2 * Freescale i.MX23/i.MX28 Data Co-Processor driver
4 * Copyright (C) 2013 Marek Vasut <marex@denx.de>
6 * The code contained herein is licensed under the GNU General Public
7 * License. You may obtain a copy of the GNU General Public License
8 * Version 2 or later at the following locations:
10 * http://www.opensource.org/licenses/gpl-license.html
11 * http://www.gnu.org/copyleft/gpl.html
14 #include <linux/crypto.h>
15 #include <linux/dma-mapping.h>
16 #include <linux/interrupt.h>
18 #include <linux/kernel.h>
19 #include <linux/kthread.h>
20 #include <linux/module.h>
22 #include <linux/platform_device.h>
23 #include <linux/stmp_device.h>
25 #include <crypto/aes.h>
26 #include <crypto/sha.h>
27 #include <crypto/internal/hash.h>
29 #define DCP_MAX_CHANS 4
30 #define DCP_BUF_SZ PAGE_SIZE
32 #define DCP_ALIGNMENT 64
34 /* DCP DMA descriptor. */
36 uint32_t next_cmd_addr
;
46 /* Coherent aligned block for bounce buffering. */
47 struct dcp_coherent_block
{
48 uint8_t aes_in_buf
[DCP_BUF_SZ
];
49 uint8_t aes_out_buf
[DCP_BUF_SZ
];
50 uint8_t sha_in_buf
[DCP_BUF_SZ
];
52 uint8_t aes_key
[2 * AES_KEYSIZE_128
];
54 struct dcp_dma_desc desc
[DCP_MAX_CHANS
];
63 struct dcp_coherent_block
*coh
;
65 struct completion completion
[DCP_MAX_CHANS
];
66 struct mutex mutex
[DCP_MAX_CHANS
];
67 struct task_struct
*thread
[DCP_MAX_CHANS
];
68 struct crypto_queue queue
[DCP_MAX_CHANS
];
72 DCP_CHAN_HASH_SHA
= 0,
76 struct dcp_async_ctx
{
81 /* SHA Hash-specific context */
86 /* Crypto-specific context */
87 struct crypto_ablkcipher
*fallback
;
89 uint8_t key
[AES_KEYSIZE_128
];
92 struct dcp_aes_req_ctx
{
97 struct dcp_sha_req_ctx
{
103 * There can even be only one instance of the MXS DCP due to the
104 * design of Linux Crypto API.
106 static struct dcp
*global_sdcp
;
107 static DEFINE_MUTEX(global_mutex
);
109 /* DCP register layout. */
110 #define MXS_DCP_CTRL 0x00
111 #define MXS_DCP_CTRL_GATHER_RESIDUAL_WRITES (1 << 23)
112 #define MXS_DCP_CTRL_ENABLE_CONTEXT_CACHING (1 << 22)
114 #define MXS_DCP_STAT 0x10
115 #define MXS_DCP_STAT_CLR 0x18
116 #define MXS_DCP_STAT_IRQ_MASK 0xf
118 #define MXS_DCP_CHANNELCTRL 0x20
119 #define MXS_DCP_CHANNELCTRL_ENABLE_CHANNEL_MASK 0xff
121 #define MXS_DCP_CAPABILITY1 0x40
122 #define MXS_DCP_CAPABILITY1_SHA256 (4 << 16)
123 #define MXS_DCP_CAPABILITY1_SHA1 (1 << 16)
124 #define MXS_DCP_CAPABILITY1_AES128 (1 << 0)
126 #define MXS_DCP_CONTEXT 0x50
128 #define MXS_DCP_CH_N_CMDPTR(n) (0x100 + ((n) * 0x40))
130 #define MXS_DCP_CH_N_SEMA(n) (0x110 + ((n) * 0x40))
132 #define MXS_DCP_CH_N_STAT(n) (0x120 + ((n) * 0x40))
133 #define MXS_DCP_CH_N_STAT_CLR(n) (0x128 + ((n) * 0x40))
135 /* DMA descriptor bits. */
136 #define MXS_DCP_CONTROL0_HASH_TERM (1 << 13)
137 #define MXS_DCP_CONTROL0_HASH_INIT (1 << 12)
138 #define MXS_DCP_CONTROL0_PAYLOAD_KEY (1 << 11)
139 #define MXS_DCP_CONTROL0_CIPHER_ENCRYPT (1 << 8)
140 #define MXS_DCP_CONTROL0_CIPHER_INIT (1 << 9)
141 #define MXS_DCP_CONTROL0_ENABLE_HASH (1 << 6)
142 #define MXS_DCP_CONTROL0_ENABLE_CIPHER (1 << 5)
143 #define MXS_DCP_CONTROL0_DECR_SEMAPHORE (1 << 1)
144 #define MXS_DCP_CONTROL0_INTERRUPT (1 << 0)
146 #define MXS_DCP_CONTROL1_HASH_SELECT_SHA256 (2 << 16)
147 #define MXS_DCP_CONTROL1_HASH_SELECT_SHA1 (0 << 16)
148 #define MXS_DCP_CONTROL1_CIPHER_MODE_CBC (1 << 4)
149 #define MXS_DCP_CONTROL1_CIPHER_MODE_ECB (0 << 4)
150 #define MXS_DCP_CONTROL1_CIPHER_SELECT_AES128 (0 << 0)
152 static int mxs_dcp_start_dma(struct dcp_async_ctx
*actx
)
154 struct dcp
*sdcp
= global_sdcp
;
155 const int chan
= actx
->chan
;
158 struct dcp_dma_desc
*desc
= &sdcp
->coh
->desc
[actx
->chan
];
160 dma_addr_t desc_phys
= dma_map_single(sdcp
->dev
, desc
, sizeof(*desc
),
163 reinit_completion(&sdcp
->completion
[chan
]);
165 /* Clear status register. */
166 writel(0xffffffff, sdcp
->base
+ MXS_DCP_CH_N_STAT_CLR(chan
));
168 /* Load the DMA descriptor. */
169 writel(desc_phys
, sdcp
->base
+ MXS_DCP_CH_N_CMDPTR(chan
));
171 /* Increment the semaphore to start the DMA transfer. */
172 writel(1, sdcp
->base
+ MXS_DCP_CH_N_SEMA(chan
));
174 ret
= wait_for_completion_timeout(&sdcp
->completion
[chan
],
175 msecs_to_jiffies(1000));
177 dev_err(sdcp
->dev
, "Channel %i timeout (DCP_STAT=0x%08x)\n",
178 chan
, readl(sdcp
->base
+ MXS_DCP_STAT
));
182 stat
= readl(sdcp
->base
+ MXS_DCP_CH_N_STAT(chan
));
184 dev_err(sdcp
->dev
, "Channel %i error (CH_STAT=0x%08x)\n",
189 dma_unmap_single(sdcp
->dev
, desc_phys
, sizeof(*desc
), DMA_TO_DEVICE
);
195 * Encryption (AES128)
197 static int mxs_dcp_run_aes(struct dcp_async_ctx
*actx
,
198 struct ablkcipher_request
*req
, int init
)
200 struct dcp
*sdcp
= global_sdcp
;
201 struct dcp_dma_desc
*desc
= &sdcp
->coh
->desc
[actx
->chan
];
202 struct dcp_aes_req_ctx
*rctx
= ablkcipher_request_ctx(req
);
205 dma_addr_t key_phys
= dma_map_single(sdcp
->dev
, sdcp
->coh
->aes_key
,
208 dma_addr_t src_phys
= dma_map_single(sdcp
->dev
, sdcp
->coh
->aes_in_buf
,
209 DCP_BUF_SZ
, DMA_TO_DEVICE
);
210 dma_addr_t dst_phys
= dma_map_single(sdcp
->dev
, sdcp
->coh
->aes_out_buf
,
211 DCP_BUF_SZ
, DMA_FROM_DEVICE
);
213 /* Fill in the DMA descriptor. */
214 desc
->control0
= MXS_DCP_CONTROL0_DECR_SEMAPHORE
|
215 MXS_DCP_CONTROL0_INTERRUPT
|
216 MXS_DCP_CONTROL0_ENABLE_CIPHER
;
218 /* Payload contains the key. */
219 desc
->control0
|= MXS_DCP_CONTROL0_PAYLOAD_KEY
;
222 desc
->control0
|= MXS_DCP_CONTROL0_CIPHER_ENCRYPT
;
224 desc
->control0
|= MXS_DCP_CONTROL0_CIPHER_INIT
;
226 desc
->control1
= MXS_DCP_CONTROL1_CIPHER_SELECT_AES128
;
229 desc
->control1
|= MXS_DCP_CONTROL1_CIPHER_MODE_ECB
;
231 desc
->control1
|= MXS_DCP_CONTROL1_CIPHER_MODE_CBC
;
233 desc
->next_cmd_addr
= 0;
234 desc
->source
= src_phys
;
235 desc
->destination
= dst_phys
;
236 desc
->size
= actx
->fill
;
237 desc
->payload
= key_phys
;
240 ret
= mxs_dcp_start_dma(actx
);
242 dma_unmap_single(sdcp
->dev
, key_phys
, 2 * AES_KEYSIZE_128
,
244 dma_unmap_single(sdcp
->dev
, src_phys
, DCP_BUF_SZ
, DMA_TO_DEVICE
);
245 dma_unmap_single(sdcp
->dev
, dst_phys
, DCP_BUF_SZ
, DMA_FROM_DEVICE
);
250 static int mxs_dcp_aes_block_crypt(struct crypto_async_request
*arq
)
252 struct dcp
*sdcp
= global_sdcp
;
254 struct ablkcipher_request
*req
= ablkcipher_request_cast(arq
);
255 struct dcp_async_ctx
*actx
= crypto_tfm_ctx(arq
->tfm
);
256 struct dcp_aes_req_ctx
*rctx
= ablkcipher_request_ctx(req
);
258 struct scatterlist
*dst
= req
->dst
;
259 struct scatterlist
*src
= req
->src
;
260 const int nents
= sg_nents(req
->src
);
262 const int out_off
= DCP_BUF_SZ
;
263 uint8_t *in_buf
= sdcp
->coh
->aes_in_buf
;
264 uint8_t *out_buf
= sdcp
->coh
->aes_out_buf
;
266 uint8_t *out_tmp
, *src_buf
, *dst_buf
= NULL
;
267 uint32_t dst_off
= 0;
269 uint8_t *key
= sdcp
->coh
->aes_key
;
273 unsigned int i
, len
, clen
, rem
= 0;
278 /* Copy the key from the temporary location. */
279 memcpy(key
, actx
->key
, actx
->key_len
);
282 /* Copy the CBC IV just past the key. */
283 memcpy(key
+ AES_KEYSIZE_128
, req
->info
, AES_KEYSIZE_128
);
284 /* CBC needs the INIT set. */
287 memset(key
+ AES_KEYSIZE_128
, 0, AES_KEYSIZE_128
);
290 for_each_sg(req
->src
, src
, nents
, i
) {
291 src_buf
= sg_virt(src
);
292 len
= sg_dma_len(src
);
295 if (actx
->fill
+ len
> out_off
)
296 clen
= out_off
- actx
->fill
;
300 memcpy(in_buf
+ actx
->fill
, src_buf
, clen
);
306 * If we filled the buffer or this is the last SG,
309 if (actx
->fill
== out_off
|| sg_is_last(src
)) {
310 ret
= mxs_dcp_run_aes(actx
, req
, init
);
316 while (dst
&& actx
->fill
) {
318 dst_buf
= sg_virt(dst
);
321 rem
= min(sg_dma_len(dst
) - dst_off
,
324 memcpy(dst_buf
+ dst_off
, out_tmp
, rem
);
329 if (dst_off
== sg_dma_len(dst
)) {
343 static int dcp_chan_thread_aes(void *data
)
345 struct dcp
*sdcp
= global_sdcp
;
346 const int chan
= DCP_CHAN_CRYPTO
;
348 struct crypto_async_request
*backlog
;
349 struct crypto_async_request
*arq
;
354 __set_current_state(TASK_INTERRUPTIBLE
);
356 mutex_lock(&sdcp
->mutex
[chan
]);
357 backlog
= crypto_get_backlog(&sdcp
->queue
[chan
]);
358 arq
= crypto_dequeue_request(&sdcp
->queue
[chan
]);
359 mutex_unlock(&sdcp
->mutex
[chan
]);
362 backlog
->complete(backlog
, -EINPROGRESS
);
365 ret
= mxs_dcp_aes_block_crypt(arq
);
366 arq
->complete(arq
, ret
);
371 } while (!kthread_should_stop());
376 static int mxs_dcp_block_fallback(struct ablkcipher_request
*req
, int enc
)
378 struct crypto_tfm
*tfm
=
379 crypto_ablkcipher_tfm(crypto_ablkcipher_reqtfm(req
));
380 struct dcp_async_ctx
*ctx
= crypto_ablkcipher_ctx(
381 crypto_ablkcipher_reqtfm(req
));
384 ablkcipher_request_set_tfm(req
, ctx
->fallback
);
387 ret
= crypto_ablkcipher_encrypt(req
);
389 ret
= crypto_ablkcipher_decrypt(req
);
391 ablkcipher_request_set_tfm(req
, __crypto_ablkcipher_cast(tfm
));
396 static int mxs_dcp_aes_enqueue(struct ablkcipher_request
*req
, int enc
, int ecb
)
398 struct dcp
*sdcp
= global_sdcp
;
399 struct crypto_async_request
*arq
= &req
->base
;
400 struct dcp_async_ctx
*actx
= crypto_tfm_ctx(arq
->tfm
);
401 struct dcp_aes_req_ctx
*rctx
= ablkcipher_request_ctx(req
);
404 if (unlikely(actx
->key_len
!= AES_KEYSIZE_128
))
405 return mxs_dcp_block_fallback(req
, enc
);
409 actx
->chan
= DCP_CHAN_CRYPTO
;
411 mutex_lock(&sdcp
->mutex
[actx
->chan
]);
412 ret
= crypto_enqueue_request(&sdcp
->queue
[actx
->chan
], &req
->base
);
413 mutex_unlock(&sdcp
->mutex
[actx
->chan
]);
415 wake_up_process(sdcp
->thread
[actx
->chan
]);
420 static int mxs_dcp_aes_ecb_decrypt(struct ablkcipher_request
*req
)
422 return mxs_dcp_aes_enqueue(req
, 0, 1);
425 static int mxs_dcp_aes_ecb_encrypt(struct ablkcipher_request
*req
)
427 return mxs_dcp_aes_enqueue(req
, 1, 1);
430 static int mxs_dcp_aes_cbc_decrypt(struct ablkcipher_request
*req
)
432 return mxs_dcp_aes_enqueue(req
, 0, 0);
435 static int mxs_dcp_aes_cbc_encrypt(struct ablkcipher_request
*req
)
437 return mxs_dcp_aes_enqueue(req
, 1, 0);
440 static int mxs_dcp_aes_setkey(struct crypto_ablkcipher
*tfm
, const u8
*key
,
443 struct dcp_async_ctx
*actx
= crypto_ablkcipher_ctx(tfm
);
447 * AES 128 is supposed by the hardware, store key into temporary
448 * buffer and exit. We must use the temporary buffer here, since
449 * there can still be an operation in progress.
452 if (len
== AES_KEYSIZE_128
) {
453 memcpy(actx
->key
, key
, len
);
457 /* Check if the key size is supported by kernel at all. */
458 if (len
!= AES_KEYSIZE_192
&& len
!= AES_KEYSIZE_256
) {
459 tfm
->base
.crt_flags
|= CRYPTO_TFM_RES_BAD_KEY_LEN
;
464 * If the requested AES key size is not supported by the hardware,
465 * but is supported by in-kernel software implementation, we use
468 actx
->fallback
->base
.crt_flags
&= ~CRYPTO_TFM_REQ_MASK
;
469 actx
->fallback
->base
.crt_flags
|=
470 tfm
->base
.crt_flags
& CRYPTO_TFM_REQ_MASK
;
472 ret
= crypto_ablkcipher_setkey(actx
->fallback
, key
, len
);
476 tfm
->base
.crt_flags
&= ~CRYPTO_TFM_RES_MASK
;
477 tfm
->base
.crt_flags
|=
478 actx
->fallback
->base
.crt_flags
& CRYPTO_TFM_RES_MASK
;
483 static int mxs_dcp_aes_fallback_init(struct crypto_tfm
*tfm
)
485 const char *name
= tfm
->__crt_alg
->cra_name
;
486 const uint32_t flags
= CRYPTO_ALG_ASYNC
| CRYPTO_ALG_NEED_FALLBACK
;
487 struct dcp_async_ctx
*actx
= crypto_tfm_ctx(tfm
);
488 struct crypto_ablkcipher
*blk
;
490 blk
= crypto_alloc_ablkcipher(name
, 0, flags
);
494 actx
->fallback
= blk
;
495 tfm
->crt_ablkcipher
.reqsize
= sizeof(struct dcp_aes_req_ctx
);
499 static void mxs_dcp_aes_fallback_exit(struct crypto_tfm
*tfm
)
501 struct dcp_async_ctx
*actx
= crypto_tfm_ctx(tfm
);
503 crypto_free_ablkcipher(actx
->fallback
);
504 actx
->fallback
= NULL
;
508 * Hashing (SHA1/SHA256)
510 static int mxs_dcp_run_sha(struct ahash_request
*req
)
512 struct dcp
*sdcp
= global_sdcp
;
515 struct crypto_ahash
*tfm
= crypto_ahash_reqtfm(req
);
516 struct dcp_async_ctx
*actx
= crypto_ahash_ctx(tfm
);
517 struct dcp_sha_req_ctx
*rctx
= ahash_request_ctx(req
);
518 struct hash_alg_common
*halg
= crypto_hash_alg_common(tfm
);
520 struct dcp_dma_desc
*desc
= &sdcp
->coh
->desc
[actx
->chan
];
522 dma_addr_t digest_phys
= 0;
523 dma_addr_t buf_phys
= dma_map_single(sdcp
->dev
, sdcp
->coh
->sha_in_buf
,
524 DCP_BUF_SZ
, DMA_TO_DEVICE
);
526 /* Fill in the DMA descriptor. */
527 desc
->control0
= MXS_DCP_CONTROL0_DECR_SEMAPHORE
|
528 MXS_DCP_CONTROL0_INTERRUPT
|
529 MXS_DCP_CONTROL0_ENABLE_HASH
;
531 desc
->control0
|= MXS_DCP_CONTROL0_HASH_INIT
;
533 desc
->control1
= actx
->alg
;
534 desc
->next_cmd_addr
= 0;
535 desc
->source
= buf_phys
;
536 desc
->destination
= 0;
537 desc
->size
= actx
->fill
;
541 /* Set HASH_TERM bit for last transfer block. */
543 digest_phys
= dma_map_single(sdcp
->dev
, req
->result
,
544 halg
->digestsize
, DMA_FROM_DEVICE
);
545 desc
->control0
|= MXS_DCP_CONTROL0_HASH_TERM
;
546 desc
->payload
= digest_phys
;
549 ret
= mxs_dcp_start_dma(actx
);
552 dma_unmap_single(sdcp
->dev
, digest_phys
, halg
->digestsize
,
555 dma_unmap_single(sdcp
->dev
, buf_phys
, DCP_BUF_SZ
, DMA_TO_DEVICE
);
560 static int dcp_sha_req_to_buf(struct crypto_async_request
*arq
)
562 struct dcp
*sdcp
= global_sdcp
;
564 struct ahash_request
*req
= ahash_request_cast(arq
);
565 struct crypto_ahash
*tfm
= crypto_ahash_reqtfm(req
);
566 struct dcp_async_ctx
*actx
= crypto_ahash_ctx(tfm
);
567 struct dcp_sha_req_ctx
*rctx
= ahash_request_ctx(req
);
568 struct hash_alg_common
*halg
= crypto_hash_alg_common(tfm
);
569 const int nents
= sg_nents(req
->src
);
571 uint8_t *in_buf
= sdcp
->coh
->sha_in_buf
;
575 struct scatterlist
*src
;
577 unsigned int i
, len
, clen
;
580 int fin
= rctx
->fini
;
584 for_each_sg(req
->src
, src
, nents
, i
) {
585 src_buf
= sg_virt(src
);
586 len
= sg_dma_len(src
);
589 if (actx
->fill
+ len
> DCP_BUF_SZ
)
590 clen
= DCP_BUF_SZ
- actx
->fill
;
594 memcpy(in_buf
+ actx
->fill
, src_buf
, clen
);
600 * If we filled the buffer and still have some
601 * more data, submit the buffer.
603 if (len
&& actx
->fill
== DCP_BUF_SZ
) {
604 ret
= mxs_dcp_run_sha(req
);
616 /* Submit whatever is left. */
620 ret
= mxs_dcp_run_sha(req
);
626 /* For some reason, the result is flipped. */
627 for (i
= 0; i
< halg
->digestsize
/ 2; i
++) {
629 req
->result
[halg
->digestsize
- i
- 1]);
636 static int dcp_chan_thread_sha(void *data
)
638 struct dcp
*sdcp
= global_sdcp
;
639 const int chan
= DCP_CHAN_HASH_SHA
;
641 struct crypto_async_request
*backlog
;
642 struct crypto_async_request
*arq
;
644 struct dcp_sha_req_ctx
*rctx
;
646 struct ahash_request
*req
;
650 __set_current_state(TASK_INTERRUPTIBLE
);
652 mutex_lock(&sdcp
->mutex
[chan
]);
653 backlog
= crypto_get_backlog(&sdcp
->queue
[chan
]);
654 arq
= crypto_dequeue_request(&sdcp
->queue
[chan
]);
655 mutex_unlock(&sdcp
->mutex
[chan
]);
658 backlog
->complete(backlog
, -EINPROGRESS
);
661 req
= ahash_request_cast(arq
);
662 rctx
= ahash_request_ctx(req
);
664 ret
= dcp_sha_req_to_buf(arq
);
666 arq
->complete(arq
, ret
);
672 } while (!kthread_should_stop());
677 static int dcp_sha_init(struct ahash_request
*req
)
679 struct crypto_ahash
*tfm
= crypto_ahash_reqtfm(req
);
680 struct dcp_async_ctx
*actx
= crypto_ahash_ctx(tfm
);
682 struct hash_alg_common
*halg
= crypto_hash_alg_common(tfm
);
685 * Start hashing session. The code below only inits the
686 * hashing session context, nothing more.
688 memset(actx
, 0, sizeof(*actx
));
690 if (strcmp(halg
->base
.cra_name
, "sha1") == 0)
691 actx
->alg
= MXS_DCP_CONTROL1_HASH_SELECT_SHA1
;
693 actx
->alg
= MXS_DCP_CONTROL1_HASH_SELECT_SHA256
;
697 actx
->chan
= DCP_CHAN_HASH_SHA
;
699 mutex_init(&actx
->mutex
);
704 static int dcp_sha_update_fx(struct ahash_request
*req
, int fini
)
706 struct dcp
*sdcp
= global_sdcp
;
708 struct dcp_sha_req_ctx
*rctx
= ahash_request_ctx(req
);
709 struct crypto_ahash
*tfm
= crypto_ahash_reqtfm(req
);
710 struct dcp_async_ctx
*actx
= crypto_ahash_ctx(tfm
);
715 * Ignore requests that have no data in them and are not
716 * the trailing requests in the stream of requests.
718 if (!req
->nbytes
&& !fini
)
721 mutex_lock(&actx
->mutex
);
730 mutex_lock(&sdcp
->mutex
[actx
->chan
]);
731 ret
= crypto_enqueue_request(&sdcp
->queue
[actx
->chan
], &req
->base
);
732 mutex_unlock(&sdcp
->mutex
[actx
->chan
]);
734 wake_up_process(sdcp
->thread
[actx
->chan
]);
735 mutex_unlock(&actx
->mutex
);
740 static int dcp_sha_update(struct ahash_request
*req
)
742 return dcp_sha_update_fx(req
, 0);
745 static int dcp_sha_final(struct ahash_request
*req
)
747 ahash_request_set_crypt(req
, NULL
, req
->result
, 0);
749 return dcp_sha_update_fx(req
, 1);
752 static int dcp_sha_finup(struct ahash_request
*req
)
754 return dcp_sha_update_fx(req
, 1);
757 static int dcp_sha_digest(struct ahash_request
*req
)
761 ret
= dcp_sha_init(req
);
765 return dcp_sha_finup(req
);
768 static int dcp_sha_cra_init(struct crypto_tfm
*tfm
)
770 crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm
),
771 sizeof(struct dcp_sha_req_ctx
));
775 static void dcp_sha_cra_exit(struct crypto_tfm
*tfm
)
779 /* AES 128 ECB and AES 128 CBC */
780 static struct crypto_alg dcp_aes_algs
[] = {
782 .cra_name
= "ecb(aes)",
783 .cra_driver_name
= "ecb-aes-dcp",
786 .cra_flags
= CRYPTO_ALG_TYPE_ABLKCIPHER
|
788 CRYPTO_ALG_NEED_FALLBACK
,
789 .cra_init
= mxs_dcp_aes_fallback_init
,
790 .cra_exit
= mxs_dcp_aes_fallback_exit
,
791 .cra_blocksize
= AES_BLOCK_SIZE
,
792 .cra_ctxsize
= sizeof(struct dcp_async_ctx
),
793 .cra_type
= &crypto_ablkcipher_type
,
794 .cra_module
= THIS_MODULE
,
797 .min_keysize
= AES_MIN_KEY_SIZE
,
798 .max_keysize
= AES_MAX_KEY_SIZE
,
799 .setkey
= mxs_dcp_aes_setkey
,
800 .encrypt
= mxs_dcp_aes_ecb_encrypt
,
801 .decrypt
= mxs_dcp_aes_ecb_decrypt
805 .cra_name
= "cbc(aes)",
806 .cra_driver_name
= "cbc-aes-dcp",
809 .cra_flags
= CRYPTO_ALG_TYPE_ABLKCIPHER
|
811 CRYPTO_ALG_NEED_FALLBACK
,
812 .cra_init
= mxs_dcp_aes_fallback_init
,
813 .cra_exit
= mxs_dcp_aes_fallback_exit
,
814 .cra_blocksize
= AES_BLOCK_SIZE
,
815 .cra_ctxsize
= sizeof(struct dcp_async_ctx
),
816 .cra_type
= &crypto_ablkcipher_type
,
817 .cra_module
= THIS_MODULE
,
820 .min_keysize
= AES_MIN_KEY_SIZE
,
821 .max_keysize
= AES_MAX_KEY_SIZE
,
822 .setkey
= mxs_dcp_aes_setkey
,
823 .encrypt
= mxs_dcp_aes_cbc_encrypt
,
824 .decrypt
= mxs_dcp_aes_cbc_decrypt
,
825 .ivsize
= AES_BLOCK_SIZE
,
832 static struct ahash_alg dcp_sha1_alg
= {
833 .init
= dcp_sha_init
,
834 .update
= dcp_sha_update
,
835 .final
= dcp_sha_final
,
836 .finup
= dcp_sha_finup
,
837 .digest
= dcp_sha_digest
,
839 .digestsize
= SHA1_DIGEST_SIZE
,
842 .cra_driver_name
= "sha1-dcp",
845 .cra_flags
= CRYPTO_ALG_ASYNC
,
846 .cra_blocksize
= SHA1_BLOCK_SIZE
,
847 .cra_ctxsize
= sizeof(struct dcp_async_ctx
),
848 .cra_module
= THIS_MODULE
,
849 .cra_init
= dcp_sha_cra_init
,
850 .cra_exit
= dcp_sha_cra_exit
,
856 static struct ahash_alg dcp_sha256_alg
= {
857 .init
= dcp_sha_init
,
858 .update
= dcp_sha_update
,
859 .final
= dcp_sha_final
,
860 .finup
= dcp_sha_finup
,
861 .digest
= dcp_sha_digest
,
863 .digestsize
= SHA256_DIGEST_SIZE
,
865 .cra_name
= "sha256",
866 .cra_driver_name
= "sha256-dcp",
869 .cra_flags
= CRYPTO_ALG_ASYNC
,
870 .cra_blocksize
= SHA256_BLOCK_SIZE
,
871 .cra_ctxsize
= sizeof(struct dcp_async_ctx
),
872 .cra_module
= THIS_MODULE
,
873 .cra_init
= dcp_sha_cra_init
,
874 .cra_exit
= dcp_sha_cra_exit
,
879 static irqreturn_t
mxs_dcp_irq(int irq
, void *context
)
881 struct dcp
*sdcp
= context
;
885 stat
= readl(sdcp
->base
+ MXS_DCP_STAT
);
886 stat
&= MXS_DCP_STAT_IRQ_MASK
;
890 /* Clear the interrupts. */
891 writel(stat
, sdcp
->base
+ MXS_DCP_STAT_CLR
);
893 /* Complete the DMA requests that finished. */
894 for (i
= 0; i
< DCP_MAX_CHANS
; i
++)
896 complete(&sdcp
->completion
[i
]);
901 static int mxs_dcp_probe(struct platform_device
*pdev
)
903 struct device
*dev
= &pdev
->dev
;
904 struct dcp
*sdcp
= NULL
;
907 struct resource
*iores
;
908 int dcp_vmi_irq
, dcp_irq
;
910 mutex_lock(&global_mutex
);
912 dev_err(dev
, "Only one DCP instance allowed!\n");
917 iores
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
918 dcp_vmi_irq
= platform_get_irq(pdev
, 0);
919 if (dcp_vmi_irq
< 0) {
924 dcp_irq
= platform_get_irq(pdev
, 1);
930 sdcp
= devm_kzalloc(dev
, sizeof(*sdcp
), GFP_KERNEL
);
937 sdcp
->base
= devm_ioremap_resource(dev
, iores
);
938 if (IS_ERR(sdcp
->base
)) {
939 ret
= PTR_ERR(sdcp
->base
);
943 ret
= devm_request_irq(dev
, dcp_vmi_irq
, mxs_dcp_irq
, 0,
944 "dcp-vmi-irq", sdcp
);
946 dev_err(dev
, "Failed to claim DCP VMI IRQ!\n");
950 ret
= devm_request_irq(dev
, dcp_irq
, mxs_dcp_irq
, 0,
953 dev_err(dev
, "Failed to claim DCP IRQ!\n");
957 /* Allocate coherent helper block. */
958 sdcp
->coh
= devm_kzalloc(dev
, sizeof(*sdcp
->coh
) + DCP_ALIGNMENT
,
965 /* Re-align the structure so it fits the DCP constraints. */
966 sdcp
->coh
= PTR_ALIGN(sdcp
->coh
, DCP_ALIGNMENT
);
968 /* Restart the DCP block. */
969 ret
= stmp_reset_block(sdcp
->base
);
973 /* Initialize control register. */
974 writel(MXS_DCP_CTRL_GATHER_RESIDUAL_WRITES
|
975 MXS_DCP_CTRL_ENABLE_CONTEXT_CACHING
| 0xf,
976 sdcp
->base
+ MXS_DCP_CTRL
);
978 /* Enable all DCP DMA channels. */
979 writel(MXS_DCP_CHANNELCTRL_ENABLE_CHANNEL_MASK
,
980 sdcp
->base
+ MXS_DCP_CHANNELCTRL
);
983 * We do not enable context switching. Give the context buffer a
984 * pointer to an illegal address so if context switching is
985 * inadvertantly enabled, the DCP will return an error instead of
986 * trashing good memory. The DCP DMA cannot access ROM, so any ROM
989 writel(0xffff0000, sdcp
->base
+ MXS_DCP_CONTEXT
);
990 for (i
= 0; i
< DCP_MAX_CHANS
; i
++)
991 writel(0xffffffff, sdcp
->base
+ MXS_DCP_CH_N_STAT_CLR(i
));
992 writel(0xffffffff, sdcp
->base
+ MXS_DCP_STAT_CLR
);
996 platform_set_drvdata(pdev
, sdcp
);
998 for (i
= 0; i
< DCP_MAX_CHANS
; i
++) {
999 mutex_init(&sdcp
->mutex
[i
]);
1000 init_completion(&sdcp
->completion
[i
]);
1001 crypto_init_queue(&sdcp
->queue
[i
], 50);
1004 /* Create the SHA and AES handler threads. */
1005 sdcp
->thread
[DCP_CHAN_HASH_SHA
] = kthread_run(dcp_chan_thread_sha
,
1006 NULL
, "mxs_dcp_chan/sha");
1007 if (IS_ERR(sdcp
->thread
[DCP_CHAN_HASH_SHA
])) {
1008 dev_err(dev
, "Error starting SHA thread!\n");
1009 ret
= PTR_ERR(sdcp
->thread
[DCP_CHAN_HASH_SHA
]);
1013 sdcp
->thread
[DCP_CHAN_CRYPTO
] = kthread_run(dcp_chan_thread_aes
,
1014 NULL
, "mxs_dcp_chan/aes");
1015 if (IS_ERR(sdcp
->thread
[DCP_CHAN_CRYPTO
])) {
1016 dev_err(dev
, "Error starting SHA thread!\n");
1017 ret
= PTR_ERR(sdcp
->thread
[DCP_CHAN_CRYPTO
]);
1018 goto err_destroy_sha_thread
;
1021 /* Register the various crypto algorithms. */
1022 sdcp
->caps
= readl(sdcp
->base
+ MXS_DCP_CAPABILITY1
);
1024 if (sdcp
->caps
& MXS_DCP_CAPABILITY1_AES128
) {
1025 ret
= crypto_register_algs(dcp_aes_algs
,
1026 ARRAY_SIZE(dcp_aes_algs
));
1028 /* Failed to register algorithm. */
1029 dev_err(dev
, "Failed to register AES crypto!\n");
1030 goto err_destroy_aes_thread
;
1034 if (sdcp
->caps
& MXS_DCP_CAPABILITY1_SHA1
) {
1035 ret
= crypto_register_ahash(&dcp_sha1_alg
);
1037 dev_err(dev
, "Failed to register %s hash!\n",
1038 dcp_sha1_alg
.halg
.base
.cra_name
);
1039 goto err_unregister_aes
;
1043 if (sdcp
->caps
& MXS_DCP_CAPABILITY1_SHA256
) {
1044 ret
= crypto_register_ahash(&dcp_sha256_alg
);
1046 dev_err(dev
, "Failed to register %s hash!\n",
1047 dcp_sha256_alg
.halg
.base
.cra_name
);
1048 goto err_unregister_sha1
;
1054 err_unregister_sha1
:
1055 if (sdcp
->caps
& MXS_DCP_CAPABILITY1_SHA1
)
1056 crypto_unregister_ahash(&dcp_sha1_alg
);
1059 if (sdcp
->caps
& MXS_DCP_CAPABILITY1_AES128
)
1060 crypto_unregister_algs(dcp_aes_algs
, ARRAY_SIZE(dcp_aes_algs
));
1062 err_destroy_aes_thread
:
1063 kthread_stop(sdcp
->thread
[DCP_CHAN_CRYPTO
]);
1065 err_destroy_sha_thread
:
1066 kthread_stop(sdcp
->thread
[DCP_CHAN_HASH_SHA
]);
1069 mutex_unlock(&global_mutex
);
1073 static int mxs_dcp_remove(struct platform_device
*pdev
)
1075 struct dcp
*sdcp
= platform_get_drvdata(pdev
);
1077 if (sdcp
->caps
& MXS_DCP_CAPABILITY1_SHA256
)
1078 crypto_unregister_ahash(&dcp_sha256_alg
);
1080 if (sdcp
->caps
& MXS_DCP_CAPABILITY1_SHA1
)
1081 crypto_unregister_ahash(&dcp_sha1_alg
);
1083 if (sdcp
->caps
& MXS_DCP_CAPABILITY1_AES128
)
1084 crypto_unregister_algs(dcp_aes_algs
, ARRAY_SIZE(dcp_aes_algs
));
1086 kthread_stop(sdcp
->thread
[DCP_CHAN_HASH_SHA
]);
1087 kthread_stop(sdcp
->thread
[DCP_CHAN_CRYPTO
]);
1089 platform_set_drvdata(pdev
, NULL
);
1091 mutex_lock(&global_mutex
);
1093 mutex_unlock(&global_mutex
);
1098 static const struct of_device_id mxs_dcp_dt_ids
[] = {
1099 { .compatible
= "fsl,imx23-dcp", .data
= NULL
, },
1100 { .compatible
= "fsl,imx28-dcp", .data
= NULL
, },
1104 MODULE_DEVICE_TABLE(of
, mxs_dcp_dt_ids
);
1106 static struct platform_driver mxs_dcp_driver
= {
1107 .probe
= mxs_dcp_probe
,
1108 .remove
= mxs_dcp_remove
,
1111 .owner
= THIS_MODULE
,
1112 .of_match_table
= mxs_dcp_dt_ids
,
1116 module_platform_driver(mxs_dcp_driver
);
1118 MODULE_AUTHOR("Marek Vasut <marex@denx.de>");
1119 MODULE_DESCRIPTION("Freescale MXS DCP Driver");
1120 MODULE_LICENSE("GPL");
1121 MODULE_ALIAS("platform:mxs-dcp");