ext4: reduce contention on s_orphan_lock
[linux/fpc-iii.git] / drivers / staging / vt6656 / bssdb.c
blob9c78dab95d35532d5b4a958637e348d6291ad9a3
1 /*
2 * Copyright (c) 1996, 2003 VIA Networking Technologies, Inc.
3 * All rights reserved.
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
15 * You should have received a copy of the GNU General Public License along
16 * with this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
19 * File: bssdb.c
21 * Purpose: Handles the Basic Service Set & Node Database functions
23 * Functions:
24 * BSSpSearchBSSList - Search known BSS list for Desire SSID or BSSID
25 * BSSvClearBSSList - Clear BSS List
26 * BSSbInsertToBSSList - Insert a BSS set into known BSS list
27 * BSSbUpdateToBSSList - Update BSS set in known BSS list
28 * BSSbIsSTAInNodeDB - Search Node DB table to find the index of matched DstAddr
29 * BSSvCreateOneNode - Allocate an Node for Node DB
30 * BSSvUpdateAPNode - Update AP Node content in Index 0 of KnownNodeDB
31 * BSSvSecondCallBack - One second timer callback function to update Node DB info & AP link status
32 * BSSvUpdateNodeTxCounter - Update Tx attemps, Tx failure counter in Node DB for auto-fallback rate control
34 * Revision History:
36 * Author: Lyndon Chen
38 * Date: July 17, 2002
41 #include "tmacro.h"
42 #include "tether.h"
43 #include "device.h"
44 #include "80211hdr.h"
45 #include "bssdb.h"
46 #include "wmgr.h"
47 #include "datarate.h"
48 #include "desc.h"
49 #include "wcmd.h"
50 #include "wpa.h"
51 #include "baseband.h"
52 #include "rf.h"
53 #include "card.h"
54 #include "mac.h"
55 #include "wpa2.h"
56 #include "control.h"
57 #include "rndis.h"
58 #include "iowpa.h"
59 #include "power.h"
61 static int msglevel = MSG_LEVEL_INFO;
62 /* static int msglevel = MSG_LEVEL_DEBUG; */
64 static const u16 awHWRetry0[5][5] = {
65 {RATE_18M, RATE_18M, RATE_12M, RATE_12M, RATE_12M},
66 {RATE_24M, RATE_24M, RATE_18M, RATE_12M, RATE_12M},
67 {RATE_36M, RATE_36M, RATE_24M, RATE_18M, RATE_18M},
68 {RATE_48M, RATE_48M, RATE_36M, RATE_24M, RATE_24M},
69 {RATE_54M, RATE_54M, RATE_48M, RATE_36M, RATE_36M}
71 static const u16 awHWRetry1[5][5] = {
72 {RATE_18M, RATE_18M, RATE_12M, RATE_6M, RATE_6M},
73 {RATE_24M, RATE_24M, RATE_18M, RATE_6M, RATE_6M},
74 {RATE_36M, RATE_36M, RATE_24M, RATE_12M, RATE_12M},
75 {RATE_48M, RATE_48M, RATE_24M, RATE_12M, RATE_12M},
76 {RATE_54M, RATE_54M, RATE_36M, RATE_18M, RATE_18M}
79 static void s_vCheckSensitivity(struct vnt_private *pDevice);
80 static void s_vCheckPreEDThreshold(struct vnt_private *pDevice);
81 static void s_uCalculateLinkQual(struct vnt_private *pDevice);
84 * Routine Description:
85 * Search known BSS list for Desire SSID or BSSID.
87 * Return Value:
88 * PTR to KnownBSS or NULL
90 PKnownBSS BSSpSearchBSSList(struct vnt_private *pDevice,
91 u8 *pbyDesireBSSID, u8 *pbyDesireSSID,
92 CARD_PHY_TYPE ePhyType)
94 struct vnt_manager *pMgmt = &pDevice->vnt_mgmt;
95 u8 *pbyBSSID = NULL;
96 PWLAN_IE_SSID pSSID = NULL;
97 PKnownBSS pCurrBSS = NULL;
98 PKnownBSS pSelect = NULL;
99 u8 ZeroBSSID[WLAN_BSSID_LEN] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00};
100 int ii = 0;
101 int jj = 0;
103 if (pbyDesireBSSID) {
104 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO
105 "BSSpSearchBSSList BSSID[%pM]\n", pbyDesireBSSID);
106 if (!is_broadcast_ether_addr(pbyDesireBSSID) &&
107 memcmp(pbyDesireBSSID, ZeroBSSID, 6) != 0)
108 pbyBSSID = pbyDesireBSSID;
110 if (pbyDesireSSID &&
111 ((PWLAN_IE_SSID) pbyDesireSSID)->len != 0)
112 pSSID = (PWLAN_IE_SSID) pbyDesireSSID;
114 if (pbyBSSID && pDevice->bRoaming == false) {
115 /* match BSSID first */
116 for (ii = 0; ii < MAX_BSS_NUM; ii++) {
117 pCurrBSS = &(pMgmt->sBSSList[ii]);
119 pCurrBSS->bSelected = false;
121 if (pCurrBSS->bActive &&
122 pCurrBSS->bSelected == false &&
123 ether_addr_equal(pCurrBSS->abyBSSID, pbyBSSID)) {
124 if (pSSID) {
125 /* compare ssid */
126 if (!memcmp(pSSID->abySSID,
127 ((PWLAN_IE_SSID) pCurrBSS->abySSID)->abySSID,
128 pSSID->len) &&
129 (pMgmt->eConfigMode == WMAC_CONFIG_AUTO ||
130 (pMgmt->eConfigMode == WMAC_CONFIG_IBSS_STA &&
131 WLAN_GET_CAP_INFO_IBSS(pCurrBSS->wCapInfo)) ||
132 (pMgmt->eConfigMode == WMAC_CONFIG_ESS_STA &&
133 WLAN_GET_CAP_INFO_ESS(pCurrBSS->wCapInfo)))) {
135 pCurrBSS->bSelected = true;
136 return pCurrBSS;
138 } else if (pMgmt->eConfigMode == WMAC_CONFIG_AUTO ||
139 (pMgmt->eConfigMode == WMAC_CONFIG_IBSS_STA &&
140 WLAN_GET_CAP_INFO_IBSS(pCurrBSS->wCapInfo)) ||
141 (pMgmt->eConfigMode == WMAC_CONFIG_ESS_STA &&
142 WLAN_GET_CAP_INFO_ESS(pCurrBSS->wCapInfo))) {
143 pCurrBSS->bSelected = true;
144 return pCurrBSS;
148 } else {
149 /* ignore BSSID */
150 for (ii = 0; ii < MAX_BSS_NUM; ii++) {
151 pCurrBSS = &(pMgmt->sBSSList[ii]);
153 /* 2007-0721-01<Mark>by MikeLiu
154 * if ((pCurrBSS->bActive) &&
155 * (pCurrBSS->bSelected == false)) { */
157 pCurrBSS->bSelected = false;
158 if (pCurrBSS->bActive) {
160 if (pSSID &&
161 /* matched SSID */
162 (memcmp(pSSID->abySSID,
163 ((PWLAN_IE_SSID) pCurrBSS->abySSID)->abySSID,
164 pSSID->len) ||
165 pSSID->len !=
166 ((PWLAN_IE_SSID) pCurrBSS->abySSID)->len)) {
167 /* SSID not match skip this BSS */
168 continue;
171 if ((pMgmt->eConfigMode == WMAC_CONFIG_IBSS_STA &&
172 WLAN_GET_CAP_INFO_ESS(pCurrBSS->wCapInfo)) ||
173 (pMgmt->eConfigMode == WMAC_CONFIG_ESS_STA &&
174 WLAN_GET_CAP_INFO_IBSS(pCurrBSS->wCapInfo))) {
175 /* Type not match skip this BSS */
176 DBG_PRT(MSG_LEVEL_DEBUG,
177 KERN_INFO "BSS type mismatch.... Config[%d] BSS[0x%04x]\n",
178 pMgmt->eConfigMode,
179 pCurrBSS->wCapInfo);
180 continue;
183 if (ePhyType != PHY_TYPE_AUTO &&
184 ((ePhyType == PHY_TYPE_11A &&
185 PHY_TYPE_11A != pCurrBSS->eNetworkTypeInUse) ||
186 (ePhyType != PHY_TYPE_11A &&
187 PHY_TYPE_11A == pCurrBSS->eNetworkTypeInUse))) {
188 /* PhyType not match skip this BSS */
189 DBG_PRT(MSG_LEVEL_DEBUG,
190 KERN_INFO "Physical type mismatch.... ePhyType[%d] BSS[%d]\n",
191 ePhyType,
192 pCurrBSS->eNetworkTypeInUse);
193 continue;
196 pMgmt->pSameBSS[jj].uChannel = pCurrBSS->uChannel;
197 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO
198 "BSSpSearchBSSList pSelect1[%pM]\n",
199 pCurrBSS->abyBSSID);
200 jj++;
202 if (!pSelect)
203 pSelect = pCurrBSS;
204 /* compare RSSI, select the strongest signal */
205 else if (pCurrBSS->uRSSI < pSelect->uRSSI)
206 pSelect = pCurrBSS;
210 pDevice->bSameBSSMaxNum = jj;
212 if (pSelect) {
213 pSelect->bSelected = true;
214 if (pDevice->bRoaming == false) {
215 /* Einsn Add @20070907 */
216 memcpy(pbyDesireSSID,
217 pCurrBSS->abySSID,
218 WLAN_IEHDR_LEN + WLAN_SSID_MAXLEN + 1);
221 return pSelect;
224 return NULL;
229 * Routine Description:
230 * Clear BSS List
232 * Return Value:
233 * None.
235 void BSSvClearBSSList(struct vnt_private *pDevice, int bKeepCurrBSSID)
237 struct vnt_manager *pMgmt = &pDevice->vnt_mgmt;
238 int ii;
240 for (ii = 0; ii < MAX_BSS_NUM; ii++) {
241 if (bKeepCurrBSSID &&
242 pMgmt->sBSSList[ii].bActive &&
243 ether_addr_equal(pMgmt->sBSSList[ii].abyBSSID,
244 pMgmt->abyCurrBSSID)) {
246 /* mike mark:
247 * there are two BSSID's in list. If that AP is
248 * in hidden ssid mode, one SSID is null, but
249 * other's might not be obvious, so if it
250 * associate's with your STA, you must keep the
251 * two of them!! bKeepCurrBSSID = false;
254 continue;
257 pMgmt->sBSSList[ii].bActive = false;
258 memset(&pMgmt->sBSSList[ii], 0, sizeof(KnownBSS));
260 BSSvClearAnyBSSJoinRecord(pDevice);
264 * Routine Description:
265 * search BSS list by BSSID & SSID if matched
267 * Return Value:
268 * true if found.
270 PKnownBSS BSSpAddrIsInBSSList(struct vnt_private *pDevice,
271 u8 *abyBSSID,
272 PWLAN_IE_SSID pSSID)
274 struct vnt_manager *pMgmt = &pDevice->vnt_mgmt;
275 PKnownBSS pBSSList = NULL;
276 int ii;
278 for (ii = 0; ii < MAX_BSS_NUM; ii++) {
279 pBSSList = &(pMgmt->sBSSList[ii]);
280 if (pBSSList->bActive &&
281 ether_addr_equal(pBSSList->abyBSSID, abyBSSID) &&
282 pSSID->len == ((PWLAN_IE_SSID) pBSSList->abySSID)->len &&
283 memcmp(pSSID->abySSID,
284 ((PWLAN_IE_SSID) pBSSList->abySSID)->abySSID,
285 pSSID->len) == 0)
286 return pBSSList;
289 return NULL;
293 * Routine Description:
294 * Insert a BSS set into known BSS list
296 * Return Value:
297 * true if success.
299 int BSSbInsertToBSSList(struct vnt_private *pDevice,
300 u8 *abyBSSIDAddr,
301 u64 qwTimestamp,
302 u16 wBeaconInterval,
303 u16 wCapInfo,
304 u8 byCurrChannel,
305 PWLAN_IE_SSID pSSID,
306 PWLAN_IE_SUPP_RATES pSuppRates,
307 PWLAN_IE_SUPP_RATES pExtSuppRates,
308 PERPObject psERP,
309 PWLAN_IE_RSN pRSN,
310 PWLAN_IE_RSN_EXT pRSNWPA,
311 PWLAN_IE_COUNTRY pIE_Country,
312 PWLAN_IE_QUIET pIE_Quiet,
313 u32 uIELength,
314 u8 *pbyIEs,
315 void *pRxPacketContext)
317 struct vnt_manager *pMgmt = &pDevice->vnt_mgmt;
318 struct vnt_rx_mgmt *pRxPacket =
319 (struct vnt_rx_mgmt *) pRxPacketContext;
320 PKnownBSS pBSSList = NULL;
321 unsigned int ii;
322 bool bParsingQuiet = false;
324 pBSSList = (PKnownBSS) &(pMgmt->sBSSList[0]);
326 for (ii = 0; ii < MAX_BSS_NUM; ii++) {
327 pBSSList = (PKnownBSS) &(pMgmt->sBSSList[ii]);
328 if (!pBSSList->bActive)
329 break;
332 if (ii == MAX_BSS_NUM) {
333 DBG_PRT(MSG_LEVEL_DEBUG,
334 KERN_INFO "Get free KnowBSS node failed.\n");
335 return false;
337 /* save the BSS info */
338 pBSSList->bActive = true;
339 memcpy(pBSSList->abyBSSID, abyBSSIDAddr, WLAN_BSSID_LEN);
340 pBSSList->qwBSSTimestamp = cpu_to_le64(qwTimestamp);
341 pBSSList->wBeaconInterval = cpu_to_le16(wBeaconInterval);
342 pBSSList->wCapInfo = cpu_to_le16(wCapInfo);
343 pBSSList->uClearCount = 0;
345 if (pSSID->len > WLAN_SSID_MAXLEN)
346 pSSID->len = WLAN_SSID_MAXLEN;
347 memcpy(pBSSList->abySSID, pSSID, pSSID->len + WLAN_IEHDR_LEN);
349 pBSSList->uChannel = byCurrChannel;
351 if (pSuppRates->len > WLAN_RATES_MAXLEN)
352 pSuppRates->len = WLAN_RATES_MAXLEN;
353 memcpy(pBSSList->abySuppRates, pSuppRates,
354 pSuppRates->len + WLAN_IEHDR_LEN);
356 if (pExtSuppRates) {
357 if (pExtSuppRates->len > WLAN_RATES_MAXLEN)
358 pExtSuppRates->len = WLAN_RATES_MAXLEN;
359 memcpy(pBSSList->abyExtSuppRates, pExtSuppRates,
360 pExtSuppRates->len + WLAN_IEHDR_LEN);
361 DBG_PRT(MSG_LEVEL_DEBUG,
362 KERN_INFO "BSSbInsertToBSSList: pExtSuppRates->len = %d\n",
363 pExtSuppRates->len);
365 } else {
366 memset(pBSSList->abyExtSuppRates, 0,
367 WLAN_IEHDR_LEN + WLAN_RATES_MAXLEN + 1);
369 pBSSList->sERP.byERP = psERP->byERP;
370 pBSSList->sERP.bERPExist = psERP->bERPExist;
372 /* Check if BSS is 802.11a/b/g */
373 if (pBSSList->uChannel > CB_MAX_CHANNEL_24G)
374 pBSSList->eNetworkTypeInUse = PHY_TYPE_11A;
375 else if (pBSSList->sERP.bERPExist == true)
376 pBSSList->eNetworkTypeInUse = PHY_TYPE_11G;
377 else
378 pBSSList->eNetworkTypeInUse = PHY_TYPE_11B;
380 pBSSList->byRxRate = pRxPacket->byRxRate;
381 pBSSList->qwLocalTSF = pRxPacket->qwLocalTSF;
382 pBSSList->uRSSI = pRxPacket->uRSSI;
383 pBSSList->bySQ = pRxPacket->bySQ;
385 if (pMgmt->eCurrMode == WMAC_MODE_ESS_STA &&
386 pMgmt->eCurrState == WMAC_STATE_ASSOC &&
387 /* assoc with BSS */
388 pBSSList == pMgmt->pCurrBSS)
389 bParsingQuiet = true;
391 WPA_ClearRSN(pBSSList);
393 if (pRSNWPA) {
394 unsigned int uLen = pRSNWPA->len + 2;
396 if (uLen <= (uIELength -
397 (unsigned int) (u32) ((u8 *) pRSNWPA - pbyIEs))) {
398 pBSSList->wWPALen = uLen;
399 memcpy(pBSSList->byWPAIE, pRSNWPA, uLen);
400 WPA_ParseRSN(pBSSList, pRSNWPA);
404 WPA2_ClearRSN(pBSSList);
406 if (pRSN) {
407 unsigned int uLen = pRSN->len + 2;
409 if (uLen <= (uIELength -
410 (unsigned int) (u32) ((u8 *) pRSN - pbyIEs))) {
411 pBSSList->wRSNLen = uLen;
412 memcpy(pBSSList->byRSNIE, pRSN, uLen);
413 WPA2vParseRSN(pBSSList, pRSN);
417 if (pMgmt->eAuthenMode == WMAC_AUTH_WPA2 ||
418 pBSSList->bWPA2Valid == true) {
420 PSKeyItem pTransmitKey = NULL;
421 bool bIs802_1x = false;
423 for (ii = 0; ii < pBSSList->wAKMSSAuthCount; ii++) {
424 if (pBSSList->abyAKMSSAuthType[ii] ==
425 WLAN_11i_AKMSS_802_1X) {
426 bIs802_1x = true;
427 break;
430 if (bIs802_1x == true &&
431 pSSID->len == ((PWLAN_IE_SSID) pMgmt->abyDesireSSID)->len &&
432 !memcmp(pSSID->abySSID,
433 ((PWLAN_IE_SSID) pMgmt->abyDesireSSID)->abySSID,
434 pSSID->len)) {
436 bAdd_PMKID_Candidate((void *) pDevice,
437 pBSSList->abyBSSID,
438 &pBSSList->sRSNCapObj);
440 if (pDevice->bLinkPass == true &&
441 pMgmt->eCurrState == WMAC_STATE_ASSOC &&
442 (KeybGetTransmitKey(&(pDevice->sKey),
443 pDevice->abyBSSID,
444 PAIRWISE_KEY,
445 &pTransmitKey) == true ||
446 KeybGetTransmitKey(&(pDevice->sKey),
447 pDevice->abyBSSID,
448 GROUP_KEY,
449 &pTransmitKey) == true)) {
450 pDevice->gsPMKIDCandidate.StatusType =
451 Ndis802_11StatusType_PMKID_CandidateList;
452 pDevice->gsPMKIDCandidate.Version = 1;
459 if (pDevice->bUpdateBBVGA) {
460 /* Monitor if RSSI is too strong. */
461 pBSSList->byRSSIStatCnt = 0;
462 RFvRSSITodBm(pDevice, (u8) (pRxPacket->uRSSI),
463 &pBSSList->ldBmMAX);
464 pBSSList->ldBmAverage[0] = pBSSList->ldBmMAX;
465 pBSSList->ldBmAverRange = pBSSList->ldBmMAX;
466 for (ii = 1; ii < RSSI_STAT_COUNT; ii++)
467 pBSSList->ldBmAverage[ii] = 0;
470 pBSSList->uIELength = uIELength;
471 if (pBSSList->uIELength > WLAN_BEACON_FR_MAXLEN)
472 pBSSList->uIELength = WLAN_BEACON_FR_MAXLEN;
473 memcpy(pBSSList->abyIEs, pbyIEs, pBSSList->uIELength);
475 return true;
479 * Routine Description:
480 * Update BSS set in known BSS list
482 * Return Value:
483 * true if success.
485 /* TODO: input structure modify */
486 int BSSbUpdateToBSSList(struct vnt_private *pDevice,
487 u64 qwTimestamp,
488 u16 wBeaconInterval,
489 u16 wCapInfo,
490 u8 byCurrChannel,
491 int bChannelHit,
492 PWLAN_IE_SSID pSSID,
493 PWLAN_IE_SUPP_RATES pSuppRates,
494 PWLAN_IE_SUPP_RATES pExtSuppRates,
495 PERPObject psERP,
496 PWLAN_IE_RSN pRSN,
497 PWLAN_IE_RSN_EXT pRSNWPA,
498 PWLAN_IE_COUNTRY pIE_Country,
499 PWLAN_IE_QUIET pIE_Quiet,
500 PKnownBSS pBSSList,
501 u32 uIELength,
502 u8 *pbyIEs,
503 void *pRxPacketContext)
505 struct vnt_manager *pMgmt = &pDevice->vnt_mgmt;
506 struct vnt_rx_mgmt *pRxPacket =
507 (struct vnt_rx_mgmt *) pRxPacketContext;
508 int ii, jj;
509 signed long ldBm, ldBmSum;
510 bool bParsingQuiet = false;
512 if (!pBSSList)
513 return false;
515 pBSSList->qwBSSTimestamp = cpu_to_le64(qwTimestamp);
517 pBSSList->wBeaconInterval = cpu_to_le16(wBeaconInterval);
518 pBSSList->wCapInfo = cpu_to_le16(wCapInfo);
519 pBSSList->uClearCount = 0;
520 pBSSList->uChannel = byCurrChannel;
522 if (pSSID->len > WLAN_SSID_MAXLEN)
523 pSSID->len = WLAN_SSID_MAXLEN;
525 if (pSSID->len != 0 && pSSID->abySSID[0] != 0)
526 memcpy(pBSSList->abySSID, pSSID, pSSID->len + WLAN_IEHDR_LEN);
527 memcpy(pBSSList->abySuppRates, pSuppRates,
528 pSuppRates->len + WLAN_IEHDR_LEN);
530 if (pExtSuppRates)
531 memcpy(pBSSList->abyExtSuppRates, pExtSuppRates,
532 pExtSuppRates->len + WLAN_IEHDR_LEN);
533 else
534 memset(pBSSList->abyExtSuppRates, 0,
535 WLAN_IEHDR_LEN + WLAN_RATES_MAXLEN + 1);
536 pBSSList->sERP.byERP = psERP->byERP;
537 pBSSList->sERP.bERPExist = psERP->bERPExist;
539 /* Check if BSS is 802.11a/b/g */
540 if (pBSSList->uChannel > CB_MAX_CHANNEL_24G)
541 pBSSList->eNetworkTypeInUse = PHY_TYPE_11A;
542 else if (pBSSList->sERP.bERPExist == true)
543 pBSSList->eNetworkTypeInUse = PHY_TYPE_11G;
544 else
545 pBSSList->eNetworkTypeInUse = PHY_TYPE_11B;
547 pBSSList->byRxRate = pRxPacket->byRxRate;
548 pBSSList->qwLocalTSF = pRxPacket->qwLocalTSF;
549 if (bChannelHit)
550 pBSSList->uRSSI = pRxPacket->uRSSI;
551 pBSSList->bySQ = pRxPacket->bySQ;
553 if (pMgmt->eCurrMode == WMAC_MODE_ESS_STA &&
554 pMgmt->eCurrState == WMAC_STATE_ASSOC &&
555 /* assoc with BSS */
556 pBSSList == pMgmt->pCurrBSS)
557 bParsingQuiet = true;
559 WPA_ClearRSN(pBSSList); /* mike update */
561 if (pRSNWPA) {
562 unsigned int uLen = pRSNWPA->len + 2;
563 if (uLen <= (uIELength -
564 (unsigned int) (u32) ((u8 *) pRSNWPA - pbyIEs))) {
565 pBSSList->wWPALen = uLen;
566 memcpy(pBSSList->byWPAIE, pRSNWPA, uLen);
567 WPA_ParseRSN(pBSSList, pRSNWPA);
571 WPA2_ClearRSN(pBSSList); /* mike update */
573 if (pRSN) {
574 unsigned int uLen = pRSN->len + 2;
575 if (uLen <= (uIELength -
576 (unsigned int) (u32) ((u8 *) pRSN - pbyIEs))) {
577 pBSSList->wRSNLen = uLen;
578 memcpy(pBSSList->byRSNIE, pRSN, uLen);
579 WPA2vParseRSN(pBSSList, pRSN);
583 if (pRxPacket->uRSSI != 0) {
584 RFvRSSITodBm(pDevice, (u8) (pRxPacket->uRSSI), &ldBm);
585 /* Monitor if RSSI is too strong. */
586 pBSSList->byRSSIStatCnt++;
587 pBSSList->byRSSIStatCnt %= RSSI_STAT_COUNT;
588 pBSSList->ldBmAverage[pBSSList->byRSSIStatCnt] = ldBm;
589 ldBmSum = 0;
590 for (ii = 0, jj = 0; ii < RSSI_STAT_COUNT; ii++) {
591 if (pBSSList->ldBmAverage[ii] != 0) {
592 pBSSList->ldBmMAX =
593 max(pBSSList->ldBmAverage[ii], ldBm);
594 ldBmSum +=
595 pBSSList->ldBmAverage[ii];
596 jj++;
599 pBSSList->ldBmAverRange = ldBmSum / jj;
602 pBSSList->uIELength = uIELength;
603 if (pBSSList->uIELength > WLAN_BEACON_FR_MAXLEN)
604 pBSSList->uIELength = WLAN_BEACON_FR_MAXLEN;
605 memcpy(pBSSList->abyIEs, pbyIEs, pBSSList->uIELength);
607 return true;
611 * Routine Description:
612 * Search Node DB table to find the index of matched DstAddr
614 * Return Value:
615 * None
617 int BSSbIsSTAInNodeDB(struct vnt_private *pDevice,
618 u8 *abyDstAddr,
619 u32 *puNodeIndex)
621 struct vnt_manager *pMgmt = &pDevice->vnt_mgmt;
622 unsigned int ii;
624 /* Index = 0 reserved for AP Node */
625 for (ii = 1; ii < (MAX_NODE_NUM + 1); ii++) {
626 if (pMgmt->sNodeDBTable[ii].bActive &&
627 ether_addr_equal(abyDstAddr,
628 pMgmt->sNodeDBTable[ii].abyMACAddr)) {
629 *puNodeIndex = ii;
630 return true;
634 return false;
638 * Routine Description:
639 * Find an empty node and allocate it; if no empty node
640 * is found, then use the most inactive one.
642 * Return Value:
643 * None
645 void BSSvCreateOneNode(struct vnt_private *pDevice, u32 *puNodeIndex)
647 struct vnt_manager *pMgmt = &pDevice->vnt_mgmt;
648 int ii;
649 u32 BigestCount = 0;
650 u32 SelectIndex;
651 struct sk_buff *skb;
653 /* Index = 0 reserved for AP Node (In STA mode)
654 Index = 0 reserved for Broadcast/MultiCast (In AP mode) */
655 SelectIndex = 1;
656 for (ii = 1; ii < (MAX_NODE_NUM + 1); ii++) {
657 if (pMgmt->sNodeDBTable[ii].bActive) {
658 if (pMgmt->sNodeDBTable[ii].uInActiveCount > BigestCount) {
659 BigestCount =
660 pMgmt->sNodeDBTable[ii].uInActiveCount;
661 SelectIndex = ii;
663 } else {
664 break;
668 /* if not found replace uInActiveCount with the largest one. */
669 if (ii == (MAX_NODE_NUM + 1)) {
670 *puNodeIndex = SelectIndex;
671 DBG_PRT(MSG_LEVEL_DEBUG,
672 KERN_INFO "Replace inactive node = %d\n", SelectIndex);
673 /* clear ps buffer */
674 if (pMgmt->sNodeDBTable[*puNodeIndex].sTxPSQueue.next) {
675 while ((skb = skb_dequeue(&pMgmt->sNodeDBTable[*puNodeIndex].sTxPSQueue)))
676 dev_kfree_skb(skb);
678 } else {
679 *puNodeIndex = ii;
682 memset(&pMgmt->sNodeDBTable[*puNodeIndex], 0, sizeof(KnownNodeDB));
683 pMgmt->sNodeDBTable[*puNodeIndex].bActive = true;
684 pMgmt->sNodeDBTable[*puNodeIndex].uRatePollTimeout = FALLBACK_POLL_SECOND;
685 /* for AP mode PS queue */
686 skb_queue_head_init(&pMgmt->sNodeDBTable[*puNodeIndex].sTxPSQueue);
687 pMgmt->sNodeDBTable[*puNodeIndex].byAuthSequence = 0;
688 pMgmt->sNodeDBTable[*puNodeIndex].wEnQueueCnt = 0;
689 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "Create node index = %d\n", ii);
693 * Routine Description:
694 * Remove Node by NodeIndex
697 * Return Value:
698 * None
700 void BSSvRemoveOneNode(struct vnt_private *pDevice, u32 uNodeIndex)
702 struct vnt_manager *pMgmt = &pDevice->vnt_mgmt;
703 u8 byMask[8] = {1, 2, 4, 8, 0x10, 0x20, 0x40, 0x80};
704 struct sk_buff *skb;
706 while ((skb = skb_dequeue(&pMgmt->sNodeDBTable[uNodeIndex].sTxPSQueue)))
707 dev_kfree_skb(skb);
708 /* clear context */
709 memset(&pMgmt->sNodeDBTable[uNodeIndex], 0, sizeof(KnownNodeDB));
710 /* clear tx bit map */
711 pMgmt->abyPSTxMap[pMgmt->sNodeDBTable[uNodeIndex].wAID >> 3] &=
712 ~byMask[pMgmt->sNodeDBTable[uNodeIndex].wAID & 7];
716 * Routine Description:
717 * Update AP Node content in Index 0 of KnownNodeDB
720 * Return Value:
721 * None
723 void BSSvUpdateAPNode(struct vnt_private *pDevice,
724 u16 *pwCapInfo,
725 PWLAN_IE_SUPP_RATES pSuppRates,
726 PWLAN_IE_SUPP_RATES pExtSuppRates)
728 struct vnt_manager *pMgmt = &pDevice->vnt_mgmt;
729 u32 uRateLen = WLAN_RATES_MAXLEN;
731 memset(&pMgmt->sNodeDBTable[0], 0, sizeof(KnownNodeDB));
733 pMgmt->sNodeDBTable[0].bActive = true;
734 if (pDevice->byBBType == BB_TYPE_11B)
735 uRateLen = WLAN_RATES_MAXLEN_11B;
736 pMgmt->abyCurrSuppRates[1] = RATEuSetIE((PWLAN_IE_SUPP_RATES) pSuppRates,
737 (PWLAN_IE_SUPP_RATES) pMgmt->abyCurrSuppRates,
738 uRateLen);
739 pMgmt->abyCurrExtSuppRates[1] = RATEuSetIE((PWLAN_IE_SUPP_RATES) pExtSuppRates,
740 (PWLAN_IE_SUPP_RATES) pMgmt->abyCurrExtSuppRates,
741 uRateLen);
742 RATEvParseMaxRate((void *) pDevice,
743 (PWLAN_IE_SUPP_RATES) pMgmt->abyCurrSuppRates,
744 (PWLAN_IE_SUPP_RATES) pMgmt->abyCurrExtSuppRates,
745 true,
746 &(pMgmt->sNodeDBTable[0].wMaxBasicRate),
747 &(pMgmt->sNodeDBTable[0].wMaxSuppRate),
748 &(pMgmt->sNodeDBTable[0].wSuppRate),
749 &(pMgmt->sNodeDBTable[0].byTopCCKBasicRate),
750 &(pMgmt->sNodeDBTable[0].byTopOFDMBasicRate));
751 memcpy(pMgmt->sNodeDBTable[0].abyMACAddr, pMgmt->abyCurrBSSID,
752 WLAN_ADDR_LEN);
753 pMgmt->sNodeDBTable[0].wTxDataRate = pMgmt->sNodeDBTable[0].wMaxSuppRate;
754 pMgmt->sNodeDBTable[0].bShortPreamble =
755 WLAN_GET_CAP_INFO_SHORTPREAMBLE(*pwCapInfo);
756 pMgmt->sNodeDBTable[0].uRatePollTimeout = FALLBACK_POLL_SECOND;
757 /* Auto rate fallback function initiation.
758 * RATEbInit(pDevice); */
759 DBG_PRT(MSG_LEVEL_DEBUG,
760 KERN_INFO"pMgmt->sNodeDBTable[0].wTxDataRate = %d\n",
761 pMgmt->sNodeDBTable[0].wTxDataRate);
766 * Routine Description:
767 * Add Multicast Node content in Index 0 of KnownNodeDB
770 * Return Value:
771 * None
773 void BSSvAddMulticastNode(struct vnt_private *pDevice)
775 struct vnt_manager *pMgmt = &pDevice->vnt_mgmt;
777 if (!pDevice->bEnableHostWEP)
778 memset(&pMgmt->sNodeDBTable[0], 0, sizeof(KnownNodeDB));
779 memset(pMgmt->sNodeDBTable[0].abyMACAddr, 0xff, WLAN_ADDR_LEN);
780 pMgmt->sNodeDBTable[0].bActive = true;
781 pMgmt->sNodeDBTable[0].bPSEnable = false;
782 skb_queue_head_init(&pMgmt->sNodeDBTable[0].sTxPSQueue);
783 RATEvParseMaxRate((void *) pDevice,
784 (PWLAN_IE_SUPP_RATES) pMgmt->abyCurrSuppRates,
785 (PWLAN_IE_SUPP_RATES) pMgmt->abyCurrExtSuppRates,
786 true,
787 &(pMgmt->sNodeDBTable[0].wMaxBasicRate),
788 &(pMgmt->sNodeDBTable[0].wMaxSuppRate),
789 &(pMgmt->sNodeDBTable[0].wSuppRate),
790 &(pMgmt->sNodeDBTable[0].byTopCCKBasicRate),
791 &(pMgmt->sNodeDBTable[0].byTopOFDMBasicRate));
792 pMgmt->sNodeDBTable[0].wTxDataRate = pMgmt->sNodeDBTable[0].wMaxBasicRate;
793 pMgmt->sNodeDBTable[0].uRatePollTimeout = FALLBACK_POLL_SECOND;
798 * Routine Description:
801 * Second call back function to update Node DB info & AP link status
804 * Return Value:
805 * none.
807 void BSSvSecondCallBack(struct work_struct *work)
809 struct vnt_private *pDevice = container_of(work,
810 struct vnt_private, second_callback_work.work);
811 struct vnt_manager *pMgmt = &pDevice->vnt_mgmt;
812 int ii;
813 PWLAN_IE_SSID pItemSSID, pCurrSSID;
814 u32 uSleepySTACnt = 0;
815 u32 uNonShortSlotSTACnt = 0;
816 u32 uLongPreambleSTACnt = 0;
818 if (pDevice->Flags & fMP_DISCONNECTED)
819 return;
821 spin_lock_irq(&pDevice->lock);
823 pDevice->uAssocCount = 0;
825 /* Power Saving Mode Tx Burst */
826 if (pDevice->bEnablePSMode == true) {
827 pDevice->ulPSModeWaitTx++;
828 if (pDevice->ulPSModeWaitTx >= 2) {
829 pDevice->ulPSModeWaitTx = 0;
830 pDevice->bPSModeTxBurst = false;
834 pDevice->byERPFlag &=
835 ~(WLAN_SET_ERP_BARKER_MODE(1) | WLAN_SET_ERP_NONERP_PRESENT(1));
837 if (pDevice->wUseProtectCntDown > 0) {
838 pDevice->wUseProtectCntDown--;
839 } else {
840 /* disable protect mode */
841 pDevice->byERPFlag &= ~(WLAN_SET_ERP_USE_PROTECTION(1));
844 if (pDevice->byReAssocCount > 0) {
845 pDevice->byReAssocCount++;
846 if (pDevice->byReAssocCount > 10 &&
847 pDevice->bLinkPass != true) { /* 10 sec timeout */
848 printk("Re-association timeout!!!\n");
849 pDevice->byReAssocCount = 0;
850 /* if (pDevice->bWPASuppWextEnabled == true) */
852 union iwreq_data wrqu;
853 memset(&wrqu, 0, sizeof(wrqu));
854 wrqu.ap_addr.sa_family = ARPHRD_ETHER;
855 PRINT_K("wireless_send_event--->SIOCGIWAP(disassociated)\n");
856 wireless_send_event(pDevice->dev, SIOCGIWAP,
857 &wrqu, NULL);
859 } else if (pDevice->bLinkPass == true) {
860 pDevice->byReAssocCount = 0;
864 pMgmt->eLastState = pMgmt->eCurrState;
866 s_uCalculateLinkQual(pDevice);
868 for (ii = 0; ii < (MAX_NODE_NUM + 1); ii++) {
870 if (pMgmt->sNodeDBTable[ii].bActive) {
871 /* Increase in-activity counter */
872 pMgmt->sNodeDBTable[ii].uInActiveCount++;
874 if (ii > 0) {
875 if (pMgmt->sNodeDBTable[ii].uInActiveCount >
876 MAX_INACTIVE_COUNT) {
877 BSSvRemoveOneNode(pDevice, ii);
878 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO
879 "Inactive timeout [%d] sec, STA index = [%d] remove\n",
880 MAX_INACTIVE_COUNT, ii);
881 continue;
884 if (pMgmt->sNodeDBTable[ii].eNodeState >=
885 NODE_ASSOC) {
887 pDevice->uAssocCount++;
889 /* check if Non ERP exist */
890 if (pMgmt->sNodeDBTable[ii].uInActiveCount <
891 ERP_RECOVER_COUNT) {
892 if (!pMgmt->sNodeDBTable[ii].bShortPreamble) {
893 pDevice->byERPFlag |=
894 WLAN_SET_ERP_BARKER_MODE(1);
895 uLongPreambleSTACnt++;
897 if (!pMgmt->sNodeDBTable[ii].bERPExist) {
898 pDevice->byERPFlag |=
899 WLAN_SET_ERP_NONERP_PRESENT(1);
900 pDevice->byERPFlag |=
901 WLAN_SET_ERP_USE_PROTECTION(1);
903 if (!pMgmt->sNodeDBTable[ii].bShortSlotTime)
904 uNonShortSlotSTACnt++;
908 /* check if any STA in PS mode */
909 if (pMgmt->sNodeDBTable[ii].bPSEnable)
910 uSleepySTACnt++;
914 /* Rate fallback check */
915 if (!pDevice->bFixRate) {
916 if (ii > 0) {
917 /* ii = 0 for multicast node (AP & Adhoc) */
918 RATEvTxRateFallBack((void *) pDevice,
919 &(pMgmt->sNodeDBTable[ii]));
920 } else if (pMgmt->eCurrMode == WMAC_MODE_ESS_STA) {
921 /* ii = 0 reserved for unicast AP node (Infra STA) */
922 RATEvTxRateFallBack((void *) pDevice,
923 &(pMgmt->sNodeDBTable[ii]));
928 /* check if pending PS queue */
929 if (pMgmt->sNodeDBTable[ii].wEnQueueCnt != 0) {
930 DBG_PRT(MSG_LEVEL_DEBUG,
931 KERN_INFO "Index= %d, Queue = %d pending\n",
933 pMgmt->sNodeDBTable[ii].wEnQueueCnt);
934 if (ii > 0 &&
935 pMgmt->sNodeDBTable[ii].wEnQueueCnt > 15) {
936 BSSvRemoveOneNode(pDevice, ii);
937 DBG_PRT(MSG_LEVEL_NOTICE,
938 KERN_INFO "Pending many queues PS STA Index = %d remove\n",
939 ii);
940 continue;
947 if (pMgmt->eCurrMode == WMAC_MODE_ESS_AP &&
948 pDevice->byBBType == BB_TYPE_11G) {
950 /* on/off protect mode */
951 if (WLAN_GET_ERP_USE_PROTECTION(pDevice->byERPFlag)) {
952 if (!pDevice->bProtectMode) {
953 MACvEnableProtectMD(pDevice);
954 pDevice->bProtectMode = true;
956 } else if (pDevice->bProtectMode) {
957 MACvDisableProtectMD(pDevice);
958 pDevice->bProtectMode = false;
960 /* on/off short slot time */
962 if (uNonShortSlotSTACnt > 0) {
963 if (pDevice->bShortSlotTime) {
964 pDevice->bShortSlotTime = false;
965 BBvSetShortSlotTime(pDevice);
966 vUpdateIFS((void *) pDevice);
968 } else if (!pDevice->bShortSlotTime) {
969 pDevice->bShortSlotTime = true;
970 BBvSetShortSlotTime(pDevice);
971 vUpdateIFS((void *) pDevice);
974 /* on/off barker long preamble mode */
976 if (uLongPreambleSTACnt > 0) {
977 if (!pDevice->bBarkerPreambleMd) {
978 MACvEnableBarkerPreambleMd(pDevice);
979 pDevice->bBarkerPreambleMd = true;
981 } else if (pDevice->bBarkerPreambleMd) {
982 MACvDisableBarkerPreambleMd(pDevice);
983 pDevice->bBarkerPreambleMd = false;
988 /* Check if any STA in PS mode, enable DTIM multicast deliver */
989 if (pMgmt->eCurrMode == WMAC_MODE_ESS_AP) {
990 if (uSleepySTACnt > 0)
991 pMgmt->sNodeDBTable[0].bPSEnable = true;
992 else
993 pMgmt->sNodeDBTable[0].bPSEnable = false;
996 pItemSSID = (PWLAN_IE_SSID) pMgmt->abyDesireSSID;
997 pCurrSSID = (PWLAN_IE_SSID) pMgmt->abyCurrSSID;
999 if (pMgmt->eCurrMode == WMAC_MODE_STANDBY ||
1000 pMgmt->eCurrMode == WMAC_MODE_ESS_STA) {
1002 if (pMgmt->sNodeDBTable[0].bActive) { /* Assoc with BSS */
1004 if (pDevice->bUpdateBBVGA) {
1005 s_vCheckSensitivity(pDevice);
1006 s_vCheckPreEDThreshold(pDevice);
1009 if (pMgmt->sNodeDBTable[0].uInActiveCount >=
1010 (LOST_BEACON_COUNT/2) &&
1011 pDevice->byBBVGACurrent != pDevice->abyBBVGA[0]) {
1012 pDevice->byBBVGANew = pDevice->abyBBVGA[0];
1013 bScheduleCommand((void *) pDevice,
1014 WLAN_CMD_CHANGE_BBSENSITIVITY,
1015 NULL);
1018 if (pMgmt->sNodeDBTable[0].uInActiveCount >=
1019 LOST_BEACON_COUNT) {
1020 pMgmt->sNodeDBTable[0].bActive = false;
1021 pMgmt->eCurrMode = WMAC_MODE_STANDBY;
1022 pMgmt->eCurrState = WMAC_STATE_IDLE;
1023 netif_stop_queue(pDevice->dev);
1024 pDevice->bLinkPass = false;
1025 ControlvMaskByte(pDevice,
1026 MESSAGE_REQUEST_MACREG,
1027 MAC_REG_PAPEDELAY, LEDSTS_STS,
1028 LEDSTS_SLOW);
1029 pDevice->bRoaming = true;
1030 pDevice->bIsRoaming = false;
1032 DBG_PRT(MSG_LEVEL_NOTICE,
1033 KERN_INFO "Lost AP beacon [%d] sec, disconnected !\n",
1034 pMgmt->sNodeDBTable[0].uInActiveCount);
1035 /* let wpa supplicant know AP may disconnect */
1037 union iwreq_data wrqu;
1038 memset(&wrqu, 0, sizeof(wrqu));
1039 wrqu.ap_addr.sa_family = ARPHRD_ETHER;
1040 PRINT_K("wireless_send_event--->SIOCGIWAP(disassociated)\n");
1041 wireless_send_event(pDevice->dev,
1042 SIOCGIWAP,
1043 &wrqu,
1044 NULL);
1047 } else if (pItemSSID->len != 0) {
1048 /* Davidwang */
1049 if ((pDevice->bEnableRoaming == true) &&
1050 (!(pMgmt->Cisco_cckm))) {
1051 DBG_PRT(MSG_LEVEL_DEBUG,
1052 KERN_INFO "bRoaming %d, !\n",
1053 pDevice->bRoaming);
1054 DBG_PRT(MSG_LEVEL_DEBUG,
1055 KERN_INFO "bIsRoaming %d, !\n",
1056 pDevice->bIsRoaming);
1057 if ((pDevice->bRoaming == true) &&
1058 (pDevice->bIsRoaming == true)) {
1059 DBG_PRT(MSG_LEVEL_DEBUG,
1060 KERN_INFO "Fast Roaming ...\n");
1061 BSSvClearBSSList((void *) pDevice,
1062 pDevice->bLinkPass);
1063 bScheduleCommand((void *) pDevice,
1064 WLAN_CMD_BSSID_SCAN,
1065 pMgmt->abyDesireSSID);
1066 bScheduleCommand((void *) pDevice,
1067 WLAN_CMD_SSID,
1068 pMgmt->abyDesireSSID);
1069 pDevice->uAutoReConnectTime = 0;
1070 pDevice->uIsroamingTime = 0;
1071 pDevice->bRoaming = false;
1072 } else if (pDevice->bRoaming == false &&
1073 pDevice->bIsRoaming == true) {
1074 pDevice->uIsroamingTime++;
1075 if (pDevice->uIsroamingTime >= 20)
1076 pDevice->bIsRoaming = false;
1078 } else if (pDevice->uAutoReConnectTime < 10) {
1079 pDevice->uAutoReConnectTime++;
1080 /* network manager support need not do Roaming scan??? */
1081 if (pDevice->bWPASuppWextEnabled == true)
1082 pDevice->uAutoReConnectTime = 0;
1083 } else {
1084 /* mike use old encryption status for wpa reauthen */
1085 if (pDevice->bWPADEVUp)
1086 pDevice->eEncryptionStatus =
1087 pDevice->eOldEncryptionStatus;
1089 DBG_PRT(MSG_LEVEL_DEBUG,
1090 KERN_INFO "Roaming ...\n");
1091 BSSvClearBSSList((void *) pDevice,
1092 pDevice->bLinkPass);
1093 pMgmt->eScanType = WMAC_SCAN_ACTIVE;
1094 bScheduleCommand((void *) pDevice,
1095 WLAN_CMD_BSSID_SCAN,
1096 pMgmt->abyDesireSSID);
1097 bScheduleCommand((void *) pDevice,
1098 WLAN_CMD_SSID,
1099 pMgmt->abyDesireSSID);
1100 pDevice->uAutoReConnectTime = 0;
1105 if (pMgmt->eCurrMode == WMAC_MODE_IBSS_STA) {
1106 /* if adhoc started which essid is NULL string, rescanning. */
1107 if (pMgmt->eCurrState == WMAC_STATE_STARTED &&
1108 pCurrSSID->len == 0) {
1109 if (pDevice->uAutoReConnectTime < 10) {
1110 pDevice->uAutoReConnectTime++;
1111 } else {
1112 DBG_PRT(MSG_LEVEL_NOTICE,
1113 KERN_INFO "Adhoc re-scanning ...\n");
1114 pMgmt->eScanType = WMAC_SCAN_ACTIVE;
1115 bScheduleCommand((void *) pDevice,
1116 WLAN_CMD_BSSID_SCAN, NULL);
1117 bScheduleCommand((void *) pDevice,
1118 WLAN_CMD_SSID, NULL);
1119 pDevice->uAutoReConnectTime = 0;
1122 if (pMgmt->eCurrState == WMAC_STATE_JOINTED) {
1124 if (pDevice->bUpdateBBVGA) {
1125 s_vCheckSensitivity(pDevice);
1126 s_vCheckPreEDThreshold(pDevice);
1128 if (pMgmt->sNodeDBTable[0].uInActiveCount >=
1129 ADHOC_LOST_BEACON_COUNT) {
1130 DBG_PRT(MSG_LEVEL_NOTICE,
1131 KERN_INFO "Lost other STA beacon [%d] sec, started !\n",
1132 pMgmt->sNodeDBTable[0].uInActiveCount);
1133 pMgmt->sNodeDBTable[0].uInActiveCount = 0;
1134 pMgmt->eCurrState = WMAC_STATE_STARTED;
1135 netif_stop_queue(pDevice->dev);
1136 pDevice->bLinkPass = false;
1137 ControlvMaskByte(pDevice,
1138 MESSAGE_REQUEST_MACREG,
1139 MAC_REG_PAPEDELAY, LEDSTS_STS,
1140 LEDSTS_SLOW);
1145 if (pDevice->bLinkPass == true) {
1146 if ((pMgmt->eAuthenMode < WMAC_AUTH_WPA ||
1147 pDevice->fWPA_Authened == true) &&
1148 (++pDevice->tx_data_time_out > 40)) {
1149 pDevice->tx_trigger = true;
1151 PSbSendNullPacket(pDevice);
1153 pDevice->tx_trigger = false;
1154 pDevice->tx_data_time_out = 0;
1157 if (netif_queue_stopped(pDevice->dev))
1158 netif_wake_queue(pDevice->dev);
1161 spin_unlock_irq(&pDevice->lock);
1163 schedule_delayed_work(&pDevice->second_callback_work, HZ);
1167 * Routine Description:
1170 * Update Tx attemps, Tx failure counter in Node DB
1173 * Return Value:
1174 * none.
1176 void BSSvUpdateNodeTxCounter(struct vnt_private *pDevice, u8 byTSR, u8 byPktNO)
1178 struct vnt_manager *pMgmt = &pDevice->vnt_mgmt;
1179 struct vnt_tx_pkt_info *pkt_info = pDevice->pkt_info;
1180 u32 uNodeIndex = 0;
1181 u8 byTxRetry;
1182 u16 wRate;
1183 u16 wFallBackRate = RATE_1M;
1184 u8 byFallBack;
1185 int ii;
1186 u8 *pbyDestAddr;
1187 u8 byPktNum;
1188 u16 wFIFOCtl;
1190 byPktNum = (byPktNO & 0x0F) >> 4;
1191 byTxRetry = (byTSR & 0xF0) >> 4;
1192 wRate = (u16) (byPktNO & 0xF0) >> 4;
1193 wFIFOCtl = pkt_info[byPktNum].fifo_ctl;
1194 pbyDestAddr = pkt_info[byPktNum].dest_addr;
1196 if (wFIFOCtl & FIFOCTL_AUTO_FB_0)
1197 byFallBack = AUTO_FB_0;
1198 else if (wFIFOCtl & FIFOCTL_AUTO_FB_1)
1199 byFallBack = AUTO_FB_1;
1200 else
1201 byFallBack = AUTO_FB_NONE;
1203 /* Only Unicast using support rates */
1204 if (wFIFOCtl & FIFOCTL_NEEDACK) {
1205 if (pMgmt->eCurrMode == WMAC_MODE_ESS_STA) {
1206 pMgmt->sNodeDBTable[0].uTxAttempts += 1;
1207 if (!(byTSR & (TSR_TMO | TSR_RETRYTMO))) {
1208 /* transmit success, TxAttempts at least plus one */
1209 pMgmt->sNodeDBTable[0].uTxOk[MAX_RATE]++;
1210 if ((byFallBack == AUTO_FB_NONE) ||
1211 (wRate < RATE_18M)) {
1212 wFallBackRate = wRate;
1213 } else if (byFallBack == AUTO_FB_0) {
1214 if (byTxRetry < 5)
1215 wFallBackRate =
1216 awHWRetry0[wRate-RATE_18M][byTxRetry];
1217 else
1218 wFallBackRate =
1219 awHWRetry0[wRate-RATE_18M][4];
1220 } else if (byFallBack == AUTO_FB_1) {
1221 if (byTxRetry < 5)
1222 wFallBackRate =
1223 awHWRetry1[wRate-RATE_18M][byTxRetry];
1224 else
1225 wFallBackRate = awHWRetry1[wRate-RATE_18M][4];
1227 pMgmt->sNodeDBTable[0].uTxOk[wFallBackRate]++;
1228 } else {
1229 pMgmt->sNodeDBTable[0].uTxFailures++;
1231 pMgmt->sNodeDBTable[0].uTxRetry += byTxRetry;
1232 if (byTxRetry != 0) {
1233 pMgmt->sNodeDBTable[0].uTxFail[MAX_RATE] += byTxRetry;
1234 if (byFallBack == AUTO_FB_NONE ||
1235 wRate < RATE_18M) {
1236 pMgmt->sNodeDBTable[0].uTxFail[wRate] += byTxRetry;
1237 } else if (byFallBack == AUTO_FB_0) {
1238 for (ii = 0; ii < byTxRetry; ii++) {
1239 if (ii < 5)
1240 wFallBackRate =
1241 awHWRetry0[wRate-RATE_18M][ii];
1242 else
1243 wFallBackRate =
1244 awHWRetry0[wRate-RATE_18M][4];
1245 pMgmt->sNodeDBTable[0].uTxFail[wFallBackRate]++;
1247 } else if (byFallBack == AUTO_FB_1) {
1248 for (ii = 0; ii < byTxRetry; ii++) {
1249 if (ii < 5)
1250 wFallBackRate =
1251 awHWRetry1[wRate-RATE_18M][ii];
1252 else
1253 wFallBackRate =
1254 awHWRetry1[wRate-RATE_18M][4];
1255 pMgmt->sNodeDBTable[0].uTxFail[wFallBackRate]++;
1261 if ((pMgmt->eCurrMode == WMAC_MODE_IBSS_STA ||
1262 pMgmt->eCurrMode == WMAC_MODE_ESS_AP) &&
1263 BSSbIsSTAInNodeDB((void *) pDevice,
1264 pbyDestAddr,
1265 &uNodeIndex)) {
1266 pMgmt->sNodeDBTable[uNodeIndex].uTxAttempts += 1;
1267 if (!(byTSR & (TSR_TMO | TSR_RETRYTMO))) {
1268 /* transmit success, TxAttempts at least plus one */
1269 pMgmt->sNodeDBTable[uNodeIndex].uTxOk[MAX_RATE]++;
1270 if ((byFallBack == AUTO_FB_NONE) ||
1271 (wRate < RATE_18M)) {
1272 wFallBackRate = wRate;
1273 } else if (byFallBack == AUTO_FB_0) {
1274 if (byTxRetry < 5)
1275 wFallBackRate =
1276 awHWRetry0[wRate-RATE_18M][byTxRetry];
1277 else
1278 wFallBackRate =
1279 awHWRetry0[wRate-RATE_18M][4];
1280 } else if (byFallBack == AUTO_FB_1) {
1281 if (byTxRetry < 5)
1282 wFallBackRate =
1283 awHWRetry1[wRate-RATE_18M][byTxRetry];
1284 else
1285 wFallBackRate =
1286 awHWRetry1[wRate-RATE_18M][4];
1288 pMgmt->sNodeDBTable[uNodeIndex].uTxOk[wFallBackRate]++;
1289 } else {
1290 pMgmt->sNodeDBTable[uNodeIndex].uTxFailures++;
1292 pMgmt->sNodeDBTable[uNodeIndex].uTxRetry += byTxRetry;
1293 if (byTxRetry != 0) {
1294 pMgmt->sNodeDBTable[uNodeIndex].uTxFail[MAX_RATE] += byTxRetry;
1295 if ((byFallBack == AUTO_FB_NONE) ||
1296 (wRate < RATE_18M)) {
1297 pMgmt->sNodeDBTable[uNodeIndex].uTxFail[wRate] += byTxRetry;
1298 } else if (byFallBack == AUTO_FB_0) {
1299 for (ii = 0; ii < byTxRetry; ii++) {
1300 if (ii < 5)
1301 wFallBackRate =
1302 awHWRetry0[wRate-RATE_18M][ii];
1303 else
1304 wFallBackRate =
1305 awHWRetry0[wRate-RATE_18M][4];
1306 pMgmt->sNodeDBTable[uNodeIndex].uTxFail[wFallBackRate]++;
1308 } else if (byFallBack == AUTO_FB_1) {
1309 for (ii = 0; ii < byTxRetry; ii++) {
1310 if (ii < 5)
1311 wFallBackRate = awHWRetry1[wRate-RATE_18M][ii];
1312 else
1313 wFallBackRate = awHWRetry1[wRate-RATE_18M][4];
1314 pMgmt->sNodeDBTable[uNodeIndex].uTxFail[wFallBackRate]++;
1323 * Routine Description:
1324 * Clear Nodes & skb in DB Table
1327 * Parameters:
1328 * In:
1329 * hDeviceContext - The adapter context.
1330 * uStartIndex - starting index
1331 * Out:
1332 * none
1334 * Return Value:
1335 * None.
1337 void BSSvClearNodeDBTable(struct vnt_private *pDevice, u32 uStartIndex)
1339 struct vnt_manager *pMgmt = &pDevice->vnt_mgmt;
1340 struct sk_buff *skb;
1341 int ii;
1343 for (ii = uStartIndex; ii < (MAX_NODE_NUM + 1); ii++) {
1344 if (pMgmt->sNodeDBTable[ii].bActive) {
1345 /* check if sTxPSQueue has been initial */
1346 if (pMgmt->sNodeDBTable[ii].sTxPSQueue.next) {
1347 while ((skb = skb_dequeue(&pMgmt->sNodeDBTable[ii].sTxPSQueue))) {
1348 DBG_PRT(MSG_LEVEL_DEBUG,
1349 KERN_INFO "PS skb != NULL %d\n",
1350 ii);
1351 dev_kfree_skb(skb);
1354 memset(&pMgmt->sNodeDBTable[ii], 0, sizeof(KnownNodeDB));
1359 static void s_vCheckSensitivity(struct vnt_private *pDevice)
1361 PKnownBSS pBSSList = NULL;
1362 struct vnt_manager *pMgmt = &pDevice->vnt_mgmt;
1363 int ii;
1365 if (pMgmt->eCurrState == WMAC_STATE_ASSOC ||
1366 (pMgmt->eCurrMode == WMAC_MODE_IBSS_STA &&
1367 pMgmt->eCurrState == WMAC_STATE_JOINTED)) {
1368 pBSSList = BSSpAddrIsInBSSList(pDevice, pMgmt->abyCurrBSSID,
1369 (PWLAN_IE_SSID) pMgmt->abyCurrSSID);
1370 if (pBSSList) {
1371 /* Update BB register if RSSI is too strong */
1372 signed long LocalldBmAverage = 0;
1373 signed long uNumofdBm = 0;
1374 for (ii = 0; ii < RSSI_STAT_COUNT; ii++) {
1375 if (pBSSList->ldBmAverage[ii] != 0) {
1376 uNumofdBm++;
1377 LocalldBmAverage += pBSSList->ldBmAverage[ii];
1380 if (uNumofdBm > 0) {
1381 LocalldBmAverage = LocalldBmAverage/uNumofdBm;
1382 for (ii = 0; ii < BB_VGA_LEVEL; ii++) {
1383 DBG_PRT(MSG_LEVEL_DEBUG,
1384 KERN_INFO"LocalldBmAverage:%ld, %ld %02x\n",
1385 LocalldBmAverage,
1386 pDevice->ldBmThreshold[ii],
1387 pDevice->abyBBVGA[ii]);
1388 if (LocalldBmAverage < pDevice->ldBmThreshold[ii]) {
1389 pDevice->byBBVGANew =
1390 pDevice->abyBBVGA[ii];
1391 break;
1394 if (pDevice->byBBVGANew !=
1395 pDevice->byBBVGACurrent) {
1396 pDevice->uBBVGADiffCount++;
1397 if (pDevice->uBBVGADiffCount >=
1398 BB_VGA_CHANGE_THRESHOLD)
1399 bScheduleCommand(pDevice,
1400 WLAN_CMD_CHANGE_BBSENSITIVITY,
1401 NULL);
1402 } else {
1403 pDevice->uBBVGADiffCount = 0;
1410 static void s_uCalculateLinkQual(struct vnt_private *pDevice)
1412 struct net_device_stats *stats = &pDevice->stats;
1413 unsigned long TxOkRatio, TxCnt;
1414 unsigned long RxOkRatio, RxCnt;
1415 unsigned long RssiRatio;
1416 unsigned long qual;
1417 long ldBm;
1419 TxCnt = stats->tx_packets + pDevice->wstats.discard.retries;
1421 RxCnt = stats->rx_packets + stats->rx_frame_errors;
1423 TxOkRatio = (TxCnt < 6) ? 4000:((stats->tx_packets * 4000) / TxCnt);
1425 RxOkRatio = (RxCnt < 6) ? 2000 :
1426 ((stats->rx_packets * 2000) / RxCnt);
1428 /* decide link quality */
1429 if (pDevice->bLinkPass != true) {
1430 pDevice->wstats.qual.qual = 0;
1431 } else {
1432 RFvRSSITodBm(pDevice, (u8) (pDevice->uCurrRSSI), &ldBm);
1433 if (-ldBm < 50)
1434 RssiRatio = 4000;
1435 else if (-ldBm > 90)
1436 RssiRatio = 0;
1437 else
1438 RssiRatio = (40-(-ldBm-50)) * 4000 / 40;
1440 qual = (RssiRatio + TxOkRatio + RxOkRatio) / 100;
1441 if (qual < 100)
1442 pDevice->wstats.qual.qual = (u8) qual;
1443 else
1444 pDevice->wstats.qual.qual = 100;
1448 void BSSvClearAnyBSSJoinRecord(struct vnt_private *pDevice)
1450 struct vnt_manager *pMgmt = &pDevice->vnt_mgmt;
1451 int ii;
1453 for (ii = 0; ii < MAX_BSS_NUM; ii++)
1454 pMgmt->sBSSList[ii].bSelected = false;
1456 return;
1459 static void s_vCheckPreEDThreshold(struct vnt_private *pDevice)
1461 PKnownBSS pBSSList = NULL;
1462 struct vnt_manager *pMgmt = &pDevice->vnt_mgmt;
1464 if (pMgmt->eCurrState == WMAC_STATE_ASSOC ||
1465 (pMgmt->eCurrMode == WMAC_MODE_IBSS_STA &&
1466 pMgmt->eCurrState == WMAC_STATE_JOINTED)) {
1467 pBSSList = BSSpAddrIsInBSSList(pDevice,
1468 pMgmt->abyCurrBSSID,
1469 (PWLAN_IE_SSID) pMgmt->abyCurrSSID);
1470 if (pBSSList) {
1471 pDevice->byBBPreEDRSSI =
1472 (u8) (~(pBSSList->ldBmAverRange) + 1);
1473 BBvUpdatePreEDThreshold(pDevice, false);