2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
6 * Copyright (C) 2008 Cavium Networks
8 * Some parts of the code were originally released under BSD license:
10 * Copyright (c) 2003-2010 Cavium Networks (support@cavium.com). All rights
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions are
17 * * Redistributions of source code must retain the above copyright
18 * notice, this list of conditions and the following disclaimer.
20 * * Redistributions in binary form must reproduce the above
21 * copyright notice, this list of conditions and the following
22 * disclaimer in the documentation and/or other materials provided
23 * with the distribution.
25 * * Neither the name of Cavium Networks nor the names of
26 * its contributors may be used to endorse or promote products
27 * derived from this software without specific prior written
30 * This Software, including technical data, may be subject to U.S. export
31 * control laws, including the U.S. Export Administration Act and its associated
32 * regulations, and may be subject to export or import regulations in other
35 * TO THE MAXIMUM EXTENT PERMITTED BY LAW, THE SOFTWARE IS PROVIDED "AS IS"
36 * AND WITH ALL FAULTS AND CAVIUM NETWORKS MAKES NO PROMISES, REPRESENTATIONS OR
37 * WARRANTIES, EITHER EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE, WITH RESPECT TO
38 * THE SOFTWARE, INCLUDING ITS CONDITION, ITS CONFORMITY TO ANY REPRESENTATION
39 * OR DESCRIPTION, OR THE EXISTENCE OF ANY LATENT OR PATENT DEFECTS, AND CAVIUM
40 * SPECIFICALLY DISCLAIMS ALL IMPLIED (IF ANY) WARRANTIES OF TITLE,
41 * MERCHANTABILITY, NONINFRINGEMENT, FITNESS FOR A PARTICULAR PURPOSE, LACK OF
42 * VIRUSES, ACCURACY OR COMPLETENESS, QUIET ENJOYMENT, QUIET POSSESSION OR
43 * CORRESPONDENCE TO DESCRIPTION. THE ENTIRE RISK ARISING OUT OF USE OR
44 * PERFORMANCE OF THE SOFTWARE LIES WITH YOU.
46 #include <linux/kernel.h>
47 #include <linux/module.h>
48 #include <linux/init.h>
49 #include <linux/pci.h>
50 #include <linux/interrupt.h>
51 #include <linux/platform_device.h>
52 #include <linux/usb.h>
54 #include <linux/time.h>
55 #include <linux/delay.h>
57 #include <asm/octeon/cvmx.h>
58 #include <asm/octeon/cvmx-iob-defs.h>
60 #include <linux/usb/hcd.h>
62 #include <linux/err.h>
64 #include <asm/octeon/octeon.h>
65 #include <asm/octeon/cvmx-helper.h>
66 #include <asm/octeon/cvmx-sysinfo.h>
67 #include <asm/octeon/cvmx-helper-board.h>
69 #include "octeon-hcd.h"
72 * enum cvmx_usb_speed - the possible USB device speeds
74 * @CVMX_USB_SPEED_HIGH: Device is operation at 480Mbps
75 * @CVMX_USB_SPEED_FULL: Device is operation at 12Mbps
76 * @CVMX_USB_SPEED_LOW: Device is operation at 1.5Mbps
79 CVMX_USB_SPEED_HIGH
= 0,
80 CVMX_USB_SPEED_FULL
= 1,
81 CVMX_USB_SPEED_LOW
= 2,
85 * enum cvmx_usb_transfer - the possible USB transfer types
87 * @CVMX_USB_TRANSFER_CONTROL: USB transfer type control for hub and status
89 * @CVMX_USB_TRANSFER_ISOCHRONOUS: USB transfer type isochronous for low
90 * priority periodic transfers
91 * @CVMX_USB_TRANSFER_BULK: USB transfer type bulk for large low priority
93 * @CVMX_USB_TRANSFER_INTERRUPT: USB transfer type interrupt for high priority
96 enum cvmx_usb_transfer
{
97 CVMX_USB_TRANSFER_CONTROL
= 0,
98 CVMX_USB_TRANSFER_ISOCHRONOUS
= 1,
99 CVMX_USB_TRANSFER_BULK
= 2,
100 CVMX_USB_TRANSFER_INTERRUPT
= 3,
104 * enum cvmx_usb_direction - the transfer directions
106 * @CVMX_USB_DIRECTION_OUT: Data is transferring from Octeon to the device/host
107 * @CVMX_USB_DIRECTION_IN: Data is transferring from the device/host to Octeon
109 enum cvmx_usb_direction
{
110 CVMX_USB_DIRECTION_OUT
,
111 CVMX_USB_DIRECTION_IN
,
115 * enum cvmx_usb_complete - possible callback function status codes
117 * @CVMX_USB_COMPLETE_SUCCESS: The transaction / operation finished without
119 * @CVMX_USB_COMPLETE_SHORT: FIXME: This is currently not implemented
120 * @CVMX_USB_COMPLETE_CANCEL: The transaction was canceled while in flight
121 * by a user call to cvmx_usb_cancel
122 * @CVMX_USB_COMPLETE_ERROR: The transaction aborted with an unexpected
124 * @CVMX_USB_COMPLETE_STALL: The transaction received a USB STALL response
126 * @CVMX_USB_COMPLETE_XACTERR: The transaction failed with an error from the
127 * device even after a number of retries
128 * @CVMX_USB_COMPLETE_DATATGLERR: The transaction failed with a data toggle
129 * error even after a number of retries
130 * @CVMX_USB_COMPLETE_BABBLEERR: The transaction failed with a babble error
131 * @CVMX_USB_COMPLETE_FRAMEERR: The transaction failed with a frame error
132 * even after a number of retries
134 enum cvmx_usb_complete
{
135 CVMX_USB_COMPLETE_SUCCESS
,
136 CVMX_USB_COMPLETE_SHORT
,
137 CVMX_USB_COMPLETE_CANCEL
,
138 CVMX_USB_COMPLETE_ERROR
,
139 CVMX_USB_COMPLETE_STALL
,
140 CVMX_USB_COMPLETE_XACTERR
,
141 CVMX_USB_COMPLETE_DATATGLERR
,
142 CVMX_USB_COMPLETE_BABBLEERR
,
143 CVMX_USB_COMPLETE_FRAMEERR
,
147 * struct cvmx_usb_port_status - the USB port status information
149 * @port_enabled: 1 = Usb port is enabled, 0 = disabled
150 * @port_over_current: 1 = Over current detected, 0 = Over current not
151 * detected. Octeon doesn't support over current detection.
152 * @port_powered: 1 = Port power is being supplied to the device, 0 =
153 * power is off. Octeon doesn't support turning port power
155 * @port_speed: Current port speed.
156 * @connected: 1 = A device is connected to the port, 0 = No device is
158 * @connect_change: 1 = Device connected state changed since the last set
161 struct cvmx_usb_port_status
{
162 uint32_t reserved
: 25;
163 uint32_t port_enabled
: 1;
164 uint32_t port_over_current
: 1;
165 uint32_t port_powered
: 1;
166 enum cvmx_usb_speed port_speed
: 2;
167 uint32_t connected
: 1;
168 uint32_t connect_change
: 1;
172 * union cvmx_usb_control_header - the structure of a Control packet header
174 * @s.request_type: Bit 7 tells the direction: 1=IN, 0=OUT
175 * @s.request The standard usb request to make
176 * @s.value Value parameter for the request in little endian format
177 * @s.index Index for the request in little endian format
178 * @s.length Length of the data associated with this request in
179 * little endian format
181 union cvmx_usb_control_header
{
184 uint64_t request_type
: 8;
185 uint64_t request
: 8;
188 uint64_t length
: 16;
193 * struct cvmx_usb_iso_packet - descriptor for Isochronous packets
195 * @offset: This is the offset in bytes into the main buffer where this data
197 * @length: This is the length in bytes of the data.
198 * @status: This is the status of this individual packet transfer.
200 struct cvmx_usb_iso_packet
{
203 enum cvmx_usb_complete status
;
207 * enum cvmx_usb_initialize_flags - flags used by the initialization function
209 * @CVMX_USB_INITIALIZE_FLAGS_CLOCK_XO_XI: The USB port uses a 12MHz crystal
210 * as clock source at USB_XO and
212 * @CVMX_USB_INITIALIZE_FLAGS_CLOCK_XO_GND: The USB port uses 12/24/48MHz 2.5V
213 * board clock source at USB_XO.
214 * USB_XI should be tied to GND.
215 * @CVMX_USB_INITIALIZE_FLAGS_CLOCK_MHZ_MASK: Mask for clock speed field
216 * @CVMX_USB_INITIALIZE_FLAGS_CLOCK_12MHZ: Speed of reference clock or
218 * @CVMX_USB_INITIALIZE_FLAGS_CLOCK_24MHZ: Speed of reference clock
219 * @CVMX_USB_INITIALIZE_FLAGS_CLOCK_48MHZ: Speed of reference clock
220 * @CVMX_USB_INITIALIZE_FLAGS_NO_DMA: Disable DMA and used polled IO for
221 * data transfer use for the USB
223 enum cvmx_usb_initialize_flags
{
224 CVMX_USB_INITIALIZE_FLAGS_CLOCK_XO_XI
= 1 << 0,
225 CVMX_USB_INITIALIZE_FLAGS_CLOCK_XO_GND
= 1 << 1,
226 CVMX_USB_INITIALIZE_FLAGS_CLOCK_MHZ_MASK
= 3 << 3,
227 CVMX_USB_INITIALIZE_FLAGS_CLOCK_12MHZ
= 1 << 3,
228 CVMX_USB_INITIALIZE_FLAGS_CLOCK_24MHZ
= 2 << 3,
229 CVMX_USB_INITIALIZE_FLAGS_CLOCK_48MHZ
= 3 << 3,
230 /* Bits 3-4 used to encode the clock frequency */
231 CVMX_USB_INITIALIZE_FLAGS_NO_DMA
= 1 << 5,
235 * enum cvmx_usb_pipe_flags - internal flags for a pipe.
237 * @__CVMX_USB_PIPE_FLAGS_SCHEDULED: Used internally to determine if a pipe is
238 * actively using hardware. Do not use.
239 * @__CVMX_USB_PIPE_FLAGS_NEED_PING: Used internally to determine if a high
240 * speed pipe is in the ping state. Do not
243 enum cvmx_usb_pipe_flags
{
244 __CVMX_USB_PIPE_FLAGS_SCHEDULED
= 1 << 17,
245 __CVMX_USB_PIPE_FLAGS_NEED_PING
= 1 << 18,
248 /* Normal prefetch that use the pref instruction. */
249 #define CVMX_PREFETCH(address, offset) asm volatile ("pref %[type], %[off](%[rbase])" : : [rbase] "d" (address), [off] "I" (offset), [type] "n" (0))
251 /* Maximum number of times to retry failed transactions */
252 #define MAX_RETRIES 3
254 /* Maximum number of hardware channels supported by the USB block */
255 #define MAX_CHANNELS 8
257 /* The highest valid USB device address */
258 #define MAX_USB_ADDRESS 127
260 /* The highest valid USB endpoint number */
261 #define MAX_USB_ENDPOINT 15
263 /* The highest valid port number on a hub */
264 #define MAX_USB_HUB_PORT 15
267 * The low level hardware can transfer a maximum of this number of bytes in each
268 * transfer. The field is 19 bits wide
270 #define MAX_TRANSFER_BYTES ((1<<19)-1)
273 * The low level hardware can transfer a maximum of this number of packets in
274 * each transfer. The field is 10 bits wide
276 #define MAX_TRANSFER_PACKETS ((1<<10)-1)
279 * Logical transactions may take numerous low level
280 * transactions, especially when splits are concerned. This
281 * enum represents all of the possible stages a transaction can
282 * be in. Note that split completes are always even. This is so
283 * the NAK handler can backup to the previous low level
284 * transaction with a simple clearing of bit 0.
286 enum cvmx_usb_stage
{
287 CVMX_USB_STAGE_NON_CONTROL
,
288 CVMX_USB_STAGE_NON_CONTROL_SPLIT_COMPLETE
,
289 CVMX_USB_STAGE_SETUP
,
290 CVMX_USB_STAGE_SETUP_SPLIT_COMPLETE
,
292 CVMX_USB_STAGE_DATA_SPLIT_COMPLETE
,
293 CVMX_USB_STAGE_STATUS
,
294 CVMX_USB_STAGE_STATUS_SPLIT_COMPLETE
,
298 * struct cvmx_usb_transaction - describes each pending USB transaction
299 * regardless of type. These are linked together
300 * to form a list of pending requests for a pipe.
302 * @node: List node for transactions in the pipe.
303 * @type: Type of transaction, duplicated of the pipe.
304 * @flags: State flags for this transaction.
305 * @buffer: User's physical buffer address to read/write.
306 * @buffer_length: Size of the user's buffer in bytes.
307 * @control_header: For control transactions, physical address of the 8
308 * byte standard header.
309 * @iso_start_frame: For ISO transactions, the starting frame number.
310 * @iso_number_packets: For ISO transactions, the number of packets in the
312 * @iso_packets: For ISO transactions, the sub packets in the request.
313 * @actual_bytes: Actual bytes transfer for this transaction.
314 * @stage: For control transactions, the current stage.
317 struct cvmx_usb_transaction
{
318 struct list_head node
;
319 enum cvmx_usb_transfer type
;
322 uint64_t control_header
;
324 int iso_number_packets
;
325 struct cvmx_usb_iso_packet
*iso_packets
;
330 enum cvmx_usb_stage stage
;
335 * struct cvmx_usb_pipe - a pipe represents a virtual connection between Octeon
336 * and some USB device. It contains a list of pending
337 * request to the device.
339 * @node: List node for pipe list
340 * @next: Pipe after this one in the list
341 * @transactions: List of pending transactions
342 * @interval: For periodic pipes, the interval between packets in
344 * @next_tx_frame: The next frame this pipe is allowed to transmit on
345 * @flags: State flags for this pipe
346 * @device_speed: Speed of device connected to this pipe
347 * @transfer_type: Type of transaction supported by this pipe
348 * @transfer_dir: IN or OUT. Ignored for Control
349 * @multi_count: Max packet in a row for the device
350 * @max_packet: The device's maximum packet size in bytes
351 * @device_addr: USB device address at other end of pipe
352 * @endpoint_num: USB endpoint number at other end of pipe
353 * @hub_device_addr: Hub address this device is connected to
354 * @hub_port: Hub port this device is connected to
355 * @pid_toggle: This toggles between 0/1 on every packet send to track
356 * the data pid needed
357 * @channel: Hardware DMA channel for this pipe
358 * @split_sc_frame: The low order bits of the frame number the split
359 * complete should be sent on
361 struct cvmx_usb_pipe
{
362 struct list_head node
;
363 struct list_head transactions
;
365 uint64_t next_tx_frame
;
366 enum cvmx_usb_pipe_flags flags
;
367 enum cvmx_usb_speed device_speed
;
368 enum cvmx_usb_transfer transfer_type
;
369 enum cvmx_usb_direction transfer_dir
;
373 uint8_t endpoint_num
;
374 uint8_t hub_device_addr
;
378 int8_t split_sc_frame
;
381 struct cvmx_usb_tx_fifo
{
386 } entry
[MAX_CHANNELS
+1];
392 * struct cvmx_usb_state - the state of the USB block
394 * init_flags: Flags passed to initialize.
395 * index: Which USB block this is for.
396 * idle_hardware_channels: Bit set for every idle hardware channel.
397 * usbcx_hprt: Stored port status so we don't need to read a CSR to
399 * pipe_for_channel: Map channels to pipes.
400 * pipe: Storage for pipes.
401 * indent: Used by debug output to indent functions.
402 * port_status: Last port status used for change notification.
403 * idle_pipes: List of open pipes that have no transactions.
404 * active_pipes: Active pipes indexed by transfer type.
405 * frame_number: Increments every SOF interrupt for time keeping.
406 * active_split: Points to the current active split, or NULL.
408 struct cvmx_usb_state
{
411 int idle_hardware_channels
;
412 union cvmx_usbcx_hprt usbcx_hprt
;
413 struct cvmx_usb_pipe
*pipe_for_channel
[MAX_CHANNELS
];
415 struct cvmx_usb_port_status port_status
;
416 struct list_head idle_pipes
;
417 struct list_head active_pipes
[4];
418 uint64_t frame_number
;
419 struct cvmx_usb_transaction
*active_split
;
420 struct cvmx_usb_tx_fifo periodic
;
421 struct cvmx_usb_tx_fifo nonperiodic
;
426 struct cvmx_usb_state usb
;
427 struct tasklet_struct dequeue_tasklet
;
428 struct list_head dequeue_list
;
431 /* This macro spins on a field waiting for it to reach a value */
432 #define CVMX_WAIT_FOR_FIELD32(address, type, field, op, value, timeout_usec)\
435 uint64_t done = cvmx_get_cycle() + (uint64_t)timeout_usec * \
436 octeon_get_clock_rate() / 1000000; \
439 c.u32 = __cvmx_usb_read_csr32(usb, address); \
440 if (c.s.field op (value)) { \
443 } else if (cvmx_get_cycle() > done) { \
453 * This macro logically sets a single field in a CSR. It does the sequence
454 * read, modify, and write
456 #define USB_SET_FIELD32(address, type, field, value) \
459 c.u32 = __cvmx_usb_read_csr32(usb, address); \
461 __cvmx_usb_write_csr32(usb, address, c.u32); \
464 /* Returns the IO address to push/pop stuff data from the FIFOs */
465 #define USB_FIFO_ADDRESS(channel, usb_index) (CVMX_USBCX_GOTGCTL(usb_index) + ((channel)+1)*0x1000)
468 * struct octeon_temp_buffer - a bounce buffer for USB transfers
469 * @temp_buffer: the newly allocated temporary buffer (including meta-data)
470 * @orig_buffer: the original buffer passed by the USB stack
471 * @data: the newly allocated temporary buffer (excluding meta-data)
473 * Both the DMA engine and FIFO mode will always transfer full 32-bit words. If
474 * the buffer is too short, we need to allocate a temporary one, and this struct
477 struct octeon_temp_buffer
{
484 * octeon_alloc_temp_buffer - allocate a temporary buffer for USB transfer
487 * @mem_flags: Memory allocation flags.
489 * This function allocates a temporary bounce buffer whenever it's needed
490 * due to HW limitations.
492 static int octeon_alloc_temp_buffer(struct urb
*urb
, gfp_t mem_flags
)
494 struct octeon_temp_buffer
*temp
;
496 if (urb
->num_sgs
|| urb
->sg
||
497 (urb
->transfer_flags
& URB_NO_TRANSFER_DMA_MAP
) ||
498 !(urb
->transfer_buffer_length
% sizeof(u32
)))
501 temp
= kmalloc(ALIGN(urb
->transfer_buffer_length
, sizeof(u32
)) +
502 sizeof(*temp
), mem_flags
);
506 temp
->temp_buffer
= temp
;
507 temp
->orig_buffer
= urb
->transfer_buffer
;
508 if (usb_urb_dir_out(urb
))
509 memcpy(temp
->data
, urb
->transfer_buffer
,
510 urb
->transfer_buffer_length
);
511 urb
->transfer_buffer
= temp
->data
;
512 urb
->transfer_flags
|= URB_ALIGNED_TEMP_BUFFER
;
518 * octeon_free_temp_buffer - free a temporary buffer used by USB transfers.
521 * Frees a buffer allocated by octeon_alloc_temp_buffer().
523 static void octeon_free_temp_buffer(struct urb
*urb
)
525 struct octeon_temp_buffer
*temp
;
527 if (!(urb
->transfer_flags
& URB_ALIGNED_TEMP_BUFFER
))
530 temp
= container_of(urb
->transfer_buffer
, struct octeon_temp_buffer
,
532 if (usb_urb_dir_in(urb
))
533 memcpy(temp
->orig_buffer
, urb
->transfer_buffer
,
535 urb
->transfer_buffer
= temp
->orig_buffer
;
536 urb
->transfer_flags
&= ~URB_ALIGNED_TEMP_BUFFER
;
537 kfree(temp
->temp_buffer
);
541 * octeon_map_urb_for_dma - Octeon-specific map_urb_for_dma().
542 * @hcd: USB HCD structure.
544 * @mem_flags: Memory allocation flags.
546 static int octeon_map_urb_for_dma(struct usb_hcd
*hcd
, struct urb
*urb
,
551 ret
= octeon_alloc_temp_buffer(urb
, mem_flags
);
555 ret
= usb_hcd_map_urb_for_dma(hcd
, urb
, mem_flags
);
557 octeon_free_temp_buffer(urb
);
563 * octeon_unmap_urb_for_dma - Octeon-specific unmap_urb_for_dma()
564 * @hcd: USB HCD structure.
567 static void octeon_unmap_urb_for_dma(struct usb_hcd
*hcd
, struct urb
*urb
)
569 usb_hcd_unmap_urb_for_dma(hcd
, urb
);
570 octeon_free_temp_buffer(urb
);
574 * Read a USB 32bit CSR. It performs the necessary address swizzle
575 * for 32bit CSRs and logs the value in a readable format if
578 * @usb: USB block this access is for
579 * @address: 64bit address to read
581 * Returns: Result of the read
583 static inline uint32_t __cvmx_usb_read_csr32(struct cvmx_usb_state
*usb
,
586 uint32_t result
= cvmx_read64_uint32(address
^ 4);
592 * Write a USB 32bit CSR. It performs the necessary address
593 * swizzle for 32bit CSRs and logs the value in a readable format
594 * if debugging is on.
596 * @usb: USB block this access is for
597 * @address: 64bit address to write
598 * @value: Value to write
600 static inline void __cvmx_usb_write_csr32(struct cvmx_usb_state
*usb
,
601 uint64_t address
, uint32_t value
)
603 cvmx_write64_uint32(address
^ 4, value
);
604 cvmx_read64_uint64(CVMX_USBNX_DMA0_INB_CHN0(usb
->index
));
609 * Read a USB 64bit CSR. It logs the value in a readable format if
612 * @usb: USB block this access is for
613 * @address: 64bit address to read
615 * Returns: Result of the read
617 static inline uint64_t __cvmx_usb_read_csr64(struct cvmx_usb_state
*usb
,
620 uint64_t result
= cvmx_read64_uint64(address
);
626 * Write a USB 64bit CSR. It logs the value in a readable format
627 * if debugging is on.
629 * @usb: USB block this access is for
630 * @address: 64bit address to write
631 * @value: Value to write
633 static inline void __cvmx_usb_write_csr64(struct cvmx_usb_state
*usb
,
634 uint64_t address
, uint64_t value
)
636 cvmx_write64_uint64(address
, value
);
640 * Return non zero if this pipe connects to a non HIGH speed
641 * device through a high speed hub.
643 * @usb: USB block this access is for
644 * @pipe: Pipe to check
646 * Returns: Non zero if we need to do split transactions
648 static inline int __cvmx_usb_pipe_needs_split(struct cvmx_usb_state
*usb
,
649 struct cvmx_usb_pipe
*pipe
)
651 return pipe
->device_speed
!= CVMX_USB_SPEED_HIGH
&&
652 usb
->usbcx_hprt
.s
.prtspd
== CVMX_USB_SPEED_HIGH
;
657 * Trivial utility function to return the correct PID for a pipe
659 * @pipe: pipe to check
661 * Returns: PID for pipe
663 static inline int __cvmx_usb_get_data_pid(struct cvmx_usb_pipe
*pipe
)
665 if (pipe
->pid_toggle
)
666 return 2; /* Data1 */
668 return 0; /* Data0 */
672 * Initialize a USB port for use. This must be called before any
673 * other access to the Octeon USB port is made. The port starts
674 * off in the disabled state.
676 * @usb: Pointer to an empty struct cvmx_usb_state
677 * that will be populated by the initialize call.
678 * This structure is then passed to all other USB
681 * Which Octeon USB port to initialize.
683 * Returns: 0 or a negative error code.
685 static int cvmx_usb_initialize(struct cvmx_usb_state
*usb
,
687 enum cvmx_usb_initialize_flags flags
)
689 union cvmx_usbnx_clk_ctl usbn_clk_ctl
;
690 union cvmx_usbnx_usbp_ctl_status usbn_usbp_ctl_status
;
693 /* At first allow 0-1 for the usb port number */
694 if ((usb_port_number
< 0) || (usb_port_number
> 1))
697 memset(usb
, 0, sizeof(*usb
));
698 usb
->init_flags
= flags
;
700 /* Initialize the USB state structure */
701 usb
->index
= usb_port_number
;
702 INIT_LIST_HEAD(&usb
->idle_pipes
);
703 for (i
= 0; i
< ARRAY_SIZE(usb
->active_pipes
); i
++)
704 INIT_LIST_HEAD(&usb
->active_pipes
[i
]);
707 * Power On Reset and PHY Initialization
709 * 1. Wait for DCOK to assert (nothing to do)
711 * 2a. Write USBN0/1_CLK_CTL[POR] = 1 and
712 * USBN0/1_CLK_CTL[HRST,PRST,HCLK_RST] = 0
715 __cvmx_usb_read_csr64(usb
, CVMX_USBNX_CLK_CTL(usb
->index
));
716 usbn_clk_ctl
.s
.por
= 1;
717 usbn_clk_ctl
.s
.hrst
= 0;
718 usbn_clk_ctl
.s
.prst
= 0;
719 usbn_clk_ctl
.s
.hclk_rst
= 0;
720 usbn_clk_ctl
.s
.enable
= 0;
722 * 2b. Select the USB reference clock/crystal parameters by writing
723 * appropriate values to USBN0/1_CLK_CTL[P_C_SEL, P_RTYPE, P_COM_ON]
725 if (usb
->init_flags
& CVMX_USB_INITIALIZE_FLAGS_CLOCK_XO_GND
) {
727 * The USB port uses 12/24/48MHz 2.5V board clock
728 * source at USB_XO. USB_XI should be tied to GND.
729 * Most Octeon evaluation boards require this setting
731 if (OCTEON_IS_MODEL(OCTEON_CN3XXX
) ||
732 OCTEON_IS_MODEL(OCTEON_CN56XX
) ||
733 OCTEON_IS_MODEL(OCTEON_CN50XX
))
734 /* From CN56XX,CN50XX,CN31XX,CN30XX manuals */
735 usbn_clk_ctl
.s
.p_rtype
= 2; /* p_rclk=1 & p_xenbn=0 */
737 /* From CN52XX manual */
738 usbn_clk_ctl
.s
.p_rtype
= 1;
740 switch (flags
& CVMX_USB_INITIALIZE_FLAGS_CLOCK_MHZ_MASK
) {
741 case CVMX_USB_INITIALIZE_FLAGS_CLOCK_12MHZ
:
742 usbn_clk_ctl
.s
.p_c_sel
= 0;
744 case CVMX_USB_INITIALIZE_FLAGS_CLOCK_24MHZ
:
745 usbn_clk_ctl
.s
.p_c_sel
= 1;
747 case CVMX_USB_INITIALIZE_FLAGS_CLOCK_48MHZ
:
748 usbn_clk_ctl
.s
.p_c_sel
= 2;
753 * The USB port uses a 12MHz crystal as clock source
754 * at USB_XO and USB_XI
756 if (OCTEON_IS_MODEL(OCTEON_CN3XXX
))
757 /* From CN31XX,CN30XX manual */
758 usbn_clk_ctl
.s
.p_rtype
= 3; /* p_rclk=1 & p_xenbn=1 */
760 /* From CN56XX,CN52XX,CN50XX manuals. */
761 usbn_clk_ctl
.s
.p_rtype
= 0;
763 usbn_clk_ctl
.s
.p_c_sel
= 0;
766 * 2c. Select the HCLK via writing USBN0/1_CLK_CTL[DIVIDE, DIVIDE2] and
767 * setting USBN0/1_CLK_CTL[ENABLE] = 1. Divide the core clock down
768 * such that USB is as close as possible to 125Mhz
771 int divisor
= (octeon_get_clock_rate()+125000000-1)/125000000;
772 /* Lower than 4 doesn't seem to work properly */
775 usbn_clk_ctl
.s
.divide
= divisor
;
776 usbn_clk_ctl
.s
.divide2
= 0;
778 __cvmx_usb_write_csr64(usb
, CVMX_USBNX_CLK_CTL(usb
->index
),
780 /* 2d. Write USBN0/1_CLK_CTL[HCLK_RST] = 1 */
781 usbn_clk_ctl
.s
.hclk_rst
= 1;
782 __cvmx_usb_write_csr64(usb
, CVMX_USBNX_CLK_CTL(usb
->index
),
784 /* 2e. Wait 64 core-clock cycles for HCLK to stabilize */
787 * 3. Program the power-on reset field in the USBN clock-control
789 * USBN_CLK_CTL[POR] = 0
791 usbn_clk_ctl
.s
.por
= 0;
792 __cvmx_usb_write_csr64(usb
, CVMX_USBNX_CLK_CTL(usb
->index
),
794 /* 4. Wait 1 ms for PHY clock to start */
797 * 5. Program the Reset input from automatic test equipment field in the
798 * USBP control and status register:
799 * USBN_USBP_CTL_STATUS[ATE_RESET] = 1
801 usbn_usbp_ctl_status
.u64
= __cvmx_usb_read_csr64(usb
,
802 CVMX_USBNX_USBP_CTL_STATUS(usb
->index
));
803 usbn_usbp_ctl_status
.s
.ate_reset
= 1;
804 __cvmx_usb_write_csr64(usb
, CVMX_USBNX_USBP_CTL_STATUS(usb
->index
),
805 usbn_usbp_ctl_status
.u64
);
806 /* 6. Wait 10 cycles */
809 * 7. Clear ATE_RESET field in the USBN clock-control register:
810 * USBN_USBP_CTL_STATUS[ATE_RESET] = 0
812 usbn_usbp_ctl_status
.s
.ate_reset
= 0;
813 __cvmx_usb_write_csr64(usb
, CVMX_USBNX_USBP_CTL_STATUS(usb
->index
),
814 usbn_usbp_ctl_status
.u64
);
816 * 8. Program the PHY reset field in the USBN clock-control register:
817 * USBN_CLK_CTL[PRST] = 1
819 usbn_clk_ctl
.s
.prst
= 1;
820 __cvmx_usb_write_csr64(usb
, CVMX_USBNX_CLK_CTL(usb
->index
),
823 * 9. Program the USBP control and status register to select host or
824 * device mode. USBN_USBP_CTL_STATUS[HST_MODE] = 0 for host, = 1 for
827 usbn_usbp_ctl_status
.s
.hst_mode
= 0;
828 __cvmx_usb_write_csr64(usb
, CVMX_USBNX_USBP_CTL_STATUS(usb
->index
),
829 usbn_usbp_ctl_status
.u64
);
833 * 11. Program the hreset_n field in the USBN clock-control register:
834 * USBN_CLK_CTL[HRST] = 1
836 usbn_clk_ctl
.s
.hrst
= 1;
837 __cvmx_usb_write_csr64(usb
, CVMX_USBNX_CLK_CTL(usb
->index
),
839 /* 12. Proceed to USB core initialization */
840 usbn_clk_ctl
.s
.enable
= 1;
841 __cvmx_usb_write_csr64(usb
, CVMX_USBNX_CLK_CTL(usb
->index
),
846 * USB Core Initialization
848 * 1. Read USBC_GHWCFG1, USBC_GHWCFG2, USBC_GHWCFG3, USBC_GHWCFG4 to
849 * determine USB core configuration parameters.
853 * 2. Program the following fields in the global AHB configuration
854 * register (USBC_GAHBCFG)
855 * DMA mode, USBC_GAHBCFG[DMAEn]: 1 = DMA mode, 0 = slave mode
856 * Burst length, USBC_GAHBCFG[HBSTLEN] = 0
857 * Nonperiodic TxFIFO empty level (slave mode only),
858 * USBC_GAHBCFG[NPTXFEMPLVL]
859 * Periodic TxFIFO empty level (slave mode only),
860 * USBC_GAHBCFG[PTXFEMPLVL]
861 * Global interrupt mask, USBC_GAHBCFG[GLBLINTRMSK] = 1
864 union cvmx_usbcx_gahbcfg usbcx_gahbcfg
;
865 /* Due to an errata, CN31XX doesn't support DMA */
866 if (OCTEON_IS_MODEL(OCTEON_CN31XX
))
867 usb
->init_flags
|= CVMX_USB_INITIALIZE_FLAGS_NO_DMA
;
868 usbcx_gahbcfg
.u32
= 0;
869 usbcx_gahbcfg
.s
.dmaen
= !(usb
->init_flags
&
870 CVMX_USB_INITIALIZE_FLAGS_NO_DMA
);
871 if (usb
->init_flags
& CVMX_USB_INITIALIZE_FLAGS_NO_DMA
)
872 /* Only use one channel with non DMA */
873 usb
->idle_hardware_channels
= 0x1;
874 else if (OCTEON_IS_MODEL(OCTEON_CN5XXX
))
875 /* CN5XXX have an errata with channel 3 */
876 usb
->idle_hardware_channels
= 0xf7;
878 usb
->idle_hardware_channels
= 0xff;
879 usbcx_gahbcfg
.s
.hbstlen
= 0;
880 usbcx_gahbcfg
.s
.nptxfemplvl
= 1;
881 usbcx_gahbcfg
.s
.ptxfemplvl
= 1;
882 usbcx_gahbcfg
.s
.glblintrmsk
= 1;
883 __cvmx_usb_write_csr32(usb
, CVMX_USBCX_GAHBCFG(usb
->index
),
887 * 3. Program the following fields in USBC_GUSBCFG register.
888 * HS/FS timeout calibration, USBC_GUSBCFG[TOUTCAL] = 0
889 * ULPI DDR select, USBC_GUSBCFG[DDRSEL] = 0
890 * USB turnaround time, USBC_GUSBCFG[USBTRDTIM] = 0x5
891 * PHY low-power clock select, USBC_GUSBCFG[PHYLPWRCLKSEL] = 0
894 union cvmx_usbcx_gusbcfg usbcx_gusbcfg
;
895 usbcx_gusbcfg
.u32
= __cvmx_usb_read_csr32(usb
,
896 CVMX_USBCX_GUSBCFG(usb
->index
));
897 usbcx_gusbcfg
.s
.toutcal
= 0;
898 usbcx_gusbcfg
.s
.ddrsel
= 0;
899 usbcx_gusbcfg
.s
.usbtrdtim
= 0x5;
900 usbcx_gusbcfg
.s
.phylpwrclksel
= 0;
901 __cvmx_usb_write_csr32(usb
, CVMX_USBCX_GUSBCFG(usb
->index
),
905 * 4. The software must unmask the following bits in the USBC_GINTMSK
907 * OTG interrupt mask, USBC_GINTMSK[OTGINTMSK] = 1
908 * Mode mismatch interrupt mask, USBC_GINTMSK[MODEMISMSK] = 1
911 union cvmx_usbcx_gintmsk usbcx_gintmsk
;
914 usbcx_gintmsk
.u32
= __cvmx_usb_read_csr32(usb
,
915 CVMX_USBCX_GINTMSK(usb
->index
));
916 usbcx_gintmsk
.s
.otgintmsk
= 1;
917 usbcx_gintmsk
.s
.modemismsk
= 1;
918 usbcx_gintmsk
.s
.hchintmsk
= 1;
919 usbcx_gintmsk
.s
.sofmsk
= 0;
920 /* We need RX FIFO interrupts if we don't have DMA */
921 if (usb
->init_flags
& CVMX_USB_INITIALIZE_FLAGS_NO_DMA
)
922 usbcx_gintmsk
.s
.rxflvlmsk
= 1;
923 __cvmx_usb_write_csr32(usb
, CVMX_USBCX_GINTMSK(usb
->index
),
927 * Disable all channel interrupts. We'll enable them per channel
930 for (channel
= 0; channel
< 8; channel
++)
931 __cvmx_usb_write_csr32(usb
,
932 CVMX_USBCX_HCINTMSKX(channel
, usb
->index
), 0);
937 * Host Port Initialization
939 * 1. Program the host-port interrupt-mask field to unmask,
940 * USBC_GINTMSK[PRTINT] = 1
942 USB_SET_FIELD32(CVMX_USBCX_GINTMSK(usb
->index
),
943 union cvmx_usbcx_gintmsk
, prtintmsk
, 1);
944 USB_SET_FIELD32(CVMX_USBCX_GINTMSK(usb
->index
),
945 union cvmx_usbcx_gintmsk
, disconnintmsk
, 1);
947 * 2. Program the USBC_HCFG register to select full-speed host
948 * or high-speed host.
951 union cvmx_usbcx_hcfg usbcx_hcfg
;
952 usbcx_hcfg
.u32
= __cvmx_usb_read_csr32(usb
,
953 CVMX_USBCX_HCFG(usb
->index
));
954 usbcx_hcfg
.s
.fslssupp
= 0;
955 usbcx_hcfg
.s
.fslspclksel
= 0;
956 __cvmx_usb_write_csr32(usb
,
957 CVMX_USBCX_HCFG(usb
->index
),
961 * 3. Program the port power bit to drive VBUS on the USB,
962 * USBC_HPRT[PRTPWR] = 1
964 USB_SET_FIELD32(CVMX_USBCX_HPRT(usb
->index
),
965 union cvmx_usbcx_hprt
, prtpwr
, 1);
968 * Steps 4-15 from the manual are done later in the port enable
977 * Shutdown a USB port after a call to cvmx_usb_initialize().
978 * The port should be disabled with all pipes closed when this
979 * function is called.
981 * @usb: USB device state populated by cvmx_usb_initialize().
983 * Returns: 0 or a negative error code.
985 static int cvmx_usb_shutdown(struct cvmx_usb_state
*usb
)
987 union cvmx_usbnx_clk_ctl usbn_clk_ctl
;
989 /* Make sure all pipes are closed */
990 if (!list_empty(&usb
->idle_pipes
) ||
991 !list_empty(&usb
->active_pipes
[CVMX_USB_TRANSFER_ISOCHRONOUS
]) ||
992 !list_empty(&usb
->active_pipes
[CVMX_USB_TRANSFER_INTERRUPT
]) ||
993 !list_empty(&usb
->active_pipes
[CVMX_USB_TRANSFER_CONTROL
]) ||
994 !list_empty(&usb
->active_pipes
[CVMX_USB_TRANSFER_BULK
]))
997 /* Disable the clocks and put them in power on reset */
998 usbn_clk_ctl
.u64
= __cvmx_usb_read_csr64(usb
,
999 CVMX_USBNX_CLK_CTL(usb
->index
));
1000 usbn_clk_ctl
.s
.enable
= 1;
1001 usbn_clk_ctl
.s
.por
= 1;
1002 usbn_clk_ctl
.s
.hclk_rst
= 1;
1003 usbn_clk_ctl
.s
.prst
= 0;
1004 usbn_clk_ctl
.s
.hrst
= 0;
1005 __cvmx_usb_write_csr64(usb
, CVMX_USBNX_CLK_CTL(usb
->index
),
1012 * Enable a USB port. After this call succeeds, the USB port is
1013 * online and servicing requests.
1015 * @usb: USB device state populated by cvmx_usb_initialize().
1017 * Returns: 0 or a negative error code.
1019 static int cvmx_usb_enable(struct cvmx_usb_state
*usb
)
1021 union cvmx_usbcx_ghwcfg3 usbcx_ghwcfg3
;
1023 usb
->usbcx_hprt
.u32
= __cvmx_usb_read_csr32(usb
,
1024 CVMX_USBCX_HPRT(usb
->index
));
1027 * If the port is already enabled the just return. We don't need to do
1030 if (usb
->usbcx_hprt
.s
.prtena
)
1033 /* If there is nothing plugged into the port then fail immediately */
1034 if (!usb
->usbcx_hprt
.s
.prtconnsts
)
1037 /* Program the port reset bit to start the reset process */
1038 USB_SET_FIELD32(CVMX_USBCX_HPRT(usb
->index
), union cvmx_usbcx_hprt
,
1042 * Wait at least 50ms (high speed), or 10ms (full speed) for the reset
1043 * process to complete.
1047 /* Program the port reset bit to 0, USBC_HPRT[PRTRST] = 0 */
1048 USB_SET_FIELD32(CVMX_USBCX_HPRT(usb
->index
), union cvmx_usbcx_hprt
,
1051 /* Wait for the USBC_HPRT[PRTENA]. */
1052 if (CVMX_WAIT_FOR_FIELD32(CVMX_USBCX_HPRT(usb
->index
),
1053 union cvmx_usbcx_hprt
, prtena
, ==, 1, 100000))
1057 * Read the port speed field to get the enumerated speed,
1058 * USBC_HPRT[PRTSPD].
1060 usb
->usbcx_hprt
.u32
= __cvmx_usb_read_csr32(usb
,
1061 CVMX_USBCX_HPRT(usb
->index
));
1062 usbcx_ghwcfg3
.u32
= __cvmx_usb_read_csr32(usb
,
1063 CVMX_USBCX_GHWCFG3(usb
->index
));
1066 * 13. Program the USBC_GRXFSIZ register to select the size of the
1067 * receive FIFO (25%).
1069 USB_SET_FIELD32(CVMX_USBCX_GRXFSIZ(usb
->index
),
1070 union cvmx_usbcx_grxfsiz
, rxfdep
,
1071 usbcx_ghwcfg3
.s
.dfifodepth
/ 4);
1073 * 14. Program the USBC_GNPTXFSIZ register to select the size and the
1074 * start address of the non- periodic transmit FIFO for nonperiodic
1075 * transactions (50%).
1078 union cvmx_usbcx_gnptxfsiz siz
;
1079 siz
.u32
= __cvmx_usb_read_csr32(usb
,
1080 CVMX_USBCX_GNPTXFSIZ(usb
->index
));
1081 siz
.s
.nptxfdep
= usbcx_ghwcfg3
.s
.dfifodepth
/ 2;
1082 siz
.s
.nptxfstaddr
= usbcx_ghwcfg3
.s
.dfifodepth
/ 4;
1083 __cvmx_usb_write_csr32(usb
, CVMX_USBCX_GNPTXFSIZ(usb
->index
),
1087 * 15. Program the USBC_HPTXFSIZ register to select the size and start
1088 * address of the periodic transmit FIFO for periodic transactions
1092 union cvmx_usbcx_hptxfsiz siz
;
1093 siz
.u32
= __cvmx_usb_read_csr32(usb
,
1094 CVMX_USBCX_HPTXFSIZ(usb
->index
));
1095 siz
.s
.ptxfsize
= usbcx_ghwcfg3
.s
.dfifodepth
/ 4;
1096 siz
.s
.ptxfstaddr
= 3 * usbcx_ghwcfg3
.s
.dfifodepth
/ 4;
1097 __cvmx_usb_write_csr32(usb
, CVMX_USBCX_HPTXFSIZ(usb
->index
),
1100 /* Flush all FIFOs */
1101 USB_SET_FIELD32(CVMX_USBCX_GRSTCTL(usb
->index
),
1102 union cvmx_usbcx_grstctl
, txfnum
, 0x10);
1103 USB_SET_FIELD32(CVMX_USBCX_GRSTCTL(usb
->index
),
1104 union cvmx_usbcx_grstctl
, txfflsh
, 1);
1105 CVMX_WAIT_FOR_FIELD32(CVMX_USBCX_GRSTCTL(usb
->index
),
1106 union cvmx_usbcx_grstctl
,
1107 txfflsh
, ==, 0, 100);
1108 USB_SET_FIELD32(CVMX_USBCX_GRSTCTL(usb
->index
),
1109 union cvmx_usbcx_grstctl
, rxfflsh
, 1);
1110 CVMX_WAIT_FOR_FIELD32(CVMX_USBCX_GRSTCTL(usb
->index
),
1111 union cvmx_usbcx_grstctl
,
1112 rxfflsh
, ==, 0, 100);
1119 * Disable a USB port. After this call the USB port will not
1120 * generate data transfers and will not generate events.
1121 * Transactions in process will fail and call their
1122 * associated callbacks.
1124 * @usb: USB device state populated by cvmx_usb_initialize().
1126 * Returns: 0 or a negative error code.
1128 static int cvmx_usb_disable(struct cvmx_usb_state
*usb
)
1130 /* Disable the port */
1131 USB_SET_FIELD32(CVMX_USBCX_HPRT(usb
->index
), union cvmx_usbcx_hprt
,
1138 * Get the current state of the USB port. Use this call to
1139 * determine if the usb port has anything connected, is enabled,
1140 * or has some sort of error condition. The return value of this
1141 * call has "changed" bits to signal of the value of some fields
1142 * have changed between calls.
1144 * @usb: USB device state populated by cvmx_usb_initialize().
1146 * Returns: Port status information
1148 static struct cvmx_usb_port_status
cvmx_usb_get_status(
1149 struct cvmx_usb_state
*usb
)
1151 union cvmx_usbcx_hprt usbc_hprt
;
1152 struct cvmx_usb_port_status result
;
1154 memset(&result
, 0, sizeof(result
));
1156 usbc_hprt
.u32
= __cvmx_usb_read_csr32(usb
,
1157 CVMX_USBCX_HPRT(usb
->index
));
1158 result
.port_enabled
= usbc_hprt
.s
.prtena
;
1159 result
.port_over_current
= usbc_hprt
.s
.prtovrcurract
;
1160 result
.port_powered
= usbc_hprt
.s
.prtpwr
;
1161 result
.port_speed
= usbc_hprt
.s
.prtspd
;
1162 result
.connected
= usbc_hprt
.s
.prtconnsts
;
1163 result
.connect_change
=
1164 (result
.connected
!= usb
->port_status
.connected
);
1170 * Open a virtual pipe between the host and a USB device. A pipe
1171 * must be opened before data can be transferred between a device
1174 * @usb: USB device state populated by cvmx_usb_initialize().
1176 * USB device address to open the pipe to
1179 * USB endpoint number to open the pipe to
1182 * The speed of the device the pipe is going
1183 * to. This must match the device's speed,
1184 * which may be different than the port speed.
1185 * @max_packet: The maximum packet length the device can
1186 * transmit/receive (low speed=0-8, full
1187 * speed=0-1023, high speed=0-1024). This value
1188 * comes from the standard endpoint descriptor
1189 * field wMaxPacketSize bits <10:0>.
1191 * The type of transfer this pipe is for.
1193 * The direction the pipe is in. This is not
1194 * used for control pipes.
1195 * @interval: For ISOCHRONOUS and INTERRUPT transfers,
1196 * this is how often the transfer is scheduled
1197 * for. All other transfers should specify
1198 * zero. The units are in frames (8000/sec at
1199 * high speed, 1000/sec for full speed).
1201 * For high speed devices, this is the maximum
1202 * allowed number of packet per microframe.
1203 * Specify zero for non high speed devices. This
1204 * value comes from the standard endpoint descriptor
1205 * field wMaxPacketSize bits <12:11>.
1207 * Hub device address this device is connected
1208 * to. Devices connected directly to Octeon
1209 * use zero. This is only used when the device
1210 * is full/low speed behind a high speed hub.
1211 * The address will be of the high speed hub,
1212 * not and full speed hubs after it.
1213 * @hub_port: Which port on the hub the device is
1214 * connected. Use zero for devices connected
1215 * directly to Octeon. Like hub_device_addr,
1216 * this is only used for full/low speed
1217 * devices behind a high speed hub.
1219 * Returns: A non-NULL value is a pipe. NULL means an error.
1221 static struct cvmx_usb_pipe
*cvmx_usb_open_pipe(struct cvmx_usb_state
*usb
,
1222 int device_addr
, int
1227 enum cvmx_usb_transfer
1229 enum cvmx_usb_direction
1231 int interval
, int multi_count
,
1232 int hub_device_addr
,
1235 struct cvmx_usb_pipe
*pipe
;
1237 if (unlikely((device_addr
< 0) || (device_addr
> MAX_USB_ADDRESS
)))
1239 if (unlikely((endpoint_num
< 0) || (endpoint_num
> MAX_USB_ENDPOINT
)))
1241 if (unlikely(device_speed
> CVMX_USB_SPEED_LOW
))
1243 if (unlikely((max_packet
<= 0) || (max_packet
> 1024)))
1245 if (unlikely(transfer_type
> CVMX_USB_TRANSFER_INTERRUPT
))
1247 if (unlikely((transfer_dir
!= CVMX_USB_DIRECTION_OUT
) &&
1248 (transfer_dir
!= CVMX_USB_DIRECTION_IN
)))
1250 if (unlikely(interval
< 0))
1252 if (unlikely((transfer_type
== CVMX_USB_TRANSFER_CONTROL
) && interval
))
1254 if (unlikely(multi_count
< 0))
1256 if (unlikely((device_speed
!= CVMX_USB_SPEED_HIGH
) &&
1257 (multi_count
!= 0)))
1259 if (unlikely((hub_device_addr
< 0) ||
1260 (hub_device_addr
> MAX_USB_ADDRESS
)))
1262 if (unlikely((hub_port
< 0) || (hub_port
> MAX_USB_HUB_PORT
)))
1265 pipe
= kzalloc(sizeof(*pipe
), GFP_ATOMIC
);
1268 if ((device_speed
== CVMX_USB_SPEED_HIGH
) &&
1269 (transfer_dir
== CVMX_USB_DIRECTION_OUT
) &&
1270 (transfer_type
== CVMX_USB_TRANSFER_BULK
))
1271 pipe
->flags
|= __CVMX_USB_PIPE_FLAGS_NEED_PING
;
1272 pipe
->device_addr
= device_addr
;
1273 pipe
->endpoint_num
= endpoint_num
;
1274 pipe
->device_speed
= device_speed
;
1275 pipe
->max_packet
= max_packet
;
1276 pipe
->transfer_type
= transfer_type
;
1277 pipe
->transfer_dir
= transfer_dir
;
1278 INIT_LIST_HEAD(&pipe
->transactions
);
1281 * All pipes use interval to rate limit NAK processing. Force an
1282 * interval if one wasn't supplied
1286 if (__cvmx_usb_pipe_needs_split(usb
, pipe
)) {
1287 pipe
->interval
= interval
*8;
1288 /* Force start splits to be schedule on uFrame 0 */
1289 pipe
->next_tx_frame
= ((usb
->frame_number
+7)&~7) + pipe
->interval
;
1291 pipe
->interval
= interval
;
1292 pipe
->next_tx_frame
= usb
->frame_number
+ pipe
->interval
;
1294 pipe
->multi_count
= multi_count
;
1295 pipe
->hub_device_addr
= hub_device_addr
;
1296 pipe
->hub_port
= hub_port
;
1297 pipe
->pid_toggle
= 0;
1298 pipe
->split_sc_frame
= -1;
1299 list_add_tail(&pipe
->node
, &usb
->idle_pipes
);
1302 * We don't need to tell the hardware about this pipe yet since
1303 * it doesn't have any submitted requests
1311 * Poll the RX FIFOs and remove data as needed. This function is only used
1312 * in non DMA mode. It is very important that this function be called quickly
1313 * enough to prevent FIFO overflow.
1315 * @usb: USB device state populated by cvmx_usb_initialize().
1317 static void __cvmx_usb_poll_rx_fifo(struct cvmx_usb_state
*usb
)
1319 union cvmx_usbcx_grxstsph rx_status
;
1325 rx_status
.u32
= __cvmx_usb_read_csr32(usb
,
1326 CVMX_USBCX_GRXSTSPH(usb
->index
));
1327 /* Only read data if IN data is there */
1328 if (rx_status
.s
.pktsts
!= 2)
1330 /* Check if no data is available */
1331 if (!rx_status
.s
.bcnt
)
1334 channel
= rx_status
.s
.chnum
;
1335 bytes
= rx_status
.s
.bcnt
;
1339 /* Get where the DMA engine would have written this data */
1340 address
= __cvmx_usb_read_csr64(usb
, CVMX_USBNX_DMA0_INB_CHN0(usb
->index
) + channel
*8);
1341 ptr
= cvmx_phys_to_ptr(address
);
1342 __cvmx_usb_write_csr64(usb
, CVMX_USBNX_DMA0_INB_CHN0(usb
->index
) + channel
*8, address
+ bytes
);
1344 /* Loop writing the FIFO data for this packet into memory */
1346 *ptr
++ = __cvmx_usb_read_csr32(usb
, USB_FIFO_ADDRESS(channel
, usb
->index
));
1356 * Fill the TX hardware fifo with data out of the software
1359 * @usb: USB device state populated by cvmx_usb_initialize().
1360 * @fifo: Software fifo to use
1361 * @available: Amount of space in the hardware fifo
1363 * Returns: Non zero if the hardware fifo was too small and needs
1364 * to be serviced again.
1366 static int __cvmx_usb_fill_tx_hw(struct cvmx_usb_state
*usb
,
1367 struct cvmx_usb_tx_fifo
*fifo
, int available
)
1370 * We're done either when there isn't anymore space or the software FIFO
1373 while (available
&& (fifo
->head
!= fifo
->tail
)) {
1375 const uint32_t *ptr
= cvmx_phys_to_ptr(fifo
->entry
[i
].address
);
1376 uint64_t csr_address
= USB_FIFO_ADDRESS(fifo
->entry
[i
].channel
,
1378 int words
= available
;
1380 /* Limit the amount of data to waht the SW fifo has */
1381 if (fifo
->entry
[i
].size
<= available
) {
1382 words
= fifo
->entry
[i
].size
;
1384 if (fifo
->tail
> MAX_CHANNELS
)
1388 /* Update the next locations and counts */
1390 fifo
->entry
[i
].address
+= words
* 4;
1391 fifo
->entry
[i
].size
-= words
;
1394 * Write the HW fifo data. The read every three writes is due
1395 * to an errata on CN3XXX chips
1398 cvmx_write64_uint32(csr_address
, *ptr
++);
1399 cvmx_write64_uint32(csr_address
, *ptr
++);
1400 cvmx_write64_uint32(csr_address
, *ptr
++);
1402 CVMX_USBNX_DMA0_INB_CHN0(usb
->index
));
1405 cvmx_write64_uint32(csr_address
, *ptr
++);
1407 cvmx_write64_uint32(csr_address
, *ptr
++);
1409 cvmx_write64_uint32(csr_address
, *ptr
++);
1411 cvmx_read64_uint64(CVMX_USBNX_DMA0_INB_CHN0(usb
->index
));
1413 return fifo
->head
!= fifo
->tail
;
1418 * Check the hardware FIFOs and fill them as needed
1420 * @usb: USB device state populated by cvmx_usb_initialize().
1422 static void __cvmx_usb_poll_tx_fifo(struct cvmx_usb_state
*usb
)
1424 if (usb
->periodic
.head
!= usb
->periodic
.tail
) {
1425 union cvmx_usbcx_hptxsts tx_status
;
1426 tx_status
.u32
= __cvmx_usb_read_csr32(usb
,
1427 CVMX_USBCX_HPTXSTS(usb
->index
));
1428 if (__cvmx_usb_fill_tx_hw(usb
, &usb
->periodic
,
1429 tx_status
.s
.ptxfspcavail
))
1430 USB_SET_FIELD32(CVMX_USBCX_GINTMSK(usb
->index
),
1431 union cvmx_usbcx_gintmsk
,
1434 USB_SET_FIELD32(CVMX_USBCX_GINTMSK(usb
->index
),
1435 union cvmx_usbcx_gintmsk
,
1439 if (usb
->nonperiodic
.head
!= usb
->nonperiodic
.tail
) {
1440 union cvmx_usbcx_gnptxsts tx_status
;
1441 tx_status
.u32
= __cvmx_usb_read_csr32(usb
,
1442 CVMX_USBCX_GNPTXSTS(usb
->index
));
1443 if (__cvmx_usb_fill_tx_hw(usb
, &usb
->nonperiodic
,
1444 tx_status
.s
.nptxfspcavail
))
1445 USB_SET_FIELD32(CVMX_USBCX_GINTMSK(usb
->index
),
1446 union cvmx_usbcx_gintmsk
,
1449 USB_SET_FIELD32(CVMX_USBCX_GINTMSK(usb
->index
),
1450 union cvmx_usbcx_gintmsk
,
1459 * Fill the TX FIFO with an outgoing packet
1461 * @usb: USB device state populated by cvmx_usb_initialize().
1462 * @channel: Channel number to get packet from
1464 static void __cvmx_usb_fill_tx_fifo(struct cvmx_usb_state
*usb
, int channel
)
1466 union cvmx_usbcx_hccharx hcchar
;
1467 union cvmx_usbcx_hcspltx usbc_hcsplt
;
1468 union cvmx_usbcx_hctsizx usbc_hctsiz
;
1469 struct cvmx_usb_tx_fifo
*fifo
;
1471 /* We only need to fill data on outbound channels */
1472 hcchar
.u32
= __cvmx_usb_read_csr32(usb
,
1473 CVMX_USBCX_HCCHARX(channel
, usb
->index
));
1474 if (hcchar
.s
.epdir
!= CVMX_USB_DIRECTION_OUT
)
1477 /* OUT Splits only have data on the start and not the complete */
1478 usbc_hcsplt
.u32
= __cvmx_usb_read_csr32(usb
,
1479 CVMX_USBCX_HCSPLTX(channel
, usb
->index
));
1480 if (usbc_hcsplt
.s
.spltena
&& usbc_hcsplt
.s
.compsplt
)
1484 * Find out how many bytes we need to fill and convert it into 32bit
1487 usbc_hctsiz
.u32
= __cvmx_usb_read_csr32(usb
,
1488 CVMX_USBCX_HCTSIZX(channel
, usb
->index
));
1489 if (!usbc_hctsiz
.s
.xfersize
)
1492 if ((hcchar
.s
.eptype
== CVMX_USB_TRANSFER_INTERRUPT
) ||
1493 (hcchar
.s
.eptype
== CVMX_USB_TRANSFER_ISOCHRONOUS
))
1494 fifo
= &usb
->periodic
;
1496 fifo
= &usb
->nonperiodic
;
1498 fifo
->entry
[fifo
->head
].channel
= channel
;
1499 fifo
->entry
[fifo
->head
].address
= __cvmx_usb_read_csr64(usb
, CVMX_USBNX_DMA0_OUTB_CHN0(usb
->index
) + channel
*8);
1500 fifo
->entry
[fifo
->head
].size
= (usbc_hctsiz
.s
.xfersize
+3)>>2;
1502 if (fifo
->head
> MAX_CHANNELS
)
1505 __cvmx_usb_poll_tx_fifo(usb
);
1511 * Perform channel specific setup for Control transactions. All
1512 * the generic stuff will already have been done in
1513 * __cvmx_usb_start_channel()
1515 * @usb: USB device state populated by cvmx_usb_initialize().
1516 * @channel: Channel to setup
1517 * @pipe: Pipe for control transaction
1519 static void __cvmx_usb_start_channel_control(struct cvmx_usb_state
*usb
,
1521 struct cvmx_usb_pipe
*pipe
)
1523 struct cvmx_usb_transaction
*transaction
=
1524 list_first_entry(&pipe
->transactions
, typeof(*transaction
),
1526 union cvmx_usb_control_header
*header
=
1527 cvmx_phys_to_ptr(transaction
->control_header
);
1528 int bytes_to_transfer
= transaction
->buffer_length
-
1529 transaction
->actual_bytes
;
1530 int packets_to_transfer
;
1531 union cvmx_usbcx_hctsizx usbc_hctsiz
;
1533 usbc_hctsiz
.u32
= __cvmx_usb_read_csr32(usb
,
1534 CVMX_USBCX_HCTSIZX(channel
, usb
->index
));
1536 switch (transaction
->stage
) {
1537 case CVMX_USB_STAGE_NON_CONTROL
:
1538 case CVMX_USB_STAGE_NON_CONTROL_SPLIT_COMPLETE
:
1539 cvmx_dprintf("%s: ERROR - Non control stage\n", __FUNCTION__
);
1541 case CVMX_USB_STAGE_SETUP
:
1542 usbc_hctsiz
.s
.pid
= 3; /* Setup */
1543 bytes_to_transfer
= sizeof(*header
);
1544 /* All Control operations start with a setup going OUT */
1545 USB_SET_FIELD32(CVMX_USBCX_HCCHARX(channel
, usb
->index
), union cvmx_usbcx_hccharx
, epdir
, CVMX_USB_DIRECTION_OUT
);
1547 * Setup send the control header instead of the buffer data. The
1548 * buffer data will be used in the next stage
1550 __cvmx_usb_write_csr64(usb
, CVMX_USBNX_DMA0_OUTB_CHN0(usb
->index
) + channel
*8, transaction
->control_header
);
1552 case CVMX_USB_STAGE_SETUP_SPLIT_COMPLETE
:
1553 usbc_hctsiz
.s
.pid
= 3; /* Setup */
1554 bytes_to_transfer
= 0;
1555 /* All Control operations start with a setup going OUT */
1556 USB_SET_FIELD32(CVMX_USBCX_HCCHARX(channel
, usb
->index
), union cvmx_usbcx_hccharx
, epdir
, CVMX_USB_DIRECTION_OUT
);
1557 USB_SET_FIELD32(CVMX_USBCX_HCSPLTX(channel
, usb
->index
), union cvmx_usbcx_hcspltx
, compsplt
, 1);
1559 case CVMX_USB_STAGE_DATA
:
1560 usbc_hctsiz
.s
.pid
= __cvmx_usb_get_data_pid(pipe
);
1561 if (__cvmx_usb_pipe_needs_split(usb
, pipe
)) {
1562 if (header
->s
.request_type
& 0x80)
1563 bytes_to_transfer
= 0;
1564 else if (bytes_to_transfer
> pipe
->max_packet
)
1565 bytes_to_transfer
= pipe
->max_packet
;
1567 USB_SET_FIELD32(CVMX_USBCX_HCCHARX(channel
, usb
->index
),
1568 union cvmx_usbcx_hccharx
, epdir
,
1569 ((header
->s
.request_type
& 0x80) ?
1570 CVMX_USB_DIRECTION_IN
:
1571 CVMX_USB_DIRECTION_OUT
));
1573 case CVMX_USB_STAGE_DATA_SPLIT_COMPLETE
:
1574 usbc_hctsiz
.s
.pid
= __cvmx_usb_get_data_pid(pipe
);
1575 if (!(header
->s
.request_type
& 0x80))
1576 bytes_to_transfer
= 0;
1577 USB_SET_FIELD32(CVMX_USBCX_HCCHARX(channel
, usb
->index
),
1578 union cvmx_usbcx_hccharx
, epdir
,
1579 ((header
->s
.request_type
& 0x80) ?
1580 CVMX_USB_DIRECTION_IN
:
1581 CVMX_USB_DIRECTION_OUT
));
1582 USB_SET_FIELD32(CVMX_USBCX_HCSPLTX(channel
, usb
->index
),
1583 union cvmx_usbcx_hcspltx
, compsplt
, 1);
1585 case CVMX_USB_STAGE_STATUS
:
1586 usbc_hctsiz
.s
.pid
= __cvmx_usb_get_data_pid(pipe
);
1587 bytes_to_transfer
= 0;
1588 USB_SET_FIELD32(CVMX_USBCX_HCCHARX(channel
, usb
->index
),
1589 union cvmx_usbcx_hccharx
, epdir
,
1590 ((header
->s
.request_type
& 0x80) ?
1591 CVMX_USB_DIRECTION_OUT
:
1592 CVMX_USB_DIRECTION_IN
));
1594 case CVMX_USB_STAGE_STATUS_SPLIT_COMPLETE
:
1595 usbc_hctsiz
.s
.pid
= __cvmx_usb_get_data_pid(pipe
);
1596 bytes_to_transfer
= 0;
1597 USB_SET_FIELD32(CVMX_USBCX_HCCHARX(channel
, usb
->index
),
1598 union cvmx_usbcx_hccharx
, epdir
,
1599 ((header
->s
.request_type
& 0x80) ?
1600 CVMX_USB_DIRECTION_OUT
:
1601 CVMX_USB_DIRECTION_IN
));
1602 USB_SET_FIELD32(CVMX_USBCX_HCSPLTX(channel
, usb
->index
),
1603 union cvmx_usbcx_hcspltx
, compsplt
, 1);
1608 * Make sure the transfer never exceeds the byte limit of the hardware.
1609 * Further bytes will be sent as continued transactions
1611 if (bytes_to_transfer
> MAX_TRANSFER_BYTES
) {
1612 /* Round MAX_TRANSFER_BYTES to a multiple of out packet size */
1613 bytes_to_transfer
= MAX_TRANSFER_BYTES
/ pipe
->max_packet
;
1614 bytes_to_transfer
*= pipe
->max_packet
;
1618 * Calculate the number of packets to transfer. If the length is zero
1619 * we still need to transfer one packet
1621 packets_to_transfer
= (bytes_to_transfer
+ pipe
->max_packet
- 1) /
1623 if (packets_to_transfer
== 0)
1624 packets_to_transfer
= 1;
1625 else if ((packets_to_transfer
> 1) &&
1626 (usb
->init_flags
& CVMX_USB_INITIALIZE_FLAGS_NO_DMA
)) {
1628 * Limit to one packet when not using DMA. Channels must be
1629 * restarted between every packet for IN transactions, so there
1630 * is no reason to do multiple packets in a row
1632 packets_to_transfer
= 1;
1633 bytes_to_transfer
= packets_to_transfer
* pipe
->max_packet
;
1634 } else if (packets_to_transfer
> MAX_TRANSFER_PACKETS
) {
1636 * Limit the number of packet and data transferred to what the
1637 * hardware can handle
1639 packets_to_transfer
= MAX_TRANSFER_PACKETS
;
1640 bytes_to_transfer
= packets_to_transfer
* pipe
->max_packet
;
1643 usbc_hctsiz
.s
.xfersize
= bytes_to_transfer
;
1644 usbc_hctsiz
.s
.pktcnt
= packets_to_transfer
;
1646 __cvmx_usb_write_csr32(usb
, CVMX_USBCX_HCTSIZX(channel
, usb
->index
),
1653 * Start a channel to perform the pipe's head transaction
1655 * @usb: USB device state populated by cvmx_usb_initialize().
1656 * @channel: Channel to setup
1657 * @pipe: Pipe to start
1659 static void __cvmx_usb_start_channel(struct cvmx_usb_state
*usb
,
1661 struct cvmx_usb_pipe
*pipe
)
1663 struct cvmx_usb_transaction
*transaction
=
1664 list_first_entry(&pipe
->transactions
, typeof(*transaction
),
1667 /* Make sure all writes to the DMA region get flushed */
1670 /* Attach the channel to the pipe */
1671 usb
->pipe_for_channel
[channel
] = pipe
;
1672 pipe
->channel
= channel
;
1673 pipe
->flags
|= __CVMX_USB_PIPE_FLAGS_SCHEDULED
;
1675 /* Mark this channel as in use */
1676 usb
->idle_hardware_channels
&= ~(1<<channel
);
1678 /* Enable the channel interrupt bits */
1680 union cvmx_usbcx_hcintx usbc_hcint
;
1681 union cvmx_usbcx_hcintmskx usbc_hcintmsk
;
1682 union cvmx_usbcx_haintmsk usbc_haintmsk
;
1684 /* Clear all channel status bits */
1685 usbc_hcint
.u32
= __cvmx_usb_read_csr32(usb
,
1686 CVMX_USBCX_HCINTX(channel
, usb
->index
));
1687 __cvmx_usb_write_csr32(usb
,
1688 CVMX_USBCX_HCINTX(channel
, usb
->index
),
1691 usbc_hcintmsk
.u32
= 0;
1692 usbc_hcintmsk
.s
.chhltdmsk
= 1;
1693 if (usb
->init_flags
& CVMX_USB_INITIALIZE_FLAGS_NO_DMA
) {
1695 * Channels need these extra interrupts when we aren't
1698 usbc_hcintmsk
.s
.datatglerrmsk
= 1;
1699 usbc_hcintmsk
.s
.frmovrunmsk
= 1;
1700 usbc_hcintmsk
.s
.bblerrmsk
= 1;
1701 usbc_hcintmsk
.s
.xacterrmsk
= 1;
1702 if (__cvmx_usb_pipe_needs_split(usb
, pipe
)) {
1704 * Splits don't generate xfercompl, so we need
1707 usbc_hcintmsk
.s
.nyetmsk
= 1;
1708 usbc_hcintmsk
.s
.ackmsk
= 1;
1710 usbc_hcintmsk
.s
.nakmsk
= 1;
1711 usbc_hcintmsk
.s
.stallmsk
= 1;
1712 usbc_hcintmsk
.s
.xfercomplmsk
= 1;
1714 __cvmx_usb_write_csr32(usb
, CVMX_USBCX_HCINTMSKX(channel
, usb
->index
), usbc_hcintmsk
.u32
);
1716 /* Enable the channel interrupt to propagate */
1717 usbc_haintmsk
.u32
= __cvmx_usb_read_csr32(usb
, CVMX_USBCX_HAINTMSK(usb
->index
));
1718 usbc_haintmsk
.s
.haintmsk
|= 1<<channel
;
1719 __cvmx_usb_write_csr32(usb
, CVMX_USBCX_HAINTMSK(usb
->index
), usbc_haintmsk
.u32
);
1722 /* Setup the locations the DMA engines use */
1724 uint64_t dma_address
= transaction
->buffer
+ transaction
->actual_bytes
;
1725 if (transaction
->type
== CVMX_USB_TRANSFER_ISOCHRONOUS
)
1726 dma_address
= transaction
->buffer
+ transaction
->iso_packets
[0].offset
+ transaction
->actual_bytes
;
1727 __cvmx_usb_write_csr64(usb
, CVMX_USBNX_DMA0_OUTB_CHN0(usb
->index
) + channel
*8, dma_address
);
1728 __cvmx_usb_write_csr64(usb
, CVMX_USBNX_DMA0_INB_CHN0(usb
->index
) + channel
*8, dma_address
);
1731 /* Setup both the size of the transfer and the SPLIT characteristics */
1733 union cvmx_usbcx_hcspltx usbc_hcsplt
= {.u32
= 0};
1734 union cvmx_usbcx_hctsizx usbc_hctsiz
= {.u32
= 0};
1735 int packets_to_transfer
;
1736 int bytes_to_transfer
= transaction
->buffer_length
-
1737 transaction
->actual_bytes
;
1740 * ISOCHRONOUS transactions store each individual transfer size
1741 * in the packet structure, not the global buffer_length
1743 if (transaction
->type
== CVMX_USB_TRANSFER_ISOCHRONOUS
)
1745 transaction
->iso_packets
[0].length
-
1746 transaction
->actual_bytes
;
1749 * We need to do split transactions when we are talking to non
1750 * high speed devices that are behind a high speed hub
1752 if (__cvmx_usb_pipe_needs_split(usb
, pipe
)) {
1754 * On the start split phase (stage is even) record the
1755 * frame number we will need to send the split complete.
1756 * We only store the lower two bits since the time ahead
1757 * can only be two frames
1759 if ((transaction
->stage
&1) == 0) {
1760 if (transaction
->type
== CVMX_USB_TRANSFER_BULK
)
1761 pipe
->split_sc_frame
=
1762 (usb
->frame_number
+ 1) & 0x7f;
1764 pipe
->split_sc_frame
=
1765 (usb
->frame_number
+ 2) & 0x7f;
1767 pipe
->split_sc_frame
= -1;
1769 usbc_hcsplt
.s
.spltena
= 1;
1770 usbc_hcsplt
.s
.hubaddr
= pipe
->hub_device_addr
;
1771 usbc_hcsplt
.s
.prtaddr
= pipe
->hub_port
;
1772 usbc_hcsplt
.s
.compsplt
= (transaction
->stage
==
1773 CVMX_USB_STAGE_NON_CONTROL_SPLIT_COMPLETE
);
1776 * SPLIT transactions can only ever transmit one data
1777 * packet so limit the transfer size to the max packet
1780 if (bytes_to_transfer
> pipe
->max_packet
)
1781 bytes_to_transfer
= pipe
->max_packet
;
1784 * ISOCHRONOUS OUT splits are unique in that they limit
1785 * data transfers to 188 byte chunks representing the
1786 * begin/middle/end of the data or all
1788 if (!usbc_hcsplt
.s
.compsplt
&&
1789 (pipe
->transfer_dir
==
1790 CVMX_USB_DIRECTION_OUT
) &&
1791 (pipe
->transfer_type
==
1792 CVMX_USB_TRANSFER_ISOCHRONOUS
)) {
1794 * Clear the split complete frame number as
1795 * there isn't going to be a split complete
1797 pipe
->split_sc_frame
= -1;
1799 * See if we've started this transfer and sent
1802 if (transaction
->actual_bytes
== 0) {
1804 * Nothing sent yet, this is either a
1805 * begin or the entire payload
1807 if (bytes_to_transfer
<= 188)
1808 /* Entire payload in one go */
1809 usbc_hcsplt
.s
.xactpos
= 3;
1811 /* First part of payload */
1812 usbc_hcsplt
.s
.xactpos
= 2;
1815 * Continuing the previous data, we must
1816 * either be in the middle or at the end
1818 if (bytes_to_transfer
<= 188)
1819 /* End of payload */
1820 usbc_hcsplt
.s
.xactpos
= 1;
1822 /* Middle of payload */
1823 usbc_hcsplt
.s
.xactpos
= 0;
1826 * Again, the transfer size is limited to 188
1829 if (bytes_to_transfer
> 188)
1830 bytes_to_transfer
= 188;
1835 * Make sure the transfer never exceeds the byte limit of the
1836 * hardware. Further bytes will be sent as continued
1839 if (bytes_to_transfer
> MAX_TRANSFER_BYTES
) {
1841 * Round MAX_TRANSFER_BYTES to a multiple of out packet
1844 bytes_to_transfer
= MAX_TRANSFER_BYTES
/
1846 bytes_to_transfer
*= pipe
->max_packet
;
1850 * Calculate the number of packets to transfer. If the length is
1851 * zero we still need to transfer one packet
1853 packets_to_transfer
=
1854 (bytes_to_transfer
+ pipe
->max_packet
- 1) /
1856 if (packets_to_transfer
== 0)
1857 packets_to_transfer
= 1;
1858 else if ((packets_to_transfer
> 1) &&
1860 CVMX_USB_INITIALIZE_FLAGS_NO_DMA
)) {
1862 * Limit to one packet when not using DMA. Channels must
1863 * be restarted between every packet for IN
1864 * transactions, so there is no reason to do multiple
1867 packets_to_transfer
= 1;
1868 bytes_to_transfer
= packets_to_transfer
*
1870 } else if (packets_to_transfer
> MAX_TRANSFER_PACKETS
) {
1872 * Limit the number of packet and data transferred to
1873 * what the hardware can handle
1875 packets_to_transfer
= MAX_TRANSFER_PACKETS
;
1876 bytes_to_transfer
= packets_to_transfer
*
1880 usbc_hctsiz
.s
.xfersize
= bytes_to_transfer
;
1881 usbc_hctsiz
.s
.pktcnt
= packets_to_transfer
;
1883 /* Update the DATA0/DATA1 toggle */
1884 usbc_hctsiz
.s
.pid
= __cvmx_usb_get_data_pid(pipe
);
1886 * High speed pipes may need a hardware ping before they start
1888 if (pipe
->flags
& __CVMX_USB_PIPE_FLAGS_NEED_PING
)
1889 usbc_hctsiz
.s
.dopng
= 1;
1891 __cvmx_usb_write_csr32(usb
,
1892 CVMX_USBCX_HCSPLTX(channel
, usb
->index
),
1894 __cvmx_usb_write_csr32(usb
, CVMX_USBCX_HCTSIZX(channel
,
1895 usb
->index
), usbc_hctsiz
.u32
);
1898 /* Setup the Host Channel Characteristics Register */
1900 union cvmx_usbcx_hccharx usbc_hcchar
= {.u32
= 0};
1903 * Set the startframe odd/even properly. This is only used for
1906 usbc_hcchar
.s
.oddfrm
= usb
->frame_number
&1;
1909 * Set the number of back to back packets allowed by this
1910 * endpoint. Split transactions interpret "ec" as the number of
1911 * immediate retries of failure. These retries happen too
1912 * quickly, so we disable these entirely for splits
1914 if (__cvmx_usb_pipe_needs_split(usb
, pipe
))
1915 usbc_hcchar
.s
.ec
= 1;
1916 else if (pipe
->multi_count
< 1)
1917 usbc_hcchar
.s
.ec
= 1;
1918 else if (pipe
->multi_count
> 3)
1919 usbc_hcchar
.s
.ec
= 3;
1921 usbc_hcchar
.s
.ec
= pipe
->multi_count
;
1923 /* Set the rest of the endpoint specific settings */
1924 usbc_hcchar
.s
.devaddr
= pipe
->device_addr
;
1925 usbc_hcchar
.s
.eptype
= transaction
->type
;
1926 usbc_hcchar
.s
.lspddev
=
1927 (pipe
->device_speed
== CVMX_USB_SPEED_LOW
);
1928 usbc_hcchar
.s
.epdir
= pipe
->transfer_dir
;
1929 usbc_hcchar
.s
.epnum
= pipe
->endpoint_num
;
1930 usbc_hcchar
.s
.mps
= pipe
->max_packet
;
1931 __cvmx_usb_write_csr32(usb
,
1932 CVMX_USBCX_HCCHARX(channel
, usb
->index
),
1936 /* Do transaction type specific fixups as needed */
1937 switch (transaction
->type
) {
1938 case CVMX_USB_TRANSFER_CONTROL
:
1939 __cvmx_usb_start_channel_control(usb
, channel
, pipe
);
1941 case CVMX_USB_TRANSFER_BULK
:
1942 case CVMX_USB_TRANSFER_INTERRUPT
:
1944 case CVMX_USB_TRANSFER_ISOCHRONOUS
:
1945 if (!__cvmx_usb_pipe_needs_split(usb
, pipe
)) {
1947 * ISO transactions require different PIDs depending on
1948 * direction and how many packets are needed
1950 if (pipe
->transfer_dir
== CVMX_USB_DIRECTION_OUT
) {
1951 if (pipe
->multi_count
< 2) /* Need DATA0 */
1953 CVMX_USBCX_HCTSIZX(channel
,
1955 union cvmx_usbcx_hctsizx
,
1957 else /* Need MDATA */
1959 CVMX_USBCX_HCTSIZX(channel
,
1961 union cvmx_usbcx_hctsizx
,
1968 union cvmx_usbcx_hctsizx usbc_hctsiz
= {.u32
=
1969 __cvmx_usb_read_csr32(usb
,
1970 CVMX_USBCX_HCTSIZX(channel
, usb
->index
))};
1971 transaction
->xfersize
= usbc_hctsiz
.s
.xfersize
;
1972 transaction
->pktcnt
= usbc_hctsiz
.s
.pktcnt
;
1974 /* Remeber when we start a split transaction */
1975 if (__cvmx_usb_pipe_needs_split(usb
, pipe
))
1976 usb
->active_split
= transaction
;
1977 USB_SET_FIELD32(CVMX_USBCX_HCCHARX(channel
, usb
->index
),
1978 union cvmx_usbcx_hccharx
, chena
, 1);
1979 if (usb
->init_flags
& CVMX_USB_INITIALIZE_FLAGS_NO_DMA
)
1980 __cvmx_usb_fill_tx_fifo(usb
, channel
);
1986 * Find a pipe that is ready to be scheduled to hardware.
1987 * @usb: USB device state populated by cvmx_usb_initialize().
1988 * @list: Pipe list to search
1990 * Frame counter to use as a time reference.
1992 * Returns: Pipe or NULL if none are ready
1994 static struct cvmx_usb_pipe
*__cvmx_usb_find_ready_pipe(
1995 struct cvmx_usb_state
*usb
,
1996 struct list_head
*list
,
1997 uint64_t current_frame
)
1999 struct cvmx_usb_pipe
*pipe
;
2001 list_for_each_entry(pipe
, list
, node
) {
2002 struct cvmx_usb_transaction
*t
=
2003 list_first_entry(&pipe
->transactions
, typeof(*t
),
2005 if (!(pipe
->flags
& __CVMX_USB_PIPE_FLAGS_SCHEDULED
) && t
&&
2006 (pipe
->next_tx_frame
<= current_frame
) &&
2007 ((pipe
->split_sc_frame
== -1) ||
2008 ((((int)current_frame
- (int)pipe
->split_sc_frame
)
2010 (!usb
->active_split
|| (usb
->active_split
== t
))) {
2011 CVMX_PREFETCH(pipe
, 128);
2012 CVMX_PREFETCH(t
, 0);
2021 * Called whenever a pipe might need to be scheduled to the
2024 * @usb: USB device state populated by cvmx_usb_initialize().
2025 * @is_sof: True if this schedule was called on a SOF interrupt.
2027 static void __cvmx_usb_schedule(struct cvmx_usb_state
*usb
, int is_sof
)
2030 struct cvmx_usb_pipe
*pipe
;
2032 enum cvmx_usb_transfer ttype
;
2034 if (usb
->init_flags
& CVMX_USB_INITIALIZE_FLAGS_NO_DMA
) {
2036 * Without DMA we need to be careful to not schedule something
2037 * at the end of a frame and cause an overrun.
2039 union cvmx_usbcx_hfnum hfnum
= {.u32
= __cvmx_usb_read_csr32(usb
, CVMX_USBCX_HFNUM(usb
->index
))};
2040 union cvmx_usbcx_hfir hfir
= {.u32
= __cvmx_usb_read_csr32(usb
, CVMX_USBCX_HFIR(usb
->index
))};
2041 if (hfnum
.s
.frrem
< hfir
.s
.frint
/4)
2045 while (usb
->idle_hardware_channels
) {
2046 /* Find an idle channel */
2047 channel
= __fls(usb
->idle_hardware_channels
);
2048 if (unlikely(channel
> 7))
2051 /* Find a pipe needing service */
2055 * Only process periodic pipes on SOF interrupts. This
2056 * way we are sure that the periodic data is sent in the
2057 * beginning of the frame
2059 pipe
= __cvmx_usb_find_ready_pipe(usb
,
2061 CVMX_USB_TRANSFER_ISOCHRONOUS
,
2064 pipe
= __cvmx_usb_find_ready_pipe(usb
,
2066 CVMX_USB_TRANSFER_INTERRUPT
,
2069 if (likely(!pipe
)) {
2070 pipe
= __cvmx_usb_find_ready_pipe(usb
,
2072 CVMX_USB_TRANSFER_CONTROL
,
2075 pipe
= __cvmx_usb_find_ready_pipe(usb
,
2077 CVMX_USB_TRANSFER_BULK
,
2083 __cvmx_usb_start_channel(usb
, channel
, pipe
);
2088 * Only enable SOF interrupts when we have transactions pending in the
2089 * future that might need to be scheduled
2092 for (ttype
= CVMX_USB_TRANSFER_CONTROL
;
2093 ttype
<= CVMX_USB_TRANSFER_INTERRUPT
; ttype
++) {
2094 list_for_each_entry(pipe
, &usb
->active_pipes
[ttype
], node
) {
2095 if (pipe
->next_tx_frame
> usb
->frame_number
) {
2101 USB_SET_FIELD32(CVMX_USBCX_GINTMSK(usb
->index
),
2102 union cvmx_usbcx_gintmsk
, sofmsk
, need_sof
);
2106 static inline struct octeon_hcd
*cvmx_usb_to_octeon(struct cvmx_usb_state
*p
)
2108 return container_of(p
, struct octeon_hcd
, usb
);
2111 static inline struct usb_hcd
*octeon_to_hcd(struct octeon_hcd
*p
)
2113 return container_of((void *)p
, struct usb_hcd
, hcd_priv
);
2116 static void octeon_usb_urb_complete_callback(struct cvmx_usb_state
*usb
,
2117 enum cvmx_usb_complete status
,
2118 struct cvmx_usb_pipe
*pipe
,
2119 struct cvmx_usb_transaction
2121 int bytes_transferred
,
2124 struct octeon_hcd
*priv
= cvmx_usb_to_octeon(usb
);
2125 struct usb_hcd
*hcd
= octeon_to_hcd(priv
);
2126 struct device
*dev
= hcd
->self
.controller
;
2128 urb
->actual_length
= bytes_transferred
;
2131 if (!list_empty(&urb
->urb_list
))
2133 * It is on the dequeue_list, but we are going to call
2134 * usb_hcd_giveback_urb(), so we must clear it from
2135 * the list. We got to it before the
2136 * octeon_usb_urb_dequeue_work() tasklet did.
2138 list_del_init(&urb
->urb_list
);
2140 /* For Isochronous transactions we need to update the URB packet status
2141 list from data in our private copy */
2142 if (usb_pipetype(urb
->pipe
) == PIPE_ISOCHRONOUS
) {
2145 * The pointer to the private list is stored in the setup_packet
2148 struct cvmx_usb_iso_packet
*iso_packet
=
2149 (struct cvmx_usb_iso_packet
*) urb
->setup_packet
;
2150 /* Recalculate the transfer size by adding up each packet */
2151 urb
->actual_length
= 0;
2152 for (i
= 0; i
< urb
->number_of_packets
; i
++) {
2153 if (iso_packet
[i
].status
==
2154 CVMX_USB_COMPLETE_SUCCESS
) {
2155 urb
->iso_frame_desc
[i
].status
= 0;
2156 urb
->iso_frame_desc
[i
].actual_length
=
2157 iso_packet
[i
].length
;
2158 urb
->actual_length
+=
2159 urb
->iso_frame_desc
[i
].actual_length
;
2161 dev_dbg(dev
, "ISOCHRONOUS packet=%d of %d status=%d pipe=%p transaction=%p size=%d\n",
2162 i
, urb
->number_of_packets
,
2163 iso_packet
[i
].status
, pipe
,
2164 transaction
, iso_packet
[i
].length
);
2165 urb
->iso_frame_desc
[i
].status
= -EREMOTEIO
;
2168 /* Free the private list now that we don't need it anymore */
2170 urb
->setup_packet
= NULL
;
2174 case CVMX_USB_COMPLETE_SUCCESS
:
2177 case CVMX_USB_COMPLETE_CANCEL
:
2178 if (urb
->status
== 0)
2179 urb
->status
= -ENOENT
;
2181 case CVMX_USB_COMPLETE_STALL
:
2182 dev_dbg(dev
, "status=stall pipe=%p transaction=%p size=%d\n",
2183 pipe
, transaction
, bytes_transferred
);
2184 urb
->status
= -EPIPE
;
2186 case CVMX_USB_COMPLETE_BABBLEERR
:
2187 dev_dbg(dev
, "status=babble pipe=%p transaction=%p size=%d\n",
2188 pipe
, transaction
, bytes_transferred
);
2189 urb
->status
= -EPIPE
;
2191 case CVMX_USB_COMPLETE_SHORT
:
2192 dev_dbg(dev
, "status=short pipe=%p transaction=%p size=%d\n",
2193 pipe
, transaction
, bytes_transferred
);
2194 urb
->status
= -EREMOTEIO
;
2196 case CVMX_USB_COMPLETE_ERROR
:
2197 case CVMX_USB_COMPLETE_XACTERR
:
2198 case CVMX_USB_COMPLETE_DATATGLERR
:
2199 case CVMX_USB_COMPLETE_FRAMEERR
:
2200 dev_dbg(dev
, "status=%d pipe=%p transaction=%p size=%d\n",
2201 status
, pipe
, transaction
, bytes_transferred
);
2202 urb
->status
= -EPROTO
;
2205 spin_unlock(&priv
->lock
);
2206 usb_hcd_giveback_urb(octeon_to_hcd(priv
), urb
, urb
->status
);
2207 spin_lock(&priv
->lock
);
2211 * Signal the completion of a transaction and free it. The
2212 * transaction will be removed from the pipe transaction list.
2214 * @usb: USB device state populated by cvmx_usb_initialize().
2215 * @pipe: Pipe the transaction is on
2217 * Transaction that completed
2221 static void __cvmx_usb_perform_complete(
2222 struct cvmx_usb_state
*usb
,
2223 struct cvmx_usb_pipe
*pipe
,
2224 struct cvmx_usb_transaction
*transaction
,
2225 enum cvmx_usb_complete complete_code
)
2227 /* If this was a split then clear our split in progress marker */
2228 if (usb
->active_split
== transaction
)
2229 usb
->active_split
= NULL
;
2232 * Isochronous transactions need extra processing as they might not be
2233 * done after a single data transfer
2235 if (unlikely(transaction
->type
== CVMX_USB_TRANSFER_ISOCHRONOUS
)) {
2236 /* Update the number of bytes transferred in this ISO packet */
2237 transaction
->iso_packets
[0].length
= transaction
->actual_bytes
;
2238 transaction
->iso_packets
[0].status
= complete_code
;
2241 * If there are more ISOs pending and we succeeded, schedule the
2244 if ((transaction
->iso_number_packets
> 1) &&
2245 (complete_code
== CVMX_USB_COMPLETE_SUCCESS
)) {
2246 /* No bytes transferred for this packet as of yet */
2247 transaction
->actual_bytes
= 0;
2248 /* One less ISO waiting to transfer */
2249 transaction
->iso_number_packets
--;
2250 /* Increment to the next location in our packet array */
2251 transaction
->iso_packets
++;
2252 transaction
->stage
= CVMX_USB_STAGE_NON_CONTROL
;
2257 /* Remove the transaction from the pipe list */
2258 list_del(&transaction
->node
);
2259 if (list_empty(&pipe
->transactions
))
2260 list_move_tail(&pipe
->node
, &usb
->idle_pipes
);
2261 octeon_usb_urb_complete_callback(usb
, complete_code
, pipe
,
2263 transaction
->actual_bytes
,
2272 * Submit a usb transaction to a pipe. Called for all types
2276 * @pipe: Which pipe to submit to.
2277 * @type: Transaction type
2278 * @buffer: User buffer for the transaction
2280 * User buffer's length in bytes
2282 * For control transactions, the 8 byte standard header
2284 * For ISO transactions, the start frame
2285 * @iso_number_packets:
2286 * For ISO, the number of packet in the transaction.
2288 * A description of each ISO packet
2289 * @urb: URB for the callback
2291 * Returns: Transaction or NULL on failure.
2293 static struct cvmx_usb_transaction
*__cvmx_usb_submit_transaction(
2294 struct cvmx_usb_state
*usb
,
2295 struct cvmx_usb_pipe
*pipe
,
2296 enum cvmx_usb_transfer type
,
2299 uint64_t control_header
,
2300 int iso_start_frame
,
2301 int iso_number_packets
,
2302 struct cvmx_usb_iso_packet
*iso_packets
,
2305 struct cvmx_usb_transaction
*transaction
;
2307 if (unlikely(pipe
->transfer_type
!= type
))
2310 transaction
= kzalloc(sizeof(*transaction
), GFP_ATOMIC
);
2311 if (unlikely(!transaction
))
2314 transaction
->type
= type
;
2315 transaction
->buffer
= buffer
;
2316 transaction
->buffer_length
= buffer_length
;
2317 transaction
->control_header
= control_header
;
2318 /* FIXME: This is not used, implement it. */
2319 transaction
->iso_start_frame
= iso_start_frame
;
2320 transaction
->iso_number_packets
= iso_number_packets
;
2321 transaction
->iso_packets
= iso_packets
;
2322 transaction
->urb
= urb
;
2323 if (transaction
->type
== CVMX_USB_TRANSFER_CONTROL
)
2324 transaction
->stage
= CVMX_USB_STAGE_SETUP
;
2326 transaction
->stage
= CVMX_USB_STAGE_NON_CONTROL
;
2328 if (!list_empty(&pipe
->transactions
)) {
2329 list_add_tail(&transaction
->node
, &pipe
->transactions
);
2331 list_add_tail(&transaction
->node
, &pipe
->transactions
);
2332 list_move_tail(&pipe
->node
,
2333 &usb
->active_pipes
[pipe
->transfer_type
]);
2336 * We may need to schedule the pipe if this was the head of the
2339 __cvmx_usb_schedule(usb
, 0);
2347 * Call to submit a USB Bulk transfer to a pipe.
2349 * @usb: USB device state populated by cvmx_usb_initialize().
2350 * @pipe: Handle to the pipe for the transfer.
2353 * Returns: A submitted transaction or NULL on failure.
2355 static struct cvmx_usb_transaction
*cvmx_usb_submit_bulk(
2356 struct cvmx_usb_state
*usb
,
2357 struct cvmx_usb_pipe
*pipe
,
2360 return __cvmx_usb_submit_transaction(usb
, pipe
, CVMX_USB_TRANSFER_BULK
,
2362 urb
->transfer_buffer_length
,
2363 0, /* control_header */
2364 0, /* iso_start_frame */
2365 0, /* iso_number_packets */
2366 NULL
, /* iso_packets */
2372 * Call to submit a USB Interrupt transfer to a pipe.
2374 * @usb: USB device state populated by cvmx_usb_initialize().
2375 * @pipe: Handle to the pipe for the transfer.
2376 * @urb: URB returned when the callback is called.
2378 * Returns: A submitted transaction or NULL on failure.
2380 static struct cvmx_usb_transaction
*cvmx_usb_submit_interrupt(
2381 struct cvmx_usb_state
*usb
,
2382 struct cvmx_usb_pipe
*pipe
,
2385 return __cvmx_usb_submit_transaction(usb
, pipe
,
2386 CVMX_USB_TRANSFER_INTERRUPT
,
2388 urb
->transfer_buffer_length
,
2389 0, /* control_header */
2390 0, /* iso_start_frame */
2391 0, /* iso_number_packets */
2392 NULL
, /* iso_packets */
2398 * Call to submit a USB Control transfer to a pipe.
2400 * @usb: USB device state populated by cvmx_usb_initialize().
2401 * @pipe: Handle to the pipe for the transfer.
2404 * Returns: A submitted transaction or NULL on failure.
2406 static struct cvmx_usb_transaction
*cvmx_usb_submit_control(
2407 struct cvmx_usb_state
*usb
,
2408 struct cvmx_usb_pipe
*pipe
,
2411 int buffer_length
= urb
->transfer_buffer_length
;
2412 uint64_t control_header
= urb
->setup_dma
;
2413 union cvmx_usb_control_header
*header
=
2414 cvmx_phys_to_ptr(control_header
);
2416 if ((header
->s
.request_type
& 0x80) == 0)
2417 buffer_length
= le16_to_cpu(header
->s
.length
);
2419 return __cvmx_usb_submit_transaction(usb
, pipe
,
2420 CVMX_USB_TRANSFER_CONTROL
,
2421 urb
->transfer_dma
, buffer_length
,
2423 0, /* iso_start_frame */
2424 0, /* iso_number_packets */
2425 NULL
, /* iso_packets */
2431 * Call to submit a USB Isochronous transfer to a pipe.
2433 * @usb: USB device state populated by cvmx_usb_initialize().
2434 * @pipe: Handle to the pipe for the transfer.
2435 * @urb: URB returned when the callback is called.
2437 * Returns: A submitted transaction or NULL on failure.
2439 static struct cvmx_usb_transaction
*cvmx_usb_submit_isochronous(
2440 struct cvmx_usb_state
*usb
,
2441 struct cvmx_usb_pipe
*pipe
,
2444 struct cvmx_usb_iso_packet
*packets
;
2446 packets
= (struct cvmx_usb_iso_packet
*) urb
->setup_packet
;
2447 return __cvmx_usb_submit_transaction(usb
, pipe
,
2448 CVMX_USB_TRANSFER_ISOCHRONOUS
,
2450 urb
->transfer_buffer_length
,
2451 0, /* control_header */
2453 urb
->number_of_packets
,
2459 * Cancel one outstanding request in a pipe. Canceling a request
2460 * can fail if the transaction has already completed before cancel
2461 * is called. Even after a successful cancel call, it may take
2462 * a frame or two for the cvmx_usb_poll() function to call the
2463 * associated callback.
2465 * @usb: USB device state populated by cvmx_usb_initialize().
2466 * @pipe: Pipe to cancel requests in.
2467 * @transaction: Transaction to cancel, returned by the submit function.
2469 * Returns: 0 or a negative error code.
2471 static int cvmx_usb_cancel(struct cvmx_usb_state
*usb
,
2472 struct cvmx_usb_pipe
*pipe
,
2473 struct cvmx_usb_transaction
*transaction
)
2476 * If the transaction is the HEAD of the queue and scheduled. We need to
2479 if (list_first_entry(&pipe
->transactions
, typeof(*transaction
), node
) ==
2480 transaction
&& (pipe
->flags
& __CVMX_USB_PIPE_FLAGS_SCHEDULED
)) {
2481 union cvmx_usbcx_hccharx usbc_hcchar
;
2483 usb
->pipe_for_channel
[pipe
->channel
] = NULL
;
2484 pipe
->flags
&= ~__CVMX_USB_PIPE_FLAGS_SCHEDULED
;
2488 usbc_hcchar
.u32
= __cvmx_usb_read_csr32(usb
,
2489 CVMX_USBCX_HCCHARX(pipe
->channel
, usb
->index
));
2491 * If the channel isn't enabled then the transaction already
2494 if (usbc_hcchar
.s
.chena
) {
2495 usbc_hcchar
.s
.chdis
= 1;
2496 __cvmx_usb_write_csr32(usb
,
2497 CVMX_USBCX_HCCHARX(pipe
->channel
,
2502 __cvmx_usb_perform_complete(usb
, pipe
, transaction
,
2503 CVMX_USB_COMPLETE_CANCEL
);
2509 * Cancel all outstanding requests in a pipe. Logically all this
2510 * does is call cvmx_usb_cancel() in a loop.
2512 * @usb: USB device state populated by cvmx_usb_initialize().
2513 * @pipe: Pipe to cancel requests in.
2515 * Returns: 0 or a negative error code.
2517 static int cvmx_usb_cancel_all(struct cvmx_usb_state
*usb
,
2518 struct cvmx_usb_pipe
*pipe
)
2520 struct cvmx_usb_transaction
*transaction
, *next
;
2522 /* Simply loop through and attempt to cancel each transaction */
2523 list_for_each_entry_safe(transaction
, next
, &pipe
->transactions
, node
) {
2524 int result
= cvmx_usb_cancel(usb
, pipe
, transaction
);
2525 if (unlikely(result
!= 0))
2533 * Close a pipe created with cvmx_usb_open_pipe().
2535 * @usb: USB device state populated by cvmx_usb_initialize().
2536 * @pipe: Pipe to close.
2538 * Returns: 0 or a negative error code. EBUSY is returned if the pipe has
2539 * outstanding transfers.
2541 static int cvmx_usb_close_pipe(struct cvmx_usb_state
*usb
,
2542 struct cvmx_usb_pipe
*pipe
)
2544 /* Fail if the pipe has pending transactions */
2545 if (!list_empty(&pipe
->transactions
))
2548 list_del(&pipe
->node
);
2555 * Get the current USB protocol level frame number. The frame
2556 * number is always in the range of 0-0x7ff.
2558 * @usb: USB device state populated by cvmx_usb_initialize().
2560 * Returns: USB frame number
2562 static int cvmx_usb_get_frame_number(struct cvmx_usb_state
*usb
)
2565 union cvmx_usbcx_hfnum usbc_hfnum
;
2567 usbc_hfnum
.u32
= __cvmx_usb_read_csr32(usb
,
2568 CVMX_USBCX_HFNUM(usb
->index
));
2569 frame_number
= usbc_hfnum
.s
.frnum
;
2571 return frame_number
;
2576 * Poll a channel for status
2579 * @channel: Channel to poll
2581 * Returns: Zero on success
2583 static int __cvmx_usb_poll_channel(struct cvmx_usb_state
*usb
, int channel
)
2585 union cvmx_usbcx_hcintx usbc_hcint
;
2586 union cvmx_usbcx_hctsizx usbc_hctsiz
;
2587 union cvmx_usbcx_hccharx usbc_hcchar
;
2588 struct cvmx_usb_pipe
*pipe
;
2589 struct cvmx_usb_transaction
*transaction
;
2590 int bytes_this_transfer
;
2591 int bytes_in_last_packet
;
2592 int packets_processed
;
2593 int buffer_space_left
;
2595 /* Read the interrupt status bits for the channel */
2596 usbc_hcint
.u32
= __cvmx_usb_read_csr32(usb
,
2597 CVMX_USBCX_HCINTX(channel
, usb
->index
));
2599 if (usb
->init_flags
& CVMX_USB_INITIALIZE_FLAGS_NO_DMA
) {
2600 usbc_hcchar
.u32
= __cvmx_usb_read_csr32(usb
,
2601 CVMX_USBCX_HCCHARX(channel
, usb
->index
));
2603 if (usbc_hcchar
.s
.chena
&& usbc_hcchar
.s
.chdis
) {
2605 * There seems to be a bug in CN31XX which can cause
2606 * interrupt IN transfers to get stuck until we do a
2607 * write of HCCHARX without changing things
2609 __cvmx_usb_write_csr32(usb
,
2610 CVMX_USBCX_HCCHARX(channel
,
2617 * In non DMA mode the channels don't halt themselves. We need
2618 * to manually disable channels that are left running
2620 if (!usbc_hcint
.s
.chhltd
) {
2621 if (usbc_hcchar
.s
.chena
) {
2622 union cvmx_usbcx_hcintmskx hcintmsk
;
2623 /* Disable all interrupts except CHHLTD */
2625 hcintmsk
.s
.chhltdmsk
= 1;
2626 __cvmx_usb_write_csr32(usb
,
2627 CVMX_USBCX_HCINTMSKX(channel
,
2630 usbc_hcchar
.s
.chdis
= 1;
2631 __cvmx_usb_write_csr32(usb
,
2632 CVMX_USBCX_HCCHARX(channel
,
2636 } else if (usbc_hcint
.s
.xfercompl
) {
2638 * Successful IN/OUT with transfer complete.
2639 * Channel halt isn't needed.
2642 cvmx_dprintf("USB%d: Channel %d interrupt without halt\n",
2643 usb
->index
, channel
);
2649 * There is are no interrupts that we need to process when the
2650 * channel is still running
2652 if (!usbc_hcint
.s
.chhltd
)
2656 /* Disable the channel interrupts now that it is done */
2657 __cvmx_usb_write_csr32(usb
, CVMX_USBCX_HCINTMSKX(channel
, usb
->index
), 0);
2658 usb
->idle_hardware_channels
|= (1<<channel
);
2660 /* Make sure this channel is tied to a valid pipe */
2661 pipe
= usb
->pipe_for_channel
[channel
];
2662 CVMX_PREFETCH(pipe
, 0);
2663 CVMX_PREFETCH(pipe
, 128);
2666 transaction
= list_first_entry(&pipe
->transactions
,
2667 typeof(*transaction
),
2669 CVMX_PREFETCH(transaction
, 0);
2672 * Disconnect this pipe from the HW channel. Later the schedule
2673 * function will figure out which pipe needs to go
2675 usb
->pipe_for_channel
[channel
] = NULL
;
2676 pipe
->flags
&= ~__CVMX_USB_PIPE_FLAGS_SCHEDULED
;
2679 * Read the channel config info so we can figure out how much data
2682 usbc_hcchar
.u32
= __cvmx_usb_read_csr32(usb
,
2683 CVMX_USBCX_HCCHARX(channel
, usb
->index
));
2684 usbc_hctsiz
.u32
= __cvmx_usb_read_csr32(usb
,
2685 CVMX_USBCX_HCTSIZX(channel
, usb
->index
));
2688 * Calculating the number of bytes successfully transferred is dependent
2689 * on the transfer direction
2691 packets_processed
= transaction
->pktcnt
- usbc_hctsiz
.s
.pktcnt
;
2692 if (usbc_hcchar
.s
.epdir
) {
2694 * IN transactions are easy. For every byte received the
2695 * hardware decrements xfersize. All we need to do is subtract
2696 * the current value of xfersize from its starting value and we
2697 * know how many bytes were written to the buffer
2699 bytes_this_transfer
= transaction
->xfersize
-
2700 usbc_hctsiz
.s
.xfersize
;
2703 * OUT transaction don't decrement xfersize. Instead pktcnt is
2704 * decremented on every successful packet send. The hardware
2705 * does this when it receives an ACK, or NYET. If it doesn't
2706 * receive one of these responses pktcnt doesn't change
2708 bytes_this_transfer
= packets_processed
* usbc_hcchar
.s
.mps
;
2710 * The last packet may not be a full transfer if we didn't have
2713 if (bytes_this_transfer
> transaction
->xfersize
)
2714 bytes_this_transfer
= transaction
->xfersize
;
2716 /* Figure out how many bytes were in the last packet of the transfer */
2717 if (packets_processed
)
2718 bytes_in_last_packet
= bytes_this_transfer
-
2719 (packets_processed
- 1) * usbc_hcchar
.s
.mps
;
2721 bytes_in_last_packet
= bytes_this_transfer
;
2724 * As a special case, setup transactions output the setup header, not
2725 * the user's data. For this reason we don't count setup data as bytes
2728 if ((transaction
->stage
== CVMX_USB_STAGE_SETUP
) ||
2729 (transaction
->stage
== CVMX_USB_STAGE_SETUP_SPLIT_COMPLETE
))
2730 bytes_this_transfer
= 0;
2733 * Add the bytes transferred to the running total. It is important that
2734 * bytes_this_transfer doesn't count any data that needs to be
2737 transaction
->actual_bytes
+= bytes_this_transfer
;
2738 if (transaction
->type
== CVMX_USB_TRANSFER_ISOCHRONOUS
)
2739 buffer_space_left
= transaction
->iso_packets
[0].length
-
2740 transaction
->actual_bytes
;
2742 buffer_space_left
= transaction
->buffer_length
-
2743 transaction
->actual_bytes
;
2746 * We need to remember the PID toggle state for the next transaction.
2747 * The hardware already updated it for the next transaction
2749 pipe
->pid_toggle
= !(usbc_hctsiz
.s
.pid
== 0);
2752 * For high speed bulk out, assume the next transaction will need to do
2753 * a ping before proceeding. If this isn't true the ACK processing below
2754 * will clear this flag
2756 if ((pipe
->device_speed
== CVMX_USB_SPEED_HIGH
) &&
2757 (pipe
->transfer_type
== CVMX_USB_TRANSFER_BULK
) &&
2758 (pipe
->transfer_dir
== CVMX_USB_DIRECTION_OUT
))
2759 pipe
->flags
|= __CVMX_USB_PIPE_FLAGS_NEED_PING
;
2761 if (usbc_hcint
.s
.stall
) {
2763 * STALL as a response means this transaction cannot be
2764 * completed because the device can't process transactions. Tell
2765 * the user. Any data that was transferred will be counted on
2766 * the actual bytes transferred
2768 pipe
->pid_toggle
= 0;
2769 __cvmx_usb_perform_complete(usb
, pipe
, transaction
,
2770 CVMX_USB_COMPLETE_STALL
);
2771 } else if (usbc_hcint
.s
.xacterr
) {
2773 * We know at least one packet worked if we get a ACK or NAK.
2774 * Reset the retry counter
2776 if (usbc_hcint
.s
.nak
|| usbc_hcint
.s
.ack
)
2777 transaction
->retries
= 0;
2778 transaction
->retries
++;
2779 if (transaction
->retries
> MAX_RETRIES
) {
2781 * XactErr as a response means the device signaled
2782 * something wrong with the transfer. For example, PID
2783 * toggle errors cause these
2785 __cvmx_usb_perform_complete(usb
, pipe
, transaction
,
2786 CVMX_USB_COMPLETE_XACTERR
);
2789 * If this was a split then clear our split in progress
2792 if (usb
->active_split
== transaction
)
2793 usb
->active_split
= NULL
;
2795 * Rewind to the beginning of the transaction by anding
2796 * off the split complete bit
2798 transaction
->stage
&= ~1;
2799 pipe
->split_sc_frame
= -1;
2800 pipe
->next_tx_frame
+= pipe
->interval
;
2801 if (pipe
->next_tx_frame
< usb
->frame_number
)
2802 pipe
->next_tx_frame
=
2803 usb
->frame_number
+ pipe
->interval
-
2804 (usb
->frame_number
-
2805 pipe
->next_tx_frame
) % pipe
->interval
;
2807 } else if (usbc_hcint
.s
.bblerr
) {
2808 /* Babble Error (BblErr) */
2809 __cvmx_usb_perform_complete(usb
, pipe
, transaction
,
2810 CVMX_USB_COMPLETE_BABBLEERR
);
2811 } else if (usbc_hcint
.s
.datatglerr
) {
2812 /* We'll retry the exact same transaction again */
2813 transaction
->retries
++;
2814 } else if (usbc_hcint
.s
.nyet
) {
2816 * NYET as a response is only allowed in three cases: as a
2817 * response to a ping, as a response to a split transaction, and
2818 * as a response to a bulk out. The ping case is handled by
2819 * hardware, so we only have splits and bulk out
2821 if (!__cvmx_usb_pipe_needs_split(usb
, pipe
)) {
2822 transaction
->retries
= 0;
2824 * If there is more data to go then we need to try
2825 * again. Otherwise this transaction is complete
2827 if ((buffer_space_left
== 0) ||
2828 (bytes_in_last_packet
< pipe
->max_packet
))
2829 __cvmx_usb_perform_complete(usb
, pipe
,
2831 CVMX_USB_COMPLETE_SUCCESS
);
2834 * Split transactions retry the split complete 4 times
2835 * then rewind to the start split and do the entire
2836 * transactions again
2838 transaction
->retries
++;
2839 if ((transaction
->retries
& 0x3) == 0) {
2841 * Rewind to the beginning of the transaction by
2842 * anding off the split complete bit
2844 transaction
->stage
&= ~1;
2845 pipe
->split_sc_frame
= -1;
2848 } else if (usbc_hcint
.s
.ack
) {
2849 transaction
->retries
= 0;
2851 * The ACK bit can only be checked after the other error bits.
2852 * This is because a multi packet transfer may succeed in a
2853 * number of packets and then get a different response on the
2854 * last packet. In this case both ACK and the last response bit
2855 * will be set. If none of the other response bits is set, then
2856 * the last packet must have been an ACK
2858 * Since we got an ACK, we know we don't need to do a ping on
2861 pipe
->flags
&= ~__CVMX_USB_PIPE_FLAGS_NEED_PING
;
2863 switch (transaction
->type
) {
2864 case CVMX_USB_TRANSFER_CONTROL
:
2865 switch (transaction
->stage
) {
2866 case CVMX_USB_STAGE_NON_CONTROL
:
2867 case CVMX_USB_STAGE_NON_CONTROL_SPLIT_COMPLETE
:
2868 /* This should be impossible */
2869 __cvmx_usb_perform_complete(usb
, pipe
,
2870 transaction
, CVMX_USB_COMPLETE_ERROR
);
2872 case CVMX_USB_STAGE_SETUP
:
2873 pipe
->pid_toggle
= 1;
2874 if (__cvmx_usb_pipe_needs_split(usb
, pipe
))
2875 transaction
->stage
=
2876 CVMX_USB_STAGE_SETUP_SPLIT_COMPLETE
;
2878 union cvmx_usb_control_header
*header
=
2879 cvmx_phys_to_ptr(transaction
->control_header
);
2880 if (header
->s
.length
)
2881 transaction
->stage
= CVMX_USB_STAGE_DATA
;
2883 transaction
->stage
= CVMX_USB_STAGE_STATUS
;
2886 case CVMX_USB_STAGE_SETUP_SPLIT_COMPLETE
:
2888 union cvmx_usb_control_header
*header
=
2889 cvmx_phys_to_ptr(transaction
->control_header
);
2890 if (header
->s
.length
)
2891 transaction
->stage
= CVMX_USB_STAGE_DATA
;
2893 transaction
->stage
= CVMX_USB_STAGE_STATUS
;
2896 case CVMX_USB_STAGE_DATA
:
2897 if (__cvmx_usb_pipe_needs_split(usb
, pipe
)) {
2898 transaction
->stage
=
2899 CVMX_USB_STAGE_DATA_SPLIT_COMPLETE
;
2901 * For setup OUT data that are splits,
2902 * the hardware doesn't appear to count
2903 * transferred data. Here we manually
2904 * update the data transferred
2906 if (!usbc_hcchar
.s
.epdir
) {
2907 if (buffer_space_left
< pipe
->max_packet
)
2908 transaction
->actual_bytes
+=
2911 transaction
->actual_bytes
+=
2914 } else if ((buffer_space_left
== 0) ||
2915 (bytes_in_last_packet
<
2916 pipe
->max_packet
)) {
2917 pipe
->pid_toggle
= 1;
2918 transaction
->stage
=
2919 CVMX_USB_STAGE_STATUS
;
2922 case CVMX_USB_STAGE_DATA_SPLIT_COMPLETE
:
2923 if ((buffer_space_left
== 0) ||
2924 (bytes_in_last_packet
<
2925 pipe
->max_packet
)) {
2926 pipe
->pid_toggle
= 1;
2927 transaction
->stage
=
2928 CVMX_USB_STAGE_STATUS
;
2930 transaction
->stage
=
2931 CVMX_USB_STAGE_DATA
;
2934 case CVMX_USB_STAGE_STATUS
:
2935 if (__cvmx_usb_pipe_needs_split(usb
, pipe
))
2936 transaction
->stage
=
2937 CVMX_USB_STAGE_STATUS_SPLIT_COMPLETE
;
2939 __cvmx_usb_perform_complete(usb
, pipe
,
2941 CVMX_USB_COMPLETE_SUCCESS
);
2943 case CVMX_USB_STAGE_STATUS_SPLIT_COMPLETE
:
2944 __cvmx_usb_perform_complete(usb
, pipe
,
2946 CVMX_USB_COMPLETE_SUCCESS
);
2950 case CVMX_USB_TRANSFER_BULK
:
2951 case CVMX_USB_TRANSFER_INTERRUPT
:
2953 * The only time a bulk transfer isn't complete when it
2954 * finishes with an ACK is during a split transaction.
2955 * For splits we need to continue the transfer if more
2958 if (__cvmx_usb_pipe_needs_split(usb
, pipe
)) {
2959 if (transaction
->stage
==
2960 CVMX_USB_STAGE_NON_CONTROL
)
2961 transaction
->stage
=
2962 CVMX_USB_STAGE_NON_CONTROL_SPLIT_COMPLETE
;
2964 if (buffer_space_left
&&
2965 (bytes_in_last_packet
==
2967 transaction
->stage
=
2968 CVMX_USB_STAGE_NON_CONTROL
;
2970 if (transaction
->type
==
2971 CVMX_USB_TRANSFER_INTERRUPT
)
2972 pipe
->next_tx_frame
+=
2974 __cvmx_usb_perform_complete(
2978 CVMX_USB_COMPLETE_SUCCESS
);
2982 if ((pipe
->device_speed
==
2983 CVMX_USB_SPEED_HIGH
) &&
2984 (pipe
->transfer_type
==
2985 CVMX_USB_TRANSFER_BULK
) &&
2986 (pipe
->transfer_dir
==
2987 CVMX_USB_DIRECTION_OUT
) &&
2990 __CVMX_USB_PIPE_FLAGS_NEED_PING
;
2991 if (!buffer_space_left
||
2992 (bytes_in_last_packet
<
2993 pipe
->max_packet
)) {
2994 if (transaction
->type
==
2995 CVMX_USB_TRANSFER_INTERRUPT
)
2996 pipe
->next_tx_frame
+=
2998 __cvmx_usb_perform_complete(usb
,
3001 CVMX_USB_COMPLETE_SUCCESS
);
3005 case CVMX_USB_TRANSFER_ISOCHRONOUS
:
3006 if (__cvmx_usb_pipe_needs_split(usb
, pipe
)) {
3008 * ISOCHRONOUS OUT splits don't require a
3009 * complete split stage. Instead they use a
3010 * sequence of begin OUT splits to transfer the
3011 * data 188 bytes at a time. Once the transfer
3012 * is complete, the pipe sleeps until the next
3015 if (pipe
->transfer_dir
== CVMX_USB_DIRECTION_OUT
) {
3017 * If no space left or this wasn't a max
3018 * size packet then this transfer is
3019 * complete. Otherwise start it again to
3020 * send the next 188 bytes
3022 if (!buffer_space_left
||
3023 (bytes_this_transfer
< 188)) {
3024 pipe
->next_tx_frame
+= pipe
->interval
;
3025 __cvmx_usb_perform_complete(
3029 CVMX_USB_COMPLETE_SUCCESS
);
3032 if (transaction
->stage
==
3033 CVMX_USB_STAGE_NON_CONTROL_SPLIT_COMPLETE
) {
3035 * We are in the incoming data
3036 * phase. Keep getting data
3037 * until we run out of space or
3038 * get a small packet
3040 if ((buffer_space_left
== 0) ||
3041 (bytes_in_last_packet
<
3042 pipe
->max_packet
)) {
3043 pipe
->next_tx_frame
+=
3045 __cvmx_usb_perform_complete(
3049 CVMX_USB_COMPLETE_SUCCESS
);
3052 transaction
->stage
=
3053 CVMX_USB_STAGE_NON_CONTROL_SPLIT_COMPLETE
;
3056 pipe
->next_tx_frame
+= pipe
->interval
;
3057 __cvmx_usb_perform_complete(usb
,
3060 CVMX_USB_COMPLETE_SUCCESS
);
3064 } else if (usbc_hcint
.s
.nak
) {
3066 * If this was a split then clear our split in progress marker.
3068 if (usb
->active_split
== transaction
)
3069 usb
->active_split
= NULL
;
3071 * NAK as a response means the device couldn't accept the
3072 * transaction, but it should be retried in the future. Rewind
3073 * to the beginning of the transaction by anding off the split
3074 * complete bit. Retry in the next interval
3076 transaction
->retries
= 0;
3077 transaction
->stage
&= ~1;
3078 pipe
->next_tx_frame
+= pipe
->interval
;
3079 if (pipe
->next_tx_frame
< usb
->frame_number
)
3080 pipe
->next_tx_frame
= usb
->frame_number
+
3082 (usb
->frame_number
- pipe
->next_tx_frame
) %
3085 struct cvmx_usb_port_status port
;
3086 port
= cvmx_usb_get_status(usb
);
3087 if (port
.port_enabled
) {
3088 /* We'll retry the exact same transaction again */
3089 transaction
->retries
++;
3092 * We get channel halted interrupts with no result bits
3093 * sets when the cable is unplugged
3095 __cvmx_usb_perform_complete(usb
, pipe
, transaction
,
3096 CVMX_USB_COMPLETE_ERROR
);
3102 static void octeon_usb_port_callback(struct cvmx_usb_state
*usb
)
3104 struct octeon_hcd
*priv
= cvmx_usb_to_octeon(usb
);
3106 spin_unlock(&priv
->lock
);
3107 usb_hcd_poll_rh_status(octeon_to_hcd(priv
));
3108 spin_lock(&priv
->lock
);
3112 * Poll the USB block for status and call all needed callback
3113 * handlers. This function is meant to be called in the interrupt
3114 * handler for the USB controller. It can also be called
3115 * periodically in a loop for non-interrupt based operation.
3117 * @usb: USB device state populated by cvmx_usb_initialize().
3119 * Returns: 0 or a negative error code.
3121 static int cvmx_usb_poll(struct cvmx_usb_state
*usb
)
3123 union cvmx_usbcx_hfnum usbc_hfnum
;
3124 union cvmx_usbcx_gintsts usbc_gintsts
;
3126 CVMX_PREFETCH(usb
, 0);
3127 CVMX_PREFETCH(usb
, 1*128);
3128 CVMX_PREFETCH(usb
, 2*128);
3129 CVMX_PREFETCH(usb
, 3*128);
3130 CVMX_PREFETCH(usb
, 4*128);
3132 /* Update the frame counter */
3133 usbc_hfnum
.u32
= __cvmx_usb_read_csr32(usb
, CVMX_USBCX_HFNUM(usb
->index
));
3134 if ((usb
->frame_number
&0x3fff) > usbc_hfnum
.s
.frnum
)
3135 usb
->frame_number
+= 0x4000;
3136 usb
->frame_number
&= ~0x3fffull
;
3137 usb
->frame_number
|= usbc_hfnum
.s
.frnum
;
3139 /* Read the pending interrupts */
3140 usbc_gintsts
.u32
= __cvmx_usb_read_csr32(usb
, CVMX_USBCX_GINTSTS(usb
->index
));
3142 /* Clear the interrupts now that we know about them */
3143 __cvmx_usb_write_csr32(usb
, CVMX_USBCX_GINTSTS(usb
->index
), usbc_gintsts
.u32
);
3145 if (usbc_gintsts
.s
.rxflvl
) {
3147 * RxFIFO Non-Empty (RxFLvl)
3148 * Indicates that there is at least one packet pending to be
3149 * read from the RxFIFO.
3151 * In DMA mode this is handled by hardware
3153 if (usb
->init_flags
& CVMX_USB_INITIALIZE_FLAGS_NO_DMA
)
3154 __cvmx_usb_poll_rx_fifo(usb
);
3156 if (usbc_gintsts
.s
.ptxfemp
|| usbc_gintsts
.s
.nptxfemp
) {
3157 /* Fill the Tx FIFOs when not in DMA mode */
3158 if (usb
->init_flags
& CVMX_USB_INITIALIZE_FLAGS_NO_DMA
)
3159 __cvmx_usb_poll_tx_fifo(usb
);
3161 if (usbc_gintsts
.s
.disconnint
|| usbc_gintsts
.s
.prtint
) {
3162 union cvmx_usbcx_hprt usbc_hprt
;
3164 * Disconnect Detected Interrupt (DisconnInt)
3165 * Asserted when a device disconnect is detected.
3167 * Host Port Interrupt (PrtInt)
3168 * The core sets this bit to indicate a change in port status of
3169 * one of the O2P USB core ports in Host mode. The application
3170 * must read the Host Port Control and Status (HPRT) register to
3171 * determine the exact event that caused this interrupt. The
3172 * application must clear the appropriate status bit in the Host
3173 * Port Control and Status register to clear this bit.
3175 * Call the user's port callback
3177 octeon_usb_port_callback(usb
);
3178 /* Clear the port change bits */
3179 usbc_hprt
.u32
= __cvmx_usb_read_csr32(usb
,
3180 CVMX_USBCX_HPRT(usb
->index
));
3181 usbc_hprt
.s
.prtena
= 0;
3182 __cvmx_usb_write_csr32(usb
, CVMX_USBCX_HPRT(usb
->index
),
3185 if (usbc_gintsts
.s
.hchint
) {
3187 * Host Channels Interrupt (HChInt)
3188 * The core sets this bit to indicate that an interrupt is
3189 * pending on one of the channels of the core (in Host mode).
3190 * The application must read the Host All Channels Interrupt
3191 * (HAINT) register to determine the exact number of the channel
3192 * on which the interrupt occurred, and then read the
3193 * corresponding Host Channel-n Interrupt (HCINTn) register to
3194 * determine the exact cause of the interrupt. The application
3195 * must clear the appropriate status bit in the HCINTn register
3196 * to clear this bit.
3198 union cvmx_usbcx_haint usbc_haint
;
3199 usbc_haint
.u32
= __cvmx_usb_read_csr32(usb
, CVMX_USBCX_HAINT(usb
->index
));
3200 while (usbc_haint
.u32
) {
3203 channel
= __fls(usbc_haint
.u32
);
3204 __cvmx_usb_poll_channel(usb
, channel
);
3205 usbc_haint
.u32
^= 1<<channel
;
3209 __cvmx_usb_schedule(usb
, usbc_gintsts
.s
.sof
);
3214 /* convert between an HCD pointer and the corresponding struct octeon_hcd */
3215 static inline struct octeon_hcd
*hcd_to_octeon(struct usb_hcd
*hcd
)
3217 return (struct octeon_hcd
*)(hcd
->hcd_priv
);
3220 static irqreturn_t
octeon_usb_irq(struct usb_hcd
*hcd
)
3222 struct octeon_hcd
*priv
= hcd_to_octeon(hcd
);
3223 unsigned long flags
;
3225 spin_lock_irqsave(&priv
->lock
, flags
);
3226 cvmx_usb_poll(&priv
->usb
);
3227 spin_unlock_irqrestore(&priv
->lock
, flags
);
3231 static int octeon_usb_start(struct usb_hcd
*hcd
)
3233 hcd
->state
= HC_STATE_RUNNING
;
3237 static void octeon_usb_stop(struct usb_hcd
*hcd
)
3239 hcd
->state
= HC_STATE_HALT
;
3242 static int octeon_usb_get_frame_number(struct usb_hcd
*hcd
)
3244 struct octeon_hcd
*priv
= hcd_to_octeon(hcd
);
3246 return cvmx_usb_get_frame_number(&priv
->usb
);
3249 static int octeon_usb_urb_enqueue(struct usb_hcd
*hcd
,
3253 struct octeon_hcd
*priv
= hcd_to_octeon(hcd
);
3254 struct device
*dev
= hcd
->self
.controller
;
3255 struct cvmx_usb_transaction
*transaction
= NULL
;
3256 struct cvmx_usb_pipe
*pipe
;
3257 unsigned long flags
;
3258 struct cvmx_usb_iso_packet
*iso_packet
;
3259 struct usb_host_endpoint
*ep
= urb
->ep
;
3262 INIT_LIST_HEAD(&urb
->urb_list
); /* not enqueued on dequeue_list */
3263 spin_lock_irqsave(&priv
->lock
, flags
);
3266 enum cvmx_usb_transfer transfer_type
;
3267 enum cvmx_usb_speed speed
;
3268 int split_device
= 0;
3270 switch (usb_pipetype(urb
->pipe
)) {
3271 case PIPE_ISOCHRONOUS
:
3272 transfer_type
= CVMX_USB_TRANSFER_ISOCHRONOUS
;
3274 case PIPE_INTERRUPT
:
3275 transfer_type
= CVMX_USB_TRANSFER_INTERRUPT
;
3278 transfer_type
= CVMX_USB_TRANSFER_CONTROL
;
3281 transfer_type
= CVMX_USB_TRANSFER_BULK
;
3284 switch (urb
->dev
->speed
) {
3286 speed
= CVMX_USB_SPEED_LOW
;
3288 case USB_SPEED_FULL
:
3289 speed
= CVMX_USB_SPEED_FULL
;
3292 speed
= CVMX_USB_SPEED_HIGH
;
3296 * For slow devices on high speed ports we need to find the hub
3297 * that does the speed translation so we know where to send the
3298 * split transactions.
3300 if (speed
!= CVMX_USB_SPEED_HIGH
) {
3302 * Start at this device and work our way up the usb
3305 struct usb_device
*dev
= urb
->dev
;
3306 while (dev
->parent
) {
3308 * If our parent is high speed then he'll
3309 * receive the splits.
3311 if (dev
->parent
->speed
== USB_SPEED_HIGH
) {
3312 split_device
= dev
->parent
->devnum
;
3313 split_port
= dev
->portnum
;
3317 * Move up the tree one level. If we make it all
3318 * the way up the tree, then the port must not
3319 * be in high speed mode and we don't need a
3325 pipe
= cvmx_usb_open_pipe(&priv
->usb
, usb_pipedevice(urb
->pipe
),
3326 usb_pipeendpoint(urb
->pipe
), speed
,
3327 le16_to_cpu(ep
->desc
.wMaxPacketSize
)
3330 usb_pipein(urb
->pipe
) ?
3331 CVMX_USB_DIRECTION_IN
:
3332 CVMX_USB_DIRECTION_OUT
,
3334 (le16_to_cpu(ep
->desc
.wMaxPacketSize
)
3336 split_device
, split_port
);
3338 spin_unlock_irqrestore(&priv
->lock
, flags
);
3339 dev_dbg(dev
, "Failed to create pipe\n");
3347 switch (usb_pipetype(urb
->pipe
)) {
3348 case PIPE_ISOCHRONOUS
:
3349 dev_dbg(dev
, "Submit isochronous to %d.%d\n",
3350 usb_pipedevice(urb
->pipe
),
3351 usb_pipeendpoint(urb
->pipe
));
3353 * Allocate a structure to use for our private list of
3354 * isochronous packets.
3356 iso_packet
= kmalloc(urb
->number_of_packets
*
3357 sizeof(struct cvmx_usb_iso_packet
),
3361 /* Fill the list with the data from the URB */
3362 for (i
= 0; i
< urb
->number_of_packets
; i
++) {
3363 iso_packet
[i
].offset
=
3364 urb
->iso_frame_desc
[i
].offset
;
3365 iso_packet
[i
].length
=
3366 urb
->iso_frame_desc
[i
].length
;
3367 iso_packet
[i
].status
=
3368 CVMX_USB_COMPLETE_ERROR
;
3371 * Store a pointer to the list in the URB setup_packet
3372 * field. We know this currently isn't being used and
3373 * this saves us a bunch of logic.
3375 urb
->setup_packet
= (char *)iso_packet
;
3376 transaction
= cvmx_usb_submit_isochronous(&priv
->usb
,
3379 * If submit failed we need to free our private packet
3383 urb
->setup_packet
= NULL
;
3388 case PIPE_INTERRUPT
:
3389 dev_dbg(dev
, "Submit interrupt to %d.%d\n",
3390 usb_pipedevice(urb
->pipe
),
3391 usb_pipeendpoint(urb
->pipe
));
3392 transaction
= cvmx_usb_submit_interrupt(&priv
->usb
, pipe
, urb
);
3395 dev_dbg(dev
, "Submit control to %d.%d\n",
3396 usb_pipedevice(urb
->pipe
),
3397 usb_pipeendpoint(urb
->pipe
));
3398 transaction
= cvmx_usb_submit_control(&priv
->usb
, pipe
, urb
);
3401 dev_dbg(dev
, "Submit bulk to %d.%d\n",
3402 usb_pipedevice(urb
->pipe
),
3403 usb_pipeendpoint(urb
->pipe
));
3404 transaction
= cvmx_usb_submit_bulk(&priv
->usb
, pipe
, urb
);
3408 spin_unlock_irqrestore(&priv
->lock
, flags
);
3409 dev_dbg(dev
, "Failed to submit\n");
3412 urb
->hcpriv
= transaction
;
3413 spin_unlock_irqrestore(&priv
->lock
, flags
);
3417 static void octeon_usb_urb_dequeue_work(unsigned long arg
)
3421 unsigned long flags
;
3422 struct octeon_hcd
*priv
= (struct octeon_hcd
*)arg
;
3424 spin_lock_irqsave(&priv
->lock
, flags
);
3426 list_for_each_entry_safe(urb
, next
, &priv
->dequeue_list
, urb_list
) {
3427 list_del_init(&urb
->urb_list
);
3428 cvmx_usb_cancel(&priv
->usb
, urb
->ep
->hcpriv
, urb
->hcpriv
);
3431 spin_unlock_irqrestore(&priv
->lock
, flags
);
3434 static int octeon_usb_urb_dequeue(struct usb_hcd
*hcd
,
3438 struct octeon_hcd
*priv
= hcd_to_octeon(hcd
);
3439 unsigned long flags
;
3444 spin_lock_irqsave(&priv
->lock
, flags
);
3446 urb
->status
= status
;
3447 list_add_tail(&urb
->urb_list
, &priv
->dequeue_list
);
3449 spin_unlock_irqrestore(&priv
->lock
, flags
);
3451 tasklet_schedule(&priv
->dequeue_tasklet
);
3456 static void octeon_usb_endpoint_disable(struct usb_hcd
*hcd
,
3457 struct usb_host_endpoint
*ep
)
3459 struct device
*dev
= hcd
->self
.controller
;
3462 struct octeon_hcd
*priv
= hcd_to_octeon(hcd
);
3463 struct cvmx_usb_pipe
*pipe
= ep
->hcpriv
;
3464 unsigned long flags
;
3465 spin_lock_irqsave(&priv
->lock
, flags
);
3466 cvmx_usb_cancel_all(&priv
->usb
, pipe
);
3467 if (cvmx_usb_close_pipe(&priv
->usb
, pipe
))
3468 dev_dbg(dev
, "Closing pipe %p failed\n", pipe
);
3469 spin_unlock_irqrestore(&priv
->lock
, flags
);
3474 static int octeon_usb_hub_status_data(struct usb_hcd
*hcd
, char *buf
)
3476 struct octeon_hcd
*priv
= hcd_to_octeon(hcd
);
3477 struct cvmx_usb_port_status port_status
;
3478 unsigned long flags
;
3480 spin_lock_irqsave(&priv
->lock
, flags
);
3481 port_status
= cvmx_usb_get_status(&priv
->usb
);
3482 spin_unlock_irqrestore(&priv
->lock
, flags
);
3484 buf
[0] = port_status
.connect_change
<< 1;
3486 return (buf
[0] != 0);
3489 static int octeon_usb_hub_control(struct usb_hcd
*hcd
, u16 typeReq
, u16 wValue
, u16 wIndex
, char *buf
, u16 wLength
)
3491 struct octeon_hcd
*priv
= hcd_to_octeon(hcd
);
3492 struct device
*dev
= hcd
->self
.controller
;
3493 struct cvmx_usb_port_status usb_port_status
;
3495 struct usb_hub_descriptor
*desc
;
3496 unsigned long flags
;
3499 case ClearHubFeature
:
3500 dev_dbg(dev
, "ClearHubFeature\n");
3502 case C_HUB_LOCAL_POWER
:
3503 case C_HUB_OVER_CURRENT
:
3504 /* Nothing required here */
3510 case ClearPortFeature
:
3511 dev_dbg(dev
, "ClearPortFeature\n");
3513 dev_dbg(dev
, " INVALID\n");
3518 case USB_PORT_FEAT_ENABLE
:
3519 dev_dbg(dev
, " ENABLE\n");
3520 spin_lock_irqsave(&priv
->lock
, flags
);
3521 cvmx_usb_disable(&priv
->usb
);
3522 spin_unlock_irqrestore(&priv
->lock
, flags
);
3524 case USB_PORT_FEAT_SUSPEND
:
3525 dev_dbg(dev
, " SUSPEND\n");
3526 /* Not supported on Octeon */
3528 case USB_PORT_FEAT_POWER
:
3529 dev_dbg(dev
, " POWER\n");
3530 /* Not supported on Octeon */
3532 case USB_PORT_FEAT_INDICATOR
:
3533 dev_dbg(dev
, " INDICATOR\n");
3534 /* Port inidicator not supported */
3536 case USB_PORT_FEAT_C_CONNECTION
:
3537 dev_dbg(dev
, " C_CONNECTION\n");
3538 /* Clears drivers internal connect status change flag */
3539 spin_lock_irqsave(&priv
->lock
, flags
);
3540 priv
->usb
.port_status
=
3541 cvmx_usb_get_status(&priv
->usb
);
3542 spin_unlock_irqrestore(&priv
->lock
, flags
);
3544 case USB_PORT_FEAT_C_RESET
:
3545 dev_dbg(dev
, " C_RESET\n");
3547 * Clears the driver's internal Port Reset Change flag.
3549 spin_lock_irqsave(&priv
->lock
, flags
);
3550 priv
->usb
.port_status
=
3551 cvmx_usb_get_status(&priv
->usb
);
3552 spin_unlock_irqrestore(&priv
->lock
, flags
);
3554 case USB_PORT_FEAT_C_ENABLE
:
3555 dev_dbg(dev
, " C_ENABLE\n");
3557 * Clears the driver's internal Port Enable/Disable
3560 spin_lock_irqsave(&priv
->lock
, flags
);
3561 priv
->usb
.port_status
=
3562 cvmx_usb_get_status(&priv
->usb
);
3563 spin_unlock_irqrestore(&priv
->lock
, flags
);
3565 case USB_PORT_FEAT_C_SUSPEND
:
3566 dev_dbg(dev
, " C_SUSPEND\n");
3568 * Clears the driver's internal Port Suspend Change
3569 * flag, which is set when resume signaling on the host
3573 case USB_PORT_FEAT_C_OVER_CURRENT
:
3574 dev_dbg(dev
, " C_OVER_CURRENT\n");
3575 /* Clears the driver's overcurrent Change flag */
3576 spin_lock_irqsave(&priv
->lock
, flags
);
3577 priv
->usb
.port_status
=
3578 cvmx_usb_get_status(&priv
->usb
);
3579 spin_unlock_irqrestore(&priv
->lock
, flags
);
3582 dev_dbg(dev
, " UNKNOWN\n");
3586 case GetHubDescriptor
:
3587 dev_dbg(dev
, "GetHubDescriptor\n");
3588 desc
= (struct usb_hub_descriptor
*)buf
;
3589 desc
->bDescLength
= 9;
3590 desc
->bDescriptorType
= 0x29;
3591 desc
->bNbrPorts
= 1;
3592 desc
->wHubCharacteristics
= 0x08;
3593 desc
->bPwrOn2PwrGood
= 1;
3594 desc
->bHubContrCurrent
= 0;
3595 desc
->u
.hs
.DeviceRemovable
[0] = 0;
3596 desc
->u
.hs
.DeviceRemovable
[1] = 0xff;
3599 dev_dbg(dev
, "GetHubStatus\n");
3600 *(__le32
*) buf
= 0;
3603 dev_dbg(dev
, "GetPortStatus\n");
3605 dev_dbg(dev
, " INVALID\n");
3609 spin_lock_irqsave(&priv
->lock
, flags
);
3610 usb_port_status
= cvmx_usb_get_status(&priv
->usb
);
3611 spin_unlock_irqrestore(&priv
->lock
, flags
);
3614 if (usb_port_status
.connect_change
) {
3615 port_status
|= (1 << USB_PORT_FEAT_C_CONNECTION
);
3616 dev_dbg(dev
, " C_CONNECTION\n");
3619 if (usb_port_status
.port_enabled
) {
3620 port_status
|= (1 << USB_PORT_FEAT_C_ENABLE
);
3621 dev_dbg(dev
, " C_ENABLE\n");
3624 if (usb_port_status
.connected
) {
3625 port_status
|= (1 << USB_PORT_FEAT_CONNECTION
);
3626 dev_dbg(dev
, " CONNECTION\n");
3629 if (usb_port_status
.port_enabled
) {
3630 port_status
|= (1 << USB_PORT_FEAT_ENABLE
);
3631 dev_dbg(dev
, " ENABLE\n");
3634 if (usb_port_status
.port_over_current
) {
3635 port_status
|= (1 << USB_PORT_FEAT_OVER_CURRENT
);
3636 dev_dbg(dev
, " OVER_CURRENT\n");
3639 if (usb_port_status
.port_powered
) {
3640 port_status
|= (1 << USB_PORT_FEAT_POWER
);
3641 dev_dbg(dev
, " POWER\n");
3644 if (usb_port_status
.port_speed
== CVMX_USB_SPEED_HIGH
) {
3645 port_status
|= USB_PORT_STAT_HIGH_SPEED
;
3646 dev_dbg(dev
, " HIGHSPEED\n");
3647 } else if (usb_port_status
.port_speed
== CVMX_USB_SPEED_LOW
) {
3648 port_status
|= (1 << USB_PORT_FEAT_LOWSPEED
);
3649 dev_dbg(dev
, " LOWSPEED\n");
3652 *((__le32
*) buf
) = cpu_to_le32(port_status
);
3655 dev_dbg(dev
, "SetHubFeature\n");
3656 /* No HUB features supported */
3658 case SetPortFeature
:
3659 dev_dbg(dev
, "SetPortFeature\n");
3661 dev_dbg(dev
, " INVALID\n");
3666 case USB_PORT_FEAT_SUSPEND
:
3667 dev_dbg(dev
, " SUSPEND\n");
3669 case USB_PORT_FEAT_POWER
:
3670 dev_dbg(dev
, " POWER\n");
3672 case USB_PORT_FEAT_RESET
:
3673 dev_dbg(dev
, " RESET\n");
3674 spin_lock_irqsave(&priv
->lock
, flags
);
3675 cvmx_usb_disable(&priv
->usb
);
3676 if (cvmx_usb_enable(&priv
->usb
))
3677 dev_dbg(dev
, "Failed to enable the port\n");
3678 spin_unlock_irqrestore(&priv
->lock
, flags
);
3680 case USB_PORT_FEAT_INDICATOR
:
3681 dev_dbg(dev
, " INDICATOR\n");
3685 dev_dbg(dev
, " UNKNOWN\n");
3690 dev_dbg(dev
, "Unknown root hub request\n");
3696 static const struct hc_driver octeon_hc_driver
= {
3697 .description
= "Octeon USB",
3698 .product_desc
= "Octeon Host Controller",
3699 .hcd_priv_size
= sizeof(struct octeon_hcd
),
3700 .irq
= octeon_usb_irq
,
3701 .flags
= HCD_MEMORY
| HCD_USB2
,
3702 .start
= octeon_usb_start
,
3703 .stop
= octeon_usb_stop
,
3704 .urb_enqueue
= octeon_usb_urb_enqueue
,
3705 .urb_dequeue
= octeon_usb_urb_dequeue
,
3706 .endpoint_disable
= octeon_usb_endpoint_disable
,
3707 .get_frame_number
= octeon_usb_get_frame_number
,
3708 .hub_status_data
= octeon_usb_hub_status_data
,
3709 .hub_control
= octeon_usb_hub_control
,
3710 .map_urb_for_dma
= octeon_map_urb_for_dma
,
3711 .unmap_urb_for_dma
= octeon_unmap_urb_for_dma
,
3714 static int octeon_usb_probe(struct platform_device
*pdev
)
3717 int initialize_flags
;
3719 struct resource
*res_mem
;
3720 struct device_node
*usbn_node
;
3721 int irq
= platform_get_irq(pdev
, 0);
3722 struct device
*dev
= &pdev
->dev
;
3723 struct octeon_hcd
*priv
;
3724 struct usb_hcd
*hcd
;
3725 unsigned long flags
;
3726 u32 clock_rate
= 48000000;
3727 bool is_crystal_clock
= false;
3728 const char *clock_type
;
3731 if (dev
->of_node
== NULL
) {
3732 dev_err(dev
, "Error: empty of_node\n");
3735 usbn_node
= dev
->of_node
->parent
;
3737 i
= of_property_read_u32(usbn_node
,
3738 "refclk-frequency", &clock_rate
);
3740 dev_err(dev
, "No USBN \"refclk-frequency\"\n");
3743 switch (clock_rate
) {
3745 initialize_flags
= CVMX_USB_INITIALIZE_FLAGS_CLOCK_12MHZ
;
3748 initialize_flags
= CVMX_USB_INITIALIZE_FLAGS_CLOCK_24MHZ
;
3751 initialize_flags
= CVMX_USB_INITIALIZE_FLAGS_CLOCK_48MHZ
;
3754 dev_err(dev
, "Illebal USBN \"refclk-frequency\" %u\n",
3760 i
= of_property_read_string(usbn_node
,
3761 "refclk-type", &clock_type
);
3763 if (!i
&& strcmp("crystal", clock_type
) == 0)
3764 is_crystal_clock
= true;
3766 if (is_crystal_clock
)
3767 initialize_flags
|= CVMX_USB_INITIALIZE_FLAGS_CLOCK_XO_XI
;
3769 initialize_flags
|= CVMX_USB_INITIALIZE_FLAGS_CLOCK_XO_GND
;
3771 res_mem
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
3772 if (res_mem
== NULL
) {
3773 dev_err(dev
, "found no memory resource\n");
3776 usb_num
= (res_mem
->start
>> 44) & 1;
3779 /* Defective device tree, but we know how to fix it. */
3780 irq_hw_number_t hwirq
= usb_num
? (1 << 6) + 17 : 56;
3781 irq
= irq_create_mapping(NULL
, hwirq
);
3785 * Set the DMA mask to 64bits so we get buffers already translated for
3788 dev
->coherent_dma_mask
= ~0;
3789 dev
->dma_mask
= &dev
->coherent_dma_mask
;
3792 * Only cn52XX and cn56XX have DWC_OTG USB hardware and the
3793 * IOB priority registers. Under heavy network load USB
3794 * hardware can be starved by the IOB causing a crash. Give
3795 * it a priority boost if it has been waiting more than 400
3796 * cycles to avoid this situation.
3798 * Testing indicates that a cnt_val of 8192 is not sufficient,
3799 * but no failures are seen with 4096. We choose a value of
3800 * 400 to give a safety factor of 10.
3802 if (OCTEON_IS_MODEL(OCTEON_CN52XX
) || OCTEON_IS_MODEL(OCTEON_CN56XX
)) {
3803 union cvmx_iob_n2c_l2c_pri_cnt pri_cnt
;
3806 pri_cnt
.s
.cnt_enb
= 1;
3807 pri_cnt
.s
.cnt_val
= 400;
3808 cvmx_write_csr(CVMX_IOB_N2C_L2C_PRI_CNT
, pri_cnt
.u64
);
3811 hcd
= usb_create_hcd(&octeon_hc_driver
, dev
, dev_name(dev
));
3813 dev_dbg(dev
, "Failed to allocate memory for HCD\n");
3816 hcd
->uses_new_polling
= 1;
3817 priv
= (struct octeon_hcd
*)hcd
->hcd_priv
;
3819 spin_lock_init(&priv
->lock
);
3821 tasklet_init(&priv
->dequeue_tasklet
, octeon_usb_urb_dequeue_work
,
3822 (unsigned long)priv
);
3823 INIT_LIST_HEAD(&priv
->dequeue_list
);
3825 status
= cvmx_usb_initialize(&priv
->usb
, usb_num
, initialize_flags
);
3827 dev_dbg(dev
, "USB initialization failed with %d\n", status
);
3832 /* This delay is needed for CN3010, but I don't know why... */
3835 spin_lock_irqsave(&priv
->lock
, flags
);
3836 cvmx_usb_poll(&priv
->usb
);
3837 spin_unlock_irqrestore(&priv
->lock
, flags
);
3839 status
= usb_add_hcd(hcd
, irq
, 0);
3841 dev_dbg(dev
, "USB add HCD failed with %d\n", status
);
3845 device_wakeup_enable(hcd
->self
.controller
);
3847 dev_info(dev
, "Registered HCD for port %d on irq %d\n", usb_num
, irq
);
3852 static int octeon_usb_remove(struct platform_device
*pdev
)
3855 struct device
*dev
= &pdev
->dev
;
3856 struct usb_hcd
*hcd
= dev_get_drvdata(dev
);
3857 struct octeon_hcd
*priv
= hcd_to_octeon(hcd
);
3858 unsigned long flags
;
3860 usb_remove_hcd(hcd
);
3861 tasklet_kill(&priv
->dequeue_tasklet
);
3862 spin_lock_irqsave(&priv
->lock
, flags
);
3863 status
= cvmx_usb_shutdown(&priv
->usb
);
3864 spin_unlock_irqrestore(&priv
->lock
, flags
);
3866 dev_dbg(dev
, "USB shutdown failed with %d\n", status
);
3873 static struct of_device_id octeon_usb_match
[] = {
3875 .compatible
= "cavium,octeon-5750-usbc",
3880 static struct platform_driver octeon_usb_driver
= {
3882 .name
= "OcteonUSB",
3883 .owner
= THIS_MODULE
,
3884 .of_match_table
= octeon_usb_match
,
3886 .probe
= octeon_usb_probe
,
3887 .remove
= octeon_usb_remove
,
3890 static int __init
octeon_usb_driver_init(void)
3895 return platform_driver_register(&octeon_usb_driver
);
3897 module_init(octeon_usb_driver_init
);
3899 static void __exit
octeon_usb_driver_exit(void)
3904 platform_driver_unregister(&octeon_usb_driver
);
3906 module_exit(octeon_usb_driver_exit
);
3908 MODULE_LICENSE("GPL");
3909 MODULE_AUTHOR("Cavium, Inc. <support@cavium.com>");
3910 MODULE_DESCRIPTION("Cavium Inc. OCTEON USB Host driver.");