2 * QLogic Fibre Channel HBA Driver
3 * Copyright (c) 2003-2011 QLogic Corporation
5 * See LICENSE.qla2xxx for copyright and licensing details.
9 #include <linux/delay.h>
10 #include <linux/slab.h>
11 #include <linux/vmalloc.h>
12 #include <asm/uaccess.h>
15 * NVRAM support routines
19 * qla2x00_lock_nvram_access() -
23 qla2x00_lock_nvram_access(struct qla_hw_data
*ha
)
26 struct device_reg_2xxx __iomem
*reg
= &ha
->iobase
->isp
;
28 if (!IS_QLA2100(ha
) && !IS_QLA2200(ha
) && !IS_QLA2300(ha
)) {
29 data
= RD_REG_WORD(®
->nvram
);
30 while (data
& NVR_BUSY
) {
32 data
= RD_REG_WORD(®
->nvram
);
36 WRT_REG_WORD(®
->u
.isp2300
.host_semaphore
, 0x1);
37 RD_REG_WORD(®
->u
.isp2300
.host_semaphore
);
39 data
= RD_REG_WORD(®
->u
.isp2300
.host_semaphore
);
40 while ((data
& BIT_0
) == 0) {
43 WRT_REG_WORD(®
->u
.isp2300
.host_semaphore
, 0x1);
44 RD_REG_WORD(®
->u
.isp2300
.host_semaphore
);
46 data
= RD_REG_WORD(®
->u
.isp2300
.host_semaphore
);
52 * qla2x00_unlock_nvram_access() -
56 qla2x00_unlock_nvram_access(struct qla_hw_data
*ha
)
58 struct device_reg_2xxx __iomem
*reg
= &ha
->iobase
->isp
;
60 if (!IS_QLA2100(ha
) && !IS_QLA2200(ha
) && !IS_QLA2300(ha
)) {
61 WRT_REG_WORD(®
->u
.isp2300
.host_semaphore
, 0);
62 RD_REG_WORD(®
->u
.isp2300
.host_semaphore
);
67 * qla2x00_nv_write() - Prepare for NVRAM read/write operation.
69 * @data: Serial interface selector
72 qla2x00_nv_write(struct qla_hw_data
*ha
, uint16_t data
)
74 struct device_reg_2xxx __iomem
*reg
= &ha
->iobase
->isp
;
76 WRT_REG_WORD(®
->nvram
, data
| NVR_SELECT
| NVR_WRT_ENABLE
);
77 RD_REG_WORD(®
->nvram
); /* PCI Posting. */
79 WRT_REG_WORD(®
->nvram
, data
| NVR_SELECT
| NVR_CLOCK
|
81 RD_REG_WORD(®
->nvram
); /* PCI Posting. */
83 WRT_REG_WORD(®
->nvram
, data
| NVR_SELECT
| NVR_WRT_ENABLE
);
84 RD_REG_WORD(®
->nvram
); /* PCI Posting. */
89 * qla2x00_nvram_request() - Sends read command to NVRAM and gets data from
92 * @nv_cmd: NVRAM command
94 * Bit definitions for NVRAM command:
99 * Bit 15-0 = write data
101 * Returns the word read from nvram @addr.
104 qla2x00_nvram_request(struct qla_hw_data
*ha
, uint32_t nv_cmd
)
107 struct device_reg_2xxx __iomem
*reg
= &ha
->iobase
->isp
;
111 /* Send command to NVRAM. */
113 for (cnt
= 0; cnt
< 11; cnt
++) {
115 qla2x00_nv_write(ha
, NVR_DATA_OUT
);
117 qla2x00_nv_write(ha
, 0);
121 /* Read data from NVRAM. */
122 for (cnt
= 0; cnt
< 16; cnt
++) {
123 WRT_REG_WORD(®
->nvram
, NVR_SELECT
| NVR_CLOCK
);
124 RD_REG_WORD(®
->nvram
); /* PCI Posting. */
127 reg_data
= RD_REG_WORD(®
->nvram
);
128 if (reg_data
& NVR_DATA_IN
)
130 WRT_REG_WORD(®
->nvram
, NVR_SELECT
);
131 RD_REG_WORD(®
->nvram
); /* PCI Posting. */
136 WRT_REG_WORD(®
->nvram
, NVR_DESELECT
);
137 RD_REG_WORD(®
->nvram
); /* PCI Posting. */
145 * qla2x00_get_nvram_word() - Calculates word position in NVRAM and calls the
146 * request routine to get the word from NVRAM.
148 * @addr: Address in NVRAM to read
150 * Returns the word read from nvram @addr.
153 qla2x00_get_nvram_word(struct qla_hw_data
*ha
, uint32_t addr
)
159 nv_cmd
|= NV_READ_OP
;
160 data
= qla2x00_nvram_request(ha
, nv_cmd
);
166 * qla2x00_nv_deselect() - Deselect NVRAM operations.
170 qla2x00_nv_deselect(struct qla_hw_data
*ha
)
172 struct device_reg_2xxx __iomem
*reg
= &ha
->iobase
->isp
;
174 WRT_REG_WORD(®
->nvram
, NVR_DESELECT
);
175 RD_REG_WORD(®
->nvram
); /* PCI Posting. */
180 * qla2x00_write_nvram_word() - Write NVRAM data.
182 * @addr: Address in NVRAM to write
183 * @data: word to program
186 qla2x00_write_nvram_word(struct qla_hw_data
*ha
, uint32_t addr
, uint16_t data
)
190 uint32_t nv_cmd
, wait_cnt
;
191 struct device_reg_2xxx __iomem
*reg
= &ha
->iobase
->isp
;
192 scsi_qla_host_t
*vha
= pci_get_drvdata(ha
->pdev
);
194 qla2x00_nv_write(ha
, NVR_DATA_OUT
);
195 qla2x00_nv_write(ha
, 0);
196 qla2x00_nv_write(ha
, 0);
198 for (word
= 0; word
< 8; word
++)
199 qla2x00_nv_write(ha
, NVR_DATA_OUT
);
201 qla2x00_nv_deselect(ha
);
204 nv_cmd
= (addr
<< 16) | NV_WRITE_OP
;
207 for (count
= 0; count
< 27; count
++) {
209 qla2x00_nv_write(ha
, NVR_DATA_OUT
);
211 qla2x00_nv_write(ha
, 0);
216 qla2x00_nv_deselect(ha
);
218 /* Wait for NVRAM to become ready */
219 WRT_REG_WORD(®
->nvram
, NVR_SELECT
);
220 RD_REG_WORD(®
->nvram
); /* PCI Posting. */
221 wait_cnt
= NVR_WAIT_CNT
;
224 ql_dbg(ql_dbg_user
, vha
, 0x708d,
225 "NVRAM didn't go ready...\n");
229 word
= RD_REG_WORD(®
->nvram
);
230 } while ((word
& NVR_DATA_IN
) == 0);
232 qla2x00_nv_deselect(ha
);
235 qla2x00_nv_write(ha
, NVR_DATA_OUT
);
236 for (count
= 0; count
< 10; count
++)
237 qla2x00_nv_write(ha
, 0);
239 qla2x00_nv_deselect(ha
);
243 qla2x00_write_nvram_word_tmo(struct qla_hw_data
*ha
, uint32_t addr
,
244 uint16_t data
, uint32_t tmo
)
249 struct device_reg_2xxx __iomem
*reg
= &ha
->iobase
->isp
;
253 qla2x00_nv_write(ha
, NVR_DATA_OUT
);
254 qla2x00_nv_write(ha
, 0);
255 qla2x00_nv_write(ha
, 0);
257 for (word
= 0; word
< 8; word
++)
258 qla2x00_nv_write(ha
, NVR_DATA_OUT
);
260 qla2x00_nv_deselect(ha
);
263 nv_cmd
= (addr
<< 16) | NV_WRITE_OP
;
266 for (count
= 0; count
< 27; count
++) {
268 qla2x00_nv_write(ha
, NVR_DATA_OUT
);
270 qla2x00_nv_write(ha
, 0);
275 qla2x00_nv_deselect(ha
);
277 /* Wait for NVRAM to become ready */
278 WRT_REG_WORD(®
->nvram
, NVR_SELECT
);
279 RD_REG_WORD(®
->nvram
); /* PCI Posting. */
282 word
= RD_REG_WORD(®
->nvram
);
284 ret
= QLA_FUNCTION_FAILED
;
287 } while ((word
& NVR_DATA_IN
) == 0);
289 qla2x00_nv_deselect(ha
);
292 qla2x00_nv_write(ha
, NVR_DATA_OUT
);
293 for (count
= 0; count
< 10; count
++)
294 qla2x00_nv_write(ha
, 0);
296 qla2x00_nv_deselect(ha
);
302 * qla2x00_clear_nvram_protection() -
306 qla2x00_clear_nvram_protection(struct qla_hw_data
*ha
)
309 struct device_reg_2xxx __iomem
*reg
= &ha
->iobase
->isp
;
310 uint32_t word
, wait_cnt
;
311 uint16_t wprot
, wprot_old
;
312 scsi_qla_host_t
*vha
= pci_get_drvdata(ha
->pdev
);
314 /* Clear NVRAM write protection. */
315 ret
= QLA_FUNCTION_FAILED
;
317 wprot_old
= cpu_to_le16(qla2x00_get_nvram_word(ha
, ha
->nvram_base
));
318 stat
= qla2x00_write_nvram_word_tmo(ha
, ha
->nvram_base
,
319 __constant_cpu_to_le16(0x1234), 100000);
320 wprot
= cpu_to_le16(qla2x00_get_nvram_word(ha
, ha
->nvram_base
));
321 if (stat
!= QLA_SUCCESS
|| wprot
!= 0x1234) {
323 qla2x00_nv_write(ha
, NVR_DATA_OUT
);
324 qla2x00_nv_write(ha
, 0);
325 qla2x00_nv_write(ha
, 0);
326 for (word
= 0; word
< 8; word
++)
327 qla2x00_nv_write(ha
, NVR_DATA_OUT
);
329 qla2x00_nv_deselect(ha
);
331 /* Enable protection register. */
332 qla2x00_nv_write(ha
, NVR_PR_ENABLE
| NVR_DATA_OUT
);
333 qla2x00_nv_write(ha
, NVR_PR_ENABLE
);
334 qla2x00_nv_write(ha
, NVR_PR_ENABLE
);
335 for (word
= 0; word
< 8; word
++)
336 qla2x00_nv_write(ha
, NVR_DATA_OUT
| NVR_PR_ENABLE
);
338 qla2x00_nv_deselect(ha
);
340 /* Clear protection register (ffff is cleared). */
341 qla2x00_nv_write(ha
, NVR_PR_ENABLE
| NVR_DATA_OUT
);
342 qla2x00_nv_write(ha
, NVR_PR_ENABLE
| NVR_DATA_OUT
);
343 qla2x00_nv_write(ha
, NVR_PR_ENABLE
| NVR_DATA_OUT
);
344 for (word
= 0; word
< 8; word
++)
345 qla2x00_nv_write(ha
, NVR_DATA_OUT
| NVR_PR_ENABLE
);
347 qla2x00_nv_deselect(ha
);
349 /* Wait for NVRAM to become ready. */
350 WRT_REG_WORD(®
->nvram
, NVR_SELECT
);
351 RD_REG_WORD(®
->nvram
); /* PCI Posting. */
352 wait_cnt
= NVR_WAIT_CNT
;
355 ql_dbg(ql_dbg_user
, vha
, 0x708e,
356 "NVRAM didn't go ready...\n");
360 word
= RD_REG_WORD(®
->nvram
);
361 } while ((word
& NVR_DATA_IN
) == 0);
366 qla2x00_write_nvram_word(ha
, ha
->nvram_base
, wprot_old
);
372 qla2x00_set_nvram_protection(struct qla_hw_data
*ha
, int stat
)
374 struct device_reg_2xxx __iomem
*reg
= &ha
->iobase
->isp
;
375 uint32_t word
, wait_cnt
;
376 scsi_qla_host_t
*vha
= pci_get_drvdata(ha
->pdev
);
378 if (stat
!= QLA_SUCCESS
)
381 /* Set NVRAM write protection. */
383 qla2x00_nv_write(ha
, NVR_DATA_OUT
);
384 qla2x00_nv_write(ha
, 0);
385 qla2x00_nv_write(ha
, 0);
386 for (word
= 0; word
< 8; word
++)
387 qla2x00_nv_write(ha
, NVR_DATA_OUT
);
389 qla2x00_nv_deselect(ha
);
391 /* Enable protection register. */
392 qla2x00_nv_write(ha
, NVR_PR_ENABLE
| NVR_DATA_OUT
);
393 qla2x00_nv_write(ha
, NVR_PR_ENABLE
);
394 qla2x00_nv_write(ha
, NVR_PR_ENABLE
);
395 for (word
= 0; word
< 8; word
++)
396 qla2x00_nv_write(ha
, NVR_DATA_OUT
| NVR_PR_ENABLE
);
398 qla2x00_nv_deselect(ha
);
400 /* Enable protection register. */
401 qla2x00_nv_write(ha
, NVR_PR_ENABLE
| NVR_DATA_OUT
);
402 qla2x00_nv_write(ha
, NVR_PR_ENABLE
);
403 qla2x00_nv_write(ha
, NVR_PR_ENABLE
| NVR_DATA_OUT
);
404 for (word
= 0; word
< 8; word
++)
405 qla2x00_nv_write(ha
, NVR_PR_ENABLE
);
407 qla2x00_nv_deselect(ha
);
409 /* Wait for NVRAM to become ready. */
410 WRT_REG_WORD(®
->nvram
, NVR_SELECT
);
411 RD_REG_WORD(®
->nvram
); /* PCI Posting. */
412 wait_cnt
= NVR_WAIT_CNT
;
415 ql_dbg(ql_dbg_user
, vha
, 0x708f,
416 "NVRAM didn't go ready...\n");
420 word
= RD_REG_WORD(®
->nvram
);
421 } while ((word
& NVR_DATA_IN
) == 0);
425 /*****************************************************************************/
426 /* Flash Manipulation Routines */
427 /*****************************************************************************/
429 static inline uint32_t
430 flash_conf_addr(struct qla_hw_data
*ha
, uint32_t faddr
)
432 return ha
->flash_conf_off
| faddr
;
435 static inline uint32_t
436 flash_data_addr(struct qla_hw_data
*ha
, uint32_t faddr
)
438 return ha
->flash_data_off
| faddr
;
441 static inline uint32_t
442 nvram_conf_addr(struct qla_hw_data
*ha
, uint32_t naddr
)
444 return ha
->nvram_conf_off
| naddr
;
447 static inline uint32_t
448 nvram_data_addr(struct qla_hw_data
*ha
, uint32_t naddr
)
450 return ha
->nvram_data_off
| naddr
;
454 qla24xx_read_flash_dword(struct qla_hw_data
*ha
, uint32_t addr
)
458 struct device_reg_24xx __iomem
*reg
= &ha
->iobase
->isp24
;
460 WRT_REG_DWORD(®
->flash_addr
, addr
& ~FARX_DATA_FLAG
);
461 /* Wait for READ cycle to complete. */
464 (RD_REG_DWORD(®
->flash_addr
) & FARX_DATA_FLAG
) == 0 &&
465 rval
== QLA_SUCCESS
; cnt
--) {
469 rval
= QLA_FUNCTION_TIMEOUT
;
473 /* TODO: What happens if we time out? */
475 if (rval
== QLA_SUCCESS
)
476 data
= RD_REG_DWORD(®
->flash_data
);
482 qla24xx_read_flash_data(scsi_qla_host_t
*vha
, uint32_t *dwptr
, uint32_t faddr
,
486 struct qla_hw_data
*ha
= vha
->hw
;
488 /* Dword reads to flash. */
489 for (i
= 0; i
< dwords
; i
++, faddr
++)
490 dwptr
[i
] = cpu_to_le32(qla24xx_read_flash_dword(ha
,
491 flash_data_addr(ha
, faddr
)));
497 qla24xx_write_flash_dword(struct qla_hw_data
*ha
, uint32_t addr
, uint32_t data
)
501 struct device_reg_24xx __iomem
*reg
= &ha
->iobase
->isp24
;
503 WRT_REG_DWORD(®
->flash_data
, data
);
504 RD_REG_DWORD(®
->flash_data
); /* PCI Posting. */
505 WRT_REG_DWORD(®
->flash_addr
, addr
| FARX_DATA_FLAG
);
506 /* Wait for Write cycle to complete. */
508 for (cnt
= 500000; (RD_REG_DWORD(®
->flash_addr
) & FARX_DATA_FLAG
) &&
509 rval
== QLA_SUCCESS
; cnt
--) {
513 rval
= QLA_FUNCTION_TIMEOUT
;
520 qla24xx_get_flash_manufacturer(struct qla_hw_data
*ha
, uint8_t *man_id
,
525 ids
= qla24xx_read_flash_dword(ha
, flash_conf_addr(ha
, 0x03ab));
527 *flash_id
= MSB(ids
);
529 /* Check if man_id and flash_id are valid. */
530 if (ids
!= 0xDEADDEAD && (*man_id
== 0 || *flash_id
== 0)) {
531 /* Read information using 0x9f opcode
532 * Device ID, Mfg ID would be read in the format:
533 * <Ext Dev Info><Device ID Part2><Device ID Part 1><Mfg ID>
534 * Example: ATMEL 0x00 01 45 1F
535 * Extract MFG and Dev ID from last two bytes.
537 ids
= qla24xx_read_flash_dword(ha
, flash_conf_addr(ha
, 0x009f));
539 *flash_id
= MSB(ids
);
544 qla2xxx_find_flt_start(scsi_qla_host_t
*vha
, uint32_t *start
)
546 const char *loc
, *locations
[] = { "DEF", "PCI" };
547 uint32_t pcihdr
, pcids
;
549 uint8_t *buf
, *bcode
, last_image
;
550 uint16_t cnt
, chksum
, *wptr
;
551 struct qla_flt_location
*fltl
;
552 struct qla_hw_data
*ha
= vha
->hw
;
553 struct req_que
*req
= ha
->req_q_map
[0];
556 * FLT-location structure resides after the last PCI region.
559 /* Begin with sane defaults. */
562 if (IS_QLA24XX_TYPE(ha
))
563 *start
= FA_FLASH_LAYOUT_ADDR_24
;
564 else if (IS_QLA25XX(ha
))
565 *start
= FA_FLASH_LAYOUT_ADDR
;
566 else if (IS_QLA81XX(ha
))
567 *start
= FA_FLASH_LAYOUT_ADDR_81
;
568 else if (IS_QLA82XX(ha
)) {
569 *start
= FA_FLASH_LAYOUT_ADDR_82
;
572 /* Begin with first PCI expansion ROM header. */
573 buf
= (uint8_t *)req
->ring
;
574 dcode
= (uint32_t *)req
->ring
;
578 /* Verify PCI expansion ROM header. */
579 qla24xx_read_flash_data(vha
, dcode
, pcihdr
>> 2, 0x20);
580 bcode
= buf
+ (pcihdr
% 4);
581 if (bcode
[0x0] != 0x55 || bcode
[0x1] != 0xaa)
584 /* Locate PCI data structure. */
585 pcids
= pcihdr
+ ((bcode
[0x19] << 8) | bcode
[0x18]);
586 qla24xx_read_flash_data(vha
, dcode
, pcids
>> 2, 0x20);
587 bcode
= buf
+ (pcihdr
% 4);
589 /* Validate signature of PCI data structure. */
590 if (bcode
[0x0] != 'P' || bcode
[0x1] != 'C' ||
591 bcode
[0x2] != 'I' || bcode
[0x3] != 'R')
594 last_image
= bcode
[0x15] & BIT_7
;
596 /* Locate next PCI expansion ROM. */
597 pcihdr
+= ((bcode
[0x11] << 8) | bcode
[0x10]) * 512;
598 } while (!last_image
);
600 /* Now verify FLT-location structure. */
601 fltl
= (struct qla_flt_location
*)req
->ring
;
602 qla24xx_read_flash_data(vha
, dcode
, pcihdr
>> 2,
603 sizeof(struct qla_flt_location
) >> 2);
604 if (fltl
->sig
[0] != 'Q' || fltl
->sig
[1] != 'F' ||
605 fltl
->sig
[2] != 'L' || fltl
->sig
[3] != 'T')
608 wptr
= (uint16_t *)req
->ring
;
609 cnt
= sizeof(struct qla_flt_location
) >> 1;
610 for (chksum
= 0; cnt
; cnt
--)
611 chksum
+= le16_to_cpu(*wptr
++);
613 ql_log(ql_log_fatal
, vha
, 0x0045,
614 "Inconsistent FLTL detected: checksum=0x%x.\n", chksum
);
615 ql_dump_buffer(ql_dbg_init
+ ql_dbg_buffer
, vha
, 0x010e,
616 buf
, sizeof(struct qla_flt_location
));
617 return QLA_FUNCTION_FAILED
;
620 /* Good data. Use specified location. */
622 *start
= (le16_to_cpu(fltl
->start_hi
) << 16 |
623 le16_to_cpu(fltl
->start_lo
)) >> 2;
625 ql_dbg(ql_dbg_init
, vha
, 0x0046,
626 "FLTL[%s] = 0x%x.\n",
632 qla2xxx_get_flt_info(scsi_qla_host_t
*vha
, uint32_t flt_addr
)
634 const char *loc
, *locations
[] = { "DEF", "FLT" };
635 const uint32_t def_fw
[] =
636 { FA_RISC_CODE_ADDR
, FA_RISC_CODE_ADDR
, FA_RISC_CODE_ADDR_81
};
637 const uint32_t def_boot
[] =
638 { FA_BOOT_CODE_ADDR
, FA_BOOT_CODE_ADDR
, FA_BOOT_CODE_ADDR_81
};
639 const uint32_t def_vpd_nvram
[] =
640 { FA_VPD_NVRAM_ADDR
, FA_VPD_NVRAM_ADDR
, FA_VPD_NVRAM_ADDR_81
};
641 const uint32_t def_vpd0
[] =
642 { 0, 0, FA_VPD0_ADDR_81
};
643 const uint32_t def_vpd1
[] =
644 { 0, 0, FA_VPD1_ADDR_81
};
645 const uint32_t def_nvram0
[] =
646 { 0, 0, FA_NVRAM0_ADDR_81
};
647 const uint32_t def_nvram1
[] =
648 { 0, 0, FA_NVRAM1_ADDR_81
};
649 const uint32_t def_fdt
[] =
650 { FA_FLASH_DESCR_ADDR_24
, FA_FLASH_DESCR_ADDR
,
651 FA_FLASH_DESCR_ADDR_81
};
652 const uint32_t def_npiv_conf0
[] =
653 { FA_NPIV_CONF0_ADDR_24
, FA_NPIV_CONF0_ADDR
,
654 FA_NPIV_CONF0_ADDR_81
};
655 const uint32_t def_npiv_conf1
[] =
656 { FA_NPIV_CONF1_ADDR_24
, FA_NPIV_CONF1_ADDR
,
657 FA_NPIV_CONF1_ADDR_81
};
658 const uint32_t fcp_prio_cfg0
[] =
659 { FA_FCP_PRIO0_ADDR
, FA_FCP_PRIO0_ADDR_25
,
661 const uint32_t fcp_prio_cfg1
[] =
662 { FA_FCP_PRIO1_ADDR
, FA_FCP_PRIO1_ADDR_25
,
666 uint16_t cnt
, chksum
;
668 struct qla_flt_header
*flt
;
669 struct qla_flt_region
*region
;
670 struct qla_hw_data
*ha
= vha
->hw
;
671 struct req_que
*req
= ha
->req_q_map
[0];
676 else if (IS_QLA81XX(ha
))
679 /* Assign FCP prio region since older adapters may not have FLT, or
680 FCP prio region in it's FLT.
682 ha
->flt_region_fcp_prio
= ha
->flags
.port0
?
683 fcp_prio_cfg0
[def
] : fcp_prio_cfg1
[def
];
685 ha
->flt_region_flt
= flt_addr
;
686 wptr
= (uint16_t *)req
->ring
;
687 flt
= (struct qla_flt_header
*)req
->ring
;
688 region
= (struct qla_flt_region
*)&flt
[1];
689 ha
->isp_ops
->read_optrom(vha
, (uint8_t *)req
->ring
,
690 flt_addr
<< 2, OPTROM_BURST_SIZE
);
691 if (*wptr
== __constant_cpu_to_le16(0xffff))
693 if (flt
->version
!= __constant_cpu_to_le16(1)) {
694 ql_log(ql_log_warn
, vha
, 0x0047,
695 "Unsupported FLT detected: version=0x%x length=0x%x checksum=0x%x.\n",
696 le16_to_cpu(flt
->version
), le16_to_cpu(flt
->length
),
697 le16_to_cpu(flt
->checksum
));
701 cnt
= (sizeof(struct qla_flt_header
) + le16_to_cpu(flt
->length
)) >> 1;
702 for (chksum
= 0; cnt
; cnt
--)
703 chksum
+= le16_to_cpu(*wptr
++);
705 ql_log(ql_log_fatal
, vha
, 0x0048,
706 "Inconsistent FLT detected: version=0x%x length=0x%x checksum=0x%x.\n",
707 le16_to_cpu(flt
->version
), le16_to_cpu(flt
->length
),
708 le16_to_cpu(flt
->checksum
));
713 cnt
= le16_to_cpu(flt
->length
) / sizeof(struct qla_flt_region
);
714 for ( ; cnt
; cnt
--, region
++) {
715 /* Store addresses as DWORD offsets. */
716 start
= le32_to_cpu(region
->start
) >> 2;
717 ql_dbg(ql_dbg_init
, vha
, 0x0049,
718 "FLT[%02x]: start=0x%x "
719 "end=0x%x size=0x%x.\n", le32_to_cpu(region
->code
),
720 start
, le32_to_cpu(region
->end
) >> 2,
721 le32_to_cpu(region
->size
));
723 switch (le32_to_cpu(region
->code
) & 0xff) {
725 ha
->flt_region_fw
= start
;
727 case FLT_REG_BOOT_CODE
:
728 ha
->flt_region_boot
= start
;
731 ha
->flt_region_vpd_nvram
= start
;
735 ha
->flt_region_vpd
= start
;
740 if (!ha
->flags
.port0
)
741 ha
->flt_region_vpd
= start
;
743 case FLT_REG_NVRAM_0
:
745 ha
->flt_region_nvram
= start
;
747 case FLT_REG_NVRAM_1
:
748 if (!ha
->flags
.port0
)
749 ha
->flt_region_nvram
= start
;
752 ha
->flt_region_fdt
= start
;
754 case FLT_REG_NPIV_CONF_0
:
756 ha
->flt_region_npiv_conf
= start
;
758 case FLT_REG_NPIV_CONF_1
:
759 if (!ha
->flags
.port0
)
760 ha
->flt_region_npiv_conf
= start
;
762 case FLT_REG_GOLD_FW
:
763 ha
->flt_region_gold_fw
= start
;
765 case FLT_REG_FCP_PRIO_0
:
767 ha
->flt_region_fcp_prio
= start
;
769 case FLT_REG_FCP_PRIO_1
:
770 if (!ha
->flags
.port0
)
771 ha
->flt_region_fcp_prio
= start
;
773 case FLT_REG_BOOT_CODE_82XX
:
774 ha
->flt_region_boot
= start
;
776 case FLT_REG_FW_82XX
:
777 ha
->flt_region_fw
= start
;
779 case FLT_REG_GOLD_FW_82XX
:
780 ha
->flt_region_gold_fw
= start
;
782 case FLT_REG_BOOTLOAD_82XX
:
783 ha
->flt_region_bootload
= start
;
785 case FLT_REG_VPD_82XX
:
786 ha
->flt_region_vpd
= start
;
793 /* Use hardcoded defaults. */
795 ha
->flt_region_fw
= def_fw
[def
];
796 ha
->flt_region_boot
= def_boot
[def
];
797 ha
->flt_region_vpd_nvram
= def_vpd_nvram
[def
];
798 ha
->flt_region_vpd
= ha
->flags
.port0
?
799 def_vpd0
[def
] : def_vpd1
[def
];
800 ha
->flt_region_nvram
= ha
->flags
.port0
?
801 def_nvram0
[def
] : def_nvram1
[def
];
802 ha
->flt_region_fdt
= def_fdt
[def
];
803 ha
->flt_region_npiv_conf
= ha
->flags
.port0
?
804 def_npiv_conf0
[def
] : def_npiv_conf1
[def
];
806 ql_dbg(ql_dbg_init
, vha
, 0x004a,
807 "FLT[%s]: boot=0x%x fw=0x%x vpd_nvram=0x%x vpd=0x%x.\n",
808 loc
, ha
->flt_region_boot
,
809 ha
->flt_region_fw
, ha
->flt_region_vpd_nvram
,
811 ql_dbg(ql_dbg_init
, vha
, 0x004b,
812 "nvram=0x%x fdt=0x%x flt=0x%x npiv=0x%x fcp_prif_cfg=0x%x.\n",
813 ha
->flt_region_nvram
,
814 ha
->flt_region_fdt
, ha
->flt_region_flt
,
815 ha
->flt_region_npiv_conf
, ha
->flt_region_fcp_prio
);
819 qla2xxx_get_fdt_info(scsi_qla_host_t
*vha
)
821 #define FLASH_BLK_SIZE_4K 0x1000
822 #define FLASH_BLK_SIZE_32K 0x8000
823 #define FLASH_BLK_SIZE_64K 0x10000
824 const char *loc
, *locations
[] = { "MID", "FDT" };
825 uint16_t cnt
, chksum
;
827 struct qla_fdt_layout
*fdt
;
828 uint8_t man_id
, flash_id
;
829 uint16_t mid
= 0, fid
= 0;
830 struct qla_hw_data
*ha
= vha
->hw
;
831 struct req_que
*req
= ha
->req_q_map
[0];
833 wptr
= (uint16_t *)req
->ring
;
834 fdt
= (struct qla_fdt_layout
*)req
->ring
;
835 ha
->isp_ops
->read_optrom(vha
, (uint8_t *)req
->ring
,
836 ha
->flt_region_fdt
<< 2, OPTROM_BURST_SIZE
);
837 if (*wptr
== __constant_cpu_to_le16(0xffff))
839 if (fdt
->sig
[0] != 'Q' || fdt
->sig
[1] != 'L' || fdt
->sig
[2] != 'I' ||
843 for (cnt
= 0, chksum
= 0; cnt
< sizeof(struct qla_fdt_layout
) >> 1;
845 chksum
+= le16_to_cpu(*wptr
++);
847 ql_dbg(ql_dbg_init
, vha
, 0x004c,
848 "Inconsistent FDT detected:"
849 " checksum=0x%x id=%c version0x%x.\n", chksum
,
850 fdt
->sig
[0], le16_to_cpu(fdt
->version
));
851 ql_dump_buffer(ql_dbg_init
+ ql_dbg_buffer
, vha
, 0x0113,
852 (uint8_t *)fdt
, sizeof(*fdt
));
857 mid
= le16_to_cpu(fdt
->man_id
);
858 fid
= le16_to_cpu(fdt
->id
);
859 ha
->fdt_wrt_disable
= fdt
->wrt_disable_bits
;
860 ha
->fdt_erase_cmd
= flash_conf_addr(ha
, 0x0300 | fdt
->erase_cmd
);
861 ha
->fdt_block_size
= le32_to_cpu(fdt
->block_size
);
862 if (fdt
->unprotect_sec_cmd
) {
863 ha
->fdt_unprotect_sec_cmd
= flash_conf_addr(ha
, 0x0300 |
864 fdt
->unprotect_sec_cmd
);
865 ha
->fdt_protect_sec_cmd
= fdt
->protect_sec_cmd
?
866 flash_conf_addr(ha
, 0x0300 | fdt
->protect_sec_cmd
):
867 flash_conf_addr(ha
, 0x0336);
872 if (IS_QLA82XX(ha
)) {
873 ha
->fdt_block_size
= FLASH_BLK_SIZE_64K
;
876 qla24xx_get_flash_manufacturer(ha
, &man_id
, &flash_id
);
879 ha
->fdt_wrt_disable
= 0x9c;
880 ha
->fdt_erase_cmd
= flash_conf_addr(ha
, 0x03d8);
882 case 0xbf: /* STT flash. */
883 if (flash_id
== 0x8e)
884 ha
->fdt_block_size
= FLASH_BLK_SIZE_64K
;
886 ha
->fdt_block_size
= FLASH_BLK_SIZE_32K
;
888 if (flash_id
== 0x80)
889 ha
->fdt_erase_cmd
= flash_conf_addr(ha
, 0x0352);
891 case 0x13: /* ST M25P80. */
892 ha
->fdt_block_size
= FLASH_BLK_SIZE_64K
;
894 case 0x1f: /* Atmel 26DF081A. */
895 ha
->fdt_block_size
= FLASH_BLK_SIZE_4K
;
896 ha
->fdt_erase_cmd
= flash_conf_addr(ha
, 0x0320);
897 ha
->fdt_unprotect_sec_cmd
= flash_conf_addr(ha
, 0x0339);
898 ha
->fdt_protect_sec_cmd
= flash_conf_addr(ha
, 0x0336);
901 /* Default to 64 kb sector size. */
902 ha
->fdt_block_size
= FLASH_BLK_SIZE_64K
;
906 ql_dbg(ql_dbg_init
, vha
, 0x004d,
907 "FDT[%x]: (0x%x/0x%x) erase=0x%x "
908 "pr=%x upro=%x wrtd=0x%x blk=0x%x.\n", loc
, mid
, fid
,
909 ha
->fdt_erase_cmd
, ha
->fdt_protect_sec_cmd
,
910 ha
->fdt_wrt_disable
, ha
->fdt_block_size
);
915 qla2xxx_get_idc_param(scsi_qla_host_t
*vha
)
917 #define QLA82XX_IDC_PARAM_ADDR 0x003e885c
919 struct qla_hw_data
*ha
= vha
->hw
;
920 struct req_que
*req
= ha
->req_q_map
[0];
925 wptr
= (uint32_t *)req
->ring
;
926 ha
->isp_ops
->read_optrom(vha
, (uint8_t *)req
->ring
,
927 QLA82XX_IDC_PARAM_ADDR
, 8);
929 if (*wptr
== __constant_cpu_to_le32(0xffffffff)) {
930 ha
->nx_dev_init_timeout
= QLA82XX_ROM_DEV_INIT_TIMEOUT
;
931 ha
->nx_reset_timeout
= QLA82XX_ROM_DRV_RESET_ACK_TIMEOUT
;
933 ha
->nx_dev_init_timeout
= le32_to_cpu(*wptr
++);
934 ha
->nx_reset_timeout
= le32_to_cpu(*wptr
);
936 ql_dbg(ql_dbg_init
, vha
, 0x004e,
937 "nx_dev_init_timeout=%d "
938 "nx_reset_timeout=%d.\n", ha
->nx_dev_init_timeout
,
939 ha
->nx_reset_timeout
);
944 qla2xxx_get_flash_info(scsi_qla_host_t
*vha
)
948 struct qla_hw_data
*ha
= vha
->hw
;
950 if (!IS_QLA24XX_TYPE(ha
) && !IS_QLA25XX(ha
) && !IS_QLA8XXX_TYPE(ha
))
953 ret
= qla2xxx_find_flt_start(vha
, &flt_addr
);
954 if (ret
!= QLA_SUCCESS
)
957 qla2xxx_get_flt_info(vha
, flt_addr
);
958 qla2xxx_get_fdt_info(vha
);
959 qla2xxx_get_idc_param(vha
);
965 qla2xxx_flash_npiv_conf(scsi_qla_host_t
*vha
)
967 #define NPIV_CONFIG_SIZE (16*1024)
970 uint16_t cnt
, chksum
;
972 struct qla_npiv_header hdr
;
973 struct qla_npiv_entry
*entry
;
974 struct qla_hw_data
*ha
= vha
->hw
;
976 if (!IS_QLA24XX_TYPE(ha
) && !IS_QLA25XX(ha
) && !IS_QLA8XXX_TYPE(ha
))
979 ha
->isp_ops
->read_optrom(vha
, (uint8_t *)&hdr
,
980 ha
->flt_region_npiv_conf
<< 2, sizeof(struct qla_npiv_header
));
981 if (hdr
.version
== __constant_cpu_to_le16(0xffff))
983 if (hdr
.version
!= __constant_cpu_to_le16(1)) {
984 ql_dbg(ql_dbg_user
, vha
, 0x7090,
985 "Unsupported NPIV-Config "
986 "detected: version=0x%x entries=0x%x checksum=0x%x.\n",
987 le16_to_cpu(hdr
.version
), le16_to_cpu(hdr
.entries
),
988 le16_to_cpu(hdr
.checksum
));
992 data
= kmalloc(NPIV_CONFIG_SIZE
, GFP_KERNEL
);
994 ql_log(ql_log_warn
, vha
, 0x7091,
995 "Unable to allocate memory for data.\n");
999 ha
->isp_ops
->read_optrom(vha
, (uint8_t *)data
,
1000 ha
->flt_region_npiv_conf
<< 2, NPIV_CONFIG_SIZE
);
1002 cnt
= (sizeof(struct qla_npiv_header
) + le16_to_cpu(hdr
.entries
) *
1003 sizeof(struct qla_npiv_entry
)) >> 1;
1004 for (wptr
= data
, chksum
= 0; cnt
; cnt
--)
1005 chksum
+= le16_to_cpu(*wptr
++);
1007 ql_dbg(ql_dbg_user
, vha
, 0x7092,
1008 "Inconsistent NPIV-Config "
1009 "detected: version=0x%x entries=0x%x checksum=0x%x.\n",
1010 le16_to_cpu(hdr
.version
), le16_to_cpu(hdr
.entries
),
1011 le16_to_cpu(hdr
.checksum
));
1015 entry
= data
+ sizeof(struct qla_npiv_header
);
1016 cnt
= le16_to_cpu(hdr
.entries
);
1017 for (i
= 0; cnt
; cnt
--, entry
++, i
++) {
1019 struct fc_vport_identifiers vid
;
1020 struct fc_vport
*vport
;
1022 memcpy(&ha
->npiv_info
[i
], entry
, sizeof(struct qla_npiv_entry
));
1024 flags
= le16_to_cpu(entry
->flags
);
1025 if (flags
== 0xffff)
1027 if ((flags
& BIT_0
) == 0)
1030 memset(&vid
, 0, sizeof(vid
));
1031 vid
.roles
= FC_PORT_ROLE_FCP_INITIATOR
;
1032 vid
.vport_type
= FC_PORTTYPE_NPIV
;
1033 vid
.disable
= false;
1034 vid
.port_name
= wwn_to_u64(entry
->port_name
);
1035 vid
.node_name
= wwn_to_u64(entry
->node_name
);
1037 ql_dbg(ql_dbg_user
, vha
, 0x7093,
1038 "NPIV[%02x]: wwpn=%llx "
1039 "wwnn=%llx vf_id=0x%x Q_qos=0x%x F_qos=0x%x.\n", cnt
,
1040 (unsigned long long)vid
.port_name
,
1041 (unsigned long long)vid
.node_name
,
1042 le16_to_cpu(entry
->vf_id
),
1043 entry
->q_qos
, entry
->f_qos
);
1045 if (i
< QLA_PRECONFIG_VPORTS
) {
1046 vport
= fc_vport_create(vha
->host
, 0, &vid
);
1048 ql_log(ql_log_warn
, vha
, 0x7094,
1049 "NPIV-Config Failed to create vport [%02x]: "
1050 "wwpn=%llx wwnn=%llx.\n", cnt
,
1051 (unsigned long long)vid
.port_name
,
1052 (unsigned long long)vid
.node_name
);
1060 qla24xx_unprotect_flash(scsi_qla_host_t
*vha
)
1062 struct qla_hw_data
*ha
= vha
->hw
;
1063 struct device_reg_24xx __iomem
*reg
= &ha
->iobase
->isp24
;
1065 if (ha
->flags
.fac_supported
)
1066 return qla81xx_fac_do_write_enable(vha
, 1);
1068 /* Enable flash write. */
1069 WRT_REG_DWORD(®
->ctrl_status
,
1070 RD_REG_DWORD(®
->ctrl_status
) | CSRX_FLASH_ENABLE
);
1071 RD_REG_DWORD(®
->ctrl_status
); /* PCI Posting. */
1073 if (!ha
->fdt_wrt_disable
)
1076 /* Disable flash write-protection, first clear SR protection bit */
1077 qla24xx_write_flash_dword(ha
, flash_conf_addr(ha
, 0x101), 0);
1078 /* Then write zero again to clear remaining SR bits.*/
1079 qla24xx_write_flash_dword(ha
, flash_conf_addr(ha
, 0x101), 0);
1085 qla24xx_protect_flash(scsi_qla_host_t
*vha
)
1088 struct qla_hw_data
*ha
= vha
->hw
;
1089 struct device_reg_24xx __iomem
*reg
= &ha
->iobase
->isp24
;
1091 if (ha
->flags
.fac_supported
)
1092 return qla81xx_fac_do_write_enable(vha
, 0);
1094 if (!ha
->fdt_wrt_disable
)
1095 goto skip_wrt_protect
;
1097 /* Enable flash write-protection and wait for completion. */
1098 qla24xx_write_flash_dword(ha
, flash_conf_addr(ha
, 0x101),
1099 ha
->fdt_wrt_disable
);
1100 for (cnt
= 300; cnt
&&
1101 qla24xx_read_flash_dword(ha
, flash_conf_addr(ha
, 0x005)) & BIT_0
;
1107 /* Disable flash write. */
1108 WRT_REG_DWORD(®
->ctrl_status
,
1109 RD_REG_DWORD(®
->ctrl_status
) & ~CSRX_FLASH_ENABLE
);
1110 RD_REG_DWORD(®
->ctrl_status
); /* PCI Posting. */
1116 qla24xx_erase_sector(scsi_qla_host_t
*vha
, uint32_t fdata
)
1118 struct qla_hw_data
*ha
= vha
->hw
;
1119 uint32_t start
, finish
;
1121 if (ha
->flags
.fac_supported
) {
1123 finish
= start
+ (ha
->fdt_block_size
>> 2) - 1;
1124 return qla81xx_fac_erase_sector(vha
, flash_data_addr(ha
,
1125 start
), flash_data_addr(ha
, finish
));
1128 return qla24xx_write_flash_dword(ha
, ha
->fdt_erase_cmd
,
1129 (fdata
& 0xff00) | ((fdata
<< 16) & 0xff0000) |
1130 ((fdata
>> 16) & 0xff));
1134 qla24xx_write_flash_data(scsi_qla_host_t
*vha
, uint32_t *dwptr
, uint32_t faddr
,
1139 uint32_t sec_mask
, rest_addr
;
1141 dma_addr_t optrom_dma
;
1142 void *optrom
= NULL
;
1143 struct qla_hw_data
*ha
= vha
->hw
;
1145 /* Prepare burst-capable write on supported ISPs. */
1146 if ((IS_QLA25XX(ha
) || IS_QLA81XX(ha
)) && !(faddr
& 0xfff) &&
1147 dwords
> OPTROM_BURST_DWORDS
) {
1148 optrom
= dma_alloc_coherent(&ha
->pdev
->dev
, OPTROM_BURST_SIZE
,
1149 &optrom_dma
, GFP_KERNEL
);
1151 ql_log(ql_log_warn
, vha
, 0x7095,
1152 "Unable to allocate "
1153 "memory for optrom burst write (%x KB).\n",
1154 OPTROM_BURST_SIZE
/ 1024);
1158 rest_addr
= (ha
->fdt_block_size
>> 2) - 1;
1159 sec_mask
= ~rest_addr
;
1161 ret
= qla24xx_unprotect_flash(vha
);
1162 if (ret
!= QLA_SUCCESS
) {
1163 ql_log(ql_log_warn
, vha
, 0x7096,
1164 "Unable to unprotect flash for update.\n");
1168 for (liter
= 0; liter
< dwords
; liter
++, faddr
++, dwptr
++) {
1169 fdata
= (faddr
& sec_mask
) << 2;
1171 /* Are we at the beginning of a sector? */
1172 if ((faddr
& rest_addr
) == 0) {
1173 /* Do sector unprotect. */
1174 if (ha
->fdt_unprotect_sec_cmd
)
1175 qla24xx_write_flash_dword(ha
,
1176 ha
->fdt_unprotect_sec_cmd
,
1177 (fdata
& 0xff00) | ((fdata
<< 16) &
1178 0xff0000) | ((fdata
>> 16) & 0xff));
1179 ret
= qla24xx_erase_sector(vha
, fdata
);
1180 if (ret
!= QLA_SUCCESS
) {
1181 ql_dbg(ql_dbg_user
, vha
, 0x7007,
1182 "Unable to erase erase sector: address=%x.\n",
1188 /* Go with burst-write. */
1189 if (optrom
&& (liter
+ OPTROM_BURST_DWORDS
) <= dwords
) {
1190 /* Copy data to DMA'ble buffer. */
1191 memcpy(optrom
, dwptr
, OPTROM_BURST_SIZE
);
1193 ret
= qla2x00_load_ram(vha
, optrom_dma
,
1194 flash_data_addr(ha
, faddr
),
1195 OPTROM_BURST_DWORDS
);
1196 if (ret
!= QLA_SUCCESS
) {
1197 ql_log(ql_log_warn
, vha
, 0x7097,
1198 "Unable to burst-write optrom segment "
1199 "(%x/%x/%llx).\n", ret
,
1200 flash_data_addr(ha
, faddr
),
1201 (unsigned long long)optrom_dma
);
1202 ql_log(ql_log_warn
, vha
, 0x7098,
1203 "Reverting to slow-write.\n");
1205 dma_free_coherent(&ha
->pdev
->dev
,
1206 OPTROM_BURST_SIZE
, optrom
, optrom_dma
);
1209 liter
+= OPTROM_BURST_DWORDS
- 1;
1210 faddr
+= OPTROM_BURST_DWORDS
- 1;
1211 dwptr
+= OPTROM_BURST_DWORDS
- 1;
1216 ret
= qla24xx_write_flash_dword(ha
,
1217 flash_data_addr(ha
, faddr
), cpu_to_le32(*dwptr
));
1218 if (ret
!= QLA_SUCCESS
) {
1219 ql_dbg(ql_dbg_user
, vha
, 0x7006,
1220 "Unable to program flash address=%x data=%x.\n",
1225 /* Do sector protect. */
1226 if (ha
->fdt_unprotect_sec_cmd
&&
1227 ((faddr
& rest_addr
) == rest_addr
))
1228 qla24xx_write_flash_dword(ha
,
1229 ha
->fdt_protect_sec_cmd
,
1230 (fdata
& 0xff00) | ((fdata
<< 16) &
1231 0xff0000) | ((fdata
>> 16) & 0xff));
1234 ret
= qla24xx_protect_flash(vha
);
1235 if (ret
!= QLA_SUCCESS
)
1236 ql_log(ql_log_warn
, vha
, 0x7099,
1237 "Unable to protect flash after update.\n");
1240 dma_free_coherent(&ha
->pdev
->dev
,
1241 OPTROM_BURST_SIZE
, optrom
, optrom_dma
);
1247 qla2x00_read_nvram_data(scsi_qla_host_t
*vha
, uint8_t *buf
, uint32_t naddr
,
1252 struct qla_hw_data
*ha
= vha
->hw
;
1254 /* Word reads to NVRAM via registers. */
1255 wptr
= (uint16_t *)buf
;
1256 qla2x00_lock_nvram_access(ha
);
1257 for (i
= 0; i
< bytes
>> 1; i
++, naddr
++)
1258 wptr
[i
] = cpu_to_le16(qla2x00_get_nvram_word(ha
,
1260 qla2x00_unlock_nvram_access(ha
);
1266 qla24xx_read_nvram_data(scsi_qla_host_t
*vha
, uint8_t *buf
, uint32_t naddr
,
1271 struct qla_hw_data
*ha
= vha
->hw
;
1276 /* Dword reads to flash. */
1277 dwptr
= (uint32_t *)buf
;
1278 for (i
= 0; i
< bytes
>> 2; i
++, naddr
++)
1279 dwptr
[i
] = cpu_to_le32(qla24xx_read_flash_dword(ha
,
1280 nvram_data_addr(ha
, naddr
)));
1286 qla2x00_write_nvram_data(scsi_qla_host_t
*vha
, uint8_t *buf
, uint32_t naddr
,
1292 unsigned long flags
;
1293 struct qla_hw_data
*ha
= vha
->hw
;
1297 spin_lock_irqsave(&ha
->hardware_lock
, flags
);
1298 qla2x00_lock_nvram_access(ha
);
1300 /* Disable NVRAM write-protection. */
1301 stat
= qla2x00_clear_nvram_protection(ha
);
1303 wptr
= (uint16_t *)buf
;
1304 for (i
= 0; i
< bytes
>> 1; i
++, naddr
++) {
1305 qla2x00_write_nvram_word(ha
, naddr
,
1306 cpu_to_le16(*wptr
));
1310 /* Enable NVRAM write-protection. */
1311 qla2x00_set_nvram_protection(ha
, stat
);
1313 qla2x00_unlock_nvram_access(ha
);
1314 spin_unlock_irqrestore(&ha
->hardware_lock
, flags
);
1320 qla24xx_write_nvram_data(scsi_qla_host_t
*vha
, uint8_t *buf
, uint32_t naddr
,
1326 struct qla_hw_data
*ha
= vha
->hw
;
1327 struct device_reg_24xx __iomem
*reg
= &ha
->iobase
->isp24
;
1334 /* Enable flash write. */
1335 WRT_REG_DWORD(®
->ctrl_status
,
1336 RD_REG_DWORD(®
->ctrl_status
) | CSRX_FLASH_ENABLE
);
1337 RD_REG_DWORD(®
->ctrl_status
); /* PCI Posting. */
1339 /* Disable NVRAM write-protection. */
1340 qla24xx_write_flash_dword(ha
, nvram_conf_addr(ha
, 0x101), 0);
1341 qla24xx_write_flash_dword(ha
, nvram_conf_addr(ha
, 0x101), 0);
1343 /* Dword writes to flash. */
1344 dwptr
= (uint32_t *)buf
;
1345 for (i
= 0; i
< bytes
>> 2; i
++, naddr
++, dwptr
++) {
1346 ret
= qla24xx_write_flash_dword(ha
,
1347 nvram_data_addr(ha
, naddr
), cpu_to_le32(*dwptr
));
1348 if (ret
!= QLA_SUCCESS
) {
1349 ql_dbg(ql_dbg_user
, vha
, 0x709a,
1350 "Unable to program nvram address=%x data=%x.\n",
1356 /* Enable NVRAM write-protection. */
1357 qla24xx_write_flash_dword(ha
, nvram_conf_addr(ha
, 0x101), 0x8c);
1359 /* Disable flash write. */
1360 WRT_REG_DWORD(®
->ctrl_status
,
1361 RD_REG_DWORD(®
->ctrl_status
) & ~CSRX_FLASH_ENABLE
);
1362 RD_REG_DWORD(®
->ctrl_status
); /* PCI Posting. */
1368 qla25xx_read_nvram_data(scsi_qla_host_t
*vha
, uint8_t *buf
, uint32_t naddr
,
1373 struct qla_hw_data
*ha
= vha
->hw
;
1375 /* Dword reads to flash. */
1376 dwptr
= (uint32_t *)buf
;
1377 for (i
= 0; i
< bytes
>> 2; i
++, naddr
++)
1378 dwptr
[i
] = cpu_to_le32(qla24xx_read_flash_dword(ha
,
1379 flash_data_addr(ha
, ha
->flt_region_vpd_nvram
| naddr
)));
1385 qla25xx_write_nvram_data(scsi_qla_host_t
*vha
, uint8_t *buf
, uint32_t naddr
,
1388 struct qla_hw_data
*ha
= vha
->hw
;
1389 #define RMW_BUFFER_SIZE (64 * 1024)
1392 dbuf
= vmalloc(RMW_BUFFER_SIZE
);
1394 return QLA_MEMORY_ALLOC_FAILED
;
1395 ha
->isp_ops
->read_optrom(vha
, dbuf
, ha
->flt_region_vpd_nvram
<< 2,
1397 memcpy(dbuf
+ (naddr
<< 2), buf
, bytes
);
1398 ha
->isp_ops
->write_optrom(vha
, dbuf
, ha
->flt_region_vpd_nvram
<< 2,
1406 qla2x00_flip_colors(struct qla_hw_data
*ha
, uint16_t *pflags
)
1408 if (IS_QLA2322(ha
)) {
1409 /* Flip all colors. */
1410 if (ha
->beacon_color_state
== QLA_LED_ALL_ON
) {
1412 ha
->beacon_color_state
= 0;
1413 *pflags
= GPIO_LED_ALL_OFF
;
1416 ha
->beacon_color_state
= QLA_LED_ALL_ON
;
1417 *pflags
= GPIO_LED_RGA_ON
;
1420 /* Flip green led only. */
1421 if (ha
->beacon_color_state
== QLA_LED_GRN_ON
) {
1423 ha
->beacon_color_state
= 0;
1424 *pflags
= GPIO_LED_GREEN_OFF_AMBER_OFF
;
1427 ha
->beacon_color_state
= QLA_LED_GRN_ON
;
1428 *pflags
= GPIO_LED_GREEN_ON_AMBER_OFF
;
1433 #define PIO_REG(h, r) ((h)->pio_address + offsetof(struct device_reg_2xxx, r))
1436 qla2x00_beacon_blink(struct scsi_qla_host
*vha
)
1438 uint16_t gpio_enable
;
1440 uint16_t led_color
= 0;
1441 unsigned long flags
;
1442 struct qla_hw_data
*ha
= vha
->hw
;
1443 struct device_reg_2xxx __iomem
*reg
= &ha
->iobase
->isp
;
1448 spin_lock_irqsave(&ha
->hardware_lock
, flags
);
1450 /* Save the Original GPIOE. */
1451 if (ha
->pio_address
) {
1452 gpio_enable
= RD_REG_WORD_PIO(PIO_REG(ha
, gpioe
));
1453 gpio_data
= RD_REG_WORD_PIO(PIO_REG(ha
, gpiod
));
1455 gpio_enable
= RD_REG_WORD(®
->gpioe
);
1456 gpio_data
= RD_REG_WORD(®
->gpiod
);
1459 /* Set the modified gpio_enable values */
1460 gpio_enable
|= GPIO_LED_MASK
;
1462 if (ha
->pio_address
) {
1463 WRT_REG_WORD_PIO(PIO_REG(ha
, gpioe
), gpio_enable
);
1465 WRT_REG_WORD(®
->gpioe
, gpio_enable
);
1466 RD_REG_WORD(®
->gpioe
);
1469 qla2x00_flip_colors(ha
, &led_color
);
1471 /* Clear out any previously set LED color. */
1472 gpio_data
&= ~GPIO_LED_MASK
;
1474 /* Set the new input LED color to GPIOD. */
1475 gpio_data
|= led_color
;
1477 /* Set the modified gpio_data values */
1478 if (ha
->pio_address
) {
1479 WRT_REG_WORD_PIO(PIO_REG(ha
, gpiod
), gpio_data
);
1481 WRT_REG_WORD(®
->gpiod
, gpio_data
);
1482 RD_REG_WORD(®
->gpiod
);
1485 spin_unlock_irqrestore(&ha
->hardware_lock
, flags
);
1489 qla2x00_beacon_on(struct scsi_qla_host
*vha
)
1491 uint16_t gpio_enable
;
1493 unsigned long flags
;
1494 struct qla_hw_data
*ha
= vha
->hw
;
1495 struct device_reg_2xxx __iomem
*reg
= &ha
->iobase
->isp
;
1497 ha
->fw_options
[1] &= ~FO1_SET_EMPHASIS_SWING
;
1498 ha
->fw_options
[1] |= FO1_DISABLE_GPIO6_7
;
1500 if (qla2x00_set_fw_options(vha
, ha
->fw_options
) != QLA_SUCCESS
) {
1501 ql_log(ql_log_warn
, vha
, 0x709b,
1502 "Unable to update fw options (beacon on).\n");
1503 return QLA_FUNCTION_FAILED
;
1506 /* Turn off LEDs. */
1507 spin_lock_irqsave(&ha
->hardware_lock
, flags
);
1508 if (ha
->pio_address
) {
1509 gpio_enable
= RD_REG_WORD_PIO(PIO_REG(ha
, gpioe
));
1510 gpio_data
= RD_REG_WORD_PIO(PIO_REG(ha
, gpiod
));
1512 gpio_enable
= RD_REG_WORD(®
->gpioe
);
1513 gpio_data
= RD_REG_WORD(®
->gpiod
);
1515 gpio_enable
|= GPIO_LED_MASK
;
1517 /* Set the modified gpio_enable values. */
1518 if (ha
->pio_address
) {
1519 WRT_REG_WORD_PIO(PIO_REG(ha
, gpioe
), gpio_enable
);
1521 WRT_REG_WORD(®
->gpioe
, gpio_enable
);
1522 RD_REG_WORD(®
->gpioe
);
1525 /* Clear out previously set LED colour. */
1526 gpio_data
&= ~GPIO_LED_MASK
;
1527 if (ha
->pio_address
) {
1528 WRT_REG_WORD_PIO(PIO_REG(ha
, gpiod
), gpio_data
);
1530 WRT_REG_WORD(®
->gpiod
, gpio_data
);
1531 RD_REG_WORD(®
->gpiod
);
1533 spin_unlock_irqrestore(&ha
->hardware_lock
, flags
);
1536 * Let the per HBA timer kick off the blinking process based on
1537 * the following flags. No need to do anything else now.
1539 ha
->beacon_blink_led
= 1;
1540 ha
->beacon_color_state
= 0;
1546 qla2x00_beacon_off(struct scsi_qla_host
*vha
)
1548 int rval
= QLA_SUCCESS
;
1549 struct qla_hw_data
*ha
= vha
->hw
;
1551 ha
->beacon_blink_led
= 0;
1553 /* Set the on flag so when it gets flipped it will be off. */
1555 ha
->beacon_color_state
= QLA_LED_ALL_ON
;
1557 ha
->beacon_color_state
= QLA_LED_GRN_ON
;
1559 ha
->isp_ops
->beacon_blink(vha
); /* This turns green LED off */
1561 ha
->fw_options
[1] &= ~FO1_SET_EMPHASIS_SWING
;
1562 ha
->fw_options
[1] &= ~FO1_DISABLE_GPIO6_7
;
1564 rval
= qla2x00_set_fw_options(vha
, ha
->fw_options
);
1565 if (rval
!= QLA_SUCCESS
)
1566 ql_log(ql_log_warn
, vha
, 0x709c,
1567 "Unable to update fw options (beacon off).\n");
1573 qla24xx_flip_colors(struct qla_hw_data
*ha
, uint16_t *pflags
)
1575 /* Flip all colors. */
1576 if (ha
->beacon_color_state
== QLA_LED_ALL_ON
) {
1578 ha
->beacon_color_state
= 0;
1582 ha
->beacon_color_state
= QLA_LED_ALL_ON
;
1583 *pflags
= GPDX_LED_YELLOW_ON
| GPDX_LED_AMBER_ON
;
1588 qla24xx_beacon_blink(struct scsi_qla_host
*vha
)
1590 uint16_t led_color
= 0;
1592 unsigned long flags
;
1593 struct qla_hw_data
*ha
= vha
->hw
;
1594 struct device_reg_24xx __iomem
*reg
= &ha
->iobase
->isp24
;
1596 /* Save the Original GPIOD. */
1597 spin_lock_irqsave(&ha
->hardware_lock
, flags
);
1598 gpio_data
= RD_REG_DWORD(®
->gpiod
);
1600 /* Enable the gpio_data reg for update. */
1601 gpio_data
|= GPDX_LED_UPDATE_MASK
;
1603 WRT_REG_DWORD(®
->gpiod
, gpio_data
);
1604 gpio_data
= RD_REG_DWORD(®
->gpiod
);
1606 /* Set the color bits. */
1607 qla24xx_flip_colors(ha
, &led_color
);
1609 /* Clear out any previously set LED color. */
1610 gpio_data
&= ~GPDX_LED_COLOR_MASK
;
1612 /* Set the new input LED color to GPIOD. */
1613 gpio_data
|= led_color
;
1615 /* Set the modified gpio_data values. */
1616 WRT_REG_DWORD(®
->gpiod
, gpio_data
);
1617 gpio_data
= RD_REG_DWORD(®
->gpiod
);
1618 spin_unlock_irqrestore(&ha
->hardware_lock
, flags
);
1622 qla24xx_beacon_on(struct scsi_qla_host
*vha
)
1625 unsigned long flags
;
1626 struct qla_hw_data
*ha
= vha
->hw
;
1627 struct device_reg_24xx __iomem
*reg
= &ha
->iobase
->isp24
;
1632 if (ha
->beacon_blink_led
== 0) {
1633 /* Enable firmware for update */
1634 ha
->fw_options
[1] |= ADD_FO1_DISABLE_GPIO_LED_CTRL
;
1636 if (qla2x00_set_fw_options(vha
, ha
->fw_options
) != QLA_SUCCESS
)
1637 return QLA_FUNCTION_FAILED
;
1639 if (qla2x00_get_fw_options(vha
, ha
->fw_options
) !=
1641 ql_log(ql_log_warn
, vha
, 0x7009,
1642 "Unable to update fw options (beacon on).\n");
1643 return QLA_FUNCTION_FAILED
;
1646 spin_lock_irqsave(&ha
->hardware_lock
, flags
);
1647 gpio_data
= RD_REG_DWORD(®
->gpiod
);
1649 /* Enable the gpio_data reg for update. */
1650 gpio_data
|= GPDX_LED_UPDATE_MASK
;
1651 WRT_REG_DWORD(®
->gpiod
, gpio_data
);
1652 RD_REG_DWORD(®
->gpiod
);
1654 spin_unlock_irqrestore(&ha
->hardware_lock
, flags
);
1657 /* So all colors blink together. */
1658 ha
->beacon_color_state
= 0;
1660 /* Let the per HBA timer kick off the blinking process. */
1661 ha
->beacon_blink_led
= 1;
1667 qla24xx_beacon_off(struct scsi_qla_host
*vha
)
1670 unsigned long flags
;
1671 struct qla_hw_data
*ha
= vha
->hw
;
1672 struct device_reg_24xx __iomem
*reg
= &ha
->iobase
->isp24
;
1677 ha
->beacon_blink_led
= 0;
1678 ha
->beacon_color_state
= QLA_LED_ALL_ON
;
1680 ha
->isp_ops
->beacon_blink(vha
); /* Will flip to all off. */
1682 /* Give control back to firmware. */
1683 spin_lock_irqsave(&ha
->hardware_lock
, flags
);
1684 gpio_data
= RD_REG_DWORD(®
->gpiod
);
1686 /* Disable the gpio_data reg for update. */
1687 gpio_data
&= ~GPDX_LED_UPDATE_MASK
;
1688 WRT_REG_DWORD(®
->gpiod
, gpio_data
);
1689 RD_REG_DWORD(®
->gpiod
);
1690 spin_unlock_irqrestore(&ha
->hardware_lock
, flags
);
1692 ha
->fw_options
[1] &= ~ADD_FO1_DISABLE_GPIO_LED_CTRL
;
1694 if (qla2x00_set_fw_options(vha
, ha
->fw_options
) != QLA_SUCCESS
) {
1695 ql_log(ql_log_warn
, vha
, 0x704d,
1696 "Unable to update fw options (beacon on).\n");
1697 return QLA_FUNCTION_FAILED
;
1700 if (qla2x00_get_fw_options(vha
, ha
->fw_options
) != QLA_SUCCESS
) {
1701 ql_log(ql_log_warn
, vha
, 0x704e,
1702 "Unable to update fw options (beacon on).\n");
1703 return QLA_FUNCTION_FAILED
;
1711 * Flash support routines
1715 * qla2x00_flash_enable() - Setup flash for reading and writing.
1719 qla2x00_flash_enable(struct qla_hw_data
*ha
)
1722 struct device_reg_2xxx __iomem
*reg
= &ha
->iobase
->isp
;
1724 data
= RD_REG_WORD(®
->ctrl_status
);
1725 data
|= CSR_FLASH_ENABLE
;
1726 WRT_REG_WORD(®
->ctrl_status
, data
);
1727 RD_REG_WORD(®
->ctrl_status
); /* PCI Posting. */
1731 * qla2x00_flash_disable() - Disable flash and allow RISC to run.
1735 qla2x00_flash_disable(struct qla_hw_data
*ha
)
1738 struct device_reg_2xxx __iomem
*reg
= &ha
->iobase
->isp
;
1740 data
= RD_REG_WORD(®
->ctrl_status
);
1741 data
&= ~(CSR_FLASH_ENABLE
);
1742 WRT_REG_WORD(®
->ctrl_status
, data
);
1743 RD_REG_WORD(®
->ctrl_status
); /* PCI Posting. */
1747 * qla2x00_read_flash_byte() - Reads a byte from flash
1749 * @addr: Address in flash to read
1751 * A word is read from the chip, but, only the lower byte is valid.
1753 * Returns the byte read from flash @addr.
1756 qla2x00_read_flash_byte(struct qla_hw_data
*ha
, uint32_t addr
)
1759 uint16_t bank_select
;
1760 struct device_reg_2xxx __iomem
*reg
= &ha
->iobase
->isp
;
1762 bank_select
= RD_REG_WORD(®
->ctrl_status
);
1764 if (IS_QLA2322(ha
) || IS_QLA6322(ha
)) {
1765 /* Specify 64K address range: */
1766 /* clear out Module Select and Flash Address bits [19:16]. */
1767 bank_select
&= ~0xf8;
1768 bank_select
|= addr
>> 12 & 0xf0;
1769 bank_select
|= CSR_FLASH_64K_BANK
;
1770 WRT_REG_WORD(®
->ctrl_status
, bank_select
);
1771 RD_REG_WORD(®
->ctrl_status
); /* PCI Posting. */
1773 WRT_REG_WORD(®
->flash_address
, (uint16_t)addr
);
1774 data
= RD_REG_WORD(®
->flash_data
);
1776 return (uint8_t)data
;
1779 /* Setup bit 16 of flash address. */
1780 if ((addr
& BIT_16
) && ((bank_select
& CSR_FLASH_64K_BANK
) == 0)) {
1781 bank_select
|= CSR_FLASH_64K_BANK
;
1782 WRT_REG_WORD(®
->ctrl_status
, bank_select
);
1783 RD_REG_WORD(®
->ctrl_status
); /* PCI Posting. */
1784 } else if (((addr
& BIT_16
) == 0) &&
1785 (bank_select
& CSR_FLASH_64K_BANK
)) {
1786 bank_select
&= ~(CSR_FLASH_64K_BANK
);
1787 WRT_REG_WORD(®
->ctrl_status
, bank_select
);
1788 RD_REG_WORD(®
->ctrl_status
); /* PCI Posting. */
1791 /* Always perform IO mapped accesses to the FLASH registers. */
1792 if (ha
->pio_address
) {
1795 WRT_REG_WORD_PIO(PIO_REG(ha
, flash_address
), (uint16_t)addr
);
1797 data
= RD_REG_WORD_PIO(PIO_REG(ha
, flash_data
));
1800 data2
= RD_REG_WORD_PIO(PIO_REG(ha
, flash_data
));
1801 } while (data
!= data2
);
1803 WRT_REG_WORD(®
->flash_address
, (uint16_t)addr
);
1804 data
= qla2x00_debounce_register(®
->flash_data
);
1807 return (uint8_t)data
;
1811 * qla2x00_write_flash_byte() - Write a byte to flash
1813 * @addr: Address in flash to write
1814 * @data: Data to write
1817 qla2x00_write_flash_byte(struct qla_hw_data
*ha
, uint32_t addr
, uint8_t data
)
1819 uint16_t bank_select
;
1820 struct device_reg_2xxx __iomem
*reg
= &ha
->iobase
->isp
;
1822 bank_select
= RD_REG_WORD(®
->ctrl_status
);
1823 if (IS_QLA2322(ha
) || IS_QLA6322(ha
)) {
1824 /* Specify 64K address range: */
1825 /* clear out Module Select and Flash Address bits [19:16]. */
1826 bank_select
&= ~0xf8;
1827 bank_select
|= addr
>> 12 & 0xf0;
1828 bank_select
|= CSR_FLASH_64K_BANK
;
1829 WRT_REG_WORD(®
->ctrl_status
, bank_select
);
1830 RD_REG_WORD(®
->ctrl_status
); /* PCI Posting. */
1832 WRT_REG_WORD(®
->flash_address
, (uint16_t)addr
);
1833 RD_REG_WORD(®
->ctrl_status
); /* PCI Posting. */
1834 WRT_REG_WORD(®
->flash_data
, (uint16_t)data
);
1835 RD_REG_WORD(®
->ctrl_status
); /* PCI Posting. */
1840 /* Setup bit 16 of flash address. */
1841 if ((addr
& BIT_16
) && ((bank_select
& CSR_FLASH_64K_BANK
) == 0)) {
1842 bank_select
|= CSR_FLASH_64K_BANK
;
1843 WRT_REG_WORD(®
->ctrl_status
, bank_select
);
1844 RD_REG_WORD(®
->ctrl_status
); /* PCI Posting. */
1845 } else if (((addr
& BIT_16
) == 0) &&
1846 (bank_select
& CSR_FLASH_64K_BANK
)) {
1847 bank_select
&= ~(CSR_FLASH_64K_BANK
);
1848 WRT_REG_WORD(®
->ctrl_status
, bank_select
);
1849 RD_REG_WORD(®
->ctrl_status
); /* PCI Posting. */
1852 /* Always perform IO mapped accesses to the FLASH registers. */
1853 if (ha
->pio_address
) {
1854 WRT_REG_WORD_PIO(PIO_REG(ha
, flash_address
), (uint16_t)addr
);
1855 WRT_REG_WORD_PIO(PIO_REG(ha
, flash_data
), (uint16_t)data
);
1857 WRT_REG_WORD(®
->flash_address
, (uint16_t)addr
);
1858 RD_REG_WORD(®
->ctrl_status
); /* PCI Posting. */
1859 WRT_REG_WORD(®
->flash_data
, (uint16_t)data
);
1860 RD_REG_WORD(®
->ctrl_status
); /* PCI Posting. */
1865 * qla2x00_poll_flash() - Polls flash for completion.
1867 * @addr: Address in flash to poll
1868 * @poll_data: Data to be polled
1869 * @man_id: Flash manufacturer ID
1870 * @flash_id: Flash ID
1872 * This function polls the device until bit 7 of what is read matches data
1873 * bit 7 or until data bit 5 becomes a 1. If that hapens, the flash ROM timed
1874 * out (a fatal error). The flash book recommeds reading bit 7 again after
1875 * reading bit 5 as a 1.
1877 * Returns 0 on success, else non-zero.
1880 qla2x00_poll_flash(struct qla_hw_data
*ha
, uint32_t addr
, uint8_t poll_data
,
1881 uint8_t man_id
, uint8_t flash_id
)
1889 /* Wait for 30 seconds for command to finish. */
1891 for (cnt
= 3000000; cnt
; cnt
--) {
1892 flash_data
= qla2x00_read_flash_byte(ha
, addr
);
1893 if ((flash_data
& BIT_7
) == poll_data
) {
1898 if (man_id
!= 0x40 && man_id
!= 0xda) {
1899 if ((flash_data
& BIT_5
) && cnt
> 2)
1910 * qla2x00_program_flash_address() - Programs a flash address
1912 * @addr: Address in flash to program
1913 * @data: Data to be written in flash
1914 * @man_id: Flash manufacturer ID
1915 * @flash_id: Flash ID
1917 * Returns 0 on success, else non-zero.
1920 qla2x00_program_flash_address(struct qla_hw_data
*ha
, uint32_t addr
,
1921 uint8_t data
, uint8_t man_id
, uint8_t flash_id
)
1923 /* Write Program Command Sequence. */
1924 if (IS_OEM_001(ha
)) {
1925 qla2x00_write_flash_byte(ha
, 0xaaa, 0xaa);
1926 qla2x00_write_flash_byte(ha
, 0x555, 0x55);
1927 qla2x00_write_flash_byte(ha
, 0xaaa, 0xa0);
1928 qla2x00_write_flash_byte(ha
, addr
, data
);
1930 if (man_id
== 0xda && flash_id
== 0xc1) {
1931 qla2x00_write_flash_byte(ha
, addr
, data
);
1935 qla2x00_write_flash_byte(ha
, 0x5555, 0xaa);
1936 qla2x00_write_flash_byte(ha
, 0x2aaa, 0x55);
1937 qla2x00_write_flash_byte(ha
, 0x5555, 0xa0);
1938 qla2x00_write_flash_byte(ha
, addr
, data
);
1944 /* Wait for write to complete. */
1945 return qla2x00_poll_flash(ha
, addr
, data
, man_id
, flash_id
);
1949 * qla2x00_erase_flash() - Erase the flash.
1951 * @man_id: Flash manufacturer ID
1952 * @flash_id: Flash ID
1954 * Returns 0 on success, else non-zero.
1957 qla2x00_erase_flash(struct qla_hw_data
*ha
, uint8_t man_id
, uint8_t flash_id
)
1959 /* Individual Sector Erase Command Sequence */
1960 if (IS_OEM_001(ha
)) {
1961 qla2x00_write_flash_byte(ha
, 0xaaa, 0xaa);
1962 qla2x00_write_flash_byte(ha
, 0x555, 0x55);
1963 qla2x00_write_flash_byte(ha
, 0xaaa, 0x80);
1964 qla2x00_write_flash_byte(ha
, 0xaaa, 0xaa);
1965 qla2x00_write_flash_byte(ha
, 0x555, 0x55);
1966 qla2x00_write_flash_byte(ha
, 0xaaa, 0x10);
1968 qla2x00_write_flash_byte(ha
, 0x5555, 0xaa);
1969 qla2x00_write_flash_byte(ha
, 0x2aaa, 0x55);
1970 qla2x00_write_flash_byte(ha
, 0x5555, 0x80);
1971 qla2x00_write_flash_byte(ha
, 0x5555, 0xaa);
1972 qla2x00_write_flash_byte(ha
, 0x2aaa, 0x55);
1973 qla2x00_write_flash_byte(ha
, 0x5555, 0x10);
1978 /* Wait for erase to complete. */
1979 return qla2x00_poll_flash(ha
, 0x00, 0x80, man_id
, flash_id
);
1983 * qla2x00_erase_flash_sector() - Erase a flash sector.
1985 * @addr: Flash sector to erase
1986 * @sec_mask: Sector address mask
1987 * @man_id: Flash manufacturer ID
1988 * @flash_id: Flash ID
1990 * Returns 0 on success, else non-zero.
1993 qla2x00_erase_flash_sector(struct qla_hw_data
*ha
, uint32_t addr
,
1994 uint32_t sec_mask
, uint8_t man_id
, uint8_t flash_id
)
1996 /* Individual Sector Erase Command Sequence */
1997 qla2x00_write_flash_byte(ha
, 0x5555, 0xaa);
1998 qla2x00_write_flash_byte(ha
, 0x2aaa, 0x55);
1999 qla2x00_write_flash_byte(ha
, 0x5555, 0x80);
2000 qla2x00_write_flash_byte(ha
, 0x5555, 0xaa);
2001 qla2x00_write_flash_byte(ha
, 0x2aaa, 0x55);
2002 if (man_id
== 0x1f && flash_id
== 0x13)
2003 qla2x00_write_flash_byte(ha
, addr
& sec_mask
, 0x10);
2005 qla2x00_write_flash_byte(ha
, addr
& sec_mask
, 0x30);
2009 /* Wait for erase to complete. */
2010 return qla2x00_poll_flash(ha
, addr
, 0x80, man_id
, flash_id
);
2014 * qla2x00_get_flash_manufacturer() - Read manufacturer ID from flash chip.
2015 * @man_id: Flash manufacturer ID
2016 * @flash_id: Flash ID
2019 qla2x00_get_flash_manufacturer(struct qla_hw_data
*ha
, uint8_t *man_id
,
2022 qla2x00_write_flash_byte(ha
, 0x5555, 0xaa);
2023 qla2x00_write_flash_byte(ha
, 0x2aaa, 0x55);
2024 qla2x00_write_flash_byte(ha
, 0x5555, 0x90);
2025 *man_id
= qla2x00_read_flash_byte(ha
, 0x0000);
2026 *flash_id
= qla2x00_read_flash_byte(ha
, 0x0001);
2027 qla2x00_write_flash_byte(ha
, 0x5555, 0xaa);
2028 qla2x00_write_flash_byte(ha
, 0x2aaa, 0x55);
2029 qla2x00_write_flash_byte(ha
, 0x5555, 0xf0);
2033 qla2x00_read_flash_data(struct qla_hw_data
*ha
, uint8_t *tmp_buf
,
2034 uint32_t saddr
, uint32_t length
)
2036 struct device_reg_2xxx __iomem
*reg
= &ha
->iobase
->isp
;
2037 uint32_t midpoint
, ilength
;
2040 midpoint
= length
/ 2;
2042 WRT_REG_WORD(®
->nvram
, 0);
2043 RD_REG_WORD(®
->nvram
);
2044 for (ilength
= 0; ilength
< length
; saddr
++, ilength
++, tmp_buf
++) {
2045 if (ilength
== midpoint
) {
2046 WRT_REG_WORD(®
->nvram
, NVR_SELECT
);
2047 RD_REG_WORD(®
->nvram
);
2049 data
= qla2x00_read_flash_byte(ha
, saddr
);
2058 qla2x00_suspend_hba(struct scsi_qla_host
*vha
)
2061 unsigned long flags
;
2062 struct qla_hw_data
*ha
= vha
->hw
;
2063 struct device_reg_2xxx __iomem
*reg
= &ha
->iobase
->isp
;
2066 scsi_block_requests(vha
->host
);
2067 ha
->isp_ops
->disable_intrs(ha
);
2068 set_bit(MBX_UPDATE_FLASH_ACTIVE
, &ha
->mbx_cmd_flags
);
2071 spin_lock_irqsave(&ha
->hardware_lock
, flags
);
2072 WRT_REG_WORD(®
->hccr
, HCCR_PAUSE_RISC
);
2073 RD_REG_WORD(®
->hccr
);
2074 if (IS_QLA2100(ha
) || IS_QLA2200(ha
) || IS_QLA2300(ha
)) {
2075 for (cnt
= 0; cnt
< 30000; cnt
++) {
2076 if ((RD_REG_WORD(®
->hccr
) & HCCR_RISC_PAUSE
) != 0)
2083 spin_unlock_irqrestore(&ha
->hardware_lock
, flags
);
2087 qla2x00_resume_hba(struct scsi_qla_host
*vha
)
2089 struct qla_hw_data
*ha
= vha
->hw
;
2092 clear_bit(MBX_UPDATE_FLASH_ACTIVE
, &ha
->mbx_cmd_flags
);
2093 set_bit(ISP_ABORT_NEEDED
, &vha
->dpc_flags
);
2094 qla2xxx_wake_dpc(vha
);
2095 qla2x00_wait_for_chip_reset(vha
);
2096 scsi_unblock_requests(vha
->host
);
2100 qla2x00_read_optrom_data(struct scsi_qla_host
*vha
, uint8_t *buf
,
2101 uint32_t offset
, uint32_t length
)
2103 uint32_t addr
, midpoint
;
2105 struct qla_hw_data
*ha
= vha
->hw
;
2106 struct device_reg_2xxx __iomem
*reg
= &ha
->iobase
->isp
;
2109 qla2x00_suspend_hba(vha
);
2112 midpoint
= ha
->optrom_size
/ 2;
2114 qla2x00_flash_enable(ha
);
2115 WRT_REG_WORD(®
->nvram
, 0);
2116 RD_REG_WORD(®
->nvram
); /* PCI Posting. */
2117 for (addr
= offset
, data
= buf
; addr
< length
; addr
++, data
++) {
2118 if (addr
== midpoint
) {
2119 WRT_REG_WORD(®
->nvram
, NVR_SELECT
);
2120 RD_REG_WORD(®
->nvram
); /* PCI Posting. */
2123 *data
= qla2x00_read_flash_byte(ha
, addr
);
2125 qla2x00_flash_disable(ha
);
2128 qla2x00_resume_hba(vha
);
2134 qla2x00_write_optrom_data(struct scsi_qla_host
*vha
, uint8_t *buf
,
2135 uint32_t offset
, uint32_t length
)
2139 uint8_t man_id
, flash_id
, sec_number
, data
;
2141 uint32_t addr
, liter
, sec_mask
, rest_addr
;
2142 struct qla_hw_data
*ha
= vha
->hw
;
2143 struct device_reg_2xxx __iomem
*reg
= &ha
->iobase
->isp
;
2146 qla2x00_suspend_hba(vha
);
2151 /* Reset ISP chip. */
2152 WRT_REG_WORD(®
->ctrl_status
, CSR_ISP_SOFT_RESET
);
2153 pci_read_config_word(ha
->pdev
, PCI_COMMAND
, &wd
);
2155 /* Go with write. */
2156 qla2x00_flash_enable(ha
);
2157 do { /* Loop once to provide quick error exit */
2158 /* Structure of flash memory based on manufacturer */
2159 if (IS_OEM_001(ha
)) {
2160 /* OEM variant with special flash part. */
2161 man_id
= flash_id
= 0;
2166 qla2x00_get_flash_manufacturer(ha
, &man_id
, &flash_id
);
2168 case 0x20: /* ST flash. */
2169 if (flash_id
== 0xd2 || flash_id
== 0xe3) {
2171 * ST m29w008at part - 64kb sector size with
2172 * 32kb,8kb,8kb,16kb sectors at memory address
2180 * ST m29w010b part - 16kb sector size
2181 * Default to 16kb sectors
2186 case 0x40: /* Mostel flash. */
2187 /* Mostel v29c51001 part - 512 byte sector size. */
2191 case 0xbf: /* SST flash. */
2192 /* SST39sf10 part - 4kb sector size. */
2196 case 0xda: /* Winbond flash. */
2197 /* Winbond W29EE011 part - 256 byte sector size. */
2201 case 0xc2: /* Macronix flash. */
2202 /* 64k sector size. */
2203 if (flash_id
== 0x38 || flash_id
== 0x4f) {
2208 /* Fall through... */
2210 case 0x1f: /* Atmel flash. */
2211 /* 512k sector size. */
2212 if (flash_id
== 0x13) {
2213 rest_addr
= 0x7fffffff;
2214 sec_mask
= 0x80000000;
2217 /* Fall through... */
2219 case 0x01: /* AMD flash. */
2220 if (flash_id
== 0x38 || flash_id
== 0x40 ||
2222 /* Am29LV081 part - 64kb sector size. */
2223 /* Am29LV002BT part - 64kb sector size. */
2227 } else if (flash_id
== 0x3e) {
2229 * Am29LV008b part - 64kb sector size with
2230 * 32kb,8kb,8kb,16kb sector at memory address
2236 } else if (flash_id
== 0x20 || flash_id
== 0x6e) {
2238 * Am29LV010 part or AM29f010 - 16kb sector
2244 } else if (flash_id
== 0x6d) {
2245 /* Am29LV001 part - 8kb sector size. */
2251 /* Default to 16 kb sector size. */
2258 if (IS_QLA2322(ha
) || IS_QLA6322(ha
)) {
2259 if (qla2x00_erase_flash(ha
, man_id
, flash_id
)) {
2260 rval
= QLA_FUNCTION_FAILED
;
2265 for (addr
= offset
, liter
= 0; liter
< length
; liter
++,
2268 /* Are we at the beginning of a sector? */
2269 if ((addr
& rest_addr
) == 0) {
2270 if (IS_QLA2322(ha
) || IS_QLA6322(ha
)) {
2271 if (addr
>= 0x10000UL
) {
2272 if (((addr
>> 12) & 0xf0) &&
2274 flash_id
== 0x3e) ||
2276 flash_id
== 0xd2))) {
2278 if (sec_number
== 1) {
2299 } else if (addr
== ha
->optrom_size
/ 2) {
2300 WRT_REG_WORD(®
->nvram
, NVR_SELECT
);
2301 RD_REG_WORD(®
->nvram
);
2304 if (flash_id
== 0xda && man_id
== 0xc1) {
2305 qla2x00_write_flash_byte(ha
, 0x5555,
2307 qla2x00_write_flash_byte(ha
, 0x2aaa,
2309 qla2x00_write_flash_byte(ha
, 0x5555,
2311 } else if (!IS_QLA2322(ha
) && !IS_QLA6322(ha
)) {
2313 if (qla2x00_erase_flash_sector(ha
,
2314 addr
, sec_mask
, man_id
,
2316 rval
= QLA_FUNCTION_FAILED
;
2319 if (man_id
== 0x01 && flash_id
== 0x6d)
2324 if (man_id
== 0x01 && flash_id
== 0x6d) {
2325 if (sec_number
== 1 &&
2326 addr
== (rest_addr
- 1)) {
2329 } else if (sec_number
== 3 && (addr
& 0x7ffe)) {
2335 if (qla2x00_program_flash_address(ha
, addr
, data
,
2336 man_id
, flash_id
)) {
2337 rval
= QLA_FUNCTION_FAILED
;
2343 qla2x00_flash_disable(ha
);
2346 qla2x00_resume_hba(vha
);
2352 qla24xx_read_optrom_data(struct scsi_qla_host
*vha
, uint8_t *buf
,
2353 uint32_t offset
, uint32_t length
)
2355 struct qla_hw_data
*ha
= vha
->hw
;
2358 scsi_block_requests(vha
->host
);
2359 set_bit(MBX_UPDATE_FLASH_ACTIVE
, &ha
->mbx_cmd_flags
);
2362 qla24xx_read_flash_data(vha
, (uint32_t *)buf
, offset
>> 2, length
>> 2);
2365 clear_bit(MBX_UPDATE_FLASH_ACTIVE
, &ha
->mbx_cmd_flags
);
2366 scsi_unblock_requests(vha
->host
);
2372 qla24xx_write_optrom_data(struct scsi_qla_host
*vha
, uint8_t *buf
,
2373 uint32_t offset
, uint32_t length
)
2376 struct qla_hw_data
*ha
= vha
->hw
;
2379 scsi_block_requests(vha
->host
);
2380 set_bit(MBX_UPDATE_FLASH_ACTIVE
, &ha
->mbx_cmd_flags
);
2382 /* Go with write. */
2383 rval
= qla24xx_write_flash_data(vha
, (uint32_t *)buf
, offset
>> 2,
2386 clear_bit(MBX_UPDATE_FLASH_ACTIVE
, &ha
->mbx_cmd_flags
);
2387 scsi_unblock_requests(vha
->host
);
2393 qla25xx_read_optrom_data(struct scsi_qla_host
*vha
, uint8_t *buf
,
2394 uint32_t offset
, uint32_t length
)
2397 dma_addr_t optrom_dma
;
2400 uint32_t faddr
, left
, burst
;
2401 struct qla_hw_data
*ha
= vha
->hw
;
2403 if (IS_QLA25XX(ha
) || IS_QLA81XX(ha
))
2407 if (length
< OPTROM_BURST_SIZE
)
2411 optrom
= dma_alloc_coherent(&ha
->pdev
->dev
, OPTROM_BURST_SIZE
,
2412 &optrom_dma
, GFP_KERNEL
);
2414 ql_log(ql_log_warn
, vha
, 0x00cc,
2415 "Unable to allocate memory for optrom burst read (%x KB).\n",
2416 OPTROM_BURST_SIZE
/ 1024);
2421 faddr
= offset
>> 2;
2423 burst
= OPTROM_BURST_DWORDS
;
2428 rval
= qla2x00_dump_ram(vha
, optrom_dma
,
2429 flash_data_addr(ha
, faddr
), burst
);
2431 ql_log(ql_log_warn
, vha
, 0x00f5,
2432 "Unable to burst-read optrom segment (%x/%x/%llx).\n",
2433 rval
, flash_data_addr(ha
, faddr
),
2434 (unsigned long long)optrom_dma
);
2435 ql_log(ql_log_warn
, vha
, 0x00f6,
2436 "Reverting to slow-read.\n");
2438 dma_free_coherent(&ha
->pdev
->dev
, OPTROM_BURST_SIZE
,
2439 optrom
, optrom_dma
);
2443 memcpy(pbuf
, optrom
, burst
* 4);
2450 dma_free_coherent(&ha
->pdev
->dev
, OPTROM_BURST_SIZE
, optrom
,
2456 return qla24xx_read_optrom_data(vha
, buf
, offset
, length
);
2460 * qla2x00_get_fcode_version() - Determine an FCODE image's version.
2462 * @pcids: Pointer to the FCODE PCI data structure
2464 * The process of retrieving the FCODE version information is at best
2465 * described as interesting.
2467 * Within the first 100h bytes of the image an ASCII string is present
2468 * which contains several pieces of information including the FCODE
2469 * version. Unfortunately it seems the only reliable way to retrieve
2470 * the version is by scanning for another sentinel within the string,
2471 * the FCODE build date:
2473 * ... 2.00.02 10/17/02 ...
2475 * Returns QLA_SUCCESS on successful retrieval of version.
2478 qla2x00_get_fcode_version(struct qla_hw_data
*ha
, uint32_t pcids
)
2480 int ret
= QLA_FUNCTION_FAILED
;
2481 uint32_t istart
, iend
, iter
, vend
;
2482 uint8_t do_next
, rbyte
, *vbyte
;
2484 memset(ha
->fcode_revision
, 0, sizeof(ha
->fcode_revision
));
2486 /* Skip the PCI data structure. */
2488 ((qla2x00_read_flash_byte(ha
, pcids
+ 0x0B) << 8) |
2489 qla2x00_read_flash_byte(ha
, pcids
+ 0x0A));
2490 iend
= istart
+ 0x100;
2492 /* Scan for the sentinel date string...eeewww. */
2495 while ((iter
< iend
) && !do_next
) {
2497 if (qla2x00_read_flash_byte(ha
, iter
) == '/') {
2498 if (qla2x00_read_flash_byte(ha
, iter
+ 2) ==
2501 else if (qla2x00_read_flash_byte(ha
,
2509 /* Backtrack to previous ' ' (space). */
2511 while ((iter
> istart
) && !do_next
) {
2513 if (qla2x00_read_flash_byte(ha
, iter
) == ' ')
2520 * Mark end of version tag, and find previous ' ' (space) or
2521 * string length (recent FCODE images -- major hack ahead!!!).
2525 while ((iter
> istart
) && !do_next
) {
2527 rbyte
= qla2x00_read_flash_byte(ha
, iter
);
2528 if (rbyte
== ' ' || rbyte
== 0xd || rbyte
== 0x10)
2534 /* Mark beginning of version tag, and copy data. */
2536 if ((vend
- iter
) &&
2537 ((vend
- iter
) < sizeof(ha
->fcode_revision
))) {
2538 vbyte
= ha
->fcode_revision
;
2539 while (iter
<= vend
) {
2540 *vbyte
++ = qla2x00_read_flash_byte(ha
, iter
);
2547 if (ret
!= QLA_SUCCESS
)
2548 memset(ha
->fcode_revision
, 0, sizeof(ha
->fcode_revision
));
2552 qla2x00_get_flash_version(scsi_qla_host_t
*vha
, void *mbuf
)
2554 int ret
= QLA_SUCCESS
;
2555 uint8_t code_type
, last_image
;
2556 uint32_t pcihdr
, pcids
;
2559 struct qla_hw_data
*ha
= vha
->hw
;
2561 if (!ha
->pio_address
|| !mbuf
)
2562 return QLA_FUNCTION_FAILED
;
2564 memset(ha
->bios_revision
, 0, sizeof(ha
->bios_revision
));
2565 memset(ha
->efi_revision
, 0, sizeof(ha
->efi_revision
));
2566 memset(ha
->fcode_revision
, 0, sizeof(ha
->fcode_revision
));
2567 memset(ha
->fw_revision
, 0, sizeof(ha
->fw_revision
));
2569 qla2x00_flash_enable(ha
);
2571 /* Begin with first PCI expansion ROM header. */
2575 /* Verify PCI expansion ROM header. */
2576 if (qla2x00_read_flash_byte(ha
, pcihdr
) != 0x55 ||
2577 qla2x00_read_flash_byte(ha
, pcihdr
+ 0x01) != 0xaa) {
2579 ql_log(ql_log_fatal
, vha
, 0x0050,
2580 "No matching ROM signature.\n");
2581 ret
= QLA_FUNCTION_FAILED
;
2585 /* Locate PCI data structure. */
2587 ((qla2x00_read_flash_byte(ha
, pcihdr
+ 0x19) << 8) |
2588 qla2x00_read_flash_byte(ha
, pcihdr
+ 0x18));
2590 /* Validate signature of PCI data structure. */
2591 if (qla2x00_read_flash_byte(ha
, pcids
) != 'P' ||
2592 qla2x00_read_flash_byte(ha
, pcids
+ 0x1) != 'C' ||
2593 qla2x00_read_flash_byte(ha
, pcids
+ 0x2) != 'I' ||
2594 qla2x00_read_flash_byte(ha
, pcids
+ 0x3) != 'R') {
2595 /* Incorrect header. */
2596 ql_log(ql_log_fatal
, vha
, 0x0051,
2597 "PCI data struct not found pcir_adr=%x.\n", pcids
);
2598 ret
= QLA_FUNCTION_FAILED
;
2603 code_type
= qla2x00_read_flash_byte(ha
, pcids
+ 0x14);
2604 switch (code_type
) {
2605 case ROM_CODE_TYPE_BIOS
:
2606 /* Intel x86, PC-AT compatible. */
2607 ha
->bios_revision
[0] =
2608 qla2x00_read_flash_byte(ha
, pcids
+ 0x12);
2609 ha
->bios_revision
[1] =
2610 qla2x00_read_flash_byte(ha
, pcids
+ 0x13);
2611 ql_dbg(ql_dbg_init
, vha
, 0x0052,
2612 "Read BIOS %d.%d.\n",
2613 ha
->bios_revision
[1], ha
->bios_revision
[0]);
2615 case ROM_CODE_TYPE_FCODE
:
2616 /* Open Firmware standard for PCI (FCode). */
2618 qla2x00_get_fcode_version(ha
, pcids
);
2620 case ROM_CODE_TYPE_EFI
:
2621 /* Extensible Firmware Interface (EFI). */
2622 ha
->efi_revision
[0] =
2623 qla2x00_read_flash_byte(ha
, pcids
+ 0x12);
2624 ha
->efi_revision
[1] =
2625 qla2x00_read_flash_byte(ha
, pcids
+ 0x13);
2626 ql_dbg(ql_dbg_init
, vha
, 0x0053,
2627 "Read EFI %d.%d.\n",
2628 ha
->efi_revision
[1], ha
->efi_revision
[0]);
2631 ql_log(ql_log_warn
, vha
, 0x0054,
2632 "Unrecognized code type %x at pcids %x.\n",
2637 last_image
= qla2x00_read_flash_byte(ha
, pcids
+ 0x15) & BIT_7
;
2639 /* Locate next PCI expansion ROM. */
2640 pcihdr
+= ((qla2x00_read_flash_byte(ha
, pcids
+ 0x11) << 8) |
2641 qla2x00_read_flash_byte(ha
, pcids
+ 0x10)) * 512;
2642 } while (!last_image
);
2644 if (IS_QLA2322(ha
)) {
2645 /* Read firmware image information. */
2646 memset(ha
->fw_revision
, 0, sizeof(ha
->fw_revision
));
2648 memset(dbyte
, 0, 8);
2649 dcode
= (uint16_t *)dbyte
;
2651 qla2x00_read_flash_data(ha
, dbyte
, ha
->flt_region_fw
* 4 + 10,
2653 ql_dbg(ql_dbg_init
+ ql_dbg_buffer
, vha
, 0x010a,
2655 "ver from flash:.\n");
2656 ql_dump_buffer(ql_dbg_init
+ ql_dbg_buffer
, vha
, 0x010b,
2657 (uint8_t *)dbyte
, 8);
2659 if ((dcode
[0] == 0xffff && dcode
[1] == 0xffff &&
2660 dcode
[2] == 0xffff && dcode
[3] == 0xffff) ||
2661 (dcode
[0] == 0 && dcode
[1] == 0 && dcode
[2] == 0 &&
2663 ql_log(ql_log_warn
, vha
, 0x0057,
2664 "Unrecognized fw revision at %x.\n",
2665 ha
->flt_region_fw
* 4);
2667 /* values are in big endian */
2668 ha
->fw_revision
[0] = dbyte
[0] << 16 | dbyte
[1];
2669 ha
->fw_revision
[1] = dbyte
[2] << 16 | dbyte
[3];
2670 ha
->fw_revision
[2] = dbyte
[4] << 16 | dbyte
[5];
2671 ql_dbg(ql_dbg_init
, vha
, 0x0058,
2673 "%d.%d.%d.\n", ha
->fw_revision
[0],
2674 ha
->fw_revision
[1], ha
->fw_revision
[2]);
2678 qla2x00_flash_disable(ha
);
2684 qla24xx_get_flash_version(scsi_qla_host_t
*vha
, void *mbuf
)
2686 int ret
= QLA_SUCCESS
;
2687 uint32_t pcihdr
, pcids
;
2690 uint8_t code_type
, last_image
;
2692 struct qla_hw_data
*ha
= vha
->hw
;
2698 return QLA_FUNCTION_FAILED
;
2700 memset(ha
->bios_revision
, 0, sizeof(ha
->bios_revision
));
2701 memset(ha
->efi_revision
, 0, sizeof(ha
->efi_revision
));
2702 memset(ha
->fcode_revision
, 0, sizeof(ha
->fcode_revision
));
2703 memset(ha
->fw_revision
, 0, sizeof(ha
->fw_revision
));
2707 /* Begin with first PCI expansion ROM header. */
2708 pcihdr
= ha
->flt_region_boot
<< 2;
2711 /* Verify PCI expansion ROM header. */
2712 qla24xx_read_flash_data(vha
, dcode
, pcihdr
>> 2, 0x20);
2713 bcode
= mbuf
+ (pcihdr
% 4);
2714 if (bcode
[0x0] != 0x55 || bcode
[0x1] != 0xaa) {
2716 ql_log(ql_log_fatal
, vha
, 0x0059,
2717 "No matching ROM signature.\n");
2718 ret
= QLA_FUNCTION_FAILED
;
2722 /* Locate PCI data structure. */
2723 pcids
= pcihdr
+ ((bcode
[0x19] << 8) | bcode
[0x18]);
2725 qla24xx_read_flash_data(vha
, dcode
, pcids
>> 2, 0x20);
2726 bcode
= mbuf
+ (pcihdr
% 4);
2728 /* Validate signature of PCI data structure. */
2729 if (bcode
[0x0] != 'P' || bcode
[0x1] != 'C' ||
2730 bcode
[0x2] != 'I' || bcode
[0x3] != 'R') {
2731 /* Incorrect header. */
2732 ql_log(ql_log_fatal
, vha
, 0x005a,
2733 "PCI data struct not found pcir_adr=%x.\n", pcids
);
2734 ret
= QLA_FUNCTION_FAILED
;
2739 code_type
= bcode
[0x14];
2740 switch (code_type
) {
2741 case ROM_CODE_TYPE_BIOS
:
2742 /* Intel x86, PC-AT compatible. */
2743 ha
->bios_revision
[0] = bcode
[0x12];
2744 ha
->bios_revision
[1] = bcode
[0x13];
2745 ql_dbg(ql_dbg_init
, vha
, 0x005b,
2746 "Read BIOS %d.%d.\n",
2747 ha
->bios_revision
[1], ha
->bios_revision
[0]);
2749 case ROM_CODE_TYPE_FCODE
:
2750 /* Open Firmware standard for PCI (FCode). */
2751 ha
->fcode_revision
[0] = bcode
[0x12];
2752 ha
->fcode_revision
[1] = bcode
[0x13];
2753 ql_dbg(ql_dbg_init
, vha
, 0x005c,
2754 "Read FCODE %d.%d.\n",
2755 ha
->fcode_revision
[1], ha
->fcode_revision
[0]);
2757 case ROM_CODE_TYPE_EFI
:
2758 /* Extensible Firmware Interface (EFI). */
2759 ha
->efi_revision
[0] = bcode
[0x12];
2760 ha
->efi_revision
[1] = bcode
[0x13];
2761 ql_dbg(ql_dbg_init
, vha
, 0x005d,
2762 "Read EFI %d.%d.\n",
2763 ha
->efi_revision
[1], ha
->efi_revision
[0]);
2766 ql_log(ql_log_warn
, vha
, 0x005e,
2767 "Unrecognized code type %x at pcids %x.\n",
2772 last_image
= bcode
[0x15] & BIT_7
;
2774 /* Locate next PCI expansion ROM. */
2775 pcihdr
+= ((bcode
[0x11] << 8) | bcode
[0x10]) * 512;
2776 } while (!last_image
);
2778 /* Read firmware image information. */
2779 memset(ha
->fw_revision
, 0, sizeof(ha
->fw_revision
));
2782 qla24xx_read_flash_data(vha
, dcode
, ha
->flt_region_fw
+ 4, 4);
2783 for (i
= 0; i
< 4; i
++)
2784 dcode
[i
] = be32_to_cpu(dcode
[i
]);
2786 if ((dcode
[0] == 0xffffffff && dcode
[1] == 0xffffffff &&
2787 dcode
[2] == 0xffffffff && dcode
[3] == 0xffffffff) ||
2788 (dcode
[0] == 0 && dcode
[1] == 0 && dcode
[2] == 0 &&
2790 ql_log(ql_log_warn
, vha
, 0x005f,
2791 "Unrecognized fw revision at %x.\n",
2792 ha
->flt_region_fw
* 4);
2794 ha
->fw_revision
[0] = dcode
[0];
2795 ha
->fw_revision
[1] = dcode
[1];
2796 ha
->fw_revision
[2] = dcode
[2];
2797 ha
->fw_revision
[3] = dcode
[3];
2798 ql_dbg(ql_dbg_init
, vha
, 0x0060,
2799 "Firmware revision %d.%d.%d.%d.\n",
2800 ha
->fw_revision
[0], ha
->fw_revision
[1],
2801 ha
->fw_revision
[2], ha
->fw_revision
[3]);
2804 /* Check for golden firmware and get version if available */
2805 if (!IS_QLA81XX(ha
)) {
2806 /* Golden firmware is not present in non 81XX adapters */
2810 memset(ha
->gold_fw_version
, 0, sizeof(ha
->gold_fw_version
));
2812 ha
->isp_ops
->read_optrom(vha
, (uint8_t *)dcode
,
2813 ha
->flt_region_gold_fw
<< 2, 32);
2815 if (dcode
[4] == 0xFFFFFFFF && dcode
[5] == 0xFFFFFFFF &&
2816 dcode
[6] == 0xFFFFFFFF && dcode
[7] == 0xFFFFFFFF) {
2817 ql_log(ql_log_warn
, vha
, 0x0056,
2818 "Unrecognized golden fw at 0x%x.\n",
2819 ha
->flt_region_gold_fw
* 4);
2823 for (i
= 4; i
< 8; i
++)
2824 ha
->gold_fw_version
[i
-4] = be32_to_cpu(dcode
[i
]);
2830 qla2xxx_is_vpd_valid(uint8_t *pos
, uint8_t *end
)
2832 if (pos
>= end
|| *pos
!= 0x82)
2836 if (pos
>= end
|| *pos
!= 0x90)
2840 if (pos
>= end
|| *pos
!= 0x78)
2847 qla2xxx_get_vpd_field(scsi_qla_host_t
*vha
, char *key
, char *str
, size_t size
)
2849 struct qla_hw_data
*ha
= vha
->hw
;
2850 uint8_t *pos
= ha
->vpd
;
2851 uint8_t *end
= pos
+ ha
->vpd_size
;
2854 if (!IS_FWI2_CAPABLE(ha
) || !qla2xxx_is_vpd_valid(pos
, end
))
2857 while (pos
< end
&& *pos
!= 0x78) {
2858 len
= (*pos
== 0x82) ? pos
[1] : pos
[2];
2860 if (!strncmp(pos
, key
, strlen(key
)))
2863 if (*pos
!= 0x90 && *pos
!= 0x91)
2869 if (pos
< end
- len
&& *pos
!= 0x78)
2870 return snprintf(str
, size
, "%.*s", len
, pos
+ 3);
2876 qla24xx_read_fcp_prio_cfg(scsi_qla_host_t
*vha
)
2879 uint32_t fcp_prio_addr
;
2880 struct qla_hw_data
*ha
= vha
->hw
;
2882 if (!ha
->fcp_prio_cfg
) {
2883 ha
->fcp_prio_cfg
= vmalloc(FCP_PRIO_CFG_SIZE
);
2884 if (!ha
->fcp_prio_cfg
) {
2885 ql_log(ql_log_warn
, vha
, 0x00d5,
2886 "Unable to allocate memory for fcp priorty data (%x).\n",
2888 return QLA_FUNCTION_FAILED
;
2891 memset(ha
->fcp_prio_cfg
, 0, FCP_PRIO_CFG_SIZE
);
2893 fcp_prio_addr
= ha
->flt_region_fcp_prio
;
2895 /* first read the fcp priority data header from flash */
2896 ha
->isp_ops
->read_optrom(vha
, (uint8_t *)ha
->fcp_prio_cfg
,
2897 fcp_prio_addr
<< 2, FCP_PRIO_CFG_HDR_SIZE
);
2899 if (!qla24xx_fcp_prio_cfg_valid(vha
, ha
->fcp_prio_cfg
, 0))
2902 /* read remaining FCP CMD config data from flash */
2903 fcp_prio_addr
+= (FCP_PRIO_CFG_HDR_SIZE
>> 2);
2904 len
= ha
->fcp_prio_cfg
->num_entries
* FCP_PRIO_CFG_ENTRY_SIZE
;
2905 max_len
= FCP_PRIO_CFG_SIZE
- FCP_PRIO_CFG_HDR_SIZE
;
2907 ha
->isp_ops
->read_optrom(vha
, (uint8_t *)&ha
->fcp_prio_cfg
->entry
[0],
2908 fcp_prio_addr
<< 2, (len
< max_len
? len
: max_len
));
2910 /* revalidate the entire FCP priority config data, including entries */
2911 if (!qla24xx_fcp_prio_cfg_valid(vha
, ha
->fcp_prio_cfg
, 1))
2914 ha
->flags
.fcp_prio_enabled
= 1;
2917 vfree(ha
->fcp_prio_cfg
);
2918 ha
->fcp_prio_cfg
= NULL
;
2919 return QLA_FUNCTION_FAILED
;