4 * Copyright (C) 1992 Rick Sladkey
6 * nfs directory handling functions
8 * 10 Apr 1996 Added silly rename for unlink --okir
9 * 28 Sep 1996 Improved directory cache --okir
10 * 23 Aug 1997 Claus Heine claus@momo.math.rwth-aachen.de
11 * Re-implemented silly rename for unlink, newly implemented
12 * silly rename for nfs_rename() following the suggestions
13 * of Olaf Kirch (okir) found in this file.
14 * Following Linus comments on my original hack, this version
15 * depends only on the dcache stuff and doesn't touch the inode
16 * layer (iput() and friends).
17 * 6 Jun 1999 Cache readdir lookups in the page cache. -DaveM
20 #include <linux/module.h>
21 #include <linux/time.h>
22 #include <linux/errno.h>
23 #include <linux/stat.h>
24 #include <linux/fcntl.h>
25 #include <linux/string.h>
26 #include <linux/kernel.h>
27 #include <linux/slab.h>
29 #include <linux/sunrpc/clnt.h>
30 #include <linux/nfs_fs.h>
31 #include <linux/nfs_mount.h>
32 #include <linux/pagemap.h>
33 #include <linux/pagevec.h>
34 #include <linux/namei.h>
35 #include <linux/mount.h>
36 #include <linux/swap.h>
37 #include <linux/sched.h>
38 #include <linux/kmemleak.h>
39 #include <linux/xattr.h>
41 #include "delegation.h"
48 /* #define NFS_DEBUG_VERBOSE 1 */
50 static int nfs_opendir(struct inode
*, struct file
*);
51 static int nfs_closedir(struct inode
*, struct file
*);
52 static int nfs_readdir(struct file
*, struct dir_context
*);
53 static int nfs_fsync_dir(struct file
*, loff_t
, loff_t
, int);
54 static loff_t
nfs_llseek_dir(struct file
*, loff_t
, int);
55 static void nfs_readdir_clear_array(struct page
*);
57 const struct file_operations nfs_dir_operations
= {
58 .llseek
= nfs_llseek_dir
,
59 .read
= generic_read_dir
,
60 .iterate
= nfs_readdir
,
62 .release
= nfs_closedir
,
63 .fsync
= nfs_fsync_dir
,
66 const struct address_space_operations nfs_dir_aops
= {
67 .freepage
= nfs_readdir_clear_array
,
70 static struct nfs_open_dir_context
*alloc_nfs_open_dir_context(struct inode
*dir
, struct rpc_cred
*cred
)
72 struct nfs_inode
*nfsi
= NFS_I(dir
);
73 struct nfs_open_dir_context
*ctx
;
74 ctx
= kmalloc(sizeof(*ctx
), GFP_KERNEL
);
77 ctx
->attr_gencount
= nfsi
->attr_gencount
;
80 ctx
->cred
= get_rpccred(cred
);
81 spin_lock(&dir
->i_lock
);
82 list_add(&ctx
->list
, &nfsi
->open_files
);
83 spin_unlock(&dir
->i_lock
);
86 return ERR_PTR(-ENOMEM
);
89 static void put_nfs_open_dir_context(struct inode
*dir
, struct nfs_open_dir_context
*ctx
)
91 spin_lock(&dir
->i_lock
);
93 spin_unlock(&dir
->i_lock
);
94 put_rpccred(ctx
->cred
);
102 nfs_opendir(struct inode
*inode
, struct file
*filp
)
105 struct nfs_open_dir_context
*ctx
;
106 struct rpc_cred
*cred
;
108 dfprintk(FILE, "NFS: open dir(%pD2)\n", filp
);
110 nfs_inc_stats(inode
, NFSIOS_VFSOPEN
);
112 cred
= rpc_lookup_cred();
114 return PTR_ERR(cred
);
115 ctx
= alloc_nfs_open_dir_context(inode
, cred
);
120 filp
->private_data
= ctx
;
121 if (filp
->f_path
.dentry
== filp
->f_path
.mnt
->mnt_root
) {
122 /* This is a mountpoint, so d_revalidate will never
123 * have been called, so we need to refresh the
124 * inode (for close-open consistency) ourselves.
126 __nfs_revalidate_inode(NFS_SERVER(inode
), inode
);
134 nfs_closedir(struct inode
*inode
, struct file
*filp
)
136 put_nfs_open_dir_context(filp
->f_path
.dentry
->d_inode
, filp
->private_data
);
140 struct nfs_cache_array_entry
{
144 unsigned char d_type
;
147 struct nfs_cache_array
{
151 struct nfs_cache_array_entry array
[0];
154 typedef int (*decode_dirent_t
)(struct xdr_stream
*, struct nfs_entry
*, int);
158 struct dir_context
*ctx
;
159 unsigned long page_index
;
162 loff_t current_index
;
163 decode_dirent_t decode
;
165 unsigned long timestamp
;
166 unsigned long gencount
;
167 unsigned int cache_entry_index
;
170 } nfs_readdir_descriptor_t
;
173 * The caller is responsible for calling nfs_readdir_release_array(page)
176 struct nfs_cache_array
*nfs_readdir_get_array(struct page
*page
)
180 return ERR_PTR(-EIO
);
183 return ERR_PTR(-ENOMEM
);
188 void nfs_readdir_release_array(struct page
*page
)
194 * we are freeing strings created by nfs_add_to_readdir_array()
197 void nfs_readdir_clear_array(struct page
*page
)
199 struct nfs_cache_array
*array
;
202 array
= kmap_atomic(page
);
203 for (i
= 0; i
< array
->size
; i
++)
204 kfree(array
->array
[i
].string
.name
);
205 kunmap_atomic(array
);
209 * the caller is responsible for freeing qstr.name
210 * when called by nfs_readdir_add_to_array, the strings will be freed in
211 * nfs_clear_readdir_array()
214 int nfs_readdir_make_qstr(struct qstr
*string
, const char *name
, unsigned int len
)
217 string
->name
= kmemdup(name
, len
, GFP_KERNEL
);
218 if (string
->name
== NULL
)
221 * Avoid a kmemleak false positive. The pointer to the name is stored
222 * in a page cache page which kmemleak does not scan.
224 kmemleak_not_leak(string
->name
);
225 string
->hash
= full_name_hash(name
, len
);
230 int nfs_readdir_add_to_array(struct nfs_entry
*entry
, struct page
*page
)
232 struct nfs_cache_array
*array
= nfs_readdir_get_array(page
);
233 struct nfs_cache_array_entry
*cache_entry
;
237 return PTR_ERR(array
);
239 cache_entry
= &array
->array
[array
->size
];
241 /* Check that this entry lies within the page bounds */
243 if ((char *)&cache_entry
[1] - (char *)page_address(page
) > PAGE_SIZE
)
246 cache_entry
->cookie
= entry
->prev_cookie
;
247 cache_entry
->ino
= entry
->ino
;
248 cache_entry
->d_type
= entry
->d_type
;
249 ret
= nfs_readdir_make_qstr(&cache_entry
->string
, entry
->name
, entry
->len
);
252 array
->last_cookie
= entry
->cookie
;
255 array
->eof_index
= array
->size
;
257 nfs_readdir_release_array(page
);
262 int nfs_readdir_search_for_pos(struct nfs_cache_array
*array
, nfs_readdir_descriptor_t
*desc
)
264 loff_t diff
= desc
->ctx
->pos
- desc
->current_index
;
269 if (diff
>= array
->size
) {
270 if (array
->eof_index
>= 0)
275 index
= (unsigned int)diff
;
276 *desc
->dir_cookie
= array
->array
[index
].cookie
;
277 desc
->cache_entry_index
= index
;
285 nfs_readdir_inode_mapping_valid(struct nfs_inode
*nfsi
)
287 if (nfsi
->cache_validity
& (NFS_INO_INVALID_ATTR
|NFS_INO_INVALID_DATA
))
290 return !test_bit(NFS_INO_INVALIDATING
, &nfsi
->flags
);
294 int nfs_readdir_search_for_cookie(struct nfs_cache_array
*array
, nfs_readdir_descriptor_t
*desc
)
298 int status
= -EAGAIN
;
300 for (i
= 0; i
< array
->size
; i
++) {
301 if (array
->array
[i
].cookie
== *desc
->dir_cookie
) {
302 struct nfs_inode
*nfsi
= NFS_I(file_inode(desc
->file
));
303 struct nfs_open_dir_context
*ctx
= desc
->file
->private_data
;
305 new_pos
= desc
->current_index
+ i
;
306 if (ctx
->attr_gencount
!= nfsi
->attr_gencount
||
307 !nfs_readdir_inode_mapping_valid(nfsi
)) {
309 ctx
->attr_gencount
= nfsi
->attr_gencount
;
310 } else if (new_pos
< desc
->ctx
->pos
) {
312 && ctx
->dup_cookie
== *desc
->dir_cookie
) {
313 if (printk_ratelimit()) {
314 pr_notice("NFS: directory %pD2 contains a readdir loop."
315 "Please contact your server vendor. "
316 "The file: %.*s has duplicate cookie %llu\n",
317 desc
->file
, array
->array
[i
].string
.len
,
318 array
->array
[i
].string
.name
, *desc
->dir_cookie
);
323 ctx
->dup_cookie
= *desc
->dir_cookie
;
326 desc
->ctx
->pos
= new_pos
;
327 desc
->cache_entry_index
= i
;
331 if (array
->eof_index
>= 0) {
332 status
= -EBADCOOKIE
;
333 if (*desc
->dir_cookie
== array
->last_cookie
)
341 int nfs_readdir_search_array(nfs_readdir_descriptor_t
*desc
)
343 struct nfs_cache_array
*array
;
346 array
= nfs_readdir_get_array(desc
->page
);
348 status
= PTR_ERR(array
);
352 if (*desc
->dir_cookie
== 0)
353 status
= nfs_readdir_search_for_pos(array
, desc
);
355 status
= nfs_readdir_search_for_cookie(array
, desc
);
357 if (status
== -EAGAIN
) {
358 desc
->last_cookie
= array
->last_cookie
;
359 desc
->current_index
+= array
->size
;
362 nfs_readdir_release_array(desc
->page
);
367 /* Fill a page with xdr information before transferring to the cache page */
369 int nfs_readdir_xdr_filler(struct page
**pages
, nfs_readdir_descriptor_t
*desc
,
370 struct nfs_entry
*entry
, struct file
*file
, struct inode
*inode
)
372 struct nfs_open_dir_context
*ctx
= file
->private_data
;
373 struct rpc_cred
*cred
= ctx
->cred
;
374 unsigned long timestamp
, gencount
;
379 gencount
= nfs_inc_attr_generation_counter();
380 error
= NFS_PROTO(inode
)->readdir(file
->f_path
.dentry
, cred
, entry
->cookie
, pages
,
381 NFS_SERVER(inode
)->dtsize
, desc
->plus
);
383 /* We requested READDIRPLUS, but the server doesn't grok it */
384 if (error
== -ENOTSUPP
&& desc
->plus
) {
385 NFS_SERVER(inode
)->caps
&= ~NFS_CAP_READDIRPLUS
;
386 clear_bit(NFS_INO_ADVISE_RDPLUS
, &NFS_I(inode
)->flags
);
392 desc
->timestamp
= timestamp
;
393 desc
->gencount
= gencount
;
398 static int xdr_decode(nfs_readdir_descriptor_t
*desc
,
399 struct nfs_entry
*entry
, struct xdr_stream
*xdr
)
403 error
= desc
->decode(xdr
, entry
, desc
->plus
);
406 entry
->fattr
->time_start
= desc
->timestamp
;
407 entry
->fattr
->gencount
= desc
->gencount
;
412 int nfs_same_file(struct dentry
*dentry
, struct nfs_entry
*entry
)
414 if (dentry
->d_inode
== NULL
)
416 if (nfs_compare_fh(entry
->fh
, NFS_FH(dentry
->d_inode
)) != 0)
424 bool nfs_use_readdirplus(struct inode
*dir
, struct dir_context
*ctx
)
426 if (!nfs_server_capable(dir
, NFS_CAP_READDIRPLUS
))
428 if (test_and_clear_bit(NFS_INO_ADVISE_RDPLUS
, &NFS_I(dir
)->flags
))
436 * This function is called by the lookup code to request the use of
437 * readdirplus to accelerate any future lookups in the same
441 void nfs_advise_use_readdirplus(struct inode
*dir
)
443 set_bit(NFS_INO_ADVISE_RDPLUS
, &NFS_I(dir
)->flags
);
447 * This function is mainly for use by nfs_getattr().
449 * If this is an 'ls -l', we want to force use of readdirplus.
450 * Do this by checking if there is an active file descriptor
451 * and calling nfs_advise_use_readdirplus, then forcing a
454 void nfs_force_use_readdirplus(struct inode
*dir
)
456 if (!list_empty(&NFS_I(dir
)->open_files
)) {
457 nfs_advise_use_readdirplus(dir
);
458 nfs_zap_mapping(dir
, dir
->i_mapping
);
463 void nfs_prime_dcache(struct dentry
*parent
, struct nfs_entry
*entry
)
465 struct qstr filename
= QSTR_INIT(entry
->name
, entry
->len
);
466 struct dentry
*dentry
;
467 struct dentry
*alias
;
468 struct inode
*dir
= parent
->d_inode
;
472 if (filename
.name
[0] == '.') {
473 if (filename
.len
== 1)
475 if (filename
.len
== 2 && filename
.name
[1] == '.')
478 filename
.hash
= full_name_hash(filename
.name
, filename
.len
);
480 dentry
= d_lookup(parent
, &filename
);
481 if (dentry
!= NULL
) {
482 if (nfs_same_file(dentry
, entry
)) {
483 nfs_set_verifier(dentry
, nfs_save_change_attribute(dir
));
484 status
= nfs_refresh_inode(dentry
->d_inode
, entry
->fattr
);
486 nfs_setsecurity(dentry
->d_inode
, entry
->fattr
, entry
->label
);
489 if (d_invalidate(dentry
) != 0)
495 dentry
= d_alloc(parent
, &filename
);
499 inode
= nfs_fhget(dentry
->d_sb
, entry
->fh
, entry
->fattr
, entry
->label
);
503 alias
= d_materialise_unique(dentry
, inode
);
507 nfs_set_verifier(alias
, nfs_save_change_attribute(dir
));
510 nfs_set_verifier(dentry
, nfs_save_change_attribute(dir
));
516 /* Perform conversion from xdr to cache array */
518 int nfs_readdir_page_filler(nfs_readdir_descriptor_t
*desc
, struct nfs_entry
*entry
,
519 struct page
**xdr_pages
, struct page
*page
, unsigned int buflen
)
521 struct xdr_stream stream
;
523 struct page
*scratch
;
524 struct nfs_cache_array
*array
;
525 unsigned int count
= 0;
528 scratch
= alloc_page(GFP_KERNEL
);
532 xdr_init_decode_pages(&stream
, &buf
, xdr_pages
, buflen
);
533 xdr_set_scratch_buffer(&stream
, page_address(scratch
), PAGE_SIZE
);
536 status
= xdr_decode(desc
, entry
, &stream
);
538 if (status
== -EAGAIN
)
546 nfs_prime_dcache(desc
->file
->f_path
.dentry
, entry
);
548 status
= nfs_readdir_add_to_array(entry
, page
);
551 } while (!entry
->eof
);
553 if (count
== 0 || (status
== -EBADCOOKIE
&& entry
->eof
!= 0)) {
554 array
= nfs_readdir_get_array(page
);
555 if (!IS_ERR(array
)) {
556 array
->eof_index
= array
->size
;
558 nfs_readdir_release_array(page
);
560 status
= PTR_ERR(array
);
568 void nfs_readdir_free_pagearray(struct page
**pages
, unsigned int npages
)
571 for (i
= 0; i
< npages
; i
++)
576 void nfs_readdir_free_large_page(void *ptr
, struct page
**pages
,
579 nfs_readdir_free_pagearray(pages
, npages
);
583 * nfs_readdir_large_page will allocate pages that must be freed with a call
584 * to nfs_readdir_free_large_page
587 int nfs_readdir_large_page(struct page
**pages
, unsigned int npages
)
591 for (i
= 0; i
< npages
; i
++) {
592 struct page
*page
= alloc_page(GFP_KERNEL
);
600 nfs_readdir_free_pagearray(pages
, i
);
605 int nfs_readdir_xdr_to_array(nfs_readdir_descriptor_t
*desc
, struct page
*page
, struct inode
*inode
)
607 struct page
*pages
[NFS_MAX_READDIR_PAGES
];
608 void *pages_ptr
= NULL
;
609 struct nfs_entry entry
;
610 struct file
*file
= desc
->file
;
611 struct nfs_cache_array
*array
;
612 int status
= -ENOMEM
;
613 unsigned int array_size
= ARRAY_SIZE(pages
);
615 entry
.prev_cookie
= 0;
616 entry
.cookie
= desc
->last_cookie
;
618 entry
.fh
= nfs_alloc_fhandle();
619 entry
.fattr
= nfs_alloc_fattr();
620 entry
.server
= NFS_SERVER(inode
);
621 if (entry
.fh
== NULL
|| entry
.fattr
== NULL
)
624 entry
.label
= nfs4_label_alloc(NFS_SERVER(inode
), GFP_NOWAIT
);
625 if (IS_ERR(entry
.label
)) {
626 status
= PTR_ERR(entry
.label
);
630 array
= nfs_readdir_get_array(page
);
632 status
= PTR_ERR(array
);
635 memset(array
, 0, sizeof(struct nfs_cache_array
));
636 array
->eof_index
= -1;
638 status
= nfs_readdir_large_page(pages
, array_size
);
640 goto out_release_array
;
643 status
= nfs_readdir_xdr_filler(pages
, desc
, &entry
, file
, inode
);
648 status
= nfs_readdir_page_filler(desc
, &entry
, pages
, page
, pglen
);
650 if (status
== -ENOSPC
)
654 } while (array
->eof_index
< 0);
656 nfs_readdir_free_large_page(pages_ptr
, pages
, array_size
);
658 nfs_readdir_release_array(page
);
660 nfs4_label_free(entry
.label
);
662 nfs_free_fattr(entry
.fattr
);
663 nfs_free_fhandle(entry
.fh
);
668 * Now we cache directories properly, by converting xdr information
669 * to an array that can be used for lookups later. This results in
670 * fewer cache pages, since we can store more information on each page.
671 * We only need to convert from xdr once so future lookups are much simpler
674 int nfs_readdir_filler(nfs_readdir_descriptor_t
*desc
, struct page
* page
)
676 struct inode
*inode
= file_inode(desc
->file
);
679 ret
= nfs_readdir_xdr_to_array(desc
, page
, inode
);
682 SetPageUptodate(page
);
684 if (invalidate_inode_pages2_range(inode
->i_mapping
, page
->index
+ 1, -1) < 0) {
685 /* Should never happen */
686 nfs_zap_mapping(inode
, inode
->i_mapping
);
696 void cache_page_release(nfs_readdir_descriptor_t
*desc
)
698 if (!desc
->page
->mapping
)
699 nfs_readdir_clear_array(desc
->page
);
700 page_cache_release(desc
->page
);
705 struct page
*get_cache_page(nfs_readdir_descriptor_t
*desc
)
707 return read_cache_page(file_inode(desc
->file
)->i_mapping
,
708 desc
->page_index
, (filler_t
*)nfs_readdir_filler
, desc
);
712 * Returns 0 if desc->dir_cookie was found on page desc->page_index
715 int find_cache_page(nfs_readdir_descriptor_t
*desc
)
719 desc
->page
= get_cache_page(desc
);
720 if (IS_ERR(desc
->page
))
721 return PTR_ERR(desc
->page
);
723 res
= nfs_readdir_search_array(desc
);
725 cache_page_release(desc
);
729 /* Search for desc->dir_cookie from the beginning of the page cache */
731 int readdir_search_pagecache(nfs_readdir_descriptor_t
*desc
)
735 if (desc
->page_index
== 0) {
736 desc
->current_index
= 0;
737 desc
->last_cookie
= 0;
740 res
= find_cache_page(desc
);
741 } while (res
== -EAGAIN
);
746 * Once we've found the start of the dirent within a page: fill 'er up...
749 int nfs_do_filldir(nfs_readdir_descriptor_t
*desc
)
751 struct file
*file
= desc
->file
;
754 struct nfs_cache_array
*array
= NULL
;
755 struct nfs_open_dir_context
*ctx
= file
->private_data
;
757 array
= nfs_readdir_get_array(desc
->page
);
759 res
= PTR_ERR(array
);
763 for (i
= desc
->cache_entry_index
; i
< array
->size
; i
++) {
764 struct nfs_cache_array_entry
*ent
;
766 ent
= &array
->array
[i
];
767 if (!dir_emit(desc
->ctx
, ent
->string
.name
, ent
->string
.len
,
768 nfs_compat_user_ino64(ent
->ino
), ent
->d_type
)) {
773 if (i
< (array
->size
-1))
774 *desc
->dir_cookie
= array
->array
[i
+1].cookie
;
776 *desc
->dir_cookie
= array
->last_cookie
;
780 if (array
->eof_index
>= 0)
783 nfs_readdir_release_array(desc
->page
);
785 cache_page_release(desc
);
786 dfprintk(DIRCACHE
, "NFS: nfs_do_filldir() filling ended @ cookie %Lu; returning = %d\n",
787 (unsigned long long)*desc
->dir_cookie
, res
);
792 * If we cannot find a cookie in our cache, we suspect that this is
793 * because it points to a deleted file, so we ask the server to return
794 * whatever it thinks is the next entry. We then feed this to filldir.
795 * If all goes well, we should then be able to find our way round the
796 * cache on the next call to readdir_search_pagecache();
798 * NOTE: we cannot add the anonymous page to the pagecache because
799 * the data it contains might not be page aligned. Besides,
800 * we should already have a complete representation of the
801 * directory in the page cache by the time we get here.
804 int uncached_readdir(nfs_readdir_descriptor_t
*desc
)
806 struct page
*page
= NULL
;
808 struct inode
*inode
= file_inode(desc
->file
);
809 struct nfs_open_dir_context
*ctx
= desc
->file
->private_data
;
811 dfprintk(DIRCACHE
, "NFS: uncached_readdir() searching for cookie %Lu\n",
812 (unsigned long long)*desc
->dir_cookie
);
814 page
= alloc_page(GFP_HIGHUSER
);
820 desc
->page_index
= 0;
821 desc
->last_cookie
= *desc
->dir_cookie
;
825 status
= nfs_readdir_xdr_to_array(desc
, page
, inode
);
829 status
= nfs_do_filldir(desc
);
832 dfprintk(DIRCACHE
, "NFS: %s: returns %d\n",
836 cache_page_release(desc
);
840 static bool nfs_dir_mapping_need_revalidate(struct inode
*dir
)
842 struct nfs_inode
*nfsi
= NFS_I(dir
);
844 if (nfs_attribute_cache_expired(dir
))
846 if (nfsi
->cache_validity
& NFS_INO_INVALID_DATA
)
851 /* The file offset position represents the dirent entry number. A
852 last cookie cache takes care of the common case of reading the
855 static int nfs_readdir(struct file
*file
, struct dir_context
*ctx
)
857 struct dentry
*dentry
= file
->f_path
.dentry
;
858 struct inode
*inode
= dentry
->d_inode
;
859 nfs_readdir_descriptor_t my_desc
,
861 struct nfs_open_dir_context
*dir_ctx
= file
->private_data
;
864 dfprintk(FILE, "NFS: readdir(%pD2) starting at cookie %llu\n",
865 file
, (long long)ctx
->pos
);
866 nfs_inc_stats(inode
, NFSIOS_VFSGETDENTS
);
869 * ctx->pos points to the dirent entry number.
870 * *desc->dir_cookie has the cookie for the next entry. We have
871 * to either find the entry with the appropriate number or
872 * revalidate the cookie.
874 memset(desc
, 0, sizeof(*desc
));
878 desc
->dir_cookie
= &dir_ctx
->dir_cookie
;
879 desc
->decode
= NFS_PROTO(inode
)->decode_dirent
;
880 desc
->plus
= nfs_use_readdirplus(inode
, ctx
) ? 1 : 0;
882 nfs_block_sillyrename(dentry
);
883 if (ctx
->pos
== 0 || nfs_dir_mapping_need_revalidate(inode
))
884 res
= nfs_revalidate_mapping(inode
, file
->f_mapping
);
889 res
= readdir_search_pagecache(desc
);
891 if (res
== -EBADCOOKIE
) {
893 /* This means either end of directory */
894 if (*desc
->dir_cookie
&& desc
->eof
== 0) {
895 /* Or that the server has 'lost' a cookie */
896 res
= uncached_readdir(desc
);
902 if (res
== -ETOOSMALL
&& desc
->plus
) {
903 clear_bit(NFS_INO_ADVISE_RDPLUS
, &NFS_I(inode
)->flags
);
904 nfs_zap_caches(inode
);
905 desc
->page_index
= 0;
913 res
= nfs_do_filldir(desc
);
916 } while (!desc
->eof
);
918 nfs_unblock_sillyrename(dentry
);
921 dfprintk(FILE, "NFS: readdir(%pD2) returns %d\n", file
, res
);
925 static loff_t
nfs_llseek_dir(struct file
*filp
, loff_t offset
, int whence
)
927 struct inode
*inode
= file_inode(filp
);
928 struct nfs_open_dir_context
*dir_ctx
= filp
->private_data
;
930 dfprintk(FILE, "NFS: llseek dir(%pD2, %lld, %d)\n",
931 filp
, offset
, whence
);
933 mutex_lock(&inode
->i_mutex
);
936 offset
+= filp
->f_pos
;
944 if (offset
!= filp
->f_pos
) {
945 filp
->f_pos
= offset
;
946 dir_ctx
->dir_cookie
= 0;
950 mutex_unlock(&inode
->i_mutex
);
955 * All directory operations under NFS are synchronous, so fsync()
956 * is a dummy operation.
958 static int nfs_fsync_dir(struct file
*filp
, loff_t start
, loff_t end
,
961 struct inode
*inode
= file_inode(filp
);
963 dfprintk(FILE, "NFS: fsync dir(%pD2) datasync %d\n", filp
, datasync
);
965 mutex_lock(&inode
->i_mutex
);
966 nfs_inc_stats(inode
, NFSIOS_VFSFSYNC
);
967 mutex_unlock(&inode
->i_mutex
);
972 * nfs_force_lookup_revalidate - Mark the directory as having changed
973 * @dir - pointer to directory inode
975 * This forces the revalidation code in nfs_lookup_revalidate() to do a
976 * full lookup on all child dentries of 'dir' whenever a change occurs
977 * on the server that might have invalidated our dcache.
979 * The caller should be holding dir->i_lock
981 void nfs_force_lookup_revalidate(struct inode
*dir
)
983 NFS_I(dir
)->cache_change_attribute
++;
985 EXPORT_SYMBOL_GPL(nfs_force_lookup_revalidate
);
988 * A check for whether or not the parent directory has changed.
989 * In the case it has, we assume that the dentries are untrustworthy
990 * and may need to be looked up again.
992 static int nfs_check_verifier(struct inode
*dir
, struct dentry
*dentry
)
996 if (NFS_SERVER(dir
)->flags
& NFS_MOUNT_LOOKUP_CACHE_NONE
)
998 if (!nfs_verify_change_attribute(dir
, dentry
->d_time
))
1000 /* Revalidate nfsi->cache_change_attribute before we declare a match */
1001 if (nfs_revalidate_inode(NFS_SERVER(dir
), dir
) < 0)
1003 if (!nfs_verify_change_attribute(dir
, dentry
->d_time
))
1009 * Use intent information to check whether or not we're going to do
1010 * an O_EXCL create using this path component.
1012 static int nfs_is_exclusive_create(struct inode
*dir
, unsigned int flags
)
1014 if (NFS_PROTO(dir
)->version
== 2)
1016 return flags
& LOOKUP_EXCL
;
1020 * Inode and filehandle revalidation for lookups.
1022 * We force revalidation in the cases where the VFS sets LOOKUP_REVAL,
1023 * or if the intent information indicates that we're about to open this
1024 * particular file and the "nocto" mount flag is not set.
1028 int nfs_lookup_verify_inode(struct inode
*inode
, unsigned int flags
)
1030 struct nfs_server
*server
= NFS_SERVER(inode
);
1033 if (IS_AUTOMOUNT(inode
))
1035 /* VFS wants an on-the-wire revalidation */
1036 if (flags
& LOOKUP_REVAL
)
1038 /* This is an open(2) */
1039 if ((flags
& LOOKUP_OPEN
) && !(server
->flags
& NFS_MOUNT_NOCTO
) &&
1040 (S_ISREG(inode
->i_mode
) || S_ISDIR(inode
->i_mode
)))
1043 return (inode
->i_nlink
== 0) ? -ENOENT
: 0;
1045 ret
= __nfs_revalidate_inode(server
, inode
);
1052 * We judge how long we want to trust negative
1053 * dentries by looking at the parent inode mtime.
1055 * If parent mtime has changed, we revalidate, else we wait for a
1056 * period corresponding to the parent's attribute cache timeout value.
1059 int nfs_neg_need_reval(struct inode
*dir
, struct dentry
*dentry
,
1062 /* Don't revalidate a negative dentry if we're creating a new file */
1063 if (flags
& LOOKUP_CREATE
)
1065 if (NFS_SERVER(dir
)->flags
& NFS_MOUNT_LOOKUP_CACHE_NONEG
)
1067 return !nfs_check_verifier(dir
, dentry
);
1071 * This is called every time the dcache has a lookup hit,
1072 * and we should check whether we can really trust that
1075 * NOTE! The hit can be a negative hit too, don't assume
1078 * If the parent directory is seen to have changed, we throw out the
1079 * cached dentry and do a new lookup.
1081 static int nfs_lookup_revalidate(struct dentry
*dentry
, unsigned int flags
)
1084 struct inode
*inode
;
1085 struct dentry
*parent
;
1086 struct nfs_fh
*fhandle
= NULL
;
1087 struct nfs_fattr
*fattr
= NULL
;
1088 struct nfs4_label
*label
= NULL
;
1091 if (flags
& LOOKUP_RCU
)
1094 parent
= dget_parent(dentry
);
1095 dir
= parent
->d_inode
;
1096 nfs_inc_stats(dir
, NFSIOS_DENTRYREVALIDATE
);
1097 inode
= dentry
->d_inode
;
1100 if (nfs_neg_need_reval(dir
, dentry
, flags
))
1102 goto out_valid_noent
;
1105 if (is_bad_inode(inode
)) {
1106 dfprintk(LOOKUPCACHE
, "%s: %pd2 has dud inode\n",
1111 if (NFS_PROTO(dir
)->have_delegation(inode
, FMODE_READ
))
1112 goto out_set_verifier
;
1114 /* Force a full look up iff the parent directory has changed */
1115 if (!nfs_is_exclusive_create(dir
, flags
) && nfs_check_verifier(dir
, dentry
)) {
1116 if (nfs_lookup_verify_inode(inode
, flags
))
1117 goto out_zap_parent
;
1121 if (NFS_STALE(inode
))
1125 fhandle
= nfs_alloc_fhandle();
1126 fattr
= nfs_alloc_fattr();
1127 if (fhandle
== NULL
|| fattr
== NULL
)
1130 label
= nfs4_label_alloc(NFS_SERVER(inode
), GFP_NOWAIT
);
1134 trace_nfs_lookup_revalidate_enter(dir
, dentry
, flags
);
1135 error
= NFS_PROTO(dir
)->lookup(dir
, &dentry
->d_name
, fhandle
, fattr
, label
);
1136 trace_nfs_lookup_revalidate_exit(dir
, dentry
, flags
, error
);
1139 if (nfs_compare_fh(NFS_FH(inode
), fhandle
))
1141 if ((error
= nfs_refresh_inode(inode
, fattr
)) != 0)
1144 nfs_setsecurity(inode
, fattr
, label
);
1146 nfs_free_fattr(fattr
);
1147 nfs_free_fhandle(fhandle
);
1148 nfs4_label_free(label
);
1151 nfs_set_verifier(dentry
, nfs_save_change_attribute(dir
));
1153 /* Success: notify readdir to use READDIRPLUS */
1154 nfs_advise_use_readdirplus(dir
);
1157 dfprintk(LOOKUPCACHE
, "NFS: %s(%pd2) is valid\n",
1161 nfs_zap_caches(dir
);
1163 nfs_free_fattr(fattr
);
1164 nfs_free_fhandle(fhandle
);
1165 nfs4_label_free(label
);
1166 nfs_mark_for_revalidate(dir
);
1167 if (inode
&& S_ISDIR(inode
->i_mode
)) {
1168 /* Purge readdir caches. */
1169 nfs_zap_caches(inode
);
1171 * We can't d_drop the root of a disconnected tree:
1172 * its d_hash is on the s_anon list and d_drop() would hide
1173 * it from shrink_dcache_for_unmount(), leading to busy
1174 * inodes on unmount and further oopses.
1176 if (IS_ROOT(dentry
))
1179 /* If we have submounts, don't unhash ! */
1180 if (check_submounts_and_drop(dentry
) != 0)
1184 dfprintk(LOOKUPCACHE
, "NFS: %s(%pd2) is invalid\n",
1188 nfs_free_fattr(fattr
);
1189 nfs_free_fhandle(fhandle
);
1190 nfs4_label_free(label
);
1192 dfprintk(LOOKUPCACHE
, "NFS: %s(%pd2) lookup returned error %d\n",
1193 __func__
, dentry
, error
);
1198 * A weaker form of d_revalidate for revalidating just the dentry->d_inode
1199 * when we don't really care about the dentry name. This is called when a
1200 * pathwalk ends on a dentry that was not found via a normal lookup in the
1201 * parent dir (e.g.: ".", "..", procfs symlinks or mountpoint traversals).
1203 * In this situation, we just want to verify that the inode itself is OK
1204 * since the dentry might have changed on the server.
1206 static int nfs_weak_revalidate(struct dentry
*dentry
, unsigned int flags
)
1209 struct inode
*inode
= dentry
->d_inode
;
1212 * I believe we can only get a negative dentry here in the case of a
1213 * procfs-style symlink. Just assume it's correct for now, but we may
1214 * eventually need to do something more here.
1217 dfprintk(LOOKUPCACHE
, "%s: %pd2 has negative inode\n",
1222 if (is_bad_inode(inode
)) {
1223 dfprintk(LOOKUPCACHE
, "%s: %pd2 has dud inode\n",
1228 error
= nfs_revalidate_inode(NFS_SERVER(inode
), inode
);
1229 dfprintk(LOOKUPCACHE
, "NFS: %s: inode %lu is %s\n",
1230 __func__
, inode
->i_ino
, error
? "invalid" : "valid");
1235 * This is called from dput() when d_count is going to 0.
1237 static int nfs_dentry_delete(const struct dentry
*dentry
)
1239 dfprintk(VFS
, "NFS: dentry_delete(%pd2, %x)\n",
1240 dentry
, dentry
->d_flags
);
1242 /* Unhash any dentry with a stale inode */
1243 if (dentry
->d_inode
!= NULL
&& NFS_STALE(dentry
->d_inode
))
1246 if (dentry
->d_flags
& DCACHE_NFSFS_RENAMED
) {
1247 /* Unhash it, so that ->d_iput() would be called */
1250 if (!(dentry
->d_sb
->s_flags
& MS_ACTIVE
)) {
1251 /* Unhash it, so that ancestors of killed async unlink
1252 * files will be cleaned up during umount */
1259 /* Ensure that we revalidate inode->i_nlink */
1260 static void nfs_drop_nlink(struct inode
*inode
)
1262 spin_lock(&inode
->i_lock
);
1263 /* drop the inode if we're reasonably sure this is the last link */
1264 if (inode
->i_nlink
== 1)
1266 NFS_I(inode
)->cache_validity
|= NFS_INO_INVALID_ATTR
;
1267 spin_unlock(&inode
->i_lock
);
1271 * Called when the dentry loses inode.
1272 * We use it to clean up silly-renamed files.
1274 static void nfs_dentry_iput(struct dentry
*dentry
, struct inode
*inode
)
1276 if (S_ISDIR(inode
->i_mode
))
1277 /* drop any readdir cache as it could easily be old */
1278 NFS_I(inode
)->cache_validity
|= NFS_INO_INVALID_DATA
;
1280 if (dentry
->d_flags
& DCACHE_NFSFS_RENAMED
) {
1281 nfs_complete_unlink(dentry
, inode
);
1282 nfs_drop_nlink(inode
);
1287 static void nfs_d_release(struct dentry
*dentry
)
1289 /* free cached devname value, if it survived that far */
1290 if (unlikely(dentry
->d_fsdata
)) {
1291 if (dentry
->d_flags
& DCACHE_NFSFS_RENAMED
)
1294 kfree(dentry
->d_fsdata
);
1298 const struct dentry_operations nfs_dentry_operations
= {
1299 .d_revalidate
= nfs_lookup_revalidate
,
1300 .d_weak_revalidate
= nfs_weak_revalidate
,
1301 .d_delete
= nfs_dentry_delete
,
1302 .d_iput
= nfs_dentry_iput
,
1303 .d_automount
= nfs_d_automount
,
1304 .d_release
= nfs_d_release
,
1306 EXPORT_SYMBOL_GPL(nfs_dentry_operations
);
1308 struct dentry
*nfs_lookup(struct inode
*dir
, struct dentry
* dentry
, unsigned int flags
)
1311 struct dentry
*parent
;
1312 struct inode
*inode
= NULL
;
1313 struct nfs_fh
*fhandle
= NULL
;
1314 struct nfs_fattr
*fattr
= NULL
;
1315 struct nfs4_label
*label
= NULL
;
1318 dfprintk(VFS
, "NFS: lookup(%pd2)\n", dentry
);
1319 nfs_inc_stats(dir
, NFSIOS_VFSLOOKUP
);
1321 res
= ERR_PTR(-ENAMETOOLONG
);
1322 if (dentry
->d_name
.len
> NFS_SERVER(dir
)->namelen
)
1326 * If we're doing an exclusive create, optimize away the lookup
1327 * but don't hash the dentry.
1329 if (nfs_is_exclusive_create(dir
, flags
)) {
1330 d_instantiate(dentry
, NULL
);
1335 res
= ERR_PTR(-ENOMEM
);
1336 fhandle
= nfs_alloc_fhandle();
1337 fattr
= nfs_alloc_fattr();
1338 if (fhandle
== NULL
|| fattr
== NULL
)
1341 label
= nfs4_label_alloc(NFS_SERVER(dir
), GFP_NOWAIT
);
1345 parent
= dentry
->d_parent
;
1346 /* Protect against concurrent sillydeletes */
1347 trace_nfs_lookup_enter(dir
, dentry
, flags
);
1348 nfs_block_sillyrename(parent
);
1349 error
= NFS_PROTO(dir
)->lookup(dir
, &dentry
->d_name
, fhandle
, fattr
, label
);
1350 if (error
== -ENOENT
)
1353 res
= ERR_PTR(error
);
1354 goto out_unblock_sillyrename
;
1356 inode
= nfs_fhget(dentry
->d_sb
, fhandle
, fattr
, label
);
1357 res
= ERR_CAST(inode
);
1359 goto out_unblock_sillyrename
;
1361 /* Success: notify readdir to use READDIRPLUS */
1362 nfs_advise_use_readdirplus(dir
);
1365 res
= d_materialise_unique(dentry
, inode
);
1368 goto out_unblock_sillyrename
;
1371 nfs_set_verifier(dentry
, nfs_save_change_attribute(dir
));
1372 out_unblock_sillyrename
:
1373 nfs_unblock_sillyrename(parent
);
1374 trace_nfs_lookup_exit(dir
, dentry
, flags
, error
);
1375 nfs4_label_free(label
);
1377 nfs_free_fattr(fattr
);
1378 nfs_free_fhandle(fhandle
);
1381 EXPORT_SYMBOL_GPL(nfs_lookup
);
1383 #if IS_ENABLED(CONFIG_NFS_V4)
1384 static int nfs4_lookup_revalidate(struct dentry
*, unsigned int);
1386 const struct dentry_operations nfs4_dentry_operations
= {
1387 .d_revalidate
= nfs4_lookup_revalidate
,
1388 .d_delete
= nfs_dentry_delete
,
1389 .d_iput
= nfs_dentry_iput
,
1390 .d_automount
= nfs_d_automount
,
1391 .d_release
= nfs_d_release
,
1393 EXPORT_SYMBOL_GPL(nfs4_dentry_operations
);
1395 static fmode_t
flags_to_mode(int flags
)
1397 fmode_t res
= (__force fmode_t
)flags
& FMODE_EXEC
;
1398 if ((flags
& O_ACCMODE
) != O_WRONLY
)
1400 if ((flags
& O_ACCMODE
) != O_RDONLY
)
1405 static struct nfs_open_context
*create_nfs_open_context(struct dentry
*dentry
, int open_flags
)
1407 return alloc_nfs_open_context(dentry
, flags_to_mode(open_flags
));
1410 static int do_open(struct inode
*inode
, struct file
*filp
)
1412 nfs_fscache_open_file(inode
, filp
);
1416 static int nfs_finish_open(struct nfs_open_context
*ctx
,
1417 struct dentry
*dentry
,
1418 struct file
*file
, unsigned open_flags
,
1423 if ((open_flags
& (O_CREAT
| O_EXCL
)) == (O_CREAT
| O_EXCL
))
1424 *opened
|= FILE_CREATED
;
1426 err
= finish_open(file
, dentry
, do_open
, opened
);
1429 nfs_file_set_open_context(file
, ctx
);
1435 int nfs_atomic_open(struct inode
*dir
, struct dentry
*dentry
,
1436 struct file
*file
, unsigned open_flags
,
1437 umode_t mode
, int *opened
)
1439 struct nfs_open_context
*ctx
;
1441 struct iattr attr
= { .ia_valid
= ATTR_OPEN
};
1442 struct inode
*inode
;
1443 unsigned int lookup_flags
= 0;
1446 /* Expect a negative dentry */
1447 BUG_ON(dentry
->d_inode
);
1449 dfprintk(VFS
, "NFS: atomic_open(%s/%lu), %pd\n",
1450 dir
->i_sb
->s_id
, dir
->i_ino
, dentry
);
1452 err
= nfs_check_flags(open_flags
);
1456 /* NFS only supports OPEN on regular files */
1457 if ((open_flags
& O_DIRECTORY
)) {
1458 if (!d_unhashed(dentry
)) {
1460 * Hashed negative dentry with O_DIRECTORY: dentry was
1461 * revalidated and is fine, no need to perform lookup
1466 lookup_flags
= LOOKUP_OPEN
|LOOKUP_DIRECTORY
;
1470 if (dentry
->d_name
.len
> NFS_SERVER(dir
)->namelen
)
1471 return -ENAMETOOLONG
;
1473 if (open_flags
& O_CREAT
) {
1474 attr
.ia_valid
|= ATTR_MODE
;
1475 attr
.ia_mode
= mode
& ~current_umask();
1477 if (open_flags
& O_TRUNC
) {
1478 attr
.ia_valid
|= ATTR_SIZE
;
1482 ctx
= create_nfs_open_context(dentry
, open_flags
);
1487 trace_nfs_atomic_open_enter(dir
, ctx
, open_flags
);
1488 nfs_block_sillyrename(dentry
->d_parent
);
1489 inode
= NFS_PROTO(dir
)->open_context(dir
, ctx
, open_flags
, &attr
, opened
);
1490 nfs_unblock_sillyrename(dentry
->d_parent
);
1491 if (IS_ERR(inode
)) {
1492 err
= PTR_ERR(inode
);
1493 trace_nfs_atomic_open_exit(dir
, ctx
, open_flags
, err
);
1494 put_nfs_open_context(ctx
);
1498 d_add(dentry
, NULL
);
1504 if (!(open_flags
& O_NOFOLLOW
))
1514 err
= nfs_finish_open(ctx
, ctx
->dentry
, file
, open_flags
, opened
);
1515 trace_nfs_atomic_open_exit(dir
, ctx
, open_flags
, err
);
1516 put_nfs_open_context(ctx
);
1521 res
= nfs_lookup(dir
, dentry
, lookup_flags
);
1526 return finish_no_open(file
, res
);
1528 EXPORT_SYMBOL_GPL(nfs_atomic_open
);
1530 static int nfs4_lookup_revalidate(struct dentry
*dentry
, unsigned int flags
)
1532 struct dentry
*parent
= NULL
;
1533 struct inode
*inode
;
1537 if (flags
& LOOKUP_RCU
)
1540 if (!(flags
& LOOKUP_OPEN
) || (flags
& LOOKUP_DIRECTORY
))
1542 if (d_mountpoint(dentry
))
1544 if (NFS_SB(dentry
->d_sb
)->caps
& NFS_CAP_ATOMIC_OPEN_V1
)
1547 inode
= dentry
->d_inode
;
1548 parent
= dget_parent(dentry
);
1549 dir
= parent
->d_inode
;
1551 /* We can't create new files in nfs_open_revalidate(), so we
1552 * optimize away revalidation of negative dentries.
1554 if (inode
== NULL
) {
1555 if (!nfs_neg_need_reval(dir
, dentry
, flags
))
1560 /* NFS only supports OPEN on regular files */
1561 if (!S_ISREG(inode
->i_mode
))
1563 /* We cannot do exclusive creation on a positive dentry */
1564 if (flags
& LOOKUP_EXCL
)
1567 /* Let f_op->open() actually open (and revalidate) the file */
1577 return nfs_lookup_revalidate(dentry
, flags
);
1580 #endif /* CONFIG_NFSV4 */
1583 * Code common to create, mkdir, and mknod.
1585 int nfs_instantiate(struct dentry
*dentry
, struct nfs_fh
*fhandle
,
1586 struct nfs_fattr
*fattr
,
1587 struct nfs4_label
*label
)
1589 struct dentry
*parent
= dget_parent(dentry
);
1590 struct inode
*dir
= parent
->d_inode
;
1591 struct inode
*inode
;
1592 int error
= -EACCES
;
1596 /* We may have been initialized further down */
1597 if (dentry
->d_inode
)
1599 if (fhandle
->size
== 0) {
1600 error
= NFS_PROTO(dir
)->lookup(dir
, &dentry
->d_name
, fhandle
, fattr
, NULL
);
1604 nfs_set_verifier(dentry
, nfs_save_change_attribute(dir
));
1605 if (!(fattr
->valid
& NFS_ATTR_FATTR
)) {
1606 struct nfs_server
*server
= NFS_SB(dentry
->d_sb
);
1607 error
= server
->nfs_client
->rpc_ops
->getattr(server
, fhandle
, fattr
, NULL
);
1611 inode
= nfs_fhget(dentry
->d_sb
, fhandle
, fattr
, label
);
1612 error
= PTR_ERR(inode
);
1615 d_add(dentry
, inode
);
1620 nfs_mark_for_revalidate(dir
);
1624 EXPORT_SYMBOL_GPL(nfs_instantiate
);
1627 * Following a failed create operation, we drop the dentry rather
1628 * than retain a negative dentry. This avoids a problem in the event
1629 * that the operation succeeded on the server, but an error in the
1630 * reply path made it appear to have failed.
1632 int nfs_create(struct inode
*dir
, struct dentry
*dentry
,
1633 umode_t mode
, bool excl
)
1636 int open_flags
= excl
? O_CREAT
| O_EXCL
: O_CREAT
;
1639 dfprintk(VFS
, "NFS: create(%s/%lu), %pd\n",
1640 dir
->i_sb
->s_id
, dir
->i_ino
, dentry
);
1642 attr
.ia_mode
= mode
;
1643 attr
.ia_valid
= ATTR_MODE
;
1645 trace_nfs_create_enter(dir
, dentry
, open_flags
);
1646 error
= NFS_PROTO(dir
)->create(dir
, dentry
, &attr
, open_flags
);
1647 trace_nfs_create_exit(dir
, dentry
, open_flags
, error
);
1655 EXPORT_SYMBOL_GPL(nfs_create
);
1658 * See comments for nfs_proc_create regarding failed operations.
1661 nfs_mknod(struct inode
*dir
, struct dentry
*dentry
, umode_t mode
, dev_t rdev
)
1666 dfprintk(VFS
, "NFS: mknod(%s/%lu), %pd\n",
1667 dir
->i_sb
->s_id
, dir
->i_ino
, dentry
);
1669 if (!new_valid_dev(rdev
))
1672 attr
.ia_mode
= mode
;
1673 attr
.ia_valid
= ATTR_MODE
;
1675 trace_nfs_mknod_enter(dir
, dentry
);
1676 status
= NFS_PROTO(dir
)->mknod(dir
, dentry
, &attr
, rdev
);
1677 trace_nfs_mknod_exit(dir
, dentry
, status
);
1685 EXPORT_SYMBOL_GPL(nfs_mknod
);
1688 * See comments for nfs_proc_create regarding failed operations.
1690 int nfs_mkdir(struct inode
*dir
, struct dentry
*dentry
, umode_t mode
)
1695 dfprintk(VFS
, "NFS: mkdir(%s/%lu), %pd\n",
1696 dir
->i_sb
->s_id
, dir
->i_ino
, dentry
);
1698 attr
.ia_valid
= ATTR_MODE
;
1699 attr
.ia_mode
= mode
| S_IFDIR
;
1701 trace_nfs_mkdir_enter(dir
, dentry
);
1702 error
= NFS_PROTO(dir
)->mkdir(dir
, dentry
, &attr
);
1703 trace_nfs_mkdir_exit(dir
, dentry
, error
);
1711 EXPORT_SYMBOL_GPL(nfs_mkdir
);
1713 static void nfs_dentry_handle_enoent(struct dentry
*dentry
)
1715 if (dentry
->d_inode
!= NULL
&& !d_unhashed(dentry
))
1719 int nfs_rmdir(struct inode
*dir
, struct dentry
*dentry
)
1723 dfprintk(VFS
, "NFS: rmdir(%s/%lu), %pd\n",
1724 dir
->i_sb
->s_id
, dir
->i_ino
, dentry
);
1726 trace_nfs_rmdir_enter(dir
, dentry
);
1727 if (dentry
->d_inode
) {
1728 nfs_wait_on_sillyrename(dentry
);
1729 error
= NFS_PROTO(dir
)->rmdir(dir
, &dentry
->d_name
);
1730 /* Ensure the VFS deletes this inode */
1733 clear_nlink(dentry
->d_inode
);
1736 nfs_dentry_handle_enoent(dentry
);
1739 error
= NFS_PROTO(dir
)->rmdir(dir
, &dentry
->d_name
);
1740 trace_nfs_rmdir_exit(dir
, dentry
, error
);
1744 EXPORT_SYMBOL_GPL(nfs_rmdir
);
1747 * Remove a file after making sure there are no pending writes,
1748 * and after checking that the file has only one user.
1750 * We invalidate the attribute cache and free the inode prior to the operation
1751 * to avoid possible races if the server reuses the inode.
1753 static int nfs_safe_remove(struct dentry
*dentry
)
1755 struct inode
*dir
= dentry
->d_parent
->d_inode
;
1756 struct inode
*inode
= dentry
->d_inode
;
1759 dfprintk(VFS
, "NFS: safe_remove(%pd2)\n", dentry
);
1761 /* If the dentry was sillyrenamed, we simply call d_delete() */
1762 if (dentry
->d_flags
& DCACHE_NFSFS_RENAMED
) {
1767 trace_nfs_remove_enter(dir
, dentry
);
1768 if (inode
!= NULL
) {
1769 NFS_PROTO(inode
)->return_delegation(inode
);
1770 error
= NFS_PROTO(dir
)->remove(dir
, &dentry
->d_name
);
1772 nfs_drop_nlink(inode
);
1774 error
= NFS_PROTO(dir
)->remove(dir
, &dentry
->d_name
);
1775 if (error
== -ENOENT
)
1776 nfs_dentry_handle_enoent(dentry
);
1777 trace_nfs_remove_exit(dir
, dentry
, error
);
1782 /* We do silly rename. In case sillyrename() returns -EBUSY, the inode
1783 * belongs to an active ".nfs..." file and we return -EBUSY.
1785 * If sillyrename() returns 0, we do nothing, otherwise we unlink.
1787 int nfs_unlink(struct inode
*dir
, struct dentry
*dentry
)
1790 int need_rehash
= 0;
1792 dfprintk(VFS
, "NFS: unlink(%s/%lu, %pd)\n", dir
->i_sb
->s_id
,
1793 dir
->i_ino
, dentry
);
1795 trace_nfs_unlink_enter(dir
, dentry
);
1796 spin_lock(&dentry
->d_lock
);
1797 if (d_count(dentry
) > 1) {
1798 spin_unlock(&dentry
->d_lock
);
1799 /* Start asynchronous writeout of the inode */
1800 write_inode_now(dentry
->d_inode
, 0);
1801 error
= nfs_sillyrename(dir
, dentry
);
1804 if (!d_unhashed(dentry
)) {
1808 spin_unlock(&dentry
->d_lock
);
1809 error
= nfs_safe_remove(dentry
);
1810 if (!error
|| error
== -ENOENT
) {
1811 nfs_set_verifier(dentry
, nfs_save_change_attribute(dir
));
1812 } else if (need_rehash
)
1815 trace_nfs_unlink_exit(dir
, dentry
, error
);
1818 EXPORT_SYMBOL_GPL(nfs_unlink
);
1821 * To create a symbolic link, most file systems instantiate a new inode,
1822 * add a page to it containing the path, then write it out to the disk
1823 * using prepare_write/commit_write.
1825 * Unfortunately the NFS client can't create the in-core inode first
1826 * because it needs a file handle to create an in-core inode (see
1827 * fs/nfs/inode.c:nfs_fhget). We only have a file handle *after* the
1828 * symlink request has completed on the server.
1830 * So instead we allocate a raw page, copy the symname into it, then do
1831 * the SYMLINK request with the page as the buffer. If it succeeds, we
1832 * now have a new file handle and can instantiate an in-core NFS inode
1833 * and move the raw page into its mapping.
1835 int nfs_symlink(struct inode
*dir
, struct dentry
*dentry
, const char *symname
)
1840 unsigned int pathlen
= strlen(symname
);
1843 dfprintk(VFS
, "NFS: symlink(%s/%lu, %pd, %s)\n", dir
->i_sb
->s_id
,
1844 dir
->i_ino
, dentry
, symname
);
1846 if (pathlen
> PAGE_SIZE
)
1847 return -ENAMETOOLONG
;
1849 attr
.ia_mode
= S_IFLNK
| S_IRWXUGO
;
1850 attr
.ia_valid
= ATTR_MODE
;
1852 page
= alloc_page(GFP_HIGHUSER
);
1856 kaddr
= kmap_atomic(page
);
1857 memcpy(kaddr
, symname
, pathlen
);
1858 if (pathlen
< PAGE_SIZE
)
1859 memset(kaddr
+ pathlen
, 0, PAGE_SIZE
- pathlen
);
1860 kunmap_atomic(kaddr
);
1862 trace_nfs_symlink_enter(dir
, dentry
);
1863 error
= NFS_PROTO(dir
)->symlink(dir
, dentry
, page
, pathlen
, &attr
);
1864 trace_nfs_symlink_exit(dir
, dentry
, error
);
1866 dfprintk(VFS
, "NFS: symlink(%s/%lu, %pd, %s) error %d\n",
1867 dir
->i_sb
->s_id
, dir
->i_ino
,
1868 dentry
, symname
, error
);
1875 * No big deal if we can't add this page to the page cache here.
1876 * READLINK will get the missing page from the server if needed.
1878 if (!add_to_page_cache_lru(page
, dentry
->d_inode
->i_mapping
, 0,
1880 SetPageUptodate(page
);
1883 * add_to_page_cache_lru() grabs an extra page refcount.
1884 * Drop it here to avoid leaking this page later.
1886 page_cache_release(page
);
1892 EXPORT_SYMBOL_GPL(nfs_symlink
);
1895 nfs_link(struct dentry
*old_dentry
, struct inode
*dir
, struct dentry
*dentry
)
1897 struct inode
*inode
= old_dentry
->d_inode
;
1900 dfprintk(VFS
, "NFS: link(%pd2 -> %pd2)\n",
1901 old_dentry
, dentry
);
1903 trace_nfs_link_enter(inode
, dir
, dentry
);
1904 NFS_PROTO(inode
)->return_delegation(inode
);
1907 error
= NFS_PROTO(dir
)->link(inode
, dir
, &dentry
->d_name
);
1910 d_add(dentry
, inode
);
1912 trace_nfs_link_exit(inode
, dir
, dentry
, error
);
1915 EXPORT_SYMBOL_GPL(nfs_link
);
1919 * FIXME: Some nfsds, like the Linux user space nfsd, may generate a
1920 * different file handle for the same inode after a rename (e.g. when
1921 * moving to a different directory). A fail-safe method to do so would
1922 * be to look up old_dir/old_name, create a link to new_dir/new_name and
1923 * rename the old file using the sillyrename stuff. This way, the original
1924 * file in old_dir will go away when the last process iput()s the inode.
1928 * It actually works quite well. One needs to have the possibility for
1929 * at least one ".nfs..." file in each directory the file ever gets
1930 * moved or linked to which happens automagically with the new
1931 * implementation that only depends on the dcache stuff instead of
1932 * using the inode layer
1934 * Unfortunately, things are a little more complicated than indicated
1935 * above. For a cross-directory move, we want to make sure we can get
1936 * rid of the old inode after the operation. This means there must be
1937 * no pending writes (if it's a file), and the use count must be 1.
1938 * If these conditions are met, we can drop the dentries before doing
1941 int nfs_rename(struct inode
*old_dir
, struct dentry
*old_dentry
,
1942 struct inode
*new_dir
, struct dentry
*new_dentry
)
1944 struct inode
*old_inode
= old_dentry
->d_inode
;
1945 struct inode
*new_inode
= new_dentry
->d_inode
;
1946 struct dentry
*dentry
= NULL
, *rehash
= NULL
;
1947 struct rpc_task
*task
;
1950 dfprintk(VFS
, "NFS: rename(%pd2 -> %pd2, ct=%d)\n",
1951 old_dentry
, new_dentry
,
1952 d_count(new_dentry
));
1954 trace_nfs_rename_enter(old_dir
, old_dentry
, new_dir
, new_dentry
);
1956 * For non-directories, check whether the target is busy and if so,
1957 * make a copy of the dentry and then do a silly-rename. If the
1958 * silly-rename succeeds, the copied dentry is hashed and becomes
1961 if (new_inode
&& !S_ISDIR(new_inode
->i_mode
)) {
1963 * To prevent any new references to the target during the
1964 * rename, we unhash the dentry in advance.
1966 if (!d_unhashed(new_dentry
)) {
1968 rehash
= new_dentry
;
1971 if (d_count(new_dentry
) > 2) {
1974 /* copy the target dentry's name */
1975 dentry
= d_alloc(new_dentry
->d_parent
,
1976 &new_dentry
->d_name
);
1980 /* silly-rename the existing target ... */
1981 err
= nfs_sillyrename(new_dir
, new_dentry
);
1985 new_dentry
= dentry
;
1991 NFS_PROTO(old_inode
)->return_delegation(old_inode
);
1992 if (new_inode
!= NULL
)
1993 NFS_PROTO(new_inode
)->return_delegation(new_inode
);
1995 task
= nfs_async_rename(old_dir
, new_dir
, old_dentry
, new_dentry
, NULL
);
1997 error
= PTR_ERR(task
);
2001 error
= rpc_wait_for_completion_task(task
);
2003 error
= task
->tk_status
;
2005 nfs_mark_for_revalidate(old_inode
);
2009 trace_nfs_rename_exit(old_dir
, old_dentry
,
2010 new_dir
, new_dentry
, error
);
2012 if (new_inode
!= NULL
)
2013 nfs_drop_nlink(new_inode
);
2014 d_move(old_dentry
, new_dentry
);
2015 nfs_set_verifier(new_dentry
,
2016 nfs_save_change_attribute(new_dir
));
2017 } else if (error
== -ENOENT
)
2018 nfs_dentry_handle_enoent(old_dentry
);
2020 /* new dentry created? */
2025 EXPORT_SYMBOL_GPL(nfs_rename
);
2027 static DEFINE_SPINLOCK(nfs_access_lru_lock
);
2028 static LIST_HEAD(nfs_access_lru_list
);
2029 static atomic_long_t nfs_access_nr_entries
;
2031 static void nfs_access_free_entry(struct nfs_access_entry
*entry
)
2033 put_rpccred(entry
->cred
);
2035 smp_mb__before_atomic();
2036 atomic_long_dec(&nfs_access_nr_entries
);
2037 smp_mb__after_atomic();
2040 static void nfs_access_free_list(struct list_head
*head
)
2042 struct nfs_access_entry
*cache
;
2044 while (!list_empty(head
)) {
2045 cache
= list_entry(head
->next
, struct nfs_access_entry
, lru
);
2046 list_del(&cache
->lru
);
2047 nfs_access_free_entry(cache
);
2052 nfs_access_cache_scan(struct shrinker
*shrink
, struct shrink_control
*sc
)
2055 struct nfs_inode
*nfsi
, *next
;
2056 struct nfs_access_entry
*cache
;
2057 int nr_to_scan
= sc
->nr_to_scan
;
2058 gfp_t gfp_mask
= sc
->gfp_mask
;
2061 if ((gfp_mask
& GFP_KERNEL
) != GFP_KERNEL
)
2064 spin_lock(&nfs_access_lru_lock
);
2065 list_for_each_entry_safe(nfsi
, next
, &nfs_access_lru_list
, access_cache_inode_lru
) {
2066 struct inode
*inode
;
2068 if (nr_to_scan
-- == 0)
2070 inode
= &nfsi
->vfs_inode
;
2071 spin_lock(&inode
->i_lock
);
2072 if (list_empty(&nfsi
->access_cache_entry_lru
))
2073 goto remove_lru_entry
;
2074 cache
= list_entry(nfsi
->access_cache_entry_lru
.next
,
2075 struct nfs_access_entry
, lru
);
2076 list_move(&cache
->lru
, &head
);
2077 rb_erase(&cache
->rb_node
, &nfsi
->access_cache
);
2079 if (!list_empty(&nfsi
->access_cache_entry_lru
))
2080 list_move_tail(&nfsi
->access_cache_inode_lru
,
2081 &nfs_access_lru_list
);
2084 list_del_init(&nfsi
->access_cache_inode_lru
);
2085 smp_mb__before_atomic();
2086 clear_bit(NFS_INO_ACL_LRU_SET
, &nfsi
->flags
);
2087 smp_mb__after_atomic();
2089 spin_unlock(&inode
->i_lock
);
2091 spin_unlock(&nfs_access_lru_lock
);
2092 nfs_access_free_list(&head
);
2097 nfs_access_cache_count(struct shrinker
*shrink
, struct shrink_control
*sc
)
2099 return vfs_pressure_ratio(atomic_long_read(&nfs_access_nr_entries
));
2102 static void __nfs_access_zap_cache(struct nfs_inode
*nfsi
, struct list_head
*head
)
2104 struct rb_root
*root_node
= &nfsi
->access_cache
;
2106 struct nfs_access_entry
*entry
;
2108 /* Unhook entries from the cache */
2109 while ((n
= rb_first(root_node
)) != NULL
) {
2110 entry
= rb_entry(n
, struct nfs_access_entry
, rb_node
);
2111 rb_erase(n
, root_node
);
2112 list_move(&entry
->lru
, head
);
2114 nfsi
->cache_validity
&= ~NFS_INO_INVALID_ACCESS
;
2117 void nfs_access_zap_cache(struct inode
*inode
)
2121 if (test_bit(NFS_INO_ACL_LRU_SET
, &NFS_I(inode
)->flags
) == 0)
2123 /* Remove from global LRU init */
2124 spin_lock(&nfs_access_lru_lock
);
2125 if (test_and_clear_bit(NFS_INO_ACL_LRU_SET
, &NFS_I(inode
)->flags
))
2126 list_del_init(&NFS_I(inode
)->access_cache_inode_lru
);
2128 spin_lock(&inode
->i_lock
);
2129 __nfs_access_zap_cache(NFS_I(inode
), &head
);
2130 spin_unlock(&inode
->i_lock
);
2131 spin_unlock(&nfs_access_lru_lock
);
2132 nfs_access_free_list(&head
);
2134 EXPORT_SYMBOL_GPL(nfs_access_zap_cache
);
2136 static struct nfs_access_entry
*nfs_access_search_rbtree(struct inode
*inode
, struct rpc_cred
*cred
)
2138 struct rb_node
*n
= NFS_I(inode
)->access_cache
.rb_node
;
2139 struct nfs_access_entry
*entry
;
2142 entry
= rb_entry(n
, struct nfs_access_entry
, rb_node
);
2144 if (cred
< entry
->cred
)
2146 else if (cred
> entry
->cred
)
2154 static int nfs_access_get_cached(struct inode
*inode
, struct rpc_cred
*cred
, struct nfs_access_entry
*res
)
2156 struct nfs_inode
*nfsi
= NFS_I(inode
);
2157 struct nfs_access_entry
*cache
;
2160 spin_lock(&inode
->i_lock
);
2161 if (nfsi
->cache_validity
& NFS_INO_INVALID_ACCESS
)
2163 cache
= nfs_access_search_rbtree(inode
, cred
);
2166 if (!nfs_have_delegated_attributes(inode
) &&
2167 !time_in_range_open(jiffies
, cache
->jiffies
, cache
->jiffies
+ nfsi
->attrtimeo
))
2169 res
->jiffies
= cache
->jiffies
;
2170 res
->cred
= cache
->cred
;
2171 res
->mask
= cache
->mask
;
2172 list_move_tail(&cache
->lru
, &nfsi
->access_cache_entry_lru
);
2175 spin_unlock(&inode
->i_lock
);
2178 rb_erase(&cache
->rb_node
, &nfsi
->access_cache
);
2179 list_del(&cache
->lru
);
2180 spin_unlock(&inode
->i_lock
);
2181 nfs_access_free_entry(cache
);
2184 spin_unlock(&inode
->i_lock
);
2185 nfs_access_zap_cache(inode
);
2189 static void nfs_access_add_rbtree(struct inode
*inode
, struct nfs_access_entry
*set
)
2191 struct nfs_inode
*nfsi
= NFS_I(inode
);
2192 struct rb_root
*root_node
= &nfsi
->access_cache
;
2193 struct rb_node
**p
= &root_node
->rb_node
;
2194 struct rb_node
*parent
= NULL
;
2195 struct nfs_access_entry
*entry
;
2197 spin_lock(&inode
->i_lock
);
2198 while (*p
!= NULL
) {
2200 entry
= rb_entry(parent
, struct nfs_access_entry
, rb_node
);
2202 if (set
->cred
< entry
->cred
)
2203 p
= &parent
->rb_left
;
2204 else if (set
->cred
> entry
->cred
)
2205 p
= &parent
->rb_right
;
2209 rb_link_node(&set
->rb_node
, parent
, p
);
2210 rb_insert_color(&set
->rb_node
, root_node
);
2211 list_add_tail(&set
->lru
, &nfsi
->access_cache_entry_lru
);
2212 spin_unlock(&inode
->i_lock
);
2215 rb_replace_node(parent
, &set
->rb_node
, root_node
);
2216 list_add_tail(&set
->lru
, &nfsi
->access_cache_entry_lru
);
2217 list_del(&entry
->lru
);
2218 spin_unlock(&inode
->i_lock
);
2219 nfs_access_free_entry(entry
);
2222 void nfs_access_add_cache(struct inode
*inode
, struct nfs_access_entry
*set
)
2224 struct nfs_access_entry
*cache
= kmalloc(sizeof(*cache
), GFP_KERNEL
);
2227 RB_CLEAR_NODE(&cache
->rb_node
);
2228 cache
->jiffies
= set
->jiffies
;
2229 cache
->cred
= get_rpccred(set
->cred
);
2230 cache
->mask
= set
->mask
;
2232 nfs_access_add_rbtree(inode
, cache
);
2234 /* Update accounting */
2235 smp_mb__before_atomic();
2236 atomic_long_inc(&nfs_access_nr_entries
);
2237 smp_mb__after_atomic();
2239 /* Add inode to global LRU list */
2240 if (!test_bit(NFS_INO_ACL_LRU_SET
, &NFS_I(inode
)->flags
)) {
2241 spin_lock(&nfs_access_lru_lock
);
2242 if (!test_and_set_bit(NFS_INO_ACL_LRU_SET
, &NFS_I(inode
)->flags
))
2243 list_add_tail(&NFS_I(inode
)->access_cache_inode_lru
,
2244 &nfs_access_lru_list
);
2245 spin_unlock(&nfs_access_lru_lock
);
2248 EXPORT_SYMBOL_GPL(nfs_access_add_cache
);
2250 void nfs_access_set_mask(struct nfs_access_entry
*entry
, u32 access_result
)
2253 if (access_result
& NFS4_ACCESS_READ
)
2254 entry
->mask
|= MAY_READ
;
2256 (NFS4_ACCESS_MODIFY
| NFS4_ACCESS_EXTEND
| NFS4_ACCESS_DELETE
))
2257 entry
->mask
|= MAY_WRITE
;
2258 if (access_result
& (NFS4_ACCESS_LOOKUP
|NFS4_ACCESS_EXECUTE
))
2259 entry
->mask
|= MAY_EXEC
;
2261 EXPORT_SYMBOL_GPL(nfs_access_set_mask
);
2263 static int nfs_do_access(struct inode
*inode
, struct rpc_cred
*cred
, int mask
)
2265 struct nfs_access_entry cache
;
2268 trace_nfs_access_enter(inode
);
2270 status
= nfs_access_get_cached(inode
, cred
, &cache
);
2274 /* Be clever: ask server to check for all possible rights */
2275 cache
.mask
= MAY_EXEC
| MAY_WRITE
| MAY_READ
;
2277 cache
.jiffies
= jiffies
;
2278 status
= NFS_PROTO(inode
)->access(inode
, &cache
);
2280 if (status
== -ESTALE
) {
2281 nfs_zap_caches(inode
);
2282 if (!S_ISDIR(inode
->i_mode
))
2283 set_bit(NFS_INO_STALE
, &NFS_I(inode
)->flags
);
2287 nfs_access_add_cache(inode
, &cache
);
2289 if ((mask
& ~cache
.mask
& (MAY_READ
| MAY_WRITE
| MAY_EXEC
)) != 0)
2292 trace_nfs_access_exit(inode
, status
);
2296 static int nfs_open_permission_mask(int openflags
)
2300 if (openflags
& __FMODE_EXEC
) {
2301 /* ONLY check exec rights */
2304 if ((openflags
& O_ACCMODE
) != O_WRONLY
)
2306 if ((openflags
& O_ACCMODE
) != O_RDONLY
)
2313 int nfs_may_open(struct inode
*inode
, struct rpc_cred
*cred
, int openflags
)
2315 return nfs_do_access(inode
, cred
, nfs_open_permission_mask(openflags
));
2317 EXPORT_SYMBOL_GPL(nfs_may_open
);
2319 int nfs_permission(struct inode
*inode
, int mask
)
2321 struct rpc_cred
*cred
;
2324 if (mask
& MAY_NOT_BLOCK
)
2327 nfs_inc_stats(inode
, NFSIOS_VFSACCESS
);
2329 if ((mask
& (MAY_READ
| MAY_WRITE
| MAY_EXEC
)) == 0)
2331 /* Is this sys_access() ? */
2332 if (mask
& (MAY_ACCESS
| MAY_CHDIR
))
2335 switch (inode
->i_mode
& S_IFMT
) {
2342 * Optimize away all write operations, since the server
2343 * will check permissions when we perform the op.
2345 if ((mask
& MAY_WRITE
) && !(mask
& MAY_READ
))
2350 if (!NFS_PROTO(inode
)->access
)
2353 cred
= rpc_lookup_cred();
2354 if (!IS_ERR(cred
)) {
2355 res
= nfs_do_access(inode
, cred
, mask
);
2358 res
= PTR_ERR(cred
);
2360 if (!res
&& (mask
& MAY_EXEC
) && !execute_ok(inode
))
2363 dfprintk(VFS
, "NFS: permission(%s/%lu), mask=0x%x, res=%d\n",
2364 inode
->i_sb
->s_id
, inode
->i_ino
, mask
, res
);
2367 res
= nfs_revalidate_inode(NFS_SERVER(inode
), inode
);
2369 res
= generic_permission(inode
, mask
);
2372 EXPORT_SYMBOL_GPL(nfs_permission
);
2376 * version-control: t
2377 * kept-new-versions: 5