ext4: reduce contention on s_orphan_lock
[linux/fpc-iii.git] / drivers / spi / spi-s3c64xx.c
blobf19cd97855e8e76fc4bc90e8ac21853c58495d7d
1 /*
2 * Copyright (C) 2009 Samsung Electronics Ltd.
3 * Jaswinder Singh <jassi.brar@samsung.com>
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
20 #include <linux/init.h>
21 #include <linux/module.h>
22 #include <linux/workqueue.h>
23 #include <linux/interrupt.h>
24 #include <linux/delay.h>
25 #include <linux/clk.h>
26 #include <linux/dma-mapping.h>
27 #include <linux/dmaengine.h>
28 #include <linux/platform_device.h>
29 #include <linux/pm_runtime.h>
30 #include <linux/spi/spi.h>
31 #include <linux/gpio.h>
32 #include <linux/of.h>
33 #include <linux/of_gpio.h>
35 #include <linux/platform_data/spi-s3c64xx.h>
37 #define MAX_SPI_PORTS 3
38 #define S3C64XX_SPI_QUIRK_POLL (1 << 0)
40 /* Registers and bit-fields */
42 #define S3C64XX_SPI_CH_CFG 0x00
43 #define S3C64XX_SPI_CLK_CFG 0x04
44 #define S3C64XX_SPI_MODE_CFG 0x08
45 #define S3C64XX_SPI_SLAVE_SEL 0x0C
46 #define S3C64XX_SPI_INT_EN 0x10
47 #define S3C64XX_SPI_STATUS 0x14
48 #define S3C64XX_SPI_TX_DATA 0x18
49 #define S3C64XX_SPI_RX_DATA 0x1C
50 #define S3C64XX_SPI_PACKET_CNT 0x20
51 #define S3C64XX_SPI_PENDING_CLR 0x24
52 #define S3C64XX_SPI_SWAP_CFG 0x28
53 #define S3C64XX_SPI_FB_CLK 0x2C
55 #define S3C64XX_SPI_CH_HS_EN (1<<6) /* High Speed Enable */
56 #define S3C64XX_SPI_CH_SW_RST (1<<5)
57 #define S3C64XX_SPI_CH_SLAVE (1<<4)
58 #define S3C64XX_SPI_CPOL_L (1<<3)
59 #define S3C64XX_SPI_CPHA_B (1<<2)
60 #define S3C64XX_SPI_CH_RXCH_ON (1<<1)
61 #define S3C64XX_SPI_CH_TXCH_ON (1<<0)
63 #define S3C64XX_SPI_CLKSEL_SRCMSK (3<<9)
64 #define S3C64XX_SPI_CLKSEL_SRCSHFT 9
65 #define S3C64XX_SPI_ENCLK_ENABLE (1<<8)
66 #define S3C64XX_SPI_PSR_MASK 0xff
68 #define S3C64XX_SPI_MODE_CH_TSZ_BYTE (0<<29)
69 #define S3C64XX_SPI_MODE_CH_TSZ_HALFWORD (1<<29)
70 #define S3C64XX_SPI_MODE_CH_TSZ_WORD (2<<29)
71 #define S3C64XX_SPI_MODE_CH_TSZ_MASK (3<<29)
72 #define S3C64XX_SPI_MODE_BUS_TSZ_BYTE (0<<17)
73 #define S3C64XX_SPI_MODE_BUS_TSZ_HALFWORD (1<<17)
74 #define S3C64XX_SPI_MODE_BUS_TSZ_WORD (2<<17)
75 #define S3C64XX_SPI_MODE_BUS_TSZ_MASK (3<<17)
76 #define S3C64XX_SPI_MODE_RXDMA_ON (1<<2)
77 #define S3C64XX_SPI_MODE_TXDMA_ON (1<<1)
78 #define S3C64XX_SPI_MODE_4BURST (1<<0)
80 #define S3C64XX_SPI_SLAVE_AUTO (1<<1)
81 #define S3C64XX_SPI_SLAVE_SIG_INACT (1<<0)
83 #define S3C64XX_SPI_INT_TRAILING_EN (1<<6)
84 #define S3C64XX_SPI_INT_RX_OVERRUN_EN (1<<5)
85 #define S3C64XX_SPI_INT_RX_UNDERRUN_EN (1<<4)
86 #define S3C64XX_SPI_INT_TX_OVERRUN_EN (1<<3)
87 #define S3C64XX_SPI_INT_TX_UNDERRUN_EN (1<<2)
88 #define S3C64XX_SPI_INT_RX_FIFORDY_EN (1<<1)
89 #define S3C64XX_SPI_INT_TX_FIFORDY_EN (1<<0)
91 #define S3C64XX_SPI_ST_RX_OVERRUN_ERR (1<<5)
92 #define S3C64XX_SPI_ST_RX_UNDERRUN_ERR (1<<4)
93 #define S3C64XX_SPI_ST_TX_OVERRUN_ERR (1<<3)
94 #define S3C64XX_SPI_ST_TX_UNDERRUN_ERR (1<<2)
95 #define S3C64XX_SPI_ST_RX_FIFORDY (1<<1)
96 #define S3C64XX_SPI_ST_TX_FIFORDY (1<<0)
98 #define S3C64XX_SPI_PACKET_CNT_EN (1<<16)
100 #define S3C64XX_SPI_PND_TX_UNDERRUN_CLR (1<<4)
101 #define S3C64XX_SPI_PND_TX_OVERRUN_CLR (1<<3)
102 #define S3C64XX_SPI_PND_RX_UNDERRUN_CLR (1<<2)
103 #define S3C64XX_SPI_PND_RX_OVERRUN_CLR (1<<1)
104 #define S3C64XX_SPI_PND_TRAILING_CLR (1<<0)
106 #define S3C64XX_SPI_SWAP_RX_HALF_WORD (1<<7)
107 #define S3C64XX_SPI_SWAP_RX_BYTE (1<<6)
108 #define S3C64XX_SPI_SWAP_RX_BIT (1<<5)
109 #define S3C64XX_SPI_SWAP_RX_EN (1<<4)
110 #define S3C64XX_SPI_SWAP_TX_HALF_WORD (1<<3)
111 #define S3C64XX_SPI_SWAP_TX_BYTE (1<<2)
112 #define S3C64XX_SPI_SWAP_TX_BIT (1<<1)
113 #define S3C64XX_SPI_SWAP_TX_EN (1<<0)
115 #define S3C64XX_SPI_FBCLK_MSK (3<<0)
117 #define FIFO_LVL_MASK(i) ((i)->port_conf->fifo_lvl_mask[i->port_id])
118 #define S3C64XX_SPI_ST_TX_DONE(v, i) (((v) & \
119 (1 << (i)->port_conf->tx_st_done)) ? 1 : 0)
120 #define TX_FIFO_LVL(v, i) (((v) >> 6) & FIFO_LVL_MASK(i))
121 #define RX_FIFO_LVL(v, i) (((v) >> (i)->port_conf->rx_lvl_offset) & \
122 FIFO_LVL_MASK(i))
124 #define S3C64XX_SPI_MAX_TRAILCNT 0x3ff
125 #define S3C64XX_SPI_TRAILCNT_OFF 19
127 #define S3C64XX_SPI_TRAILCNT S3C64XX_SPI_MAX_TRAILCNT
129 #define msecs_to_loops(t) (loops_per_jiffy / 1000 * HZ * t)
130 #define is_polling(x) (x->port_conf->quirks & S3C64XX_SPI_QUIRK_POLL)
132 #define RXBUSY (1<<2)
133 #define TXBUSY (1<<3)
135 struct s3c64xx_spi_dma_data {
136 struct dma_chan *ch;
137 enum dma_transfer_direction direction;
138 unsigned int dmach;
142 * struct s3c64xx_spi_info - SPI Controller hardware info
143 * @fifo_lvl_mask: Bit-mask for {TX|RX}_FIFO_LVL bits in SPI_STATUS register.
144 * @rx_lvl_offset: Bit offset of RX_FIFO_LVL bits in SPI_STATUS regiter.
145 * @tx_st_done: Bit offset of TX_DONE bit in SPI_STATUS regiter.
146 * @high_speed: True, if the controller supports HIGH_SPEED_EN bit.
147 * @clk_from_cmu: True, if the controller does not include a clock mux and
148 * prescaler unit.
150 * The Samsung s3c64xx SPI controller are used on various Samsung SoC's but
151 * differ in some aspects such as the size of the fifo and spi bus clock
152 * setup. Such differences are specified to the driver using this structure
153 * which is provided as driver data to the driver.
155 struct s3c64xx_spi_port_config {
156 int fifo_lvl_mask[MAX_SPI_PORTS];
157 int rx_lvl_offset;
158 int tx_st_done;
159 int quirks;
160 bool high_speed;
161 bool clk_from_cmu;
165 * struct s3c64xx_spi_driver_data - Runtime info holder for SPI driver.
166 * @clk: Pointer to the spi clock.
167 * @src_clk: Pointer to the clock used to generate SPI signals.
168 * @master: Pointer to the SPI Protocol master.
169 * @cntrlr_info: Platform specific data for the controller this driver manages.
170 * @tgl_spi: Pointer to the last CS left untoggled by the cs_change hint.
171 * @lock: Controller specific lock.
172 * @state: Set of FLAGS to indicate status.
173 * @rx_dmach: Controller's DMA channel for Rx.
174 * @tx_dmach: Controller's DMA channel for Tx.
175 * @sfr_start: BUS address of SPI controller regs.
176 * @regs: Pointer to ioremap'ed controller registers.
177 * @irq: interrupt
178 * @xfer_completion: To indicate completion of xfer task.
179 * @cur_mode: Stores the active configuration of the controller.
180 * @cur_bpw: Stores the active bits per word settings.
181 * @cur_speed: Stores the active xfer clock speed.
183 struct s3c64xx_spi_driver_data {
184 void __iomem *regs;
185 struct clk *clk;
186 struct clk *src_clk;
187 struct platform_device *pdev;
188 struct spi_master *master;
189 struct s3c64xx_spi_info *cntrlr_info;
190 struct spi_device *tgl_spi;
191 spinlock_t lock;
192 unsigned long sfr_start;
193 struct completion xfer_completion;
194 unsigned state;
195 unsigned cur_mode, cur_bpw;
196 unsigned cur_speed;
197 struct s3c64xx_spi_dma_data rx_dma;
198 struct s3c64xx_spi_dma_data tx_dma;
199 struct s3c64xx_spi_port_config *port_conf;
200 unsigned int port_id;
201 bool cs_gpio;
204 static void flush_fifo(struct s3c64xx_spi_driver_data *sdd)
206 void __iomem *regs = sdd->regs;
207 unsigned long loops;
208 u32 val;
210 writel(0, regs + S3C64XX_SPI_PACKET_CNT);
212 val = readl(regs + S3C64XX_SPI_CH_CFG);
213 val &= ~(S3C64XX_SPI_CH_RXCH_ON | S3C64XX_SPI_CH_TXCH_ON);
214 writel(val, regs + S3C64XX_SPI_CH_CFG);
216 val = readl(regs + S3C64XX_SPI_CH_CFG);
217 val |= S3C64XX_SPI_CH_SW_RST;
218 val &= ~S3C64XX_SPI_CH_HS_EN;
219 writel(val, regs + S3C64XX_SPI_CH_CFG);
221 /* Flush TxFIFO*/
222 loops = msecs_to_loops(1);
223 do {
224 val = readl(regs + S3C64XX_SPI_STATUS);
225 } while (TX_FIFO_LVL(val, sdd) && loops--);
227 if (loops == 0)
228 dev_warn(&sdd->pdev->dev, "Timed out flushing TX FIFO\n");
230 /* Flush RxFIFO*/
231 loops = msecs_to_loops(1);
232 do {
233 val = readl(regs + S3C64XX_SPI_STATUS);
234 if (RX_FIFO_LVL(val, sdd))
235 readl(regs + S3C64XX_SPI_RX_DATA);
236 else
237 break;
238 } while (loops--);
240 if (loops == 0)
241 dev_warn(&sdd->pdev->dev, "Timed out flushing RX FIFO\n");
243 val = readl(regs + S3C64XX_SPI_CH_CFG);
244 val &= ~S3C64XX_SPI_CH_SW_RST;
245 writel(val, regs + S3C64XX_SPI_CH_CFG);
247 val = readl(regs + S3C64XX_SPI_MODE_CFG);
248 val &= ~(S3C64XX_SPI_MODE_TXDMA_ON | S3C64XX_SPI_MODE_RXDMA_ON);
249 writel(val, regs + S3C64XX_SPI_MODE_CFG);
252 static void s3c64xx_spi_dmacb(void *data)
254 struct s3c64xx_spi_driver_data *sdd;
255 struct s3c64xx_spi_dma_data *dma = data;
256 unsigned long flags;
258 if (dma->direction == DMA_DEV_TO_MEM)
259 sdd = container_of(data,
260 struct s3c64xx_spi_driver_data, rx_dma);
261 else
262 sdd = container_of(data,
263 struct s3c64xx_spi_driver_data, tx_dma);
265 spin_lock_irqsave(&sdd->lock, flags);
267 if (dma->direction == DMA_DEV_TO_MEM) {
268 sdd->state &= ~RXBUSY;
269 if (!(sdd->state & TXBUSY))
270 complete(&sdd->xfer_completion);
271 } else {
272 sdd->state &= ~TXBUSY;
273 if (!(sdd->state & RXBUSY))
274 complete(&sdd->xfer_completion);
277 spin_unlock_irqrestore(&sdd->lock, flags);
280 static void prepare_dma(struct s3c64xx_spi_dma_data *dma,
281 struct sg_table *sgt)
283 struct s3c64xx_spi_driver_data *sdd;
284 struct dma_slave_config config;
285 struct dma_async_tx_descriptor *desc;
287 memset(&config, 0, sizeof(config));
289 if (dma->direction == DMA_DEV_TO_MEM) {
290 sdd = container_of((void *)dma,
291 struct s3c64xx_spi_driver_data, rx_dma);
292 config.direction = dma->direction;
293 config.src_addr = sdd->sfr_start + S3C64XX_SPI_RX_DATA;
294 config.src_addr_width = sdd->cur_bpw / 8;
295 config.src_maxburst = 1;
296 dmaengine_slave_config(dma->ch, &config);
297 } else {
298 sdd = container_of((void *)dma,
299 struct s3c64xx_spi_driver_data, tx_dma);
300 config.direction = dma->direction;
301 config.dst_addr = sdd->sfr_start + S3C64XX_SPI_TX_DATA;
302 config.dst_addr_width = sdd->cur_bpw / 8;
303 config.dst_maxburst = 1;
304 dmaengine_slave_config(dma->ch, &config);
307 desc = dmaengine_prep_slave_sg(dma->ch, sgt->sgl, sgt->nents,
308 dma->direction, DMA_PREP_INTERRUPT);
310 desc->callback = s3c64xx_spi_dmacb;
311 desc->callback_param = dma;
313 dmaengine_submit(desc);
314 dma_async_issue_pending(dma->ch);
317 static int s3c64xx_spi_prepare_transfer(struct spi_master *spi)
319 struct s3c64xx_spi_driver_data *sdd = spi_master_get_devdata(spi);
320 dma_filter_fn filter = sdd->cntrlr_info->filter;
321 struct device *dev = &sdd->pdev->dev;
322 dma_cap_mask_t mask;
323 int ret;
325 if (!is_polling(sdd)) {
326 dma_cap_zero(mask);
327 dma_cap_set(DMA_SLAVE, mask);
329 /* Acquire DMA channels */
330 sdd->rx_dma.ch = dma_request_slave_channel_compat(mask, filter,
331 (void *)sdd->rx_dma.dmach, dev, "rx");
332 if (!sdd->rx_dma.ch) {
333 dev_err(dev, "Failed to get RX DMA channel\n");
334 ret = -EBUSY;
335 goto out;
337 spi->dma_rx = sdd->rx_dma.ch;
339 sdd->tx_dma.ch = dma_request_slave_channel_compat(mask, filter,
340 (void *)sdd->tx_dma.dmach, dev, "tx");
341 if (!sdd->tx_dma.ch) {
342 dev_err(dev, "Failed to get TX DMA channel\n");
343 ret = -EBUSY;
344 goto out_rx;
346 spi->dma_tx = sdd->tx_dma.ch;
349 ret = pm_runtime_get_sync(&sdd->pdev->dev);
350 if (ret < 0) {
351 dev_err(dev, "Failed to enable device: %d\n", ret);
352 goto out_tx;
355 return 0;
357 out_tx:
358 dma_release_channel(sdd->tx_dma.ch);
359 out_rx:
360 dma_release_channel(sdd->rx_dma.ch);
361 out:
362 return ret;
365 static int s3c64xx_spi_unprepare_transfer(struct spi_master *spi)
367 struct s3c64xx_spi_driver_data *sdd = spi_master_get_devdata(spi);
369 /* Free DMA channels */
370 if (!is_polling(sdd)) {
371 dma_release_channel(sdd->rx_dma.ch);
372 dma_release_channel(sdd->tx_dma.ch);
375 pm_runtime_put(&sdd->pdev->dev);
376 return 0;
379 static bool s3c64xx_spi_can_dma(struct spi_master *master,
380 struct spi_device *spi,
381 struct spi_transfer *xfer)
383 struct s3c64xx_spi_driver_data *sdd = spi_master_get_devdata(master);
385 return xfer->len > (FIFO_LVL_MASK(sdd) >> 1) + 1;
388 static void enable_datapath(struct s3c64xx_spi_driver_data *sdd,
389 struct spi_device *spi,
390 struct spi_transfer *xfer, int dma_mode)
392 void __iomem *regs = sdd->regs;
393 u32 modecfg, chcfg;
395 modecfg = readl(regs + S3C64XX_SPI_MODE_CFG);
396 modecfg &= ~(S3C64XX_SPI_MODE_TXDMA_ON | S3C64XX_SPI_MODE_RXDMA_ON);
398 chcfg = readl(regs + S3C64XX_SPI_CH_CFG);
399 chcfg &= ~S3C64XX_SPI_CH_TXCH_ON;
401 if (dma_mode) {
402 chcfg &= ~S3C64XX_SPI_CH_RXCH_ON;
403 } else {
404 /* Always shift in data in FIFO, even if xfer is Tx only,
405 * this helps setting PCKT_CNT value for generating clocks
406 * as exactly needed.
408 chcfg |= S3C64XX_SPI_CH_RXCH_ON;
409 writel(((xfer->len * 8 / sdd->cur_bpw) & 0xffff)
410 | S3C64XX_SPI_PACKET_CNT_EN,
411 regs + S3C64XX_SPI_PACKET_CNT);
414 if (xfer->tx_buf != NULL) {
415 sdd->state |= TXBUSY;
416 chcfg |= S3C64XX_SPI_CH_TXCH_ON;
417 if (dma_mode) {
418 modecfg |= S3C64XX_SPI_MODE_TXDMA_ON;
419 prepare_dma(&sdd->tx_dma, &xfer->tx_sg);
420 } else {
421 switch (sdd->cur_bpw) {
422 case 32:
423 iowrite32_rep(regs + S3C64XX_SPI_TX_DATA,
424 xfer->tx_buf, xfer->len / 4);
425 break;
426 case 16:
427 iowrite16_rep(regs + S3C64XX_SPI_TX_DATA,
428 xfer->tx_buf, xfer->len / 2);
429 break;
430 default:
431 iowrite8_rep(regs + S3C64XX_SPI_TX_DATA,
432 xfer->tx_buf, xfer->len);
433 break;
438 if (xfer->rx_buf != NULL) {
439 sdd->state |= RXBUSY;
441 if (sdd->port_conf->high_speed && sdd->cur_speed >= 30000000UL
442 && !(sdd->cur_mode & SPI_CPHA))
443 chcfg |= S3C64XX_SPI_CH_HS_EN;
445 if (dma_mode) {
446 modecfg |= S3C64XX_SPI_MODE_RXDMA_ON;
447 chcfg |= S3C64XX_SPI_CH_RXCH_ON;
448 writel(((xfer->len * 8 / sdd->cur_bpw) & 0xffff)
449 | S3C64XX_SPI_PACKET_CNT_EN,
450 regs + S3C64XX_SPI_PACKET_CNT);
451 prepare_dma(&sdd->rx_dma, &xfer->rx_sg);
455 writel(modecfg, regs + S3C64XX_SPI_MODE_CFG);
456 writel(chcfg, regs + S3C64XX_SPI_CH_CFG);
459 static u32 s3c64xx_spi_wait_for_timeout(struct s3c64xx_spi_driver_data *sdd,
460 int timeout_ms)
462 void __iomem *regs = sdd->regs;
463 unsigned long val = 1;
464 u32 status;
466 /* max fifo depth available */
467 u32 max_fifo = (FIFO_LVL_MASK(sdd) >> 1) + 1;
469 if (timeout_ms)
470 val = msecs_to_loops(timeout_ms);
472 do {
473 status = readl(regs + S3C64XX_SPI_STATUS);
474 } while (RX_FIFO_LVL(status, sdd) < max_fifo && --val);
476 /* return the actual received data length */
477 return RX_FIFO_LVL(status, sdd);
480 static int wait_for_dma(struct s3c64xx_spi_driver_data *sdd,
481 struct spi_transfer *xfer)
483 void __iomem *regs = sdd->regs;
484 unsigned long val;
485 u32 status;
486 int ms;
488 /* millisecs to xfer 'len' bytes @ 'cur_speed' */
489 ms = xfer->len * 8 * 1000 / sdd->cur_speed;
490 ms += 10; /* some tolerance */
492 val = msecs_to_jiffies(ms) + 10;
493 val = wait_for_completion_timeout(&sdd->xfer_completion, val);
496 * If the previous xfer was completed within timeout, then
497 * proceed further else return -EIO.
498 * DmaTx returns after simply writing data in the FIFO,
499 * w/o waiting for real transmission on the bus to finish.
500 * DmaRx returns only after Dma read data from FIFO which
501 * needs bus transmission to finish, so we don't worry if
502 * Xfer involved Rx(with or without Tx).
504 if (val && !xfer->rx_buf) {
505 val = msecs_to_loops(10);
506 status = readl(regs + S3C64XX_SPI_STATUS);
507 while ((TX_FIFO_LVL(status, sdd)
508 || !S3C64XX_SPI_ST_TX_DONE(status, sdd))
509 && --val) {
510 cpu_relax();
511 status = readl(regs + S3C64XX_SPI_STATUS);
516 /* If timed out while checking rx/tx status return error */
517 if (!val)
518 return -EIO;
520 return 0;
523 static int wait_for_pio(struct s3c64xx_spi_driver_data *sdd,
524 struct spi_transfer *xfer)
526 void __iomem *regs = sdd->regs;
527 unsigned long val;
528 u32 status;
529 int loops;
530 u32 cpy_len;
531 u8 *buf;
532 int ms;
534 /* millisecs to xfer 'len' bytes @ 'cur_speed' */
535 ms = xfer->len * 8 * 1000 / sdd->cur_speed;
536 ms += 10; /* some tolerance */
538 val = msecs_to_loops(ms);
539 do {
540 status = readl(regs + S3C64XX_SPI_STATUS);
541 } while (RX_FIFO_LVL(status, sdd) < xfer->len && --val);
544 /* If it was only Tx */
545 if (!xfer->rx_buf) {
546 sdd->state &= ~TXBUSY;
547 return 0;
551 * If the receive length is bigger than the controller fifo
552 * size, calculate the loops and read the fifo as many times.
553 * loops = length / max fifo size (calculated by using the
554 * fifo mask).
555 * For any size less than the fifo size the below code is
556 * executed atleast once.
558 loops = xfer->len / ((FIFO_LVL_MASK(sdd) >> 1) + 1);
559 buf = xfer->rx_buf;
560 do {
561 /* wait for data to be received in the fifo */
562 cpy_len = s3c64xx_spi_wait_for_timeout(sdd,
563 (loops ? ms : 0));
565 switch (sdd->cur_bpw) {
566 case 32:
567 ioread32_rep(regs + S3C64XX_SPI_RX_DATA,
568 buf, cpy_len / 4);
569 break;
570 case 16:
571 ioread16_rep(regs + S3C64XX_SPI_RX_DATA,
572 buf, cpy_len / 2);
573 break;
574 default:
575 ioread8_rep(regs + S3C64XX_SPI_RX_DATA,
576 buf, cpy_len);
577 break;
580 buf = buf + cpy_len;
581 } while (loops--);
582 sdd->state &= ~RXBUSY;
584 return 0;
587 static void s3c64xx_spi_config(struct s3c64xx_spi_driver_data *sdd)
589 void __iomem *regs = sdd->regs;
590 u32 val;
592 /* Disable Clock */
593 if (sdd->port_conf->clk_from_cmu) {
594 clk_disable_unprepare(sdd->src_clk);
595 } else {
596 val = readl(regs + S3C64XX_SPI_CLK_CFG);
597 val &= ~S3C64XX_SPI_ENCLK_ENABLE;
598 writel(val, regs + S3C64XX_SPI_CLK_CFG);
601 /* Set Polarity and Phase */
602 val = readl(regs + S3C64XX_SPI_CH_CFG);
603 val &= ~(S3C64XX_SPI_CH_SLAVE |
604 S3C64XX_SPI_CPOL_L |
605 S3C64XX_SPI_CPHA_B);
607 if (sdd->cur_mode & SPI_CPOL)
608 val |= S3C64XX_SPI_CPOL_L;
610 if (sdd->cur_mode & SPI_CPHA)
611 val |= S3C64XX_SPI_CPHA_B;
613 writel(val, regs + S3C64XX_SPI_CH_CFG);
615 /* Set Channel & DMA Mode */
616 val = readl(regs + S3C64XX_SPI_MODE_CFG);
617 val &= ~(S3C64XX_SPI_MODE_BUS_TSZ_MASK
618 | S3C64XX_SPI_MODE_CH_TSZ_MASK);
620 switch (sdd->cur_bpw) {
621 case 32:
622 val |= S3C64XX_SPI_MODE_BUS_TSZ_WORD;
623 val |= S3C64XX_SPI_MODE_CH_TSZ_WORD;
624 break;
625 case 16:
626 val |= S3C64XX_SPI_MODE_BUS_TSZ_HALFWORD;
627 val |= S3C64XX_SPI_MODE_CH_TSZ_HALFWORD;
628 break;
629 default:
630 val |= S3C64XX_SPI_MODE_BUS_TSZ_BYTE;
631 val |= S3C64XX_SPI_MODE_CH_TSZ_BYTE;
632 break;
635 writel(val, regs + S3C64XX_SPI_MODE_CFG);
637 if (sdd->port_conf->clk_from_cmu) {
638 /* Configure Clock */
639 /* There is half-multiplier before the SPI */
640 clk_set_rate(sdd->src_clk, sdd->cur_speed * 2);
641 /* Enable Clock */
642 clk_prepare_enable(sdd->src_clk);
643 } else {
644 /* Configure Clock */
645 val = readl(regs + S3C64XX_SPI_CLK_CFG);
646 val &= ~S3C64XX_SPI_PSR_MASK;
647 val |= ((clk_get_rate(sdd->src_clk) / sdd->cur_speed / 2 - 1)
648 & S3C64XX_SPI_PSR_MASK);
649 writel(val, regs + S3C64XX_SPI_CLK_CFG);
651 /* Enable Clock */
652 val = readl(regs + S3C64XX_SPI_CLK_CFG);
653 val |= S3C64XX_SPI_ENCLK_ENABLE;
654 writel(val, regs + S3C64XX_SPI_CLK_CFG);
658 #define XFER_DMAADDR_INVALID DMA_BIT_MASK(32)
660 static int s3c64xx_spi_prepare_message(struct spi_master *master,
661 struct spi_message *msg)
663 struct s3c64xx_spi_driver_data *sdd = spi_master_get_devdata(master);
664 struct spi_device *spi = msg->spi;
665 struct s3c64xx_spi_csinfo *cs = spi->controller_data;
667 /* If Master's(controller) state differs from that needed by Slave */
668 if (sdd->cur_speed != spi->max_speed_hz
669 || sdd->cur_mode != spi->mode
670 || sdd->cur_bpw != spi->bits_per_word) {
671 sdd->cur_bpw = spi->bits_per_word;
672 sdd->cur_speed = spi->max_speed_hz;
673 sdd->cur_mode = spi->mode;
674 s3c64xx_spi_config(sdd);
677 /* Configure feedback delay */
678 writel(cs->fb_delay & 0x3, sdd->regs + S3C64XX_SPI_FB_CLK);
680 return 0;
683 static int s3c64xx_spi_transfer_one(struct spi_master *master,
684 struct spi_device *spi,
685 struct spi_transfer *xfer)
687 struct s3c64xx_spi_driver_data *sdd = spi_master_get_devdata(master);
688 int status;
689 u32 speed;
690 u8 bpw;
691 unsigned long flags;
692 int use_dma;
694 reinit_completion(&sdd->xfer_completion);
696 /* Only BPW and Speed may change across transfers */
697 bpw = xfer->bits_per_word;
698 speed = xfer->speed_hz ? : spi->max_speed_hz;
700 if (bpw != sdd->cur_bpw || speed != sdd->cur_speed) {
701 sdd->cur_bpw = bpw;
702 sdd->cur_speed = speed;
703 s3c64xx_spi_config(sdd);
706 /* Polling method for xfers not bigger than FIFO capacity */
707 use_dma = 0;
708 if (!is_polling(sdd) &&
709 (sdd->rx_dma.ch && sdd->tx_dma.ch &&
710 (xfer->len > ((FIFO_LVL_MASK(sdd) >> 1) + 1))))
711 use_dma = 1;
713 spin_lock_irqsave(&sdd->lock, flags);
715 /* Pending only which is to be done */
716 sdd->state &= ~RXBUSY;
717 sdd->state &= ~TXBUSY;
719 enable_datapath(sdd, spi, xfer, use_dma);
721 /* Start the signals */
722 writel(0, sdd->regs + S3C64XX_SPI_SLAVE_SEL);
724 spin_unlock_irqrestore(&sdd->lock, flags);
726 if (use_dma)
727 status = wait_for_dma(sdd, xfer);
728 else
729 status = wait_for_pio(sdd, xfer);
731 if (status) {
732 dev_err(&spi->dev, "I/O Error: rx-%d tx-%d res:rx-%c tx-%c len-%d\n",
733 xfer->rx_buf ? 1 : 0, xfer->tx_buf ? 1 : 0,
734 (sdd->state & RXBUSY) ? 'f' : 'p',
735 (sdd->state & TXBUSY) ? 'f' : 'p',
736 xfer->len);
738 if (use_dma) {
739 if (xfer->tx_buf != NULL
740 && (sdd->state & TXBUSY))
741 dmaengine_terminate_all(sdd->tx_dma.ch);
742 if (xfer->rx_buf != NULL
743 && (sdd->state & RXBUSY))
744 dmaengine_terminate_all(sdd->rx_dma.ch);
746 } else {
747 flush_fifo(sdd);
750 return status;
753 static struct s3c64xx_spi_csinfo *s3c64xx_get_slave_ctrldata(
754 struct spi_device *spi)
756 struct s3c64xx_spi_csinfo *cs;
757 struct device_node *slave_np, *data_np = NULL;
758 struct s3c64xx_spi_driver_data *sdd;
759 u32 fb_delay = 0;
761 sdd = spi_master_get_devdata(spi->master);
762 slave_np = spi->dev.of_node;
763 if (!slave_np) {
764 dev_err(&spi->dev, "device node not found\n");
765 return ERR_PTR(-EINVAL);
768 data_np = of_get_child_by_name(slave_np, "controller-data");
769 if (!data_np) {
770 dev_err(&spi->dev, "child node 'controller-data' not found\n");
771 return ERR_PTR(-EINVAL);
774 cs = kzalloc(sizeof(*cs), GFP_KERNEL);
775 if (!cs) {
776 dev_err(&spi->dev, "could not allocate memory for controller data\n");
777 of_node_put(data_np);
778 return ERR_PTR(-ENOMEM);
781 /* The CS line is asserted/deasserted by the gpio pin */
782 if (sdd->cs_gpio)
783 cs->line = of_get_named_gpio(data_np, "cs-gpio", 0);
785 if (!gpio_is_valid(cs->line)) {
786 dev_err(&spi->dev, "chip select gpio is not specified or invalid\n");
787 kfree(cs);
788 of_node_put(data_np);
789 return ERR_PTR(-EINVAL);
792 of_property_read_u32(data_np, "samsung,spi-feedback-delay", &fb_delay);
793 cs->fb_delay = fb_delay;
794 of_node_put(data_np);
795 return cs;
799 * Here we only check the validity of requested configuration
800 * and save the configuration in a local data-structure.
801 * The controller is actually configured only just before we
802 * get a message to transfer.
804 static int s3c64xx_spi_setup(struct spi_device *spi)
806 struct s3c64xx_spi_csinfo *cs = spi->controller_data;
807 struct s3c64xx_spi_driver_data *sdd;
808 struct s3c64xx_spi_info *sci;
809 int err;
811 sdd = spi_master_get_devdata(spi->master);
812 if (!cs && spi->dev.of_node) {
813 cs = s3c64xx_get_slave_ctrldata(spi);
814 spi->controller_data = cs;
817 if (IS_ERR_OR_NULL(cs)) {
818 dev_err(&spi->dev, "No CS for SPI(%d)\n", spi->chip_select);
819 return -ENODEV;
822 if (!spi_get_ctldata(spi)) {
823 /* Request gpio only if cs line is asserted by gpio pins */
824 if (sdd->cs_gpio) {
825 err = gpio_request_one(cs->line, GPIOF_OUT_INIT_HIGH,
826 dev_name(&spi->dev));
827 if (err) {
828 dev_err(&spi->dev,
829 "Failed to get /CS gpio [%d]: %d\n",
830 cs->line, err);
831 goto err_gpio_req;
834 spi->cs_gpio = cs->line;
837 spi_set_ctldata(spi, cs);
840 sci = sdd->cntrlr_info;
842 pm_runtime_get_sync(&sdd->pdev->dev);
844 /* Check if we can provide the requested rate */
845 if (!sdd->port_conf->clk_from_cmu) {
846 u32 psr, speed;
848 /* Max possible */
849 speed = clk_get_rate(sdd->src_clk) / 2 / (0 + 1);
851 if (spi->max_speed_hz > speed)
852 spi->max_speed_hz = speed;
854 psr = clk_get_rate(sdd->src_clk) / 2 / spi->max_speed_hz - 1;
855 psr &= S3C64XX_SPI_PSR_MASK;
856 if (psr == S3C64XX_SPI_PSR_MASK)
857 psr--;
859 speed = clk_get_rate(sdd->src_clk) / 2 / (psr + 1);
860 if (spi->max_speed_hz < speed) {
861 if (psr+1 < S3C64XX_SPI_PSR_MASK) {
862 psr++;
863 } else {
864 err = -EINVAL;
865 goto setup_exit;
869 speed = clk_get_rate(sdd->src_clk) / 2 / (psr + 1);
870 if (spi->max_speed_hz >= speed) {
871 spi->max_speed_hz = speed;
872 } else {
873 dev_err(&spi->dev, "Can't set %dHz transfer speed\n",
874 spi->max_speed_hz);
875 err = -EINVAL;
876 goto setup_exit;
880 pm_runtime_put(&sdd->pdev->dev);
881 writel(S3C64XX_SPI_SLAVE_SIG_INACT, sdd->regs + S3C64XX_SPI_SLAVE_SEL);
882 return 0;
884 setup_exit:
885 pm_runtime_put(&sdd->pdev->dev);
886 /* setup() returns with device de-selected */
887 writel(S3C64XX_SPI_SLAVE_SIG_INACT, sdd->regs + S3C64XX_SPI_SLAVE_SEL);
889 gpio_free(cs->line);
890 spi_set_ctldata(spi, NULL);
892 err_gpio_req:
893 if (spi->dev.of_node)
894 kfree(cs);
896 return err;
899 static void s3c64xx_spi_cleanup(struct spi_device *spi)
901 struct s3c64xx_spi_csinfo *cs = spi_get_ctldata(spi);
902 struct s3c64xx_spi_driver_data *sdd;
904 sdd = spi_master_get_devdata(spi->master);
905 if (spi->cs_gpio) {
906 gpio_free(spi->cs_gpio);
907 if (spi->dev.of_node)
908 kfree(cs);
910 spi_set_ctldata(spi, NULL);
913 static irqreturn_t s3c64xx_spi_irq(int irq, void *data)
915 struct s3c64xx_spi_driver_data *sdd = data;
916 struct spi_master *spi = sdd->master;
917 unsigned int val, clr = 0;
919 val = readl(sdd->regs + S3C64XX_SPI_STATUS);
921 if (val & S3C64XX_SPI_ST_RX_OVERRUN_ERR) {
922 clr = S3C64XX_SPI_PND_RX_OVERRUN_CLR;
923 dev_err(&spi->dev, "RX overrun\n");
925 if (val & S3C64XX_SPI_ST_RX_UNDERRUN_ERR) {
926 clr |= S3C64XX_SPI_PND_RX_UNDERRUN_CLR;
927 dev_err(&spi->dev, "RX underrun\n");
929 if (val & S3C64XX_SPI_ST_TX_OVERRUN_ERR) {
930 clr |= S3C64XX_SPI_PND_TX_OVERRUN_CLR;
931 dev_err(&spi->dev, "TX overrun\n");
933 if (val & S3C64XX_SPI_ST_TX_UNDERRUN_ERR) {
934 clr |= S3C64XX_SPI_PND_TX_UNDERRUN_CLR;
935 dev_err(&spi->dev, "TX underrun\n");
938 /* Clear the pending irq by setting and then clearing it */
939 writel(clr, sdd->regs + S3C64XX_SPI_PENDING_CLR);
940 writel(0, sdd->regs + S3C64XX_SPI_PENDING_CLR);
942 return IRQ_HANDLED;
945 static void s3c64xx_spi_hwinit(struct s3c64xx_spi_driver_data *sdd, int channel)
947 struct s3c64xx_spi_info *sci = sdd->cntrlr_info;
948 void __iomem *regs = sdd->regs;
949 unsigned int val;
951 sdd->cur_speed = 0;
953 writel(S3C64XX_SPI_SLAVE_SIG_INACT, sdd->regs + S3C64XX_SPI_SLAVE_SEL);
955 /* Disable Interrupts - we use Polling if not DMA mode */
956 writel(0, regs + S3C64XX_SPI_INT_EN);
958 if (!sdd->port_conf->clk_from_cmu)
959 writel(sci->src_clk_nr << S3C64XX_SPI_CLKSEL_SRCSHFT,
960 regs + S3C64XX_SPI_CLK_CFG);
961 writel(0, regs + S3C64XX_SPI_MODE_CFG);
962 writel(0, regs + S3C64XX_SPI_PACKET_CNT);
964 /* Clear any irq pending bits, should set and clear the bits */
965 val = S3C64XX_SPI_PND_RX_OVERRUN_CLR |
966 S3C64XX_SPI_PND_RX_UNDERRUN_CLR |
967 S3C64XX_SPI_PND_TX_OVERRUN_CLR |
968 S3C64XX_SPI_PND_TX_UNDERRUN_CLR;
969 writel(val, regs + S3C64XX_SPI_PENDING_CLR);
970 writel(0, regs + S3C64XX_SPI_PENDING_CLR);
972 writel(0, regs + S3C64XX_SPI_SWAP_CFG);
974 val = readl(regs + S3C64XX_SPI_MODE_CFG);
975 val &= ~S3C64XX_SPI_MODE_4BURST;
976 val &= ~(S3C64XX_SPI_MAX_TRAILCNT << S3C64XX_SPI_TRAILCNT_OFF);
977 val |= (S3C64XX_SPI_TRAILCNT << S3C64XX_SPI_TRAILCNT_OFF);
978 writel(val, regs + S3C64XX_SPI_MODE_CFG);
980 flush_fifo(sdd);
983 #ifdef CONFIG_OF
984 static struct s3c64xx_spi_info *s3c64xx_spi_parse_dt(struct device *dev)
986 struct s3c64xx_spi_info *sci;
987 u32 temp;
989 sci = devm_kzalloc(dev, sizeof(*sci), GFP_KERNEL);
990 if (!sci) {
991 dev_err(dev, "memory allocation for spi_info failed\n");
992 return ERR_PTR(-ENOMEM);
995 if (of_property_read_u32(dev->of_node, "samsung,spi-src-clk", &temp)) {
996 dev_warn(dev, "spi bus clock parent not specified, using clock at index 0 as parent\n");
997 sci->src_clk_nr = 0;
998 } else {
999 sci->src_clk_nr = temp;
1002 if (of_property_read_u32(dev->of_node, "num-cs", &temp)) {
1003 dev_warn(dev, "number of chip select lines not specified, assuming 1 chip select line\n");
1004 sci->num_cs = 1;
1005 } else {
1006 sci->num_cs = temp;
1009 return sci;
1011 #else
1012 static struct s3c64xx_spi_info *s3c64xx_spi_parse_dt(struct device *dev)
1014 return dev_get_platdata(dev);
1016 #endif
1018 static const struct of_device_id s3c64xx_spi_dt_match[];
1020 static inline struct s3c64xx_spi_port_config *s3c64xx_spi_get_port_config(
1021 struct platform_device *pdev)
1023 #ifdef CONFIG_OF
1024 if (pdev->dev.of_node) {
1025 const struct of_device_id *match;
1026 match = of_match_node(s3c64xx_spi_dt_match, pdev->dev.of_node);
1027 return (struct s3c64xx_spi_port_config *)match->data;
1029 #endif
1030 return (struct s3c64xx_spi_port_config *)
1031 platform_get_device_id(pdev)->driver_data;
1034 static int s3c64xx_spi_probe(struct platform_device *pdev)
1036 struct resource *mem_res;
1037 struct resource *res;
1038 struct s3c64xx_spi_driver_data *sdd;
1039 struct s3c64xx_spi_info *sci = dev_get_platdata(&pdev->dev);
1040 struct spi_master *master;
1041 int ret, irq;
1042 char clk_name[16];
1044 if (!sci && pdev->dev.of_node) {
1045 sci = s3c64xx_spi_parse_dt(&pdev->dev);
1046 if (IS_ERR(sci))
1047 return PTR_ERR(sci);
1050 if (!sci) {
1051 dev_err(&pdev->dev, "platform_data missing!\n");
1052 return -ENODEV;
1055 mem_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1056 if (mem_res == NULL) {
1057 dev_err(&pdev->dev, "Unable to get SPI MEM resource\n");
1058 return -ENXIO;
1061 irq = platform_get_irq(pdev, 0);
1062 if (irq < 0) {
1063 dev_warn(&pdev->dev, "Failed to get IRQ: %d\n", irq);
1064 return irq;
1067 master = spi_alloc_master(&pdev->dev,
1068 sizeof(struct s3c64xx_spi_driver_data));
1069 if (master == NULL) {
1070 dev_err(&pdev->dev, "Unable to allocate SPI Master\n");
1071 return -ENOMEM;
1074 platform_set_drvdata(pdev, master);
1076 sdd = spi_master_get_devdata(master);
1077 sdd->port_conf = s3c64xx_spi_get_port_config(pdev);
1078 sdd->master = master;
1079 sdd->cntrlr_info = sci;
1080 sdd->pdev = pdev;
1081 sdd->sfr_start = mem_res->start;
1082 sdd->cs_gpio = true;
1083 if (pdev->dev.of_node) {
1084 if (!of_find_property(pdev->dev.of_node, "cs-gpio", NULL))
1085 sdd->cs_gpio = false;
1087 ret = of_alias_get_id(pdev->dev.of_node, "spi");
1088 if (ret < 0) {
1089 dev_err(&pdev->dev, "failed to get alias id, errno %d\n",
1090 ret);
1091 goto err0;
1093 sdd->port_id = ret;
1094 } else {
1095 sdd->port_id = pdev->id;
1098 sdd->cur_bpw = 8;
1100 if (!sdd->pdev->dev.of_node) {
1101 res = platform_get_resource(pdev, IORESOURCE_DMA, 0);
1102 if (!res) {
1103 dev_warn(&pdev->dev, "Unable to get SPI tx dma resource. Switching to poll mode\n");
1104 sdd->port_conf->quirks = S3C64XX_SPI_QUIRK_POLL;
1105 } else
1106 sdd->tx_dma.dmach = res->start;
1108 res = platform_get_resource(pdev, IORESOURCE_DMA, 1);
1109 if (!res) {
1110 dev_warn(&pdev->dev, "Unable to get SPI rx dma resource. Switching to poll mode\n");
1111 sdd->port_conf->quirks = S3C64XX_SPI_QUIRK_POLL;
1112 } else
1113 sdd->rx_dma.dmach = res->start;
1116 sdd->tx_dma.direction = DMA_MEM_TO_DEV;
1117 sdd->rx_dma.direction = DMA_DEV_TO_MEM;
1119 master->dev.of_node = pdev->dev.of_node;
1120 master->bus_num = sdd->port_id;
1121 master->setup = s3c64xx_spi_setup;
1122 master->cleanup = s3c64xx_spi_cleanup;
1123 master->prepare_transfer_hardware = s3c64xx_spi_prepare_transfer;
1124 master->prepare_message = s3c64xx_spi_prepare_message;
1125 master->transfer_one = s3c64xx_spi_transfer_one;
1126 master->unprepare_transfer_hardware = s3c64xx_spi_unprepare_transfer;
1127 master->num_chipselect = sci->num_cs;
1128 master->dma_alignment = 8;
1129 master->bits_per_word_mask = SPI_BPW_MASK(32) | SPI_BPW_MASK(16) |
1130 SPI_BPW_MASK(8);
1131 /* the spi->mode bits understood by this driver: */
1132 master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
1133 master->auto_runtime_pm = true;
1134 if (!is_polling(sdd))
1135 master->can_dma = s3c64xx_spi_can_dma;
1137 sdd->regs = devm_ioremap_resource(&pdev->dev, mem_res);
1138 if (IS_ERR(sdd->regs)) {
1139 ret = PTR_ERR(sdd->regs);
1140 goto err0;
1143 if (sci->cfg_gpio && sci->cfg_gpio()) {
1144 dev_err(&pdev->dev, "Unable to config gpio\n");
1145 ret = -EBUSY;
1146 goto err0;
1149 /* Setup clocks */
1150 sdd->clk = devm_clk_get(&pdev->dev, "spi");
1151 if (IS_ERR(sdd->clk)) {
1152 dev_err(&pdev->dev, "Unable to acquire clock 'spi'\n");
1153 ret = PTR_ERR(sdd->clk);
1154 goto err0;
1157 if (clk_prepare_enable(sdd->clk)) {
1158 dev_err(&pdev->dev, "Couldn't enable clock 'spi'\n");
1159 ret = -EBUSY;
1160 goto err0;
1163 sprintf(clk_name, "spi_busclk%d", sci->src_clk_nr);
1164 sdd->src_clk = devm_clk_get(&pdev->dev, clk_name);
1165 if (IS_ERR(sdd->src_clk)) {
1166 dev_err(&pdev->dev,
1167 "Unable to acquire clock '%s'\n", clk_name);
1168 ret = PTR_ERR(sdd->src_clk);
1169 goto err2;
1172 if (clk_prepare_enable(sdd->src_clk)) {
1173 dev_err(&pdev->dev, "Couldn't enable clock '%s'\n", clk_name);
1174 ret = -EBUSY;
1175 goto err2;
1178 /* Setup Deufult Mode */
1179 s3c64xx_spi_hwinit(sdd, sdd->port_id);
1181 spin_lock_init(&sdd->lock);
1182 init_completion(&sdd->xfer_completion);
1184 ret = devm_request_irq(&pdev->dev, irq, s3c64xx_spi_irq, 0,
1185 "spi-s3c64xx", sdd);
1186 if (ret != 0) {
1187 dev_err(&pdev->dev, "Failed to request IRQ %d: %d\n",
1188 irq, ret);
1189 goto err3;
1192 writel(S3C64XX_SPI_INT_RX_OVERRUN_EN | S3C64XX_SPI_INT_RX_UNDERRUN_EN |
1193 S3C64XX_SPI_INT_TX_OVERRUN_EN | S3C64XX_SPI_INT_TX_UNDERRUN_EN,
1194 sdd->regs + S3C64XX_SPI_INT_EN);
1196 pm_runtime_set_active(&pdev->dev);
1197 pm_runtime_enable(&pdev->dev);
1199 ret = devm_spi_register_master(&pdev->dev, master);
1200 if (ret != 0) {
1201 dev_err(&pdev->dev, "cannot register SPI master: %d\n", ret);
1202 goto err3;
1205 dev_dbg(&pdev->dev, "Samsung SoC SPI Driver loaded for Bus SPI-%d with %d Slaves attached\n",
1206 sdd->port_id, master->num_chipselect);
1207 dev_dbg(&pdev->dev, "\tIOmem=[%pR]\tDMA=[Rx-%d, Tx-%d]\n",
1208 mem_res,
1209 sdd->rx_dma.dmach, sdd->tx_dma.dmach);
1211 return 0;
1213 err3:
1214 clk_disable_unprepare(sdd->src_clk);
1215 err2:
1216 clk_disable_unprepare(sdd->clk);
1217 err0:
1218 spi_master_put(master);
1220 return ret;
1223 static int s3c64xx_spi_remove(struct platform_device *pdev)
1225 struct spi_master *master = spi_master_get(platform_get_drvdata(pdev));
1226 struct s3c64xx_spi_driver_data *sdd = spi_master_get_devdata(master);
1228 pm_runtime_disable(&pdev->dev);
1230 writel(0, sdd->regs + S3C64XX_SPI_INT_EN);
1232 clk_disable_unprepare(sdd->src_clk);
1234 clk_disable_unprepare(sdd->clk);
1236 return 0;
1239 #ifdef CONFIG_PM_SLEEP
1240 static int s3c64xx_spi_suspend(struct device *dev)
1242 struct spi_master *master = dev_get_drvdata(dev);
1243 struct s3c64xx_spi_driver_data *sdd = spi_master_get_devdata(master);
1245 int ret = spi_master_suspend(master);
1246 if (ret)
1247 return ret;
1249 if (!pm_runtime_suspended(dev)) {
1250 clk_disable_unprepare(sdd->clk);
1251 clk_disable_unprepare(sdd->src_clk);
1254 sdd->cur_speed = 0; /* Output Clock is stopped */
1256 return 0;
1259 static int s3c64xx_spi_resume(struct device *dev)
1261 struct spi_master *master = dev_get_drvdata(dev);
1262 struct s3c64xx_spi_driver_data *sdd = spi_master_get_devdata(master);
1263 struct s3c64xx_spi_info *sci = sdd->cntrlr_info;
1265 if (sci->cfg_gpio)
1266 sci->cfg_gpio();
1268 if (!pm_runtime_suspended(dev)) {
1269 clk_prepare_enable(sdd->src_clk);
1270 clk_prepare_enable(sdd->clk);
1273 s3c64xx_spi_hwinit(sdd, sdd->port_id);
1275 return spi_master_resume(master);
1277 #endif /* CONFIG_PM_SLEEP */
1279 #ifdef CONFIG_PM_RUNTIME
1280 static int s3c64xx_spi_runtime_suspend(struct device *dev)
1282 struct spi_master *master = dev_get_drvdata(dev);
1283 struct s3c64xx_spi_driver_data *sdd = spi_master_get_devdata(master);
1285 clk_disable_unprepare(sdd->clk);
1286 clk_disable_unprepare(sdd->src_clk);
1288 return 0;
1291 static int s3c64xx_spi_runtime_resume(struct device *dev)
1293 struct spi_master *master = dev_get_drvdata(dev);
1294 struct s3c64xx_spi_driver_data *sdd = spi_master_get_devdata(master);
1295 int ret;
1297 ret = clk_prepare_enable(sdd->src_clk);
1298 if (ret != 0)
1299 return ret;
1301 ret = clk_prepare_enable(sdd->clk);
1302 if (ret != 0) {
1303 clk_disable_unprepare(sdd->src_clk);
1304 return ret;
1307 return 0;
1309 #endif /* CONFIG_PM_RUNTIME */
1311 static const struct dev_pm_ops s3c64xx_spi_pm = {
1312 SET_SYSTEM_SLEEP_PM_OPS(s3c64xx_spi_suspend, s3c64xx_spi_resume)
1313 SET_RUNTIME_PM_OPS(s3c64xx_spi_runtime_suspend,
1314 s3c64xx_spi_runtime_resume, NULL)
1317 static struct s3c64xx_spi_port_config s3c2443_spi_port_config = {
1318 .fifo_lvl_mask = { 0x7f },
1319 .rx_lvl_offset = 13,
1320 .tx_st_done = 21,
1321 .high_speed = true,
1324 static struct s3c64xx_spi_port_config s3c6410_spi_port_config = {
1325 .fifo_lvl_mask = { 0x7f, 0x7F },
1326 .rx_lvl_offset = 13,
1327 .tx_st_done = 21,
1330 static struct s3c64xx_spi_port_config s5p64x0_spi_port_config = {
1331 .fifo_lvl_mask = { 0x1ff, 0x7F },
1332 .rx_lvl_offset = 15,
1333 .tx_st_done = 25,
1336 static struct s3c64xx_spi_port_config s5pc100_spi_port_config = {
1337 .fifo_lvl_mask = { 0x7f, 0x7F },
1338 .rx_lvl_offset = 13,
1339 .tx_st_done = 21,
1340 .high_speed = true,
1343 static struct s3c64xx_spi_port_config s5pv210_spi_port_config = {
1344 .fifo_lvl_mask = { 0x1ff, 0x7F },
1345 .rx_lvl_offset = 15,
1346 .tx_st_done = 25,
1347 .high_speed = true,
1350 static struct s3c64xx_spi_port_config exynos4_spi_port_config = {
1351 .fifo_lvl_mask = { 0x1ff, 0x7F, 0x7F },
1352 .rx_lvl_offset = 15,
1353 .tx_st_done = 25,
1354 .high_speed = true,
1355 .clk_from_cmu = true,
1358 static struct s3c64xx_spi_port_config exynos5440_spi_port_config = {
1359 .fifo_lvl_mask = { 0x1ff },
1360 .rx_lvl_offset = 15,
1361 .tx_st_done = 25,
1362 .high_speed = true,
1363 .clk_from_cmu = true,
1364 .quirks = S3C64XX_SPI_QUIRK_POLL,
1367 static struct platform_device_id s3c64xx_spi_driver_ids[] = {
1369 .name = "s3c2443-spi",
1370 .driver_data = (kernel_ulong_t)&s3c2443_spi_port_config,
1371 }, {
1372 .name = "s3c6410-spi",
1373 .driver_data = (kernel_ulong_t)&s3c6410_spi_port_config,
1374 }, {
1375 .name = "s5p64x0-spi",
1376 .driver_data = (kernel_ulong_t)&s5p64x0_spi_port_config,
1377 }, {
1378 .name = "s5pc100-spi",
1379 .driver_data = (kernel_ulong_t)&s5pc100_spi_port_config,
1380 }, {
1381 .name = "s5pv210-spi",
1382 .driver_data = (kernel_ulong_t)&s5pv210_spi_port_config,
1383 }, {
1384 .name = "exynos4210-spi",
1385 .driver_data = (kernel_ulong_t)&exynos4_spi_port_config,
1387 { },
1390 static const struct of_device_id s3c64xx_spi_dt_match[] = {
1391 { .compatible = "samsung,s3c2443-spi",
1392 .data = (void *)&s3c2443_spi_port_config,
1394 { .compatible = "samsung,s3c6410-spi",
1395 .data = (void *)&s3c6410_spi_port_config,
1397 { .compatible = "samsung,s5pc100-spi",
1398 .data = (void *)&s5pc100_spi_port_config,
1400 { .compatible = "samsung,s5pv210-spi",
1401 .data = (void *)&s5pv210_spi_port_config,
1403 { .compatible = "samsung,exynos4210-spi",
1404 .data = (void *)&exynos4_spi_port_config,
1406 { .compatible = "samsung,exynos5440-spi",
1407 .data = (void *)&exynos5440_spi_port_config,
1409 { },
1411 MODULE_DEVICE_TABLE(of, s3c64xx_spi_dt_match);
1413 static struct platform_driver s3c64xx_spi_driver = {
1414 .driver = {
1415 .name = "s3c64xx-spi",
1416 .owner = THIS_MODULE,
1417 .pm = &s3c64xx_spi_pm,
1418 .of_match_table = of_match_ptr(s3c64xx_spi_dt_match),
1420 .probe = s3c64xx_spi_probe,
1421 .remove = s3c64xx_spi_remove,
1422 .id_table = s3c64xx_spi_driver_ids,
1424 MODULE_ALIAS("platform:s3c64xx-spi");
1426 module_platform_driver(s3c64xx_spi_driver);
1428 MODULE_AUTHOR("Jaswinder Singh <jassi.brar@samsung.com>");
1429 MODULE_DESCRIPTION("S3C64XX SPI Controller Driver");
1430 MODULE_LICENSE("GPL");