1 // SPDX-License-Identifier: GPL-2.0
3 * SLUB: A slab allocator that limits cache line use instead of queuing
4 * objects in per cpu and per node lists.
6 * The allocator synchronizes using per slab locks or atomic operatios
7 * and only uses a centralized lock to manage a pool of partial slabs.
9 * (C) 2007 SGI, Christoph Lameter
10 * (C) 2011 Linux Foundation, Christoph Lameter
14 #include <linux/swap.h> /* struct reclaim_state */
15 #include <linux/module.h>
16 #include <linux/bit_spinlock.h>
17 #include <linux/interrupt.h>
18 #include <linux/bitops.h>
19 #include <linux/slab.h>
21 #include <linux/proc_fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/kasan.h>
24 #include <linux/cpu.h>
25 #include <linux/cpuset.h>
26 #include <linux/mempolicy.h>
27 #include <linux/ctype.h>
28 #include <linux/debugobjects.h>
29 #include <linux/kallsyms.h>
30 #include <linux/memory.h>
31 #include <linux/math64.h>
32 #include <linux/fault-inject.h>
33 #include <linux/stacktrace.h>
34 #include <linux/prefetch.h>
35 #include <linux/memcontrol.h>
36 #include <linux/random.h>
38 #include <trace/events/kmem.h>
44 * 1. slab_mutex (Global Mutex)
46 * 3. slab_lock(page) (Only on some arches and for debugging)
50 * The role of the slab_mutex is to protect the list of all the slabs
51 * and to synchronize major metadata changes to slab cache structures.
53 * The slab_lock is only used for debugging and on arches that do not
54 * have the ability to do a cmpxchg_double. It only protects:
55 * A. page->freelist -> List of object free in a page
56 * B. page->inuse -> Number of objects in use
57 * C. page->objects -> Number of objects in page
58 * D. page->frozen -> frozen state
60 * If a slab is frozen then it is exempt from list management. It is not
61 * on any list except per cpu partial list. The processor that froze the
62 * slab is the one who can perform list operations on the page. Other
63 * processors may put objects onto the freelist but the processor that
64 * froze the slab is the only one that can retrieve the objects from the
67 * The list_lock protects the partial and full list on each node and
68 * the partial slab counter. If taken then no new slabs may be added or
69 * removed from the lists nor make the number of partial slabs be modified.
70 * (Note that the total number of slabs is an atomic value that may be
71 * modified without taking the list lock).
73 * The list_lock is a centralized lock and thus we avoid taking it as
74 * much as possible. As long as SLUB does not have to handle partial
75 * slabs, operations can continue without any centralized lock. F.e.
76 * allocating a long series of objects that fill up slabs does not require
78 * Interrupts are disabled during allocation and deallocation in order to
79 * make the slab allocator safe to use in the context of an irq. In addition
80 * interrupts are disabled to ensure that the processor does not change
81 * while handling per_cpu slabs, due to kernel preemption.
83 * SLUB assigns one slab for allocation to each processor.
84 * Allocations only occur from these slabs called cpu slabs.
86 * Slabs with free elements are kept on a partial list and during regular
87 * operations no list for full slabs is used. If an object in a full slab is
88 * freed then the slab will show up again on the partial lists.
89 * We track full slabs for debugging purposes though because otherwise we
90 * cannot scan all objects.
92 * Slabs are freed when they become empty. Teardown and setup is
93 * minimal so we rely on the page allocators per cpu caches for
94 * fast frees and allocs.
96 * page->frozen The slab is frozen and exempt from list processing.
97 * This means that the slab is dedicated to a purpose
98 * such as satisfying allocations for a specific
99 * processor. Objects may be freed in the slab while
100 * it is frozen but slab_free will then skip the usual
101 * list operations. It is up to the processor holding
102 * the slab to integrate the slab into the slab lists
103 * when the slab is no longer needed.
105 * One use of this flag is to mark slabs that are
106 * used for allocations. Then such a slab becomes a cpu
107 * slab. The cpu slab may be equipped with an additional
108 * freelist that allows lockless access to
109 * free objects in addition to the regular freelist
110 * that requires the slab lock.
112 * SLAB_DEBUG_FLAGS Slab requires special handling due to debug
113 * options set. This moves slab handling out of
114 * the fast path and disables lockless freelists.
117 static inline int kmem_cache_debug(struct kmem_cache
*s
)
119 #ifdef CONFIG_SLUB_DEBUG
120 return unlikely(s
->flags
& SLAB_DEBUG_FLAGS
);
126 void *fixup_red_left(struct kmem_cache
*s
, void *p
)
128 if (kmem_cache_debug(s
) && s
->flags
& SLAB_RED_ZONE
)
129 p
+= s
->red_left_pad
;
134 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache
*s
)
136 #ifdef CONFIG_SLUB_CPU_PARTIAL
137 return !kmem_cache_debug(s
);
144 * Issues still to be resolved:
146 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
148 * - Variable sizing of the per node arrays
151 /* Enable to test recovery from slab corruption on boot */
152 #undef SLUB_RESILIENCY_TEST
154 /* Enable to log cmpxchg failures */
155 #undef SLUB_DEBUG_CMPXCHG
158 * Mininum number of partial slabs. These will be left on the partial
159 * lists even if they are empty. kmem_cache_shrink may reclaim them.
161 #define MIN_PARTIAL 5
164 * Maximum number of desirable partial slabs.
165 * The existence of more partial slabs makes kmem_cache_shrink
166 * sort the partial list by the number of objects in use.
168 #define MAX_PARTIAL 10
170 #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
171 SLAB_POISON | SLAB_STORE_USER)
174 * These debug flags cannot use CMPXCHG because there might be consistency
175 * issues when checking or reading debug information
177 #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
182 * Debugging flags that require metadata to be stored in the slab. These get
183 * disabled when slub_debug=O is used and a cache's min order increases with
186 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
189 #define OO_MASK ((1 << OO_SHIFT) - 1)
190 #define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
192 /* Internal SLUB flags */
194 #define __OBJECT_POISON ((slab_flags_t __force)0x80000000U)
195 /* Use cmpxchg_double */
196 #define __CMPXCHG_DOUBLE ((slab_flags_t __force)0x40000000U)
199 * Tracking user of a slab.
201 #define TRACK_ADDRS_COUNT 16
203 unsigned long addr
; /* Called from address */
204 #ifdef CONFIG_STACKTRACE
205 unsigned long addrs
[TRACK_ADDRS_COUNT
]; /* Called from address */
207 int cpu
; /* Was running on cpu */
208 int pid
; /* Pid context */
209 unsigned long when
; /* When did the operation occur */
212 enum track_item
{ TRACK_ALLOC
, TRACK_FREE
};
215 static int sysfs_slab_add(struct kmem_cache
*);
216 static int sysfs_slab_alias(struct kmem_cache
*, const char *);
217 static void memcg_propagate_slab_attrs(struct kmem_cache
*s
);
218 static void sysfs_slab_remove(struct kmem_cache
*s
);
220 static inline int sysfs_slab_add(struct kmem_cache
*s
) { return 0; }
221 static inline int sysfs_slab_alias(struct kmem_cache
*s
, const char *p
)
223 static inline void memcg_propagate_slab_attrs(struct kmem_cache
*s
) { }
224 static inline void sysfs_slab_remove(struct kmem_cache
*s
) { }
227 static inline void stat(const struct kmem_cache
*s
, enum stat_item si
)
229 #ifdef CONFIG_SLUB_STATS
231 * The rmw is racy on a preemptible kernel but this is acceptable, so
232 * avoid this_cpu_add()'s irq-disable overhead.
234 raw_cpu_inc(s
->cpu_slab
->stat
[si
]);
238 /********************************************************************
239 * Core slab cache functions
240 *******************************************************************/
243 * Returns freelist pointer (ptr). With hardening, this is obfuscated
244 * with an XOR of the address where the pointer is held and a per-cache
247 static inline void *freelist_ptr(const struct kmem_cache
*s
, void *ptr
,
248 unsigned long ptr_addr
)
250 #ifdef CONFIG_SLAB_FREELIST_HARDENED
252 * When CONFIG_KASAN_SW_TAGS is enabled, ptr_addr might be tagged.
253 * Normally, this doesn't cause any issues, as both set_freepointer()
254 * and get_freepointer() are called with a pointer with the same tag.
255 * However, there are some issues with CONFIG_SLUB_DEBUG code. For
256 * example, when __free_slub() iterates over objects in a cache, it
257 * passes untagged pointers to check_object(). check_object() in turns
258 * calls get_freepointer() with an untagged pointer, which causes the
259 * freepointer to be restored incorrectly.
261 return (void *)((unsigned long)ptr
^ s
->random
^
262 swab((unsigned long)kasan_reset_tag((void *)ptr_addr
)));
268 /* Returns the freelist pointer recorded at location ptr_addr. */
269 static inline void *freelist_dereference(const struct kmem_cache
*s
,
272 return freelist_ptr(s
, (void *)*(unsigned long *)(ptr_addr
),
273 (unsigned long)ptr_addr
);
276 static inline void *get_freepointer(struct kmem_cache
*s
, void *object
)
278 return freelist_dereference(s
, object
+ s
->offset
);
281 static void prefetch_freepointer(const struct kmem_cache
*s
, void *object
)
283 prefetch(object
+ s
->offset
);
286 static inline void *get_freepointer_safe(struct kmem_cache
*s
, void *object
)
288 unsigned long freepointer_addr
;
291 if (!debug_pagealloc_enabled_static())
292 return get_freepointer(s
, object
);
294 freepointer_addr
= (unsigned long)object
+ s
->offset
;
295 probe_kernel_read(&p
, (void **)freepointer_addr
, sizeof(p
));
296 return freelist_ptr(s
, p
, freepointer_addr
);
299 static inline void set_freepointer(struct kmem_cache
*s
, void *object
, void *fp
)
301 unsigned long freeptr_addr
= (unsigned long)object
+ s
->offset
;
303 #ifdef CONFIG_SLAB_FREELIST_HARDENED
304 BUG_ON(object
== fp
); /* naive detection of double free or corruption */
307 *(void **)freeptr_addr
= freelist_ptr(s
, fp
, freeptr_addr
);
310 /* Loop over all objects in a slab */
311 #define for_each_object(__p, __s, __addr, __objects) \
312 for (__p = fixup_red_left(__s, __addr); \
313 __p < (__addr) + (__objects) * (__s)->size; \
316 /* Determine object index from a given position */
317 static inline unsigned int slab_index(void *p
, struct kmem_cache
*s
, void *addr
)
319 return (kasan_reset_tag(p
) - addr
) / s
->size
;
322 static inline unsigned int order_objects(unsigned int order
, unsigned int size
)
324 return ((unsigned int)PAGE_SIZE
<< order
) / size
;
327 static inline struct kmem_cache_order_objects
oo_make(unsigned int order
,
330 struct kmem_cache_order_objects x
= {
331 (order
<< OO_SHIFT
) + order_objects(order
, size
)
337 static inline unsigned int oo_order(struct kmem_cache_order_objects x
)
339 return x
.x
>> OO_SHIFT
;
342 static inline unsigned int oo_objects(struct kmem_cache_order_objects x
)
344 return x
.x
& OO_MASK
;
348 * Per slab locking using the pagelock
350 static __always_inline
void slab_lock(struct page
*page
)
352 VM_BUG_ON_PAGE(PageTail(page
), page
);
353 bit_spin_lock(PG_locked
, &page
->flags
);
356 static __always_inline
void slab_unlock(struct page
*page
)
358 VM_BUG_ON_PAGE(PageTail(page
), page
);
359 __bit_spin_unlock(PG_locked
, &page
->flags
);
362 /* Interrupts must be disabled (for the fallback code to work right) */
363 static inline bool __cmpxchg_double_slab(struct kmem_cache
*s
, struct page
*page
,
364 void *freelist_old
, unsigned long counters_old
,
365 void *freelist_new
, unsigned long counters_new
,
368 VM_BUG_ON(!irqs_disabled());
369 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
370 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
371 if (s
->flags
& __CMPXCHG_DOUBLE
) {
372 if (cmpxchg_double(&page
->freelist
, &page
->counters
,
373 freelist_old
, counters_old
,
374 freelist_new
, counters_new
))
380 if (page
->freelist
== freelist_old
&&
381 page
->counters
== counters_old
) {
382 page
->freelist
= freelist_new
;
383 page
->counters
= counters_new
;
391 stat(s
, CMPXCHG_DOUBLE_FAIL
);
393 #ifdef SLUB_DEBUG_CMPXCHG
394 pr_info("%s %s: cmpxchg double redo ", n
, s
->name
);
400 static inline bool cmpxchg_double_slab(struct kmem_cache
*s
, struct page
*page
,
401 void *freelist_old
, unsigned long counters_old
,
402 void *freelist_new
, unsigned long counters_new
,
405 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
406 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
407 if (s
->flags
& __CMPXCHG_DOUBLE
) {
408 if (cmpxchg_double(&page
->freelist
, &page
->counters
,
409 freelist_old
, counters_old
,
410 freelist_new
, counters_new
))
417 local_irq_save(flags
);
419 if (page
->freelist
== freelist_old
&&
420 page
->counters
== counters_old
) {
421 page
->freelist
= freelist_new
;
422 page
->counters
= counters_new
;
424 local_irq_restore(flags
);
428 local_irq_restore(flags
);
432 stat(s
, CMPXCHG_DOUBLE_FAIL
);
434 #ifdef SLUB_DEBUG_CMPXCHG
435 pr_info("%s %s: cmpxchg double redo ", n
, s
->name
);
441 #ifdef CONFIG_SLUB_DEBUG
442 static unsigned long object_map
[BITS_TO_LONGS(MAX_OBJS_PER_PAGE
)];
443 static DEFINE_SPINLOCK(object_map_lock
);
446 * Determine a map of object in use on a page.
448 * Node listlock must be held to guarantee that the page does
449 * not vanish from under us.
451 static unsigned long *get_map(struct kmem_cache
*s
, struct page
*page
)
452 __acquires(&object_map_lock
)
455 void *addr
= page_address(page
);
457 VM_BUG_ON(!irqs_disabled());
459 spin_lock(&object_map_lock
);
461 bitmap_zero(object_map
, page
->objects
);
463 for (p
= page
->freelist
; p
; p
= get_freepointer(s
, p
))
464 set_bit(slab_index(p
, s
, addr
), object_map
);
469 static void put_map(unsigned long *map
) __releases(&object_map_lock
)
471 VM_BUG_ON(map
!= object_map
);
472 lockdep_assert_held(&object_map_lock
);
474 spin_unlock(&object_map_lock
);
477 static inline unsigned int size_from_object(struct kmem_cache
*s
)
479 if (s
->flags
& SLAB_RED_ZONE
)
480 return s
->size
- s
->red_left_pad
;
485 static inline void *restore_red_left(struct kmem_cache
*s
, void *p
)
487 if (s
->flags
& SLAB_RED_ZONE
)
488 p
-= s
->red_left_pad
;
496 #if defined(CONFIG_SLUB_DEBUG_ON)
497 static slab_flags_t slub_debug
= DEBUG_DEFAULT_FLAGS
;
499 static slab_flags_t slub_debug
;
502 static char *slub_debug_slabs
;
503 static int disable_higher_order_debug
;
506 * slub is about to manipulate internal object metadata. This memory lies
507 * outside the range of the allocated object, so accessing it would normally
508 * be reported by kasan as a bounds error. metadata_access_enable() is used
509 * to tell kasan that these accesses are OK.
511 static inline void metadata_access_enable(void)
513 kasan_disable_current();
516 static inline void metadata_access_disable(void)
518 kasan_enable_current();
525 /* Verify that a pointer has an address that is valid within a slab page */
526 static inline int check_valid_pointer(struct kmem_cache
*s
,
527 struct page
*page
, void *object
)
534 base
= page_address(page
);
535 object
= kasan_reset_tag(object
);
536 object
= restore_red_left(s
, object
);
537 if (object
< base
|| object
>= base
+ page
->objects
* s
->size
||
538 (object
- base
) % s
->size
) {
545 static void print_section(char *level
, char *text
, u8
*addr
,
548 metadata_access_enable();
549 print_hex_dump(level
, text
, DUMP_PREFIX_ADDRESS
, 16, 1, addr
,
551 metadata_access_disable();
555 * See comment in calculate_sizes().
557 static inline bool freeptr_outside_object(struct kmem_cache
*s
)
559 return s
->offset
>= s
->inuse
;
563 * Return offset of the end of info block which is inuse + free pointer if
564 * not overlapping with object.
566 static inline unsigned int get_info_end(struct kmem_cache
*s
)
568 if (freeptr_outside_object(s
))
569 return s
->inuse
+ sizeof(void *);
574 static struct track
*get_track(struct kmem_cache
*s
, void *object
,
575 enum track_item alloc
)
579 p
= object
+ get_info_end(s
);
584 static void set_track(struct kmem_cache
*s
, void *object
,
585 enum track_item alloc
, unsigned long addr
)
587 struct track
*p
= get_track(s
, object
, alloc
);
590 #ifdef CONFIG_STACKTRACE
591 unsigned int nr_entries
;
593 metadata_access_enable();
594 nr_entries
= stack_trace_save(p
->addrs
, TRACK_ADDRS_COUNT
, 3);
595 metadata_access_disable();
597 if (nr_entries
< TRACK_ADDRS_COUNT
)
598 p
->addrs
[nr_entries
] = 0;
601 p
->cpu
= smp_processor_id();
602 p
->pid
= current
->pid
;
605 memset(p
, 0, sizeof(struct track
));
609 static void init_tracking(struct kmem_cache
*s
, void *object
)
611 if (!(s
->flags
& SLAB_STORE_USER
))
614 set_track(s
, object
, TRACK_FREE
, 0UL);
615 set_track(s
, object
, TRACK_ALLOC
, 0UL);
618 static void print_track(const char *s
, struct track
*t
, unsigned long pr_time
)
623 pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
624 s
, (void *)t
->addr
, pr_time
- t
->when
, t
->cpu
, t
->pid
);
625 #ifdef CONFIG_STACKTRACE
628 for (i
= 0; i
< TRACK_ADDRS_COUNT
; i
++)
630 pr_err("\t%pS\n", (void *)t
->addrs
[i
]);
637 static void print_tracking(struct kmem_cache
*s
, void *object
)
639 unsigned long pr_time
= jiffies
;
640 if (!(s
->flags
& SLAB_STORE_USER
))
643 print_track("Allocated", get_track(s
, object
, TRACK_ALLOC
), pr_time
);
644 print_track("Freed", get_track(s
, object
, TRACK_FREE
), pr_time
);
647 static void print_page_info(struct page
*page
)
649 pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
650 page
, page
->objects
, page
->inuse
, page
->freelist
, page
->flags
);
654 static void slab_bug(struct kmem_cache
*s
, char *fmt
, ...)
656 struct va_format vaf
;
662 pr_err("=============================================================================\n");
663 pr_err("BUG %s (%s): %pV\n", s
->name
, print_tainted(), &vaf
);
664 pr_err("-----------------------------------------------------------------------------\n\n");
666 add_taint(TAINT_BAD_PAGE
, LOCKDEP_NOW_UNRELIABLE
);
670 static void slab_fix(struct kmem_cache
*s
, char *fmt
, ...)
672 struct va_format vaf
;
678 pr_err("FIX %s: %pV\n", s
->name
, &vaf
);
682 static void print_trailer(struct kmem_cache
*s
, struct page
*page
, u8
*p
)
684 unsigned int off
; /* Offset of last byte */
685 u8
*addr
= page_address(page
);
687 print_tracking(s
, p
);
689 print_page_info(page
);
691 pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
692 p
, p
- addr
, get_freepointer(s
, p
));
694 if (s
->flags
& SLAB_RED_ZONE
)
695 print_section(KERN_ERR
, "Redzone ", p
- s
->red_left_pad
,
697 else if (p
> addr
+ 16)
698 print_section(KERN_ERR
, "Bytes b4 ", p
- 16, 16);
700 print_section(KERN_ERR
, "Object ", p
,
701 min_t(unsigned int, s
->object_size
, PAGE_SIZE
));
702 if (s
->flags
& SLAB_RED_ZONE
)
703 print_section(KERN_ERR
, "Redzone ", p
+ s
->object_size
,
704 s
->inuse
- s
->object_size
);
706 off
= get_info_end(s
);
708 if (s
->flags
& SLAB_STORE_USER
)
709 off
+= 2 * sizeof(struct track
);
711 off
+= kasan_metadata_size(s
);
713 if (off
!= size_from_object(s
))
714 /* Beginning of the filler is the free pointer */
715 print_section(KERN_ERR
, "Padding ", p
+ off
,
716 size_from_object(s
) - off
);
721 void object_err(struct kmem_cache
*s
, struct page
*page
,
722 u8
*object
, char *reason
)
724 slab_bug(s
, "%s", reason
);
725 print_trailer(s
, page
, object
);
728 static __printf(3, 4) void slab_err(struct kmem_cache
*s
, struct page
*page
,
729 const char *fmt
, ...)
735 vsnprintf(buf
, sizeof(buf
), fmt
, args
);
737 slab_bug(s
, "%s", buf
);
738 print_page_info(page
);
742 static void init_object(struct kmem_cache
*s
, void *object
, u8 val
)
746 if (s
->flags
& SLAB_RED_ZONE
)
747 memset(p
- s
->red_left_pad
, val
, s
->red_left_pad
);
749 if (s
->flags
& __OBJECT_POISON
) {
750 memset(p
, POISON_FREE
, s
->object_size
- 1);
751 p
[s
->object_size
- 1] = POISON_END
;
754 if (s
->flags
& SLAB_RED_ZONE
)
755 memset(p
+ s
->object_size
, val
, s
->inuse
- s
->object_size
);
758 static void restore_bytes(struct kmem_cache
*s
, char *message
, u8 data
,
759 void *from
, void *to
)
761 slab_fix(s
, "Restoring 0x%p-0x%p=0x%x\n", from
, to
- 1, data
);
762 memset(from
, data
, to
- from
);
765 static int check_bytes_and_report(struct kmem_cache
*s
, struct page
*page
,
766 u8
*object
, char *what
,
767 u8
*start
, unsigned int value
, unsigned int bytes
)
771 u8
*addr
= page_address(page
);
773 metadata_access_enable();
774 fault
= memchr_inv(start
, value
, bytes
);
775 metadata_access_disable();
780 while (end
> fault
&& end
[-1] == value
)
783 slab_bug(s
, "%s overwritten", what
);
784 pr_err("INFO: 0x%p-0x%p @offset=%tu. First byte 0x%x instead of 0x%x\n",
785 fault
, end
- 1, fault
- addr
,
787 print_trailer(s
, page
, object
);
789 restore_bytes(s
, what
, value
, fault
, end
);
797 * Bytes of the object to be managed.
798 * If the freepointer may overlay the object then the free
799 * pointer is at the middle of the object.
801 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
804 * object + s->object_size
805 * Padding to reach word boundary. This is also used for Redzoning.
806 * Padding is extended by another word if Redzoning is enabled and
807 * object_size == inuse.
809 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
810 * 0xcc (RED_ACTIVE) for objects in use.
813 * Meta data starts here.
815 * A. Free pointer (if we cannot overwrite object on free)
816 * B. Tracking data for SLAB_STORE_USER
817 * C. Padding to reach required alignment boundary or at mininum
818 * one word if debugging is on to be able to detect writes
819 * before the word boundary.
821 * Padding is done using 0x5a (POISON_INUSE)
824 * Nothing is used beyond s->size.
826 * If slabcaches are merged then the object_size and inuse boundaries are mostly
827 * ignored. And therefore no slab options that rely on these boundaries
828 * may be used with merged slabcaches.
831 static int check_pad_bytes(struct kmem_cache
*s
, struct page
*page
, u8
*p
)
833 unsigned long off
= get_info_end(s
); /* The end of info */
835 if (s
->flags
& SLAB_STORE_USER
)
836 /* We also have user information there */
837 off
+= 2 * sizeof(struct track
);
839 off
+= kasan_metadata_size(s
);
841 if (size_from_object(s
) == off
)
844 return check_bytes_and_report(s
, page
, p
, "Object padding",
845 p
+ off
, POISON_INUSE
, size_from_object(s
) - off
);
848 /* Check the pad bytes at the end of a slab page */
849 static int slab_pad_check(struct kmem_cache
*s
, struct page
*page
)
858 if (!(s
->flags
& SLAB_POISON
))
861 start
= page_address(page
);
862 length
= page_size(page
);
863 end
= start
+ length
;
864 remainder
= length
% s
->size
;
868 pad
= end
- remainder
;
869 metadata_access_enable();
870 fault
= memchr_inv(pad
, POISON_INUSE
, remainder
);
871 metadata_access_disable();
874 while (end
> fault
&& end
[-1] == POISON_INUSE
)
877 slab_err(s
, page
, "Padding overwritten. 0x%p-0x%p @offset=%tu",
878 fault
, end
- 1, fault
- start
);
879 print_section(KERN_ERR
, "Padding ", pad
, remainder
);
881 restore_bytes(s
, "slab padding", POISON_INUSE
, fault
, end
);
885 static int check_object(struct kmem_cache
*s
, struct page
*page
,
886 void *object
, u8 val
)
889 u8
*endobject
= object
+ s
->object_size
;
891 if (s
->flags
& SLAB_RED_ZONE
) {
892 if (!check_bytes_and_report(s
, page
, object
, "Redzone",
893 object
- s
->red_left_pad
, val
, s
->red_left_pad
))
896 if (!check_bytes_and_report(s
, page
, object
, "Redzone",
897 endobject
, val
, s
->inuse
- s
->object_size
))
900 if ((s
->flags
& SLAB_POISON
) && s
->object_size
< s
->inuse
) {
901 check_bytes_and_report(s
, page
, p
, "Alignment padding",
902 endobject
, POISON_INUSE
,
903 s
->inuse
- s
->object_size
);
907 if (s
->flags
& SLAB_POISON
) {
908 if (val
!= SLUB_RED_ACTIVE
&& (s
->flags
& __OBJECT_POISON
) &&
909 (!check_bytes_and_report(s
, page
, p
, "Poison", p
,
910 POISON_FREE
, s
->object_size
- 1) ||
911 !check_bytes_and_report(s
, page
, p
, "Poison",
912 p
+ s
->object_size
- 1, POISON_END
, 1)))
915 * check_pad_bytes cleans up on its own.
917 check_pad_bytes(s
, page
, p
);
920 if (!freeptr_outside_object(s
) && val
== SLUB_RED_ACTIVE
)
922 * Object and freepointer overlap. Cannot check
923 * freepointer while object is allocated.
927 /* Check free pointer validity */
928 if (!check_valid_pointer(s
, page
, get_freepointer(s
, p
))) {
929 object_err(s
, page
, p
, "Freepointer corrupt");
931 * No choice but to zap it and thus lose the remainder
932 * of the free objects in this slab. May cause
933 * another error because the object count is now wrong.
935 set_freepointer(s
, p
, NULL
);
941 static int check_slab(struct kmem_cache
*s
, struct page
*page
)
945 VM_BUG_ON(!irqs_disabled());
947 if (!PageSlab(page
)) {
948 slab_err(s
, page
, "Not a valid slab page");
952 maxobj
= order_objects(compound_order(page
), s
->size
);
953 if (page
->objects
> maxobj
) {
954 slab_err(s
, page
, "objects %u > max %u",
955 page
->objects
, maxobj
);
958 if (page
->inuse
> page
->objects
) {
959 slab_err(s
, page
, "inuse %u > max %u",
960 page
->inuse
, page
->objects
);
963 /* Slab_pad_check fixes things up after itself */
964 slab_pad_check(s
, page
);
969 * Determine if a certain object on a page is on the freelist. Must hold the
970 * slab lock to guarantee that the chains are in a consistent state.
972 static int on_freelist(struct kmem_cache
*s
, struct page
*page
, void *search
)
980 while (fp
&& nr
<= page
->objects
) {
983 if (!check_valid_pointer(s
, page
, fp
)) {
985 object_err(s
, page
, object
,
986 "Freechain corrupt");
987 set_freepointer(s
, object
, NULL
);
989 slab_err(s
, page
, "Freepointer corrupt");
990 page
->freelist
= NULL
;
991 page
->inuse
= page
->objects
;
992 slab_fix(s
, "Freelist cleared");
998 fp
= get_freepointer(s
, object
);
1002 max_objects
= order_objects(compound_order(page
), s
->size
);
1003 if (max_objects
> MAX_OBJS_PER_PAGE
)
1004 max_objects
= MAX_OBJS_PER_PAGE
;
1006 if (page
->objects
!= max_objects
) {
1007 slab_err(s
, page
, "Wrong number of objects. Found %d but should be %d",
1008 page
->objects
, max_objects
);
1009 page
->objects
= max_objects
;
1010 slab_fix(s
, "Number of objects adjusted.");
1012 if (page
->inuse
!= page
->objects
- nr
) {
1013 slab_err(s
, page
, "Wrong object count. Counter is %d but counted were %d",
1014 page
->inuse
, page
->objects
- nr
);
1015 page
->inuse
= page
->objects
- nr
;
1016 slab_fix(s
, "Object count adjusted.");
1018 return search
== NULL
;
1021 static void trace(struct kmem_cache
*s
, struct page
*page
, void *object
,
1024 if (s
->flags
& SLAB_TRACE
) {
1025 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
1027 alloc
? "alloc" : "free",
1028 object
, page
->inuse
,
1032 print_section(KERN_INFO
, "Object ", (void *)object
,
1040 * Tracking of fully allocated slabs for debugging purposes.
1042 static void add_full(struct kmem_cache
*s
,
1043 struct kmem_cache_node
*n
, struct page
*page
)
1045 if (!(s
->flags
& SLAB_STORE_USER
))
1048 lockdep_assert_held(&n
->list_lock
);
1049 list_add(&page
->slab_list
, &n
->full
);
1052 static void remove_full(struct kmem_cache
*s
, struct kmem_cache_node
*n
, struct page
*page
)
1054 if (!(s
->flags
& SLAB_STORE_USER
))
1057 lockdep_assert_held(&n
->list_lock
);
1058 list_del(&page
->slab_list
);
1061 /* Tracking of the number of slabs for debugging purposes */
1062 static inline unsigned long slabs_node(struct kmem_cache
*s
, int node
)
1064 struct kmem_cache_node
*n
= get_node(s
, node
);
1066 return atomic_long_read(&n
->nr_slabs
);
1069 static inline unsigned long node_nr_slabs(struct kmem_cache_node
*n
)
1071 return atomic_long_read(&n
->nr_slabs
);
1074 static inline void inc_slabs_node(struct kmem_cache
*s
, int node
, int objects
)
1076 struct kmem_cache_node
*n
= get_node(s
, node
);
1079 * May be called early in order to allocate a slab for the
1080 * kmem_cache_node structure. Solve the chicken-egg
1081 * dilemma by deferring the increment of the count during
1082 * bootstrap (see early_kmem_cache_node_alloc).
1085 atomic_long_inc(&n
->nr_slabs
);
1086 atomic_long_add(objects
, &n
->total_objects
);
1089 static inline void dec_slabs_node(struct kmem_cache
*s
, int node
, int objects
)
1091 struct kmem_cache_node
*n
= get_node(s
, node
);
1093 atomic_long_dec(&n
->nr_slabs
);
1094 atomic_long_sub(objects
, &n
->total_objects
);
1097 /* Object debug checks for alloc/free paths */
1098 static void setup_object_debug(struct kmem_cache
*s
, struct page
*page
,
1101 if (!(s
->flags
& (SLAB_STORE_USER
|SLAB_RED_ZONE
|__OBJECT_POISON
)))
1104 init_object(s
, object
, SLUB_RED_INACTIVE
);
1105 init_tracking(s
, object
);
1109 void setup_page_debug(struct kmem_cache
*s
, struct page
*page
, void *addr
)
1111 if (!(s
->flags
& SLAB_POISON
))
1114 metadata_access_enable();
1115 memset(addr
, POISON_INUSE
, page_size(page
));
1116 metadata_access_disable();
1119 static inline int alloc_consistency_checks(struct kmem_cache
*s
,
1120 struct page
*page
, void *object
)
1122 if (!check_slab(s
, page
))
1125 if (!check_valid_pointer(s
, page
, object
)) {
1126 object_err(s
, page
, object
, "Freelist Pointer check fails");
1130 if (!check_object(s
, page
, object
, SLUB_RED_INACTIVE
))
1136 static noinline
int alloc_debug_processing(struct kmem_cache
*s
,
1138 void *object
, unsigned long addr
)
1140 if (s
->flags
& SLAB_CONSISTENCY_CHECKS
) {
1141 if (!alloc_consistency_checks(s
, page
, object
))
1145 /* Success perform special debug activities for allocs */
1146 if (s
->flags
& SLAB_STORE_USER
)
1147 set_track(s
, object
, TRACK_ALLOC
, addr
);
1148 trace(s
, page
, object
, 1);
1149 init_object(s
, object
, SLUB_RED_ACTIVE
);
1153 if (PageSlab(page
)) {
1155 * If this is a slab page then lets do the best we can
1156 * to avoid issues in the future. Marking all objects
1157 * as used avoids touching the remaining objects.
1159 slab_fix(s
, "Marking all objects used");
1160 page
->inuse
= page
->objects
;
1161 page
->freelist
= NULL
;
1166 static inline int free_consistency_checks(struct kmem_cache
*s
,
1167 struct page
*page
, void *object
, unsigned long addr
)
1169 if (!check_valid_pointer(s
, page
, object
)) {
1170 slab_err(s
, page
, "Invalid object pointer 0x%p", object
);
1174 if (on_freelist(s
, page
, object
)) {
1175 object_err(s
, page
, object
, "Object already free");
1179 if (!check_object(s
, page
, object
, SLUB_RED_ACTIVE
))
1182 if (unlikely(s
!= page
->slab_cache
)) {
1183 if (!PageSlab(page
)) {
1184 slab_err(s
, page
, "Attempt to free object(0x%p) outside of slab",
1186 } else if (!page
->slab_cache
) {
1187 pr_err("SLUB <none>: no slab for object 0x%p.\n",
1191 object_err(s
, page
, object
,
1192 "page slab pointer corrupt.");
1198 /* Supports checking bulk free of a constructed freelist */
1199 static noinline
int free_debug_processing(
1200 struct kmem_cache
*s
, struct page
*page
,
1201 void *head
, void *tail
, int bulk_cnt
,
1204 struct kmem_cache_node
*n
= get_node(s
, page_to_nid(page
));
1205 void *object
= head
;
1207 unsigned long uninitialized_var(flags
);
1210 spin_lock_irqsave(&n
->list_lock
, flags
);
1213 if (s
->flags
& SLAB_CONSISTENCY_CHECKS
) {
1214 if (!check_slab(s
, page
))
1221 if (s
->flags
& SLAB_CONSISTENCY_CHECKS
) {
1222 if (!free_consistency_checks(s
, page
, object
, addr
))
1226 if (s
->flags
& SLAB_STORE_USER
)
1227 set_track(s
, object
, TRACK_FREE
, addr
);
1228 trace(s
, page
, object
, 0);
1229 /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
1230 init_object(s
, object
, SLUB_RED_INACTIVE
);
1232 /* Reached end of constructed freelist yet? */
1233 if (object
!= tail
) {
1234 object
= get_freepointer(s
, object
);
1240 if (cnt
!= bulk_cnt
)
1241 slab_err(s
, page
, "Bulk freelist count(%d) invalid(%d)\n",
1245 spin_unlock_irqrestore(&n
->list_lock
, flags
);
1247 slab_fix(s
, "Object at 0x%p not freed", object
);
1251 static int __init
setup_slub_debug(char *str
)
1253 slub_debug
= DEBUG_DEFAULT_FLAGS
;
1254 if (*str
++ != '=' || !*str
)
1256 * No options specified. Switch on full debugging.
1262 * No options but restriction on slabs. This means full
1263 * debugging for slabs matching a pattern.
1270 * Switch off all debugging measures.
1275 * Determine which debug features should be switched on
1277 for (; *str
&& *str
!= ','; str
++) {
1278 switch (tolower(*str
)) {
1280 slub_debug
|= SLAB_CONSISTENCY_CHECKS
;
1283 slub_debug
|= SLAB_RED_ZONE
;
1286 slub_debug
|= SLAB_POISON
;
1289 slub_debug
|= SLAB_STORE_USER
;
1292 slub_debug
|= SLAB_TRACE
;
1295 slub_debug
|= SLAB_FAILSLAB
;
1299 * Avoid enabling debugging on caches if its minimum
1300 * order would increase as a result.
1302 disable_higher_order_debug
= 1;
1305 pr_err("slub_debug option '%c' unknown. skipped\n",
1312 slub_debug_slabs
= str
+ 1;
1314 if ((static_branch_unlikely(&init_on_alloc
) ||
1315 static_branch_unlikely(&init_on_free
)) &&
1316 (slub_debug
& SLAB_POISON
))
1317 pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n");
1321 __setup("slub_debug", setup_slub_debug
);
1324 * kmem_cache_flags - apply debugging options to the cache
1325 * @object_size: the size of an object without meta data
1326 * @flags: flags to set
1327 * @name: name of the cache
1328 * @ctor: constructor function
1330 * Debug option(s) are applied to @flags. In addition to the debug
1331 * option(s), if a slab name (or multiple) is specified i.e.
1332 * slub_debug=<Debug-Options>,<slab name1>,<slab name2> ...
1333 * then only the select slabs will receive the debug option(s).
1335 slab_flags_t
kmem_cache_flags(unsigned int object_size
,
1336 slab_flags_t flags
, const char *name
,
1337 void (*ctor
)(void *))
1342 /* If slub_debug = 0, it folds into the if conditional. */
1343 if (!slub_debug_slabs
)
1344 return flags
| slub_debug
;
1347 iter
= slub_debug_slabs
;
1352 end
= strchrnul(iter
, ',');
1354 glob
= strnchr(iter
, end
- iter
, '*');
1356 cmplen
= glob
- iter
;
1358 cmplen
= max_t(size_t, len
, (end
- iter
));
1360 if (!strncmp(name
, iter
, cmplen
)) {
1361 flags
|= slub_debug
;
1372 #else /* !CONFIG_SLUB_DEBUG */
1373 static inline void setup_object_debug(struct kmem_cache
*s
,
1374 struct page
*page
, void *object
) {}
1376 void setup_page_debug(struct kmem_cache
*s
, struct page
*page
, void *addr
) {}
1378 static inline int alloc_debug_processing(struct kmem_cache
*s
,
1379 struct page
*page
, void *object
, unsigned long addr
) { return 0; }
1381 static inline int free_debug_processing(
1382 struct kmem_cache
*s
, struct page
*page
,
1383 void *head
, void *tail
, int bulk_cnt
,
1384 unsigned long addr
) { return 0; }
1386 static inline int slab_pad_check(struct kmem_cache
*s
, struct page
*page
)
1388 static inline int check_object(struct kmem_cache
*s
, struct page
*page
,
1389 void *object
, u8 val
) { return 1; }
1390 static inline void add_full(struct kmem_cache
*s
, struct kmem_cache_node
*n
,
1391 struct page
*page
) {}
1392 static inline void remove_full(struct kmem_cache
*s
, struct kmem_cache_node
*n
,
1393 struct page
*page
) {}
1394 slab_flags_t
kmem_cache_flags(unsigned int object_size
,
1395 slab_flags_t flags
, const char *name
,
1396 void (*ctor
)(void *))
1400 #define slub_debug 0
1402 #define disable_higher_order_debug 0
1404 static inline unsigned long slabs_node(struct kmem_cache
*s
, int node
)
1406 static inline unsigned long node_nr_slabs(struct kmem_cache_node
*n
)
1408 static inline void inc_slabs_node(struct kmem_cache
*s
, int node
,
1410 static inline void dec_slabs_node(struct kmem_cache
*s
, int node
,
1413 #endif /* CONFIG_SLUB_DEBUG */
1416 * Hooks for other subsystems that check memory allocations. In a typical
1417 * production configuration these hooks all should produce no code at all.
1419 static inline void *kmalloc_large_node_hook(void *ptr
, size_t size
, gfp_t flags
)
1421 ptr
= kasan_kmalloc_large(ptr
, size
, flags
);
1422 /* As ptr might get tagged, call kmemleak hook after KASAN. */
1423 kmemleak_alloc(ptr
, size
, 1, flags
);
1427 static __always_inline
void kfree_hook(void *x
)
1430 kasan_kfree_large(x
, _RET_IP_
);
1433 static __always_inline
bool slab_free_hook(struct kmem_cache
*s
, void *x
)
1435 kmemleak_free_recursive(x
, s
->flags
);
1438 * Trouble is that we may no longer disable interrupts in the fast path
1439 * So in order to make the debug calls that expect irqs to be
1440 * disabled we need to disable interrupts temporarily.
1442 #ifdef CONFIG_LOCKDEP
1444 unsigned long flags
;
1446 local_irq_save(flags
);
1447 debug_check_no_locks_freed(x
, s
->object_size
);
1448 local_irq_restore(flags
);
1451 if (!(s
->flags
& SLAB_DEBUG_OBJECTS
))
1452 debug_check_no_obj_freed(x
, s
->object_size
);
1454 /* KASAN might put x into memory quarantine, delaying its reuse */
1455 return kasan_slab_free(s
, x
, _RET_IP_
);
1458 static inline bool slab_free_freelist_hook(struct kmem_cache
*s
,
1459 void **head
, void **tail
)
1464 void *old_tail
= *tail
? *tail
: *head
;
1467 /* Head and tail of the reconstructed freelist */
1473 next
= get_freepointer(s
, object
);
1475 if (slab_want_init_on_free(s
)) {
1477 * Clear the object and the metadata, but don't touch
1480 memset(object
, 0, s
->object_size
);
1481 rsize
= (s
->flags
& SLAB_RED_ZONE
) ? s
->red_left_pad
1483 memset((char *)object
+ s
->inuse
, 0,
1484 s
->size
- s
->inuse
- rsize
);
1487 /* If object's reuse doesn't have to be delayed */
1488 if (!slab_free_hook(s
, object
)) {
1489 /* Move object to the new freelist */
1490 set_freepointer(s
, object
, *head
);
1495 } while (object
!= old_tail
);
1500 return *head
!= NULL
;
1503 static void *setup_object(struct kmem_cache
*s
, struct page
*page
,
1506 setup_object_debug(s
, page
, object
);
1507 object
= kasan_init_slab_obj(s
, object
);
1508 if (unlikely(s
->ctor
)) {
1509 kasan_unpoison_object_data(s
, object
);
1511 kasan_poison_object_data(s
, object
);
1517 * Slab allocation and freeing
1519 static inline struct page
*alloc_slab_page(struct kmem_cache
*s
,
1520 gfp_t flags
, int node
, struct kmem_cache_order_objects oo
)
1523 unsigned int order
= oo_order(oo
);
1525 if (node
== NUMA_NO_NODE
)
1526 page
= alloc_pages(flags
, order
);
1528 page
= __alloc_pages_node(node
, flags
, order
);
1530 if (page
&& charge_slab_page(page
, flags
, order
, s
)) {
1531 __free_pages(page
, order
);
1538 #ifdef CONFIG_SLAB_FREELIST_RANDOM
1539 /* Pre-initialize the random sequence cache */
1540 static int init_cache_random_seq(struct kmem_cache
*s
)
1542 unsigned int count
= oo_objects(s
->oo
);
1545 /* Bailout if already initialised */
1549 err
= cache_random_seq_create(s
, count
, GFP_KERNEL
);
1551 pr_err("SLUB: Unable to initialize free list for %s\n",
1556 /* Transform to an offset on the set of pages */
1557 if (s
->random_seq
) {
1560 for (i
= 0; i
< count
; i
++)
1561 s
->random_seq
[i
] *= s
->size
;
1566 /* Initialize each random sequence freelist per cache */
1567 static void __init
init_freelist_randomization(void)
1569 struct kmem_cache
*s
;
1571 mutex_lock(&slab_mutex
);
1573 list_for_each_entry(s
, &slab_caches
, list
)
1574 init_cache_random_seq(s
);
1576 mutex_unlock(&slab_mutex
);
1579 /* Get the next entry on the pre-computed freelist randomized */
1580 static void *next_freelist_entry(struct kmem_cache
*s
, struct page
*page
,
1581 unsigned long *pos
, void *start
,
1582 unsigned long page_limit
,
1583 unsigned long freelist_count
)
1588 * If the target page allocation failed, the number of objects on the
1589 * page might be smaller than the usual size defined by the cache.
1592 idx
= s
->random_seq
[*pos
];
1594 if (*pos
>= freelist_count
)
1596 } while (unlikely(idx
>= page_limit
));
1598 return (char *)start
+ idx
;
1601 /* Shuffle the single linked freelist based on a random pre-computed sequence */
1602 static bool shuffle_freelist(struct kmem_cache
*s
, struct page
*page
)
1607 unsigned long idx
, pos
, page_limit
, freelist_count
;
1609 if (page
->objects
< 2 || !s
->random_seq
)
1612 freelist_count
= oo_objects(s
->oo
);
1613 pos
= get_random_int() % freelist_count
;
1615 page_limit
= page
->objects
* s
->size
;
1616 start
= fixup_red_left(s
, page_address(page
));
1618 /* First entry is used as the base of the freelist */
1619 cur
= next_freelist_entry(s
, page
, &pos
, start
, page_limit
,
1621 cur
= setup_object(s
, page
, cur
);
1622 page
->freelist
= cur
;
1624 for (idx
= 1; idx
< page
->objects
; idx
++) {
1625 next
= next_freelist_entry(s
, page
, &pos
, start
, page_limit
,
1627 next
= setup_object(s
, page
, next
);
1628 set_freepointer(s
, cur
, next
);
1631 set_freepointer(s
, cur
, NULL
);
1636 static inline int init_cache_random_seq(struct kmem_cache
*s
)
1640 static inline void init_freelist_randomization(void) { }
1641 static inline bool shuffle_freelist(struct kmem_cache
*s
, struct page
*page
)
1645 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
1647 static struct page
*allocate_slab(struct kmem_cache
*s
, gfp_t flags
, int node
)
1650 struct kmem_cache_order_objects oo
= s
->oo
;
1652 void *start
, *p
, *next
;
1656 flags
&= gfp_allowed_mask
;
1658 if (gfpflags_allow_blocking(flags
))
1661 flags
|= s
->allocflags
;
1664 * Let the initial higher-order allocation fail under memory pressure
1665 * so we fall-back to the minimum order allocation.
1667 alloc_gfp
= (flags
| __GFP_NOWARN
| __GFP_NORETRY
) & ~__GFP_NOFAIL
;
1668 if ((alloc_gfp
& __GFP_DIRECT_RECLAIM
) && oo_order(oo
) > oo_order(s
->min
))
1669 alloc_gfp
= (alloc_gfp
| __GFP_NOMEMALLOC
) & ~(__GFP_RECLAIM
|__GFP_NOFAIL
);
1671 page
= alloc_slab_page(s
, alloc_gfp
, node
, oo
);
1672 if (unlikely(!page
)) {
1676 * Allocation may have failed due to fragmentation.
1677 * Try a lower order alloc if possible
1679 page
= alloc_slab_page(s
, alloc_gfp
, node
, oo
);
1680 if (unlikely(!page
))
1682 stat(s
, ORDER_FALLBACK
);
1685 page
->objects
= oo_objects(oo
);
1687 page
->slab_cache
= s
;
1688 __SetPageSlab(page
);
1689 if (page_is_pfmemalloc(page
))
1690 SetPageSlabPfmemalloc(page
);
1692 kasan_poison_slab(page
);
1694 start
= page_address(page
);
1696 setup_page_debug(s
, page
, start
);
1698 shuffle
= shuffle_freelist(s
, page
);
1701 start
= fixup_red_left(s
, start
);
1702 start
= setup_object(s
, page
, start
);
1703 page
->freelist
= start
;
1704 for (idx
= 0, p
= start
; idx
< page
->objects
- 1; idx
++) {
1706 next
= setup_object(s
, page
, next
);
1707 set_freepointer(s
, p
, next
);
1710 set_freepointer(s
, p
, NULL
);
1713 page
->inuse
= page
->objects
;
1717 if (gfpflags_allow_blocking(flags
))
1718 local_irq_disable();
1722 inc_slabs_node(s
, page_to_nid(page
), page
->objects
);
1727 static struct page
*new_slab(struct kmem_cache
*s
, gfp_t flags
, int node
)
1729 if (unlikely(flags
& GFP_SLAB_BUG_MASK
)) {
1730 gfp_t invalid_mask
= flags
& GFP_SLAB_BUG_MASK
;
1731 flags
&= ~GFP_SLAB_BUG_MASK
;
1732 pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
1733 invalid_mask
, &invalid_mask
, flags
, &flags
);
1737 return allocate_slab(s
,
1738 flags
& (GFP_RECLAIM_MASK
| GFP_CONSTRAINT_MASK
), node
);
1741 static void __free_slab(struct kmem_cache
*s
, struct page
*page
)
1743 int order
= compound_order(page
);
1744 int pages
= 1 << order
;
1746 if (s
->flags
& SLAB_CONSISTENCY_CHECKS
) {
1749 slab_pad_check(s
, page
);
1750 for_each_object(p
, s
, page_address(page
),
1752 check_object(s
, page
, p
, SLUB_RED_INACTIVE
);
1755 __ClearPageSlabPfmemalloc(page
);
1756 __ClearPageSlab(page
);
1758 page
->mapping
= NULL
;
1759 if (current
->reclaim_state
)
1760 current
->reclaim_state
->reclaimed_slab
+= pages
;
1761 uncharge_slab_page(page
, order
, s
);
1762 __free_pages(page
, order
);
1765 static void rcu_free_slab(struct rcu_head
*h
)
1767 struct page
*page
= container_of(h
, struct page
, rcu_head
);
1769 __free_slab(page
->slab_cache
, page
);
1772 static void free_slab(struct kmem_cache
*s
, struct page
*page
)
1774 if (unlikely(s
->flags
& SLAB_TYPESAFE_BY_RCU
)) {
1775 call_rcu(&page
->rcu_head
, rcu_free_slab
);
1777 __free_slab(s
, page
);
1780 static void discard_slab(struct kmem_cache
*s
, struct page
*page
)
1782 dec_slabs_node(s
, page_to_nid(page
), page
->objects
);
1787 * Management of partially allocated slabs.
1790 __add_partial(struct kmem_cache_node
*n
, struct page
*page
, int tail
)
1793 if (tail
== DEACTIVATE_TO_TAIL
)
1794 list_add_tail(&page
->slab_list
, &n
->partial
);
1796 list_add(&page
->slab_list
, &n
->partial
);
1799 static inline void add_partial(struct kmem_cache_node
*n
,
1800 struct page
*page
, int tail
)
1802 lockdep_assert_held(&n
->list_lock
);
1803 __add_partial(n
, page
, tail
);
1806 static inline void remove_partial(struct kmem_cache_node
*n
,
1809 lockdep_assert_held(&n
->list_lock
);
1810 list_del(&page
->slab_list
);
1815 * Remove slab from the partial list, freeze it and
1816 * return the pointer to the freelist.
1818 * Returns a list of objects or NULL if it fails.
1820 static inline void *acquire_slab(struct kmem_cache
*s
,
1821 struct kmem_cache_node
*n
, struct page
*page
,
1822 int mode
, int *objects
)
1825 unsigned long counters
;
1828 lockdep_assert_held(&n
->list_lock
);
1831 * Zap the freelist and set the frozen bit.
1832 * The old freelist is the list of objects for the
1833 * per cpu allocation list.
1835 freelist
= page
->freelist
;
1836 counters
= page
->counters
;
1837 new.counters
= counters
;
1838 *objects
= new.objects
- new.inuse
;
1840 new.inuse
= page
->objects
;
1841 new.freelist
= NULL
;
1843 new.freelist
= freelist
;
1846 VM_BUG_ON(new.frozen
);
1849 if (!__cmpxchg_double_slab(s
, page
,
1851 new.freelist
, new.counters
,
1855 remove_partial(n
, page
);
1860 static void put_cpu_partial(struct kmem_cache
*s
, struct page
*page
, int drain
);
1861 static inline bool pfmemalloc_match(struct page
*page
, gfp_t gfpflags
);
1864 * Try to allocate a partial slab from a specific node.
1866 static void *get_partial_node(struct kmem_cache
*s
, struct kmem_cache_node
*n
,
1867 struct kmem_cache_cpu
*c
, gfp_t flags
)
1869 struct page
*page
, *page2
;
1870 void *object
= NULL
;
1871 unsigned int available
= 0;
1875 * Racy check. If we mistakenly see no partial slabs then we
1876 * just allocate an empty slab. If we mistakenly try to get a
1877 * partial slab and there is none available then get_partials()
1880 if (!n
|| !n
->nr_partial
)
1883 spin_lock(&n
->list_lock
);
1884 list_for_each_entry_safe(page
, page2
, &n
->partial
, slab_list
) {
1887 if (!pfmemalloc_match(page
, flags
))
1890 t
= acquire_slab(s
, n
, page
, object
== NULL
, &objects
);
1894 available
+= objects
;
1897 stat(s
, ALLOC_FROM_PARTIAL
);
1900 put_cpu_partial(s
, page
, 0);
1901 stat(s
, CPU_PARTIAL_NODE
);
1903 if (!kmem_cache_has_cpu_partial(s
)
1904 || available
> slub_cpu_partial(s
) / 2)
1908 spin_unlock(&n
->list_lock
);
1913 * Get a page from somewhere. Search in increasing NUMA distances.
1915 static void *get_any_partial(struct kmem_cache
*s
, gfp_t flags
,
1916 struct kmem_cache_cpu
*c
)
1919 struct zonelist
*zonelist
;
1922 enum zone_type high_zoneidx
= gfp_zone(flags
);
1924 unsigned int cpuset_mems_cookie
;
1927 * The defrag ratio allows a configuration of the tradeoffs between
1928 * inter node defragmentation and node local allocations. A lower
1929 * defrag_ratio increases the tendency to do local allocations
1930 * instead of attempting to obtain partial slabs from other nodes.
1932 * If the defrag_ratio is set to 0 then kmalloc() always
1933 * returns node local objects. If the ratio is higher then kmalloc()
1934 * may return off node objects because partial slabs are obtained
1935 * from other nodes and filled up.
1937 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
1938 * (which makes defrag_ratio = 1000) then every (well almost)
1939 * allocation will first attempt to defrag slab caches on other nodes.
1940 * This means scanning over all nodes to look for partial slabs which
1941 * may be expensive if we do it every time we are trying to find a slab
1942 * with available objects.
1944 if (!s
->remote_node_defrag_ratio
||
1945 get_cycles() % 1024 > s
->remote_node_defrag_ratio
)
1949 cpuset_mems_cookie
= read_mems_allowed_begin();
1950 zonelist
= node_zonelist(mempolicy_slab_node(), flags
);
1951 for_each_zone_zonelist(zone
, z
, zonelist
, high_zoneidx
) {
1952 struct kmem_cache_node
*n
;
1954 n
= get_node(s
, zone_to_nid(zone
));
1956 if (n
&& cpuset_zone_allowed(zone
, flags
) &&
1957 n
->nr_partial
> s
->min_partial
) {
1958 object
= get_partial_node(s
, n
, c
, flags
);
1961 * Don't check read_mems_allowed_retry()
1962 * here - if mems_allowed was updated in
1963 * parallel, that was a harmless race
1964 * between allocation and the cpuset
1971 } while (read_mems_allowed_retry(cpuset_mems_cookie
));
1972 #endif /* CONFIG_NUMA */
1977 * Get a partial page, lock it and return it.
1979 static void *get_partial(struct kmem_cache
*s
, gfp_t flags
, int node
,
1980 struct kmem_cache_cpu
*c
)
1983 int searchnode
= node
;
1985 if (node
== NUMA_NO_NODE
)
1986 searchnode
= numa_mem_id();
1988 object
= get_partial_node(s
, get_node(s
, searchnode
), c
, flags
);
1989 if (object
|| node
!= NUMA_NO_NODE
)
1992 return get_any_partial(s
, flags
, c
);
1995 #ifdef CONFIG_PREEMPTION
1997 * Calculate the next globally unique transaction for disambiguiation
1998 * during cmpxchg. The transactions start with the cpu number and are then
1999 * incremented by CONFIG_NR_CPUS.
2001 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
2004 * No preemption supported therefore also no need to check for
2010 static inline unsigned long next_tid(unsigned long tid
)
2012 return tid
+ TID_STEP
;
2015 #ifdef SLUB_DEBUG_CMPXCHG
2016 static inline unsigned int tid_to_cpu(unsigned long tid
)
2018 return tid
% TID_STEP
;
2021 static inline unsigned long tid_to_event(unsigned long tid
)
2023 return tid
/ TID_STEP
;
2027 static inline unsigned int init_tid(int cpu
)
2032 static inline void note_cmpxchg_failure(const char *n
,
2033 const struct kmem_cache
*s
, unsigned long tid
)
2035 #ifdef SLUB_DEBUG_CMPXCHG
2036 unsigned long actual_tid
= __this_cpu_read(s
->cpu_slab
->tid
);
2038 pr_info("%s %s: cmpxchg redo ", n
, s
->name
);
2040 #ifdef CONFIG_PREEMPTION
2041 if (tid_to_cpu(tid
) != tid_to_cpu(actual_tid
))
2042 pr_warn("due to cpu change %d -> %d\n",
2043 tid_to_cpu(tid
), tid_to_cpu(actual_tid
));
2046 if (tid_to_event(tid
) != tid_to_event(actual_tid
))
2047 pr_warn("due to cpu running other code. Event %ld->%ld\n",
2048 tid_to_event(tid
), tid_to_event(actual_tid
));
2050 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
2051 actual_tid
, tid
, next_tid(tid
));
2053 stat(s
, CMPXCHG_DOUBLE_CPU_FAIL
);
2056 static void init_kmem_cache_cpus(struct kmem_cache
*s
)
2060 for_each_possible_cpu(cpu
)
2061 per_cpu_ptr(s
->cpu_slab
, cpu
)->tid
= init_tid(cpu
);
2065 * Remove the cpu slab
2067 static void deactivate_slab(struct kmem_cache
*s
, struct page
*page
,
2068 void *freelist
, struct kmem_cache_cpu
*c
)
2070 enum slab_modes
{ M_NONE
, M_PARTIAL
, M_FULL
, M_FREE
};
2071 struct kmem_cache_node
*n
= get_node(s
, page_to_nid(page
));
2073 enum slab_modes l
= M_NONE
, m
= M_NONE
;
2075 int tail
= DEACTIVATE_TO_HEAD
;
2079 if (page
->freelist
) {
2080 stat(s
, DEACTIVATE_REMOTE_FREES
);
2081 tail
= DEACTIVATE_TO_TAIL
;
2085 * Stage one: Free all available per cpu objects back
2086 * to the page freelist while it is still frozen. Leave the
2089 * There is no need to take the list->lock because the page
2092 while (freelist
&& (nextfree
= get_freepointer(s
, freelist
))) {
2094 unsigned long counters
;
2097 prior
= page
->freelist
;
2098 counters
= page
->counters
;
2099 set_freepointer(s
, freelist
, prior
);
2100 new.counters
= counters
;
2102 VM_BUG_ON(!new.frozen
);
2104 } while (!__cmpxchg_double_slab(s
, page
,
2106 freelist
, new.counters
,
2107 "drain percpu freelist"));
2109 freelist
= nextfree
;
2113 * Stage two: Ensure that the page is unfrozen while the
2114 * list presence reflects the actual number of objects
2117 * We setup the list membership and then perform a cmpxchg
2118 * with the count. If there is a mismatch then the page
2119 * is not unfrozen but the page is on the wrong list.
2121 * Then we restart the process which may have to remove
2122 * the page from the list that we just put it on again
2123 * because the number of objects in the slab may have
2128 old
.freelist
= page
->freelist
;
2129 old
.counters
= page
->counters
;
2130 VM_BUG_ON(!old
.frozen
);
2132 /* Determine target state of the slab */
2133 new.counters
= old
.counters
;
2136 set_freepointer(s
, freelist
, old
.freelist
);
2137 new.freelist
= freelist
;
2139 new.freelist
= old
.freelist
;
2143 if (!new.inuse
&& n
->nr_partial
>= s
->min_partial
)
2145 else if (new.freelist
) {
2150 * Taking the spinlock removes the possibility
2151 * that acquire_slab() will see a slab page that
2154 spin_lock(&n
->list_lock
);
2158 if (kmem_cache_debug(s
) && !lock
) {
2161 * This also ensures that the scanning of full
2162 * slabs from diagnostic functions will not see
2165 spin_lock(&n
->list_lock
);
2171 remove_partial(n
, page
);
2172 else if (l
== M_FULL
)
2173 remove_full(s
, n
, page
);
2176 add_partial(n
, page
, tail
);
2177 else if (m
== M_FULL
)
2178 add_full(s
, n
, page
);
2182 if (!__cmpxchg_double_slab(s
, page
,
2183 old
.freelist
, old
.counters
,
2184 new.freelist
, new.counters
,
2189 spin_unlock(&n
->list_lock
);
2193 else if (m
== M_FULL
)
2194 stat(s
, DEACTIVATE_FULL
);
2195 else if (m
== M_FREE
) {
2196 stat(s
, DEACTIVATE_EMPTY
);
2197 discard_slab(s
, page
);
2206 * Unfreeze all the cpu partial slabs.
2208 * This function must be called with interrupts disabled
2209 * for the cpu using c (or some other guarantee must be there
2210 * to guarantee no concurrent accesses).
2212 static void unfreeze_partials(struct kmem_cache
*s
,
2213 struct kmem_cache_cpu
*c
)
2215 #ifdef CONFIG_SLUB_CPU_PARTIAL
2216 struct kmem_cache_node
*n
= NULL
, *n2
= NULL
;
2217 struct page
*page
, *discard_page
= NULL
;
2219 while ((page
= slub_percpu_partial(c
))) {
2223 slub_set_percpu_partial(c
, page
);
2225 n2
= get_node(s
, page_to_nid(page
));
2228 spin_unlock(&n
->list_lock
);
2231 spin_lock(&n
->list_lock
);
2236 old
.freelist
= page
->freelist
;
2237 old
.counters
= page
->counters
;
2238 VM_BUG_ON(!old
.frozen
);
2240 new.counters
= old
.counters
;
2241 new.freelist
= old
.freelist
;
2245 } while (!__cmpxchg_double_slab(s
, page
,
2246 old
.freelist
, old
.counters
,
2247 new.freelist
, new.counters
,
2248 "unfreezing slab"));
2250 if (unlikely(!new.inuse
&& n
->nr_partial
>= s
->min_partial
)) {
2251 page
->next
= discard_page
;
2252 discard_page
= page
;
2254 add_partial(n
, page
, DEACTIVATE_TO_TAIL
);
2255 stat(s
, FREE_ADD_PARTIAL
);
2260 spin_unlock(&n
->list_lock
);
2262 while (discard_page
) {
2263 page
= discard_page
;
2264 discard_page
= discard_page
->next
;
2266 stat(s
, DEACTIVATE_EMPTY
);
2267 discard_slab(s
, page
);
2270 #endif /* CONFIG_SLUB_CPU_PARTIAL */
2274 * Put a page that was just frozen (in __slab_free|get_partial_node) into a
2275 * partial page slot if available.
2277 * If we did not find a slot then simply move all the partials to the
2278 * per node partial list.
2280 static void put_cpu_partial(struct kmem_cache
*s
, struct page
*page
, int drain
)
2282 #ifdef CONFIG_SLUB_CPU_PARTIAL
2283 struct page
*oldpage
;
2291 oldpage
= this_cpu_read(s
->cpu_slab
->partial
);
2294 pobjects
= oldpage
->pobjects
;
2295 pages
= oldpage
->pages
;
2296 if (drain
&& pobjects
> slub_cpu_partial(s
)) {
2297 unsigned long flags
;
2299 * partial array is full. Move the existing
2300 * set to the per node partial list.
2302 local_irq_save(flags
);
2303 unfreeze_partials(s
, this_cpu_ptr(s
->cpu_slab
));
2304 local_irq_restore(flags
);
2308 stat(s
, CPU_PARTIAL_DRAIN
);
2313 pobjects
+= page
->objects
- page
->inuse
;
2315 page
->pages
= pages
;
2316 page
->pobjects
= pobjects
;
2317 page
->next
= oldpage
;
2319 } while (this_cpu_cmpxchg(s
->cpu_slab
->partial
, oldpage
, page
)
2321 if (unlikely(!slub_cpu_partial(s
))) {
2322 unsigned long flags
;
2324 local_irq_save(flags
);
2325 unfreeze_partials(s
, this_cpu_ptr(s
->cpu_slab
));
2326 local_irq_restore(flags
);
2329 #endif /* CONFIG_SLUB_CPU_PARTIAL */
2332 static inline void flush_slab(struct kmem_cache
*s
, struct kmem_cache_cpu
*c
)
2334 stat(s
, CPUSLAB_FLUSH
);
2335 deactivate_slab(s
, c
->page
, c
->freelist
, c
);
2337 c
->tid
= next_tid(c
->tid
);
2343 * Called from IPI handler with interrupts disabled.
2345 static inline void __flush_cpu_slab(struct kmem_cache
*s
, int cpu
)
2347 struct kmem_cache_cpu
*c
= per_cpu_ptr(s
->cpu_slab
, cpu
);
2352 unfreeze_partials(s
, c
);
2355 static void flush_cpu_slab(void *d
)
2357 struct kmem_cache
*s
= d
;
2359 __flush_cpu_slab(s
, smp_processor_id());
2362 static bool has_cpu_slab(int cpu
, void *info
)
2364 struct kmem_cache
*s
= info
;
2365 struct kmem_cache_cpu
*c
= per_cpu_ptr(s
->cpu_slab
, cpu
);
2367 return c
->page
|| slub_percpu_partial(c
);
2370 static void flush_all(struct kmem_cache
*s
)
2372 on_each_cpu_cond(has_cpu_slab
, flush_cpu_slab
, s
, 1);
2376 * Use the cpu notifier to insure that the cpu slabs are flushed when
2379 static int slub_cpu_dead(unsigned int cpu
)
2381 struct kmem_cache
*s
;
2382 unsigned long flags
;
2384 mutex_lock(&slab_mutex
);
2385 list_for_each_entry(s
, &slab_caches
, list
) {
2386 local_irq_save(flags
);
2387 __flush_cpu_slab(s
, cpu
);
2388 local_irq_restore(flags
);
2390 mutex_unlock(&slab_mutex
);
2395 * Check if the objects in a per cpu structure fit numa
2396 * locality expectations.
2398 static inline int node_match(struct page
*page
, int node
)
2401 if (node
!= NUMA_NO_NODE
&& page_to_nid(page
) != node
)
2407 #ifdef CONFIG_SLUB_DEBUG
2408 static int count_free(struct page
*page
)
2410 return page
->objects
- page
->inuse
;
2413 static inline unsigned long node_nr_objs(struct kmem_cache_node
*n
)
2415 return atomic_long_read(&n
->total_objects
);
2417 #endif /* CONFIG_SLUB_DEBUG */
2419 #if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
2420 static unsigned long count_partial(struct kmem_cache_node
*n
,
2421 int (*get_count
)(struct page
*))
2423 unsigned long flags
;
2424 unsigned long x
= 0;
2427 spin_lock_irqsave(&n
->list_lock
, flags
);
2428 list_for_each_entry(page
, &n
->partial
, slab_list
)
2429 x
+= get_count(page
);
2430 spin_unlock_irqrestore(&n
->list_lock
, flags
);
2433 #endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
2435 static noinline
void
2436 slab_out_of_memory(struct kmem_cache
*s
, gfp_t gfpflags
, int nid
)
2438 #ifdef CONFIG_SLUB_DEBUG
2439 static DEFINE_RATELIMIT_STATE(slub_oom_rs
, DEFAULT_RATELIMIT_INTERVAL
,
2440 DEFAULT_RATELIMIT_BURST
);
2442 struct kmem_cache_node
*n
;
2444 if ((gfpflags
& __GFP_NOWARN
) || !__ratelimit(&slub_oom_rs
))
2447 pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
2448 nid
, gfpflags
, &gfpflags
);
2449 pr_warn(" cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n",
2450 s
->name
, s
->object_size
, s
->size
, oo_order(s
->oo
),
2453 if (oo_order(s
->min
) > get_order(s
->object_size
))
2454 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n",
2457 for_each_kmem_cache_node(s
, node
, n
) {
2458 unsigned long nr_slabs
;
2459 unsigned long nr_objs
;
2460 unsigned long nr_free
;
2462 nr_free
= count_partial(n
, count_free
);
2463 nr_slabs
= node_nr_slabs(n
);
2464 nr_objs
= node_nr_objs(n
);
2466 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n",
2467 node
, nr_slabs
, nr_objs
, nr_free
);
2472 static inline void *new_slab_objects(struct kmem_cache
*s
, gfp_t flags
,
2473 int node
, struct kmem_cache_cpu
**pc
)
2476 struct kmem_cache_cpu
*c
= *pc
;
2479 WARN_ON_ONCE(s
->ctor
&& (flags
& __GFP_ZERO
));
2481 freelist
= get_partial(s
, flags
, node
, c
);
2486 page
= new_slab(s
, flags
, node
);
2488 c
= raw_cpu_ptr(s
->cpu_slab
);
2493 * No other reference to the page yet so we can
2494 * muck around with it freely without cmpxchg
2496 freelist
= page
->freelist
;
2497 page
->freelist
= NULL
;
2499 stat(s
, ALLOC_SLAB
);
2507 static inline bool pfmemalloc_match(struct page
*page
, gfp_t gfpflags
)
2509 if (unlikely(PageSlabPfmemalloc(page
)))
2510 return gfp_pfmemalloc_allowed(gfpflags
);
2516 * Check the page->freelist of a page and either transfer the freelist to the
2517 * per cpu freelist or deactivate the page.
2519 * The page is still frozen if the return value is not NULL.
2521 * If this function returns NULL then the page has been unfrozen.
2523 * This function must be called with interrupt disabled.
2525 static inline void *get_freelist(struct kmem_cache
*s
, struct page
*page
)
2528 unsigned long counters
;
2532 freelist
= page
->freelist
;
2533 counters
= page
->counters
;
2535 new.counters
= counters
;
2536 VM_BUG_ON(!new.frozen
);
2538 new.inuse
= page
->objects
;
2539 new.frozen
= freelist
!= NULL
;
2541 } while (!__cmpxchg_double_slab(s
, page
,
2550 * Slow path. The lockless freelist is empty or we need to perform
2553 * Processing is still very fast if new objects have been freed to the
2554 * regular freelist. In that case we simply take over the regular freelist
2555 * as the lockless freelist and zap the regular freelist.
2557 * If that is not working then we fall back to the partial lists. We take the
2558 * first element of the freelist as the object to allocate now and move the
2559 * rest of the freelist to the lockless freelist.
2561 * And if we were unable to get a new slab from the partial slab lists then
2562 * we need to allocate a new slab. This is the slowest path since it involves
2563 * a call to the page allocator and the setup of a new slab.
2565 * Version of __slab_alloc to use when we know that interrupts are
2566 * already disabled (which is the case for bulk allocation).
2568 static void *___slab_alloc(struct kmem_cache
*s
, gfp_t gfpflags
, int node
,
2569 unsigned long addr
, struct kmem_cache_cpu
*c
)
2577 * if the node is not online or has no normal memory, just
2578 * ignore the node constraint
2580 if (unlikely(node
!= NUMA_NO_NODE
&&
2581 !node_state(node
, N_NORMAL_MEMORY
)))
2582 node
= NUMA_NO_NODE
;
2587 if (unlikely(!node_match(page
, node
))) {
2589 * same as above but node_match() being false already
2590 * implies node != NUMA_NO_NODE
2592 if (!node_state(node
, N_NORMAL_MEMORY
)) {
2593 node
= NUMA_NO_NODE
;
2596 stat(s
, ALLOC_NODE_MISMATCH
);
2597 deactivate_slab(s
, page
, c
->freelist
, c
);
2603 * By rights, we should be searching for a slab page that was
2604 * PFMEMALLOC but right now, we are losing the pfmemalloc
2605 * information when the page leaves the per-cpu allocator
2607 if (unlikely(!pfmemalloc_match(page
, gfpflags
))) {
2608 deactivate_slab(s
, page
, c
->freelist
, c
);
2612 /* must check again c->freelist in case of cpu migration or IRQ */
2613 freelist
= c
->freelist
;
2617 freelist
= get_freelist(s
, page
);
2621 stat(s
, DEACTIVATE_BYPASS
);
2625 stat(s
, ALLOC_REFILL
);
2629 * freelist is pointing to the list of objects to be used.
2630 * page is pointing to the page from which the objects are obtained.
2631 * That page must be frozen for per cpu allocations to work.
2633 VM_BUG_ON(!c
->page
->frozen
);
2634 c
->freelist
= get_freepointer(s
, freelist
);
2635 c
->tid
= next_tid(c
->tid
);
2640 if (slub_percpu_partial(c
)) {
2641 page
= c
->page
= slub_percpu_partial(c
);
2642 slub_set_percpu_partial(c
, page
);
2643 stat(s
, CPU_PARTIAL_ALLOC
);
2647 freelist
= new_slab_objects(s
, gfpflags
, node
, &c
);
2649 if (unlikely(!freelist
)) {
2650 slab_out_of_memory(s
, gfpflags
, node
);
2655 if (likely(!kmem_cache_debug(s
) && pfmemalloc_match(page
, gfpflags
)))
2658 /* Only entered in the debug case */
2659 if (kmem_cache_debug(s
) &&
2660 !alloc_debug_processing(s
, page
, freelist
, addr
))
2661 goto new_slab
; /* Slab failed checks. Next slab needed */
2663 deactivate_slab(s
, page
, get_freepointer(s
, freelist
), c
);
2668 * Another one that disabled interrupt and compensates for possible
2669 * cpu changes by refetching the per cpu area pointer.
2671 static void *__slab_alloc(struct kmem_cache
*s
, gfp_t gfpflags
, int node
,
2672 unsigned long addr
, struct kmem_cache_cpu
*c
)
2675 unsigned long flags
;
2677 local_irq_save(flags
);
2678 #ifdef CONFIG_PREEMPTION
2680 * We may have been preempted and rescheduled on a different
2681 * cpu before disabling interrupts. Need to reload cpu area
2684 c
= this_cpu_ptr(s
->cpu_slab
);
2687 p
= ___slab_alloc(s
, gfpflags
, node
, addr
, c
);
2688 local_irq_restore(flags
);
2693 * If the object has been wiped upon free, make sure it's fully initialized by
2694 * zeroing out freelist pointer.
2696 static __always_inline
void maybe_wipe_obj_freeptr(struct kmem_cache
*s
,
2699 if (unlikely(slab_want_init_on_free(s
)) && obj
)
2700 memset((void *)((char *)obj
+ s
->offset
), 0, sizeof(void *));
2704 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2705 * have the fastpath folded into their functions. So no function call
2706 * overhead for requests that can be satisfied on the fastpath.
2708 * The fastpath works by first checking if the lockless freelist can be used.
2709 * If not then __slab_alloc is called for slow processing.
2711 * Otherwise we can simply pick the next object from the lockless free list.
2713 static __always_inline
void *slab_alloc_node(struct kmem_cache
*s
,
2714 gfp_t gfpflags
, int node
, unsigned long addr
)
2717 struct kmem_cache_cpu
*c
;
2721 s
= slab_pre_alloc_hook(s
, gfpflags
);
2726 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2727 * enabled. We may switch back and forth between cpus while
2728 * reading from one cpu area. That does not matter as long
2729 * as we end up on the original cpu again when doing the cmpxchg.
2731 * We should guarantee that tid and kmem_cache are retrieved on
2732 * the same cpu. It could be different if CONFIG_PREEMPTION so we need
2733 * to check if it is matched or not.
2736 tid
= this_cpu_read(s
->cpu_slab
->tid
);
2737 c
= raw_cpu_ptr(s
->cpu_slab
);
2738 } while (IS_ENABLED(CONFIG_PREEMPTION
) &&
2739 unlikely(tid
!= READ_ONCE(c
->tid
)));
2742 * Irqless object alloc/free algorithm used here depends on sequence
2743 * of fetching cpu_slab's data. tid should be fetched before anything
2744 * on c to guarantee that object and page associated with previous tid
2745 * won't be used with current tid. If we fetch tid first, object and
2746 * page could be one associated with next tid and our alloc/free
2747 * request will be failed. In this case, we will retry. So, no problem.
2752 * The transaction ids are globally unique per cpu and per operation on
2753 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2754 * occurs on the right processor and that there was no operation on the
2755 * linked list in between.
2758 object
= c
->freelist
;
2760 if (unlikely(!object
|| !node_match(page
, node
))) {
2761 object
= __slab_alloc(s
, gfpflags
, node
, addr
, c
);
2762 stat(s
, ALLOC_SLOWPATH
);
2764 void *next_object
= get_freepointer_safe(s
, object
);
2767 * The cmpxchg will only match if there was no additional
2768 * operation and if we are on the right processor.
2770 * The cmpxchg does the following atomically (without lock
2772 * 1. Relocate first pointer to the current per cpu area.
2773 * 2. Verify that tid and freelist have not been changed
2774 * 3. If they were not changed replace tid and freelist
2776 * Since this is without lock semantics the protection is only
2777 * against code executing on this cpu *not* from access by
2780 if (unlikely(!this_cpu_cmpxchg_double(
2781 s
->cpu_slab
->freelist
, s
->cpu_slab
->tid
,
2783 next_object
, next_tid(tid
)))) {
2785 note_cmpxchg_failure("slab_alloc", s
, tid
);
2788 prefetch_freepointer(s
, next_object
);
2789 stat(s
, ALLOC_FASTPATH
);
2792 maybe_wipe_obj_freeptr(s
, object
);
2794 if (unlikely(slab_want_init_on_alloc(gfpflags
, s
)) && object
)
2795 memset(object
, 0, s
->object_size
);
2797 slab_post_alloc_hook(s
, gfpflags
, 1, &object
);
2802 static __always_inline
void *slab_alloc(struct kmem_cache
*s
,
2803 gfp_t gfpflags
, unsigned long addr
)
2805 return slab_alloc_node(s
, gfpflags
, NUMA_NO_NODE
, addr
);
2808 void *kmem_cache_alloc(struct kmem_cache
*s
, gfp_t gfpflags
)
2810 void *ret
= slab_alloc(s
, gfpflags
, _RET_IP_
);
2812 trace_kmem_cache_alloc(_RET_IP_
, ret
, s
->object_size
,
2817 EXPORT_SYMBOL(kmem_cache_alloc
);
2819 #ifdef CONFIG_TRACING
2820 void *kmem_cache_alloc_trace(struct kmem_cache
*s
, gfp_t gfpflags
, size_t size
)
2822 void *ret
= slab_alloc(s
, gfpflags
, _RET_IP_
);
2823 trace_kmalloc(_RET_IP_
, ret
, size
, s
->size
, gfpflags
);
2824 ret
= kasan_kmalloc(s
, ret
, size
, gfpflags
);
2827 EXPORT_SYMBOL(kmem_cache_alloc_trace
);
2831 void *kmem_cache_alloc_node(struct kmem_cache
*s
, gfp_t gfpflags
, int node
)
2833 void *ret
= slab_alloc_node(s
, gfpflags
, node
, _RET_IP_
);
2835 trace_kmem_cache_alloc_node(_RET_IP_
, ret
,
2836 s
->object_size
, s
->size
, gfpflags
, node
);
2840 EXPORT_SYMBOL(kmem_cache_alloc_node
);
2842 #ifdef CONFIG_TRACING
2843 void *kmem_cache_alloc_node_trace(struct kmem_cache
*s
,
2845 int node
, size_t size
)
2847 void *ret
= slab_alloc_node(s
, gfpflags
, node
, _RET_IP_
);
2849 trace_kmalloc_node(_RET_IP_
, ret
,
2850 size
, s
->size
, gfpflags
, node
);
2852 ret
= kasan_kmalloc(s
, ret
, size
, gfpflags
);
2855 EXPORT_SYMBOL(kmem_cache_alloc_node_trace
);
2857 #endif /* CONFIG_NUMA */
2860 * Slow path handling. This may still be called frequently since objects
2861 * have a longer lifetime than the cpu slabs in most processing loads.
2863 * So we still attempt to reduce cache line usage. Just take the slab
2864 * lock and free the item. If there is no additional partial page
2865 * handling required then we can return immediately.
2867 static void __slab_free(struct kmem_cache
*s
, struct page
*page
,
2868 void *head
, void *tail
, int cnt
,
2875 unsigned long counters
;
2876 struct kmem_cache_node
*n
= NULL
;
2877 unsigned long uninitialized_var(flags
);
2879 stat(s
, FREE_SLOWPATH
);
2881 if (kmem_cache_debug(s
) &&
2882 !free_debug_processing(s
, page
, head
, tail
, cnt
, addr
))
2887 spin_unlock_irqrestore(&n
->list_lock
, flags
);
2890 prior
= page
->freelist
;
2891 counters
= page
->counters
;
2892 set_freepointer(s
, tail
, prior
);
2893 new.counters
= counters
;
2894 was_frozen
= new.frozen
;
2896 if ((!new.inuse
|| !prior
) && !was_frozen
) {
2898 if (kmem_cache_has_cpu_partial(s
) && !prior
) {
2901 * Slab was on no list before and will be
2903 * We can defer the list move and instead
2908 } else { /* Needs to be taken off a list */
2910 n
= get_node(s
, page_to_nid(page
));
2912 * Speculatively acquire the list_lock.
2913 * If the cmpxchg does not succeed then we may
2914 * drop the list_lock without any processing.
2916 * Otherwise the list_lock will synchronize with
2917 * other processors updating the list of slabs.
2919 spin_lock_irqsave(&n
->list_lock
, flags
);
2924 } while (!cmpxchg_double_slab(s
, page
,
2932 * If we just froze the page then put it onto the
2933 * per cpu partial list.
2935 if (new.frozen
&& !was_frozen
) {
2936 put_cpu_partial(s
, page
, 1);
2937 stat(s
, CPU_PARTIAL_FREE
);
2940 * The list lock was not taken therefore no list
2941 * activity can be necessary.
2944 stat(s
, FREE_FROZEN
);
2948 if (unlikely(!new.inuse
&& n
->nr_partial
>= s
->min_partial
))
2952 * Objects left in the slab. If it was not on the partial list before
2955 if (!kmem_cache_has_cpu_partial(s
) && unlikely(!prior
)) {
2956 remove_full(s
, n
, page
);
2957 add_partial(n
, page
, DEACTIVATE_TO_TAIL
);
2958 stat(s
, FREE_ADD_PARTIAL
);
2960 spin_unlock_irqrestore(&n
->list_lock
, flags
);
2966 * Slab on the partial list.
2968 remove_partial(n
, page
);
2969 stat(s
, FREE_REMOVE_PARTIAL
);
2971 /* Slab must be on the full list */
2972 remove_full(s
, n
, page
);
2975 spin_unlock_irqrestore(&n
->list_lock
, flags
);
2977 discard_slab(s
, page
);
2981 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2982 * can perform fastpath freeing without additional function calls.
2984 * The fastpath is only possible if we are freeing to the current cpu slab
2985 * of this processor. This typically the case if we have just allocated
2988 * If fastpath is not possible then fall back to __slab_free where we deal
2989 * with all sorts of special processing.
2991 * Bulk free of a freelist with several objects (all pointing to the
2992 * same page) possible by specifying head and tail ptr, plus objects
2993 * count (cnt). Bulk free indicated by tail pointer being set.
2995 static __always_inline
void do_slab_free(struct kmem_cache
*s
,
2996 struct page
*page
, void *head
, void *tail
,
2997 int cnt
, unsigned long addr
)
2999 void *tail_obj
= tail
? : head
;
3000 struct kmem_cache_cpu
*c
;
3004 * Determine the currently cpus per cpu slab.
3005 * The cpu may change afterward. However that does not matter since
3006 * data is retrieved via this pointer. If we are on the same cpu
3007 * during the cmpxchg then the free will succeed.
3010 tid
= this_cpu_read(s
->cpu_slab
->tid
);
3011 c
= raw_cpu_ptr(s
->cpu_slab
);
3012 } while (IS_ENABLED(CONFIG_PREEMPTION
) &&
3013 unlikely(tid
!= READ_ONCE(c
->tid
)));
3015 /* Same with comment on barrier() in slab_alloc_node() */
3018 if (likely(page
== c
->page
)) {
3019 void **freelist
= READ_ONCE(c
->freelist
);
3021 set_freepointer(s
, tail_obj
, freelist
);
3023 if (unlikely(!this_cpu_cmpxchg_double(
3024 s
->cpu_slab
->freelist
, s
->cpu_slab
->tid
,
3026 head
, next_tid(tid
)))) {
3028 note_cmpxchg_failure("slab_free", s
, tid
);
3031 stat(s
, FREE_FASTPATH
);
3033 __slab_free(s
, page
, head
, tail_obj
, cnt
, addr
);
3037 static __always_inline
void slab_free(struct kmem_cache
*s
, struct page
*page
,
3038 void *head
, void *tail
, int cnt
,
3042 * With KASAN enabled slab_free_freelist_hook modifies the freelist
3043 * to remove objects, whose reuse must be delayed.
3045 if (slab_free_freelist_hook(s
, &head
, &tail
))
3046 do_slab_free(s
, page
, head
, tail
, cnt
, addr
);
3049 #ifdef CONFIG_KASAN_GENERIC
3050 void ___cache_free(struct kmem_cache
*cache
, void *x
, unsigned long addr
)
3052 do_slab_free(cache
, virt_to_head_page(x
), x
, NULL
, 1, addr
);
3056 void kmem_cache_free(struct kmem_cache
*s
, void *x
)
3058 s
= cache_from_obj(s
, x
);
3061 slab_free(s
, virt_to_head_page(x
), x
, NULL
, 1, _RET_IP_
);
3062 trace_kmem_cache_free(_RET_IP_
, x
);
3064 EXPORT_SYMBOL(kmem_cache_free
);
3066 struct detached_freelist
{
3071 struct kmem_cache
*s
;
3075 * This function progressively scans the array with free objects (with
3076 * a limited look ahead) and extract objects belonging to the same
3077 * page. It builds a detached freelist directly within the given
3078 * page/objects. This can happen without any need for
3079 * synchronization, because the objects are owned by running process.
3080 * The freelist is build up as a single linked list in the objects.
3081 * The idea is, that this detached freelist can then be bulk
3082 * transferred to the real freelist(s), but only requiring a single
3083 * synchronization primitive. Look ahead in the array is limited due
3084 * to performance reasons.
3087 int build_detached_freelist(struct kmem_cache
*s
, size_t size
,
3088 void **p
, struct detached_freelist
*df
)
3090 size_t first_skipped_index
= 0;
3095 /* Always re-init detached_freelist */
3100 /* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */
3101 } while (!object
&& size
);
3106 page
= virt_to_head_page(object
);
3108 /* Handle kalloc'ed objects */
3109 if (unlikely(!PageSlab(page
))) {
3110 BUG_ON(!PageCompound(page
));
3112 __free_pages(page
, compound_order(page
));
3113 p
[size
] = NULL
; /* mark object processed */
3116 /* Derive kmem_cache from object */
3117 df
->s
= page
->slab_cache
;
3119 df
->s
= cache_from_obj(s
, object
); /* Support for memcg */
3122 /* Start new detached freelist */
3124 set_freepointer(df
->s
, object
, NULL
);
3126 df
->freelist
= object
;
3127 p
[size
] = NULL
; /* mark object processed */
3133 continue; /* Skip processed objects */
3135 /* df->page is always set at this point */
3136 if (df
->page
== virt_to_head_page(object
)) {
3137 /* Opportunity build freelist */
3138 set_freepointer(df
->s
, object
, df
->freelist
);
3139 df
->freelist
= object
;
3141 p
[size
] = NULL
; /* mark object processed */
3146 /* Limit look ahead search */
3150 if (!first_skipped_index
)
3151 first_skipped_index
= size
+ 1;
3154 return first_skipped_index
;
3157 /* Note that interrupts must be enabled when calling this function. */
3158 void kmem_cache_free_bulk(struct kmem_cache
*s
, size_t size
, void **p
)
3164 struct detached_freelist df
;
3166 size
= build_detached_freelist(s
, size
, p
, &df
);
3170 slab_free(df
.s
, df
.page
, df
.freelist
, df
.tail
, df
.cnt
,_RET_IP_
);
3171 } while (likely(size
));
3173 EXPORT_SYMBOL(kmem_cache_free_bulk
);
3175 /* Note that interrupts must be enabled when calling this function. */
3176 int kmem_cache_alloc_bulk(struct kmem_cache
*s
, gfp_t flags
, size_t size
,
3179 struct kmem_cache_cpu
*c
;
3182 /* memcg and kmem_cache debug support */
3183 s
= slab_pre_alloc_hook(s
, flags
);
3187 * Drain objects in the per cpu slab, while disabling local
3188 * IRQs, which protects against PREEMPT and interrupts
3189 * handlers invoking normal fastpath.
3191 local_irq_disable();
3192 c
= this_cpu_ptr(s
->cpu_slab
);
3194 for (i
= 0; i
< size
; i
++) {
3195 void *object
= c
->freelist
;
3197 if (unlikely(!object
)) {
3199 * We may have removed an object from c->freelist using
3200 * the fastpath in the previous iteration; in that case,
3201 * c->tid has not been bumped yet.
3202 * Since ___slab_alloc() may reenable interrupts while
3203 * allocating memory, we should bump c->tid now.
3205 c
->tid
= next_tid(c
->tid
);
3208 * Invoking slow path likely have side-effect
3209 * of re-populating per CPU c->freelist
3211 p
[i
] = ___slab_alloc(s
, flags
, NUMA_NO_NODE
,
3213 if (unlikely(!p
[i
]))
3216 c
= this_cpu_ptr(s
->cpu_slab
);
3217 maybe_wipe_obj_freeptr(s
, p
[i
]);
3219 continue; /* goto for-loop */
3221 c
->freelist
= get_freepointer(s
, object
);
3223 maybe_wipe_obj_freeptr(s
, p
[i
]);
3225 c
->tid
= next_tid(c
->tid
);
3228 /* Clear memory outside IRQ disabled fastpath loop */
3229 if (unlikely(slab_want_init_on_alloc(flags
, s
))) {
3232 for (j
= 0; j
< i
; j
++)
3233 memset(p
[j
], 0, s
->object_size
);
3236 /* memcg and kmem_cache debug support */
3237 slab_post_alloc_hook(s
, flags
, size
, p
);
3241 slab_post_alloc_hook(s
, flags
, i
, p
);
3242 __kmem_cache_free_bulk(s
, i
, p
);
3245 EXPORT_SYMBOL(kmem_cache_alloc_bulk
);
3249 * Object placement in a slab is made very easy because we always start at
3250 * offset 0. If we tune the size of the object to the alignment then we can
3251 * get the required alignment by putting one properly sized object after
3254 * Notice that the allocation order determines the sizes of the per cpu
3255 * caches. Each processor has always one slab available for allocations.
3256 * Increasing the allocation order reduces the number of times that slabs
3257 * must be moved on and off the partial lists and is therefore a factor in
3262 * Mininum / Maximum order of slab pages. This influences locking overhead
3263 * and slab fragmentation. A higher order reduces the number of partial slabs
3264 * and increases the number of allocations possible without having to
3265 * take the list_lock.
3267 static unsigned int slub_min_order
;
3268 static unsigned int slub_max_order
= PAGE_ALLOC_COSTLY_ORDER
;
3269 static unsigned int slub_min_objects
;
3272 * Calculate the order of allocation given an slab object size.
3274 * The order of allocation has significant impact on performance and other
3275 * system components. Generally order 0 allocations should be preferred since
3276 * order 0 does not cause fragmentation in the page allocator. Larger objects
3277 * be problematic to put into order 0 slabs because there may be too much
3278 * unused space left. We go to a higher order if more than 1/16th of the slab
3281 * In order to reach satisfactory performance we must ensure that a minimum
3282 * number of objects is in one slab. Otherwise we may generate too much
3283 * activity on the partial lists which requires taking the list_lock. This is
3284 * less a concern for large slabs though which are rarely used.
3286 * slub_max_order specifies the order where we begin to stop considering the
3287 * number of objects in a slab as critical. If we reach slub_max_order then
3288 * we try to keep the page order as low as possible. So we accept more waste
3289 * of space in favor of a small page order.
3291 * Higher order allocations also allow the placement of more objects in a
3292 * slab and thereby reduce object handling overhead. If the user has
3293 * requested a higher mininum order then we start with that one instead of
3294 * the smallest order which will fit the object.
3296 static inline unsigned int slab_order(unsigned int size
,
3297 unsigned int min_objects
, unsigned int max_order
,
3298 unsigned int fract_leftover
)
3300 unsigned int min_order
= slub_min_order
;
3303 if (order_objects(min_order
, size
) > MAX_OBJS_PER_PAGE
)
3304 return get_order(size
* MAX_OBJS_PER_PAGE
) - 1;
3306 for (order
= max(min_order
, (unsigned int)get_order(min_objects
* size
));
3307 order
<= max_order
; order
++) {
3309 unsigned int slab_size
= (unsigned int)PAGE_SIZE
<< order
;
3312 rem
= slab_size
% size
;
3314 if (rem
<= slab_size
/ fract_leftover
)
3321 static inline int calculate_order(unsigned int size
)
3324 unsigned int min_objects
;
3325 unsigned int max_objects
;
3328 * Attempt to find best configuration for a slab. This
3329 * works by first attempting to generate a layout with
3330 * the best configuration and backing off gradually.
3332 * First we increase the acceptable waste in a slab. Then
3333 * we reduce the minimum objects required in a slab.
3335 min_objects
= slub_min_objects
;
3337 min_objects
= 4 * (fls(nr_cpu_ids
) + 1);
3338 max_objects
= order_objects(slub_max_order
, size
);
3339 min_objects
= min(min_objects
, max_objects
);
3341 while (min_objects
> 1) {
3342 unsigned int fraction
;
3345 while (fraction
>= 4) {
3346 order
= slab_order(size
, min_objects
,
3347 slub_max_order
, fraction
);
3348 if (order
<= slub_max_order
)
3356 * We were unable to place multiple objects in a slab. Now
3357 * lets see if we can place a single object there.
3359 order
= slab_order(size
, 1, slub_max_order
, 1);
3360 if (order
<= slub_max_order
)
3364 * Doh this slab cannot be placed using slub_max_order.
3366 order
= slab_order(size
, 1, MAX_ORDER
, 1);
3367 if (order
< MAX_ORDER
)
3373 init_kmem_cache_node(struct kmem_cache_node
*n
)
3376 spin_lock_init(&n
->list_lock
);
3377 INIT_LIST_HEAD(&n
->partial
);
3378 #ifdef CONFIG_SLUB_DEBUG
3379 atomic_long_set(&n
->nr_slabs
, 0);
3380 atomic_long_set(&n
->total_objects
, 0);
3381 INIT_LIST_HEAD(&n
->full
);
3385 static inline int alloc_kmem_cache_cpus(struct kmem_cache
*s
)
3387 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE
<
3388 KMALLOC_SHIFT_HIGH
* sizeof(struct kmem_cache_cpu
));
3391 * Must align to double word boundary for the double cmpxchg
3392 * instructions to work; see __pcpu_double_call_return_bool().
3394 s
->cpu_slab
= __alloc_percpu(sizeof(struct kmem_cache_cpu
),
3395 2 * sizeof(void *));
3400 init_kmem_cache_cpus(s
);
3405 static struct kmem_cache
*kmem_cache_node
;
3408 * No kmalloc_node yet so do it by hand. We know that this is the first
3409 * slab on the node for this slabcache. There are no concurrent accesses
3412 * Note that this function only works on the kmem_cache_node
3413 * when allocating for the kmem_cache_node. This is used for bootstrapping
3414 * memory on a fresh node that has no slab structures yet.
3416 static void early_kmem_cache_node_alloc(int node
)
3419 struct kmem_cache_node
*n
;
3421 BUG_ON(kmem_cache_node
->size
< sizeof(struct kmem_cache_node
));
3423 page
= new_slab(kmem_cache_node
, GFP_NOWAIT
, node
);
3426 if (page_to_nid(page
) != node
) {
3427 pr_err("SLUB: Unable to allocate memory from node %d\n", node
);
3428 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
3433 #ifdef CONFIG_SLUB_DEBUG
3434 init_object(kmem_cache_node
, n
, SLUB_RED_ACTIVE
);
3435 init_tracking(kmem_cache_node
, n
);
3437 n
= kasan_kmalloc(kmem_cache_node
, n
, sizeof(struct kmem_cache_node
),
3439 page
->freelist
= get_freepointer(kmem_cache_node
, n
);
3442 kmem_cache_node
->node
[node
] = n
;
3443 init_kmem_cache_node(n
);
3444 inc_slabs_node(kmem_cache_node
, node
, page
->objects
);
3447 * No locks need to be taken here as it has just been
3448 * initialized and there is no concurrent access.
3450 __add_partial(n
, page
, DEACTIVATE_TO_HEAD
);
3453 static void free_kmem_cache_nodes(struct kmem_cache
*s
)
3456 struct kmem_cache_node
*n
;
3458 for_each_kmem_cache_node(s
, node
, n
) {
3459 s
->node
[node
] = NULL
;
3460 kmem_cache_free(kmem_cache_node
, n
);
3464 void __kmem_cache_release(struct kmem_cache
*s
)
3466 cache_random_seq_destroy(s
);
3467 free_percpu(s
->cpu_slab
);
3468 free_kmem_cache_nodes(s
);
3471 static int init_kmem_cache_nodes(struct kmem_cache
*s
)
3475 for_each_node_state(node
, N_NORMAL_MEMORY
) {
3476 struct kmem_cache_node
*n
;
3478 if (slab_state
== DOWN
) {
3479 early_kmem_cache_node_alloc(node
);
3482 n
= kmem_cache_alloc_node(kmem_cache_node
,
3486 free_kmem_cache_nodes(s
);
3490 init_kmem_cache_node(n
);
3496 static void set_min_partial(struct kmem_cache
*s
, unsigned long min
)
3498 if (min
< MIN_PARTIAL
)
3500 else if (min
> MAX_PARTIAL
)
3502 s
->min_partial
= min
;
3505 static void set_cpu_partial(struct kmem_cache
*s
)
3507 #ifdef CONFIG_SLUB_CPU_PARTIAL
3509 * cpu_partial determined the maximum number of objects kept in the
3510 * per cpu partial lists of a processor.
3512 * Per cpu partial lists mainly contain slabs that just have one
3513 * object freed. If they are used for allocation then they can be
3514 * filled up again with minimal effort. The slab will never hit the
3515 * per node partial lists and therefore no locking will be required.
3517 * This setting also determines
3519 * A) The number of objects from per cpu partial slabs dumped to the
3520 * per node list when we reach the limit.
3521 * B) The number of objects in cpu partial slabs to extract from the
3522 * per node list when we run out of per cpu objects. We only fetch
3523 * 50% to keep some capacity around for frees.
3525 if (!kmem_cache_has_cpu_partial(s
))
3526 slub_set_cpu_partial(s
, 0);
3527 else if (s
->size
>= PAGE_SIZE
)
3528 slub_set_cpu_partial(s
, 2);
3529 else if (s
->size
>= 1024)
3530 slub_set_cpu_partial(s
, 6);
3531 else if (s
->size
>= 256)
3532 slub_set_cpu_partial(s
, 13);
3534 slub_set_cpu_partial(s
, 30);
3539 * calculate_sizes() determines the order and the distribution of data within
3542 static int calculate_sizes(struct kmem_cache
*s
, int forced_order
)
3544 slab_flags_t flags
= s
->flags
;
3545 unsigned int size
= s
->object_size
;
3546 unsigned int freepointer_area
;
3550 * Round up object size to the next word boundary. We can only
3551 * place the free pointer at word boundaries and this determines
3552 * the possible location of the free pointer.
3554 size
= ALIGN(size
, sizeof(void *));
3556 * This is the area of the object where a freepointer can be
3557 * safely written. If redzoning adds more to the inuse size, we
3558 * can't use that portion for writing the freepointer, so
3559 * s->offset must be limited within this for the general case.
3561 freepointer_area
= size
;
3563 #ifdef CONFIG_SLUB_DEBUG
3565 * Determine if we can poison the object itself. If the user of
3566 * the slab may touch the object after free or before allocation
3567 * then we should never poison the object itself.
3569 if ((flags
& SLAB_POISON
) && !(flags
& SLAB_TYPESAFE_BY_RCU
) &&
3571 s
->flags
|= __OBJECT_POISON
;
3573 s
->flags
&= ~__OBJECT_POISON
;
3577 * If we are Redzoning then check if there is some space between the
3578 * end of the object and the free pointer. If not then add an
3579 * additional word to have some bytes to store Redzone information.
3581 if ((flags
& SLAB_RED_ZONE
) && size
== s
->object_size
)
3582 size
+= sizeof(void *);
3586 * With that we have determined the number of bytes in actual use
3587 * by the object. This is the potential offset to the free pointer.
3591 if (((flags
& (SLAB_TYPESAFE_BY_RCU
| SLAB_POISON
)) ||
3594 * Relocate free pointer after the object if it is not
3595 * permitted to overwrite the first word of the object on
3598 * This is the case if we do RCU, have a constructor or
3599 * destructor or are poisoning the objects.
3601 * The assumption that s->offset >= s->inuse means free
3602 * pointer is outside of the object is used in the
3603 * freeptr_outside_object() function. If that is no
3604 * longer true, the function needs to be modified.
3607 size
+= sizeof(void *);
3608 } else if (freepointer_area
> sizeof(void *)) {
3610 * Store freelist pointer near middle of object to keep
3611 * it away from the edges of the object to avoid small
3612 * sized over/underflows from neighboring allocations.
3614 s
->offset
= ALIGN(freepointer_area
/ 2, sizeof(void *));
3617 #ifdef CONFIG_SLUB_DEBUG
3618 if (flags
& SLAB_STORE_USER
)
3620 * Need to store information about allocs and frees after
3623 size
+= 2 * sizeof(struct track
);
3626 kasan_cache_create(s
, &size
, &s
->flags
);
3627 #ifdef CONFIG_SLUB_DEBUG
3628 if (flags
& SLAB_RED_ZONE
) {
3630 * Add some empty padding so that we can catch
3631 * overwrites from earlier objects rather than let
3632 * tracking information or the free pointer be
3633 * corrupted if a user writes before the start
3636 size
+= sizeof(void *);
3638 s
->red_left_pad
= sizeof(void *);
3639 s
->red_left_pad
= ALIGN(s
->red_left_pad
, s
->align
);
3640 size
+= s
->red_left_pad
;
3645 * SLUB stores one object immediately after another beginning from
3646 * offset 0. In order to align the objects we have to simply size
3647 * each object to conform to the alignment.
3649 size
= ALIGN(size
, s
->align
);
3651 if (forced_order
>= 0)
3652 order
= forced_order
;
3654 order
= calculate_order(size
);
3661 s
->allocflags
|= __GFP_COMP
;
3663 if (s
->flags
& SLAB_CACHE_DMA
)
3664 s
->allocflags
|= GFP_DMA
;
3666 if (s
->flags
& SLAB_CACHE_DMA32
)
3667 s
->allocflags
|= GFP_DMA32
;
3669 if (s
->flags
& SLAB_RECLAIM_ACCOUNT
)
3670 s
->allocflags
|= __GFP_RECLAIMABLE
;
3673 * Determine the number of objects per slab
3675 s
->oo
= oo_make(order
, size
);
3676 s
->min
= oo_make(get_order(size
), size
);
3677 if (oo_objects(s
->oo
) > oo_objects(s
->max
))
3680 return !!oo_objects(s
->oo
);
3683 static int kmem_cache_open(struct kmem_cache
*s
, slab_flags_t flags
)
3685 s
->flags
= kmem_cache_flags(s
->size
, flags
, s
->name
, s
->ctor
);
3686 #ifdef CONFIG_SLAB_FREELIST_HARDENED
3687 s
->random
= get_random_long();
3690 if (!calculate_sizes(s
, -1))
3692 if (disable_higher_order_debug
) {
3694 * Disable debugging flags that store metadata if the min slab
3697 if (get_order(s
->size
) > get_order(s
->object_size
)) {
3698 s
->flags
&= ~DEBUG_METADATA_FLAGS
;
3700 if (!calculate_sizes(s
, -1))
3705 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3706 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
3707 if (system_has_cmpxchg_double() && (s
->flags
& SLAB_NO_CMPXCHG
) == 0)
3708 /* Enable fast mode */
3709 s
->flags
|= __CMPXCHG_DOUBLE
;
3713 * The larger the object size is, the more pages we want on the partial
3714 * list to avoid pounding the page allocator excessively.
3716 set_min_partial(s
, ilog2(s
->size
) / 2);
3721 s
->remote_node_defrag_ratio
= 1000;
3724 /* Initialize the pre-computed randomized freelist if slab is up */
3725 if (slab_state
>= UP
) {
3726 if (init_cache_random_seq(s
))
3730 if (!init_kmem_cache_nodes(s
))
3733 if (alloc_kmem_cache_cpus(s
))
3736 free_kmem_cache_nodes(s
);
3741 static void list_slab_objects(struct kmem_cache
*s
, struct page
*page
,
3744 #ifdef CONFIG_SLUB_DEBUG
3745 void *addr
= page_address(page
);
3749 slab_err(s
, page
, text
, s
->name
);
3752 map
= get_map(s
, page
);
3753 for_each_object(p
, s
, addr
, page
->objects
) {
3755 if (!test_bit(slab_index(p
, s
, addr
), map
)) {
3756 pr_err("INFO: Object 0x%p @offset=%tu\n", p
, p
- addr
);
3757 print_tracking(s
, p
);
3767 * Attempt to free all partial slabs on a node.
3768 * This is called from __kmem_cache_shutdown(). We must take list_lock
3769 * because sysfs file might still access partial list after the shutdowning.
3771 static void free_partial(struct kmem_cache
*s
, struct kmem_cache_node
*n
)
3774 struct page
*page
, *h
;
3776 BUG_ON(irqs_disabled());
3777 spin_lock_irq(&n
->list_lock
);
3778 list_for_each_entry_safe(page
, h
, &n
->partial
, slab_list
) {
3780 remove_partial(n
, page
);
3781 list_add(&page
->slab_list
, &discard
);
3783 list_slab_objects(s
, page
,
3784 "Objects remaining in %s on __kmem_cache_shutdown()");
3787 spin_unlock_irq(&n
->list_lock
);
3789 list_for_each_entry_safe(page
, h
, &discard
, slab_list
)
3790 discard_slab(s
, page
);
3793 bool __kmem_cache_empty(struct kmem_cache
*s
)
3796 struct kmem_cache_node
*n
;
3798 for_each_kmem_cache_node(s
, node
, n
)
3799 if (n
->nr_partial
|| slabs_node(s
, node
))
3805 * Release all resources used by a slab cache.
3807 int __kmem_cache_shutdown(struct kmem_cache
*s
)
3810 struct kmem_cache_node
*n
;
3813 /* Attempt to free all objects */
3814 for_each_kmem_cache_node(s
, node
, n
) {
3816 if (n
->nr_partial
|| slabs_node(s
, node
))
3819 sysfs_slab_remove(s
);
3823 /********************************************************************
3825 *******************************************************************/
3827 static int __init
setup_slub_min_order(char *str
)
3829 get_option(&str
, (int *)&slub_min_order
);
3834 __setup("slub_min_order=", setup_slub_min_order
);
3836 static int __init
setup_slub_max_order(char *str
)
3838 get_option(&str
, (int *)&slub_max_order
);
3839 slub_max_order
= min(slub_max_order
, (unsigned int)MAX_ORDER
- 1);
3844 __setup("slub_max_order=", setup_slub_max_order
);
3846 static int __init
setup_slub_min_objects(char *str
)
3848 get_option(&str
, (int *)&slub_min_objects
);
3853 __setup("slub_min_objects=", setup_slub_min_objects
);
3855 void *__kmalloc(size_t size
, gfp_t flags
)
3857 struct kmem_cache
*s
;
3860 if (unlikely(size
> KMALLOC_MAX_CACHE_SIZE
))
3861 return kmalloc_large(size
, flags
);
3863 s
= kmalloc_slab(size
, flags
);
3865 if (unlikely(ZERO_OR_NULL_PTR(s
)))
3868 ret
= slab_alloc(s
, flags
, _RET_IP_
);
3870 trace_kmalloc(_RET_IP_
, ret
, size
, s
->size
, flags
);
3872 ret
= kasan_kmalloc(s
, ret
, size
, flags
);
3876 EXPORT_SYMBOL(__kmalloc
);
3879 static void *kmalloc_large_node(size_t size
, gfp_t flags
, int node
)
3883 unsigned int order
= get_order(size
);
3885 flags
|= __GFP_COMP
;
3886 page
= alloc_pages_node(node
, flags
, order
);
3888 ptr
= page_address(page
);
3889 mod_node_page_state(page_pgdat(page
), NR_SLAB_UNRECLAIMABLE
,
3893 return kmalloc_large_node_hook(ptr
, size
, flags
);
3896 void *__kmalloc_node(size_t size
, gfp_t flags
, int node
)
3898 struct kmem_cache
*s
;
3901 if (unlikely(size
> KMALLOC_MAX_CACHE_SIZE
)) {
3902 ret
= kmalloc_large_node(size
, flags
, node
);
3904 trace_kmalloc_node(_RET_IP_
, ret
,
3905 size
, PAGE_SIZE
<< get_order(size
),
3911 s
= kmalloc_slab(size
, flags
);
3913 if (unlikely(ZERO_OR_NULL_PTR(s
)))
3916 ret
= slab_alloc_node(s
, flags
, node
, _RET_IP_
);
3918 trace_kmalloc_node(_RET_IP_
, ret
, size
, s
->size
, flags
, node
);
3920 ret
= kasan_kmalloc(s
, ret
, size
, flags
);
3924 EXPORT_SYMBOL(__kmalloc_node
);
3925 #endif /* CONFIG_NUMA */
3927 #ifdef CONFIG_HARDENED_USERCOPY
3929 * Rejects incorrectly sized objects and objects that are to be copied
3930 * to/from userspace but do not fall entirely within the containing slab
3931 * cache's usercopy region.
3933 * Returns NULL if check passes, otherwise const char * to name of cache
3934 * to indicate an error.
3936 void __check_heap_object(const void *ptr
, unsigned long n
, struct page
*page
,
3939 struct kmem_cache
*s
;
3940 unsigned int offset
;
3943 ptr
= kasan_reset_tag(ptr
);
3945 /* Find object and usable object size. */
3946 s
= page
->slab_cache
;
3948 /* Reject impossible pointers. */
3949 if (ptr
< page_address(page
))
3950 usercopy_abort("SLUB object not in SLUB page?!", NULL
,
3953 /* Find offset within object. */
3954 offset
= (ptr
- page_address(page
)) % s
->size
;
3956 /* Adjust for redzone and reject if within the redzone. */
3957 if (kmem_cache_debug(s
) && s
->flags
& SLAB_RED_ZONE
) {
3958 if (offset
< s
->red_left_pad
)
3959 usercopy_abort("SLUB object in left red zone",
3960 s
->name
, to_user
, offset
, n
);
3961 offset
-= s
->red_left_pad
;
3964 /* Allow address range falling entirely within usercopy region. */
3965 if (offset
>= s
->useroffset
&&
3966 offset
- s
->useroffset
<= s
->usersize
&&
3967 n
<= s
->useroffset
- offset
+ s
->usersize
)
3971 * If the copy is still within the allocated object, produce
3972 * a warning instead of rejecting the copy. This is intended
3973 * to be a temporary method to find any missing usercopy
3976 object_size
= slab_ksize(s
);
3977 if (usercopy_fallback
&&
3978 offset
<= object_size
&& n
<= object_size
- offset
) {
3979 usercopy_warn("SLUB object", s
->name
, to_user
, offset
, n
);
3983 usercopy_abort("SLUB object", s
->name
, to_user
, offset
, n
);
3985 #endif /* CONFIG_HARDENED_USERCOPY */
3987 size_t __ksize(const void *object
)
3991 if (unlikely(object
== ZERO_SIZE_PTR
))
3994 page
= virt_to_head_page(object
);
3996 if (unlikely(!PageSlab(page
))) {
3997 WARN_ON(!PageCompound(page
));
3998 return page_size(page
);
4001 return slab_ksize(page
->slab_cache
);
4003 EXPORT_SYMBOL(__ksize
);
4005 void kfree(const void *x
)
4008 void *object
= (void *)x
;
4010 trace_kfree(_RET_IP_
, x
);
4012 if (unlikely(ZERO_OR_NULL_PTR(x
)))
4015 page
= virt_to_head_page(x
);
4016 if (unlikely(!PageSlab(page
))) {
4017 unsigned int order
= compound_order(page
);
4019 BUG_ON(!PageCompound(page
));
4021 mod_node_page_state(page_pgdat(page
), NR_SLAB_UNRECLAIMABLE
,
4023 __free_pages(page
, order
);
4026 slab_free(page
->slab_cache
, page
, object
, NULL
, 1, _RET_IP_
);
4028 EXPORT_SYMBOL(kfree
);
4030 #define SHRINK_PROMOTE_MAX 32
4033 * kmem_cache_shrink discards empty slabs and promotes the slabs filled
4034 * up most to the head of the partial lists. New allocations will then
4035 * fill those up and thus they can be removed from the partial lists.
4037 * The slabs with the least items are placed last. This results in them
4038 * being allocated from last increasing the chance that the last objects
4039 * are freed in them.
4041 int __kmem_cache_shrink(struct kmem_cache
*s
)
4045 struct kmem_cache_node
*n
;
4048 struct list_head discard
;
4049 struct list_head promote
[SHRINK_PROMOTE_MAX
];
4050 unsigned long flags
;
4054 for_each_kmem_cache_node(s
, node
, n
) {
4055 INIT_LIST_HEAD(&discard
);
4056 for (i
= 0; i
< SHRINK_PROMOTE_MAX
; i
++)
4057 INIT_LIST_HEAD(promote
+ i
);
4059 spin_lock_irqsave(&n
->list_lock
, flags
);
4062 * Build lists of slabs to discard or promote.
4064 * Note that concurrent frees may occur while we hold the
4065 * list_lock. page->inuse here is the upper limit.
4067 list_for_each_entry_safe(page
, t
, &n
->partial
, slab_list
) {
4068 int free
= page
->objects
- page
->inuse
;
4070 /* Do not reread page->inuse */
4073 /* We do not keep full slabs on the list */
4076 if (free
== page
->objects
) {
4077 list_move(&page
->slab_list
, &discard
);
4079 } else if (free
<= SHRINK_PROMOTE_MAX
)
4080 list_move(&page
->slab_list
, promote
+ free
- 1);
4084 * Promote the slabs filled up most to the head of the
4087 for (i
= SHRINK_PROMOTE_MAX
- 1; i
>= 0; i
--)
4088 list_splice(promote
+ i
, &n
->partial
);
4090 spin_unlock_irqrestore(&n
->list_lock
, flags
);
4092 /* Release empty slabs */
4093 list_for_each_entry_safe(page
, t
, &discard
, slab_list
)
4094 discard_slab(s
, page
);
4096 if (slabs_node(s
, node
))
4104 void __kmemcg_cache_deactivate_after_rcu(struct kmem_cache
*s
)
4107 * Called with all the locks held after a sched RCU grace period.
4108 * Even if @s becomes empty after shrinking, we can't know that @s
4109 * doesn't have allocations already in-flight and thus can't
4110 * destroy @s until the associated memcg is released.
4112 * However, let's remove the sysfs files for empty caches here.
4113 * Each cache has a lot of interface files which aren't
4114 * particularly useful for empty draining caches; otherwise, we can
4115 * easily end up with millions of unnecessary sysfs files on
4116 * systems which have a lot of memory and transient cgroups.
4118 if (!__kmem_cache_shrink(s
))
4119 sysfs_slab_remove(s
);
4122 void __kmemcg_cache_deactivate(struct kmem_cache
*s
)
4125 * Disable empty slabs caching. Used to avoid pinning offline
4126 * memory cgroups by kmem pages that can be freed.
4128 slub_set_cpu_partial(s
, 0);
4131 #endif /* CONFIG_MEMCG */
4133 static int slab_mem_going_offline_callback(void *arg
)
4135 struct kmem_cache
*s
;
4137 mutex_lock(&slab_mutex
);
4138 list_for_each_entry(s
, &slab_caches
, list
)
4139 __kmem_cache_shrink(s
);
4140 mutex_unlock(&slab_mutex
);
4145 static void slab_mem_offline_callback(void *arg
)
4147 struct kmem_cache_node
*n
;
4148 struct kmem_cache
*s
;
4149 struct memory_notify
*marg
= arg
;
4152 offline_node
= marg
->status_change_nid_normal
;
4155 * If the node still has available memory. we need kmem_cache_node
4158 if (offline_node
< 0)
4161 mutex_lock(&slab_mutex
);
4162 list_for_each_entry(s
, &slab_caches
, list
) {
4163 n
= get_node(s
, offline_node
);
4166 * if n->nr_slabs > 0, slabs still exist on the node
4167 * that is going down. We were unable to free them,
4168 * and offline_pages() function shouldn't call this
4169 * callback. So, we must fail.
4171 BUG_ON(slabs_node(s
, offline_node
));
4173 s
->node
[offline_node
] = NULL
;
4174 kmem_cache_free(kmem_cache_node
, n
);
4177 mutex_unlock(&slab_mutex
);
4180 static int slab_mem_going_online_callback(void *arg
)
4182 struct kmem_cache_node
*n
;
4183 struct kmem_cache
*s
;
4184 struct memory_notify
*marg
= arg
;
4185 int nid
= marg
->status_change_nid_normal
;
4189 * If the node's memory is already available, then kmem_cache_node is
4190 * already created. Nothing to do.
4196 * We are bringing a node online. No memory is available yet. We must
4197 * allocate a kmem_cache_node structure in order to bring the node
4200 mutex_lock(&slab_mutex
);
4201 list_for_each_entry(s
, &slab_caches
, list
) {
4203 * XXX: kmem_cache_alloc_node will fallback to other nodes
4204 * since memory is not yet available from the node that
4207 n
= kmem_cache_alloc(kmem_cache_node
, GFP_KERNEL
);
4212 init_kmem_cache_node(n
);
4216 mutex_unlock(&slab_mutex
);
4220 static int slab_memory_callback(struct notifier_block
*self
,
4221 unsigned long action
, void *arg
)
4226 case MEM_GOING_ONLINE
:
4227 ret
= slab_mem_going_online_callback(arg
);
4229 case MEM_GOING_OFFLINE
:
4230 ret
= slab_mem_going_offline_callback(arg
);
4233 case MEM_CANCEL_ONLINE
:
4234 slab_mem_offline_callback(arg
);
4237 case MEM_CANCEL_OFFLINE
:
4241 ret
= notifier_from_errno(ret
);
4247 static struct notifier_block slab_memory_callback_nb
= {
4248 .notifier_call
= slab_memory_callback
,
4249 .priority
= SLAB_CALLBACK_PRI
,
4252 /********************************************************************
4253 * Basic setup of slabs
4254 *******************************************************************/
4257 * Used for early kmem_cache structures that were allocated using
4258 * the page allocator. Allocate them properly then fix up the pointers
4259 * that may be pointing to the wrong kmem_cache structure.
4262 static struct kmem_cache
* __init
bootstrap(struct kmem_cache
*static_cache
)
4265 struct kmem_cache
*s
= kmem_cache_zalloc(kmem_cache
, GFP_NOWAIT
);
4266 struct kmem_cache_node
*n
;
4268 memcpy(s
, static_cache
, kmem_cache
->object_size
);
4271 * This runs very early, and only the boot processor is supposed to be
4272 * up. Even if it weren't true, IRQs are not up so we couldn't fire
4275 __flush_cpu_slab(s
, smp_processor_id());
4276 for_each_kmem_cache_node(s
, node
, n
) {
4279 list_for_each_entry(p
, &n
->partial
, slab_list
)
4282 #ifdef CONFIG_SLUB_DEBUG
4283 list_for_each_entry(p
, &n
->full
, slab_list
)
4287 slab_init_memcg_params(s
);
4288 list_add(&s
->list
, &slab_caches
);
4289 memcg_link_cache(s
, NULL
);
4293 void __init
kmem_cache_init(void)
4295 static __initdata
struct kmem_cache boot_kmem_cache
,
4296 boot_kmem_cache_node
;
4298 if (debug_guardpage_minorder())
4301 kmem_cache_node
= &boot_kmem_cache_node
;
4302 kmem_cache
= &boot_kmem_cache
;
4304 create_boot_cache(kmem_cache_node
, "kmem_cache_node",
4305 sizeof(struct kmem_cache_node
), SLAB_HWCACHE_ALIGN
, 0, 0);
4307 register_hotmemory_notifier(&slab_memory_callback_nb
);
4309 /* Able to allocate the per node structures */
4310 slab_state
= PARTIAL
;
4312 create_boot_cache(kmem_cache
, "kmem_cache",
4313 offsetof(struct kmem_cache
, node
) +
4314 nr_node_ids
* sizeof(struct kmem_cache_node
*),
4315 SLAB_HWCACHE_ALIGN
, 0, 0);
4317 kmem_cache
= bootstrap(&boot_kmem_cache
);
4318 kmem_cache_node
= bootstrap(&boot_kmem_cache_node
);
4320 /* Now we can use the kmem_cache to allocate kmalloc slabs */
4321 setup_kmalloc_cache_index_table();
4322 create_kmalloc_caches(0);
4324 /* Setup random freelists for each cache */
4325 init_freelist_randomization();
4327 cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD
, "slub:dead", NULL
,
4330 pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n",
4332 slub_min_order
, slub_max_order
, slub_min_objects
,
4333 nr_cpu_ids
, nr_node_ids
);
4336 void __init
kmem_cache_init_late(void)
4341 __kmem_cache_alias(const char *name
, unsigned int size
, unsigned int align
,
4342 slab_flags_t flags
, void (*ctor
)(void *))
4344 struct kmem_cache
*s
, *c
;
4346 s
= find_mergeable(size
, align
, flags
, name
, ctor
);
4351 * Adjust the object sizes so that we clear
4352 * the complete object on kzalloc.
4354 s
->object_size
= max(s
->object_size
, size
);
4355 s
->inuse
= max(s
->inuse
, ALIGN(size
, sizeof(void *)));
4357 for_each_memcg_cache(c
, s
) {
4358 c
->object_size
= s
->object_size
;
4359 c
->inuse
= max(c
->inuse
, ALIGN(size
, sizeof(void *)));
4362 if (sysfs_slab_alias(s
, name
)) {
4371 int __kmem_cache_create(struct kmem_cache
*s
, slab_flags_t flags
)
4375 err
= kmem_cache_open(s
, flags
);
4379 /* Mutex is not taken during early boot */
4380 if (slab_state
<= UP
)
4383 memcg_propagate_slab_attrs(s
);
4384 err
= sysfs_slab_add(s
);
4386 __kmem_cache_release(s
);
4391 void *__kmalloc_track_caller(size_t size
, gfp_t gfpflags
, unsigned long caller
)
4393 struct kmem_cache
*s
;
4396 if (unlikely(size
> KMALLOC_MAX_CACHE_SIZE
))
4397 return kmalloc_large(size
, gfpflags
);
4399 s
= kmalloc_slab(size
, gfpflags
);
4401 if (unlikely(ZERO_OR_NULL_PTR(s
)))
4404 ret
= slab_alloc(s
, gfpflags
, caller
);
4406 /* Honor the call site pointer we received. */
4407 trace_kmalloc(caller
, ret
, size
, s
->size
, gfpflags
);
4413 void *__kmalloc_node_track_caller(size_t size
, gfp_t gfpflags
,
4414 int node
, unsigned long caller
)
4416 struct kmem_cache
*s
;
4419 if (unlikely(size
> KMALLOC_MAX_CACHE_SIZE
)) {
4420 ret
= kmalloc_large_node(size
, gfpflags
, node
);
4422 trace_kmalloc_node(caller
, ret
,
4423 size
, PAGE_SIZE
<< get_order(size
),
4429 s
= kmalloc_slab(size
, gfpflags
);
4431 if (unlikely(ZERO_OR_NULL_PTR(s
)))
4434 ret
= slab_alloc_node(s
, gfpflags
, node
, caller
);
4436 /* Honor the call site pointer we received. */
4437 trace_kmalloc_node(caller
, ret
, size
, s
->size
, gfpflags
, node
);
4444 static int count_inuse(struct page
*page
)
4449 static int count_total(struct page
*page
)
4451 return page
->objects
;
4455 #ifdef CONFIG_SLUB_DEBUG
4456 static void validate_slab(struct kmem_cache
*s
, struct page
*page
)
4459 void *addr
= page_address(page
);
4464 if (!check_slab(s
, page
) || !on_freelist(s
, page
, NULL
))
4467 /* Now we know that a valid freelist exists */
4468 map
= get_map(s
, page
);
4469 for_each_object(p
, s
, addr
, page
->objects
) {
4470 u8 val
= test_bit(slab_index(p
, s
, addr
), map
) ?
4471 SLUB_RED_INACTIVE
: SLUB_RED_ACTIVE
;
4473 if (!check_object(s
, page
, p
, val
))
4481 static int validate_slab_node(struct kmem_cache
*s
,
4482 struct kmem_cache_node
*n
)
4484 unsigned long count
= 0;
4486 unsigned long flags
;
4488 spin_lock_irqsave(&n
->list_lock
, flags
);
4490 list_for_each_entry(page
, &n
->partial
, slab_list
) {
4491 validate_slab(s
, page
);
4494 if (count
!= n
->nr_partial
)
4495 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
4496 s
->name
, count
, n
->nr_partial
);
4498 if (!(s
->flags
& SLAB_STORE_USER
))
4501 list_for_each_entry(page
, &n
->full
, slab_list
) {
4502 validate_slab(s
, page
);
4505 if (count
!= atomic_long_read(&n
->nr_slabs
))
4506 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
4507 s
->name
, count
, atomic_long_read(&n
->nr_slabs
));
4510 spin_unlock_irqrestore(&n
->list_lock
, flags
);
4514 static long validate_slab_cache(struct kmem_cache
*s
)
4517 unsigned long count
= 0;
4518 struct kmem_cache_node
*n
;
4521 for_each_kmem_cache_node(s
, node
, n
)
4522 count
+= validate_slab_node(s
, n
);
4527 * Generate lists of code addresses where slabcache objects are allocated
4532 unsigned long count
;
4539 DECLARE_BITMAP(cpus
, NR_CPUS
);
4545 unsigned long count
;
4546 struct location
*loc
;
4549 static void free_loc_track(struct loc_track
*t
)
4552 free_pages((unsigned long)t
->loc
,
4553 get_order(sizeof(struct location
) * t
->max
));
4556 static int alloc_loc_track(struct loc_track
*t
, unsigned long max
, gfp_t flags
)
4561 order
= get_order(sizeof(struct location
) * max
);
4563 l
= (void *)__get_free_pages(flags
, order
);
4568 memcpy(l
, t
->loc
, sizeof(struct location
) * t
->count
);
4576 static int add_location(struct loc_track
*t
, struct kmem_cache
*s
,
4577 const struct track
*track
)
4579 long start
, end
, pos
;
4581 unsigned long caddr
;
4582 unsigned long age
= jiffies
- track
->when
;
4588 pos
= start
+ (end
- start
+ 1) / 2;
4591 * There is nothing at "end". If we end up there
4592 * we need to add something to before end.
4597 caddr
= t
->loc
[pos
].addr
;
4598 if (track
->addr
== caddr
) {
4604 if (age
< l
->min_time
)
4606 if (age
> l
->max_time
)
4609 if (track
->pid
< l
->min_pid
)
4610 l
->min_pid
= track
->pid
;
4611 if (track
->pid
> l
->max_pid
)
4612 l
->max_pid
= track
->pid
;
4614 cpumask_set_cpu(track
->cpu
,
4615 to_cpumask(l
->cpus
));
4617 node_set(page_to_nid(virt_to_page(track
)), l
->nodes
);
4621 if (track
->addr
< caddr
)
4628 * Not found. Insert new tracking element.
4630 if (t
->count
>= t
->max
&& !alloc_loc_track(t
, 2 * t
->max
, GFP_ATOMIC
))
4636 (t
->count
- pos
) * sizeof(struct location
));
4639 l
->addr
= track
->addr
;
4643 l
->min_pid
= track
->pid
;
4644 l
->max_pid
= track
->pid
;
4645 cpumask_clear(to_cpumask(l
->cpus
));
4646 cpumask_set_cpu(track
->cpu
, to_cpumask(l
->cpus
));
4647 nodes_clear(l
->nodes
);
4648 node_set(page_to_nid(virt_to_page(track
)), l
->nodes
);
4652 static void process_slab(struct loc_track
*t
, struct kmem_cache
*s
,
4653 struct page
*page
, enum track_item alloc
)
4655 void *addr
= page_address(page
);
4659 map
= get_map(s
, page
);
4660 for_each_object(p
, s
, addr
, page
->objects
)
4661 if (!test_bit(slab_index(p
, s
, addr
), map
))
4662 add_location(t
, s
, get_track(s
, p
, alloc
));
4666 static int list_locations(struct kmem_cache
*s
, char *buf
,
4667 enum track_item alloc
)
4671 struct loc_track t
= { 0, 0, NULL
};
4673 struct kmem_cache_node
*n
;
4675 if (!alloc_loc_track(&t
, PAGE_SIZE
/ sizeof(struct location
),
4677 return sprintf(buf
, "Out of memory\n");
4679 /* Push back cpu slabs */
4682 for_each_kmem_cache_node(s
, node
, n
) {
4683 unsigned long flags
;
4686 if (!atomic_long_read(&n
->nr_slabs
))
4689 spin_lock_irqsave(&n
->list_lock
, flags
);
4690 list_for_each_entry(page
, &n
->partial
, slab_list
)
4691 process_slab(&t
, s
, page
, alloc
);
4692 list_for_each_entry(page
, &n
->full
, slab_list
)
4693 process_slab(&t
, s
, page
, alloc
);
4694 spin_unlock_irqrestore(&n
->list_lock
, flags
);
4697 for (i
= 0; i
< t
.count
; i
++) {
4698 struct location
*l
= &t
.loc
[i
];
4700 if (len
> PAGE_SIZE
- KSYM_SYMBOL_LEN
- 100)
4702 len
+= sprintf(buf
+ len
, "%7ld ", l
->count
);
4705 len
+= sprintf(buf
+ len
, "%pS", (void *)l
->addr
);
4707 len
+= sprintf(buf
+ len
, "<not-available>");
4709 if (l
->sum_time
!= l
->min_time
) {
4710 len
+= sprintf(buf
+ len
, " age=%ld/%ld/%ld",
4712 (long)div_u64(l
->sum_time
, l
->count
),
4715 len
+= sprintf(buf
+ len
, " age=%ld",
4718 if (l
->min_pid
!= l
->max_pid
)
4719 len
+= sprintf(buf
+ len
, " pid=%ld-%ld",
4720 l
->min_pid
, l
->max_pid
);
4722 len
+= sprintf(buf
+ len
, " pid=%ld",
4725 if (num_online_cpus() > 1 &&
4726 !cpumask_empty(to_cpumask(l
->cpus
)) &&
4727 len
< PAGE_SIZE
- 60)
4728 len
+= scnprintf(buf
+ len
, PAGE_SIZE
- len
- 50,
4730 cpumask_pr_args(to_cpumask(l
->cpus
)));
4732 if (nr_online_nodes
> 1 && !nodes_empty(l
->nodes
) &&
4733 len
< PAGE_SIZE
- 60)
4734 len
+= scnprintf(buf
+ len
, PAGE_SIZE
- len
- 50,
4736 nodemask_pr_args(&l
->nodes
));
4738 len
+= sprintf(buf
+ len
, "\n");
4743 len
+= sprintf(buf
, "No data\n");
4746 #endif /* CONFIG_SLUB_DEBUG */
4748 #ifdef SLUB_RESILIENCY_TEST
4749 static void __init
resiliency_test(void)
4752 int type
= KMALLOC_NORMAL
;
4754 BUILD_BUG_ON(KMALLOC_MIN_SIZE
> 16 || KMALLOC_SHIFT_HIGH
< 10);
4756 pr_err("SLUB resiliency testing\n");
4757 pr_err("-----------------------\n");
4758 pr_err("A. Corruption after allocation\n");
4760 p
= kzalloc(16, GFP_KERNEL
);
4762 pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
4765 validate_slab_cache(kmalloc_caches
[type
][4]);
4767 /* Hmmm... The next two are dangerous */
4768 p
= kzalloc(32, GFP_KERNEL
);
4769 p
[32 + sizeof(void *)] = 0x34;
4770 pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
4772 pr_err("If allocated object is overwritten then not detectable\n\n");
4774 validate_slab_cache(kmalloc_caches
[type
][5]);
4775 p
= kzalloc(64, GFP_KERNEL
);
4776 p
+= 64 + (get_cycles() & 0xff) * sizeof(void *);
4778 pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4780 pr_err("If allocated object is overwritten then not detectable\n\n");
4781 validate_slab_cache(kmalloc_caches
[type
][6]);
4783 pr_err("\nB. Corruption after free\n");
4784 p
= kzalloc(128, GFP_KERNEL
);
4787 pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p
);
4788 validate_slab_cache(kmalloc_caches
[type
][7]);
4790 p
= kzalloc(256, GFP_KERNEL
);
4793 pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p
);
4794 validate_slab_cache(kmalloc_caches
[type
][8]);
4796 p
= kzalloc(512, GFP_KERNEL
);
4799 pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p
);
4800 validate_slab_cache(kmalloc_caches
[type
][9]);
4804 static void resiliency_test(void) {};
4806 #endif /* SLUB_RESILIENCY_TEST */
4809 enum slab_stat_type
{
4810 SL_ALL
, /* All slabs */
4811 SL_PARTIAL
, /* Only partially allocated slabs */
4812 SL_CPU
, /* Only slabs used for cpu caches */
4813 SL_OBJECTS
, /* Determine allocated objects not slabs */
4814 SL_TOTAL
/* Determine object capacity not slabs */
4817 #define SO_ALL (1 << SL_ALL)
4818 #define SO_PARTIAL (1 << SL_PARTIAL)
4819 #define SO_CPU (1 << SL_CPU)
4820 #define SO_OBJECTS (1 << SL_OBJECTS)
4821 #define SO_TOTAL (1 << SL_TOTAL)
4824 static bool memcg_sysfs_enabled
= IS_ENABLED(CONFIG_SLUB_MEMCG_SYSFS_ON
);
4826 static int __init
setup_slub_memcg_sysfs(char *str
)
4830 if (get_option(&str
, &v
) > 0)
4831 memcg_sysfs_enabled
= v
;
4836 __setup("slub_memcg_sysfs=", setup_slub_memcg_sysfs
);
4839 static ssize_t
show_slab_objects(struct kmem_cache
*s
,
4840 char *buf
, unsigned long flags
)
4842 unsigned long total
= 0;
4845 unsigned long *nodes
;
4847 nodes
= kcalloc(nr_node_ids
, sizeof(unsigned long), GFP_KERNEL
);
4851 if (flags
& SO_CPU
) {
4854 for_each_possible_cpu(cpu
) {
4855 struct kmem_cache_cpu
*c
= per_cpu_ptr(s
->cpu_slab
,
4860 page
= READ_ONCE(c
->page
);
4864 node
= page_to_nid(page
);
4865 if (flags
& SO_TOTAL
)
4867 else if (flags
& SO_OBJECTS
)
4875 page
= slub_percpu_partial_read_once(c
);
4877 node
= page_to_nid(page
);
4878 if (flags
& SO_TOTAL
)
4880 else if (flags
& SO_OBJECTS
)
4891 * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex"
4892 * already held which will conflict with an existing lock order:
4894 * mem_hotplug_lock->slab_mutex->kernfs_mutex
4896 * We don't really need mem_hotplug_lock (to hold off
4897 * slab_mem_going_offline_callback) here because slab's memory hot
4898 * unplug code doesn't destroy the kmem_cache->node[] data.
4901 #ifdef CONFIG_SLUB_DEBUG
4902 if (flags
& SO_ALL
) {
4903 struct kmem_cache_node
*n
;
4905 for_each_kmem_cache_node(s
, node
, n
) {
4907 if (flags
& SO_TOTAL
)
4908 x
= atomic_long_read(&n
->total_objects
);
4909 else if (flags
& SO_OBJECTS
)
4910 x
= atomic_long_read(&n
->total_objects
) -
4911 count_partial(n
, count_free
);
4913 x
= atomic_long_read(&n
->nr_slabs
);
4920 if (flags
& SO_PARTIAL
) {
4921 struct kmem_cache_node
*n
;
4923 for_each_kmem_cache_node(s
, node
, n
) {
4924 if (flags
& SO_TOTAL
)
4925 x
= count_partial(n
, count_total
);
4926 else if (flags
& SO_OBJECTS
)
4927 x
= count_partial(n
, count_inuse
);
4934 x
= sprintf(buf
, "%lu", total
);
4936 for (node
= 0; node
< nr_node_ids
; node
++)
4938 x
+= sprintf(buf
+ x
, " N%d=%lu",
4942 return x
+ sprintf(buf
+ x
, "\n");
4945 #ifdef CONFIG_SLUB_DEBUG
4946 static int any_slab_objects(struct kmem_cache
*s
)
4949 struct kmem_cache_node
*n
;
4951 for_each_kmem_cache_node(s
, node
, n
)
4952 if (atomic_long_read(&n
->total_objects
))
4959 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4960 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
4962 struct slab_attribute
{
4963 struct attribute attr
;
4964 ssize_t (*show
)(struct kmem_cache
*s
, char *buf
);
4965 ssize_t (*store
)(struct kmem_cache
*s
, const char *x
, size_t count
);
4968 #define SLAB_ATTR_RO(_name) \
4969 static struct slab_attribute _name##_attr = \
4970 __ATTR(_name, 0400, _name##_show, NULL)
4972 #define SLAB_ATTR(_name) \
4973 static struct slab_attribute _name##_attr = \
4974 __ATTR(_name, 0600, _name##_show, _name##_store)
4976 static ssize_t
slab_size_show(struct kmem_cache
*s
, char *buf
)
4978 return sprintf(buf
, "%u\n", s
->size
);
4980 SLAB_ATTR_RO(slab_size
);
4982 static ssize_t
align_show(struct kmem_cache
*s
, char *buf
)
4984 return sprintf(buf
, "%u\n", s
->align
);
4986 SLAB_ATTR_RO(align
);
4988 static ssize_t
object_size_show(struct kmem_cache
*s
, char *buf
)
4990 return sprintf(buf
, "%u\n", s
->object_size
);
4992 SLAB_ATTR_RO(object_size
);
4994 static ssize_t
objs_per_slab_show(struct kmem_cache
*s
, char *buf
)
4996 return sprintf(buf
, "%u\n", oo_objects(s
->oo
));
4998 SLAB_ATTR_RO(objs_per_slab
);
5000 static ssize_t
order_store(struct kmem_cache
*s
,
5001 const char *buf
, size_t length
)
5006 err
= kstrtouint(buf
, 10, &order
);
5010 if (order
> slub_max_order
|| order
< slub_min_order
)
5013 calculate_sizes(s
, order
);
5017 static ssize_t
order_show(struct kmem_cache
*s
, char *buf
)
5019 return sprintf(buf
, "%u\n", oo_order(s
->oo
));
5023 static ssize_t
min_partial_show(struct kmem_cache
*s
, char *buf
)
5025 return sprintf(buf
, "%lu\n", s
->min_partial
);
5028 static ssize_t
min_partial_store(struct kmem_cache
*s
, const char *buf
,
5034 err
= kstrtoul(buf
, 10, &min
);
5038 set_min_partial(s
, min
);
5041 SLAB_ATTR(min_partial
);
5043 static ssize_t
cpu_partial_show(struct kmem_cache
*s
, char *buf
)
5045 return sprintf(buf
, "%u\n", slub_cpu_partial(s
));
5048 static ssize_t
cpu_partial_store(struct kmem_cache
*s
, const char *buf
,
5051 unsigned int objects
;
5054 err
= kstrtouint(buf
, 10, &objects
);
5057 if (objects
&& !kmem_cache_has_cpu_partial(s
))
5060 slub_set_cpu_partial(s
, objects
);
5064 SLAB_ATTR(cpu_partial
);
5066 static ssize_t
ctor_show(struct kmem_cache
*s
, char *buf
)
5070 return sprintf(buf
, "%pS\n", s
->ctor
);
5074 static ssize_t
aliases_show(struct kmem_cache
*s
, char *buf
)
5076 return sprintf(buf
, "%d\n", s
->refcount
< 0 ? 0 : s
->refcount
- 1);
5078 SLAB_ATTR_RO(aliases
);
5080 static ssize_t
partial_show(struct kmem_cache
*s
, char *buf
)
5082 return show_slab_objects(s
, buf
, SO_PARTIAL
);
5084 SLAB_ATTR_RO(partial
);
5086 static ssize_t
cpu_slabs_show(struct kmem_cache
*s
, char *buf
)
5088 return show_slab_objects(s
, buf
, SO_CPU
);
5090 SLAB_ATTR_RO(cpu_slabs
);
5092 static ssize_t
objects_show(struct kmem_cache
*s
, char *buf
)
5094 return show_slab_objects(s
, buf
, SO_ALL
|SO_OBJECTS
);
5096 SLAB_ATTR_RO(objects
);
5098 static ssize_t
objects_partial_show(struct kmem_cache
*s
, char *buf
)
5100 return show_slab_objects(s
, buf
, SO_PARTIAL
|SO_OBJECTS
);
5102 SLAB_ATTR_RO(objects_partial
);
5104 static ssize_t
slabs_cpu_partial_show(struct kmem_cache
*s
, char *buf
)
5111 for_each_online_cpu(cpu
) {
5114 page
= slub_percpu_partial(per_cpu_ptr(s
->cpu_slab
, cpu
));
5117 pages
+= page
->pages
;
5118 objects
+= page
->pobjects
;
5122 len
= sprintf(buf
, "%d(%d)", objects
, pages
);
5125 for_each_online_cpu(cpu
) {
5128 page
= slub_percpu_partial(per_cpu_ptr(s
->cpu_slab
, cpu
));
5130 if (page
&& len
< PAGE_SIZE
- 20)
5131 len
+= sprintf(buf
+ len
, " C%d=%d(%d)", cpu
,
5132 page
->pobjects
, page
->pages
);
5135 return len
+ sprintf(buf
+ len
, "\n");
5137 SLAB_ATTR_RO(slabs_cpu_partial
);
5139 static ssize_t
reclaim_account_show(struct kmem_cache
*s
, char *buf
)
5141 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_RECLAIM_ACCOUNT
));
5144 static ssize_t
reclaim_account_store(struct kmem_cache
*s
,
5145 const char *buf
, size_t length
)
5147 s
->flags
&= ~SLAB_RECLAIM_ACCOUNT
;
5149 s
->flags
|= SLAB_RECLAIM_ACCOUNT
;
5152 SLAB_ATTR(reclaim_account
);
5154 static ssize_t
hwcache_align_show(struct kmem_cache
*s
, char *buf
)
5156 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_HWCACHE_ALIGN
));
5158 SLAB_ATTR_RO(hwcache_align
);
5160 #ifdef CONFIG_ZONE_DMA
5161 static ssize_t
cache_dma_show(struct kmem_cache
*s
, char *buf
)
5163 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_CACHE_DMA
));
5165 SLAB_ATTR_RO(cache_dma
);
5168 static ssize_t
usersize_show(struct kmem_cache
*s
, char *buf
)
5170 return sprintf(buf
, "%u\n", s
->usersize
);
5172 SLAB_ATTR_RO(usersize
);
5174 static ssize_t
destroy_by_rcu_show(struct kmem_cache
*s
, char *buf
)
5176 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_TYPESAFE_BY_RCU
));
5178 SLAB_ATTR_RO(destroy_by_rcu
);
5180 #ifdef CONFIG_SLUB_DEBUG
5181 static ssize_t
slabs_show(struct kmem_cache
*s
, char *buf
)
5183 return show_slab_objects(s
, buf
, SO_ALL
);
5185 SLAB_ATTR_RO(slabs
);
5187 static ssize_t
total_objects_show(struct kmem_cache
*s
, char *buf
)
5189 return show_slab_objects(s
, buf
, SO_ALL
|SO_TOTAL
);
5191 SLAB_ATTR_RO(total_objects
);
5193 static ssize_t
sanity_checks_show(struct kmem_cache
*s
, char *buf
)
5195 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_CONSISTENCY_CHECKS
));
5198 static ssize_t
sanity_checks_store(struct kmem_cache
*s
,
5199 const char *buf
, size_t length
)
5201 s
->flags
&= ~SLAB_CONSISTENCY_CHECKS
;
5202 if (buf
[0] == '1') {
5203 s
->flags
&= ~__CMPXCHG_DOUBLE
;
5204 s
->flags
|= SLAB_CONSISTENCY_CHECKS
;
5208 SLAB_ATTR(sanity_checks
);
5210 static ssize_t
trace_show(struct kmem_cache
*s
, char *buf
)
5212 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_TRACE
));
5215 static ssize_t
trace_store(struct kmem_cache
*s
, const char *buf
,
5219 * Tracing a merged cache is going to give confusing results
5220 * as well as cause other issues like converting a mergeable
5221 * cache into an umergeable one.
5223 if (s
->refcount
> 1)
5226 s
->flags
&= ~SLAB_TRACE
;
5227 if (buf
[0] == '1') {
5228 s
->flags
&= ~__CMPXCHG_DOUBLE
;
5229 s
->flags
|= SLAB_TRACE
;
5235 static ssize_t
red_zone_show(struct kmem_cache
*s
, char *buf
)
5237 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_RED_ZONE
));
5240 static ssize_t
red_zone_store(struct kmem_cache
*s
,
5241 const char *buf
, size_t length
)
5243 if (any_slab_objects(s
))
5246 s
->flags
&= ~SLAB_RED_ZONE
;
5247 if (buf
[0] == '1') {
5248 s
->flags
|= SLAB_RED_ZONE
;
5250 calculate_sizes(s
, -1);
5253 SLAB_ATTR(red_zone
);
5255 static ssize_t
poison_show(struct kmem_cache
*s
, char *buf
)
5257 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_POISON
));
5260 static ssize_t
poison_store(struct kmem_cache
*s
,
5261 const char *buf
, size_t length
)
5263 if (any_slab_objects(s
))
5266 s
->flags
&= ~SLAB_POISON
;
5267 if (buf
[0] == '1') {
5268 s
->flags
|= SLAB_POISON
;
5270 calculate_sizes(s
, -1);
5275 static ssize_t
store_user_show(struct kmem_cache
*s
, char *buf
)
5277 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_STORE_USER
));
5280 static ssize_t
store_user_store(struct kmem_cache
*s
,
5281 const char *buf
, size_t length
)
5283 if (any_slab_objects(s
))
5286 s
->flags
&= ~SLAB_STORE_USER
;
5287 if (buf
[0] == '1') {
5288 s
->flags
&= ~__CMPXCHG_DOUBLE
;
5289 s
->flags
|= SLAB_STORE_USER
;
5291 calculate_sizes(s
, -1);
5294 SLAB_ATTR(store_user
);
5296 static ssize_t
validate_show(struct kmem_cache
*s
, char *buf
)
5301 static ssize_t
validate_store(struct kmem_cache
*s
,
5302 const char *buf
, size_t length
)
5306 if (buf
[0] == '1') {
5307 ret
= validate_slab_cache(s
);
5313 SLAB_ATTR(validate
);
5315 static ssize_t
alloc_calls_show(struct kmem_cache
*s
, char *buf
)
5317 if (!(s
->flags
& SLAB_STORE_USER
))
5319 return list_locations(s
, buf
, TRACK_ALLOC
);
5321 SLAB_ATTR_RO(alloc_calls
);
5323 static ssize_t
free_calls_show(struct kmem_cache
*s
, char *buf
)
5325 if (!(s
->flags
& SLAB_STORE_USER
))
5327 return list_locations(s
, buf
, TRACK_FREE
);
5329 SLAB_ATTR_RO(free_calls
);
5330 #endif /* CONFIG_SLUB_DEBUG */
5332 #ifdef CONFIG_FAILSLAB
5333 static ssize_t
failslab_show(struct kmem_cache
*s
, char *buf
)
5335 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_FAILSLAB
));
5338 static ssize_t
failslab_store(struct kmem_cache
*s
, const char *buf
,
5341 if (s
->refcount
> 1)
5344 s
->flags
&= ~SLAB_FAILSLAB
;
5346 s
->flags
|= SLAB_FAILSLAB
;
5349 SLAB_ATTR(failslab
);
5352 static ssize_t
shrink_show(struct kmem_cache
*s
, char *buf
)
5357 static ssize_t
shrink_store(struct kmem_cache
*s
,
5358 const char *buf
, size_t length
)
5361 kmem_cache_shrink_all(s
);
5369 static ssize_t
remote_node_defrag_ratio_show(struct kmem_cache
*s
, char *buf
)
5371 return sprintf(buf
, "%u\n", s
->remote_node_defrag_ratio
/ 10);
5374 static ssize_t
remote_node_defrag_ratio_store(struct kmem_cache
*s
,
5375 const char *buf
, size_t length
)
5380 err
= kstrtouint(buf
, 10, &ratio
);
5386 s
->remote_node_defrag_ratio
= ratio
* 10;
5390 SLAB_ATTR(remote_node_defrag_ratio
);
5393 #ifdef CONFIG_SLUB_STATS
5394 static int show_stat(struct kmem_cache
*s
, char *buf
, enum stat_item si
)
5396 unsigned long sum
= 0;
5399 int *data
= kmalloc_array(nr_cpu_ids
, sizeof(int), GFP_KERNEL
);
5404 for_each_online_cpu(cpu
) {
5405 unsigned x
= per_cpu_ptr(s
->cpu_slab
, cpu
)->stat
[si
];
5411 len
= sprintf(buf
, "%lu", sum
);
5414 for_each_online_cpu(cpu
) {
5415 if (data
[cpu
] && len
< PAGE_SIZE
- 20)
5416 len
+= sprintf(buf
+ len
, " C%d=%u", cpu
, data
[cpu
]);
5420 return len
+ sprintf(buf
+ len
, "\n");
5423 static void clear_stat(struct kmem_cache
*s
, enum stat_item si
)
5427 for_each_online_cpu(cpu
)
5428 per_cpu_ptr(s
->cpu_slab
, cpu
)->stat
[si
] = 0;
5431 #define STAT_ATTR(si, text) \
5432 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
5434 return show_stat(s, buf, si); \
5436 static ssize_t text##_store(struct kmem_cache *s, \
5437 const char *buf, size_t length) \
5439 if (buf[0] != '0') \
5441 clear_stat(s, si); \
5446 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5447 STAT_ATTR(ALLOC_SLOWPATH
, alloc_slowpath
);
5448 STAT_ATTR(FREE_FASTPATH
, free_fastpath
);
5449 STAT_ATTR(FREE_SLOWPATH
, free_slowpath
);
5450 STAT_ATTR(FREE_FROZEN
, free_frozen
);
5451 STAT_ATTR(FREE_ADD_PARTIAL
, free_add_partial
);
5452 STAT_ATTR(FREE_REMOVE_PARTIAL
, free_remove_partial
);
5453 STAT_ATTR(ALLOC_FROM_PARTIAL
, alloc_from_partial
);
5454 STAT_ATTR(ALLOC_SLAB
, alloc_slab
);
5455 STAT_ATTR(ALLOC_REFILL
, alloc_refill
);
5456 STAT_ATTR(ALLOC_NODE_MISMATCH
, alloc_node_mismatch
);
5457 STAT_ATTR(FREE_SLAB
, free_slab
);
5458 STAT_ATTR(CPUSLAB_FLUSH
, cpuslab_flush
);
5459 STAT_ATTR(DEACTIVATE_FULL
, deactivate_full
);
5460 STAT_ATTR(DEACTIVATE_EMPTY
, deactivate_empty
);
5461 STAT_ATTR(DEACTIVATE_TO_HEAD
, deactivate_to_head
);
5462 STAT_ATTR(DEACTIVATE_TO_TAIL
, deactivate_to_tail
);
5463 STAT_ATTR(DEACTIVATE_REMOTE_FREES
, deactivate_remote_frees
);
5464 STAT_ATTR(DEACTIVATE_BYPASS
, deactivate_bypass
);
5465 STAT_ATTR(ORDER_FALLBACK
, order_fallback
);
5466 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL
, cmpxchg_double_cpu_fail
);
5467 STAT_ATTR(CMPXCHG_DOUBLE_FAIL
, cmpxchg_double_fail
);
5468 STAT_ATTR(CPU_PARTIAL_ALLOC
, cpu_partial_alloc
);
5469 STAT_ATTR(CPU_PARTIAL_FREE
, cpu_partial_free
);
5470 STAT_ATTR(CPU_PARTIAL_NODE
, cpu_partial_node
);
5471 STAT_ATTR(CPU_PARTIAL_DRAIN
, cpu_partial_drain
);
5472 #endif /* CONFIG_SLUB_STATS */
5474 static struct attribute
*slab_attrs
[] = {
5475 &slab_size_attr
.attr
,
5476 &object_size_attr
.attr
,
5477 &objs_per_slab_attr
.attr
,
5479 &min_partial_attr
.attr
,
5480 &cpu_partial_attr
.attr
,
5482 &objects_partial_attr
.attr
,
5484 &cpu_slabs_attr
.attr
,
5488 &hwcache_align_attr
.attr
,
5489 &reclaim_account_attr
.attr
,
5490 &destroy_by_rcu_attr
.attr
,
5492 &slabs_cpu_partial_attr
.attr
,
5493 #ifdef CONFIG_SLUB_DEBUG
5494 &total_objects_attr
.attr
,
5496 &sanity_checks_attr
.attr
,
5498 &red_zone_attr
.attr
,
5500 &store_user_attr
.attr
,
5501 &validate_attr
.attr
,
5502 &alloc_calls_attr
.attr
,
5503 &free_calls_attr
.attr
,
5505 #ifdef CONFIG_ZONE_DMA
5506 &cache_dma_attr
.attr
,
5509 &remote_node_defrag_ratio_attr
.attr
,
5511 #ifdef CONFIG_SLUB_STATS
5512 &alloc_fastpath_attr
.attr
,
5513 &alloc_slowpath_attr
.attr
,
5514 &free_fastpath_attr
.attr
,
5515 &free_slowpath_attr
.attr
,
5516 &free_frozen_attr
.attr
,
5517 &free_add_partial_attr
.attr
,
5518 &free_remove_partial_attr
.attr
,
5519 &alloc_from_partial_attr
.attr
,
5520 &alloc_slab_attr
.attr
,
5521 &alloc_refill_attr
.attr
,
5522 &alloc_node_mismatch_attr
.attr
,
5523 &free_slab_attr
.attr
,
5524 &cpuslab_flush_attr
.attr
,
5525 &deactivate_full_attr
.attr
,
5526 &deactivate_empty_attr
.attr
,
5527 &deactivate_to_head_attr
.attr
,
5528 &deactivate_to_tail_attr
.attr
,
5529 &deactivate_remote_frees_attr
.attr
,
5530 &deactivate_bypass_attr
.attr
,
5531 &order_fallback_attr
.attr
,
5532 &cmpxchg_double_fail_attr
.attr
,
5533 &cmpxchg_double_cpu_fail_attr
.attr
,
5534 &cpu_partial_alloc_attr
.attr
,
5535 &cpu_partial_free_attr
.attr
,
5536 &cpu_partial_node_attr
.attr
,
5537 &cpu_partial_drain_attr
.attr
,
5539 #ifdef CONFIG_FAILSLAB
5540 &failslab_attr
.attr
,
5542 &usersize_attr
.attr
,
5547 static const struct attribute_group slab_attr_group
= {
5548 .attrs
= slab_attrs
,
5551 static ssize_t
slab_attr_show(struct kobject
*kobj
,
5552 struct attribute
*attr
,
5555 struct slab_attribute
*attribute
;
5556 struct kmem_cache
*s
;
5559 attribute
= to_slab_attr(attr
);
5562 if (!attribute
->show
)
5565 err
= attribute
->show(s
, buf
);
5570 static ssize_t
slab_attr_store(struct kobject
*kobj
,
5571 struct attribute
*attr
,
5572 const char *buf
, size_t len
)
5574 struct slab_attribute
*attribute
;
5575 struct kmem_cache
*s
;
5578 attribute
= to_slab_attr(attr
);
5581 if (!attribute
->store
)
5584 err
= attribute
->store(s
, buf
, len
);
5586 if (slab_state
>= FULL
&& err
>= 0 && is_root_cache(s
)) {
5587 struct kmem_cache
*c
;
5589 mutex_lock(&slab_mutex
);
5590 if (s
->max_attr_size
< len
)
5591 s
->max_attr_size
= len
;
5594 * This is a best effort propagation, so this function's return
5595 * value will be determined by the parent cache only. This is
5596 * basically because not all attributes will have a well
5597 * defined semantics for rollbacks - most of the actions will
5598 * have permanent effects.
5600 * Returning the error value of any of the children that fail
5601 * is not 100 % defined, in the sense that users seeing the
5602 * error code won't be able to know anything about the state of
5605 * Only returning the error code for the parent cache at least
5606 * has well defined semantics. The cache being written to
5607 * directly either failed or succeeded, in which case we loop
5608 * through the descendants with best-effort propagation.
5610 for_each_memcg_cache(c
, s
)
5611 attribute
->store(c
, buf
, len
);
5612 mutex_unlock(&slab_mutex
);
5618 static void memcg_propagate_slab_attrs(struct kmem_cache
*s
)
5622 char *buffer
= NULL
;
5623 struct kmem_cache
*root_cache
;
5625 if (is_root_cache(s
))
5628 root_cache
= s
->memcg_params
.root_cache
;
5631 * This mean this cache had no attribute written. Therefore, no point
5632 * in copying default values around
5634 if (!root_cache
->max_attr_size
)
5637 for (i
= 0; i
< ARRAY_SIZE(slab_attrs
); i
++) {
5640 struct slab_attribute
*attr
= to_slab_attr(slab_attrs
[i
]);
5643 if (!attr
|| !attr
->store
|| !attr
->show
)
5647 * It is really bad that we have to allocate here, so we will
5648 * do it only as a fallback. If we actually allocate, though,
5649 * we can just use the allocated buffer until the end.
5651 * Most of the slub attributes will tend to be very small in
5652 * size, but sysfs allows buffers up to a page, so they can
5653 * theoretically happen.
5657 else if (root_cache
->max_attr_size
< ARRAY_SIZE(mbuf
))
5660 buffer
= (char *) get_zeroed_page(GFP_KERNEL
);
5661 if (WARN_ON(!buffer
))
5666 len
= attr
->show(root_cache
, buf
);
5668 attr
->store(s
, buf
, len
);
5672 free_page((unsigned long)buffer
);
5673 #endif /* CONFIG_MEMCG */
5676 static void kmem_cache_release(struct kobject
*k
)
5678 slab_kmem_cache_release(to_slab(k
));
5681 static const struct sysfs_ops slab_sysfs_ops
= {
5682 .show
= slab_attr_show
,
5683 .store
= slab_attr_store
,
5686 static struct kobj_type slab_ktype
= {
5687 .sysfs_ops
= &slab_sysfs_ops
,
5688 .release
= kmem_cache_release
,
5691 static int uevent_filter(struct kset
*kset
, struct kobject
*kobj
)
5693 struct kobj_type
*ktype
= get_ktype(kobj
);
5695 if (ktype
== &slab_ktype
)
5700 static const struct kset_uevent_ops slab_uevent_ops
= {
5701 .filter
= uevent_filter
,
5704 static struct kset
*slab_kset
;
5706 static inline struct kset
*cache_kset(struct kmem_cache
*s
)
5709 if (!is_root_cache(s
))
5710 return s
->memcg_params
.root_cache
->memcg_kset
;
5715 #define ID_STR_LENGTH 64
5717 /* Create a unique string id for a slab cache:
5719 * Format :[flags-]size
5721 static char *create_unique_id(struct kmem_cache
*s
)
5723 char *name
= kmalloc(ID_STR_LENGTH
, GFP_KERNEL
);
5730 * First flags affecting slabcache operations. We will only
5731 * get here for aliasable slabs so we do not need to support
5732 * too many flags. The flags here must cover all flags that
5733 * are matched during merging to guarantee that the id is
5736 if (s
->flags
& SLAB_CACHE_DMA
)
5738 if (s
->flags
& SLAB_CACHE_DMA32
)
5740 if (s
->flags
& SLAB_RECLAIM_ACCOUNT
)
5742 if (s
->flags
& SLAB_CONSISTENCY_CHECKS
)
5744 if (s
->flags
& SLAB_ACCOUNT
)
5748 p
+= sprintf(p
, "%07u", s
->size
);
5750 BUG_ON(p
> name
+ ID_STR_LENGTH
- 1);
5754 static void sysfs_slab_remove_workfn(struct work_struct
*work
)
5756 struct kmem_cache
*s
=
5757 container_of(work
, struct kmem_cache
, kobj_remove_work
);
5759 if (!s
->kobj
.state_in_sysfs
)
5761 * For a memcg cache, this may be called during
5762 * deactivation and again on shutdown. Remove only once.
5763 * A cache is never shut down before deactivation is
5764 * complete, so no need to worry about synchronization.
5769 kset_unregister(s
->memcg_kset
);
5771 kobject_uevent(&s
->kobj
, KOBJ_REMOVE
);
5773 kobject_put(&s
->kobj
);
5776 static int sysfs_slab_add(struct kmem_cache
*s
)
5780 struct kset
*kset
= cache_kset(s
);
5781 int unmergeable
= slab_unmergeable(s
);
5783 INIT_WORK(&s
->kobj_remove_work
, sysfs_slab_remove_workfn
);
5786 kobject_init(&s
->kobj
, &slab_ktype
);
5790 if (!unmergeable
&& disable_higher_order_debug
&&
5791 (slub_debug
& DEBUG_METADATA_FLAGS
))
5796 * Slabcache can never be merged so we can use the name proper.
5797 * This is typically the case for debug situations. In that
5798 * case we can catch duplicate names easily.
5800 sysfs_remove_link(&slab_kset
->kobj
, s
->name
);
5804 * Create a unique name for the slab as a target
5807 name
= create_unique_id(s
);
5810 s
->kobj
.kset
= kset
;
5811 err
= kobject_init_and_add(&s
->kobj
, &slab_ktype
, NULL
, "%s", name
);
5813 kobject_put(&s
->kobj
);
5817 err
= sysfs_create_group(&s
->kobj
, &slab_attr_group
);
5822 if (is_root_cache(s
) && memcg_sysfs_enabled
) {
5823 s
->memcg_kset
= kset_create_and_add("cgroup", NULL
, &s
->kobj
);
5824 if (!s
->memcg_kset
) {
5831 kobject_uevent(&s
->kobj
, KOBJ_ADD
);
5833 /* Setup first alias */
5834 sysfs_slab_alias(s
, s
->name
);
5841 kobject_del(&s
->kobj
);
5845 static void sysfs_slab_remove(struct kmem_cache
*s
)
5847 if (slab_state
< FULL
)
5849 * Sysfs has not been setup yet so no need to remove the
5854 kobject_get(&s
->kobj
);
5855 schedule_work(&s
->kobj_remove_work
);
5858 void sysfs_slab_unlink(struct kmem_cache
*s
)
5860 if (slab_state
>= FULL
)
5861 kobject_del(&s
->kobj
);
5864 void sysfs_slab_release(struct kmem_cache
*s
)
5866 if (slab_state
>= FULL
)
5867 kobject_put(&s
->kobj
);
5871 * Need to buffer aliases during bootup until sysfs becomes
5872 * available lest we lose that information.
5874 struct saved_alias
{
5875 struct kmem_cache
*s
;
5877 struct saved_alias
*next
;
5880 static struct saved_alias
*alias_list
;
5882 static int sysfs_slab_alias(struct kmem_cache
*s
, const char *name
)
5884 struct saved_alias
*al
;
5886 if (slab_state
== FULL
) {
5888 * If we have a leftover link then remove it.
5890 sysfs_remove_link(&slab_kset
->kobj
, name
);
5891 return sysfs_create_link(&slab_kset
->kobj
, &s
->kobj
, name
);
5894 al
= kmalloc(sizeof(struct saved_alias
), GFP_KERNEL
);
5900 al
->next
= alias_list
;
5905 static int __init
slab_sysfs_init(void)
5907 struct kmem_cache
*s
;
5910 mutex_lock(&slab_mutex
);
5912 slab_kset
= kset_create_and_add("slab", &slab_uevent_ops
, kernel_kobj
);
5914 mutex_unlock(&slab_mutex
);
5915 pr_err("Cannot register slab subsystem.\n");
5921 list_for_each_entry(s
, &slab_caches
, list
) {
5922 err
= sysfs_slab_add(s
);
5924 pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
5928 while (alias_list
) {
5929 struct saved_alias
*al
= alias_list
;
5931 alias_list
= alias_list
->next
;
5932 err
= sysfs_slab_alias(al
->s
, al
->name
);
5934 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
5939 mutex_unlock(&slab_mutex
);
5944 __initcall(slab_sysfs_init
);
5945 #endif /* CONFIG_SYSFS */
5948 * The /proc/slabinfo ABI
5950 #ifdef CONFIG_SLUB_DEBUG
5951 void get_slabinfo(struct kmem_cache
*s
, struct slabinfo
*sinfo
)
5953 unsigned long nr_slabs
= 0;
5954 unsigned long nr_objs
= 0;
5955 unsigned long nr_free
= 0;
5957 struct kmem_cache_node
*n
;
5959 for_each_kmem_cache_node(s
, node
, n
) {
5960 nr_slabs
+= node_nr_slabs(n
);
5961 nr_objs
+= node_nr_objs(n
);
5962 nr_free
+= count_partial(n
, count_free
);
5965 sinfo
->active_objs
= nr_objs
- nr_free
;
5966 sinfo
->num_objs
= nr_objs
;
5967 sinfo
->active_slabs
= nr_slabs
;
5968 sinfo
->num_slabs
= nr_slabs
;
5969 sinfo
->objects_per_slab
= oo_objects(s
->oo
);
5970 sinfo
->cache_order
= oo_order(s
->oo
);
5973 void slabinfo_show_stats(struct seq_file
*m
, struct kmem_cache
*s
)
5977 ssize_t
slabinfo_write(struct file
*file
, const char __user
*buffer
,
5978 size_t count
, loff_t
*ppos
)
5982 #endif /* CONFIG_SLUB_DEBUG */