futex: futex_wake_op, fix sign_extend32 sign bits
[linux/fpc-iii.git] / kernel / rcu / update.c
blobfbd56d6e575b2b0eaa5a653c7919fe596ee1b8f5
1 /*
2 * Read-Copy Update mechanism for mutual exclusion
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, you can access it online at
16 * http://www.gnu.org/licenses/gpl-2.0.html.
18 * Copyright IBM Corporation, 2001
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
23 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
24 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
25 * Papers:
26 * http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf
27 * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001)
29 * For detailed explanation of Read-Copy Update mechanism see -
30 * http://lse.sourceforge.net/locking/rcupdate.html
33 #include <linux/types.h>
34 #include <linux/kernel.h>
35 #include <linux/init.h>
36 #include <linux/spinlock.h>
37 #include <linux/smp.h>
38 #include <linux/interrupt.h>
39 #include <linux/sched/signal.h>
40 #include <linux/sched/debug.h>
41 #include <linux/atomic.h>
42 #include <linux/bitops.h>
43 #include <linux/percpu.h>
44 #include <linux/notifier.h>
45 #include <linux/cpu.h>
46 #include <linux/mutex.h>
47 #include <linux/export.h>
48 #include <linux/hardirq.h>
49 #include <linux/delay.h>
50 #include <linux/moduleparam.h>
51 #include <linux/kthread.h>
52 #include <linux/tick.h>
53 #include <linux/rcupdate_wait.h>
54 #include <linux/sched/isolation.h>
56 #define CREATE_TRACE_POINTS
58 #include "rcu.h"
60 #ifdef MODULE_PARAM_PREFIX
61 #undef MODULE_PARAM_PREFIX
62 #endif
63 #define MODULE_PARAM_PREFIX "rcupdate."
65 #ifndef CONFIG_TINY_RCU
66 extern int rcu_expedited; /* from sysctl */
67 module_param(rcu_expedited, int, 0);
68 extern int rcu_normal; /* from sysctl */
69 module_param(rcu_normal, int, 0);
70 static int rcu_normal_after_boot;
71 module_param(rcu_normal_after_boot, int, 0);
72 #endif /* #ifndef CONFIG_TINY_RCU */
74 #ifdef CONFIG_DEBUG_LOCK_ALLOC
75 /**
76 * rcu_read_lock_sched_held() - might we be in RCU-sched read-side critical section?
78 * If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an
79 * RCU-sched read-side critical section. In absence of
80 * CONFIG_DEBUG_LOCK_ALLOC, this assumes we are in an RCU-sched read-side
81 * critical section unless it can prove otherwise. Note that disabling
82 * of preemption (including disabling irqs) counts as an RCU-sched
83 * read-side critical section. This is useful for debug checks in functions
84 * that required that they be called within an RCU-sched read-side
85 * critical section.
87 * Check debug_lockdep_rcu_enabled() to prevent false positives during boot
88 * and while lockdep is disabled.
90 * Note that if the CPU is in the idle loop from an RCU point of
91 * view (ie: that we are in the section between rcu_idle_enter() and
92 * rcu_idle_exit()) then rcu_read_lock_held() returns false even if the CPU
93 * did an rcu_read_lock(). The reason for this is that RCU ignores CPUs
94 * that are in such a section, considering these as in extended quiescent
95 * state, so such a CPU is effectively never in an RCU read-side critical
96 * section regardless of what RCU primitives it invokes. This state of
97 * affairs is required --- we need to keep an RCU-free window in idle
98 * where the CPU may possibly enter into low power mode. This way we can
99 * notice an extended quiescent state to other CPUs that started a grace
100 * period. Otherwise we would delay any grace period as long as we run in
101 * the idle task.
103 * Similarly, we avoid claiming an SRCU read lock held if the current
104 * CPU is offline.
106 int rcu_read_lock_sched_held(void)
108 int lockdep_opinion = 0;
110 if (!debug_lockdep_rcu_enabled())
111 return 1;
112 if (!rcu_is_watching())
113 return 0;
114 if (!rcu_lockdep_current_cpu_online())
115 return 0;
116 if (debug_locks)
117 lockdep_opinion = lock_is_held(&rcu_sched_lock_map);
118 return lockdep_opinion || !preemptible();
120 EXPORT_SYMBOL(rcu_read_lock_sched_held);
121 #endif
123 #ifndef CONFIG_TINY_RCU
126 * Should expedited grace-period primitives always fall back to their
127 * non-expedited counterparts? Intended for use within RCU. Note
128 * that if the user specifies both rcu_expedited and rcu_normal, then
129 * rcu_normal wins. (Except during the time period during boot from
130 * when the first task is spawned until the rcu_set_runtime_mode()
131 * core_initcall() is invoked, at which point everything is expedited.)
133 bool rcu_gp_is_normal(void)
135 return READ_ONCE(rcu_normal) &&
136 rcu_scheduler_active != RCU_SCHEDULER_INIT;
138 EXPORT_SYMBOL_GPL(rcu_gp_is_normal);
140 static atomic_t rcu_expedited_nesting = ATOMIC_INIT(1);
143 * Should normal grace-period primitives be expedited? Intended for
144 * use within RCU. Note that this function takes the rcu_expedited
145 * sysfs/boot variable and rcu_scheduler_active into account as well
146 * as the rcu_expedite_gp() nesting. So looping on rcu_unexpedite_gp()
147 * until rcu_gp_is_expedited() returns false is a -really- bad idea.
149 bool rcu_gp_is_expedited(void)
151 return rcu_expedited || atomic_read(&rcu_expedited_nesting) ||
152 rcu_scheduler_active == RCU_SCHEDULER_INIT;
154 EXPORT_SYMBOL_GPL(rcu_gp_is_expedited);
157 * rcu_expedite_gp - Expedite future RCU grace periods
159 * After a call to this function, future calls to synchronize_rcu() and
160 * friends act as the corresponding synchronize_rcu_expedited() function
161 * had instead been called.
163 void rcu_expedite_gp(void)
165 atomic_inc(&rcu_expedited_nesting);
167 EXPORT_SYMBOL_GPL(rcu_expedite_gp);
170 * rcu_unexpedite_gp - Cancel prior rcu_expedite_gp() invocation
172 * Undo a prior call to rcu_expedite_gp(). If all prior calls to
173 * rcu_expedite_gp() are undone by a subsequent call to rcu_unexpedite_gp(),
174 * and if the rcu_expedited sysfs/boot parameter is not set, then all
175 * subsequent calls to synchronize_rcu() and friends will return to
176 * their normal non-expedited behavior.
178 void rcu_unexpedite_gp(void)
180 atomic_dec(&rcu_expedited_nesting);
182 EXPORT_SYMBOL_GPL(rcu_unexpedite_gp);
185 * Inform RCU of the end of the in-kernel boot sequence.
187 void rcu_end_inkernel_boot(void)
189 rcu_unexpedite_gp();
190 if (rcu_normal_after_boot)
191 WRITE_ONCE(rcu_normal, 1);
194 #endif /* #ifndef CONFIG_TINY_RCU */
197 * Test each non-SRCU synchronous grace-period wait API. This is
198 * useful just after a change in mode for these primitives, and
199 * during early boot.
201 void rcu_test_sync_prims(void)
203 if (!IS_ENABLED(CONFIG_PROVE_RCU))
204 return;
205 synchronize_rcu();
206 synchronize_rcu_bh();
207 synchronize_sched();
208 synchronize_rcu_expedited();
209 synchronize_rcu_bh_expedited();
210 synchronize_sched_expedited();
213 #if !defined(CONFIG_TINY_RCU) || defined(CONFIG_SRCU)
216 * Switch to run-time mode once RCU has fully initialized.
218 static int __init rcu_set_runtime_mode(void)
220 rcu_test_sync_prims();
221 rcu_scheduler_active = RCU_SCHEDULER_RUNNING;
222 rcu_test_sync_prims();
223 return 0;
225 core_initcall(rcu_set_runtime_mode);
227 #endif /* #if !defined(CONFIG_TINY_RCU) || defined(CONFIG_SRCU) */
229 #ifdef CONFIG_PREEMPT_RCU
232 * Preemptible RCU implementation for rcu_read_lock().
233 * Just increment ->rcu_read_lock_nesting, shared state will be updated
234 * if we block.
236 void __rcu_read_lock(void)
238 current->rcu_read_lock_nesting++;
239 barrier(); /* critical section after entry code. */
241 EXPORT_SYMBOL_GPL(__rcu_read_lock);
244 * Preemptible RCU implementation for rcu_read_unlock().
245 * Decrement ->rcu_read_lock_nesting. If the result is zero (outermost
246 * rcu_read_unlock()) and ->rcu_read_unlock_special is non-zero, then
247 * invoke rcu_read_unlock_special() to clean up after a context switch
248 * in an RCU read-side critical section and other special cases.
250 void __rcu_read_unlock(void)
252 struct task_struct *t = current;
254 if (t->rcu_read_lock_nesting != 1) {
255 --t->rcu_read_lock_nesting;
256 } else {
257 barrier(); /* critical section before exit code. */
258 t->rcu_read_lock_nesting = INT_MIN;
259 barrier(); /* assign before ->rcu_read_unlock_special load */
260 if (unlikely(READ_ONCE(t->rcu_read_unlock_special.s)))
261 rcu_read_unlock_special(t);
262 barrier(); /* ->rcu_read_unlock_special load before assign */
263 t->rcu_read_lock_nesting = 0;
265 #ifdef CONFIG_PROVE_LOCKING
267 int rrln = READ_ONCE(t->rcu_read_lock_nesting);
269 WARN_ON_ONCE(rrln < 0 && rrln > INT_MIN / 2);
271 #endif /* #ifdef CONFIG_PROVE_LOCKING */
273 EXPORT_SYMBOL_GPL(__rcu_read_unlock);
275 #endif /* #ifdef CONFIG_PREEMPT_RCU */
277 #ifdef CONFIG_DEBUG_LOCK_ALLOC
278 static struct lock_class_key rcu_lock_key;
279 struct lockdep_map rcu_lock_map =
280 STATIC_LOCKDEP_MAP_INIT("rcu_read_lock", &rcu_lock_key);
281 EXPORT_SYMBOL_GPL(rcu_lock_map);
283 static struct lock_class_key rcu_bh_lock_key;
284 struct lockdep_map rcu_bh_lock_map =
285 STATIC_LOCKDEP_MAP_INIT("rcu_read_lock_bh", &rcu_bh_lock_key);
286 EXPORT_SYMBOL_GPL(rcu_bh_lock_map);
288 static struct lock_class_key rcu_sched_lock_key;
289 struct lockdep_map rcu_sched_lock_map =
290 STATIC_LOCKDEP_MAP_INIT("rcu_read_lock_sched", &rcu_sched_lock_key);
291 EXPORT_SYMBOL_GPL(rcu_sched_lock_map);
293 static struct lock_class_key rcu_callback_key;
294 struct lockdep_map rcu_callback_map =
295 STATIC_LOCKDEP_MAP_INIT("rcu_callback", &rcu_callback_key);
296 EXPORT_SYMBOL_GPL(rcu_callback_map);
298 int notrace debug_lockdep_rcu_enabled(void)
300 return rcu_scheduler_active != RCU_SCHEDULER_INACTIVE && debug_locks &&
301 current->lockdep_recursion == 0;
303 EXPORT_SYMBOL_GPL(debug_lockdep_rcu_enabled);
306 * rcu_read_lock_held() - might we be in RCU read-side critical section?
308 * If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an RCU
309 * read-side critical section. In absence of CONFIG_DEBUG_LOCK_ALLOC,
310 * this assumes we are in an RCU read-side critical section unless it can
311 * prove otherwise. This is useful for debug checks in functions that
312 * require that they be called within an RCU read-side critical section.
314 * Checks debug_lockdep_rcu_enabled() to prevent false positives during boot
315 * and while lockdep is disabled.
317 * Note that rcu_read_lock() and the matching rcu_read_unlock() must
318 * occur in the same context, for example, it is illegal to invoke
319 * rcu_read_unlock() in process context if the matching rcu_read_lock()
320 * was invoked from within an irq handler.
322 * Note that rcu_read_lock() is disallowed if the CPU is either idle or
323 * offline from an RCU perspective, so check for those as well.
325 int rcu_read_lock_held(void)
327 if (!debug_lockdep_rcu_enabled())
328 return 1;
329 if (!rcu_is_watching())
330 return 0;
331 if (!rcu_lockdep_current_cpu_online())
332 return 0;
333 return lock_is_held(&rcu_lock_map);
335 EXPORT_SYMBOL_GPL(rcu_read_lock_held);
338 * rcu_read_lock_bh_held() - might we be in RCU-bh read-side critical section?
340 * Check for bottom half being disabled, which covers both the
341 * CONFIG_PROVE_RCU and not cases. Note that if someone uses
342 * rcu_read_lock_bh(), but then later enables BH, lockdep (if enabled)
343 * will show the situation. This is useful for debug checks in functions
344 * that require that they be called within an RCU read-side critical
345 * section.
347 * Check debug_lockdep_rcu_enabled() to prevent false positives during boot.
349 * Note that rcu_read_lock() is disallowed if the CPU is either idle or
350 * offline from an RCU perspective, so check for those as well.
352 int rcu_read_lock_bh_held(void)
354 if (!debug_lockdep_rcu_enabled())
355 return 1;
356 if (!rcu_is_watching())
357 return 0;
358 if (!rcu_lockdep_current_cpu_online())
359 return 0;
360 return in_softirq() || irqs_disabled();
362 EXPORT_SYMBOL_GPL(rcu_read_lock_bh_held);
364 #endif /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
367 * wakeme_after_rcu() - Callback function to awaken a task after grace period
368 * @head: Pointer to rcu_head member within rcu_synchronize structure
370 * Awaken the corresponding task now that a grace period has elapsed.
372 void wakeme_after_rcu(struct rcu_head *head)
374 struct rcu_synchronize *rcu;
376 rcu = container_of(head, struct rcu_synchronize, head);
377 complete(&rcu->completion);
379 EXPORT_SYMBOL_GPL(wakeme_after_rcu);
381 void __wait_rcu_gp(bool checktiny, int n, call_rcu_func_t *crcu_array,
382 struct rcu_synchronize *rs_array)
384 int i;
385 int j;
387 /* Initialize and register callbacks for each flavor specified. */
388 for (i = 0; i < n; i++) {
389 if (checktiny &&
390 (crcu_array[i] == call_rcu ||
391 crcu_array[i] == call_rcu_bh)) {
392 might_sleep();
393 continue;
395 init_rcu_head_on_stack(&rs_array[i].head);
396 init_completion(&rs_array[i].completion);
397 for (j = 0; j < i; j++)
398 if (crcu_array[j] == crcu_array[i])
399 break;
400 if (j == i)
401 (crcu_array[i])(&rs_array[i].head, wakeme_after_rcu);
404 /* Wait for all callbacks to be invoked. */
405 for (i = 0; i < n; i++) {
406 if (checktiny &&
407 (crcu_array[i] == call_rcu ||
408 crcu_array[i] == call_rcu_bh))
409 continue;
410 for (j = 0; j < i; j++)
411 if (crcu_array[j] == crcu_array[i])
412 break;
413 if (j == i)
414 wait_for_completion(&rs_array[i].completion);
415 destroy_rcu_head_on_stack(&rs_array[i].head);
418 EXPORT_SYMBOL_GPL(__wait_rcu_gp);
420 #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
421 void init_rcu_head(struct rcu_head *head)
423 debug_object_init(head, &rcuhead_debug_descr);
426 void destroy_rcu_head(struct rcu_head *head)
428 debug_object_free(head, &rcuhead_debug_descr);
431 static bool rcuhead_is_static_object(void *addr)
433 return true;
437 * init_rcu_head_on_stack() - initialize on-stack rcu_head for debugobjects
438 * @head: pointer to rcu_head structure to be initialized
440 * This function informs debugobjects of a new rcu_head structure that
441 * has been allocated as an auto variable on the stack. This function
442 * is not required for rcu_head structures that are statically defined or
443 * that are dynamically allocated on the heap. This function has no
444 * effect for !CONFIG_DEBUG_OBJECTS_RCU_HEAD kernel builds.
446 void init_rcu_head_on_stack(struct rcu_head *head)
448 debug_object_init_on_stack(head, &rcuhead_debug_descr);
450 EXPORT_SYMBOL_GPL(init_rcu_head_on_stack);
453 * destroy_rcu_head_on_stack() - destroy on-stack rcu_head for debugobjects
454 * @head: pointer to rcu_head structure to be initialized
456 * This function informs debugobjects that an on-stack rcu_head structure
457 * is about to go out of scope. As with init_rcu_head_on_stack(), this
458 * function is not required for rcu_head structures that are statically
459 * defined or that are dynamically allocated on the heap. Also as with
460 * init_rcu_head_on_stack(), this function has no effect for
461 * !CONFIG_DEBUG_OBJECTS_RCU_HEAD kernel builds.
463 void destroy_rcu_head_on_stack(struct rcu_head *head)
465 debug_object_free(head, &rcuhead_debug_descr);
467 EXPORT_SYMBOL_GPL(destroy_rcu_head_on_stack);
469 struct debug_obj_descr rcuhead_debug_descr = {
470 .name = "rcu_head",
471 .is_static_object = rcuhead_is_static_object,
473 EXPORT_SYMBOL_GPL(rcuhead_debug_descr);
474 #endif /* #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD */
476 #if defined(CONFIG_TREE_RCU) || defined(CONFIG_PREEMPT_RCU) || defined(CONFIG_RCU_TRACE)
477 void do_trace_rcu_torture_read(const char *rcutorturename, struct rcu_head *rhp,
478 unsigned long secs,
479 unsigned long c_old, unsigned long c)
481 trace_rcu_torture_read(rcutorturename, rhp, secs, c_old, c);
483 EXPORT_SYMBOL_GPL(do_trace_rcu_torture_read);
484 #else
485 #define do_trace_rcu_torture_read(rcutorturename, rhp, secs, c_old, c) \
486 do { } while (0)
487 #endif
489 #ifdef CONFIG_RCU_STALL_COMMON
491 #ifdef CONFIG_PROVE_RCU
492 #define RCU_STALL_DELAY_DELTA (5 * HZ)
493 #else
494 #define RCU_STALL_DELAY_DELTA 0
495 #endif
497 int rcu_cpu_stall_suppress __read_mostly; /* 1 = suppress stall warnings. */
498 EXPORT_SYMBOL_GPL(rcu_cpu_stall_suppress);
499 static int rcu_cpu_stall_timeout __read_mostly = CONFIG_RCU_CPU_STALL_TIMEOUT;
501 module_param(rcu_cpu_stall_suppress, int, 0644);
502 module_param(rcu_cpu_stall_timeout, int, 0644);
504 int rcu_jiffies_till_stall_check(void)
506 int till_stall_check = READ_ONCE(rcu_cpu_stall_timeout);
509 * Limit check must be consistent with the Kconfig limits
510 * for CONFIG_RCU_CPU_STALL_TIMEOUT.
512 if (till_stall_check < 3) {
513 WRITE_ONCE(rcu_cpu_stall_timeout, 3);
514 till_stall_check = 3;
515 } else if (till_stall_check > 300) {
516 WRITE_ONCE(rcu_cpu_stall_timeout, 300);
517 till_stall_check = 300;
519 return till_stall_check * HZ + RCU_STALL_DELAY_DELTA;
522 void rcu_sysrq_start(void)
524 if (!rcu_cpu_stall_suppress)
525 rcu_cpu_stall_suppress = 2;
528 void rcu_sysrq_end(void)
530 if (rcu_cpu_stall_suppress == 2)
531 rcu_cpu_stall_suppress = 0;
534 static int rcu_panic(struct notifier_block *this, unsigned long ev, void *ptr)
536 rcu_cpu_stall_suppress = 1;
537 return NOTIFY_DONE;
540 static struct notifier_block rcu_panic_block = {
541 .notifier_call = rcu_panic,
544 static int __init check_cpu_stall_init(void)
546 atomic_notifier_chain_register(&panic_notifier_list, &rcu_panic_block);
547 return 0;
549 early_initcall(check_cpu_stall_init);
551 #endif /* #ifdef CONFIG_RCU_STALL_COMMON */
553 #ifdef CONFIG_TASKS_RCU
556 * Simple variant of RCU whose quiescent states are voluntary context switch,
557 * user-space execution, and idle. As such, grace periods can take one good
558 * long time. There are no read-side primitives similar to rcu_read_lock()
559 * and rcu_read_unlock() because this implementation is intended to get
560 * the system into a safe state for some of the manipulations involved in
561 * tracing and the like. Finally, this implementation does not support
562 * high call_rcu_tasks() rates from multiple CPUs. If this is required,
563 * per-CPU callback lists will be needed.
566 /* Global list of callbacks and associated lock. */
567 static struct rcu_head *rcu_tasks_cbs_head;
568 static struct rcu_head **rcu_tasks_cbs_tail = &rcu_tasks_cbs_head;
569 static DECLARE_WAIT_QUEUE_HEAD(rcu_tasks_cbs_wq);
570 static DEFINE_RAW_SPINLOCK(rcu_tasks_cbs_lock);
572 /* Track exiting tasks in order to allow them to be waited for. */
573 DEFINE_STATIC_SRCU(tasks_rcu_exit_srcu);
575 /* Control stall timeouts. Disable with <= 0, otherwise jiffies till stall. */
576 #define RCU_TASK_STALL_TIMEOUT (HZ * 60 * 10)
577 static int rcu_task_stall_timeout __read_mostly = RCU_TASK_STALL_TIMEOUT;
578 module_param(rcu_task_stall_timeout, int, 0644);
580 static struct task_struct *rcu_tasks_kthread_ptr;
583 * call_rcu_tasks() - Queue an RCU for invocation task-based grace period
584 * @rhp: structure to be used for queueing the RCU updates.
585 * @func: actual callback function to be invoked after the grace period
587 * The callback function will be invoked some time after a full grace
588 * period elapses, in other words after all currently executing RCU
589 * read-side critical sections have completed. call_rcu_tasks() assumes
590 * that the read-side critical sections end at a voluntary context
591 * switch (not a preemption!), entry into idle, or transition to usermode
592 * execution. As such, there are no read-side primitives analogous to
593 * rcu_read_lock() and rcu_read_unlock() because this primitive is intended
594 * to determine that all tasks have passed through a safe state, not so
595 * much for data-strcuture synchronization.
597 * See the description of call_rcu() for more detailed information on
598 * memory ordering guarantees.
600 void call_rcu_tasks(struct rcu_head *rhp, rcu_callback_t func)
602 unsigned long flags;
603 bool needwake;
605 rhp->next = NULL;
606 rhp->func = func;
607 raw_spin_lock_irqsave(&rcu_tasks_cbs_lock, flags);
608 needwake = !rcu_tasks_cbs_head;
609 *rcu_tasks_cbs_tail = rhp;
610 rcu_tasks_cbs_tail = &rhp->next;
611 raw_spin_unlock_irqrestore(&rcu_tasks_cbs_lock, flags);
612 /* We can't create the thread unless interrupts are enabled. */
613 if (needwake && READ_ONCE(rcu_tasks_kthread_ptr))
614 wake_up(&rcu_tasks_cbs_wq);
616 EXPORT_SYMBOL_GPL(call_rcu_tasks);
619 * synchronize_rcu_tasks - wait until an rcu-tasks grace period has elapsed.
621 * Control will return to the caller some time after a full rcu-tasks
622 * grace period has elapsed, in other words after all currently
623 * executing rcu-tasks read-side critical sections have elapsed. These
624 * read-side critical sections are delimited by calls to schedule(),
625 * cond_resched_rcu_qs(), idle execution, userspace execution, calls
626 * to synchronize_rcu_tasks(), and (in theory, anyway) cond_resched().
628 * This is a very specialized primitive, intended only for a few uses in
629 * tracing and other situations requiring manipulation of function
630 * preambles and profiling hooks. The synchronize_rcu_tasks() function
631 * is not (yet) intended for heavy use from multiple CPUs.
633 * Note that this guarantee implies further memory-ordering guarantees.
634 * On systems with more than one CPU, when synchronize_rcu_tasks() returns,
635 * each CPU is guaranteed to have executed a full memory barrier since the
636 * end of its last RCU-tasks read-side critical section whose beginning
637 * preceded the call to synchronize_rcu_tasks(). In addition, each CPU
638 * having an RCU-tasks read-side critical section that extends beyond
639 * the return from synchronize_rcu_tasks() is guaranteed to have executed
640 * a full memory barrier after the beginning of synchronize_rcu_tasks()
641 * and before the beginning of that RCU-tasks read-side critical section.
642 * Note that these guarantees include CPUs that are offline, idle, or
643 * executing in user mode, as well as CPUs that are executing in the kernel.
645 * Furthermore, if CPU A invoked synchronize_rcu_tasks(), which returned
646 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
647 * to have executed a full memory barrier during the execution of
648 * synchronize_rcu_tasks() -- even if CPU A and CPU B are the same CPU
649 * (but again only if the system has more than one CPU).
651 void synchronize_rcu_tasks(void)
653 /* Complain if the scheduler has not started. */
654 RCU_LOCKDEP_WARN(rcu_scheduler_active == RCU_SCHEDULER_INACTIVE,
655 "synchronize_rcu_tasks called too soon");
657 /* Wait for the grace period. */
658 wait_rcu_gp(call_rcu_tasks);
660 EXPORT_SYMBOL_GPL(synchronize_rcu_tasks);
663 * rcu_barrier_tasks - Wait for in-flight call_rcu_tasks() callbacks.
665 * Although the current implementation is guaranteed to wait, it is not
666 * obligated to, for example, if there are no pending callbacks.
668 void rcu_barrier_tasks(void)
670 /* There is only one callback queue, so this is easy. ;-) */
671 synchronize_rcu_tasks();
673 EXPORT_SYMBOL_GPL(rcu_barrier_tasks);
675 /* See if tasks are still holding out, complain if so. */
676 static void check_holdout_task(struct task_struct *t,
677 bool needreport, bool *firstreport)
679 int cpu;
681 if (!READ_ONCE(t->rcu_tasks_holdout) ||
682 t->rcu_tasks_nvcsw != READ_ONCE(t->nvcsw) ||
683 !READ_ONCE(t->on_rq) ||
684 (IS_ENABLED(CONFIG_NO_HZ_FULL) &&
685 !is_idle_task(t) && t->rcu_tasks_idle_cpu >= 0)) {
686 WRITE_ONCE(t->rcu_tasks_holdout, false);
687 list_del_init(&t->rcu_tasks_holdout_list);
688 put_task_struct(t);
689 return;
691 rcu_request_urgent_qs_task(t);
692 if (!needreport)
693 return;
694 if (*firstreport) {
695 pr_err("INFO: rcu_tasks detected stalls on tasks:\n");
696 *firstreport = false;
698 cpu = task_cpu(t);
699 pr_alert("%p: %c%c nvcsw: %lu/%lu holdout: %d idle_cpu: %d/%d\n",
700 t, ".I"[is_idle_task(t)],
701 "N."[cpu < 0 || !tick_nohz_full_cpu(cpu)],
702 t->rcu_tasks_nvcsw, t->nvcsw, t->rcu_tasks_holdout,
703 t->rcu_tasks_idle_cpu, cpu);
704 sched_show_task(t);
707 /* RCU-tasks kthread that detects grace periods and invokes callbacks. */
708 static int __noreturn rcu_tasks_kthread(void *arg)
710 unsigned long flags;
711 struct task_struct *g, *t;
712 unsigned long lastreport;
713 struct rcu_head *list;
714 struct rcu_head *next;
715 LIST_HEAD(rcu_tasks_holdouts);
717 /* Run on housekeeping CPUs by default. Sysadm can move if desired. */
718 housekeeping_affine(current, HK_FLAG_RCU);
721 * Each pass through the following loop makes one check for
722 * newly arrived callbacks, and, if there are some, waits for
723 * one RCU-tasks grace period and then invokes the callbacks.
724 * This loop is terminated by the system going down. ;-)
726 for (;;) {
728 /* Pick up any new callbacks. */
729 raw_spin_lock_irqsave(&rcu_tasks_cbs_lock, flags);
730 list = rcu_tasks_cbs_head;
731 rcu_tasks_cbs_head = NULL;
732 rcu_tasks_cbs_tail = &rcu_tasks_cbs_head;
733 raw_spin_unlock_irqrestore(&rcu_tasks_cbs_lock, flags);
735 /* If there were none, wait a bit and start over. */
736 if (!list) {
737 wait_event_interruptible(rcu_tasks_cbs_wq,
738 rcu_tasks_cbs_head);
739 if (!rcu_tasks_cbs_head) {
740 WARN_ON(signal_pending(current));
741 schedule_timeout_interruptible(HZ/10);
743 continue;
747 * Wait for all pre-existing t->on_rq and t->nvcsw
748 * transitions to complete. Invoking synchronize_sched()
749 * suffices because all these transitions occur with
750 * interrupts disabled. Without this synchronize_sched(),
751 * a read-side critical section that started before the
752 * grace period might be incorrectly seen as having started
753 * after the grace period.
755 * This synchronize_sched() also dispenses with the
756 * need for a memory barrier on the first store to
757 * ->rcu_tasks_holdout, as it forces the store to happen
758 * after the beginning of the grace period.
760 synchronize_sched();
763 * There were callbacks, so we need to wait for an
764 * RCU-tasks grace period. Start off by scanning
765 * the task list for tasks that are not already
766 * voluntarily blocked. Mark these tasks and make
767 * a list of them in rcu_tasks_holdouts.
769 rcu_read_lock();
770 for_each_process_thread(g, t) {
771 if (t != current && READ_ONCE(t->on_rq) &&
772 !is_idle_task(t)) {
773 get_task_struct(t);
774 t->rcu_tasks_nvcsw = READ_ONCE(t->nvcsw);
775 WRITE_ONCE(t->rcu_tasks_holdout, true);
776 list_add(&t->rcu_tasks_holdout_list,
777 &rcu_tasks_holdouts);
780 rcu_read_unlock();
783 * Wait for tasks that are in the process of exiting.
784 * This does only part of the job, ensuring that all
785 * tasks that were previously exiting reach the point
786 * where they have disabled preemption, allowing the
787 * later synchronize_sched() to finish the job.
789 synchronize_srcu(&tasks_rcu_exit_srcu);
792 * Each pass through the following loop scans the list
793 * of holdout tasks, removing any that are no longer
794 * holdouts. When the list is empty, we are done.
796 lastreport = jiffies;
797 while (!list_empty(&rcu_tasks_holdouts)) {
798 bool firstreport;
799 bool needreport;
800 int rtst;
801 struct task_struct *t1;
803 schedule_timeout_interruptible(HZ);
804 rtst = READ_ONCE(rcu_task_stall_timeout);
805 needreport = rtst > 0 &&
806 time_after(jiffies, lastreport + rtst);
807 if (needreport)
808 lastreport = jiffies;
809 firstreport = true;
810 WARN_ON(signal_pending(current));
811 list_for_each_entry_safe(t, t1, &rcu_tasks_holdouts,
812 rcu_tasks_holdout_list) {
813 check_holdout_task(t, needreport, &firstreport);
814 cond_resched();
819 * Because ->on_rq and ->nvcsw are not guaranteed
820 * to have a full memory barriers prior to them in the
821 * schedule() path, memory reordering on other CPUs could
822 * cause their RCU-tasks read-side critical sections to
823 * extend past the end of the grace period. However,
824 * because these ->nvcsw updates are carried out with
825 * interrupts disabled, we can use synchronize_sched()
826 * to force the needed ordering on all such CPUs.
828 * This synchronize_sched() also confines all
829 * ->rcu_tasks_holdout accesses to be within the grace
830 * period, avoiding the need for memory barriers for
831 * ->rcu_tasks_holdout accesses.
833 * In addition, this synchronize_sched() waits for exiting
834 * tasks to complete their final preempt_disable() region
835 * of execution, cleaning up after the synchronize_srcu()
836 * above.
838 synchronize_sched();
840 /* Invoke the callbacks. */
841 while (list) {
842 next = list->next;
843 local_bh_disable();
844 list->func(list);
845 local_bh_enable();
846 list = next;
847 cond_resched();
849 schedule_timeout_uninterruptible(HZ/10);
853 /* Spawn rcu_tasks_kthread() at core_initcall() time. */
854 static int __init rcu_spawn_tasks_kthread(void)
856 struct task_struct *t;
858 t = kthread_run(rcu_tasks_kthread, NULL, "rcu_tasks_kthread");
859 BUG_ON(IS_ERR(t));
860 smp_mb(); /* Ensure others see full kthread. */
861 WRITE_ONCE(rcu_tasks_kthread_ptr, t);
862 return 0;
864 core_initcall(rcu_spawn_tasks_kthread);
866 /* Do the srcu_read_lock() for the above synchronize_srcu(). */
867 void exit_tasks_rcu_start(void)
869 preempt_disable();
870 current->rcu_tasks_idx = __srcu_read_lock(&tasks_rcu_exit_srcu);
871 preempt_enable();
874 /* Do the srcu_read_unlock() for the above synchronize_srcu(). */
875 void exit_tasks_rcu_finish(void)
877 preempt_disable();
878 __srcu_read_unlock(&tasks_rcu_exit_srcu, current->rcu_tasks_idx);
879 preempt_enable();
882 #endif /* #ifdef CONFIG_TASKS_RCU */
884 #ifndef CONFIG_TINY_RCU
887 * Print any non-default Tasks RCU settings.
889 static void __init rcu_tasks_bootup_oddness(void)
891 #ifdef CONFIG_TASKS_RCU
892 if (rcu_task_stall_timeout != RCU_TASK_STALL_TIMEOUT)
893 pr_info("\tTasks-RCU CPU stall warnings timeout set to %d (rcu_task_stall_timeout).\n", rcu_task_stall_timeout);
894 else
895 pr_info("\tTasks RCU enabled.\n");
896 #endif /* #ifdef CONFIG_TASKS_RCU */
899 #endif /* #ifndef CONFIG_TINY_RCU */
901 #ifdef CONFIG_PROVE_RCU
904 * Early boot self test parameters, one for each flavor
906 static bool rcu_self_test;
907 static bool rcu_self_test_bh;
908 static bool rcu_self_test_sched;
910 module_param(rcu_self_test, bool, 0444);
911 module_param(rcu_self_test_bh, bool, 0444);
912 module_param(rcu_self_test_sched, bool, 0444);
914 static int rcu_self_test_counter;
916 static void test_callback(struct rcu_head *r)
918 rcu_self_test_counter++;
919 pr_info("RCU test callback executed %d\n", rcu_self_test_counter);
922 static void early_boot_test_call_rcu(void)
924 static struct rcu_head head;
926 call_rcu(&head, test_callback);
929 static void early_boot_test_call_rcu_bh(void)
931 static struct rcu_head head;
933 call_rcu_bh(&head, test_callback);
936 static void early_boot_test_call_rcu_sched(void)
938 static struct rcu_head head;
940 call_rcu_sched(&head, test_callback);
943 void rcu_early_boot_tests(void)
945 pr_info("Running RCU self tests\n");
947 if (rcu_self_test)
948 early_boot_test_call_rcu();
949 if (rcu_self_test_bh)
950 early_boot_test_call_rcu_bh();
951 if (rcu_self_test_sched)
952 early_boot_test_call_rcu_sched();
953 rcu_test_sync_prims();
956 static int rcu_verify_early_boot_tests(void)
958 int ret = 0;
959 int early_boot_test_counter = 0;
961 if (rcu_self_test) {
962 early_boot_test_counter++;
963 rcu_barrier();
965 if (rcu_self_test_bh) {
966 early_boot_test_counter++;
967 rcu_barrier_bh();
969 if (rcu_self_test_sched) {
970 early_boot_test_counter++;
971 rcu_barrier_sched();
974 if (rcu_self_test_counter != early_boot_test_counter) {
975 WARN_ON(1);
976 ret = -1;
979 return ret;
981 late_initcall(rcu_verify_early_boot_tests);
982 #else
983 void rcu_early_boot_tests(void) {}
984 #endif /* CONFIG_PROVE_RCU */
986 #ifndef CONFIG_TINY_RCU
989 * Print any significant non-default boot-time settings.
991 void __init rcupdate_announce_bootup_oddness(void)
993 if (rcu_normal)
994 pr_info("\tNo expedited grace period (rcu_normal).\n");
995 else if (rcu_normal_after_boot)
996 pr_info("\tNo expedited grace period (rcu_normal_after_boot).\n");
997 else if (rcu_expedited)
998 pr_info("\tAll grace periods are expedited (rcu_expedited).\n");
999 if (rcu_cpu_stall_suppress)
1000 pr_info("\tRCU CPU stall warnings suppressed (rcu_cpu_stall_suppress).\n");
1001 if (rcu_cpu_stall_timeout != CONFIG_RCU_CPU_STALL_TIMEOUT)
1002 pr_info("\tRCU CPU stall warnings timeout set to %d (rcu_cpu_stall_timeout).\n", rcu_cpu_stall_timeout);
1003 rcu_tasks_bootup_oddness();
1006 #endif /* #ifndef CONFIG_TINY_RCU */