1 #include <linux/bitmap.h>
2 #include <linux/export.h>
4 #include <linux/slab.h>
5 #include <linux/spinlock.h>
7 DEFINE_PER_CPU(struct ida_bitmap
*, ida_bitmap
);
8 static DEFINE_SPINLOCK(simple_ida_lock
);
10 int idr_alloc_cmn(struct idr
*idr
, void *ptr
, unsigned long *index
,
11 unsigned long start
, unsigned long end
, gfp_t gfp
,
14 struct radix_tree_iter iter
;
17 if (WARN_ON_ONCE(radix_tree_is_internal_node(ptr
)))
20 radix_tree_iter_init(&iter
, start
);
22 slot
= idr_get_free_ext(&idr
->idr_rt
, &iter
, gfp
, end
);
24 slot
= idr_get_free(&idr
->idr_rt
, &iter
, gfp
, end
);
28 radix_tree_iter_replace(&idr
->idr_rt
, &iter
, slot
, ptr
);
29 radix_tree_iter_tag_clear(&idr
->idr_rt
, &iter
, IDR_FREE
);
35 EXPORT_SYMBOL_GPL(idr_alloc_cmn
);
38 * idr_alloc_cyclic - allocate new idr entry in a cyclical fashion
40 * @ptr: pointer to be associated with the new id
41 * @start: the minimum id (inclusive)
42 * @end: the maximum id (exclusive)
43 * @gfp: memory allocation flags
45 * Allocates an ID larger than the last ID allocated if one is available.
46 * If not, it will attempt to allocate the smallest ID that is larger or
49 int idr_alloc_cyclic(struct idr
*idr
, void *ptr
, int start
, int end
, gfp_t gfp
)
51 int id
, curr
= idr
->idr_next
;
56 id
= idr_alloc(idr
, ptr
, curr
, end
, gfp
);
57 if ((id
== -ENOSPC
) && (curr
> start
))
58 id
= idr_alloc(idr
, ptr
, start
, curr
, gfp
);
61 idr
->idr_next
= id
+ 1U;
65 EXPORT_SYMBOL(idr_alloc_cyclic
);
68 * idr_for_each - iterate through all stored pointers
70 * @fn: function to be called for each pointer
71 * @data: data passed to callback function
73 * The callback function will be called for each entry in @idr, passing
74 * the id, the pointer and the data pointer passed to this function.
76 * If @fn returns anything other than %0, the iteration stops and that
77 * value is returned from this function.
79 * idr_for_each() can be called concurrently with idr_alloc() and
80 * idr_remove() if protected by RCU. Newly added entries may not be
81 * seen and deleted entries may be seen, but adding and removing entries
82 * will not cause other entries to be skipped, nor spurious ones to be seen.
84 int idr_for_each(const struct idr
*idr
,
85 int (*fn
)(int id
, void *p
, void *data
), void *data
)
87 struct radix_tree_iter iter
;
90 radix_tree_for_each_slot(slot
, &idr
->idr_rt
, &iter
, 0) {
91 int ret
= fn(iter
.index
, rcu_dereference_raw(*slot
), data
);
98 EXPORT_SYMBOL(idr_for_each
);
101 * idr_get_next - Find next populated entry
103 * @nextid: Pointer to lowest possible ID to return
105 * Returns the next populated entry in the tree with an ID greater than
106 * or equal to the value pointed to by @nextid. On exit, @nextid is updated
107 * to the ID of the found value. To use in a loop, the value pointed to by
108 * nextid must be incremented by the user.
110 void *idr_get_next(struct idr
*idr
, int *nextid
)
112 struct radix_tree_iter iter
;
115 slot
= radix_tree_iter_find(&idr
->idr_rt
, &iter
, *nextid
);
119 *nextid
= iter
.index
;
120 return rcu_dereference_raw(*slot
);
122 EXPORT_SYMBOL(idr_get_next
);
124 void *idr_get_next_ext(struct idr
*idr
, unsigned long *nextid
)
126 struct radix_tree_iter iter
;
129 slot
= radix_tree_iter_find(&idr
->idr_rt
, &iter
, *nextid
);
133 *nextid
= iter
.index
;
134 return rcu_dereference_raw(*slot
);
136 EXPORT_SYMBOL(idr_get_next_ext
);
139 * idr_replace - replace pointer for given id
141 * @ptr: New pointer to associate with the ID
144 * Replace the pointer registered with an ID and return the old value.
145 * This function can be called under the RCU read lock concurrently with
146 * idr_alloc() and idr_remove() (as long as the ID being removed is not
147 * the one being replaced!).
149 * Returns: the old value on success. %-ENOENT indicates that @id was not
150 * found. %-EINVAL indicates that @id or @ptr were not valid.
152 void *idr_replace(struct idr
*idr
, void *ptr
, int id
)
155 return ERR_PTR(-EINVAL
);
157 return idr_replace_ext(idr
, ptr
, id
);
159 EXPORT_SYMBOL(idr_replace
);
161 void *idr_replace_ext(struct idr
*idr
, void *ptr
, unsigned long id
)
163 struct radix_tree_node
*node
;
164 void __rcu
**slot
= NULL
;
167 if (WARN_ON_ONCE(radix_tree_is_internal_node(ptr
)))
168 return ERR_PTR(-EINVAL
);
170 entry
= __radix_tree_lookup(&idr
->idr_rt
, id
, &node
, &slot
);
171 if (!slot
|| radix_tree_tag_get(&idr
->idr_rt
, id
, IDR_FREE
))
172 return ERR_PTR(-ENOENT
);
174 __radix_tree_replace(&idr
->idr_rt
, node
, slot
, ptr
, NULL
);
178 EXPORT_SYMBOL(idr_replace_ext
);
181 * DOC: IDA description
183 * The IDA is an ID allocator which does not provide the ability to
184 * associate an ID with a pointer. As such, it only needs to store one
185 * bit per ID, and so is more space efficient than an IDR. To use an IDA,
186 * define it using DEFINE_IDA() (or embed a &struct ida in a data structure,
187 * then initialise it using ida_init()). To allocate a new ID, call
188 * ida_simple_get(). To free an ID, call ida_simple_remove().
190 * If you have more complex locking requirements, use a loop around
191 * ida_pre_get() and ida_get_new() to allocate a new ID. Then use
192 * ida_remove() to free an ID. You must make sure that ida_get_new() and
193 * ida_remove() cannot be called at the same time as each other for the
196 * You can also use ida_get_new_above() if you need an ID to be allocated
197 * above a particular number. ida_destroy() can be used to dispose of an
198 * IDA without needing to free the individual IDs in it. You can use
199 * ida_is_empty() to find out whether the IDA has any IDs currently allocated.
201 * IDs are currently limited to the range [0-INT_MAX]. If this is an awkward
202 * limitation, it should be quite straightforward to raise the maximum.
208 * The IDA uses the functionality provided by the IDR & radix tree to store
209 * bitmaps in each entry. The IDR_FREE tag means there is at least one bit
210 * free, unlike the IDR where it means at least one entry is free.
212 * I considered telling the radix tree that each slot is an order-10 node
213 * and storing the bit numbers in the radix tree, but the radix tree can't
214 * allow a single multiorder entry at index 0, which would significantly
215 * increase memory consumption for the IDA. So instead we divide the index
216 * by the number of bits in the leaf bitmap before doing a radix tree lookup.
218 * As an optimisation, if there are only a few low bits set in any given
219 * leaf, instead of allocating a 128-byte bitmap, we use the 'exceptional
220 * entry' functionality of the radix tree to store BITS_PER_LONG - 2 bits
221 * directly in the entry. By being really tricksy, we could store
222 * BITS_PER_LONG - 1 bits, but there're diminishing returns after optimising
223 * for 0-3 allocated IDs.
225 * We allow the radix tree 'exceptional' count to get out of date. Nothing
226 * in the IDA nor the radix tree code checks it. If it becomes important
227 * to maintain an accurate exceptional count, switch the rcu_assign_pointer()
228 * calls to radix_tree_iter_replace() which will correct the exceptional
231 * The IDA always requires a lock to alloc/free. If we add a 'test_bit'
232 * equivalent, it will still need locking. Going to RCU lookup would require
233 * using RCU to free bitmaps, and that's not trivial without embedding an
234 * RCU head in the bitmap, which adds a 2-pointer overhead to each 128-byte
235 * bitmap, which is excessive.
238 #define IDA_MAX (0x80000000U / IDA_BITMAP_BITS)
241 * ida_get_new_above - allocate new ID above or equal to a start id
243 * @start: id to start search at
244 * @id: pointer to the allocated handle
246 * Allocate new ID above or equal to @start. It should be called
247 * with any required locks to ensure that concurrent calls to
248 * ida_get_new_above() / ida_get_new() / ida_remove() are not allowed.
249 * Consider using ida_simple_get() if you do not have complex locking
252 * If memory is required, it will return %-EAGAIN, you should unlock
253 * and go back to the ida_pre_get() call. If the ida is full, it will
254 * return %-ENOSPC. On success, it will return 0.
256 * @id returns a value in the range @start ... %0x7fffffff.
258 int ida_get_new_above(struct ida
*ida
, int start
, int *id
)
260 struct radix_tree_root
*root
= &ida
->ida_rt
;
262 struct radix_tree_iter iter
;
263 struct ida_bitmap
*bitmap
;
268 index
= start
/ IDA_BITMAP_BITS
;
269 bit
= start
% IDA_BITMAP_BITS
;
270 ebit
= bit
+ RADIX_TREE_EXCEPTIONAL_SHIFT
;
272 slot
= radix_tree_iter_init(&iter
, index
);
275 slot
= radix_tree_next_slot(slot
, &iter
,
276 RADIX_TREE_ITER_TAGGED
);
278 slot
= idr_get_free(root
, &iter
, GFP_NOWAIT
, IDA_MAX
);
280 if (slot
== ERR_PTR(-ENOMEM
))
282 return PTR_ERR(slot
);
285 if (iter
.index
> index
) {
287 ebit
= RADIX_TREE_EXCEPTIONAL_SHIFT
;
289 new = iter
.index
* IDA_BITMAP_BITS
;
290 bitmap
= rcu_dereference_raw(*slot
);
291 if (radix_tree_exception(bitmap
)) {
292 unsigned long tmp
= (unsigned long)bitmap
;
293 ebit
= find_next_zero_bit(&tmp
, BITS_PER_LONG
, ebit
);
294 if (ebit
< BITS_PER_LONG
) {
296 rcu_assign_pointer(*slot
, (void *)tmp
);
297 *id
= new + ebit
- RADIX_TREE_EXCEPTIONAL_SHIFT
;
300 bitmap
= this_cpu_xchg(ida_bitmap
, NULL
);
303 memset(bitmap
, 0, sizeof(*bitmap
));
304 bitmap
->bitmap
[0] = tmp
>> RADIX_TREE_EXCEPTIONAL_SHIFT
;
305 rcu_assign_pointer(*slot
, bitmap
);
309 bit
= find_next_zero_bit(bitmap
->bitmap
,
310 IDA_BITMAP_BITS
, bit
);
314 if (bit
== IDA_BITMAP_BITS
)
317 __set_bit(bit
, bitmap
->bitmap
);
318 if (bitmap_full(bitmap
->bitmap
, IDA_BITMAP_BITS
))
319 radix_tree_iter_tag_clear(root
, &iter
,
325 if (ebit
< BITS_PER_LONG
) {
326 bitmap
= (void *)((1UL << ebit
) |
327 RADIX_TREE_EXCEPTIONAL_ENTRY
);
328 radix_tree_iter_replace(root
, &iter
, slot
,
333 bitmap
= this_cpu_xchg(ida_bitmap
, NULL
);
336 memset(bitmap
, 0, sizeof(*bitmap
));
337 __set_bit(bit
, bitmap
->bitmap
);
338 radix_tree_iter_replace(root
, &iter
, slot
, bitmap
);
345 EXPORT_SYMBOL(ida_get_new_above
);
348 * ida_remove - Free the given ID
352 * This function should not be called at the same time as ida_get_new_above().
354 void ida_remove(struct ida
*ida
, int id
)
356 unsigned long index
= id
/ IDA_BITMAP_BITS
;
357 unsigned offset
= id
% IDA_BITMAP_BITS
;
358 struct ida_bitmap
*bitmap
;
360 struct radix_tree_iter iter
;
363 slot
= radix_tree_iter_lookup(&ida
->ida_rt
, &iter
, index
);
367 bitmap
= rcu_dereference_raw(*slot
);
368 if (radix_tree_exception(bitmap
)) {
369 btmp
= (unsigned long *)slot
;
370 offset
+= RADIX_TREE_EXCEPTIONAL_SHIFT
;
371 if (offset
>= BITS_PER_LONG
)
374 btmp
= bitmap
->bitmap
;
376 if (!test_bit(offset
, btmp
))
379 __clear_bit(offset
, btmp
);
380 radix_tree_iter_tag_set(&ida
->ida_rt
, &iter
, IDR_FREE
);
381 if (radix_tree_exception(bitmap
)) {
382 if (rcu_dereference_raw(*slot
) ==
383 (void *)RADIX_TREE_EXCEPTIONAL_ENTRY
)
384 radix_tree_iter_delete(&ida
->ida_rt
, &iter
, slot
);
385 } else if (bitmap_empty(btmp
, IDA_BITMAP_BITS
)) {
387 radix_tree_iter_delete(&ida
->ida_rt
, &iter
, slot
);
391 WARN(1, "ida_remove called for id=%d which is not allocated.\n", id
);
393 EXPORT_SYMBOL(ida_remove
);
396 * ida_destroy - Free the contents of an ida
399 * Calling this function releases all resources associated with an IDA. When
400 * this call returns, the IDA is empty and can be reused or freed. The caller
401 * should not allow ida_remove() or ida_get_new_above() to be called at the
404 void ida_destroy(struct ida
*ida
)
406 struct radix_tree_iter iter
;
409 radix_tree_for_each_slot(slot
, &ida
->ida_rt
, &iter
, 0) {
410 struct ida_bitmap
*bitmap
= rcu_dereference_raw(*slot
);
411 if (!radix_tree_exception(bitmap
))
413 radix_tree_iter_delete(&ida
->ida_rt
, &iter
, slot
);
416 EXPORT_SYMBOL(ida_destroy
);
419 * ida_simple_get - get a new id.
420 * @ida: the (initialized) ida.
421 * @start: the minimum id (inclusive, < 0x8000000)
422 * @end: the maximum id (exclusive, < 0x8000000 or 0)
423 * @gfp_mask: memory allocation flags
425 * Allocates an id in the range start <= id < end, or returns -ENOSPC.
426 * On memory allocation failure, returns -ENOMEM.
428 * Compared to ida_get_new_above() this function does its own locking, and
429 * should be used unless there are special requirements.
431 * Use ida_simple_remove() to get rid of an id.
433 int ida_simple_get(struct ida
*ida
, unsigned int start
, unsigned int end
,
440 BUG_ON((int)start
< 0);
441 BUG_ON((int)end
< 0);
451 if (!ida_pre_get(ida
, gfp_mask
))
454 spin_lock_irqsave(&simple_ida_lock
, flags
);
455 ret
= ida_get_new_above(ida
, start
, &id
);
464 spin_unlock_irqrestore(&simple_ida_lock
, flags
);
466 if (unlikely(ret
== -EAGAIN
))
471 EXPORT_SYMBOL(ida_simple_get
);
474 * ida_simple_remove - remove an allocated id.
475 * @ida: the (initialized) ida.
476 * @id: the id returned by ida_simple_get.
478 * Use to release an id allocated with ida_simple_get().
480 * Compared to ida_remove() this function does its own locking, and should be
481 * used unless there are special requirements.
483 void ida_simple_remove(struct ida
*ida
, unsigned int id
)
488 spin_lock_irqsave(&simple_ida_lock
, flags
);
490 spin_unlock_irqrestore(&simple_ida_lock
, flags
);
492 EXPORT_SYMBOL(ida_simple_remove
);