ext4: reduce contention on s_orphan_lock
[linux/fpc-iii.git] / drivers / spi / spi-rspi.c
blob1fb0ad213324eadd2ef2a9cd9088880c42e5e722
1 /*
2 * SH RSPI driver
4 * Copyright (C) 2012, 2013 Renesas Solutions Corp.
5 * Copyright (C) 2014 Glider bvba
7 * Based on spi-sh.c:
8 * Copyright (C) 2011 Renesas Solutions Corp.
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; version 2 of the License.
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
25 #include <linux/module.h>
26 #include <linux/kernel.h>
27 #include <linux/sched.h>
28 #include <linux/errno.h>
29 #include <linux/interrupt.h>
30 #include <linux/platform_device.h>
31 #include <linux/io.h>
32 #include <linux/clk.h>
33 #include <linux/dmaengine.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/of_device.h>
36 #include <linux/pm_runtime.h>
37 #include <linux/sh_dma.h>
38 #include <linux/spi/spi.h>
39 #include <linux/spi/rspi.h>
41 #define RSPI_SPCR 0x00 /* Control Register */
42 #define RSPI_SSLP 0x01 /* Slave Select Polarity Register */
43 #define RSPI_SPPCR 0x02 /* Pin Control Register */
44 #define RSPI_SPSR 0x03 /* Status Register */
45 #define RSPI_SPDR 0x04 /* Data Register */
46 #define RSPI_SPSCR 0x08 /* Sequence Control Register */
47 #define RSPI_SPSSR 0x09 /* Sequence Status Register */
48 #define RSPI_SPBR 0x0a /* Bit Rate Register */
49 #define RSPI_SPDCR 0x0b /* Data Control Register */
50 #define RSPI_SPCKD 0x0c /* Clock Delay Register */
51 #define RSPI_SSLND 0x0d /* Slave Select Negation Delay Register */
52 #define RSPI_SPND 0x0e /* Next-Access Delay Register */
53 #define RSPI_SPCR2 0x0f /* Control Register 2 (SH only) */
54 #define RSPI_SPCMD0 0x10 /* Command Register 0 */
55 #define RSPI_SPCMD1 0x12 /* Command Register 1 */
56 #define RSPI_SPCMD2 0x14 /* Command Register 2 */
57 #define RSPI_SPCMD3 0x16 /* Command Register 3 */
58 #define RSPI_SPCMD4 0x18 /* Command Register 4 */
59 #define RSPI_SPCMD5 0x1a /* Command Register 5 */
60 #define RSPI_SPCMD6 0x1c /* Command Register 6 */
61 #define RSPI_SPCMD7 0x1e /* Command Register 7 */
62 #define RSPI_SPCMD(i) (RSPI_SPCMD0 + (i) * 2)
63 #define RSPI_NUM_SPCMD 8
64 #define RSPI_RZ_NUM_SPCMD 4
65 #define QSPI_NUM_SPCMD 4
67 /* RSPI on RZ only */
68 #define RSPI_SPBFCR 0x20 /* Buffer Control Register */
69 #define RSPI_SPBFDR 0x22 /* Buffer Data Count Setting Register */
71 /* QSPI only */
72 #define QSPI_SPBFCR 0x18 /* Buffer Control Register */
73 #define QSPI_SPBDCR 0x1a /* Buffer Data Count Register */
74 #define QSPI_SPBMUL0 0x1c /* Transfer Data Length Multiplier Setting Register 0 */
75 #define QSPI_SPBMUL1 0x20 /* Transfer Data Length Multiplier Setting Register 1 */
76 #define QSPI_SPBMUL2 0x24 /* Transfer Data Length Multiplier Setting Register 2 */
77 #define QSPI_SPBMUL3 0x28 /* Transfer Data Length Multiplier Setting Register 3 */
78 #define QSPI_SPBMUL(i) (QSPI_SPBMUL0 + (i) * 4)
80 /* SPCR - Control Register */
81 #define SPCR_SPRIE 0x80 /* Receive Interrupt Enable */
82 #define SPCR_SPE 0x40 /* Function Enable */
83 #define SPCR_SPTIE 0x20 /* Transmit Interrupt Enable */
84 #define SPCR_SPEIE 0x10 /* Error Interrupt Enable */
85 #define SPCR_MSTR 0x08 /* Master/Slave Mode Select */
86 #define SPCR_MODFEN 0x04 /* Mode Fault Error Detection Enable */
87 /* RSPI on SH only */
88 #define SPCR_TXMD 0x02 /* TX Only Mode (vs. Full Duplex) */
89 #define SPCR_SPMS 0x01 /* 3-wire Mode (vs. 4-wire) */
90 /* QSPI on R-Car M2 only */
91 #define SPCR_WSWAP 0x02 /* Word Swap of read-data for DMAC */
92 #define SPCR_BSWAP 0x01 /* Byte Swap of read-data for DMAC */
94 /* SSLP - Slave Select Polarity Register */
95 #define SSLP_SSL1P 0x02 /* SSL1 Signal Polarity Setting */
96 #define SSLP_SSL0P 0x01 /* SSL0 Signal Polarity Setting */
98 /* SPPCR - Pin Control Register */
99 #define SPPCR_MOIFE 0x20 /* MOSI Idle Value Fixing Enable */
100 #define SPPCR_MOIFV 0x10 /* MOSI Idle Fixed Value */
101 #define SPPCR_SPOM 0x04
102 #define SPPCR_SPLP2 0x02 /* Loopback Mode 2 (non-inverting) */
103 #define SPPCR_SPLP 0x01 /* Loopback Mode (inverting) */
105 #define SPPCR_IO3FV 0x04 /* Single-/Dual-SPI Mode IO3 Output Fixed Value */
106 #define SPPCR_IO2FV 0x04 /* Single-/Dual-SPI Mode IO2 Output Fixed Value */
108 /* SPSR - Status Register */
109 #define SPSR_SPRF 0x80 /* Receive Buffer Full Flag */
110 #define SPSR_TEND 0x40 /* Transmit End */
111 #define SPSR_SPTEF 0x20 /* Transmit Buffer Empty Flag */
112 #define SPSR_PERF 0x08 /* Parity Error Flag */
113 #define SPSR_MODF 0x04 /* Mode Fault Error Flag */
114 #define SPSR_IDLNF 0x02 /* RSPI Idle Flag */
115 #define SPSR_OVRF 0x01 /* Overrun Error Flag (RSPI only) */
117 /* SPSCR - Sequence Control Register */
118 #define SPSCR_SPSLN_MASK 0x07 /* Sequence Length Specification */
120 /* SPSSR - Sequence Status Register */
121 #define SPSSR_SPECM_MASK 0x70 /* Command Error Mask */
122 #define SPSSR_SPCP_MASK 0x07 /* Command Pointer Mask */
124 /* SPDCR - Data Control Register */
125 #define SPDCR_TXDMY 0x80 /* Dummy Data Transmission Enable */
126 #define SPDCR_SPLW1 0x40 /* Access Width Specification (RZ) */
127 #define SPDCR_SPLW0 0x20 /* Access Width Specification (RZ) */
128 #define SPDCR_SPLLWORD (SPDCR_SPLW1 | SPDCR_SPLW0)
129 #define SPDCR_SPLWORD SPDCR_SPLW1
130 #define SPDCR_SPLBYTE SPDCR_SPLW0
131 #define SPDCR_SPLW 0x20 /* Access Width Specification (SH) */
132 #define SPDCR_SPRDTD 0x10 /* Receive Transmit Data Select (SH) */
133 #define SPDCR_SLSEL1 0x08
134 #define SPDCR_SLSEL0 0x04
135 #define SPDCR_SLSEL_MASK 0x0c /* SSL1 Output Select (SH) */
136 #define SPDCR_SPFC1 0x02
137 #define SPDCR_SPFC0 0x01
138 #define SPDCR_SPFC_MASK 0x03 /* Frame Count Setting (1-4) (SH) */
140 /* SPCKD - Clock Delay Register */
141 #define SPCKD_SCKDL_MASK 0x07 /* Clock Delay Setting (1-8) */
143 /* SSLND - Slave Select Negation Delay Register */
144 #define SSLND_SLNDL_MASK 0x07 /* SSL Negation Delay Setting (1-8) */
146 /* SPND - Next-Access Delay Register */
147 #define SPND_SPNDL_MASK 0x07 /* Next-Access Delay Setting (1-8) */
149 /* SPCR2 - Control Register 2 */
150 #define SPCR2_PTE 0x08 /* Parity Self-Test Enable */
151 #define SPCR2_SPIE 0x04 /* Idle Interrupt Enable */
152 #define SPCR2_SPOE 0x02 /* Odd Parity Enable (vs. Even) */
153 #define SPCR2_SPPE 0x01 /* Parity Enable */
155 /* SPCMDn - Command Registers */
156 #define SPCMD_SCKDEN 0x8000 /* Clock Delay Setting Enable */
157 #define SPCMD_SLNDEN 0x4000 /* SSL Negation Delay Setting Enable */
158 #define SPCMD_SPNDEN 0x2000 /* Next-Access Delay Enable */
159 #define SPCMD_LSBF 0x1000 /* LSB First */
160 #define SPCMD_SPB_MASK 0x0f00 /* Data Length Setting */
161 #define SPCMD_SPB_8_TO_16(bit) (((bit - 1) << 8) & SPCMD_SPB_MASK)
162 #define SPCMD_SPB_8BIT 0x0000 /* QSPI only */
163 #define SPCMD_SPB_16BIT 0x0100
164 #define SPCMD_SPB_20BIT 0x0000
165 #define SPCMD_SPB_24BIT 0x0100
166 #define SPCMD_SPB_32BIT 0x0200
167 #define SPCMD_SSLKP 0x0080 /* SSL Signal Level Keeping */
168 #define SPCMD_SPIMOD_MASK 0x0060 /* SPI Operating Mode (QSPI only) */
169 #define SPCMD_SPIMOD1 0x0040
170 #define SPCMD_SPIMOD0 0x0020
171 #define SPCMD_SPIMOD_SINGLE 0
172 #define SPCMD_SPIMOD_DUAL SPCMD_SPIMOD0
173 #define SPCMD_SPIMOD_QUAD SPCMD_SPIMOD1
174 #define SPCMD_SPRW 0x0010 /* SPI Read/Write Access (Dual/Quad) */
175 #define SPCMD_SSLA_MASK 0x0030 /* SSL Assert Signal Setting (RSPI) */
176 #define SPCMD_BRDV_MASK 0x000c /* Bit Rate Division Setting */
177 #define SPCMD_CPOL 0x0002 /* Clock Polarity Setting */
178 #define SPCMD_CPHA 0x0001 /* Clock Phase Setting */
180 /* SPBFCR - Buffer Control Register */
181 #define SPBFCR_TXRST 0x80 /* Transmit Buffer Data Reset */
182 #define SPBFCR_RXRST 0x40 /* Receive Buffer Data Reset */
183 #define SPBFCR_TXTRG_MASK 0x30 /* Transmit Buffer Data Triggering Number */
184 #define SPBFCR_RXTRG_MASK 0x07 /* Receive Buffer Data Triggering Number */
186 #define DUMMY_DATA 0x00
188 struct rspi_data {
189 void __iomem *addr;
190 u32 max_speed_hz;
191 struct spi_master *master;
192 wait_queue_head_t wait;
193 struct clk *clk;
194 u16 spcmd;
195 u8 spsr;
196 u8 sppcr;
197 int rx_irq, tx_irq;
198 const struct spi_ops *ops;
200 /* for dmaengine */
201 struct dma_chan *chan_tx;
202 struct dma_chan *chan_rx;
204 unsigned dma_width_16bit:1;
205 unsigned dma_callbacked:1;
206 unsigned byte_access:1;
209 static void rspi_write8(const struct rspi_data *rspi, u8 data, u16 offset)
211 iowrite8(data, rspi->addr + offset);
214 static void rspi_write16(const struct rspi_data *rspi, u16 data, u16 offset)
216 iowrite16(data, rspi->addr + offset);
219 static void rspi_write32(const struct rspi_data *rspi, u32 data, u16 offset)
221 iowrite32(data, rspi->addr + offset);
224 static u8 rspi_read8(const struct rspi_data *rspi, u16 offset)
226 return ioread8(rspi->addr + offset);
229 static u16 rspi_read16(const struct rspi_data *rspi, u16 offset)
231 return ioread16(rspi->addr + offset);
234 static void rspi_write_data(const struct rspi_data *rspi, u16 data)
236 if (rspi->byte_access)
237 rspi_write8(rspi, data, RSPI_SPDR);
238 else /* 16 bit */
239 rspi_write16(rspi, data, RSPI_SPDR);
242 static u16 rspi_read_data(const struct rspi_data *rspi)
244 if (rspi->byte_access)
245 return rspi_read8(rspi, RSPI_SPDR);
246 else /* 16 bit */
247 return rspi_read16(rspi, RSPI_SPDR);
250 /* optional functions */
251 struct spi_ops {
252 int (*set_config_register)(struct rspi_data *rspi, int access_size);
253 int (*transfer_one)(struct spi_master *master, struct spi_device *spi,
254 struct spi_transfer *xfer);
255 u16 mode_bits;
259 * functions for RSPI on legacy SH
261 static int rspi_set_config_register(struct rspi_data *rspi, int access_size)
263 int spbr;
265 /* Sets output mode, MOSI signal, and (optionally) loopback */
266 rspi_write8(rspi, rspi->sppcr, RSPI_SPPCR);
268 /* Sets transfer bit rate */
269 spbr = clk_get_rate(rspi->clk) / (2 * rspi->max_speed_hz) - 1;
270 rspi_write8(rspi, clamp(spbr, 0, 255), RSPI_SPBR);
272 /* Disable dummy transmission, set 16-bit word access, 1 frame */
273 rspi_write8(rspi, 0, RSPI_SPDCR);
274 rspi->byte_access = 0;
276 /* Sets RSPCK, SSL, next-access delay value */
277 rspi_write8(rspi, 0x00, RSPI_SPCKD);
278 rspi_write8(rspi, 0x00, RSPI_SSLND);
279 rspi_write8(rspi, 0x00, RSPI_SPND);
281 /* Sets parity, interrupt mask */
282 rspi_write8(rspi, 0x00, RSPI_SPCR2);
284 /* Sets SPCMD */
285 rspi->spcmd |= SPCMD_SPB_8_TO_16(access_size);
286 rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0);
288 /* Sets RSPI mode */
289 rspi_write8(rspi, SPCR_MSTR, RSPI_SPCR);
291 return 0;
295 * functions for RSPI on RZ
297 static int rspi_rz_set_config_register(struct rspi_data *rspi, int access_size)
299 int spbr;
301 /* Sets output mode, MOSI signal, and (optionally) loopback */
302 rspi_write8(rspi, rspi->sppcr, RSPI_SPPCR);
304 /* Sets transfer bit rate */
305 spbr = clk_get_rate(rspi->clk) / (2 * rspi->max_speed_hz) - 1;
306 rspi_write8(rspi, clamp(spbr, 0, 255), RSPI_SPBR);
308 /* Disable dummy transmission, set byte access */
309 rspi_write8(rspi, SPDCR_SPLBYTE, RSPI_SPDCR);
310 rspi->byte_access = 1;
312 /* Sets RSPCK, SSL, next-access delay value */
313 rspi_write8(rspi, 0x00, RSPI_SPCKD);
314 rspi_write8(rspi, 0x00, RSPI_SSLND);
315 rspi_write8(rspi, 0x00, RSPI_SPND);
317 /* Sets SPCMD */
318 rspi->spcmd |= SPCMD_SPB_8_TO_16(access_size);
319 rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0);
321 /* Sets RSPI mode */
322 rspi_write8(rspi, SPCR_MSTR, RSPI_SPCR);
324 return 0;
328 * functions for QSPI
330 static int qspi_set_config_register(struct rspi_data *rspi, int access_size)
332 int spbr;
334 /* Sets output mode, MOSI signal, and (optionally) loopback */
335 rspi_write8(rspi, rspi->sppcr, RSPI_SPPCR);
337 /* Sets transfer bit rate */
338 spbr = clk_get_rate(rspi->clk) / (2 * rspi->max_speed_hz);
339 rspi_write8(rspi, clamp(spbr, 0, 255), RSPI_SPBR);
341 /* Disable dummy transmission, set byte access */
342 rspi_write8(rspi, 0, RSPI_SPDCR);
343 rspi->byte_access = 1;
345 /* Sets RSPCK, SSL, next-access delay value */
346 rspi_write8(rspi, 0x00, RSPI_SPCKD);
347 rspi_write8(rspi, 0x00, RSPI_SSLND);
348 rspi_write8(rspi, 0x00, RSPI_SPND);
350 /* Data Length Setting */
351 if (access_size == 8)
352 rspi->spcmd |= SPCMD_SPB_8BIT;
353 else if (access_size == 16)
354 rspi->spcmd |= SPCMD_SPB_16BIT;
355 else
356 rspi->spcmd |= SPCMD_SPB_32BIT;
358 rspi->spcmd |= SPCMD_SCKDEN | SPCMD_SLNDEN | SPCMD_SPNDEN;
360 /* Resets transfer data length */
361 rspi_write32(rspi, 0, QSPI_SPBMUL0);
363 /* Resets transmit and receive buffer */
364 rspi_write8(rspi, SPBFCR_TXRST | SPBFCR_RXRST, QSPI_SPBFCR);
365 /* Sets buffer to allow normal operation */
366 rspi_write8(rspi, 0x00, QSPI_SPBFCR);
368 /* Sets SPCMD */
369 rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0);
371 /* Enables SPI function in master mode */
372 rspi_write8(rspi, SPCR_SPE | SPCR_MSTR, RSPI_SPCR);
374 return 0;
377 #define set_config_register(spi, n) spi->ops->set_config_register(spi, n)
379 static void rspi_enable_irq(const struct rspi_data *rspi, u8 enable)
381 rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) | enable, RSPI_SPCR);
384 static void rspi_disable_irq(const struct rspi_data *rspi, u8 disable)
386 rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) & ~disable, RSPI_SPCR);
389 static int rspi_wait_for_interrupt(struct rspi_data *rspi, u8 wait_mask,
390 u8 enable_bit)
392 int ret;
394 rspi->spsr = rspi_read8(rspi, RSPI_SPSR);
395 if (rspi->spsr & wait_mask)
396 return 0;
398 rspi_enable_irq(rspi, enable_bit);
399 ret = wait_event_timeout(rspi->wait, rspi->spsr & wait_mask, HZ);
400 if (ret == 0 && !(rspi->spsr & wait_mask))
401 return -ETIMEDOUT;
403 return 0;
406 static int rspi_data_out(struct rspi_data *rspi, u8 data)
408 if (rspi_wait_for_interrupt(rspi, SPSR_SPTEF, SPCR_SPTIE) < 0) {
409 dev_err(&rspi->master->dev, "transmit timeout\n");
410 return -ETIMEDOUT;
412 rspi_write_data(rspi, data);
413 return 0;
416 static int rspi_data_in(struct rspi_data *rspi)
418 u8 data;
420 if (rspi_wait_for_interrupt(rspi, SPSR_SPRF, SPCR_SPRIE) < 0) {
421 dev_err(&rspi->master->dev, "receive timeout\n");
422 return -ETIMEDOUT;
424 data = rspi_read_data(rspi);
425 return data;
428 static int rspi_data_out_in(struct rspi_data *rspi, u8 data)
430 int ret;
432 ret = rspi_data_out(rspi, data);
433 if (ret < 0)
434 return ret;
436 return rspi_data_in(rspi);
439 static void rspi_dma_complete(void *arg)
441 struct rspi_data *rspi = arg;
443 rspi->dma_callbacked = 1;
444 wake_up_interruptible(&rspi->wait);
447 static int rspi_dma_map_sg(struct scatterlist *sg, const void *buf,
448 unsigned len, struct dma_chan *chan,
449 enum dma_transfer_direction dir)
451 sg_init_table(sg, 1);
452 sg_set_buf(sg, buf, len);
453 sg_dma_len(sg) = len;
454 return dma_map_sg(chan->device->dev, sg, 1, dir);
457 static void rspi_dma_unmap_sg(struct scatterlist *sg, struct dma_chan *chan,
458 enum dma_transfer_direction dir)
460 dma_unmap_sg(chan->device->dev, sg, 1, dir);
463 static void rspi_memory_to_8bit(void *buf, const void *data, unsigned len)
465 u16 *dst = buf;
466 const u8 *src = data;
468 while (len) {
469 *dst++ = (u16)(*src++);
470 len--;
474 static void rspi_memory_from_8bit(void *buf, const void *data, unsigned len)
476 u8 *dst = buf;
477 const u16 *src = data;
479 while (len) {
480 *dst++ = (u8)*src++;
481 len--;
485 static int rspi_send_dma(struct rspi_data *rspi, struct spi_transfer *t)
487 struct scatterlist sg;
488 const void *buf = NULL;
489 struct dma_async_tx_descriptor *desc;
490 unsigned int len;
491 int ret = 0;
493 if (rspi->dma_width_16bit) {
494 void *tmp;
496 * If DMAC bus width is 16-bit, the driver allocates a dummy
497 * buffer. And, the driver converts original data into the
498 * DMAC data as the following format:
499 * original data: 1st byte, 2nd byte ...
500 * DMAC data: 1st byte, dummy, 2nd byte, dummy ...
502 len = t->len * 2;
503 tmp = kmalloc(len, GFP_KERNEL);
504 if (!tmp)
505 return -ENOMEM;
506 rspi_memory_to_8bit(tmp, t->tx_buf, t->len);
507 buf = tmp;
508 } else {
509 len = t->len;
510 buf = t->tx_buf;
513 if (!rspi_dma_map_sg(&sg, buf, len, rspi->chan_tx, DMA_TO_DEVICE)) {
514 ret = -EFAULT;
515 goto end_nomap;
517 desc = dmaengine_prep_slave_sg(rspi->chan_tx, &sg, 1, DMA_TO_DEVICE,
518 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
519 if (!desc) {
520 ret = -EIO;
521 goto end;
525 * DMAC needs SPTIE, but if SPTIE is set, this IRQ routine will be
526 * called. So, this driver disables the IRQ while DMA transfer.
528 disable_irq(rspi->tx_irq);
530 rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) | SPCR_TXMD, RSPI_SPCR);
531 rspi_enable_irq(rspi, SPCR_SPTIE);
532 rspi->dma_callbacked = 0;
534 desc->callback = rspi_dma_complete;
535 desc->callback_param = rspi;
536 dmaengine_submit(desc);
537 dma_async_issue_pending(rspi->chan_tx);
539 ret = wait_event_interruptible_timeout(rspi->wait,
540 rspi->dma_callbacked, HZ);
541 if (ret > 0 && rspi->dma_callbacked)
542 ret = 0;
543 else if (!ret)
544 ret = -ETIMEDOUT;
545 rspi_disable_irq(rspi, SPCR_SPTIE);
547 enable_irq(rspi->tx_irq);
549 end:
550 rspi_dma_unmap_sg(&sg, rspi->chan_tx, DMA_TO_DEVICE);
551 end_nomap:
552 if (rspi->dma_width_16bit)
553 kfree(buf);
555 return ret;
558 static void rspi_receive_init(const struct rspi_data *rspi)
560 u8 spsr;
562 spsr = rspi_read8(rspi, RSPI_SPSR);
563 if (spsr & SPSR_SPRF)
564 rspi_read_data(rspi); /* dummy read */
565 if (spsr & SPSR_OVRF)
566 rspi_write8(rspi, rspi_read8(rspi, RSPI_SPSR) & ~SPSR_OVRF,
567 RSPI_SPSR);
570 static void rspi_rz_receive_init(const struct rspi_data *rspi)
572 rspi_receive_init(rspi);
573 rspi_write8(rspi, SPBFCR_TXRST | SPBFCR_RXRST, RSPI_SPBFCR);
574 rspi_write8(rspi, 0, RSPI_SPBFCR);
577 static void qspi_receive_init(const struct rspi_data *rspi)
579 u8 spsr;
581 spsr = rspi_read8(rspi, RSPI_SPSR);
582 if (spsr & SPSR_SPRF)
583 rspi_read_data(rspi); /* dummy read */
584 rspi_write8(rspi, SPBFCR_TXRST | SPBFCR_RXRST, QSPI_SPBFCR);
585 rspi_write8(rspi, 0, QSPI_SPBFCR);
588 static int rspi_receive_dma(struct rspi_data *rspi, struct spi_transfer *t)
590 struct scatterlist sg, sg_dummy;
591 void *dummy = NULL, *rx_buf = NULL;
592 struct dma_async_tx_descriptor *desc, *desc_dummy;
593 unsigned int len;
594 int ret = 0;
596 if (rspi->dma_width_16bit) {
598 * If DMAC bus width is 16-bit, the driver allocates a dummy
599 * buffer. And, finally the driver converts the DMAC data into
600 * actual data as the following format:
601 * DMAC data: 1st byte, dummy, 2nd byte, dummy ...
602 * actual data: 1st byte, 2nd byte ...
604 len = t->len * 2;
605 rx_buf = kmalloc(len, GFP_KERNEL);
606 if (!rx_buf)
607 return -ENOMEM;
608 } else {
609 len = t->len;
610 rx_buf = t->rx_buf;
613 /* prepare dummy transfer to generate SPI clocks */
614 dummy = kzalloc(len, GFP_KERNEL);
615 if (!dummy) {
616 ret = -ENOMEM;
617 goto end_nomap;
619 if (!rspi_dma_map_sg(&sg_dummy, dummy, len, rspi->chan_tx,
620 DMA_TO_DEVICE)) {
621 ret = -EFAULT;
622 goto end_nomap;
624 desc_dummy = dmaengine_prep_slave_sg(rspi->chan_tx, &sg_dummy, 1,
625 DMA_TO_DEVICE, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
626 if (!desc_dummy) {
627 ret = -EIO;
628 goto end_dummy_mapped;
631 /* prepare receive transfer */
632 if (!rspi_dma_map_sg(&sg, rx_buf, len, rspi->chan_rx,
633 DMA_FROM_DEVICE)) {
634 ret = -EFAULT;
635 goto end_dummy_mapped;
638 desc = dmaengine_prep_slave_sg(rspi->chan_rx, &sg, 1, DMA_FROM_DEVICE,
639 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
640 if (!desc) {
641 ret = -EIO;
642 goto end;
645 rspi_receive_init(rspi);
648 * DMAC needs SPTIE, but if SPTIE is set, this IRQ routine will be
649 * called. So, this driver disables the IRQ while DMA transfer.
651 disable_irq(rspi->tx_irq);
652 if (rspi->rx_irq != rspi->tx_irq)
653 disable_irq(rspi->rx_irq);
655 rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) & ~SPCR_TXMD, RSPI_SPCR);
656 rspi_enable_irq(rspi, SPCR_SPTIE | SPCR_SPRIE);
657 rspi->dma_callbacked = 0;
659 desc->callback = rspi_dma_complete;
660 desc->callback_param = rspi;
661 dmaengine_submit(desc);
662 dma_async_issue_pending(rspi->chan_rx);
664 desc_dummy->callback = NULL; /* No callback */
665 dmaengine_submit(desc_dummy);
666 dma_async_issue_pending(rspi->chan_tx);
668 ret = wait_event_interruptible_timeout(rspi->wait,
669 rspi->dma_callbacked, HZ);
670 if (ret > 0 && rspi->dma_callbacked)
671 ret = 0;
672 else if (!ret)
673 ret = -ETIMEDOUT;
674 rspi_disable_irq(rspi, SPCR_SPTIE | SPCR_SPRIE);
676 enable_irq(rspi->tx_irq);
677 if (rspi->rx_irq != rspi->tx_irq)
678 enable_irq(rspi->rx_irq);
680 end:
681 rspi_dma_unmap_sg(&sg, rspi->chan_rx, DMA_FROM_DEVICE);
682 end_dummy_mapped:
683 rspi_dma_unmap_sg(&sg_dummy, rspi->chan_tx, DMA_TO_DEVICE);
684 end_nomap:
685 if (rspi->dma_width_16bit) {
686 if (!ret)
687 rspi_memory_from_8bit(t->rx_buf, rx_buf, t->len);
688 kfree(rx_buf);
690 kfree(dummy);
692 return ret;
695 static int rspi_is_dma(const struct rspi_data *rspi, struct spi_transfer *t)
697 if (t->tx_buf && rspi->chan_tx)
698 return 1;
699 /* If the module receives data by DMAC, it also needs TX DMAC */
700 if (t->rx_buf && rspi->chan_tx && rspi->chan_rx)
701 return 1;
703 return 0;
706 static int rspi_transfer_out_in(struct rspi_data *rspi,
707 struct spi_transfer *xfer)
709 int remain = xfer->len, ret;
710 const u8 *tx_buf = xfer->tx_buf;
711 u8 *rx_buf = xfer->rx_buf;
712 u8 spcr, data;
714 rspi_receive_init(rspi);
716 spcr = rspi_read8(rspi, RSPI_SPCR);
717 if (rx_buf)
718 spcr &= ~SPCR_TXMD;
719 else
720 spcr |= SPCR_TXMD;
721 rspi_write8(rspi, spcr, RSPI_SPCR);
723 while (remain > 0) {
724 data = tx_buf ? *tx_buf++ : DUMMY_DATA;
725 ret = rspi_data_out(rspi, data);
726 if (ret < 0)
727 return ret;
728 if (rx_buf) {
729 ret = rspi_data_in(rspi);
730 if (ret < 0)
731 return ret;
732 *rx_buf++ = ret;
734 remain--;
737 /* Wait for the last transmission */
738 rspi_wait_for_interrupt(rspi, SPSR_SPTEF, SPCR_SPTIE);
740 return 0;
743 static int rspi_transfer_one(struct spi_master *master, struct spi_device *spi,
744 struct spi_transfer *xfer)
746 struct rspi_data *rspi = spi_master_get_devdata(master);
747 int ret;
749 if (!rspi_is_dma(rspi, xfer))
750 return rspi_transfer_out_in(rspi, xfer);
752 if (xfer->tx_buf) {
753 ret = rspi_send_dma(rspi, xfer);
754 if (ret < 0)
755 return ret;
757 if (xfer->rx_buf)
758 return rspi_receive_dma(rspi, xfer);
760 return 0;
763 static int rspi_rz_transfer_out_in(struct rspi_data *rspi,
764 struct spi_transfer *xfer)
766 int remain = xfer->len, ret;
767 const u8 *tx_buf = xfer->tx_buf;
768 u8 *rx_buf = xfer->rx_buf;
769 u8 data;
771 rspi_rz_receive_init(rspi);
773 while (remain > 0) {
774 data = tx_buf ? *tx_buf++ : DUMMY_DATA;
775 ret = rspi_data_out_in(rspi, data);
776 if (ret < 0)
777 return ret;
778 if (rx_buf)
779 *rx_buf++ = ret;
780 remain--;
783 /* Wait for the last transmission */
784 rspi_wait_for_interrupt(rspi, SPSR_SPTEF, SPCR_SPTIE);
786 return 0;
789 static int rspi_rz_transfer_one(struct spi_master *master,
790 struct spi_device *spi,
791 struct spi_transfer *xfer)
793 struct rspi_data *rspi = spi_master_get_devdata(master);
795 return rspi_rz_transfer_out_in(rspi, xfer);
798 static int qspi_transfer_out_in(struct rspi_data *rspi,
799 struct spi_transfer *xfer)
801 int remain = xfer->len, ret;
802 const u8 *tx_buf = xfer->tx_buf;
803 u8 *rx_buf = xfer->rx_buf;
804 u8 data;
806 qspi_receive_init(rspi);
808 while (remain > 0) {
809 data = tx_buf ? *tx_buf++ : DUMMY_DATA;
810 ret = rspi_data_out_in(rspi, data);
811 if (ret < 0)
812 return ret;
813 if (rx_buf)
814 *rx_buf++ = ret;
815 remain--;
818 /* Wait for the last transmission */
819 rspi_wait_for_interrupt(rspi, SPSR_SPTEF, SPCR_SPTIE);
821 return 0;
824 static int qspi_transfer_out(struct rspi_data *rspi, struct spi_transfer *xfer)
826 const u8 *buf = xfer->tx_buf;
827 unsigned int i;
828 int ret;
830 for (i = 0; i < xfer->len; i++) {
831 ret = rspi_data_out(rspi, *buf++);
832 if (ret < 0)
833 return ret;
836 /* Wait for the last transmission */
837 rspi_wait_for_interrupt(rspi, SPSR_SPTEF, SPCR_SPTIE);
839 return 0;
842 static int qspi_transfer_in(struct rspi_data *rspi, struct spi_transfer *xfer)
844 u8 *buf = xfer->rx_buf;
845 unsigned int i;
846 int ret;
848 for (i = 0; i < xfer->len; i++) {
849 ret = rspi_data_in(rspi);
850 if (ret < 0)
851 return ret;
852 *buf++ = ret;
855 return 0;
858 static int qspi_transfer_one(struct spi_master *master, struct spi_device *spi,
859 struct spi_transfer *xfer)
861 struct rspi_data *rspi = spi_master_get_devdata(master);
863 if (spi->mode & SPI_LOOP) {
864 return qspi_transfer_out_in(rspi, xfer);
865 } else if (xfer->tx_buf && xfer->tx_nbits > SPI_NBITS_SINGLE) {
866 /* Quad or Dual SPI Write */
867 return qspi_transfer_out(rspi, xfer);
868 } else if (xfer->rx_buf && xfer->rx_nbits > SPI_NBITS_SINGLE) {
869 /* Quad or Dual SPI Read */
870 return qspi_transfer_in(rspi, xfer);
871 } else {
872 /* Single SPI Transfer */
873 return qspi_transfer_out_in(rspi, xfer);
877 static int rspi_setup(struct spi_device *spi)
879 struct rspi_data *rspi = spi_master_get_devdata(spi->master);
881 rspi->max_speed_hz = spi->max_speed_hz;
883 rspi->spcmd = SPCMD_SSLKP;
884 if (spi->mode & SPI_CPOL)
885 rspi->spcmd |= SPCMD_CPOL;
886 if (spi->mode & SPI_CPHA)
887 rspi->spcmd |= SPCMD_CPHA;
889 /* CMOS output mode and MOSI signal from previous transfer */
890 rspi->sppcr = 0;
891 if (spi->mode & SPI_LOOP)
892 rspi->sppcr |= SPPCR_SPLP;
894 set_config_register(rspi, 8);
896 return 0;
899 static u16 qspi_transfer_mode(const struct spi_transfer *xfer)
901 if (xfer->tx_buf)
902 switch (xfer->tx_nbits) {
903 case SPI_NBITS_QUAD:
904 return SPCMD_SPIMOD_QUAD;
905 case SPI_NBITS_DUAL:
906 return SPCMD_SPIMOD_DUAL;
907 default:
908 return 0;
910 if (xfer->rx_buf)
911 switch (xfer->rx_nbits) {
912 case SPI_NBITS_QUAD:
913 return SPCMD_SPIMOD_QUAD | SPCMD_SPRW;
914 case SPI_NBITS_DUAL:
915 return SPCMD_SPIMOD_DUAL | SPCMD_SPRW;
916 default:
917 return 0;
920 return 0;
923 static int qspi_setup_sequencer(struct rspi_data *rspi,
924 const struct spi_message *msg)
926 const struct spi_transfer *xfer;
927 unsigned int i = 0, len = 0;
928 u16 current_mode = 0xffff, mode;
930 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
931 mode = qspi_transfer_mode(xfer);
932 if (mode == current_mode) {
933 len += xfer->len;
934 continue;
937 /* Transfer mode change */
938 if (i) {
939 /* Set transfer data length of previous transfer */
940 rspi_write32(rspi, len, QSPI_SPBMUL(i - 1));
943 if (i >= QSPI_NUM_SPCMD) {
944 dev_err(&msg->spi->dev,
945 "Too many different transfer modes");
946 return -EINVAL;
949 /* Program transfer mode for this transfer */
950 rspi_write16(rspi, rspi->spcmd | mode, RSPI_SPCMD(i));
951 current_mode = mode;
952 len = xfer->len;
953 i++;
955 if (i) {
956 /* Set final transfer data length and sequence length */
957 rspi_write32(rspi, len, QSPI_SPBMUL(i - 1));
958 rspi_write8(rspi, i - 1, RSPI_SPSCR);
961 return 0;
964 static int rspi_prepare_message(struct spi_master *master,
965 struct spi_message *msg)
967 struct rspi_data *rspi = spi_master_get_devdata(master);
968 int ret;
970 if (msg->spi->mode &
971 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD)) {
972 /* Setup sequencer for messages with multiple transfer modes */
973 ret = qspi_setup_sequencer(rspi, msg);
974 if (ret < 0)
975 return ret;
978 /* Enable SPI function in master mode */
979 rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) | SPCR_SPE, RSPI_SPCR);
980 return 0;
983 static int rspi_unprepare_message(struct spi_master *master,
984 struct spi_message *msg)
986 struct rspi_data *rspi = spi_master_get_devdata(master);
988 /* Disable SPI function */
989 rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) & ~SPCR_SPE, RSPI_SPCR);
991 /* Reset sequencer for Single SPI Transfers */
992 rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0);
993 rspi_write8(rspi, 0, RSPI_SPSCR);
994 return 0;
997 static irqreturn_t rspi_irq_mux(int irq, void *_sr)
999 struct rspi_data *rspi = _sr;
1000 u8 spsr;
1001 irqreturn_t ret = IRQ_NONE;
1002 u8 disable_irq = 0;
1004 rspi->spsr = spsr = rspi_read8(rspi, RSPI_SPSR);
1005 if (spsr & SPSR_SPRF)
1006 disable_irq |= SPCR_SPRIE;
1007 if (spsr & SPSR_SPTEF)
1008 disable_irq |= SPCR_SPTIE;
1010 if (disable_irq) {
1011 ret = IRQ_HANDLED;
1012 rspi_disable_irq(rspi, disable_irq);
1013 wake_up(&rspi->wait);
1016 return ret;
1019 static irqreturn_t rspi_irq_rx(int irq, void *_sr)
1021 struct rspi_data *rspi = _sr;
1022 u8 spsr;
1024 rspi->spsr = spsr = rspi_read8(rspi, RSPI_SPSR);
1025 if (spsr & SPSR_SPRF) {
1026 rspi_disable_irq(rspi, SPCR_SPRIE);
1027 wake_up(&rspi->wait);
1028 return IRQ_HANDLED;
1031 return 0;
1034 static irqreturn_t rspi_irq_tx(int irq, void *_sr)
1036 struct rspi_data *rspi = _sr;
1037 u8 spsr;
1039 rspi->spsr = spsr = rspi_read8(rspi, RSPI_SPSR);
1040 if (spsr & SPSR_SPTEF) {
1041 rspi_disable_irq(rspi, SPCR_SPTIE);
1042 wake_up(&rspi->wait);
1043 return IRQ_HANDLED;
1046 return 0;
1049 static int rspi_request_dma(struct rspi_data *rspi,
1050 struct platform_device *pdev)
1052 const struct rspi_plat_data *rspi_pd = dev_get_platdata(&pdev->dev);
1053 struct resource *res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1054 dma_cap_mask_t mask;
1055 struct dma_slave_config cfg;
1056 int ret;
1058 if (!res || !rspi_pd)
1059 return 0; /* The driver assumes no error. */
1061 rspi->dma_width_16bit = rspi_pd->dma_width_16bit;
1063 /* If the module receives data by DMAC, it also needs TX DMAC */
1064 if (rspi_pd->dma_rx_id && rspi_pd->dma_tx_id) {
1065 dma_cap_zero(mask);
1066 dma_cap_set(DMA_SLAVE, mask);
1067 rspi->chan_rx = dma_request_channel(mask, shdma_chan_filter,
1068 (void *)rspi_pd->dma_rx_id);
1069 if (rspi->chan_rx) {
1070 cfg.slave_id = rspi_pd->dma_rx_id;
1071 cfg.direction = DMA_DEV_TO_MEM;
1072 cfg.dst_addr = 0;
1073 cfg.src_addr = res->start + RSPI_SPDR;
1074 ret = dmaengine_slave_config(rspi->chan_rx, &cfg);
1075 if (!ret)
1076 dev_info(&pdev->dev, "Use DMA when rx.\n");
1077 else
1078 return ret;
1081 if (rspi_pd->dma_tx_id) {
1082 dma_cap_zero(mask);
1083 dma_cap_set(DMA_SLAVE, mask);
1084 rspi->chan_tx = dma_request_channel(mask, shdma_chan_filter,
1085 (void *)rspi_pd->dma_tx_id);
1086 if (rspi->chan_tx) {
1087 cfg.slave_id = rspi_pd->dma_tx_id;
1088 cfg.direction = DMA_MEM_TO_DEV;
1089 cfg.dst_addr = res->start + RSPI_SPDR;
1090 cfg.src_addr = 0;
1091 ret = dmaengine_slave_config(rspi->chan_tx, &cfg);
1092 if (!ret)
1093 dev_info(&pdev->dev, "Use DMA when tx\n");
1094 else
1095 return ret;
1099 return 0;
1102 static void rspi_release_dma(struct rspi_data *rspi)
1104 if (rspi->chan_tx)
1105 dma_release_channel(rspi->chan_tx);
1106 if (rspi->chan_rx)
1107 dma_release_channel(rspi->chan_rx);
1110 static int rspi_remove(struct platform_device *pdev)
1112 struct rspi_data *rspi = platform_get_drvdata(pdev);
1114 rspi_release_dma(rspi);
1115 pm_runtime_disable(&pdev->dev);
1117 return 0;
1120 static const struct spi_ops rspi_ops = {
1121 .set_config_register = rspi_set_config_register,
1122 .transfer_one = rspi_transfer_one,
1123 .mode_bits = SPI_CPHA | SPI_CPOL | SPI_LOOP,
1126 static const struct spi_ops rspi_rz_ops = {
1127 .set_config_register = rspi_rz_set_config_register,
1128 .transfer_one = rspi_rz_transfer_one,
1129 .mode_bits = SPI_CPHA | SPI_CPOL | SPI_LOOP,
1132 static const struct spi_ops qspi_ops = {
1133 .set_config_register = qspi_set_config_register,
1134 .transfer_one = qspi_transfer_one,
1135 .mode_bits = SPI_CPHA | SPI_CPOL | SPI_LOOP |
1136 SPI_TX_DUAL | SPI_TX_QUAD |
1137 SPI_RX_DUAL | SPI_RX_QUAD,
1140 #ifdef CONFIG_OF
1141 static const struct of_device_id rspi_of_match[] = {
1142 /* RSPI on legacy SH */
1143 { .compatible = "renesas,rspi", .data = &rspi_ops },
1144 /* RSPI on RZ/A1H */
1145 { .compatible = "renesas,rspi-rz", .data = &rspi_rz_ops },
1146 /* QSPI on R-Car Gen2 */
1147 { .compatible = "renesas,qspi", .data = &qspi_ops },
1148 { /* sentinel */ }
1151 MODULE_DEVICE_TABLE(of, rspi_of_match);
1153 static int rspi_parse_dt(struct device *dev, struct spi_master *master)
1155 u32 num_cs;
1156 int error;
1158 /* Parse DT properties */
1159 error = of_property_read_u32(dev->of_node, "num-cs", &num_cs);
1160 if (error) {
1161 dev_err(dev, "of_property_read_u32 num-cs failed %d\n", error);
1162 return error;
1165 master->num_chipselect = num_cs;
1166 return 0;
1168 #else
1169 #define rspi_of_match NULL
1170 static inline int rspi_parse_dt(struct device *dev, struct spi_master *master)
1172 return -EINVAL;
1174 #endif /* CONFIG_OF */
1176 static int rspi_request_irq(struct device *dev, unsigned int irq,
1177 irq_handler_t handler, const char *suffix,
1178 void *dev_id)
1180 const char *base = dev_name(dev);
1181 size_t len = strlen(base) + strlen(suffix) + 2;
1182 char *name = devm_kzalloc(dev, len, GFP_KERNEL);
1183 if (!name)
1184 return -ENOMEM;
1185 snprintf(name, len, "%s:%s", base, suffix);
1186 return devm_request_irq(dev, irq, handler, 0, name, dev_id);
1189 static int rspi_probe(struct platform_device *pdev)
1191 struct resource *res;
1192 struct spi_master *master;
1193 struct rspi_data *rspi;
1194 int ret;
1195 const struct of_device_id *of_id;
1196 const struct rspi_plat_data *rspi_pd;
1197 const struct spi_ops *ops;
1199 master = spi_alloc_master(&pdev->dev, sizeof(struct rspi_data));
1200 if (master == NULL) {
1201 dev_err(&pdev->dev, "spi_alloc_master error.\n");
1202 return -ENOMEM;
1205 of_id = of_match_device(rspi_of_match, &pdev->dev);
1206 if (of_id) {
1207 ops = of_id->data;
1208 ret = rspi_parse_dt(&pdev->dev, master);
1209 if (ret)
1210 goto error1;
1211 } else {
1212 ops = (struct spi_ops *)pdev->id_entry->driver_data;
1213 rspi_pd = dev_get_platdata(&pdev->dev);
1214 if (rspi_pd && rspi_pd->num_chipselect)
1215 master->num_chipselect = rspi_pd->num_chipselect;
1216 else
1217 master->num_chipselect = 2; /* default */
1220 /* ops parameter check */
1221 if (!ops->set_config_register) {
1222 dev_err(&pdev->dev, "there is no set_config_register\n");
1223 ret = -ENODEV;
1224 goto error1;
1227 rspi = spi_master_get_devdata(master);
1228 platform_set_drvdata(pdev, rspi);
1229 rspi->ops = ops;
1230 rspi->master = master;
1232 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1233 rspi->addr = devm_ioremap_resource(&pdev->dev, res);
1234 if (IS_ERR(rspi->addr)) {
1235 ret = PTR_ERR(rspi->addr);
1236 goto error1;
1239 rspi->clk = devm_clk_get(&pdev->dev, NULL);
1240 if (IS_ERR(rspi->clk)) {
1241 dev_err(&pdev->dev, "cannot get clock\n");
1242 ret = PTR_ERR(rspi->clk);
1243 goto error1;
1246 pm_runtime_enable(&pdev->dev);
1248 init_waitqueue_head(&rspi->wait);
1250 master->bus_num = pdev->id;
1251 master->setup = rspi_setup;
1252 master->auto_runtime_pm = true;
1253 master->transfer_one = ops->transfer_one;
1254 master->prepare_message = rspi_prepare_message;
1255 master->unprepare_message = rspi_unprepare_message;
1256 master->mode_bits = ops->mode_bits;
1257 master->dev.of_node = pdev->dev.of_node;
1259 ret = platform_get_irq_byname(pdev, "rx");
1260 if (ret < 0) {
1261 ret = platform_get_irq_byname(pdev, "mux");
1262 if (ret < 0)
1263 ret = platform_get_irq(pdev, 0);
1264 if (ret >= 0)
1265 rspi->rx_irq = rspi->tx_irq = ret;
1266 } else {
1267 rspi->rx_irq = ret;
1268 ret = platform_get_irq_byname(pdev, "tx");
1269 if (ret >= 0)
1270 rspi->tx_irq = ret;
1272 if (ret < 0) {
1273 dev_err(&pdev->dev, "platform_get_irq error\n");
1274 goto error2;
1277 if (rspi->rx_irq == rspi->tx_irq) {
1278 /* Single multiplexed interrupt */
1279 ret = rspi_request_irq(&pdev->dev, rspi->rx_irq, rspi_irq_mux,
1280 "mux", rspi);
1281 } else {
1282 /* Multi-interrupt mode, only SPRI and SPTI are used */
1283 ret = rspi_request_irq(&pdev->dev, rspi->rx_irq, rspi_irq_rx,
1284 "rx", rspi);
1285 if (!ret)
1286 ret = rspi_request_irq(&pdev->dev, rspi->tx_irq,
1287 rspi_irq_tx, "tx", rspi);
1289 if (ret < 0) {
1290 dev_err(&pdev->dev, "request_irq error\n");
1291 goto error2;
1294 ret = rspi_request_dma(rspi, pdev);
1295 if (ret < 0) {
1296 dev_err(&pdev->dev, "rspi_request_dma failed.\n");
1297 goto error3;
1300 ret = devm_spi_register_master(&pdev->dev, master);
1301 if (ret < 0) {
1302 dev_err(&pdev->dev, "spi_register_master error.\n");
1303 goto error3;
1306 dev_info(&pdev->dev, "probed\n");
1308 return 0;
1310 error3:
1311 rspi_release_dma(rspi);
1312 error2:
1313 pm_runtime_disable(&pdev->dev);
1314 error1:
1315 spi_master_put(master);
1317 return ret;
1320 static struct platform_device_id spi_driver_ids[] = {
1321 { "rspi", (kernel_ulong_t)&rspi_ops },
1322 { "rspi-rz", (kernel_ulong_t)&rspi_rz_ops },
1323 { "qspi", (kernel_ulong_t)&qspi_ops },
1327 MODULE_DEVICE_TABLE(platform, spi_driver_ids);
1329 static struct platform_driver rspi_driver = {
1330 .probe = rspi_probe,
1331 .remove = rspi_remove,
1332 .id_table = spi_driver_ids,
1333 .driver = {
1334 .name = "renesas_spi",
1335 .owner = THIS_MODULE,
1336 .of_match_table = of_match_ptr(rspi_of_match),
1339 module_platform_driver(rspi_driver);
1341 MODULE_DESCRIPTION("Renesas RSPI bus driver");
1342 MODULE_LICENSE("GPL v2");
1343 MODULE_AUTHOR("Yoshihiro Shimoda");
1344 MODULE_ALIAS("platform:rspi");