2 * Driver for Cirrus Logic EP93xx SPI controller.
4 * Copyright (C) 2010-2011 Mika Westerberg
6 * Explicit FIFO handling code was inspired by amba-pl022 driver.
8 * Chip select support using other than built-in GPIOs by H. Hartley Sweeten.
10 * For more information about the SPI controller see documentation on Cirrus
12 * http://www.cirrus.com/en/pubs/manual/EP93xx_Users_Guide_UM1.pdf
14 * This program is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU General Public License version 2 as
16 * published by the Free Software Foundation.
20 #include <linux/clk.h>
21 #include <linux/err.h>
22 #include <linux/delay.h>
23 #include <linux/device.h>
24 #include <linux/dmaengine.h>
25 #include <linux/bitops.h>
26 #include <linux/interrupt.h>
27 #include <linux/module.h>
28 #include <linux/platform_device.h>
29 #include <linux/sched.h>
30 #include <linux/scatterlist.h>
31 #include <linux/spi/spi.h>
33 #include <linux/platform_data/dma-ep93xx.h>
34 #include <linux/platform_data/spi-ep93xx.h>
37 #define SSPCR0_MODE_SHIFT 6
38 #define SSPCR0_SCR_SHIFT 8
41 #define SSPCR1_RIE BIT(0)
42 #define SSPCR1_TIE BIT(1)
43 #define SSPCR1_RORIE BIT(2)
44 #define SSPCR1_LBM BIT(3)
45 #define SSPCR1_SSE BIT(4)
46 #define SSPCR1_MS BIT(5)
47 #define SSPCR1_SOD BIT(6)
52 #define SSPSR_TFE BIT(0)
53 #define SSPSR_TNF BIT(1)
54 #define SSPSR_RNE BIT(2)
55 #define SSPSR_RFF BIT(3)
56 #define SSPSR_BSY BIT(4)
57 #define SSPCPSR 0x0010
60 #define SSPIIR_RIS BIT(0)
61 #define SSPIIR_TIS BIT(1)
62 #define SSPIIR_RORIS BIT(2)
65 /* timeout in milliseconds */
67 /* maximum depth of RX/TX FIFO */
68 #define SPI_FIFO_SIZE 8
71 * struct ep93xx_spi - EP93xx SPI controller structure
72 * @pdev: pointer to platform device
73 * @clk: clock for the controller
74 * @regs_base: pointer to ioremap()'d registers
75 * @sspdr_phys: physical address of the SSPDR register
76 * @wait: wait here until given transfer is completed
77 * @current_msg: message that is currently processed (or %NULL if none)
78 * @tx: current byte in transfer to transmit
79 * @rx: current byte in transfer to receive
80 * @fifo_level: how full is FIFO (%0..%SPI_FIFO_SIZE - %1). Receiving one
81 * frame decreases this level and sending one frame increases it.
82 * @dma_rx: RX DMA channel
83 * @dma_tx: TX DMA channel
84 * @dma_rx_data: RX parameters passed to the DMA engine
85 * @dma_tx_data: TX parameters passed to the DMA engine
86 * @rx_sgt: sg table for RX transfers
87 * @tx_sgt: sg table for TX transfers
88 * @zeropage: dummy page used as RX buffer when only TX buffer is passed in by
92 const struct platform_device
*pdev
;
94 void __iomem
*regs_base
;
95 unsigned long sspdr_phys
;
96 struct completion wait
;
97 struct spi_message
*current_msg
;
101 struct dma_chan
*dma_rx
;
102 struct dma_chan
*dma_tx
;
103 struct ep93xx_dma_data dma_rx_data
;
104 struct ep93xx_dma_data dma_tx_data
;
105 struct sg_table rx_sgt
;
106 struct sg_table tx_sgt
;
111 * struct ep93xx_spi_chip - SPI device hardware settings
112 * @spi: back pointer to the SPI device
113 * @ops: private chip operations
115 struct ep93xx_spi_chip
{
116 const struct spi_device
*spi
;
117 struct ep93xx_spi_chip_ops
*ops
;
120 /* converts bits per word to CR0.DSS value */
121 #define bits_per_word_to_dss(bpw) ((bpw) - 1)
123 static void ep93xx_spi_write_u8(const struct ep93xx_spi
*espi
,
126 writeb(value
, espi
->regs_base
+ reg
);
129 static u8
ep93xx_spi_read_u8(const struct ep93xx_spi
*spi
, u16 reg
)
131 return readb(spi
->regs_base
+ reg
);
134 static void ep93xx_spi_write_u16(const struct ep93xx_spi
*espi
,
137 writew(value
, espi
->regs_base
+ reg
);
140 static u16
ep93xx_spi_read_u16(const struct ep93xx_spi
*spi
, u16 reg
)
142 return readw(spi
->regs_base
+ reg
);
145 static int ep93xx_spi_enable(const struct ep93xx_spi
*espi
)
150 err
= clk_enable(espi
->clk
);
154 regval
= ep93xx_spi_read_u8(espi
, SSPCR1
);
155 regval
|= SSPCR1_SSE
;
156 ep93xx_spi_write_u8(espi
, SSPCR1
, regval
);
161 static void ep93xx_spi_disable(const struct ep93xx_spi
*espi
)
165 regval
= ep93xx_spi_read_u8(espi
, SSPCR1
);
166 regval
&= ~SSPCR1_SSE
;
167 ep93xx_spi_write_u8(espi
, SSPCR1
, regval
);
169 clk_disable(espi
->clk
);
172 static void ep93xx_spi_enable_interrupts(const struct ep93xx_spi
*espi
)
176 regval
= ep93xx_spi_read_u8(espi
, SSPCR1
);
177 regval
|= (SSPCR1_RORIE
| SSPCR1_TIE
| SSPCR1_RIE
);
178 ep93xx_spi_write_u8(espi
, SSPCR1
, regval
);
181 static void ep93xx_spi_disable_interrupts(const struct ep93xx_spi
*espi
)
185 regval
= ep93xx_spi_read_u8(espi
, SSPCR1
);
186 regval
&= ~(SSPCR1_RORIE
| SSPCR1_TIE
| SSPCR1_RIE
);
187 ep93xx_spi_write_u8(espi
, SSPCR1
, regval
);
191 * ep93xx_spi_calc_divisors() - calculates SPI clock divisors
192 * @espi: ep93xx SPI controller struct
193 * @rate: desired SPI output clock rate
194 * @div_cpsr: pointer to return the cpsr (pre-scaler) divider
195 * @div_scr: pointer to return the scr divider
197 static int ep93xx_spi_calc_divisors(const struct ep93xx_spi
*espi
,
198 u32 rate
, u8
*div_cpsr
, u8
*div_scr
)
200 struct spi_master
*master
= platform_get_drvdata(espi
->pdev
);
201 unsigned long spi_clk_rate
= clk_get_rate(espi
->clk
);
205 * Make sure that max value is between values supported by the
206 * controller. Note that minimum value is already checked in
207 * ep93xx_spi_transfer_one_message().
209 rate
= clamp(rate
, master
->min_speed_hz
, master
->max_speed_hz
);
212 * Calculate divisors so that we can get speed according the
214 * rate = spi_clock_rate / (cpsr * (1 + scr))
216 * cpsr must be even number and starts from 2, scr can be any number
219 for (cpsr
= 2; cpsr
<= 254; cpsr
+= 2) {
220 for (scr
= 0; scr
<= 255; scr
++) {
221 if ((spi_clk_rate
/ (cpsr
* (scr
+ 1))) <= rate
) {
223 *div_cpsr
= (u8
)cpsr
;
232 static void ep93xx_spi_cs_control(struct spi_device
*spi
, bool control
)
234 struct ep93xx_spi_chip
*chip
= spi_get_ctldata(spi
);
235 int value
= (spi
->mode
& SPI_CS_HIGH
) ? control
: !control
;
237 if (chip
->ops
&& chip
->ops
->cs_control
)
238 chip
->ops
->cs_control(spi
, value
);
242 * ep93xx_spi_setup() - setup an SPI device
243 * @spi: SPI device to setup
245 * This function sets up SPI device mode, speed etc. Can be called multiple
246 * times for a single device. Returns %0 in case of success, negative error in
247 * case of failure. When this function returns success, the device is
250 static int ep93xx_spi_setup(struct spi_device
*spi
)
252 struct ep93xx_spi
*espi
= spi_master_get_devdata(spi
->master
);
253 struct ep93xx_spi_chip
*chip
;
255 chip
= spi_get_ctldata(spi
);
257 dev_dbg(&espi
->pdev
->dev
, "initial setup for %s\n",
260 chip
= kzalloc(sizeof(*chip
), GFP_KERNEL
);
265 chip
->ops
= spi
->controller_data
;
267 if (chip
->ops
&& chip
->ops
->setup
) {
268 int ret
= chip
->ops
->setup(spi
);
275 spi_set_ctldata(spi
, chip
);
278 ep93xx_spi_cs_control(spi
, false);
283 * ep93xx_spi_cleanup() - cleans up master controller specific state
284 * @spi: SPI device to cleanup
286 * This function releases master controller specific state for given @spi
289 static void ep93xx_spi_cleanup(struct spi_device
*spi
)
291 struct ep93xx_spi_chip
*chip
;
293 chip
= spi_get_ctldata(spi
);
295 if (chip
->ops
&& chip
->ops
->cleanup
)
296 chip
->ops
->cleanup(spi
);
297 spi_set_ctldata(spi
, NULL
);
303 * ep93xx_spi_chip_setup() - configures hardware according to given @chip
304 * @espi: ep93xx SPI controller struct
305 * @chip: chip specific settings
306 * @speed_hz: transfer speed
307 * @bits_per_word: transfer bits_per_word
309 static int ep93xx_spi_chip_setup(const struct ep93xx_spi
*espi
,
310 const struct ep93xx_spi_chip
*chip
,
311 u32 speed_hz
, u8 bits_per_word
)
313 u8 dss
= bits_per_word_to_dss(bits_per_word
);
319 err
= ep93xx_spi_calc_divisors(espi
, speed_hz
, &div_cpsr
, &div_scr
);
323 cr0
= div_scr
<< SSPCR0_SCR_SHIFT
;
324 cr0
|= (chip
->spi
->mode
& (SPI_CPHA
|SPI_CPOL
)) << SSPCR0_MODE_SHIFT
;
327 dev_dbg(&espi
->pdev
->dev
, "setup: mode %d, cpsr %d, scr %d, dss %d\n",
328 chip
->spi
->mode
, div_cpsr
, div_scr
, dss
);
329 dev_dbg(&espi
->pdev
->dev
, "setup: cr0 %#x\n", cr0
);
331 ep93xx_spi_write_u8(espi
, SSPCPSR
, div_cpsr
);
332 ep93xx_spi_write_u16(espi
, SSPCR0
, cr0
);
337 static void ep93xx_do_write(struct ep93xx_spi
*espi
, struct spi_transfer
*t
)
339 if (t
->bits_per_word
> 8) {
343 tx_val
= ((u16
*)t
->tx_buf
)[espi
->tx
];
344 ep93xx_spi_write_u16(espi
, SSPDR
, tx_val
);
345 espi
->tx
+= sizeof(tx_val
);
350 tx_val
= ((u8
*)t
->tx_buf
)[espi
->tx
];
351 ep93xx_spi_write_u8(espi
, SSPDR
, tx_val
);
352 espi
->tx
+= sizeof(tx_val
);
356 static void ep93xx_do_read(struct ep93xx_spi
*espi
, struct spi_transfer
*t
)
358 if (t
->bits_per_word
> 8) {
361 rx_val
= ep93xx_spi_read_u16(espi
, SSPDR
);
363 ((u16
*)t
->rx_buf
)[espi
->rx
] = rx_val
;
364 espi
->rx
+= sizeof(rx_val
);
368 rx_val
= ep93xx_spi_read_u8(espi
, SSPDR
);
370 ((u8
*)t
->rx_buf
)[espi
->rx
] = rx_val
;
371 espi
->rx
+= sizeof(rx_val
);
376 * ep93xx_spi_read_write() - perform next RX/TX transfer
377 * @espi: ep93xx SPI controller struct
379 * This function transfers next bytes (or half-words) to/from RX/TX FIFOs. If
380 * called several times, the whole transfer will be completed. Returns
381 * %-EINPROGRESS when current transfer was not yet completed otherwise %0.
383 * When this function is finished, RX FIFO should be empty and TX FIFO should be
386 static int ep93xx_spi_read_write(struct ep93xx_spi
*espi
)
388 struct spi_message
*msg
= espi
->current_msg
;
389 struct spi_transfer
*t
= msg
->state
;
391 /* read as long as RX FIFO has frames in it */
392 while ((ep93xx_spi_read_u8(espi
, SSPSR
) & SSPSR_RNE
)) {
393 ep93xx_do_read(espi
, t
);
397 /* write as long as TX FIFO has room */
398 while (espi
->fifo_level
< SPI_FIFO_SIZE
&& espi
->tx
< t
->len
) {
399 ep93xx_do_write(espi
, t
);
403 if (espi
->rx
== t
->len
)
409 static void ep93xx_spi_pio_transfer(struct ep93xx_spi
*espi
)
412 * Now everything is set up for the current transfer. We prime the TX
413 * FIFO, enable interrupts, and wait for the transfer to complete.
415 if (ep93xx_spi_read_write(espi
)) {
416 ep93xx_spi_enable_interrupts(espi
);
417 wait_for_completion(&espi
->wait
);
422 * ep93xx_spi_dma_prepare() - prepares a DMA transfer
423 * @espi: ep93xx SPI controller struct
424 * @dir: DMA transfer direction
426 * Function configures the DMA, maps the buffer and prepares the DMA
427 * descriptor. Returns a valid DMA descriptor in case of success and ERR_PTR
428 * in case of failure.
430 static struct dma_async_tx_descriptor
*
431 ep93xx_spi_dma_prepare(struct ep93xx_spi
*espi
, enum dma_transfer_direction dir
)
433 struct spi_transfer
*t
= espi
->current_msg
->state
;
434 struct dma_async_tx_descriptor
*txd
;
435 enum dma_slave_buswidth buswidth
;
436 struct dma_slave_config conf
;
437 struct scatterlist
*sg
;
438 struct sg_table
*sgt
;
439 struct dma_chan
*chan
;
440 const void *buf
, *pbuf
;
444 if (t
->bits_per_word
> 8)
445 buswidth
= DMA_SLAVE_BUSWIDTH_2_BYTES
;
447 buswidth
= DMA_SLAVE_BUSWIDTH_1_BYTE
;
449 memset(&conf
, 0, sizeof(conf
));
450 conf
.direction
= dir
;
452 if (dir
== DMA_DEV_TO_MEM
) {
457 conf
.src_addr
= espi
->sspdr_phys
;
458 conf
.src_addr_width
= buswidth
;
464 conf
.dst_addr
= espi
->sspdr_phys
;
465 conf
.dst_addr_width
= buswidth
;
468 ret
= dmaengine_slave_config(chan
, &conf
);
473 * We need to split the transfer into PAGE_SIZE'd chunks. This is
474 * because we are using @espi->zeropage to provide a zero RX buffer
475 * for the TX transfers and we have only allocated one page for that.
477 * For performance reasons we allocate a new sg_table only when
478 * needed. Otherwise we will re-use the current one. Eventually the
479 * last sg_table is released in ep93xx_spi_release_dma().
482 nents
= DIV_ROUND_UP(len
, PAGE_SIZE
);
483 if (nents
!= sgt
->nents
) {
486 ret
= sg_alloc_table(sgt
, nents
, GFP_KERNEL
);
492 for_each_sg(sgt
->sgl
, sg
, sgt
->nents
, i
) {
493 size_t bytes
= min_t(size_t, len
, PAGE_SIZE
);
496 sg_set_page(sg
, virt_to_page(pbuf
), bytes
,
497 offset_in_page(pbuf
));
499 sg_set_page(sg
, virt_to_page(espi
->zeropage
),
508 dev_warn(&espi
->pdev
->dev
, "len = %zu expected 0!\n", len
);
509 return ERR_PTR(-EINVAL
);
512 nents
= dma_map_sg(chan
->device
->dev
, sgt
->sgl
, sgt
->nents
, dir
);
514 return ERR_PTR(-ENOMEM
);
516 txd
= dmaengine_prep_slave_sg(chan
, sgt
->sgl
, nents
, dir
, DMA_CTRL_ACK
);
518 dma_unmap_sg(chan
->device
->dev
, sgt
->sgl
, sgt
->nents
, dir
);
519 return ERR_PTR(-ENOMEM
);
525 * ep93xx_spi_dma_finish() - finishes with a DMA transfer
526 * @espi: ep93xx SPI controller struct
527 * @dir: DMA transfer direction
529 * Function finishes with the DMA transfer. After this, the DMA buffer is
532 static void ep93xx_spi_dma_finish(struct ep93xx_spi
*espi
,
533 enum dma_transfer_direction dir
)
535 struct dma_chan
*chan
;
536 struct sg_table
*sgt
;
538 if (dir
== DMA_DEV_TO_MEM
) {
546 dma_unmap_sg(chan
->device
->dev
, sgt
->sgl
, sgt
->nents
, dir
);
549 static void ep93xx_spi_dma_callback(void *callback_param
)
551 complete(callback_param
);
554 static void ep93xx_spi_dma_transfer(struct ep93xx_spi
*espi
)
556 struct spi_message
*msg
= espi
->current_msg
;
557 struct dma_async_tx_descriptor
*rxd
, *txd
;
559 rxd
= ep93xx_spi_dma_prepare(espi
, DMA_DEV_TO_MEM
);
561 dev_err(&espi
->pdev
->dev
, "DMA RX failed: %ld\n", PTR_ERR(rxd
));
562 msg
->status
= PTR_ERR(rxd
);
566 txd
= ep93xx_spi_dma_prepare(espi
, DMA_MEM_TO_DEV
);
568 ep93xx_spi_dma_finish(espi
, DMA_DEV_TO_MEM
);
569 dev_err(&espi
->pdev
->dev
, "DMA TX failed: %ld\n", PTR_ERR(rxd
));
570 msg
->status
= PTR_ERR(txd
);
574 /* We are ready when RX is done */
575 rxd
->callback
= ep93xx_spi_dma_callback
;
576 rxd
->callback_param
= &espi
->wait
;
578 /* Now submit both descriptors and wait while they finish */
579 dmaengine_submit(rxd
);
580 dmaengine_submit(txd
);
582 dma_async_issue_pending(espi
->dma_rx
);
583 dma_async_issue_pending(espi
->dma_tx
);
585 wait_for_completion(&espi
->wait
);
587 ep93xx_spi_dma_finish(espi
, DMA_MEM_TO_DEV
);
588 ep93xx_spi_dma_finish(espi
, DMA_DEV_TO_MEM
);
592 * ep93xx_spi_process_transfer() - processes one SPI transfer
593 * @espi: ep93xx SPI controller struct
594 * @msg: current message
595 * @t: transfer to process
597 * This function processes one SPI transfer given in @t. Function waits until
598 * transfer is complete (may sleep) and updates @msg->status based on whether
599 * transfer was successfully processed or not.
601 static void ep93xx_spi_process_transfer(struct ep93xx_spi
*espi
,
602 struct spi_message
*msg
,
603 struct spi_transfer
*t
)
605 struct ep93xx_spi_chip
*chip
= spi_get_ctldata(msg
->spi
);
610 err
= ep93xx_spi_chip_setup(espi
, chip
, t
->speed_hz
, t
->bits_per_word
);
612 dev_err(&espi
->pdev
->dev
,
613 "failed to setup chip for transfer\n");
622 * There is no point of setting up DMA for the transfers which will
623 * fit into the FIFO and can be transferred with a single interrupt.
624 * So in these cases we will be using PIO and don't bother for DMA.
626 if (espi
->dma_rx
&& t
->len
> SPI_FIFO_SIZE
)
627 ep93xx_spi_dma_transfer(espi
);
629 ep93xx_spi_pio_transfer(espi
);
632 * In case of error during transmit, we bail out from processing
638 msg
->actual_length
+= t
->len
;
641 * After this transfer is finished, perform any possible
642 * post-transfer actions requested by the protocol driver.
644 if (t
->delay_usecs
) {
645 set_current_state(TASK_UNINTERRUPTIBLE
);
646 schedule_timeout(usecs_to_jiffies(t
->delay_usecs
));
649 if (!list_is_last(&t
->transfer_list
, &msg
->transfers
)) {
651 * In case protocol driver is asking us to drop the
652 * chipselect briefly, we let the scheduler to handle
655 ep93xx_spi_cs_control(msg
->spi
, false);
657 ep93xx_spi_cs_control(msg
->spi
, true);
663 * ep93xx_spi_process_message() - process one SPI message
664 * @espi: ep93xx SPI controller struct
665 * @msg: message to process
667 * This function processes a single SPI message. We go through all transfers in
668 * the message and pass them to ep93xx_spi_process_transfer(). Chipselect is
669 * asserted during the whole message (unless per transfer cs_change is set).
671 * @msg->status contains %0 in case of success or negative error code in case of
674 static void ep93xx_spi_process_message(struct ep93xx_spi
*espi
,
675 struct spi_message
*msg
)
677 unsigned long timeout
;
678 struct spi_transfer
*t
;
682 * Enable the SPI controller and its clock.
684 err
= ep93xx_spi_enable(espi
);
686 dev_err(&espi
->pdev
->dev
, "failed to enable SPI controller\n");
692 * Just to be sure: flush any data from RX FIFO.
694 timeout
= jiffies
+ msecs_to_jiffies(SPI_TIMEOUT
);
695 while (ep93xx_spi_read_u16(espi
, SSPSR
) & SSPSR_RNE
) {
696 if (time_after(jiffies
, timeout
)) {
697 dev_warn(&espi
->pdev
->dev
,
698 "timeout while flushing RX FIFO\n");
699 msg
->status
= -ETIMEDOUT
;
702 ep93xx_spi_read_u16(espi
, SSPDR
);
706 * We explicitly handle FIFO level. This way we don't have to check TX
707 * FIFO status using %SSPSR_TNF bit which may cause RX FIFO overruns.
709 espi
->fifo_level
= 0;
712 * Assert the chipselect.
714 ep93xx_spi_cs_control(msg
->spi
, true);
716 list_for_each_entry(t
, &msg
->transfers
, transfer_list
) {
717 ep93xx_spi_process_transfer(espi
, msg
, t
);
723 * Now the whole message is transferred (or failed for some reason). We
724 * deselect the device and disable the SPI controller.
726 ep93xx_spi_cs_control(msg
->spi
, false);
727 ep93xx_spi_disable(espi
);
730 static int ep93xx_spi_transfer_one_message(struct spi_master
*master
,
731 struct spi_message
*msg
)
733 struct ep93xx_spi
*espi
= spi_master_get_devdata(master
);
737 msg
->actual_length
= 0;
739 espi
->current_msg
= msg
;
740 ep93xx_spi_process_message(espi
, msg
);
741 espi
->current_msg
= NULL
;
743 spi_finalize_current_message(master
);
748 static irqreturn_t
ep93xx_spi_interrupt(int irq
, void *dev_id
)
750 struct ep93xx_spi
*espi
= dev_id
;
751 u8 irq_status
= ep93xx_spi_read_u8(espi
, SSPIIR
);
754 * If we got ROR (receive overrun) interrupt we know that something is
755 * wrong. Just abort the message.
757 if (unlikely(irq_status
& SSPIIR_RORIS
)) {
758 /* clear the overrun interrupt */
759 ep93xx_spi_write_u8(espi
, SSPICR
, 0);
760 dev_warn(&espi
->pdev
->dev
,
761 "receive overrun, aborting the message\n");
762 espi
->current_msg
->status
= -EIO
;
765 * Interrupt is either RX (RIS) or TX (TIS). For both cases we
766 * simply execute next data transfer.
768 if (ep93xx_spi_read_write(espi
)) {
770 * In normal case, there still is some processing left
771 * for current transfer. Let's wait for the next
779 * Current transfer is finished, either with error or with success. In
780 * any case we disable interrupts and notify the worker to handle
781 * any post-processing of the message.
783 ep93xx_spi_disable_interrupts(espi
);
784 complete(&espi
->wait
);
788 static bool ep93xx_spi_dma_filter(struct dma_chan
*chan
, void *filter_param
)
790 if (ep93xx_dma_chan_is_m2p(chan
))
793 chan
->private = filter_param
;
797 static int ep93xx_spi_setup_dma(struct ep93xx_spi
*espi
)
802 espi
->zeropage
= (void *)get_zeroed_page(GFP_KERNEL
);
807 dma_cap_set(DMA_SLAVE
, mask
);
809 espi
->dma_rx_data
.port
= EP93XX_DMA_SSP
;
810 espi
->dma_rx_data
.direction
= DMA_DEV_TO_MEM
;
811 espi
->dma_rx_data
.name
= "ep93xx-spi-rx";
813 espi
->dma_rx
= dma_request_channel(mask
, ep93xx_spi_dma_filter
,
820 espi
->dma_tx_data
.port
= EP93XX_DMA_SSP
;
821 espi
->dma_tx_data
.direction
= DMA_MEM_TO_DEV
;
822 espi
->dma_tx_data
.name
= "ep93xx-spi-tx";
824 espi
->dma_tx
= dma_request_channel(mask
, ep93xx_spi_dma_filter
,
828 goto fail_release_rx
;
834 dma_release_channel(espi
->dma_rx
);
837 free_page((unsigned long)espi
->zeropage
);
842 static void ep93xx_spi_release_dma(struct ep93xx_spi
*espi
)
845 dma_release_channel(espi
->dma_rx
);
846 sg_free_table(&espi
->rx_sgt
);
849 dma_release_channel(espi
->dma_tx
);
850 sg_free_table(&espi
->tx_sgt
);
854 free_page((unsigned long)espi
->zeropage
);
857 static int ep93xx_spi_probe(struct platform_device
*pdev
)
859 struct spi_master
*master
;
860 struct ep93xx_spi_info
*info
;
861 struct ep93xx_spi
*espi
;
862 struct resource
*res
;
866 info
= dev_get_platdata(&pdev
->dev
);
868 irq
= platform_get_irq(pdev
, 0);
870 dev_err(&pdev
->dev
, "failed to get irq resources\n");
874 res
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
876 dev_err(&pdev
->dev
, "unable to get iomem resource\n");
880 master
= spi_alloc_master(&pdev
->dev
, sizeof(*espi
));
884 master
->setup
= ep93xx_spi_setup
;
885 master
->transfer_one_message
= ep93xx_spi_transfer_one_message
;
886 master
->cleanup
= ep93xx_spi_cleanup
;
887 master
->bus_num
= pdev
->id
;
888 master
->num_chipselect
= info
->num_chipselect
;
889 master
->mode_bits
= SPI_CPOL
| SPI_CPHA
| SPI_CS_HIGH
;
890 master
->bits_per_word_mask
= SPI_BPW_RANGE_MASK(4, 16);
892 platform_set_drvdata(pdev
, master
);
894 espi
= spi_master_get_devdata(master
);
896 espi
->clk
= devm_clk_get(&pdev
->dev
, NULL
);
897 if (IS_ERR(espi
->clk
)) {
898 dev_err(&pdev
->dev
, "unable to get spi clock\n");
899 error
= PTR_ERR(espi
->clk
);
900 goto fail_release_master
;
903 init_completion(&espi
->wait
);
906 * Calculate maximum and minimum supported clock rates
907 * for the controller.
909 master
->max_speed_hz
= clk_get_rate(espi
->clk
) / 2;
910 master
->min_speed_hz
= clk_get_rate(espi
->clk
) / (254 * 256);
913 espi
->sspdr_phys
= res
->start
+ SSPDR
;
915 espi
->regs_base
= devm_ioremap_resource(&pdev
->dev
, res
);
916 if (IS_ERR(espi
->regs_base
)) {
917 error
= PTR_ERR(espi
->regs_base
);
918 goto fail_release_master
;
921 error
= devm_request_irq(&pdev
->dev
, irq
, ep93xx_spi_interrupt
,
922 0, "ep93xx-spi", espi
);
924 dev_err(&pdev
->dev
, "failed to request irq\n");
925 goto fail_release_master
;
928 if (info
->use_dma
&& ep93xx_spi_setup_dma(espi
))
929 dev_warn(&pdev
->dev
, "DMA setup failed. Falling back to PIO\n");
931 /* make sure that the hardware is disabled */
932 ep93xx_spi_write_u8(espi
, SSPCR1
, 0);
934 error
= devm_spi_register_master(&pdev
->dev
, master
);
936 dev_err(&pdev
->dev
, "failed to register SPI master\n");
940 dev_info(&pdev
->dev
, "EP93xx SPI Controller at 0x%08lx irq %d\n",
941 (unsigned long)res
->start
, irq
);
946 ep93xx_spi_release_dma(espi
);
948 spi_master_put(master
);
953 static int ep93xx_spi_remove(struct platform_device
*pdev
)
955 struct spi_master
*master
= platform_get_drvdata(pdev
);
956 struct ep93xx_spi
*espi
= spi_master_get_devdata(master
);
958 ep93xx_spi_release_dma(espi
);
963 static struct platform_driver ep93xx_spi_driver
= {
965 .name
= "ep93xx-spi",
966 .owner
= THIS_MODULE
,
968 .probe
= ep93xx_spi_probe
,
969 .remove
= ep93xx_spi_remove
,
971 module_platform_driver(ep93xx_spi_driver
);
973 MODULE_DESCRIPTION("EP93xx SPI Controller driver");
974 MODULE_AUTHOR("Mika Westerberg <mika.westerberg@iki.fi>");
975 MODULE_LICENSE("GPL");
976 MODULE_ALIAS("platform:ep93xx-spi");