ext4: reduce contention on s_orphan_lock
[linux/fpc-iii.git] / drivers / spi / spi-pxa2xx-dma.c
blob713af4806f265e10b87dcfade6b6989055c2f283
1 /*
2 * PXA2xx SPI DMA engine support.
4 * Copyright (C) 2013, Intel Corporation
5 * Author: Mika Westerberg <mika.westerberg@linux.intel.com>
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
12 #include <linux/device.h>
13 #include <linux/dma-mapping.h>
14 #include <linux/dmaengine.h>
15 #include <linux/pxa2xx_ssp.h>
16 #include <linux/scatterlist.h>
17 #include <linux/sizes.h>
18 #include <linux/spi/spi.h>
19 #include <linux/spi/pxa2xx_spi.h>
21 #include "spi-pxa2xx.h"
23 static int pxa2xx_spi_map_dma_buffer(struct driver_data *drv_data,
24 enum dma_data_direction dir)
26 int i, nents, len = drv_data->len;
27 struct scatterlist *sg;
28 struct device *dmadev;
29 struct sg_table *sgt;
30 void *buf, *pbuf;
33 * Some DMA controllers have problems transferring buffers that are
34 * not multiple of 4 bytes. So we truncate the transfer so that it
35 * is suitable for such controllers, and handle the trailing bytes
36 * manually after the DMA completes.
38 * REVISIT: It would be better if this information could be
39 * retrieved directly from the DMA device in a similar way than
40 * ->copy_align etc. is done.
42 len = ALIGN(drv_data->len, 4);
44 if (dir == DMA_TO_DEVICE) {
45 dmadev = drv_data->tx_chan->device->dev;
46 sgt = &drv_data->tx_sgt;
47 buf = drv_data->tx;
48 drv_data->tx_map_len = len;
49 } else {
50 dmadev = drv_data->rx_chan->device->dev;
51 sgt = &drv_data->rx_sgt;
52 buf = drv_data->rx;
53 drv_data->rx_map_len = len;
56 nents = DIV_ROUND_UP(len, SZ_2K);
57 if (nents != sgt->nents) {
58 int ret;
60 sg_free_table(sgt);
61 ret = sg_alloc_table(sgt, nents, GFP_ATOMIC);
62 if (ret)
63 return ret;
66 pbuf = buf;
67 for_each_sg(sgt->sgl, sg, sgt->nents, i) {
68 size_t bytes = min_t(size_t, len, SZ_2K);
70 if (buf)
71 sg_set_buf(sg, pbuf, bytes);
72 else
73 sg_set_buf(sg, drv_data->dummy, bytes);
75 pbuf += bytes;
76 len -= bytes;
79 nents = dma_map_sg(dmadev, sgt->sgl, sgt->nents, dir);
80 if (!nents)
81 return -ENOMEM;
83 return nents;
86 static void pxa2xx_spi_unmap_dma_buffer(struct driver_data *drv_data,
87 enum dma_data_direction dir)
89 struct device *dmadev;
90 struct sg_table *sgt;
92 if (dir == DMA_TO_DEVICE) {
93 dmadev = drv_data->tx_chan->device->dev;
94 sgt = &drv_data->tx_sgt;
95 } else {
96 dmadev = drv_data->rx_chan->device->dev;
97 sgt = &drv_data->rx_sgt;
100 dma_unmap_sg(dmadev, sgt->sgl, sgt->nents, dir);
103 static void pxa2xx_spi_unmap_dma_buffers(struct driver_data *drv_data)
105 if (!drv_data->dma_mapped)
106 return;
108 pxa2xx_spi_unmap_dma_buffer(drv_data, DMA_FROM_DEVICE);
109 pxa2xx_spi_unmap_dma_buffer(drv_data, DMA_TO_DEVICE);
111 drv_data->dma_mapped = 0;
114 static void pxa2xx_spi_dma_transfer_complete(struct driver_data *drv_data,
115 bool error)
117 struct spi_message *msg = drv_data->cur_msg;
120 * It is possible that one CPU is handling ROR interrupt and other
121 * just gets DMA completion. Calling pump_transfers() twice for the
122 * same transfer leads to problems thus we prevent concurrent calls
123 * by using ->dma_running.
125 if (atomic_dec_and_test(&drv_data->dma_running)) {
126 void __iomem *reg = drv_data->ioaddr;
129 * If the other CPU is still handling the ROR interrupt we
130 * might not know about the error yet. So we re-check the
131 * ROR bit here before we clear the status register.
133 if (!error) {
134 u32 status = read_SSSR(reg) & drv_data->mask_sr;
135 error = status & SSSR_ROR;
138 /* Clear status & disable interrupts */
139 write_SSCR1(read_SSCR1(reg) & ~drv_data->dma_cr1, reg);
140 write_SSSR_CS(drv_data, drv_data->clear_sr);
141 if (!pxa25x_ssp_comp(drv_data))
142 write_SSTO(0, reg);
144 if (!error) {
145 pxa2xx_spi_unmap_dma_buffers(drv_data);
147 /* Handle the last bytes of unaligned transfer */
148 drv_data->tx += drv_data->tx_map_len;
149 drv_data->write(drv_data);
151 drv_data->rx += drv_data->rx_map_len;
152 drv_data->read(drv_data);
154 msg->actual_length += drv_data->len;
155 msg->state = pxa2xx_spi_next_transfer(drv_data);
156 } else {
157 /* In case we got an error we disable the SSP now */
158 write_SSCR0(read_SSCR0(reg) & ~SSCR0_SSE, reg);
160 msg->state = ERROR_STATE;
163 tasklet_schedule(&drv_data->pump_transfers);
167 static void pxa2xx_spi_dma_callback(void *data)
169 pxa2xx_spi_dma_transfer_complete(data, false);
172 static struct dma_async_tx_descriptor *
173 pxa2xx_spi_dma_prepare_one(struct driver_data *drv_data,
174 enum dma_transfer_direction dir)
176 struct pxa2xx_spi_master *pdata = drv_data->master_info;
177 struct chip_data *chip = drv_data->cur_chip;
178 enum dma_slave_buswidth width;
179 struct dma_slave_config cfg;
180 struct dma_chan *chan;
181 struct sg_table *sgt;
182 int nents, ret;
184 switch (drv_data->n_bytes) {
185 case 1:
186 width = DMA_SLAVE_BUSWIDTH_1_BYTE;
187 break;
188 case 2:
189 width = DMA_SLAVE_BUSWIDTH_2_BYTES;
190 break;
191 default:
192 width = DMA_SLAVE_BUSWIDTH_4_BYTES;
193 break;
196 memset(&cfg, 0, sizeof(cfg));
197 cfg.direction = dir;
199 if (dir == DMA_MEM_TO_DEV) {
200 cfg.dst_addr = drv_data->ssdr_physical;
201 cfg.dst_addr_width = width;
202 cfg.dst_maxburst = chip->dma_burst_size;
203 cfg.slave_id = pdata->tx_slave_id;
205 sgt = &drv_data->tx_sgt;
206 nents = drv_data->tx_nents;
207 chan = drv_data->tx_chan;
208 } else {
209 cfg.src_addr = drv_data->ssdr_physical;
210 cfg.src_addr_width = width;
211 cfg.src_maxburst = chip->dma_burst_size;
212 cfg.slave_id = pdata->rx_slave_id;
214 sgt = &drv_data->rx_sgt;
215 nents = drv_data->rx_nents;
216 chan = drv_data->rx_chan;
219 ret = dmaengine_slave_config(chan, &cfg);
220 if (ret) {
221 dev_warn(&drv_data->pdev->dev, "DMA slave config failed\n");
222 return NULL;
225 return dmaengine_prep_slave_sg(chan, sgt->sgl, nents, dir,
226 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
229 static bool pxa2xx_spi_dma_filter(struct dma_chan *chan, void *param)
231 const struct pxa2xx_spi_master *pdata = param;
233 return chan->chan_id == pdata->tx_chan_id ||
234 chan->chan_id == pdata->rx_chan_id;
237 bool pxa2xx_spi_dma_is_possible(size_t len)
239 return len <= MAX_DMA_LEN;
242 int pxa2xx_spi_map_dma_buffers(struct driver_data *drv_data)
244 const struct chip_data *chip = drv_data->cur_chip;
245 int ret;
247 if (!chip->enable_dma)
248 return 0;
250 /* Don't bother with DMA if we can't do even a single burst */
251 if (drv_data->len < chip->dma_burst_size)
252 return 0;
254 ret = pxa2xx_spi_map_dma_buffer(drv_data, DMA_TO_DEVICE);
255 if (ret <= 0) {
256 dev_warn(&drv_data->pdev->dev, "failed to DMA map TX\n");
257 return 0;
260 drv_data->tx_nents = ret;
262 ret = pxa2xx_spi_map_dma_buffer(drv_data, DMA_FROM_DEVICE);
263 if (ret <= 0) {
264 pxa2xx_spi_unmap_dma_buffer(drv_data, DMA_TO_DEVICE);
265 dev_warn(&drv_data->pdev->dev, "failed to DMA map RX\n");
266 return 0;
269 drv_data->rx_nents = ret;
270 return 1;
273 irqreturn_t pxa2xx_spi_dma_transfer(struct driver_data *drv_data)
275 u32 status;
277 status = read_SSSR(drv_data->ioaddr) & drv_data->mask_sr;
278 if (status & SSSR_ROR) {
279 dev_err(&drv_data->pdev->dev, "FIFO overrun\n");
281 dmaengine_terminate_all(drv_data->rx_chan);
282 dmaengine_terminate_all(drv_data->tx_chan);
284 pxa2xx_spi_dma_transfer_complete(drv_data, true);
285 return IRQ_HANDLED;
288 return IRQ_NONE;
291 int pxa2xx_spi_dma_prepare(struct driver_data *drv_data, u32 dma_burst)
293 struct dma_async_tx_descriptor *tx_desc, *rx_desc;
295 tx_desc = pxa2xx_spi_dma_prepare_one(drv_data, DMA_MEM_TO_DEV);
296 if (!tx_desc) {
297 dev_err(&drv_data->pdev->dev,
298 "failed to get DMA TX descriptor\n");
299 return -EBUSY;
302 rx_desc = pxa2xx_spi_dma_prepare_one(drv_data, DMA_DEV_TO_MEM);
303 if (!rx_desc) {
304 dev_err(&drv_data->pdev->dev,
305 "failed to get DMA RX descriptor\n");
306 return -EBUSY;
309 /* We are ready when RX completes */
310 rx_desc->callback = pxa2xx_spi_dma_callback;
311 rx_desc->callback_param = drv_data;
313 dmaengine_submit(rx_desc);
314 dmaengine_submit(tx_desc);
315 return 0;
318 void pxa2xx_spi_dma_start(struct driver_data *drv_data)
320 dma_async_issue_pending(drv_data->rx_chan);
321 dma_async_issue_pending(drv_data->tx_chan);
323 atomic_set(&drv_data->dma_running, 1);
326 int pxa2xx_spi_dma_setup(struct driver_data *drv_data)
328 struct pxa2xx_spi_master *pdata = drv_data->master_info;
329 struct device *dev = &drv_data->pdev->dev;
330 dma_cap_mask_t mask;
332 dma_cap_zero(mask);
333 dma_cap_set(DMA_SLAVE, mask);
335 drv_data->dummy = devm_kzalloc(dev, SZ_2K, GFP_KERNEL);
336 if (!drv_data->dummy)
337 return -ENOMEM;
339 drv_data->tx_chan = dma_request_slave_channel_compat(mask,
340 pxa2xx_spi_dma_filter, pdata, dev, "tx");
341 if (!drv_data->tx_chan)
342 return -ENODEV;
344 drv_data->rx_chan = dma_request_slave_channel_compat(mask,
345 pxa2xx_spi_dma_filter, pdata, dev, "rx");
346 if (!drv_data->rx_chan) {
347 dma_release_channel(drv_data->tx_chan);
348 drv_data->tx_chan = NULL;
349 return -ENODEV;
352 return 0;
355 void pxa2xx_spi_dma_release(struct driver_data *drv_data)
357 if (drv_data->rx_chan) {
358 dmaengine_terminate_all(drv_data->rx_chan);
359 dma_release_channel(drv_data->rx_chan);
360 sg_free_table(&drv_data->rx_sgt);
361 drv_data->rx_chan = NULL;
363 if (drv_data->tx_chan) {
364 dmaengine_terminate_all(drv_data->tx_chan);
365 dma_release_channel(drv_data->tx_chan);
366 sg_free_table(&drv_data->tx_sgt);
367 drv_data->tx_chan = NULL;
371 void pxa2xx_spi_dma_resume(struct driver_data *drv_data)
375 int pxa2xx_spi_set_dma_burst_and_threshold(struct chip_data *chip,
376 struct spi_device *spi,
377 u8 bits_per_word, u32 *burst_code,
378 u32 *threshold)
380 struct pxa2xx_spi_chip *chip_info = spi->controller_data;
383 * If the DMA burst size is given in chip_info we use that,
384 * otherwise we use the default. Also we use the default FIFO
385 * thresholds for now.
387 *burst_code = chip_info ? chip_info->dma_burst_size : 16;
388 *threshold = SSCR1_RxTresh(RX_THRESH_DFLT)
389 | SSCR1_TxTresh(TX_THRESH_DFLT);
391 return 0;