futex: futex_wake_op, fix sign_extend32 sign bits
[linux/fpc-iii.git] / kernel / irq / manage.c
blob0f922729bab9b202d1d79054dee2ff56d8a523a2
1 /*
2 * linux/kernel/irq/manage.c
4 * Copyright (C) 1992, 1998-2006 Linus Torvalds, Ingo Molnar
5 * Copyright (C) 2005-2006 Thomas Gleixner
7 * This file contains driver APIs to the irq subsystem.
8 */
10 #define pr_fmt(fmt) "genirq: " fmt
12 #include <linux/irq.h>
13 #include <linux/kthread.h>
14 #include <linux/module.h>
15 #include <linux/random.h>
16 #include <linux/interrupt.h>
17 #include <linux/slab.h>
18 #include <linux/sched.h>
19 #include <linux/sched/rt.h>
20 #include <linux/sched/task.h>
21 #include <uapi/linux/sched/types.h>
22 #include <linux/task_work.h>
24 #include "internals.h"
26 #ifdef CONFIG_IRQ_FORCED_THREADING
27 __read_mostly bool force_irqthreads;
29 static int __init setup_forced_irqthreads(char *arg)
31 force_irqthreads = true;
32 return 0;
34 early_param("threadirqs", setup_forced_irqthreads);
35 #endif
37 static void __synchronize_hardirq(struct irq_desc *desc)
39 bool inprogress;
41 do {
42 unsigned long flags;
45 * Wait until we're out of the critical section. This might
46 * give the wrong answer due to the lack of memory barriers.
48 while (irqd_irq_inprogress(&desc->irq_data))
49 cpu_relax();
51 /* Ok, that indicated we're done: double-check carefully. */
52 raw_spin_lock_irqsave(&desc->lock, flags);
53 inprogress = irqd_irq_inprogress(&desc->irq_data);
54 raw_spin_unlock_irqrestore(&desc->lock, flags);
56 /* Oops, that failed? */
57 } while (inprogress);
60 /**
61 * synchronize_hardirq - wait for pending hard IRQ handlers (on other CPUs)
62 * @irq: interrupt number to wait for
64 * This function waits for any pending hard IRQ handlers for this
65 * interrupt to complete before returning. If you use this
66 * function while holding a resource the IRQ handler may need you
67 * will deadlock. It does not take associated threaded handlers
68 * into account.
70 * Do not use this for shutdown scenarios where you must be sure
71 * that all parts (hardirq and threaded handler) have completed.
73 * Returns: false if a threaded handler is active.
75 * This function may be called - with care - from IRQ context.
77 bool synchronize_hardirq(unsigned int irq)
79 struct irq_desc *desc = irq_to_desc(irq);
81 if (desc) {
82 __synchronize_hardirq(desc);
83 return !atomic_read(&desc->threads_active);
86 return true;
88 EXPORT_SYMBOL(synchronize_hardirq);
90 /**
91 * synchronize_irq - wait for pending IRQ handlers (on other CPUs)
92 * @irq: interrupt number to wait for
94 * This function waits for any pending IRQ handlers for this interrupt
95 * to complete before returning. If you use this function while
96 * holding a resource the IRQ handler may need you will deadlock.
98 * This function may be called - with care - from IRQ context.
100 void synchronize_irq(unsigned int irq)
102 struct irq_desc *desc = irq_to_desc(irq);
104 if (desc) {
105 __synchronize_hardirq(desc);
107 * We made sure that no hardirq handler is
108 * running. Now verify that no threaded handlers are
109 * active.
111 wait_event(desc->wait_for_threads,
112 !atomic_read(&desc->threads_active));
115 EXPORT_SYMBOL(synchronize_irq);
117 #ifdef CONFIG_SMP
118 cpumask_var_t irq_default_affinity;
120 static bool __irq_can_set_affinity(struct irq_desc *desc)
122 if (!desc || !irqd_can_balance(&desc->irq_data) ||
123 !desc->irq_data.chip || !desc->irq_data.chip->irq_set_affinity)
124 return false;
125 return true;
129 * irq_can_set_affinity - Check if the affinity of a given irq can be set
130 * @irq: Interrupt to check
133 int irq_can_set_affinity(unsigned int irq)
135 return __irq_can_set_affinity(irq_to_desc(irq));
139 * irq_can_set_affinity_usr - Check if affinity of a irq can be set from user space
140 * @irq: Interrupt to check
142 * Like irq_can_set_affinity() above, but additionally checks for the
143 * AFFINITY_MANAGED flag.
145 bool irq_can_set_affinity_usr(unsigned int irq)
147 struct irq_desc *desc = irq_to_desc(irq);
149 return __irq_can_set_affinity(desc) &&
150 !irqd_affinity_is_managed(&desc->irq_data);
154 * irq_set_thread_affinity - Notify irq threads to adjust affinity
155 * @desc: irq descriptor which has affitnity changed
157 * We just set IRQTF_AFFINITY and delegate the affinity setting
158 * to the interrupt thread itself. We can not call
159 * set_cpus_allowed_ptr() here as we hold desc->lock and this
160 * code can be called from hard interrupt context.
162 void irq_set_thread_affinity(struct irq_desc *desc)
164 struct irqaction *action;
166 for_each_action_of_desc(desc, action)
167 if (action->thread)
168 set_bit(IRQTF_AFFINITY, &action->thread_flags);
171 static void irq_validate_effective_affinity(struct irq_data *data)
173 #ifdef CONFIG_GENERIC_IRQ_EFFECTIVE_AFF_MASK
174 const struct cpumask *m = irq_data_get_effective_affinity_mask(data);
175 struct irq_chip *chip = irq_data_get_irq_chip(data);
177 if (!cpumask_empty(m))
178 return;
179 pr_warn_once("irq_chip %s did not update eff. affinity mask of irq %u\n",
180 chip->name, data->irq);
181 #endif
184 int irq_do_set_affinity(struct irq_data *data, const struct cpumask *mask,
185 bool force)
187 struct irq_desc *desc = irq_data_to_desc(data);
188 struct irq_chip *chip = irq_data_get_irq_chip(data);
189 int ret;
191 if (!chip || !chip->irq_set_affinity)
192 return -EINVAL;
194 ret = chip->irq_set_affinity(data, mask, force);
195 switch (ret) {
196 case IRQ_SET_MASK_OK:
197 case IRQ_SET_MASK_OK_DONE:
198 cpumask_copy(desc->irq_common_data.affinity, mask);
199 case IRQ_SET_MASK_OK_NOCOPY:
200 irq_validate_effective_affinity(data);
201 irq_set_thread_affinity(desc);
202 ret = 0;
205 return ret;
208 int irq_set_affinity_locked(struct irq_data *data, const struct cpumask *mask,
209 bool force)
211 struct irq_chip *chip = irq_data_get_irq_chip(data);
212 struct irq_desc *desc = irq_data_to_desc(data);
213 int ret = 0;
215 if (!chip || !chip->irq_set_affinity)
216 return -EINVAL;
218 if (irq_can_move_pcntxt(data)) {
219 ret = irq_do_set_affinity(data, mask, force);
220 } else {
221 irqd_set_move_pending(data);
222 irq_copy_pending(desc, mask);
225 if (desc->affinity_notify) {
226 kref_get(&desc->affinity_notify->kref);
227 schedule_work(&desc->affinity_notify->work);
229 irqd_set(data, IRQD_AFFINITY_SET);
231 return ret;
234 int __irq_set_affinity(unsigned int irq, const struct cpumask *mask, bool force)
236 struct irq_desc *desc = irq_to_desc(irq);
237 unsigned long flags;
238 int ret;
240 if (!desc)
241 return -EINVAL;
243 raw_spin_lock_irqsave(&desc->lock, flags);
244 ret = irq_set_affinity_locked(irq_desc_get_irq_data(desc), mask, force);
245 raw_spin_unlock_irqrestore(&desc->lock, flags);
246 return ret;
249 int irq_set_affinity_hint(unsigned int irq, const struct cpumask *m)
251 unsigned long flags;
252 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
254 if (!desc)
255 return -EINVAL;
256 desc->affinity_hint = m;
257 irq_put_desc_unlock(desc, flags);
258 /* set the initial affinity to prevent every interrupt being on CPU0 */
259 if (m)
260 __irq_set_affinity(irq, m, false);
261 return 0;
263 EXPORT_SYMBOL_GPL(irq_set_affinity_hint);
265 static void irq_affinity_notify(struct work_struct *work)
267 struct irq_affinity_notify *notify =
268 container_of(work, struct irq_affinity_notify, work);
269 struct irq_desc *desc = irq_to_desc(notify->irq);
270 cpumask_var_t cpumask;
271 unsigned long flags;
273 if (!desc || !alloc_cpumask_var(&cpumask, GFP_KERNEL))
274 goto out;
276 raw_spin_lock_irqsave(&desc->lock, flags);
277 if (irq_move_pending(&desc->irq_data))
278 irq_get_pending(cpumask, desc);
279 else
280 cpumask_copy(cpumask, desc->irq_common_data.affinity);
281 raw_spin_unlock_irqrestore(&desc->lock, flags);
283 notify->notify(notify, cpumask);
285 free_cpumask_var(cpumask);
286 out:
287 kref_put(&notify->kref, notify->release);
291 * irq_set_affinity_notifier - control notification of IRQ affinity changes
292 * @irq: Interrupt for which to enable/disable notification
293 * @notify: Context for notification, or %NULL to disable
294 * notification. Function pointers must be initialised;
295 * the other fields will be initialised by this function.
297 * Must be called in process context. Notification may only be enabled
298 * after the IRQ is allocated and must be disabled before the IRQ is
299 * freed using free_irq().
302 irq_set_affinity_notifier(unsigned int irq, struct irq_affinity_notify *notify)
304 struct irq_desc *desc = irq_to_desc(irq);
305 struct irq_affinity_notify *old_notify;
306 unsigned long flags;
308 /* The release function is promised process context */
309 might_sleep();
311 if (!desc)
312 return -EINVAL;
314 /* Complete initialisation of *notify */
315 if (notify) {
316 notify->irq = irq;
317 kref_init(&notify->kref);
318 INIT_WORK(&notify->work, irq_affinity_notify);
321 raw_spin_lock_irqsave(&desc->lock, flags);
322 old_notify = desc->affinity_notify;
323 desc->affinity_notify = notify;
324 raw_spin_unlock_irqrestore(&desc->lock, flags);
326 if (old_notify)
327 kref_put(&old_notify->kref, old_notify->release);
329 return 0;
331 EXPORT_SYMBOL_GPL(irq_set_affinity_notifier);
333 #ifndef CONFIG_AUTO_IRQ_AFFINITY
335 * Generic version of the affinity autoselector.
337 int irq_setup_affinity(struct irq_desc *desc)
339 struct cpumask *set = irq_default_affinity;
340 int ret, node = irq_desc_get_node(desc);
341 static DEFINE_RAW_SPINLOCK(mask_lock);
342 static struct cpumask mask;
344 /* Excludes PER_CPU and NO_BALANCE interrupts */
345 if (!__irq_can_set_affinity(desc))
346 return 0;
348 raw_spin_lock(&mask_lock);
350 * Preserve the managed affinity setting and a userspace affinity
351 * setup, but make sure that one of the targets is online.
353 if (irqd_affinity_is_managed(&desc->irq_data) ||
354 irqd_has_set(&desc->irq_data, IRQD_AFFINITY_SET)) {
355 if (cpumask_intersects(desc->irq_common_data.affinity,
356 cpu_online_mask))
357 set = desc->irq_common_data.affinity;
358 else
359 irqd_clear(&desc->irq_data, IRQD_AFFINITY_SET);
362 cpumask_and(&mask, cpu_online_mask, set);
363 if (node != NUMA_NO_NODE) {
364 const struct cpumask *nodemask = cpumask_of_node(node);
366 /* make sure at least one of the cpus in nodemask is online */
367 if (cpumask_intersects(&mask, nodemask))
368 cpumask_and(&mask, &mask, nodemask);
370 ret = irq_do_set_affinity(&desc->irq_data, &mask, false);
371 raw_spin_unlock(&mask_lock);
372 return ret;
374 #else
375 /* Wrapper for ALPHA specific affinity selector magic */
376 int irq_setup_affinity(struct irq_desc *desc)
378 return irq_select_affinity(irq_desc_get_irq(desc));
380 #endif
383 * Called when a bogus affinity is set via /proc/irq
385 int irq_select_affinity_usr(unsigned int irq)
387 struct irq_desc *desc = irq_to_desc(irq);
388 unsigned long flags;
389 int ret;
391 raw_spin_lock_irqsave(&desc->lock, flags);
392 ret = irq_setup_affinity(desc);
393 raw_spin_unlock_irqrestore(&desc->lock, flags);
394 return ret;
396 #endif
399 * irq_set_vcpu_affinity - Set vcpu affinity for the interrupt
400 * @irq: interrupt number to set affinity
401 * @vcpu_info: vCPU specific data or pointer to a percpu array of vCPU
402 * specific data for percpu_devid interrupts
404 * This function uses the vCPU specific data to set the vCPU
405 * affinity for an irq. The vCPU specific data is passed from
406 * outside, such as KVM. One example code path is as below:
407 * KVM -> IOMMU -> irq_set_vcpu_affinity().
409 int irq_set_vcpu_affinity(unsigned int irq, void *vcpu_info)
411 unsigned long flags;
412 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
413 struct irq_data *data;
414 struct irq_chip *chip;
415 int ret = -ENOSYS;
417 if (!desc)
418 return -EINVAL;
420 data = irq_desc_get_irq_data(desc);
421 do {
422 chip = irq_data_get_irq_chip(data);
423 if (chip && chip->irq_set_vcpu_affinity)
424 break;
425 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
426 data = data->parent_data;
427 #else
428 data = NULL;
429 #endif
430 } while (data);
432 if (data)
433 ret = chip->irq_set_vcpu_affinity(data, vcpu_info);
434 irq_put_desc_unlock(desc, flags);
436 return ret;
438 EXPORT_SYMBOL_GPL(irq_set_vcpu_affinity);
440 void __disable_irq(struct irq_desc *desc)
442 if (!desc->depth++)
443 irq_disable(desc);
446 static int __disable_irq_nosync(unsigned int irq)
448 unsigned long flags;
449 struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
451 if (!desc)
452 return -EINVAL;
453 __disable_irq(desc);
454 irq_put_desc_busunlock(desc, flags);
455 return 0;
459 * disable_irq_nosync - disable an irq without waiting
460 * @irq: Interrupt to disable
462 * Disable the selected interrupt line. Disables and Enables are
463 * nested.
464 * Unlike disable_irq(), this function does not ensure existing
465 * instances of the IRQ handler have completed before returning.
467 * This function may be called from IRQ context.
469 void disable_irq_nosync(unsigned int irq)
471 __disable_irq_nosync(irq);
473 EXPORT_SYMBOL(disable_irq_nosync);
476 * disable_irq - disable an irq and wait for completion
477 * @irq: Interrupt to disable
479 * Disable the selected interrupt line. Enables and Disables are
480 * nested.
481 * This function waits for any pending IRQ handlers for this interrupt
482 * to complete before returning. If you use this function while
483 * holding a resource the IRQ handler may need you will deadlock.
485 * This function may be called - with care - from IRQ context.
487 void disable_irq(unsigned int irq)
489 if (!__disable_irq_nosync(irq))
490 synchronize_irq(irq);
492 EXPORT_SYMBOL(disable_irq);
495 * disable_hardirq - disables an irq and waits for hardirq completion
496 * @irq: Interrupt to disable
498 * Disable the selected interrupt line. Enables and Disables are
499 * nested.
500 * This function waits for any pending hard IRQ handlers for this
501 * interrupt to complete before returning. If you use this function while
502 * holding a resource the hard IRQ handler may need you will deadlock.
504 * When used to optimistically disable an interrupt from atomic context
505 * the return value must be checked.
507 * Returns: false if a threaded handler is active.
509 * This function may be called - with care - from IRQ context.
511 bool disable_hardirq(unsigned int irq)
513 if (!__disable_irq_nosync(irq))
514 return synchronize_hardirq(irq);
516 return false;
518 EXPORT_SYMBOL_GPL(disable_hardirq);
520 void __enable_irq(struct irq_desc *desc)
522 switch (desc->depth) {
523 case 0:
524 err_out:
525 WARN(1, KERN_WARNING "Unbalanced enable for IRQ %d\n",
526 irq_desc_get_irq(desc));
527 break;
528 case 1: {
529 if (desc->istate & IRQS_SUSPENDED)
530 goto err_out;
531 /* Prevent probing on this irq: */
532 irq_settings_set_noprobe(desc);
534 * Call irq_startup() not irq_enable() here because the
535 * interrupt might be marked NOAUTOEN. So irq_startup()
536 * needs to be invoked when it gets enabled the first
537 * time. If it was already started up, then irq_startup()
538 * will invoke irq_enable() under the hood.
540 irq_startup(desc, IRQ_RESEND, IRQ_START_FORCE);
541 break;
543 default:
544 desc->depth--;
549 * enable_irq - enable handling of an irq
550 * @irq: Interrupt to enable
552 * Undoes the effect of one call to disable_irq(). If this
553 * matches the last disable, processing of interrupts on this
554 * IRQ line is re-enabled.
556 * This function may be called from IRQ context only when
557 * desc->irq_data.chip->bus_lock and desc->chip->bus_sync_unlock are NULL !
559 void enable_irq(unsigned int irq)
561 unsigned long flags;
562 struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
564 if (!desc)
565 return;
566 if (WARN(!desc->irq_data.chip,
567 KERN_ERR "enable_irq before setup/request_irq: irq %u\n", irq))
568 goto out;
570 __enable_irq(desc);
571 out:
572 irq_put_desc_busunlock(desc, flags);
574 EXPORT_SYMBOL(enable_irq);
576 static int set_irq_wake_real(unsigned int irq, unsigned int on)
578 struct irq_desc *desc = irq_to_desc(irq);
579 int ret = -ENXIO;
581 if (irq_desc_get_chip(desc)->flags & IRQCHIP_SKIP_SET_WAKE)
582 return 0;
584 if (desc->irq_data.chip->irq_set_wake)
585 ret = desc->irq_data.chip->irq_set_wake(&desc->irq_data, on);
587 return ret;
591 * irq_set_irq_wake - control irq power management wakeup
592 * @irq: interrupt to control
593 * @on: enable/disable power management wakeup
595 * Enable/disable power management wakeup mode, which is
596 * disabled by default. Enables and disables must match,
597 * just as they match for non-wakeup mode support.
599 * Wakeup mode lets this IRQ wake the system from sleep
600 * states like "suspend to RAM".
602 int irq_set_irq_wake(unsigned int irq, unsigned int on)
604 unsigned long flags;
605 struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
606 int ret = 0;
608 if (!desc)
609 return -EINVAL;
611 /* wakeup-capable irqs can be shared between drivers that
612 * don't need to have the same sleep mode behaviors.
614 if (on) {
615 if (desc->wake_depth++ == 0) {
616 ret = set_irq_wake_real(irq, on);
617 if (ret)
618 desc->wake_depth = 0;
619 else
620 irqd_set(&desc->irq_data, IRQD_WAKEUP_STATE);
622 } else {
623 if (desc->wake_depth == 0) {
624 WARN(1, "Unbalanced IRQ %d wake disable\n", irq);
625 } else if (--desc->wake_depth == 0) {
626 ret = set_irq_wake_real(irq, on);
627 if (ret)
628 desc->wake_depth = 1;
629 else
630 irqd_clear(&desc->irq_data, IRQD_WAKEUP_STATE);
633 irq_put_desc_busunlock(desc, flags);
634 return ret;
636 EXPORT_SYMBOL(irq_set_irq_wake);
639 * Internal function that tells the architecture code whether a
640 * particular irq has been exclusively allocated or is available
641 * for driver use.
643 int can_request_irq(unsigned int irq, unsigned long irqflags)
645 unsigned long flags;
646 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
647 int canrequest = 0;
649 if (!desc)
650 return 0;
652 if (irq_settings_can_request(desc)) {
653 if (!desc->action ||
654 irqflags & desc->action->flags & IRQF_SHARED)
655 canrequest = 1;
657 irq_put_desc_unlock(desc, flags);
658 return canrequest;
661 int __irq_set_trigger(struct irq_desc *desc, unsigned long flags)
663 struct irq_chip *chip = desc->irq_data.chip;
664 int ret, unmask = 0;
666 if (!chip || !chip->irq_set_type) {
668 * IRQF_TRIGGER_* but the PIC does not support multiple
669 * flow-types?
671 pr_debug("No set_type function for IRQ %d (%s)\n",
672 irq_desc_get_irq(desc),
673 chip ? (chip->name ? : "unknown") : "unknown");
674 return 0;
677 if (chip->flags & IRQCHIP_SET_TYPE_MASKED) {
678 if (!irqd_irq_masked(&desc->irq_data))
679 mask_irq(desc);
680 if (!irqd_irq_disabled(&desc->irq_data))
681 unmask = 1;
684 /* Mask all flags except trigger mode */
685 flags &= IRQ_TYPE_SENSE_MASK;
686 ret = chip->irq_set_type(&desc->irq_data, flags);
688 switch (ret) {
689 case IRQ_SET_MASK_OK:
690 case IRQ_SET_MASK_OK_DONE:
691 irqd_clear(&desc->irq_data, IRQD_TRIGGER_MASK);
692 irqd_set(&desc->irq_data, flags);
694 case IRQ_SET_MASK_OK_NOCOPY:
695 flags = irqd_get_trigger_type(&desc->irq_data);
696 irq_settings_set_trigger_mask(desc, flags);
697 irqd_clear(&desc->irq_data, IRQD_LEVEL);
698 irq_settings_clr_level(desc);
699 if (flags & IRQ_TYPE_LEVEL_MASK) {
700 irq_settings_set_level(desc);
701 irqd_set(&desc->irq_data, IRQD_LEVEL);
704 ret = 0;
705 break;
706 default:
707 pr_err("Setting trigger mode %lu for irq %u failed (%pF)\n",
708 flags, irq_desc_get_irq(desc), chip->irq_set_type);
710 if (unmask)
711 unmask_irq(desc);
712 return ret;
715 #ifdef CONFIG_HARDIRQS_SW_RESEND
716 int irq_set_parent(int irq, int parent_irq)
718 unsigned long flags;
719 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
721 if (!desc)
722 return -EINVAL;
724 desc->parent_irq = parent_irq;
726 irq_put_desc_unlock(desc, flags);
727 return 0;
729 EXPORT_SYMBOL_GPL(irq_set_parent);
730 #endif
733 * Default primary interrupt handler for threaded interrupts. Is
734 * assigned as primary handler when request_threaded_irq is called
735 * with handler == NULL. Useful for oneshot interrupts.
737 static irqreturn_t irq_default_primary_handler(int irq, void *dev_id)
739 return IRQ_WAKE_THREAD;
743 * Primary handler for nested threaded interrupts. Should never be
744 * called.
746 static irqreturn_t irq_nested_primary_handler(int irq, void *dev_id)
748 WARN(1, "Primary handler called for nested irq %d\n", irq);
749 return IRQ_NONE;
752 static irqreturn_t irq_forced_secondary_handler(int irq, void *dev_id)
754 WARN(1, "Secondary action handler called for irq %d\n", irq);
755 return IRQ_NONE;
758 static int irq_wait_for_interrupt(struct irqaction *action)
760 set_current_state(TASK_INTERRUPTIBLE);
762 while (!kthread_should_stop()) {
764 if (test_and_clear_bit(IRQTF_RUNTHREAD,
765 &action->thread_flags)) {
766 __set_current_state(TASK_RUNNING);
767 return 0;
769 schedule();
770 set_current_state(TASK_INTERRUPTIBLE);
772 __set_current_state(TASK_RUNNING);
773 return -1;
777 * Oneshot interrupts keep the irq line masked until the threaded
778 * handler finished. unmask if the interrupt has not been disabled and
779 * is marked MASKED.
781 static void irq_finalize_oneshot(struct irq_desc *desc,
782 struct irqaction *action)
784 if (!(desc->istate & IRQS_ONESHOT) ||
785 action->handler == irq_forced_secondary_handler)
786 return;
787 again:
788 chip_bus_lock(desc);
789 raw_spin_lock_irq(&desc->lock);
792 * Implausible though it may be we need to protect us against
793 * the following scenario:
795 * The thread is faster done than the hard interrupt handler
796 * on the other CPU. If we unmask the irq line then the
797 * interrupt can come in again and masks the line, leaves due
798 * to IRQS_INPROGRESS and the irq line is masked forever.
800 * This also serializes the state of shared oneshot handlers
801 * versus "desc->threads_onehsot |= action->thread_mask;" in
802 * irq_wake_thread(). See the comment there which explains the
803 * serialization.
805 if (unlikely(irqd_irq_inprogress(&desc->irq_data))) {
806 raw_spin_unlock_irq(&desc->lock);
807 chip_bus_sync_unlock(desc);
808 cpu_relax();
809 goto again;
813 * Now check again, whether the thread should run. Otherwise
814 * we would clear the threads_oneshot bit of this thread which
815 * was just set.
817 if (test_bit(IRQTF_RUNTHREAD, &action->thread_flags))
818 goto out_unlock;
820 desc->threads_oneshot &= ~action->thread_mask;
822 if (!desc->threads_oneshot && !irqd_irq_disabled(&desc->irq_data) &&
823 irqd_irq_masked(&desc->irq_data))
824 unmask_threaded_irq(desc);
826 out_unlock:
827 raw_spin_unlock_irq(&desc->lock);
828 chip_bus_sync_unlock(desc);
831 #ifdef CONFIG_SMP
833 * Check whether we need to change the affinity of the interrupt thread.
835 static void
836 irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action)
838 cpumask_var_t mask;
839 bool valid = true;
841 if (!test_and_clear_bit(IRQTF_AFFINITY, &action->thread_flags))
842 return;
845 * In case we are out of memory we set IRQTF_AFFINITY again and
846 * try again next time
848 if (!alloc_cpumask_var(&mask, GFP_KERNEL)) {
849 set_bit(IRQTF_AFFINITY, &action->thread_flags);
850 return;
853 raw_spin_lock_irq(&desc->lock);
855 * This code is triggered unconditionally. Check the affinity
856 * mask pointer. For CPU_MASK_OFFSTACK=n this is optimized out.
858 if (cpumask_available(desc->irq_common_data.affinity))
859 cpumask_copy(mask, desc->irq_common_data.affinity);
860 else
861 valid = false;
862 raw_spin_unlock_irq(&desc->lock);
864 if (valid)
865 set_cpus_allowed_ptr(current, mask);
866 free_cpumask_var(mask);
868 #else
869 static inline void
870 irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action) { }
871 #endif
874 * Interrupts which are not explicitely requested as threaded
875 * interrupts rely on the implicit bh/preempt disable of the hard irq
876 * context. So we need to disable bh here to avoid deadlocks and other
877 * side effects.
879 static irqreturn_t
880 irq_forced_thread_fn(struct irq_desc *desc, struct irqaction *action)
882 irqreturn_t ret;
884 local_bh_disable();
885 ret = action->thread_fn(action->irq, action->dev_id);
886 irq_finalize_oneshot(desc, action);
887 local_bh_enable();
888 return ret;
892 * Interrupts explicitly requested as threaded interrupts want to be
893 * preemtible - many of them need to sleep and wait for slow busses to
894 * complete.
896 static irqreturn_t irq_thread_fn(struct irq_desc *desc,
897 struct irqaction *action)
899 irqreturn_t ret;
901 ret = action->thread_fn(action->irq, action->dev_id);
902 irq_finalize_oneshot(desc, action);
903 return ret;
906 static void wake_threads_waitq(struct irq_desc *desc)
908 if (atomic_dec_and_test(&desc->threads_active))
909 wake_up(&desc->wait_for_threads);
912 static void irq_thread_dtor(struct callback_head *unused)
914 struct task_struct *tsk = current;
915 struct irq_desc *desc;
916 struct irqaction *action;
918 if (WARN_ON_ONCE(!(current->flags & PF_EXITING)))
919 return;
921 action = kthread_data(tsk);
923 pr_err("exiting task \"%s\" (%d) is an active IRQ thread (irq %d)\n",
924 tsk->comm, tsk->pid, action->irq);
927 desc = irq_to_desc(action->irq);
929 * If IRQTF_RUNTHREAD is set, we need to decrement
930 * desc->threads_active and wake possible waiters.
932 if (test_and_clear_bit(IRQTF_RUNTHREAD, &action->thread_flags))
933 wake_threads_waitq(desc);
935 /* Prevent a stale desc->threads_oneshot */
936 irq_finalize_oneshot(desc, action);
939 static void irq_wake_secondary(struct irq_desc *desc, struct irqaction *action)
941 struct irqaction *secondary = action->secondary;
943 if (WARN_ON_ONCE(!secondary))
944 return;
946 raw_spin_lock_irq(&desc->lock);
947 __irq_wake_thread(desc, secondary);
948 raw_spin_unlock_irq(&desc->lock);
952 * Interrupt handler thread
954 static int irq_thread(void *data)
956 struct callback_head on_exit_work;
957 struct irqaction *action = data;
958 struct irq_desc *desc = irq_to_desc(action->irq);
959 irqreturn_t (*handler_fn)(struct irq_desc *desc,
960 struct irqaction *action);
962 if (force_irqthreads && test_bit(IRQTF_FORCED_THREAD,
963 &action->thread_flags))
964 handler_fn = irq_forced_thread_fn;
965 else
966 handler_fn = irq_thread_fn;
968 init_task_work(&on_exit_work, irq_thread_dtor);
969 task_work_add(current, &on_exit_work, false);
971 irq_thread_check_affinity(desc, action);
973 while (!irq_wait_for_interrupt(action)) {
974 irqreturn_t action_ret;
976 irq_thread_check_affinity(desc, action);
978 action_ret = handler_fn(desc, action);
979 if (action_ret == IRQ_HANDLED)
980 atomic_inc(&desc->threads_handled);
981 if (action_ret == IRQ_WAKE_THREAD)
982 irq_wake_secondary(desc, action);
984 wake_threads_waitq(desc);
988 * This is the regular exit path. __free_irq() is stopping the
989 * thread via kthread_stop() after calling
990 * synchronize_irq(). So neither IRQTF_RUNTHREAD nor the
991 * oneshot mask bit can be set. We cannot verify that as we
992 * cannot touch the oneshot mask at this point anymore as
993 * __setup_irq() might have given out currents thread_mask
994 * again.
996 task_work_cancel(current, irq_thread_dtor);
997 return 0;
1001 * irq_wake_thread - wake the irq thread for the action identified by dev_id
1002 * @irq: Interrupt line
1003 * @dev_id: Device identity for which the thread should be woken
1006 void irq_wake_thread(unsigned int irq, void *dev_id)
1008 struct irq_desc *desc = irq_to_desc(irq);
1009 struct irqaction *action;
1010 unsigned long flags;
1012 if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1013 return;
1015 raw_spin_lock_irqsave(&desc->lock, flags);
1016 for_each_action_of_desc(desc, action) {
1017 if (action->dev_id == dev_id) {
1018 if (action->thread)
1019 __irq_wake_thread(desc, action);
1020 break;
1023 raw_spin_unlock_irqrestore(&desc->lock, flags);
1025 EXPORT_SYMBOL_GPL(irq_wake_thread);
1027 static int irq_setup_forced_threading(struct irqaction *new)
1029 if (!force_irqthreads)
1030 return 0;
1031 if (new->flags & (IRQF_NO_THREAD | IRQF_PERCPU | IRQF_ONESHOT))
1032 return 0;
1034 new->flags |= IRQF_ONESHOT;
1037 * Handle the case where we have a real primary handler and a
1038 * thread handler. We force thread them as well by creating a
1039 * secondary action.
1041 if (new->handler != irq_default_primary_handler && new->thread_fn) {
1042 /* Allocate the secondary action */
1043 new->secondary = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
1044 if (!new->secondary)
1045 return -ENOMEM;
1046 new->secondary->handler = irq_forced_secondary_handler;
1047 new->secondary->thread_fn = new->thread_fn;
1048 new->secondary->dev_id = new->dev_id;
1049 new->secondary->irq = new->irq;
1050 new->secondary->name = new->name;
1052 /* Deal with the primary handler */
1053 set_bit(IRQTF_FORCED_THREAD, &new->thread_flags);
1054 new->thread_fn = new->handler;
1055 new->handler = irq_default_primary_handler;
1056 return 0;
1059 static int irq_request_resources(struct irq_desc *desc)
1061 struct irq_data *d = &desc->irq_data;
1062 struct irq_chip *c = d->chip;
1064 return c->irq_request_resources ? c->irq_request_resources(d) : 0;
1067 static void irq_release_resources(struct irq_desc *desc)
1069 struct irq_data *d = &desc->irq_data;
1070 struct irq_chip *c = d->chip;
1072 if (c->irq_release_resources)
1073 c->irq_release_resources(d);
1076 static int
1077 setup_irq_thread(struct irqaction *new, unsigned int irq, bool secondary)
1079 struct task_struct *t;
1080 struct sched_param param = {
1081 .sched_priority = MAX_USER_RT_PRIO/2,
1084 if (!secondary) {
1085 t = kthread_create(irq_thread, new, "irq/%d-%s", irq,
1086 new->name);
1087 } else {
1088 t = kthread_create(irq_thread, new, "irq/%d-s-%s", irq,
1089 new->name);
1090 param.sched_priority -= 1;
1093 if (IS_ERR(t))
1094 return PTR_ERR(t);
1096 sched_setscheduler_nocheck(t, SCHED_FIFO, &param);
1099 * We keep the reference to the task struct even if
1100 * the thread dies to avoid that the interrupt code
1101 * references an already freed task_struct.
1103 get_task_struct(t);
1104 new->thread = t;
1106 * Tell the thread to set its affinity. This is
1107 * important for shared interrupt handlers as we do
1108 * not invoke setup_affinity() for the secondary
1109 * handlers as everything is already set up. Even for
1110 * interrupts marked with IRQF_NO_BALANCE this is
1111 * correct as we want the thread to move to the cpu(s)
1112 * on which the requesting code placed the interrupt.
1114 set_bit(IRQTF_AFFINITY, &new->thread_flags);
1115 return 0;
1119 * Internal function to register an irqaction - typically used to
1120 * allocate special interrupts that are part of the architecture.
1122 * Locking rules:
1124 * desc->request_mutex Provides serialization against a concurrent free_irq()
1125 * chip_bus_lock Provides serialization for slow bus operations
1126 * desc->lock Provides serialization against hard interrupts
1128 * chip_bus_lock and desc->lock are sufficient for all other management and
1129 * interrupt related functions. desc->request_mutex solely serializes
1130 * request/free_irq().
1132 static int
1133 __setup_irq(unsigned int irq, struct irq_desc *desc, struct irqaction *new)
1135 struct irqaction *old, **old_ptr;
1136 unsigned long flags, thread_mask = 0;
1137 int ret, nested, shared = 0;
1139 if (!desc)
1140 return -EINVAL;
1142 if (desc->irq_data.chip == &no_irq_chip)
1143 return -ENOSYS;
1144 if (!try_module_get(desc->owner))
1145 return -ENODEV;
1147 new->irq = irq;
1150 * If the trigger type is not specified by the caller,
1151 * then use the default for this interrupt.
1153 if (!(new->flags & IRQF_TRIGGER_MASK))
1154 new->flags |= irqd_get_trigger_type(&desc->irq_data);
1157 * Check whether the interrupt nests into another interrupt
1158 * thread.
1160 nested = irq_settings_is_nested_thread(desc);
1161 if (nested) {
1162 if (!new->thread_fn) {
1163 ret = -EINVAL;
1164 goto out_mput;
1167 * Replace the primary handler which was provided from
1168 * the driver for non nested interrupt handling by the
1169 * dummy function which warns when called.
1171 new->handler = irq_nested_primary_handler;
1172 } else {
1173 if (irq_settings_can_thread(desc)) {
1174 ret = irq_setup_forced_threading(new);
1175 if (ret)
1176 goto out_mput;
1181 * Create a handler thread when a thread function is supplied
1182 * and the interrupt does not nest into another interrupt
1183 * thread.
1185 if (new->thread_fn && !nested) {
1186 ret = setup_irq_thread(new, irq, false);
1187 if (ret)
1188 goto out_mput;
1189 if (new->secondary) {
1190 ret = setup_irq_thread(new->secondary, irq, true);
1191 if (ret)
1192 goto out_thread;
1197 * Drivers are often written to work w/o knowledge about the
1198 * underlying irq chip implementation, so a request for a
1199 * threaded irq without a primary hard irq context handler
1200 * requires the ONESHOT flag to be set. Some irq chips like
1201 * MSI based interrupts are per se one shot safe. Check the
1202 * chip flags, so we can avoid the unmask dance at the end of
1203 * the threaded handler for those.
1205 if (desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)
1206 new->flags &= ~IRQF_ONESHOT;
1209 * Protects against a concurrent __free_irq() call which might wait
1210 * for synchronize_irq() to complete without holding the optional
1211 * chip bus lock and desc->lock.
1213 mutex_lock(&desc->request_mutex);
1216 * Acquire bus lock as the irq_request_resources() callback below
1217 * might rely on the serialization or the magic power management
1218 * functions which are abusing the irq_bus_lock() callback,
1220 chip_bus_lock(desc);
1222 /* First installed action requests resources. */
1223 if (!desc->action) {
1224 ret = irq_request_resources(desc);
1225 if (ret) {
1226 pr_err("Failed to request resources for %s (irq %d) on irqchip %s\n",
1227 new->name, irq, desc->irq_data.chip->name);
1228 goto out_bus_unlock;
1233 * The following block of code has to be executed atomically
1234 * protected against a concurrent interrupt and any of the other
1235 * management calls which are not serialized via
1236 * desc->request_mutex or the optional bus lock.
1238 raw_spin_lock_irqsave(&desc->lock, flags);
1239 old_ptr = &desc->action;
1240 old = *old_ptr;
1241 if (old) {
1243 * Can't share interrupts unless both agree to and are
1244 * the same type (level, edge, polarity). So both flag
1245 * fields must have IRQF_SHARED set and the bits which
1246 * set the trigger type must match. Also all must
1247 * agree on ONESHOT.
1249 unsigned int oldtype;
1252 * If nobody did set the configuration before, inherit
1253 * the one provided by the requester.
1255 if (irqd_trigger_type_was_set(&desc->irq_data)) {
1256 oldtype = irqd_get_trigger_type(&desc->irq_data);
1257 } else {
1258 oldtype = new->flags & IRQF_TRIGGER_MASK;
1259 irqd_set_trigger_type(&desc->irq_data, oldtype);
1262 if (!((old->flags & new->flags) & IRQF_SHARED) ||
1263 (oldtype != (new->flags & IRQF_TRIGGER_MASK)) ||
1264 ((old->flags ^ new->flags) & IRQF_ONESHOT))
1265 goto mismatch;
1267 /* All handlers must agree on per-cpuness */
1268 if ((old->flags & IRQF_PERCPU) !=
1269 (new->flags & IRQF_PERCPU))
1270 goto mismatch;
1272 /* add new interrupt at end of irq queue */
1273 do {
1275 * Or all existing action->thread_mask bits,
1276 * so we can find the next zero bit for this
1277 * new action.
1279 thread_mask |= old->thread_mask;
1280 old_ptr = &old->next;
1281 old = *old_ptr;
1282 } while (old);
1283 shared = 1;
1287 * Setup the thread mask for this irqaction for ONESHOT. For
1288 * !ONESHOT irqs the thread mask is 0 so we can avoid a
1289 * conditional in irq_wake_thread().
1291 if (new->flags & IRQF_ONESHOT) {
1293 * Unlikely to have 32 resp 64 irqs sharing one line,
1294 * but who knows.
1296 if (thread_mask == ~0UL) {
1297 ret = -EBUSY;
1298 goto out_unlock;
1301 * The thread_mask for the action is or'ed to
1302 * desc->thread_active to indicate that the
1303 * IRQF_ONESHOT thread handler has been woken, but not
1304 * yet finished. The bit is cleared when a thread
1305 * completes. When all threads of a shared interrupt
1306 * line have completed desc->threads_active becomes
1307 * zero and the interrupt line is unmasked. See
1308 * handle.c:irq_wake_thread() for further information.
1310 * If no thread is woken by primary (hard irq context)
1311 * interrupt handlers, then desc->threads_active is
1312 * also checked for zero to unmask the irq line in the
1313 * affected hard irq flow handlers
1314 * (handle_[fasteoi|level]_irq).
1316 * The new action gets the first zero bit of
1317 * thread_mask assigned. See the loop above which or's
1318 * all existing action->thread_mask bits.
1320 new->thread_mask = 1UL << ffz(thread_mask);
1322 } else if (new->handler == irq_default_primary_handler &&
1323 !(desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)) {
1325 * The interrupt was requested with handler = NULL, so
1326 * we use the default primary handler for it. But it
1327 * does not have the oneshot flag set. In combination
1328 * with level interrupts this is deadly, because the
1329 * default primary handler just wakes the thread, then
1330 * the irq lines is reenabled, but the device still
1331 * has the level irq asserted. Rinse and repeat....
1333 * While this works for edge type interrupts, we play
1334 * it safe and reject unconditionally because we can't
1335 * say for sure which type this interrupt really
1336 * has. The type flags are unreliable as the
1337 * underlying chip implementation can override them.
1339 pr_err("Threaded irq requested with handler=NULL and !ONESHOT for irq %d\n",
1340 irq);
1341 ret = -EINVAL;
1342 goto out_unlock;
1345 if (!shared) {
1346 init_waitqueue_head(&desc->wait_for_threads);
1348 /* Setup the type (level, edge polarity) if configured: */
1349 if (new->flags & IRQF_TRIGGER_MASK) {
1350 ret = __irq_set_trigger(desc,
1351 new->flags & IRQF_TRIGGER_MASK);
1353 if (ret)
1354 goto out_unlock;
1358 * Activate the interrupt. That activation must happen
1359 * independently of IRQ_NOAUTOEN. request_irq() can fail
1360 * and the callers are supposed to handle
1361 * that. enable_irq() of an interrupt requested with
1362 * IRQ_NOAUTOEN is not supposed to fail. The activation
1363 * keeps it in shutdown mode, it merily associates
1364 * resources if necessary and if that's not possible it
1365 * fails. Interrupts which are in managed shutdown mode
1366 * will simply ignore that activation request.
1368 ret = irq_activate(desc);
1369 if (ret)
1370 goto out_unlock;
1372 desc->istate &= ~(IRQS_AUTODETECT | IRQS_SPURIOUS_DISABLED | \
1373 IRQS_ONESHOT | IRQS_WAITING);
1374 irqd_clear(&desc->irq_data, IRQD_IRQ_INPROGRESS);
1376 if (new->flags & IRQF_PERCPU) {
1377 irqd_set(&desc->irq_data, IRQD_PER_CPU);
1378 irq_settings_set_per_cpu(desc);
1381 if (new->flags & IRQF_ONESHOT)
1382 desc->istate |= IRQS_ONESHOT;
1384 /* Exclude IRQ from balancing if requested */
1385 if (new->flags & IRQF_NOBALANCING) {
1386 irq_settings_set_no_balancing(desc);
1387 irqd_set(&desc->irq_data, IRQD_NO_BALANCING);
1390 if (irq_settings_can_autoenable(desc)) {
1391 irq_startup(desc, IRQ_RESEND, IRQ_START_COND);
1392 } else {
1394 * Shared interrupts do not go well with disabling
1395 * auto enable. The sharing interrupt might request
1396 * it while it's still disabled and then wait for
1397 * interrupts forever.
1399 WARN_ON_ONCE(new->flags & IRQF_SHARED);
1400 /* Undo nested disables: */
1401 desc->depth = 1;
1404 } else if (new->flags & IRQF_TRIGGER_MASK) {
1405 unsigned int nmsk = new->flags & IRQF_TRIGGER_MASK;
1406 unsigned int omsk = irqd_get_trigger_type(&desc->irq_data);
1408 if (nmsk != omsk)
1409 /* hope the handler works with current trigger mode */
1410 pr_warn("irq %d uses trigger mode %u; requested %u\n",
1411 irq, omsk, nmsk);
1414 *old_ptr = new;
1416 irq_pm_install_action(desc, new);
1418 /* Reset broken irq detection when installing new handler */
1419 desc->irq_count = 0;
1420 desc->irqs_unhandled = 0;
1423 * Check whether we disabled the irq via the spurious handler
1424 * before. Reenable it and give it another chance.
1426 if (shared && (desc->istate & IRQS_SPURIOUS_DISABLED)) {
1427 desc->istate &= ~IRQS_SPURIOUS_DISABLED;
1428 __enable_irq(desc);
1431 raw_spin_unlock_irqrestore(&desc->lock, flags);
1432 chip_bus_sync_unlock(desc);
1433 mutex_unlock(&desc->request_mutex);
1435 irq_setup_timings(desc, new);
1438 * Strictly no need to wake it up, but hung_task complains
1439 * when no hard interrupt wakes the thread up.
1441 if (new->thread)
1442 wake_up_process(new->thread);
1443 if (new->secondary)
1444 wake_up_process(new->secondary->thread);
1446 register_irq_proc(irq, desc);
1447 new->dir = NULL;
1448 register_handler_proc(irq, new);
1449 return 0;
1451 mismatch:
1452 if (!(new->flags & IRQF_PROBE_SHARED)) {
1453 pr_err("Flags mismatch irq %d. %08x (%s) vs. %08x (%s)\n",
1454 irq, new->flags, new->name, old->flags, old->name);
1455 #ifdef CONFIG_DEBUG_SHIRQ
1456 dump_stack();
1457 #endif
1459 ret = -EBUSY;
1461 out_unlock:
1462 raw_spin_unlock_irqrestore(&desc->lock, flags);
1464 if (!desc->action)
1465 irq_release_resources(desc);
1466 out_bus_unlock:
1467 chip_bus_sync_unlock(desc);
1468 mutex_unlock(&desc->request_mutex);
1470 out_thread:
1471 if (new->thread) {
1472 struct task_struct *t = new->thread;
1474 new->thread = NULL;
1475 kthread_stop(t);
1476 put_task_struct(t);
1478 if (new->secondary && new->secondary->thread) {
1479 struct task_struct *t = new->secondary->thread;
1481 new->secondary->thread = NULL;
1482 kthread_stop(t);
1483 put_task_struct(t);
1485 out_mput:
1486 module_put(desc->owner);
1487 return ret;
1491 * setup_irq - setup an interrupt
1492 * @irq: Interrupt line to setup
1493 * @act: irqaction for the interrupt
1495 * Used to statically setup interrupts in the early boot process.
1497 int setup_irq(unsigned int irq, struct irqaction *act)
1499 int retval;
1500 struct irq_desc *desc = irq_to_desc(irq);
1502 if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1503 return -EINVAL;
1505 retval = irq_chip_pm_get(&desc->irq_data);
1506 if (retval < 0)
1507 return retval;
1509 retval = __setup_irq(irq, desc, act);
1511 if (retval)
1512 irq_chip_pm_put(&desc->irq_data);
1514 return retval;
1516 EXPORT_SYMBOL_GPL(setup_irq);
1519 * Internal function to unregister an irqaction - used to free
1520 * regular and special interrupts that are part of the architecture.
1522 static struct irqaction *__free_irq(unsigned int irq, void *dev_id)
1524 struct irq_desc *desc = irq_to_desc(irq);
1525 struct irqaction *action, **action_ptr;
1526 unsigned long flags;
1528 WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq);
1530 if (!desc)
1531 return NULL;
1533 mutex_lock(&desc->request_mutex);
1534 chip_bus_lock(desc);
1535 raw_spin_lock_irqsave(&desc->lock, flags);
1538 * There can be multiple actions per IRQ descriptor, find the right
1539 * one based on the dev_id:
1541 action_ptr = &desc->action;
1542 for (;;) {
1543 action = *action_ptr;
1545 if (!action) {
1546 WARN(1, "Trying to free already-free IRQ %d\n", irq);
1547 raw_spin_unlock_irqrestore(&desc->lock, flags);
1548 chip_bus_sync_unlock(desc);
1549 mutex_unlock(&desc->request_mutex);
1550 return NULL;
1553 if (action->dev_id == dev_id)
1554 break;
1555 action_ptr = &action->next;
1558 /* Found it - now remove it from the list of entries: */
1559 *action_ptr = action->next;
1561 irq_pm_remove_action(desc, action);
1563 /* If this was the last handler, shut down the IRQ line: */
1564 if (!desc->action) {
1565 irq_settings_clr_disable_unlazy(desc);
1566 irq_shutdown(desc);
1569 #ifdef CONFIG_SMP
1570 /* make sure affinity_hint is cleaned up */
1571 if (WARN_ON_ONCE(desc->affinity_hint))
1572 desc->affinity_hint = NULL;
1573 #endif
1575 raw_spin_unlock_irqrestore(&desc->lock, flags);
1577 * Drop bus_lock here so the changes which were done in the chip
1578 * callbacks above are synced out to the irq chips which hang
1579 * behind a slow bus (I2C, SPI) before calling synchronize_irq().
1581 * Aside of that the bus_lock can also be taken from the threaded
1582 * handler in irq_finalize_oneshot() which results in a deadlock
1583 * because synchronize_irq() would wait forever for the thread to
1584 * complete, which is blocked on the bus lock.
1586 * The still held desc->request_mutex() protects against a
1587 * concurrent request_irq() of this irq so the release of resources
1588 * and timing data is properly serialized.
1590 chip_bus_sync_unlock(desc);
1592 unregister_handler_proc(irq, action);
1594 /* Make sure it's not being used on another CPU: */
1595 synchronize_irq(irq);
1597 #ifdef CONFIG_DEBUG_SHIRQ
1599 * It's a shared IRQ -- the driver ought to be prepared for an IRQ
1600 * event to happen even now it's being freed, so let's make sure that
1601 * is so by doing an extra call to the handler ....
1603 * ( We do this after actually deregistering it, to make sure that a
1604 * 'real' IRQ doesn't run in * parallel with our fake. )
1606 if (action->flags & IRQF_SHARED) {
1607 local_irq_save(flags);
1608 action->handler(irq, dev_id);
1609 local_irq_restore(flags);
1611 #endif
1613 if (action->thread) {
1614 kthread_stop(action->thread);
1615 put_task_struct(action->thread);
1616 if (action->secondary && action->secondary->thread) {
1617 kthread_stop(action->secondary->thread);
1618 put_task_struct(action->secondary->thread);
1622 /* Last action releases resources */
1623 if (!desc->action) {
1625 * Reaquire bus lock as irq_release_resources() might
1626 * require it to deallocate resources over the slow bus.
1628 chip_bus_lock(desc);
1629 irq_release_resources(desc);
1630 chip_bus_sync_unlock(desc);
1631 irq_remove_timings(desc);
1634 mutex_unlock(&desc->request_mutex);
1636 irq_chip_pm_put(&desc->irq_data);
1637 module_put(desc->owner);
1638 kfree(action->secondary);
1639 return action;
1643 * remove_irq - free an interrupt
1644 * @irq: Interrupt line to free
1645 * @act: irqaction for the interrupt
1647 * Used to remove interrupts statically setup by the early boot process.
1649 void remove_irq(unsigned int irq, struct irqaction *act)
1651 struct irq_desc *desc = irq_to_desc(irq);
1653 if (desc && !WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1654 __free_irq(irq, act->dev_id);
1656 EXPORT_SYMBOL_GPL(remove_irq);
1659 * free_irq - free an interrupt allocated with request_irq
1660 * @irq: Interrupt line to free
1661 * @dev_id: Device identity to free
1663 * Remove an interrupt handler. The handler is removed and if the
1664 * interrupt line is no longer in use by any driver it is disabled.
1665 * On a shared IRQ the caller must ensure the interrupt is disabled
1666 * on the card it drives before calling this function. The function
1667 * does not return until any executing interrupts for this IRQ
1668 * have completed.
1670 * This function must not be called from interrupt context.
1672 * Returns the devname argument passed to request_irq.
1674 const void *free_irq(unsigned int irq, void *dev_id)
1676 struct irq_desc *desc = irq_to_desc(irq);
1677 struct irqaction *action;
1678 const char *devname;
1680 if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1681 return NULL;
1683 #ifdef CONFIG_SMP
1684 if (WARN_ON(desc->affinity_notify))
1685 desc->affinity_notify = NULL;
1686 #endif
1688 action = __free_irq(irq, dev_id);
1690 if (!action)
1691 return NULL;
1693 devname = action->name;
1694 kfree(action);
1695 return devname;
1697 EXPORT_SYMBOL(free_irq);
1700 * request_threaded_irq - allocate an interrupt line
1701 * @irq: Interrupt line to allocate
1702 * @handler: Function to be called when the IRQ occurs.
1703 * Primary handler for threaded interrupts
1704 * If NULL and thread_fn != NULL the default
1705 * primary handler is installed
1706 * @thread_fn: Function called from the irq handler thread
1707 * If NULL, no irq thread is created
1708 * @irqflags: Interrupt type flags
1709 * @devname: An ascii name for the claiming device
1710 * @dev_id: A cookie passed back to the handler function
1712 * This call allocates interrupt resources and enables the
1713 * interrupt line and IRQ handling. From the point this
1714 * call is made your handler function may be invoked. Since
1715 * your handler function must clear any interrupt the board
1716 * raises, you must take care both to initialise your hardware
1717 * and to set up the interrupt handler in the right order.
1719 * If you want to set up a threaded irq handler for your device
1720 * then you need to supply @handler and @thread_fn. @handler is
1721 * still called in hard interrupt context and has to check
1722 * whether the interrupt originates from the device. If yes it
1723 * needs to disable the interrupt on the device and return
1724 * IRQ_WAKE_THREAD which will wake up the handler thread and run
1725 * @thread_fn. This split handler design is necessary to support
1726 * shared interrupts.
1728 * Dev_id must be globally unique. Normally the address of the
1729 * device data structure is used as the cookie. Since the handler
1730 * receives this value it makes sense to use it.
1732 * If your interrupt is shared you must pass a non NULL dev_id
1733 * as this is required when freeing the interrupt.
1735 * Flags:
1737 * IRQF_SHARED Interrupt is shared
1738 * IRQF_TRIGGER_* Specify active edge(s) or level
1741 int request_threaded_irq(unsigned int irq, irq_handler_t handler,
1742 irq_handler_t thread_fn, unsigned long irqflags,
1743 const char *devname, void *dev_id)
1745 struct irqaction *action;
1746 struct irq_desc *desc;
1747 int retval;
1749 if (irq == IRQ_NOTCONNECTED)
1750 return -ENOTCONN;
1753 * Sanity-check: shared interrupts must pass in a real dev-ID,
1754 * otherwise we'll have trouble later trying to figure out
1755 * which interrupt is which (messes up the interrupt freeing
1756 * logic etc).
1758 * Also IRQF_COND_SUSPEND only makes sense for shared interrupts and
1759 * it cannot be set along with IRQF_NO_SUSPEND.
1761 if (((irqflags & IRQF_SHARED) && !dev_id) ||
1762 (!(irqflags & IRQF_SHARED) && (irqflags & IRQF_COND_SUSPEND)) ||
1763 ((irqflags & IRQF_NO_SUSPEND) && (irqflags & IRQF_COND_SUSPEND)))
1764 return -EINVAL;
1766 desc = irq_to_desc(irq);
1767 if (!desc)
1768 return -EINVAL;
1770 if (!irq_settings_can_request(desc) ||
1771 WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1772 return -EINVAL;
1774 if (!handler) {
1775 if (!thread_fn)
1776 return -EINVAL;
1777 handler = irq_default_primary_handler;
1780 action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
1781 if (!action)
1782 return -ENOMEM;
1784 action->handler = handler;
1785 action->thread_fn = thread_fn;
1786 action->flags = irqflags;
1787 action->name = devname;
1788 action->dev_id = dev_id;
1790 retval = irq_chip_pm_get(&desc->irq_data);
1791 if (retval < 0) {
1792 kfree(action);
1793 return retval;
1796 retval = __setup_irq(irq, desc, action);
1798 if (retval) {
1799 irq_chip_pm_put(&desc->irq_data);
1800 kfree(action->secondary);
1801 kfree(action);
1804 #ifdef CONFIG_DEBUG_SHIRQ_FIXME
1805 if (!retval && (irqflags & IRQF_SHARED)) {
1807 * It's a shared IRQ -- the driver ought to be prepared for it
1808 * to happen immediately, so let's make sure....
1809 * We disable the irq to make sure that a 'real' IRQ doesn't
1810 * run in parallel with our fake.
1812 unsigned long flags;
1814 disable_irq(irq);
1815 local_irq_save(flags);
1817 handler(irq, dev_id);
1819 local_irq_restore(flags);
1820 enable_irq(irq);
1822 #endif
1823 return retval;
1825 EXPORT_SYMBOL(request_threaded_irq);
1828 * request_any_context_irq - allocate an interrupt line
1829 * @irq: Interrupt line to allocate
1830 * @handler: Function to be called when the IRQ occurs.
1831 * Threaded handler for threaded interrupts.
1832 * @flags: Interrupt type flags
1833 * @name: An ascii name for the claiming device
1834 * @dev_id: A cookie passed back to the handler function
1836 * This call allocates interrupt resources and enables the
1837 * interrupt line and IRQ handling. It selects either a
1838 * hardirq or threaded handling method depending on the
1839 * context.
1841 * On failure, it returns a negative value. On success,
1842 * it returns either IRQC_IS_HARDIRQ or IRQC_IS_NESTED.
1844 int request_any_context_irq(unsigned int irq, irq_handler_t handler,
1845 unsigned long flags, const char *name, void *dev_id)
1847 struct irq_desc *desc;
1848 int ret;
1850 if (irq == IRQ_NOTCONNECTED)
1851 return -ENOTCONN;
1853 desc = irq_to_desc(irq);
1854 if (!desc)
1855 return -EINVAL;
1857 if (irq_settings_is_nested_thread(desc)) {
1858 ret = request_threaded_irq(irq, NULL, handler,
1859 flags, name, dev_id);
1860 return !ret ? IRQC_IS_NESTED : ret;
1863 ret = request_irq(irq, handler, flags, name, dev_id);
1864 return !ret ? IRQC_IS_HARDIRQ : ret;
1866 EXPORT_SYMBOL_GPL(request_any_context_irq);
1868 void enable_percpu_irq(unsigned int irq, unsigned int type)
1870 unsigned int cpu = smp_processor_id();
1871 unsigned long flags;
1872 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
1874 if (!desc)
1875 return;
1878 * If the trigger type is not specified by the caller, then
1879 * use the default for this interrupt.
1881 type &= IRQ_TYPE_SENSE_MASK;
1882 if (type == IRQ_TYPE_NONE)
1883 type = irqd_get_trigger_type(&desc->irq_data);
1885 if (type != IRQ_TYPE_NONE) {
1886 int ret;
1888 ret = __irq_set_trigger(desc, type);
1890 if (ret) {
1891 WARN(1, "failed to set type for IRQ%d\n", irq);
1892 goto out;
1896 irq_percpu_enable(desc, cpu);
1897 out:
1898 irq_put_desc_unlock(desc, flags);
1900 EXPORT_SYMBOL_GPL(enable_percpu_irq);
1903 * irq_percpu_is_enabled - Check whether the per cpu irq is enabled
1904 * @irq: Linux irq number to check for
1906 * Must be called from a non migratable context. Returns the enable
1907 * state of a per cpu interrupt on the current cpu.
1909 bool irq_percpu_is_enabled(unsigned int irq)
1911 unsigned int cpu = smp_processor_id();
1912 struct irq_desc *desc;
1913 unsigned long flags;
1914 bool is_enabled;
1916 desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
1917 if (!desc)
1918 return false;
1920 is_enabled = cpumask_test_cpu(cpu, desc->percpu_enabled);
1921 irq_put_desc_unlock(desc, flags);
1923 return is_enabled;
1925 EXPORT_SYMBOL_GPL(irq_percpu_is_enabled);
1927 void disable_percpu_irq(unsigned int irq)
1929 unsigned int cpu = smp_processor_id();
1930 unsigned long flags;
1931 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
1933 if (!desc)
1934 return;
1936 irq_percpu_disable(desc, cpu);
1937 irq_put_desc_unlock(desc, flags);
1939 EXPORT_SYMBOL_GPL(disable_percpu_irq);
1942 * Internal function to unregister a percpu irqaction.
1944 static struct irqaction *__free_percpu_irq(unsigned int irq, void __percpu *dev_id)
1946 struct irq_desc *desc = irq_to_desc(irq);
1947 struct irqaction *action;
1948 unsigned long flags;
1950 WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq);
1952 if (!desc)
1953 return NULL;
1955 raw_spin_lock_irqsave(&desc->lock, flags);
1957 action = desc->action;
1958 if (!action || action->percpu_dev_id != dev_id) {
1959 WARN(1, "Trying to free already-free IRQ %d\n", irq);
1960 goto bad;
1963 if (!cpumask_empty(desc->percpu_enabled)) {
1964 WARN(1, "percpu IRQ %d still enabled on CPU%d!\n",
1965 irq, cpumask_first(desc->percpu_enabled));
1966 goto bad;
1969 /* Found it - now remove it from the list of entries: */
1970 desc->action = NULL;
1972 raw_spin_unlock_irqrestore(&desc->lock, flags);
1974 unregister_handler_proc(irq, action);
1976 irq_chip_pm_put(&desc->irq_data);
1977 module_put(desc->owner);
1978 return action;
1980 bad:
1981 raw_spin_unlock_irqrestore(&desc->lock, flags);
1982 return NULL;
1986 * remove_percpu_irq - free a per-cpu interrupt
1987 * @irq: Interrupt line to free
1988 * @act: irqaction for the interrupt
1990 * Used to remove interrupts statically setup by the early boot process.
1992 void remove_percpu_irq(unsigned int irq, struct irqaction *act)
1994 struct irq_desc *desc = irq_to_desc(irq);
1996 if (desc && irq_settings_is_per_cpu_devid(desc))
1997 __free_percpu_irq(irq, act->percpu_dev_id);
2001 * free_percpu_irq - free an interrupt allocated with request_percpu_irq
2002 * @irq: Interrupt line to free
2003 * @dev_id: Device identity to free
2005 * Remove a percpu interrupt handler. The handler is removed, but
2006 * the interrupt line is not disabled. This must be done on each
2007 * CPU before calling this function. The function does not return
2008 * until any executing interrupts for this IRQ have completed.
2010 * This function must not be called from interrupt context.
2012 void free_percpu_irq(unsigned int irq, void __percpu *dev_id)
2014 struct irq_desc *desc = irq_to_desc(irq);
2016 if (!desc || !irq_settings_is_per_cpu_devid(desc))
2017 return;
2019 chip_bus_lock(desc);
2020 kfree(__free_percpu_irq(irq, dev_id));
2021 chip_bus_sync_unlock(desc);
2023 EXPORT_SYMBOL_GPL(free_percpu_irq);
2026 * setup_percpu_irq - setup a per-cpu interrupt
2027 * @irq: Interrupt line to setup
2028 * @act: irqaction for the interrupt
2030 * Used to statically setup per-cpu interrupts in the early boot process.
2032 int setup_percpu_irq(unsigned int irq, struct irqaction *act)
2034 struct irq_desc *desc = irq_to_desc(irq);
2035 int retval;
2037 if (!desc || !irq_settings_is_per_cpu_devid(desc))
2038 return -EINVAL;
2040 retval = irq_chip_pm_get(&desc->irq_data);
2041 if (retval < 0)
2042 return retval;
2044 retval = __setup_irq(irq, desc, act);
2046 if (retval)
2047 irq_chip_pm_put(&desc->irq_data);
2049 return retval;
2053 * __request_percpu_irq - allocate a percpu interrupt line
2054 * @irq: Interrupt line to allocate
2055 * @handler: Function to be called when the IRQ occurs.
2056 * @flags: Interrupt type flags (IRQF_TIMER only)
2057 * @devname: An ascii name for the claiming device
2058 * @dev_id: A percpu cookie passed back to the handler function
2060 * This call allocates interrupt resources and enables the
2061 * interrupt on the local CPU. If the interrupt is supposed to be
2062 * enabled on other CPUs, it has to be done on each CPU using
2063 * enable_percpu_irq().
2065 * Dev_id must be globally unique. It is a per-cpu variable, and
2066 * the handler gets called with the interrupted CPU's instance of
2067 * that variable.
2069 int __request_percpu_irq(unsigned int irq, irq_handler_t handler,
2070 unsigned long flags, const char *devname,
2071 void __percpu *dev_id)
2073 struct irqaction *action;
2074 struct irq_desc *desc;
2075 int retval;
2077 if (!dev_id)
2078 return -EINVAL;
2080 desc = irq_to_desc(irq);
2081 if (!desc || !irq_settings_can_request(desc) ||
2082 !irq_settings_is_per_cpu_devid(desc))
2083 return -EINVAL;
2085 if (flags && flags != IRQF_TIMER)
2086 return -EINVAL;
2088 action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2089 if (!action)
2090 return -ENOMEM;
2092 action->handler = handler;
2093 action->flags = flags | IRQF_PERCPU | IRQF_NO_SUSPEND;
2094 action->name = devname;
2095 action->percpu_dev_id = dev_id;
2097 retval = irq_chip_pm_get(&desc->irq_data);
2098 if (retval < 0) {
2099 kfree(action);
2100 return retval;
2103 retval = __setup_irq(irq, desc, action);
2105 if (retval) {
2106 irq_chip_pm_put(&desc->irq_data);
2107 kfree(action);
2110 return retval;
2112 EXPORT_SYMBOL_GPL(__request_percpu_irq);
2115 * irq_get_irqchip_state - returns the irqchip state of a interrupt.
2116 * @irq: Interrupt line that is forwarded to a VM
2117 * @which: One of IRQCHIP_STATE_* the caller wants to know about
2118 * @state: a pointer to a boolean where the state is to be storeed
2120 * This call snapshots the internal irqchip state of an
2121 * interrupt, returning into @state the bit corresponding to
2122 * stage @which
2124 * This function should be called with preemption disabled if the
2125 * interrupt controller has per-cpu registers.
2127 int irq_get_irqchip_state(unsigned int irq, enum irqchip_irq_state which,
2128 bool *state)
2130 struct irq_desc *desc;
2131 struct irq_data *data;
2132 struct irq_chip *chip;
2133 unsigned long flags;
2134 int err = -EINVAL;
2136 desc = irq_get_desc_buslock(irq, &flags, 0);
2137 if (!desc)
2138 return err;
2140 data = irq_desc_get_irq_data(desc);
2142 do {
2143 chip = irq_data_get_irq_chip(data);
2144 if (chip->irq_get_irqchip_state)
2145 break;
2146 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
2147 data = data->parent_data;
2148 #else
2149 data = NULL;
2150 #endif
2151 } while (data);
2153 if (data)
2154 err = chip->irq_get_irqchip_state(data, which, state);
2156 irq_put_desc_busunlock(desc, flags);
2157 return err;
2159 EXPORT_SYMBOL_GPL(irq_get_irqchip_state);
2162 * irq_set_irqchip_state - set the state of a forwarded interrupt.
2163 * @irq: Interrupt line that is forwarded to a VM
2164 * @which: State to be restored (one of IRQCHIP_STATE_*)
2165 * @val: Value corresponding to @which
2167 * This call sets the internal irqchip state of an interrupt,
2168 * depending on the value of @which.
2170 * This function should be called with preemption disabled if the
2171 * interrupt controller has per-cpu registers.
2173 int irq_set_irqchip_state(unsigned int irq, enum irqchip_irq_state which,
2174 bool val)
2176 struct irq_desc *desc;
2177 struct irq_data *data;
2178 struct irq_chip *chip;
2179 unsigned long flags;
2180 int err = -EINVAL;
2182 desc = irq_get_desc_buslock(irq, &flags, 0);
2183 if (!desc)
2184 return err;
2186 data = irq_desc_get_irq_data(desc);
2188 do {
2189 chip = irq_data_get_irq_chip(data);
2190 if (chip->irq_set_irqchip_state)
2191 break;
2192 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
2193 data = data->parent_data;
2194 #else
2195 data = NULL;
2196 #endif
2197 } while (data);
2199 if (data)
2200 err = chip->irq_set_irqchip_state(data, which, val);
2202 irq_put_desc_busunlock(desc, flags);
2203 return err;
2205 EXPORT_SYMBOL_GPL(irq_set_irqchip_state);