_release_safety
;
1080 spin_lock(&session
->s_cap_lock
);
1082 if (!list_empty(&session
->s_cap_releases
)) {
1083 msg
= list_first_entry(&session
->s_cap_releases
,
1086 head
= msg
->front
.iov_base
;
1087 extra
+= CEPH_CAPS_PER_RELEASE
- le32_to_cpu(head
->num
);
1090 while (session
->s_num_cap_releases
< session
->s_nr_caps
+ extra
) {
1091 spin_unlock(&session
->s_cap_lock
);
1092 msg
= ceph_msg_new(CEPH_MSG_CLIENT_CAPRELEASE
, PAGE_CACHE_SIZE
,
1096 dout("add_cap_releases %p msg %p now %d\n", session
, msg
,
1097 (int)msg
->front
.iov_len
);
1098 head
= msg
->front
.iov_base
;
1099 head
->num
= cpu_to_le32(0);
1100 msg
->front
.iov_len
= sizeof(*head
);
1101 spin_lock(&session
->s_cap_lock
);
1102 list_add(&msg
->list_head
, &session
->s_cap_releases
);
1103 session
->s_num_cap_releases
+= CEPH_CAPS_PER_RELEASE
;
1106 if (!list_empty(&session
->s_cap_releases
)) {
1107 msg
= list_first_entry(&session
->s_cap_releases
,
1110 head
= msg
->front
.iov_base
;
1112 dout(" queueing non-full %p (%d)\n", msg
,
1113 le32_to_cpu(head
->num
));
1114 list_move_tail(&msg
->list_head
,
1115 &session
->s_cap_releases_done
);
1116 session
->s_num_cap_releases
-=
1117 CEPH_CAPS_PER_RELEASE
- le32_to_cpu(head
->num
);
1121 spin_unlock(&session
->s_cap_lock
);
1127 * flush all dirty inode data to disk.
1129 * returns true if we've flushed through want_flush_seq
1131 static int check_cap_flush(struct ceph_mds_client
*mdsc
, u64 want_flush_seq
)
1135 dout("check_cap_flush want %lld\n", want_flush_seq
);
1136 mutex_lock(&mdsc
->mutex
);
1137 for (mds
= 0; ret
&& mds
< mdsc
->max_sessions
; mds
++) {
1138 struct ceph_mds_session
*session
= mdsc
->sessions
[mds
];
1142 get_session(session
);
1143 mutex_unlock(&mdsc
->mutex
);
1145 mutex_lock(&session
->s_mutex
);
1146 if (!list_empty(&session
->s_cap_flushing
)) {
1147 struct ceph_inode_info
*ci
=
1148 list_entry(session
->s_cap_flushing
.next
,
1149 struct ceph_inode_info
,
1151 struct inode
*inode
= &ci
->vfs_inode
;
1153 spin_lock(&inode
->i_lock
);
1154 if (ci
->i_cap_flush_seq
<= want_flush_seq
) {
1155 dout("check_cap_flush still flushing %p "
1156 "seq %lld <= %lld to mds%d\n", inode
,
1157 ci
->i_cap_flush_seq
, want_flush_seq
,
1161 spin_unlock(&inode
->i_lock
);
1163 mutex_unlock(&session
->s_mutex
);
1164 ceph_put_mds_session(session
);
1168 mutex_lock(&mdsc
->mutex
);
1171 mutex_unlock(&mdsc
->mutex
);
1172 dout("check_cap_flush ok, flushed thru %lld\n", want_flush_seq
);
1177 * called under s_mutex
1179 void ceph_send_cap_releases(struct ceph_mds_client
*mdsc
,
1180 struct ceph_mds_session
*session
)
1182 struct ceph_msg
*msg
;
1184 dout("send_cap_releases mds%d\n", session
->s_mds
);
1185 spin_lock(&session
->s_cap_lock
);
1186 while (!list_empty(&session
->s_cap_releases_done
)) {
1187 msg
= list_first_entry(&session
->s_cap_releases_done
,
1188 struct ceph_msg
, list_head
);
1189 list_del_init(&msg
->list_head
);
1190 spin_unlock(&session
->s_cap_lock
);
1191 msg
->hdr
.front_len
= cpu_to_le32(msg
->front
.iov_len
);
1192 dout("send_cap_releases mds%d %p\n", session
->s_mds
, msg
);
1193 ceph_con_send(&session
->s_con
, msg
);
1194 spin_lock(&session
->s_cap_lock
);
1196 spin_unlock(&session
->s_cap_lock
);
1199 static void discard_cap_releases(struct ceph_mds_client
*mdsc
,
1200 struct ceph_mds_session
*session
)
1202 struct ceph_msg
*msg
;
1203 struct ceph_mds_cap_release
*head
;
1206 dout("discard_cap_releases mds%d\n", session
->s_mds
);
1207 spin_lock(&session
->s_cap_lock
);
1209 /* zero out the in-progress message */
1210 msg
= list_first_entry(&session
->s_cap_releases
,
1211 struct ceph_msg
, list_head
);
1212 head
= msg
->front
.iov_base
;
1213 num
= le32_to_cpu(head
->num
);
1214 dout("discard_cap_releases mds%d %p %u\n", session
->s_mds
, msg
, num
);
1215 head
->num
= cpu_to_le32(0);
1216 session
->s_num_cap_releases
+= num
;
1218 /* requeue completed messages */
1219 while (!list_empty(&session
->s_cap_releases_done
)) {
1220 msg
= list_first_entry(&session
->s_cap_releases_done
,
1221 struct ceph_msg
, list_head
);
1222 list_del_init(&msg
->list_head
);
1224 head
= msg
->front
.iov_base
;
1225 num
= le32_to_cpu(head
->num
);
1226 dout("discard_cap_releases mds%d %p %u\n", session
->s_mds
, msg
,
1228 session
->s_num_cap_releases
+= num
;
1229 head
->num
= cpu_to_le32(0);
1230 msg
->front
.iov_len
= sizeof(*head
);
1231 list_add(&msg
->list_head
, &session
->s_cap_releases
);
1234 spin_unlock(&session
->s_cap_lock
);
1242 * Create an mds request.
1244 struct ceph_mds_request
*
1245 ceph_mdsc_create_request(struct ceph_mds_client
*mdsc
, int op
, int mode
)
1247 struct ceph_mds_request
*req
= kzalloc(sizeof(*req
), GFP_NOFS
);
1250 return ERR_PTR(-ENOMEM
);
1252 mutex_init(&req
->r_fill_mutex
);
1253 req
->r_started
= jiffies
;
1254 req
->r_resend_mds
= -1;
1255 INIT_LIST_HEAD(&req
->r_unsafe_dir_item
);
1257 kref_init(&req
->r_kref
);
1258 INIT_LIST_HEAD(&req
->r_wait
);
1259 init_completion(&req
->r_completion
);
1260 init_completion(&req
->r_safe_completion
);
1261 INIT_LIST_HEAD(&req
->r_unsafe_item
);
1264 req
->r_direct_mode
= mode
;
1269 * return oldest (lowest) request, tid in request tree, 0 if none.
1271 * called under mdsc->mutex.
1273 static struct ceph_mds_request
*__get_oldest_req(struct ceph_mds_client
*mdsc
)
1275 if (RB_EMPTY_ROOT(&mdsc
->request_tree
))
1277 return rb_entry(rb_first(&mdsc
->request_tree
),
1278 struct ceph_mds_request
, r_node
);
1281 static u64
__get_oldest_tid(struct ceph_mds_client
*mdsc
)
1283 struct ceph_mds_request
*req
= __get_oldest_req(mdsc
);
1291 * Build a dentry's path. Allocate on heap; caller must kfree. Based
1292 * on build_path_from_dentry in fs/cifs/dir.c.
1294 * If @stop_on_nosnap, generate path relative to the first non-snapped
1297 * Encode hidden .snap dirs as a double /, i.e.
1298 * foo/.snap/bar -> foo//bar
1300 char *ceph_mdsc_build_path(struct dentry
*dentry
, int *plen
, u64
*base
,
1303 struct dentry
*temp
;
1308 return ERR_PTR(-EINVAL
);
1312 for (temp
= dentry
; !IS_ROOT(temp
);) {
1313 struct inode
*inode
= temp
->d_inode
;
1314 if (inode
&& ceph_snap(inode
) == CEPH_SNAPDIR
)
1315 len
++; /* slash only */
1316 else if (stop_on_nosnap
&& inode
&&
1317 ceph_snap(inode
) == CEPH_NOSNAP
)
1320 len
+= 1 + temp
->d_name
.len
;
1321 temp
= temp
->d_parent
;
1323 pr_err("build_path corrupt dentry %p\n", dentry
);
1324 return ERR_PTR(-EINVAL
);
1328 len
--; /* no leading '/' */
1330 path
= kmalloc(len
+1, GFP_NOFS
);
1332 return ERR_PTR(-ENOMEM
);
1334 path
[pos
] = 0; /* trailing null */
1335 for (temp
= dentry
; !IS_ROOT(temp
) && pos
!= 0; ) {
1336 struct inode
*inode
= temp
->d_inode
;
1338 if (inode
&& ceph_snap(inode
) == CEPH_SNAPDIR
) {
1339 dout("build_path path+%d: %p SNAPDIR\n",
1341 } else if (stop_on_nosnap
&& inode
&&
1342 ceph_snap(inode
) == CEPH_NOSNAP
) {
1345 pos
-= temp
->d_name
.len
;
1348 strncpy(path
+ pos
, temp
->d_name
.name
,
1353 temp
= temp
->d_parent
;
1355 pr_err("build_path corrupt dentry\n");
1357 return ERR_PTR(-EINVAL
);
1361 pr_err("build_path did not end path lookup where "
1362 "expected, namelen is %d, pos is %d\n", len
, pos
);
1363 /* presumably this is only possible if racing with a
1364 rename of one of the parent directories (we can not
1365 lock the dentries above us to prevent this, but
1366 retrying should be harmless) */
1371 *base
= ceph_ino(temp
->d_inode
);
1373 dout("build_path on %p %d built %llx '%.*s'\n",
1374 dentry
, atomic_read(&dentry
->d_count
), *base
, len
, path
);
1378 static int build_dentry_path(struct dentry
*dentry
,
1379 const char **ppath
, int *ppathlen
, u64
*pino
,
1384 if (ceph_snap(dentry
->d_parent
->d_inode
) == CEPH_NOSNAP
) {
1385 *pino
= ceph_ino(dentry
->d_parent
->d_inode
);
1386 *ppath
= dentry
->d_name
.name
;
1387 *ppathlen
= dentry
->d_name
.len
;
1390 path
= ceph_mdsc_build_path(dentry
, ppathlen
, pino
, 1);
1392 return PTR_ERR(path
);
1398 static int build_inode_path(struct inode
*inode
,
1399 const char **ppath
, int *ppathlen
, u64
*pino
,
1402 struct dentry
*dentry
;
1405 if (ceph_snap(inode
) == CEPH_NOSNAP
) {
1406 *pino
= ceph_ino(inode
);
1410 dentry
= d_find_alias(inode
);
1411 path
= ceph_mdsc_build_path(dentry
, ppathlen
, pino
, 1);
1414 return PTR_ERR(path
);
1421 * request arguments may be specified via an inode *, a dentry *, or
1422 * an explicit ino+path.
1424 static int set_request_path_attr(struct inode
*rinode
, struct dentry
*rdentry
,
1425 const char *rpath
, u64 rino
,
1426 const char **ppath
, int *pathlen
,
1427 u64
*ino
, int *freepath
)
1432 r
= build_inode_path(rinode
, ppath
, pathlen
, ino
, freepath
);
1433 dout(" inode %p %llx.%llx\n", rinode
, ceph_ino(rinode
),
1435 } else if (rdentry
) {
1436 r
= build_dentry_path(rdentry
, ppath
, pathlen
, ino
, freepath
);
1437 dout(" dentry %p %llx/%.*s\n", rdentry
, *ino
, *pathlen
,
1442 *pathlen
= strlen(rpath
);
1443 dout(" path %.*s\n", *pathlen
, rpath
);
1450 * called under mdsc->mutex
1452 static struct ceph_msg
*create_request_message(struct ceph_mds_client
*mdsc
,
1453 struct ceph_mds_request
*req
,
1456 struct ceph_msg
*msg
;
1457 struct ceph_mds_request_head
*head
;
1458 const char *path1
= NULL
;
1459 const char *path2
= NULL
;
1460 u64 ino1
= 0, ino2
= 0;
1461 int pathlen1
= 0, pathlen2
= 0;
1462 int freepath1
= 0, freepath2
= 0;
1468 ret
= set_request_path_attr(req
->r_inode
, req
->r_dentry
,
1469 req
->r_path1
, req
->r_ino1
.ino
,
1470 &path1
, &pathlen1
, &ino1
, &freepath1
);
1476 ret
= set_request_path_attr(NULL
, req
->r_old_dentry
,
1477 req
->r_path2
, req
->r_ino2
.ino
,
1478 &path2
, &pathlen2
, &ino2
, &freepath2
);
1484 len
= sizeof(*head
) +
1485 pathlen1
+ pathlen2
+ 2*(1 + sizeof(u32
) + sizeof(u64
));
1487 /* calculate (max) length for cap releases */
1488 len
+= sizeof(struct ceph_mds_request_release
) *
1489 (!!req
->r_inode_drop
+ !!req
->r_dentry_drop
+
1490 !!req
->r_old_inode_drop
+ !!req
->r_old_dentry_drop
);
1491 if (req
->r_dentry_drop
)
1492 len
+= req
->r_dentry
->d_name
.len
;
1493 if (req
->r_old_dentry_drop
)
1494 len
+= req
->r_old_dentry
->d_name
.len
;
1496 msg
= ceph_msg_new(CEPH_MSG_CLIENT_REQUEST
, len
, GFP_NOFS
);
1498 msg
= ERR_PTR(-ENOMEM
);
1502 msg
->hdr
.tid
= cpu_to_le64(req
->r_tid
);
1504 head
= msg
->front
.iov_base
;
1505 p
= msg
->front
.iov_base
+ sizeof(*head
);
1506 end
= msg
->front
.iov_base
+ msg
->front
.iov_len
;
1508 head
->mdsmap_epoch
= cpu_to_le32(mdsc
->mdsmap
->m_epoch
);
1509 head
->op
= cpu_to_le32(req
->r_op
);
1510 head
->caller_uid
= cpu_to_le32(current_fsuid());
1511 head
->caller_gid
= cpu_to_le32(current_fsgid());
1512 head
->args
= req
->r_args
;
1514 ceph_encode_filepath(&p
, end
, ino1
, path1
);
1515 ceph_encode_filepath(&p
, end
, ino2
, path2
);
1517 /* make note of release offset, in case we need to replay */
1518 req
->r_request_release_offset
= p
- msg
->front
.iov_base
;
1522 if (req
->r_inode_drop
)
1523 releases
+= ceph_encode_inode_release(&p
,
1524 req
->r_inode
? req
->r_inode
: req
->r_dentry
->d_inode
,
1525 mds
, req
->r_inode_drop
, req
->r_inode_unless
, 0);
1526 if (req
->r_dentry_drop
)
1527 releases
+= ceph_encode_dentry_release(&p
, req
->r_dentry
,
1528 mds
, req
->r_dentry_drop
, req
->r_dentry_unless
);
1529 if (req
->r_old_dentry_drop
)
1530 releases
+= ceph_encode_dentry_release(&p
, req
->r_old_dentry
,
1531 mds
, req
->r_old_dentry_drop
, req
->r_old_dentry_unless
);
1532 if (req
->r_old_inode_drop
)
1533 releases
+= ceph_encode_inode_release(&p
,
1534 req
->r_old_dentry
->d_inode
,
1535 mds
, req
->r_old_inode_drop
, req
->r_old_inode_unless
, 0);
1536 head
->num_releases
= cpu_to_le16(releases
);
1539 msg
->front
.iov_len
= p
- msg
->front
.iov_base
;
1540 msg
->hdr
.front_len
= cpu_to_le32(msg
->front
.iov_len
);
1542 msg
->pages
= req
->r_pages
;
1543 msg
->nr_pages
= req
->r_num_pages
;
1544 msg
->hdr
.data_len
= cpu_to_le32(req
->r_data_len
);
1545 msg
->hdr
.data_off
= cpu_to_le16(0);
1549 kfree((char *)path2
);
1552 kfree((char *)path1
);
1558 * called under mdsc->mutex if error, under no mutex if
1561 static void complete_request(struct ceph_mds_client
*mdsc
,
1562 struct ceph_mds_request
*req
)
1564 if (req
->r_callback
)
1565 req
->r_callback(mdsc
, req
);
1567 complete_all(&req
->r_completion
);
1571 * called under mdsc->mutex
1573 static int __prepare_send_request(struct ceph_mds_client
*mdsc
,
1574 struct ceph_mds_request
*req
,
1577 struct ceph_mds_request_head
*rhead
;
1578 struct ceph_msg
*msg
;
1583 dout("prepare_send_request %p tid %lld %s (attempt %d)\n", req
,
1584 req
->r_tid
, ceph_mds_op_name(req
->r_op
), req
->r_attempts
);
1586 if (req
->r_got_unsafe
) {
1588 * Replay. Do not regenerate message (and rebuild
1589 * paths, etc.); just use the original message.
1590 * Rebuilding paths will break for renames because
1591 * d_move mangles the src name.
1593 msg
= req
->r_request
;
1594 rhead
= msg
->front
.iov_base
;
1596 flags
= le32_to_cpu(rhead
->flags
);
1597 flags
|= CEPH_MDS_FLAG_REPLAY
;
1598 rhead
->flags
= cpu_to_le32(flags
);
1600 if (req
->r_target_inode
)
1601 rhead
->ino
= cpu_to_le64(ceph_ino(req
->r_target_inode
));
1603 rhead
->num_retry
= req
->r_attempts
- 1;
1605 /* remove cap/dentry releases from message */
1606 rhead
->num_releases
= 0;
1607 msg
->hdr
.front_len
= cpu_to_le32(req
->r_request_release_offset
);
1608 msg
->front
.iov_len
= req
->r_request_release_offset
;
1612 if (req
->r_request
) {
1613 ceph_msg_put(req
->r_request
);
1614 req
->r_request
= NULL
;
1616 msg
= create_request_message(mdsc
, req
, mds
);
1618 req
->r_err
= PTR_ERR(msg
);
1619 complete_request(mdsc
, req
);
1620 return PTR_ERR(msg
);
1622 req
->r_request
= msg
;
1624 rhead
= msg
->front
.iov_base
;
1625 rhead
->oldest_client_tid
= cpu_to_le64(__get_oldest_tid(mdsc
));
1626 if (req
->r_got_unsafe
)
1627 flags
|= CEPH_MDS_FLAG_REPLAY
;
1628 if (req
->r_locked_dir
)
1629 flags
|= CEPH_MDS_FLAG_WANT_DENTRY
;
1630 rhead
->flags
= cpu_to_le32(flags
);
1631 rhead
->num_fwd
= req
->r_num_fwd
;
1632 rhead
->num_retry
= req
->r_attempts
- 1;
1635 dout(" r_locked_dir = %p\n", req
->r_locked_dir
);
1640 * send request, or put it on the appropriate wait list.
1642 static int __do_request(struct ceph_mds_client
*mdsc
,
1643 struct ceph_mds_request
*req
)
1645 struct ceph_mds_session
*session
= NULL
;
1649 if (req
->r_err
|| req
->r_got_result
)
1652 if (req
->r_timeout
&&
1653 time_after_eq(jiffies
, req
->r_started
+ req
->r_timeout
)) {
1654 dout("do_request timed out\n");
1659 mds
= __choose_mds(mdsc
, req
);
1661 ceph_mdsmap_get_state(mdsc
->mdsmap
, mds
) < CEPH_MDS_STATE_ACTIVE
) {
1662 dout("do_request no mds or not active, waiting for map\n");
1663 list_add(&req
->r_wait
, &mdsc
->waiting_for_map
);
1667 /* get, open session */
1668 session
= __ceph_lookup_mds_session(mdsc
, mds
);
1670 session
= register_session(mdsc
, mds
);
1671 if (IS_ERR(session
)) {
1672 err
= PTR_ERR(session
);
1676 dout("do_request mds%d session %p state %s\n", mds
, session
,
1677 session_state_name(session
->s_state
));
1678 if (session
->s_state
!= CEPH_MDS_SESSION_OPEN
&&
1679 session
->s_state
!= CEPH_MDS_SESSION_HUNG
) {
1680 if (session
->s_state
== CEPH_MDS_SESSION_NEW
||
1681 session
->s_state
== CEPH_MDS_SESSION_CLOSING
)
1682 __open_session(mdsc
, session
);
1683 list_add(&req
->r_wait
, &session
->s_waiting
);
1688 req
->r_session
= get_session(session
);
1689 req
->r_resend_mds
= -1; /* forget any previous mds hint */
1691 if (req
->r_request_started
== 0) /* note request start time */
1692 req
->r_request_started
= jiffies
;
1694 err
= __prepare_send_request(mdsc
, req
, mds
);
1696 ceph_msg_get(req
->r_request
);
1697 ceph_con_send(&session
->s_con
, req
->r_request
);
1701 ceph_put_mds_session(session
);
1707 complete_request(mdsc
, req
);
1712 * called under mdsc->mutex
1714 static void __wake_requests(struct ceph_mds_client
*mdsc
,
1715 struct list_head
*head
)
1717 struct ceph_mds_request
*req
, *nreq
;
1719 list_for_each_entry_safe(req
, nreq
, head
, r_wait
) {
1720 list_del_init(&req
->r_wait
);
1721 __do_request(mdsc
, req
);
1726 * Wake up threads with requests pending for @mds, so that they can
1727 * resubmit their requests to a possibly different mds.
1729 static void kick_requests(struct ceph_mds_client
*mdsc
, int mds
)
1731 struct ceph_mds_request
*req
;
1734 dout("kick_requests mds%d\n", mds
);
1735 for (p
= rb_first(&mdsc
->request_tree
); p
; p
= rb_next(p
)) {
1736 req
= rb_entry(p
, struct ceph_mds_request
, r_node
);
1737 if (req
->r_got_unsafe
)
1739 if (req
->r_session
&&
1740 req
->r_session
->s_mds
== mds
) {
1741 dout(" kicking tid %llu\n", req
->r_tid
);
1742 put_request_session(req
);
1743 __do_request(mdsc
, req
);
1748 void ceph_mdsc_submit_request(struct ceph_mds_client
*mdsc
,
1749 struct ceph_mds_request
*req
)
1751 dout("submit_request on %p\n", req
);
1752 mutex_lock(&mdsc
->mutex
);
1753 __register_request(mdsc
, req
, NULL
);
1754 __do_request(mdsc
, req
);
1755 mutex_unlock(&mdsc
->mutex
);
1759 * Synchrously perform an mds request. Take care of all of the
1760 * session setup, forwarding, retry details.
1762 int ceph_mdsc_do_request(struct ceph_mds_client
*mdsc
,
1764 struct ceph_mds_request
*req
)
1768 dout("do_request on %p\n", req
);
1770 /* take CAP_PIN refs for r_inode, r_locked_dir, r_old_dentry */
1772 ceph_get_cap_refs(ceph_inode(req
->r_inode
), CEPH_CAP_PIN
);
1773 if (req
->r_locked_dir
)
1774 ceph_get_cap_refs(ceph_inode(req
->r_locked_dir
), CEPH_CAP_PIN
);
1775 if (req
->r_old_dentry
)
1777 ceph_inode(req
->r_old_dentry
->d_parent
->d_inode
),
1781 mutex_lock(&mdsc
->mutex
);
1782 __register_request(mdsc
, req
, dir
);
1783 __do_request(mdsc
, req
);
1787 __unregister_request(mdsc
, req
);
1788 dout("do_request early error %d\n", err
);
1793 mutex_unlock(&mdsc
->mutex
);
1794 dout("do_request waiting\n");
1795 if (req
->r_timeout
) {
1796 err
= (long)wait_for_completion_killable_timeout(
1797 &req
->r_completion
, req
->r_timeout
);
1801 err
= wait_for_completion_killable(&req
->r_completion
);
1803 dout("do_request waited, got %d\n", err
);
1804 mutex_lock(&mdsc
->mutex
);
1806 /* only abort if we didn't race with a real reply */
1807 if (req
->r_got_result
) {
1808 err
= le32_to_cpu(req
->r_reply_info
.head
->result
);
1809 } else if (err
< 0) {
1810 dout("aborted request %lld with %d\n", req
->r_tid
, err
);
1813 * ensure we aren't running concurrently with
1814 * ceph_fill_trace or ceph_readdir_prepopulate, which
1815 * rely on locks (dir mutex) held by our caller.
1817 mutex_lock(&req
->r_fill_mutex
);
1819 req
->r_aborted
= true;
1820 mutex_unlock(&req
->r_fill_mutex
);
1822 if (req
->r_locked_dir
&&
1823 (req
->r_op
& CEPH_MDS_OP_WRITE
))
1824 ceph_invalidate_dir_request(req
);
1830 mutex_unlock(&mdsc
->mutex
);
1831 dout("do_request %p done, result %d\n", req
, err
);
1836 * Invalidate dir I_COMPLETE, dentry lease state on an aborted MDS
1837 * namespace request.
1839 void ceph_invalidate_dir_request(struct ceph_mds_request
*req
)
1841 struct inode
*inode
= req
->r_locked_dir
;
1842 struct ceph_inode_info
*ci
= ceph_inode(inode
);
1844 dout("invalidate_dir_request %p (I_COMPLETE, lease(s))\n", inode
);
1845 spin_lock(&inode
->i_lock
);
1846 ci
->i_ceph_flags
&= ~CEPH_I_COMPLETE
;
1847 ci
->i_release_count
++;
1848 spin_unlock(&inode
->i_lock
);
1851 ceph_invalidate_dentry_lease(req
->r_dentry
);
1852 if (req
->r_old_dentry
)
1853 ceph_invalidate_dentry_lease(req
->r_old_dentry
);
1859 * We take the session mutex and parse and process the reply immediately.
1860 * This preserves the logical ordering of replies, capabilities, etc., sent
1861 * by the MDS as they are applied to our local cache.
1863 static void handle_reply(struct ceph_mds_session
*session
, struct ceph_msg
*msg
)
1865 struct ceph_mds_client
*mdsc
= session
->s_mdsc
;
1866 struct ceph_mds_request
*req
;
1867 struct ceph_mds_reply_head
*head
= msg
->front
.iov_base
;
1868 struct ceph_mds_reply_info_parsed
*rinfo
; /* parsed reply info */
1871 int mds
= session
->s_mds
;
1873 if (msg
->front
.iov_len
< sizeof(*head
)) {
1874 pr_err("mdsc_handle_reply got corrupt (short) reply\n");
1879 /* get request, session */
1880 tid
= le64_to_cpu(msg
->hdr
.tid
);
1881 mutex_lock(&mdsc
->mutex
);
1882 req
= __lookup_request(mdsc
, tid
);
1884 dout("handle_reply on unknown tid %llu\n", tid
);
1885 mutex_unlock(&mdsc
->mutex
);
1888 dout("handle_reply %p\n", req
);
1890 /* correct session? */
1891 if (req
->r_session
!= session
) {
1892 pr_err("mdsc_handle_reply got %llu on session mds%d"
1893 " not mds%d\n", tid
, session
->s_mds
,
1894 req
->r_session
? req
->r_session
->s_mds
: -1);
1895 mutex_unlock(&mdsc
->mutex
);
1900 if ((req
->r_got_unsafe
&& !head
->safe
) ||
1901 (req
->r_got_safe
&& head
->safe
)) {
1902 pr_warning("got a dup %s reply on %llu from mds%d\n",
1903 head
->safe
? "safe" : "unsafe", tid
, mds
);
1904 mutex_unlock(&mdsc
->mutex
);
1907 if (req
->r_got_safe
&& !head
->safe
) {
1908 pr_warning("got unsafe after safe on %llu from mds%d\n",
1910 mutex_unlock(&mdsc
->mutex
);
1914 result
= le32_to_cpu(head
->result
);
1917 * Tolerate 2 consecutive ESTALEs from the same mds.
1918 * FIXME: we should be looking at the cap migrate_seq.
1920 if (result
== -ESTALE
) {
1921 req
->r_direct_mode
= USE_AUTH_MDS
;
1923 if (req
->r_num_stale
<= 2) {
1924 __do_request(mdsc
, req
);
1925 mutex_unlock(&mdsc
->mutex
);
1929 req
->r_num_stale
= 0;
1933 req
->r_got_safe
= true;
1934 __unregister_request(mdsc
, req
);
1935 complete_all(&req
->r_safe_completion
);
1937 if (req
->r_got_unsafe
) {
1939 * We already handled the unsafe response, now do the
1940 * cleanup. No need to examine the response; the MDS
1941 * doesn't include any result info in the safe
1942 * response. And even if it did, there is nothing
1943 * useful we could do with a revised return value.
1945 dout("got safe reply %llu, mds%d\n", tid
, mds
);
1946 list_del_init(&req
->r_unsafe_item
);
1948 /* last unsafe request during umount? */
1949 if (mdsc
->stopping
&& !__get_oldest_req(mdsc
))
1950 complete_all(&mdsc
->safe_umount_waiters
);
1951 mutex_unlock(&mdsc
->mutex
);
1955 req
->r_got_unsafe
= true;
1956 list_add_tail(&req
->r_unsafe_item
, &req
->r_session
->s_unsafe
);
1959 dout("handle_reply tid %lld result %d\n", tid
, result
);
1960 rinfo
= &req
->r_reply_info
;
1961 err
= parse_reply_info(msg
, rinfo
);
1962 mutex_unlock(&mdsc
->mutex
);
1964 mutex_lock(&session
->s_mutex
);
1966 pr_err("mdsc_handle_reply got corrupt reply mds%d\n", mds
);
1972 if (rinfo
->snapblob_len
) {
1973 down_write(&mdsc
->snap_rwsem
);
1974 ceph_update_snap_trace(mdsc
, rinfo
->snapblob
,
1975 rinfo
->snapblob
+ rinfo
->snapblob_len
,
1976 le32_to_cpu(head
->op
) == CEPH_MDS_OP_RMSNAP
);
1977 downgrade_write(&mdsc
->snap_rwsem
);
1979 down_read(&mdsc
->snap_rwsem
);
1982 /* insert trace into our cache */
1983 mutex_lock(&req
->r_fill_mutex
);
1984 err
= ceph_fill_trace(mdsc
->client
->sb
, req
, req
->r_session
);
1986 if (result
== 0 && rinfo
->dir_nr
)
1987 ceph_readdir_prepopulate(req
, req
->r_session
);
1988 ceph_unreserve_caps(&req
->r_caps_reservation
);
1990 mutex_unlock(&req
->r_fill_mutex
);
1992 up_read(&mdsc
->snap_rwsem
);
1994 mutex_lock(&mdsc
->mutex
);
1995 if (!req
->r_aborted
) {
2001 req
->r_got_result
= true;
2004 dout("reply arrived after request %lld was aborted\n", tid
);
2006 mutex_unlock(&mdsc
->mutex
);
2008 ceph_add_cap_releases(mdsc
, req
->r_session
, -1);
2009 mutex_unlock(&session
->s_mutex
);
2011 /* kick calling process */
2012 complete_request(mdsc
, req
);
2014 ceph_mdsc_put_request(req
);
2021 * handle mds notification that our request has been forwarded.
2023 static void handle_forward(struct ceph_mds_client
*mdsc
,
2024 struct ceph_mds_session
*session
,
2025 struct ceph_msg
*msg
)
2027 struct ceph_mds_request
*req
;
2028 u64 tid
= le64_to_cpu(msg
->hdr
.tid
);
2032 void *p
= msg
->front
.iov_base
;
2033 void *end
= p
+ msg
->front
.iov_len
;
2035 ceph_decode_need(&p
, end
, 2*sizeof(u32
), bad
);
2036 next_mds
= ceph_decode_32(&p
);
2037 fwd_seq
= ceph_decode_32(&p
);
2039 mutex_lock(&mdsc
->mutex
);
2040 req
= __lookup_request(mdsc
, tid
);
2042 dout("forward tid %llu to mds%d - req dne\n", tid
, next_mds
);
2043 goto out
; /* dup reply? */
2046 if (req
->r_aborted
) {
2047 dout("forward tid %llu aborted, unregistering\n", tid
);
2048 __unregister_request(mdsc
, req
);
2049 } else if (fwd_seq
<= req
->r_num_fwd
) {
2050 dout("forward tid %llu to mds%d - old seq %d <= %d\n",
2051 tid
, next_mds
, req
->r_num_fwd
, fwd_seq
);
2053 /* resend. forward race not possible; mds would drop */
2054 dout("forward tid %llu to mds%d (we resend)\n", tid
, next_mds
);
2056 BUG_ON(req
->r_got_result
);
2057 req
->r_num_fwd
= fwd_seq
;
2058 req
->r_resend_mds
= next_mds
;
2059 put_request_session(req
);
2060 __do_request(mdsc
, req
);
2062 ceph_mdsc_put_request(req
);
2064 mutex_unlock(&mdsc
->mutex
);
2068 pr_err("mdsc_handle_forward decode error err=%d\n", err
);
2072 * handle a mds session control message
2074 static void handle_session(struct ceph_mds_session
*session
,
2075 struct ceph_msg
*msg
)
2077 struct ceph_mds_client
*mdsc
= session
->s_mdsc
;
2080 int mds
= session
->s_mds
;
2081 struct ceph_mds_session_head
*h
= msg
->front
.iov_base
;
2085 if (msg
->front
.iov_len
!= sizeof(*h
))
2087 op
= le32_to_cpu(h
->op
);
2088 seq
= le64_to_cpu(h
->seq
);
2090 mutex_lock(&mdsc
->mutex
);
2091 if (op
== CEPH_SESSION_CLOSE
)
2092 __unregister_session(mdsc
, session
);
2093 /* FIXME: this ttl calculation is generous */
2094 session
->s_ttl
= jiffies
+ HZ
*mdsc
->mdsmap
->m_session_autoclose
;
2095 mutex_unlock(&mdsc
->mutex
);
2097 mutex_lock(&session
->s_mutex
);
2099 dout("handle_session mds%d %s %p state %s seq %llu\n",
2100 mds
, ceph_session_op_name(op
), session
,
2101 session_state_name(session
->s_state
), seq
);
2103 if (session
->s_state
== CEPH_MDS_SESSION_HUNG
) {
2104 session
->s_state
= CEPH_MDS_SESSION_OPEN
;
2105 pr_info("mds%d came back\n", session
->s_mds
);
2109 case CEPH_SESSION_OPEN
:
2110 if (session
->s_state
== CEPH_MDS_SESSION_RECONNECTING
)
2111 pr_info("mds%d reconnect success\n", session
->s_mds
);
2112 session
->s_state
= CEPH_MDS_SESSION_OPEN
;
2113 renewed_caps(mdsc
, session
, 0);
2116 __close_session(mdsc
, session
);
2119 case CEPH_SESSION_RENEWCAPS
:
2120 if (session
->s_renew_seq
== seq
)
2121 renewed_caps(mdsc
, session
, 1);
2124 case CEPH_SESSION_CLOSE
:
2125 if (session
->s_state
== CEPH_MDS_SESSION_RECONNECTING
)
2126 pr_info("mds%d reconnect denied\n", session
->s_mds
);
2127 remove_session_caps(session
);
2128 wake
= 1; /* for good measure */
2129 complete_all(&mdsc
->session_close_waiters
);
2130 kick_requests(mdsc
, mds
);
2133 case CEPH_SESSION_STALE
:
2134 pr_info("mds%d caps went stale, renewing\n",
2136 spin_lock(&session
->s_cap_lock
);
2137 session
->s_cap_gen
++;
2138 session
->s_cap_ttl
= 0;
2139 spin_unlock(&session
->s_cap_lock
);
2140 send_renew_caps(mdsc
, session
);
2143 case CEPH_SESSION_RECALL_STATE
:
2144 trim_caps(mdsc
, session
, le32_to_cpu(h
->max_caps
));
2148 pr_err("mdsc_handle_session bad op %d mds%d\n", op
, mds
);
2152 mutex_unlock(&session
->s_mutex
);
2154 mutex_lock(&mdsc
->mutex
);
2155 __wake_requests(mdsc
, &session
->s_waiting
);
2156 mutex_unlock(&mdsc
->mutex
);
2161 pr_err("mdsc_handle_session corrupt message mds%d len %d\n", mds
,
2162 (int)msg
->front
.iov_len
);
2169 * called under session->mutex.
2171 static void replay_unsafe_requests(struct ceph_mds_client
*mdsc
,
2172 struct ceph_mds_session
*session
)
2174 struct ceph_mds_request
*req
, *nreq
;
2177 dout("replay_unsafe_requests mds%d\n", session
->s_mds
);
2179 mutex_lock(&mdsc
->mutex
);
2180 list_for_each_entry_safe(req
, nreq
, &session
->s_unsafe
, r_unsafe_item
) {
2181 err
= __prepare_send_request(mdsc
, req
, session
->s_mds
);
2183 ceph_msg_get(req
->r_request
);
2184 ceph_con_send(&session
->s_con
, req
->r_request
);
2187 mutex_unlock(&mdsc
->mutex
);
2191 * Encode information about a cap for a reconnect with the MDS.
2193 static int encode_caps_cb(struct inode
*inode
, struct ceph_cap
*cap
,
2196 struct ceph_mds_cap_reconnect rec
;
2197 struct ceph_inode_info
*ci
;
2198 struct ceph_pagelist
*pagelist
= arg
;
2202 struct dentry
*dentry
;
2206 dout(" adding %p ino %llx.%llx cap %p %lld %s\n",
2207 inode
, ceph_vinop(inode
), cap
, cap
->cap_id
,
2208 ceph_cap_string(cap
->issued
));
2209 err
= ceph_pagelist_encode_64(pagelist
, ceph_ino(inode
));
2213 dentry
= d_find_alias(inode
);
2215 path
= ceph_mdsc_build_path(dentry
, &pathlen
, &pathbase
, 0);
2217 err
= PTR_ERR(path
);
2224 err
= ceph_pagelist_encode_string(pagelist
, path
, pathlen
);
2228 spin_lock(&inode
->i_lock
);
2229 cap
->seq
= 0; /* reset cap seq */
2230 cap
->issue_seq
= 0; /* and issue_seq */
2231 rec
.cap_id
= cpu_to_le64(cap
->cap_id
);
2232 rec
.pathbase
= cpu_to_le64(pathbase
);
2233 rec
.wanted
= cpu_to_le32(__ceph_caps_wanted(ci
));
2234 rec
.issued
= cpu_to_le32(cap
->issued
);
2235 rec
.size
= cpu_to_le64(inode
->i_size
);
2236 ceph_encode_timespec(&rec
.mtime
, &inode
->i_mtime
);
2237 ceph_encode_timespec(&rec
.atime
, &inode
->i_atime
);
2238 rec
.snaprealm
= cpu_to_le64(ci
->i_snap_realm
->ino
);
2239 spin_unlock(&inode
->i_lock
);
2241 err
= ceph_pagelist_append(pagelist
, &rec
, sizeof(rec
));
2251 * If an MDS fails and recovers, clients need to reconnect in order to
2252 * reestablish shared state. This includes all caps issued through
2253 * this session _and_ the snap_realm hierarchy. Because it's not
2254 * clear which snap realms the mds cares about, we send everything we
2255 * know about.. that ensures we'll then get any new info the
2256 * recovering MDS might have.
2258 * This is a relatively heavyweight operation, but it's rare.
2260 * called with mdsc->mutex held.
2262 static void send_mds_reconnect(struct ceph_mds_client
*mdsc
,
2263 struct ceph_mds_session
*session
)
2265 struct ceph_msg
*reply
;
2267 int mds
= session
->s_mds
;
2269 struct ceph_pagelist
*pagelist
;
2271 pr_info("mds%d reconnect start\n", mds
);
2273 pagelist
= kmalloc(sizeof(*pagelist
), GFP_NOFS
);
2275 goto fail_nopagelist
;
2276 ceph_pagelist_init(pagelist
);
2278 reply
= ceph_msg_new(CEPH_MSG_CLIENT_RECONNECT
, 0, GFP_NOFS
);
2282 mutex_lock(&session
->s_mutex
);
2283 session
->s_state
= CEPH_MDS_SESSION_RECONNECTING
;
2286 ceph_con_open(&session
->s_con
,
2287 ceph_mdsmap_get_addr(mdsc
->mdsmap
, mds
));
2289 /* replay unsafe requests */
2290 replay_unsafe_requests(mdsc
, session
);
2292 down_read(&mdsc
->snap_rwsem
);
2294 dout("session %p state %s\n", session
,
2295 session_state_name(session
->s_state
));
2297 /* drop old cap expires; we're about to reestablish that state */
2298 discard_cap_releases(mdsc
, session
);
2300 /* traverse this session's caps */
2301 err
= ceph_pagelist_encode_32(pagelist
, session
->s_nr_caps
);
2304 err
= iterate_session_caps(session
, encode_caps_cb
, pagelist
);
2309 * snaprealms. we provide mds with the ino, seq (version), and
2310 * parent for all of our realms. If the mds has any newer info,
2313 for (p
= rb_first(&mdsc
->snap_realms
); p
; p
= rb_next(p
)) {
2314 struct ceph_snap_realm
*realm
=
2315 rb_entry(p
, struct ceph_snap_realm
, node
);
2316 struct ceph_mds_snaprealm_reconnect sr_rec
;
2318 dout(" adding snap realm %llx seq %lld parent %llx\n",
2319 realm
->ino
, realm
->seq
, realm
->parent_ino
);
2320 sr_rec
.ino
= cpu_to_le64(realm
->ino
);
2321 sr_rec
.seq
= cpu_to_le64(realm
->seq
);
2322 sr_rec
.parent
= cpu_to_le64(realm
->parent_ino
);
2323 err
= ceph_pagelist_append(pagelist
, &sr_rec
, sizeof(sr_rec
));
2328 reply
->pagelist
= pagelist
;
2329 reply
->hdr
.data_len
= cpu_to_le32(pagelist
->length
);
2330 reply
->nr_pages
= calc_pages_for(0, pagelist
->length
);
2331 ceph_con_send(&session
->s_con
, reply
);
2333 mutex_unlock(&session
->s_mutex
);
2335 mutex_lock(&mdsc
->mutex
);
2336 __wake_requests(mdsc
, &session
->s_waiting
);
2337 mutex_unlock(&mdsc
->mutex
);
2339 up_read(&mdsc
->snap_rwsem
);
2343 ceph_msg_put(reply
);
2344 up_read(&mdsc
->snap_rwsem
);
2345 mutex_unlock(&session
->s_mutex
);
2347 ceph_pagelist_release(pagelist
);
2350 pr_err("error %d preparing reconnect for mds%d\n", err
, mds
);
2356 * compare old and new mdsmaps, kicking requests
2357 * and closing out old connections as necessary
2359 * called under mdsc->mutex.
2361 static void check_new_map(struct ceph_mds_client
*mdsc
,
2362 struct ceph_mdsmap
*newmap
,
2363 struct ceph_mdsmap
*oldmap
)
2366 int oldstate
, newstate
;
2367 struct ceph_mds_session
*s
;
2369 dout("check_new_map new %u old %u\n",
2370 newmap
->m_epoch
, oldmap
->m_epoch
);
2372 for (i
= 0; i
< oldmap
->m_max_mds
&& i
< mdsc
->max_sessions
; i
++) {
2373 if (mdsc
->sessions
[i
] == NULL
)
2375 s
= mdsc
->sessions
[i
];
2376 oldstate
= ceph_mdsmap_get_state(oldmap
, i
);
2377 newstate
= ceph_mdsmap_get_state(newmap
, i
);
2379 dout("check_new_map mds%d state %s -> %s (session %s)\n",
2380 i
, ceph_mds_state_name(oldstate
),
2381 ceph_mds_state_name(newstate
),
2382 session_state_name(s
->s_state
));
2384 if (memcmp(ceph_mdsmap_get_addr(oldmap
, i
),
2385 ceph_mdsmap_get_addr(newmap
, i
),
2386 sizeof(struct ceph_entity_addr
))) {
2387 if (s
->s_state
== CEPH_MDS_SESSION_OPENING
) {
2388 /* the session never opened, just close it
2390 __wake_requests(mdsc
, &s
->s_waiting
);
2391 __unregister_session(mdsc
, s
);
2394 mutex_unlock(&mdsc
->mutex
);
2395 mutex_lock(&s
->s_mutex
);
2396 mutex_lock(&mdsc
->mutex
);
2397 ceph_con_close(&s
->s_con
);
2398 mutex_unlock(&s
->s_mutex
);
2399 s
->s_state
= CEPH_MDS_SESSION_RESTARTING
;
2402 /* kick any requests waiting on the recovering mds */
2403 kick_requests(mdsc
, i
);
2404 } else if (oldstate
== newstate
) {
2405 continue; /* nothing new with this mds */
2411 if (s
->s_state
== CEPH_MDS_SESSION_RESTARTING
&&
2412 newstate
>= CEPH_MDS_STATE_RECONNECT
) {
2413 mutex_unlock(&mdsc
->mutex
);
2414 send_mds_reconnect(mdsc
, s
);
2415 mutex_lock(&mdsc
->mutex
);
2419 * kick request on any mds that has gone active.
2421 if (oldstate
< CEPH_MDS_STATE_ACTIVE
&&
2422 newstate
>= CEPH_MDS_STATE_ACTIVE
) {
2423 if (oldstate
!= CEPH_MDS_STATE_CREATING
&&
2424 oldstate
!= CEPH_MDS_STATE_STARTING
)
2425 pr_info("mds%d recovery completed\n", s
->s_mds
);
2426 kick_requests(mdsc
, i
);
2427 ceph_kick_flushing_caps(mdsc
, s
);
2428 wake_up_session_caps(s
, 1);
2440 * caller must hold session s_mutex, dentry->d_lock
2442 void __ceph_mdsc_drop_dentry_lease(struct dentry
*dentry
)
2444 struct ceph_dentry_info
*di
= ceph_dentry(dentry
);
2446 ceph_put_mds_session(di
->lease_session
);
2447 di
->lease_session
= NULL
;
2450 static void handle_lease(struct ceph_mds_client
*mdsc
,
2451 struct ceph_mds_session
*session
,
2452 struct ceph_msg
*msg
)
2454 struct super_block
*sb
= mdsc
->client
->sb
;
2455 struct inode
*inode
;
2456 struct ceph_inode_info
*ci
;
2457 struct dentry
*parent
, *dentry
;
2458 struct ceph_dentry_info
*di
;
2459 int mds
= session
->s_mds
;
2460 struct ceph_mds_lease
*h
= msg
->front
.iov_base
;
2462 struct ceph_vino vino
;
2467 dout("handle_lease from mds%d\n", mds
);
2470 if (msg
->front
.iov_len
< sizeof(*h
) + sizeof(u32
))
2472 vino
.ino
= le64_to_cpu(h
->ino
);
2473 vino
.snap
= CEPH_NOSNAP
;
2474 mask
= le16_to_cpu(h
->mask
);
2475 seq
= le32_to_cpu(h
->seq
);
2476 dname
.name
= (void *)h
+ sizeof(*h
) + sizeof(u32
);
2477 dname
.len
= msg
->front
.iov_len
- sizeof(*h
) - sizeof(u32
);
2478 if (dname
.len
!= get_unaligned_le32(h
+1))
2481 mutex_lock(&session
->s_mutex
);
2485 inode
= ceph_find_inode(sb
, vino
);
2486 dout("handle_lease %s, mask %d, ino %llx %p %.*s\n",
2487 ceph_lease_op_name(h
->action
), mask
, vino
.ino
, inode
,
2488 dname
.len
, dname
.name
);
2489 if (inode
== NULL
) {
2490 dout("handle_lease no inode %llx\n", vino
.ino
);
2493 ci
= ceph_inode(inode
);
2496 parent
= d_find_alias(inode
);
2498 dout("no parent dentry on inode %p\n", inode
);
2500 goto release
; /* hrm... */
2502 dname
.hash
= full_name_hash(dname
.name
, dname
.len
);
2503 dentry
= d_lookup(parent
, &dname
);
2508 spin_lock(&dentry
->d_lock
);
2509 di
= ceph_dentry(dentry
);
2510 switch (h
->action
) {
2511 case CEPH_MDS_LEASE_REVOKE
:
2512 if (di
&& di
->lease_session
== session
) {
2513 if (ceph_seq_cmp(di
->lease_seq
, seq
) > 0)
2514 h
->seq
= cpu_to_le32(di
->lease_seq
);
2515 __ceph_mdsc_drop_dentry_lease(dentry
);
2520 case CEPH_MDS_LEASE_RENEW
:
2521 if (di
&& di
->lease_session
== session
&&
2522 di
->lease_gen
== session
->s_cap_gen
&&
2523 di
->lease_renew_from
&&
2524 di
->lease_renew_after
== 0) {
2525 unsigned long duration
=
2526 le32_to_cpu(h
->duration_ms
) * HZ
/ 1000;
2528 di
->lease_seq
= seq
;
2529 dentry
->d_time
= di
->lease_renew_from
+ duration
;
2530 di
->lease_renew_after
= di
->lease_renew_from
+
2532 di
->lease_renew_from
= 0;
2536 spin_unlock(&dentry
->d_lock
);
2543 /* let's just reuse the same message */
2544 h
->action
= CEPH_MDS_LEASE_REVOKE_ACK
;
2546 ceph_con_send(&session
->s_con
, msg
);
2550 mutex_unlock(&session
->s_mutex
);
2554 pr_err("corrupt lease message\n");
2558 void ceph_mdsc_lease_send_msg(struct ceph_mds_session
*session
,
2559 struct inode
*inode
,
2560 struct dentry
*dentry
, char action
,
2563 struct ceph_msg
*msg
;
2564 struct ceph_mds_lease
*lease
;
2565 int len
= sizeof(*lease
) + sizeof(u32
);
2568 dout("lease_send_msg inode %p dentry %p %s to mds%d\n",
2569 inode
, dentry
, ceph_lease_op_name(action
), session
->s_mds
);
2570 dnamelen
= dentry
->d_name
.len
;
2573 msg
= ceph_msg_new(CEPH_MSG_CLIENT_LEASE
, len
, GFP_NOFS
);
2576 lease
= msg
->front
.iov_base
;
2577 lease
->action
= action
;
2578 lease
->mask
= cpu_to_le16(1);
2579 lease
->ino
= cpu_to_le64(ceph_vino(inode
).ino
);
2580 lease
->first
= lease
->last
= cpu_to_le64(ceph_vino(inode
).snap
);
2581 lease
->seq
= cpu_to_le32(seq
);
2582 put_unaligned_le32(dnamelen
, lease
+ 1);
2583 memcpy((void *)(lease
+ 1) + 4, dentry
->d_name
.name
, dnamelen
);
2586 * if this is a preemptive lease RELEASE, no need to
2587 * flush request stream, since the actual request will
2590 msg
->more_to_follow
= (action
== CEPH_MDS_LEASE_RELEASE
);
2592 ceph_con_send(&session
->s_con
, msg
);
2596 * Preemptively release a lease we expect to invalidate anyway.
2597 * Pass @inode always, @dentry is optional.
2599 void ceph_mdsc_lease_release(struct ceph_mds_client
*mdsc
, struct inode
*inode
,
2600 struct dentry
*dentry
, int mask
)
2602 struct ceph_dentry_info
*di
;
2603 struct ceph_mds_session
*session
;
2606 BUG_ON(inode
== NULL
);
2607 BUG_ON(dentry
== NULL
);
2610 /* is dentry lease valid? */
2611 spin_lock(&dentry
->d_lock
);
2612 di
= ceph_dentry(dentry
);
2613 if (!di
|| !di
->lease_session
||
2614 di
->lease_session
->s_mds
< 0 ||
2615 di
->lease_gen
!= di
->lease_session
->s_cap_gen
||
2616 !time_before(jiffies
, dentry
->d_time
)) {
2617 dout("lease_release inode %p dentry %p -- "
2619 inode
, dentry
, mask
);
2620 spin_unlock(&dentry
->d_lock
);
2624 /* we do have a lease on this dentry; note mds and seq */
2625 session
= ceph_get_mds_session(di
->lease_session
);
2626 seq
= di
->lease_seq
;
2627 __ceph_mdsc_drop_dentry_lease(dentry
);
2628 spin_unlock(&dentry
->d_lock
);
2630 dout("lease_release inode %p dentry %p mask %d to mds%d\n",
2631 inode
, dentry
, mask
, session
->s_mds
);
2632 ceph_mdsc_lease_send_msg(session
, inode
, dentry
,
2633 CEPH_MDS_LEASE_RELEASE
, seq
);
2634 ceph_put_mds_session(session
);
2638 * drop all leases (and dentry refs) in preparation for umount
2640 static void drop_leases(struct ceph_mds_client
*mdsc
)
2644 dout("drop_leases\n");
2645 mutex_lock(&mdsc
->mutex
);
2646 for (i
= 0; i
< mdsc
->max_sessions
; i
++) {
2647 struct ceph_mds_session
*s
= __ceph_lookup_mds_session(mdsc
, i
);
2650 mutex_unlock(&mdsc
->mutex
);
2651 mutex_lock(&s
->s_mutex
);
2652 mutex_unlock(&s
->s_mutex
);
2653 ceph_put_mds_session(s
);
2654 mutex_lock(&mdsc
->mutex
);
2656 mutex_unlock(&mdsc
->mutex
);
2662 * delayed work -- periodically trim expired leases, renew caps with mds
2664 static void schedule_delayed(struct ceph_mds_client
*mdsc
)
2667 unsigned hz
= round_jiffies_relative(HZ
* delay
);
2668 schedule_delayed_work(&mdsc
->delayed_work
, hz
);
2671 static void delayed_work(struct work_struct
*work
)
2674 struct ceph_mds_client
*mdsc
=
2675 container_of(work
, struct ceph_mds_client
, delayed_work
.work
);
2679 dout("mdsc delayed_work\n");
2680 ceph_check_delayed_caps(mdsc
);
2682 mutex_lock(&mdsc
->mutex
);
2683 renew_interval
= mdsc
->mdsmap
->m_session_timeout
>> 2;
2684 renew_caps
= time_after_eq(jiffies
, HZ
*renew_interval
+
2685 mdsc
->last_renew_caps
);
2687 mdsc
->last_renew_caps
= jiffies
;
2689 for (i
= 0; i
< mdsc
->max_sessions
; i
++) {
2690 struct ceph_mds_session
*s
= __ceph_lookup_mds_session(mdsc
, i
);
2693 if (s
->s_state
== CEPH_MDS_SESSION_CLOSING
) {
2694 dout("resending session close request for mds%d\n",
2696 request_close_session(mdsc
, s
);
2697 ceph_put_mds_session(s
);
2700 if (s
->s_ttl
&& time_after(jiffies
, s
->s_ttl
)) {
2701 if (s
->s_state
== CEPH_MDS_SESSION_OPEN
) {
2702 s
->s_state
= CEPH_MDS_SESSION_HUNG
;
2703 pr_info("mds%d hung\n", s
->s_mds
);
2706 if (s
->s_state
< CEPH_MDS_SESSION_OPEN
) {
2707 /* this mds is failed or recovering, just wait */
2708 ceph_put_mds_session(s
);
2711 mutex_unlock(&mdsc
->mutex
);
2713 mutex_lock(&s
->s_mutex
);
2715 send_renew_caps(mdsc
, s
);
2717 ceph_con_keepalive(&s
->s_con
);
2718 ceph_add_cap_releases(mdsc
, s
, -1);
2719 if (s
->s_state
== CEPH_MDS_SESSION_OPEN
||
2720 s
->s_state
== CEPH_MDS_SESSION_HUNG
)
2721 ceph_send_cap_releases(mdsc
, s
);
2722 mutex_unlock(&s
->s_mutex
);
2723 ceph_put_mds_session(s
);
2725 mutex_lock(&mdsc
->mutex
);
2727 mutex_unlock(&mdsc
->mutex
);
2729 schedule_delayed(mdsc
);
2733 int ceph_mdsc_init(struct ceph_mds_client
*mdsc
, struct ceph_client
*client
)
2735 mdsc
->client
= client
;
2736 mutex_init(&mdsc
->mutex
);
2737 mdsc
->mdsmap
= kzalloc(sizeof(*mdsc
->mdsmap
), GFP_NOFS
);
2738 if (mdsc
->mdsmap
== NULL
)
2741 init_completion(&mdsc
->safe_umount_waiters
);
2742 init_completion(&mdsc
->session_close_waiters
);
2743 INIT_LIST_HEAD(&mdsc
->waiting_for_map
);
2744 mdsc
->sessions
= NULL
;
2745 mdsc
->max_sessions
= 0;
2747 init_rwsem(&mdsc
->snap_rwsem
);
2748 mdsc
->snap_realms
= RB_ROOT
;
2749 INIT_LIST_HEAD(&mdsc
->snap_empty
);
2750 spin_lock_init(&mdsc
->snap_empty_lock
);
2752 mdsc
->request_tree
= RB_ROOT
;
2753 INIT_DELAYED_WORK(&mdsc
->delayed_work
, delayed_work
);
2754 mdsc
->last_renew_caps
= jiffies
;
2755 INIT_LIST_HEAD(&mdsc
->cap_delay_list
);
2756 spin_lock_init(&mdsc
->cap_delay_lock
);
2757 INIT_LIST_HEAD(&mdsc
->snap_flush_list
);
2758 spin_lock_init(&mdsc
->snap_flush_lock
);
2759 mdsc
->cap_flush_seq
= 0;
2760 INIT_LIST_HEAD(&mdsc
->cap_dirty
);
2761 mdsc
->num_cap_flushing
= 0;
2762 spin_lock_init(&mdsc
->cap_dirty_lock
);
2763 init_waitqueue_head(&mdsc
->cap_flushing_wq
);
2764 spin_lock_init(&mdsc
->dentry_lru_lock
);
2765 INIT_LIST_HEAD(&mdsc
->dentry_lru
);
2771 * Wait for safe replies on open mds requests. If we time out, drop
2772 * all requests from the tree to avoid dangling dentry refs.
2774 static void wait_requests(struct ceph_mds_client
*mdsc
)
2776 struct ceph_mds_request
*req
;
2777 struct ceph_client
*client
= mdsc
->client
;
2779 mutex_lock(&mdsc
->mutex
);
2780 if (__get_oldest_req(mdsc
)) {
2781 mutex_unlock(&mdsc
->mutex
);
2783 dout("wait_requests waiting for requests\n");
2784 wait_for_completion_timeout(&mdsc
->safe_umount_waiters
,
2785 client
->mount_args
->mount_timeout
* HZ
);
2787 /* tear down remaining requests */
2788 mutex_lock(&mdsc
->mutex
);
2789 while ((req
= __get_oldest_req(mdsc
))) {
2790 dout("wait_requests timed out on tid %llu\n",
2792 __unregister_request(mdsc
, req
);
2795 mutex_unlock(&mdsc
->mutex
);
2796 dout("wait_requests done\n");
2800 * called before mount is ro, and before dentries are torn down.
2801 * (hmm, does this still race with new lookups?)
2803 void ceph_mdsc_pre_umount(struct ceph_mds_client
*mdsc
)
2805 dout("pre_umount\n");
2809 ceph_flush_dirty_caps(mdsc
);
2810 wait_requests(mdsc
);
2813 * wait for reply handlers to drop their request refs and
2814 * their inode/dcache refs
2820 * wait for all write mds requests to flush.
2822 static void wait_unsafe_requests(struct ceph_mds_client
*mdsc
, u64 want_tid
)
2824 struct ceph_mds_request
*req
= NULL
, *nextreq
;
2827 mutex_lock(&mdsc
->mutex
);
2828 dout("wait_unsafe_requests want %lld\n", want_tid
);
2830 req
= __get_oldest_req(mdsc
);
2831 while (req
&& req
->r_tid
<= want_tid
) {
2832 /* find next request */
2833 n
= rb_next(&req
->r_node
);
2835 nextreq
= rb_entry(n
, struct ceph_mds_request
, r_node
);
2838 if ((req
->r_op
& CEPH_MDS_OP_WRITE
)) {
2840 ceph_mdsc_get_request(req
);
2842 ceph_mdsc_get_request(nextreq
);
2843 mutex_unlock(&mdsc
->mutex
);
2844 dout("wait_unsafe_requests wait on %llu (want %llu)\n",
2845 req
->r_tid
, want_tid
);
2846 wait_for_completion(&req
->r_safe_completion
);
2847 mutex_lock(&mdsc
->mutex
);
2848 ceph_mdsc_put_request(req
);
2850 break; /* next dne before, so we're done! */
2851 if (RB_EMPTY_NODE(&nextreq
->r_node
)) {
2852 /* next request was removed from tree */
2853 ceph_mdsc_put_request(nextreq
);
2856 ceph_mdsc_put_request(nextreq
); /* won't go away */
2860 mutex_unlock(&mdsc
->mutex
);
2861 dout("wait_unsafe_requests done\n");
2864 void ceph_mdsc_sync(struct ceph_mds_client
*mdsc
)
2866 u64 want_tid
, want_flush
;
2868 if (mdsc
->client
->mount_state
== CEPH_MOUNT_SHUTDOWN
)
2872 mutex_lock(&mdsc
->mutex
);
2873 want_tid
= mdsc
->last_tid
;
2874 want_flush
= mdsc
->cap_flush_seq
;
2875 mutex_unlock(&mdsc
->mutex
);
2876 dout("sync want tid %lld flush_seq %lld\n", want_tid
, want_flush
);
2878 ceph_flush_dirty_caps(mdsc
);
2880 wait_unsafe_requests(mdsc
, want_tid
);
2881 wait_event(mdsc
->cap_flushing_wq
, check_cap_flush(mdsc
, want_flush
));
2886 * called after sb is ro.
2888 void ceph_mdsc_close_sessions(struct ceph_mds_client
*mdsc
)
2890 struct ceph_mds_session
*session
;
2893 struct ceph_client
*client
= mdsc
->client
;
2894 unsigned long started
, timeout
= client
->mount_args
->mount_timeout
* HZ
;
2896 dout("close_sessions\n");
2898 mutex_lock(&mdsc
->mutex
);
2900 /* close sessions */
2902 while (time_before(jiffies
, started
+ timeout
)) {
2903 dout("closing sessions\n");
2905 for (i
= 0; i
< mdsc
->max_sessions
; i
++) {
2906 session
= __ceph_lookup_mds_session(mdsc
, i
);
2909 mutex_unlock(&mdsc
->mutex
);
2910 mutex_lock(&session
->s_mutex
);
2911 __close_session(mdsc
, session
);
2912 mutex_unlock(&session
->s_mutex
);
2913 ceph_put_mds_session(session
);
2914 mutex_lock(&mdsc
->mutex
);
2920 if (client
->mount_state
== CEPH_MOUNT_SHUTDOWN
)
2923 dout("waiting for sessions to close\n");
2924 mutex_unlock(&mdsc
->mutex
);
2925 wait_for_completion_timeout(&mdsc
->session_close_waiters
,
2927 mutex_lock(&mdsc
->mutex
);
2930 /* tear down remaining sessions */
2931 for (i
= 0; i
< mdsc
->max_sessions
; i
++) {
2932 if (mdsc
->sessions
[i
]) {
2933 session
= get_session(mdsc
->sessions
[i
]);
2934 __unregister_session(mdsc
, session
);
2935 mutex_unlock(&mdsc
->mutex
);
2936 mutex_lock(&session
->s_mutex
);
2937 remove_session_caps(session
);
2938 mutex_unlock(&session
->s_mutex
);
2939 ceph_put_mds_session(session
);
2940 mutex_lock(&mdsc
->mutex
);
2944 WARN_ON(!list_empty(&mdsc
->cap_delay_list
));
2946 mutex_unlock(&mdsc
->mutex
);
2948 ceph_cleanup_empty_realms(mdsc
);
2950 cancel_delayed_work_sync(&mdsc
->delayed_work
); /* cancel timer */
2955 void ceph_mdsc_stop(struct ceph_mds_client
*mdsc
)
2958 cancel_delayed_work_sync(&mdsc
->delayed_work
); /* cancel timer */
2960 ceph_mdsmap_destroy(mdsc
->mdsmap
);
2961 kfree(mdsc
->sessions
);
2966 * handle mds map update.
2968 void ceph_mdsc_handle_map(struct ceph_mds_client
*mdsc
, struct ceph_msg
*msg
)
2972 void *p
= msg
->front
.iov_base
;
2973 void *end
= p
+ msg
->front
.iov_len
;
2974 struct ceph_mdsmap
*newmap
, *oldmap
;
2975 struct ceph_fsid fsid
;
2978 ceph_decode_need(&p
, end
, sizeof(fsid
)+2*sizeof(u32
), bad
);
2979 ceph_decode_copy(&p
, &fsid
, sizeof(fsid
));
2980 if (ceph_check_fsid(mdsc
->client
, &fsid
) < 0)
2982 epoch
= ceph_decode_32(&p
);
2983 maplen
= ceph_decode_32(&p
);
2984 dout("handle_map epoch %u len %d\n", epoch
, (int)maplen
);
2986 /* do we need it? */
2987 ceph_monc_got_mdsmap(&mdsc
->client
->monc
, epoch
);
2988 mutex_lock(&mdsc
->mutex
);
2989 if (mdsc
->mdsmap
&& epoch
<= mdsc
->mdsmap
->m_epoch
) {
2990 dout("handle_map epoch %u <= our %u\n",
2991 epoch
, mdsc
->mdsmap
->m_epoch
);
2992 mutex_unlock(&mdsc
->mutex
);
2996 newmap
= ceph_mdsmap_decode(&p
, end
);
2997 if (IS_ERR(newmap
)) {
2998 err
= PTR_ERR(newmap
);
3002 /* swap into place */
3004 oldmap
= mdsc
->mdsmap
;
3005 mdsc
->mdsmap
= newmap
;
3006 check_new_map(mdsc
, newmap
, oldmap
);
3007 ceph_mdsmap_destroy(oldmap
);
3009 mdsc
->mdsmap
= newmap
; /* first mds map */
3011 mdsc
->client
->sb
->s_maxbytes
= mdsc
->mdsmap
->m_max_file_size
;
3013 __wake_requests(mdsc
, &mdsc
->waiting_for_map
);
3015 mutex_unlock(&mdsc
->mutex
);
3016 schedule_delayed(mdsc
);
3020 mutex_unlock(&mdsc
->mutex
);
3022 pr_err("error decoding mdsmap %d\n", err
);
3026 static struct ceph_connection
*con_get(struct ceph_connection
*con
)
3028 struct ceph_mds_session
*s
= con
->private;
3030 if (get_session(s
)) {
3031 dout("mdsc con_get %p ok (%d)\n", s
, atomic_read(&s
->s_ref
));
3034 dout("mdsc con_get %p FAIL\n", s
);
3038 static void con_put(struct ceph_connection
*con
)
3040 struct ceph_mds_session
*s
= con
->private;
3042 ceph_put_mds_session(s
);
3043 dout("mdsc con_put %p (%d)\n", s
, atomic_read(&s
->s_ref
));
3047 * if the client is unresponsive for long enough, the mds will kill
3048 * the session entirely.
3050 static void peer_reset(struct ceph_connection
*con
)
3052 struct ceph_mds_session
*s
= con
->private;
3053 struct ceph_mds_client
*mdsc
= s
->s_mdsc
;
3055 pr_warning("mds%d closed our session\n", s
->s_mds
);
3056 send_mds_reconnect(mdsc
, s
);
3059 static void dispatch(struct ceph_connection
*con
, struct ceph_msg
*msg
)
3061 struct ceph_mds_session
*s
= con
->private;
3062 struct ceph_mds_client
*mdsc
= s
->s_mdsc
;
3063 int type
= le16_to_cpu(msg
->hdr
.type
);
3065 mutex_lock(&mdsc
->mutex
);
3066 if (__verify_registered_session(mdsc
, s
) < 0) {
3067 mutex_unlock(&mdsc
->mutex
);
3070 mutex_unlock(&mdsc
->mutex
);
3073 case CEPH_MSG_MDS_MAP
:
3074 ceph_mdsc_handle_map(mdsc
, msg
);
3076 case CEPH_MSG_CLIENT_SESSION
:
3077 handle_session(s
, msg
);
3079 case CEPH_MSG_CLIENT_REPLY
:
3080 handle_reply(s
, msg
);
3082 case CEPH_MSG_CLIENT_REQUEST_FORWARD
:
3083 handle_forward(mdsc
, s
, msg
);
3085 case CEPH_MSG_CLIENT_CAPS
:
3086 ceph_handle_caps(s
, msg
);
3088 case CEPH_MSG_CLIENT_SNAP
:
3089 ceph_handle_snap(mdsc
, s
, msg
);
3091 case CEPH_MSG_CLIENT_LEASE
:
3092 handle_lease(mdsc
, s
, msg
);
3096 pr_err("received unknown message type %d %s\n", type
,
3097 ceph_msg_type_name(type
));
3106 static int get_authorizer(struct ceph_connection
*con
,
3107 void **buf
, int *len
, int *proto
,
3108 void **reply_buf
, int *reply_len
, int force_new
)
3110 struct ceph_mds_session
*s
= con
->private;
3111 struct ceph_mds_client
*mdsc
= s
->s_mdsc
;
3112 struct ceph_auth_client
*ac
= mdsc
->client
->monc
.auth
;
3115 if (force_new
&& s
->s_authorizer
) {
3116 ac
->ops
->destroy_authorizer(ac
, s
->s_authorizer
);
3117 s
->s_authorizer
= NULL
;
3119 if (s
->s_authorizer
== NULL
) {
3120 if (ac
->ops
->create_authorizer
) {
3121 ret
= ac
->ops
->create_authorizer(
3122 ac
, CEPH_ENTITY_TYPE_MDS
,
3124 &s
->s_authorizer_buf
,
3125 &s
->s_authorizer_buf_len
,
3126 &s
->s_authorizer_reply_buf
,
3127 &s
->s_authorizer_reply_buf_len
);
3133 *proto
= ac
->protocol
;
3134 *buf
= s
->s_authorizer_buf
;
3135 *len
= s
->s_authorizer_buf_len
;
3136 *reply_buf
= s
->s_authorizer_reply_buf
;
3137 *reply_len
= s
->s_authorizer_reply_buf_len
;
3142 static int verify_authorizer_reply(struct ceph_connection
*con
, int len
)
3144 struct ceph_mds_session
*s
= con
->private;
3145 struct ceph_mds_client
*mdsc
= s
->s_mdsc
;
3146 struct ceph_auth_client
*ac
= mdsc
->client
->monc
.auth
;
3148 return ac
->ops
->verify_authorizer_reply(ac
, s
->s_authorizer
, len
);
3151 static int invalidate_authorizer(struct ceph_connection
*con
)
3153 struct ceph_mds_session
*s
= con
->private;
3154 struct ceph_mds_client
*mdsc
= s
->s_mdsc
;
3155 struct ceph_auth_client
*ac
= mdsc
->client
->monc
.auth
;
3157 if (ac
->ops
->invalidate_authorizer
)
3158 ac
->ops
->invalidate_authorizer(ac
, CEPH_ENTITY_TYPE_MDS
);
3160 return ceph_monc_validate_auth(&mdsc
->client
->monc
);
3163 static const struct ceph_connection_operations mds_con_ops
= {
3166 .dispatch
= dispatch
,
3167 .get_authorizer
= get_authorizer
,
3168 .verify_authorizer_reply
= verify_authorizer_reply
,
3169 .invalidate_authorizer
= invalidate_authorizer
,
3170 .peer_reset
= peer_reset
,