2 * This file is part of UBIFS.
4 * Copyright (C) 2006-2008 Nokia Corporation.
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published by
8 * the Free Software Foundation.
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc., 51
17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
19 * Authors: Adrian Hunter
20 * Artem Bityutskiy (Битюцкий Артём)
23 /* This file implements TNC functions for committing */
25 #include <linux/random.h>
29 * make_idx_node - make an index node for fill-the-gaps method of TNC commit.
30 * @c: UBIFS file-system description object
31 * @idx: buffer in which to place new index node
32 * @znode: znode from which to make new index node
33 * @lnum: LEB number where new index node will be written
34 * @offs: offset where new index node will be written
35 * @len: length of new index node
37 static int make_idx_node(struct ubifs_info
*c
, struct ubifs_idx_node
*idx
,
38 struct ubifs_znode
*znode
, int lnum
, int offs
, int len
)
40 struct ubifs_znode
*zp
;
44 idx
->ch
.node_type
= UBIFS_IDX_NODE
;
45 idx
->child_cnt
= cpu_to_le16(znode
->child_cnt
);
46 idx
->level
= cpu_to_le16(znode
->level
);
47 for (i
= 0; i
< znode
->child_cnt
; i
++) {
48 struct ubifs_branch
*br
= ubifs_idx_branch(c
, idx
, i
);
49 struct ubifs_zbranch
*zbr
= &znode
->zbranch
[i
];
51 key_write_idx(c
, &zbr
->key
, &br
->key
);
52 br
->lnum
= cpu_to_le32(zbr
->lnum
);
53 br
->offs
= cpu_to_le32(zbr
->offs
);
54 br
->len
= cpu_to_le32(zbr
->len
);
55 if (!zbr
->lnum
|| !zbr
->len
) {
56 ubifs_err("bad ref in znode");
57 dbg_dump_znode(c
, znode
);
59 dbg_dump_znode(c
, zbr
->znode
);
62 ubifs_prepare_node(c
, idx
, len
, 0);
64 #ifdef CONFIG_UBIFS_FS_DEBUG
70 err
= insert_old_idx_znode(c
, znode
);
72 /* Update the parent */
75 struct ubifs_zbranch
*zbr
;
77 zbr
= &zp
->zbranch
[znode
->iip
];
86 c
->calc_idx_sz
+= ALIGN(len
, 8);
88 atomic_long_dec(&c
->dirty_zn_cnt
);
90 ubifs_assert(ubifs_zn_dirty(znode
));
91 ubifs_assert(ubifs_zn_cow(znode
));
94 * Note, unlike 'write_index()' we do not add memory barriers here
95 * because this function is called with @c->tnc_mutex locked.
97 __clear_bit(DIRTY_ZNODE
, &znode
->flags
);
98 __clear_bit(COW_ZNODE
, &znode
->flags
);
104 * fill_gap - make index nodes in gaps in dirty index LEBs.
105 * @c: UBIFS file-system description object
106 * @lnum: LEB number that gap appears in
107 * @gap_start: offset of start of gap
108 * @gap_end: offset of end of gap
109 * @dirt: adds dirty space to this
111 * This function returns the number of index nodes written into the gap.
113 static int fill_gap(struct ubifs_info
*c
, int lnum
, int gap_start
, int gap_end
,
116 int len
, gap_remains
, gap_pos
, written
, pad_len
;
118 ubifs_assert((gap_start
& 7) == 0);
119 ubifs_assert((gap_end
& 7) == 0);
120 ubifs_assert(gap_end
>= gap_start
);
122 gap_remains
= gap_end
- gap_start
;
128 len
= ubifs_idx_node_sz(c
, c
->enext
->child_cnt
);
129 if (len
< gap_remains
) {
130 struct ubifs_znode
*znode
= c
->enext
;
131 const int alen
= ALIGN(len
, 8);
134 ubifs_assert(alen
<= gap_remains
);
135 err
= make_idx_node(c
, c
->ileb_buf
+ gap_pos
, znode
,
141 c
->enext
= znode
->cnext
;
142 if (c
->enext
== c
->cnext
)
148 if (gap_end
== c
->leb_size
) {
149 c
->ileb_len
= ALIGN(gap_pos
, c
->min_io_size
);
150 /* Pad to end of min_io_size */
151 pad_len
= c
->ileb_len
- gap_pos
;
153 /* Pad to end of gap */
154 pad_len
= gap_remains
;
155 dbg_gc("LEB %d:%d to %d len %d nodes written %d wasted bytes %d",
156 lnum
, gap_start
, gap_end
, gap_end
- gap_start
, written
, pad_len
);
157 ubifs_pad(c
, c
->ileb_buf
+ gap_pos
, pad_len
);
163 * find_old_idx - find an index node obsoleted since the last commit start.
164 * @c: UBIFS file-system description object
165 * @lnum: LEB number of obsoleted index node
166 * @offs: offset of obsoleted index node
168 * Returns %1 if found and %0 otherwise.
170 static int find_old_idx(struct ubifs_info
*c
, int lnum
, int offs
)
172 struct ubifs_old_idx
*o
;
175 p
= c
->old_idx
.rb_node
;
177 o
= rb_entry(p
, struct ubifs_old_idx
, rb
);
180 else if (lnum
> o
->lnum
)
182 else if (offs
< o
->offs
)
184 else if (offs
> o
->offs
)
193 * is_idx_node_in_use - determine if an index node can be overwritten.
194 * @c: UBIFS file-system description object
195 * @key: key of index node
196 * @level: index node level
197 * @lnum: LEB number of index node
198 * @offs: offset of index node
200 * If @key / @lnum / @offs identify an index node that was not part of the old
201 * index, then this function returns %0 (obsolete). Else if the index node was
202 * part of the old index but is now dirty %1 is returned, else if it is clean %2
203 * is returned. A negative error code is returned on failure.
205 static int is_idx_node_in_use(struct ubifs_info
*c
, union ubifs_key
*key
,
206 int level
, int lnum
, int offs
)
210 ret
= is_idx_node_in_tnc(c
, key
, level
, lnum
, offs
);
212 return ret
; /* Error code */
214 if (find_old_idx(c
, lnum
, offs
))
220 * layout_leb_in_gaps - layout index nodes using in-the-gaps method.
221 * @c: UBIFS file-system description object
222 * @p: return LEB number here
224 * This function lays out new index nodes for dirty znodes using in-the-gaps
225 * method of TNC commit.
226 * This function merely puts the next znode into the next gap, making no attempt
227 * to try to maximise the number of znodes that fit.
228 * This function returns the number of index nodes written into the gaps, or a
229 * negative error code on failure.
231 static int layout_leb_in_gaps(struct ubifs_info
*c
, int *p
)
233 struct ubifs_scan_leb
*sleb
;
234 struct ubifs_scan_node
*snod
;
235 int lnum
, dirt
= 0, gap_start
, gap_end
, err
, written
, tot_written
;
238 /* Get an index LEB with lots of obsolete index nodes */
239 lnum
= ubifs_find_dirty_idx_leb(c
);
242 * There also may be dirt in the index head that could be
243 * filled, however we do not check there at present.
245 return lnum
; /* Error code */
247 dbg_gc("LEB %d", lnum
);
249 * Scan the index LEB. We use the generic scan for this even though
250 * it is more comprehensive and less efficient than is needed for this
253 sleb
= ubifs_scan(c
, lnum
, 0, c
->ileb_buf
, 0);
256 return PTR_ERR(sleb
);
258 list_for_each_entry(snod
, &sleb
->nodes
, list
) {
259 struct ubifs_idx_node
*idx
;
262 ubifs_assert(snod
->type
== UBIFS_IDX_NODE
);
264 key_read(c
, ubifs_idx_key(c
, idx
), &snod
->key
);
265 level
= le16_to_cpu(idx
->level
);
266 /* Determine if the index node is in use (not obsolete) */
267 in_use
= is_idx_node_in_use(c
, &snod
->key
, level
, lnum
,
270 ubifs_scan_destroy(sleb
);
271 return in_use
; /* Error code */
275 dirt
+= ALIGN(snod
->len
, 8);
277 * The obsolete index nodes form gaps that can be
278 * overwritten. This gap has ended because we have
279 * found an index node that is still in use
282 gap_end
= snod
->offs
;
283 /* Try to fill gap */
284 written
= fill_gap(c
, lnum
, gap_start
, gap_end
, &dirt
);
286 ubifs_scan_destroy(sleb
);
287 return written
; /* Error code */
289 tot_written
+= written
;
290 gap_start
= ALIGN(snod
->offs
+ snod
->len
, 8);
293 ubifs_scan_destroy(sleb
);
294 c
->ileb_len
= c
->leb_size
;
295 gap_end
= c
->leb_size
;
296 /* Try to fill gap */
297 written
= fill_gap(c
, lnum
, gap_start
, gap_end
, &dirt
);
299 return written
; /* Error code */
300 tot_written
+= written
;
301 if (tot_written
== 0) {
302 struct ubifs_lprops lp
;
304 dbg_gc("LEB %d wrote %d index nodes", lnum
, tot_written
);
305 err
= ubifs_read_one_lp(c
, lnum
, &lp
);
308 if (lp
.free
== c
->leb_size
) {
310 * We must have snatched this LEB from the idx_gc list
311 * so we need to correct the free and dirty space.
313 err
= ubifs_change_one_lp(c
, lnum
,
314 c
->leb_size
- c
->ileb_len
,
321 err
= ubifs_change_one_lp(c
, lnum
, c
->leb_size
- c
->ileb_len
, dirt
,
325 err
= ubifs_leb_change(c
, lnum
, c
->ileb_buf
, c
->ileb_len
,
329 dbg_gc("LEB %d wrote %d index nodes", lnum
, tot_written
);
334 * get_leb_cnt - calculate the number of empty LEBs needed to commit.
335 * @c: UBIFS file-system description object
336 * @cnt: number of znodes to commit
338 * This function returns the number of empty LEBs needed to commit @cnt znodes
339 * to the current index head. The number is not exact and may be more than
342 static int get_leb_cnt(struct ubifs_info
*c
, int cnt
)
346 /* Assume maximum index node size (i.e. overestimate space needed) */
347 cnt
-= (c
->leb_size
- c
->ihead_offs
) / c
->max_idx_node_sz
;
350 d
= c
->leb_size
/ c
->max_idx_node_sz
;
351 return DIV_ROUND_UP(cnt
, d
);
355 * layout_in_gaps - in-the-gaps method of committing TNC.
356 * @c: UBIFS file-system description object
357 * @cnt: number of dirty znodes to commit.
359 * This function lays out new index nodes for dirty znodes using in-the-gaps
360 * method of TNC commit.
362 * This function returns %0 on success and a negative error code on failure.
364 static int layout_in_gaps(struct ubifs_info
*c
, int cnt
)
366 int err
, leb_needed_cnt
, written
, *p
;
368 dbg_gc("%d znodes to write", cnt
);
370 c
->gap_lebs
= kmalloc(sizeof(int) * (c
->lst
.idx_lebs
+ 1), GFP_NOFS
);
376 ubifs_assert(p
< c
->gap_lebs
+ sizeof(int) * c
->lst
.idx_lebs
);
377 written
= layout_leb_in_gaps(c
, p
);
380 if (err
!= -ENOSPC
) {
385 if (!dbg_is_chk_index(c
)) {
387 * Do not print scary warnings if the debugging
388 * option which forces in-the-gaps is enabled.
390 ubifs_warn("out of space");
391 dbg_dump_budg(c
, &c
->bi
);
394 /* Try to commit anyway */
400 leb_needed_cnt
= get_leb_cnt(c
, cnt
);
401 dbg_gc("%d znodes remaining, need %d LEBs, have %d", cnt
,
402 leb_needed_cnt
, c
->ileb_cnt
);
403 } while (leb_needed_cnt
> c
->ileb_cnt
);
410 * layout_in_empty_space - layout index nodes in empty space.
411 * @c: UBIFS file-system description object
413 * This function lays out new index nodes for dirty znodes using empty LEBs.
415 * This function returns %0 on success and a negative error code on failure.
417 static int layout_in_empty_space(struct ubifs_info
*c
)
419 struct ubifs_znode
*znode
, *cnext
, *zp
;
420 int lnum
, offs
, len
, next_len
, buf_len
, buf_offs
, used
, avail
;
427 lnum
= c
->ihead_lnum
;
428 buf_offs
= c
->ihead_offs
;
430 buf_len
= ubifs_idx_node_sz(c
, c
->fanout
);
431 buf_len
= ALIGN(buf_len
, c
->min_io_size
);
435 /* Ensure there is enough room for first write */
436 next_len
= ubifs_idx_node_sz(c
, cnext
->child_cnt
);
437 if (buf_offs
+ next_len
> c
->leb_size
)
443 len
= ubifs_idx_node_sz(c
, znode
->child_cnt
);
445 /* Determine the index node position */
447 if (c
->ileb_nxt
>= c
->ileb_cnt
) {
448 ubifs_err("out of space");
451 lnum
= c
->ilebs
[c
->ileb_nxt
++];
457 offs
= buf_offs
+ used
;
459 #ifdef CONFIG_UBIFS_FS_DEBUG
465 /* Update the parent */
468 struct ubifs_zbranch
*zbr
;
472 zbr
= &zp
->zbranch
[i
];
477 c
->zroot
.lnum
= lnum
;
478 c
->zroot
.offs
= offs
;
481 c
->calc_idx_sz
+= ALIGN(len
, 8);
484 * Once lprops is updated, we can decrease the dirty znode count
485 * but it is easier to just do it here.
487 atomic_long_dec(&c
->dirty_zn_cnt
);
490 * Calculate the next index node length to see if there is
493 cnext
= znode
->cnext
;
494 if (cnext
== c
->cnext
)
497 next_len
= ubifs_idx_node_sz(c
, cnext
->child_cnt
);
499 /* Update buffer positions */
501 used
+= ALIGN(len
, 8);
502 avail
-= ALIGN(len
, 8);
505 buf_offs
+ used
+ next_len
<= c
->leb_size
&&
509 if (avail
<= 0 && next_len
&&
510 buf_offs
+ used
+ next_len
<= c
->leb_size
)
513 blen
= ALIGN(wlen
, c
->min_io_size
);
515 /* The buffer is full or there are no more znodes to do */
518 if (buf_offs
+ next_len
> c
->leb_size
) {
519 err
= ubifs_update_one_lp(c
, lnum
,
520 c
->leb_size
- buf_offs
, blen
- used
,
529 avail
= buf_len
- used
;
532 err
= ubifs_update_one_lp(c
, lnum
, c
->leb_size
- buf_offs
,
539 #ifdef CONFIG_UBIFS_FS_DEBUG
540 c
->dbg
->new_ihead_lnum
= lnum
;
541 c
->dbg
->new_ihead_offs
= buf_offs
;
548 * layout_commit - determine positions of index nodes to commit.
549 * @c: UBIFS file-system description object
550 * @no_space: indicates that insufficient empty LEBs were allocated
551 * @cnt: number of znodes to commit
553 * Calculate and update the positions of index nodes to commit. If there were
554 * an insufficient number of empty LEBs allocated, then index nodes are placed
555 * into the gaps created by obsolete index nodes in non-empty index LEBs. For
556 * this purpose, an obsolete index node is one that was not in the index as at
557 * the end of the last commit. To write "in-the-gaps" requires that those index
558 * LEBs are updated atomically in-place.
560 static int layout_commit(struct ubifs_info
*c
, int no_space
, int cnt
)
565 err
= layout_in_gaps(c
, cnt
);
569 err
= layout_in_empty_space(c
);
574 * find_first_dirty - find first dirty znode.
575 * @znode: znode to begin searching from
577 static struct ubifs_znode
*find_first_dirty(struct ubifs_znode
*znode
)
585 if (znode
->level
== 0) {
586 if (ubifs_zn_dirty(znode
))
591 for (i
= 0; i
< znode
->child_cnt
; i
++) {
592 struct ubifs_zbranch
*zbr
= &znode
->zbranch
[i
];
594 if (zbr
->znode
&& ubifs_zn_dirty(zbr
->znode
)) {
601 if (ubifs_zn_dirty(znode
))
609 * find_next_dirty - find next dirty znode.
610 * @znode: znode to begin searching from
612 static struct ubifs_znode
*find_next_dirty(struct ubifs_znode
*znode
)
614 int n
= znode
->iip
+ 1;
616 znode
= znode
->parent
;
619 for (; n
< znode
->child_cnt
; n
++) {
620 struct ubifs_zbranch
*zbr
= &znode
->zbranch
[n
];
622 if (zbr
->znode
&& ubifs_zn_dirty(zbr
->znode
))
623 return find_first_dirty(zbr
->znode
);
629 * get_znodes_to_commit - create list of dirty znodes to commit.
630 * @c: UBIFS file-system description object
632 * This function returns the number of znodes to commit.
634 static int get_znodes_to_commit(struct ubifs_info
*c
)
636 struct ubifs_znode
*znode
, *cnext
;
639 c
->cnext
= find_first_dirty(c
->zroot
.znode
);
640 znode
= c
->enext
= c
->cnext
;
642 dbg_cmt("no znodes to commit");
647 ubifs_assert(!ubifs_zn_cow(znode
));
648 __set_bit(COW_ZNODE
, &znode
->flags
);
650 cnext
= find_next_dirty(znode
);
652 znode
->cnext
= c
->cnext
;
655 znode
->cnext
= cnext
;
659 dbg_cmt("committing %d znodes", cnt
);
660 ubifs_assert(cnt
== atomic_long_read(&c
->dirty_zn_cnt
));
665 * alloc_idx_lebs - allocate empty LEBs to be used to commit.
666 * @c: UBIFS file-system description object
667 * @cnt: number of znodes to commit
669 * This function returns %-ENOSPC if it cannot allocate a sufficient number of
670 * empty LEBs. %0 is returned on success, otherwise a negative error code
673 static int alloc_idx_lebs(struct ubifs_info
*c
, int cnt
)
675 int i
, leb_cnt
, lnum
;
679 leb_cnt
= get_leb_cnt(c
, cnt
);
680 dbg_cmt("need about %d empty LEBS for TNC commit", leb_cnt
);
683 c
->ilebs
= kmalloc(leb_cnt
* sizeof(int), GFP_NOFS
);
686 for (i
= 0; i
< leb_cnt
; i
++) {
687 lnum
= ubifs_find_free_leb_for_idx(c
);
690 c
->ilebs
[c
->ileb_cnt
++] = lnum
;
691 dbg_cmt("LEB %d", lnum
);
693 if (dbg_is_chk_index(c
) && !(random32() & 7))
699 * free_unused_idx_lebs - free unused LEBs that were allocated for the commit.
700 * @c: UBIFS file-system description object
702 * It is possible that we allocate more empty LEBs for the commit than we need.
703 * This functions frees the surplus.
705 * This function returns %0 on success and a negative error code on failure.
707 static int free_unused_idx_lebs(struct ubifs_info
*c
)
709 int i
, err
= 0, lnum
, er
;
711 for (i
= c
->ileb_nxt
; i
< c
->ileb_cnt
; i
++) {
713 dbg_cmt("LEB %d", lnum
);
714 er
= ubifs_change_one_lp(c
, lnum
, LPROPS_NC
, LPROPS_NC
, 0,
715 LPROPS_INDEX
| LPROPS_TAKEN
, 0);
723 * free_idx_lebs - free unused LEBs after commit end.
724 * @c: UBIFS file-system description object
726 * This function returns %0 on success and a negative error code on failure.
728 static int free_idx_lebs(struct ubifs_info
*c
)
732 err
= free_unused_idx_lebs(c
);
739 * ubifs_tnc_start_commit - start TNC commit.
740 * @c: UBIFS file-system description object
741 * @zroot: new index root position is returned here
743 * This function prepares the list of indexing nodes to commit and lays out
744 * their positions on flash. If there is not enough free space it uses the
745 * in-gap commit method. Returns zero in case of success and a negative error
746 * code in case of failure.
748 int ubifs_tnc_start_commit(struct ubifs_info
*c
, struct ubifs_zbranch
*zroot
)
752 mutex_lock(&c
->tnc_mutex
);
753 err
= dbg_check_tnc(c
, 1);
756 cnt
= get_znodes_to_commit(c
);
760 err
= alloc_idx_lebs(c
, cnt
);
765 err
= layout_commit(c
, no_space
, cnt
);
768 ubifs_assert(atomic_long_read(&c
->dirty_zn_cnt
) == 0);
769 err
= free_unused_idx_lebs(c
);
774 memcpy(zroot
, &c
->zroot
, sizeof(struct ubifs_zbranch
));
776 err
= ubifs_save_dirty_idx_lnums(c
);
780 spin_lock(&c
->space_lock
);
782 * Although we have not finished committing yet, update size of the
783 * committed index ('c->bi.old_idx_sz') and zero out the index growth
784 * budget. It is OK to do this now, because we've reserved all the
785 * space which is needed to commit the index, and it is save for the
786 * budgeting subsystem to assume the index is already committed,
787 * even though it is not.
789 ubifs_assert(c
->bi
.min_idx_lebs
== ubifs_calc_min_idx_lebs(c
));
790 c
->bi
.old_idx_sz
= c
->calc_idx_sz
;
791 c
->bi
.uncommitted_idx
= 0;
792 c
->bi
.min_idx_lebs
= ubifs_calc_min_idx_lebs(c
);
793 spin_unlock(&c
->space_lock
);
794 mutex_unlock(&c
->tnc_mutex
);
796 dbg_cmt("number of index LEBs %d", c
->lst
.idx_lebs
);
797 dbg_cmt("size of index %llu", c
->calc_idx_sz
);
803 mutex_unlock(&c
->tnc_mutex
);
808 * write_index - write index nodes.
809 * @c: UBIFS file-system description object
811 * This function writes the index nodes whose positions were laid out in the
812 * layout_in_empty_space function.
814 static int write_index(struct ubifs_info
*c
)
816 struct ubifs_idx_node
*idx
;
817 struct ubifs_znode
*znode
, *cnext
;
818 int i
, lnum
, offs
, len
, next_len
, buf_len
, buf_offs
, used
;
819 int avail
, wlen
, err
, lnum_pos
= 0, blen
, nxt_offs
;
826 * Always write index nodes to the index head so that index nodes and
827 * other types of nodes are never mixed in the same erase block.
829 lnum
= c
->ihead_lnum
;
830 buf_offs
= c
->ihead_offs
;
832 /* Allocate commit buffer */
833 buf_len
= ALIGN(c
->max_idx_node_sz
, c
->min_io_size
);
837 /* Ensure there is enough room for first write */
838 next_len
= ubifs_idx_node_sz(c
, cnext
->child_cnt
);
839 if (buf_offs
+ next_len
> c
->leb_size
) {
840 err
= ubifs_update_one_lp(c
, lnum
, LPROPS_NC
, 0, 0,
851 idx
= c
->cbuf
+ used
;
853 /* Make index node */
854 idx
->ch
.node_type
= UBIFS_IDX_NODE
;
855 idx
->child_cnt
= cpu_to_le16(znode
->child_cnt
);
856 idx
->level
= cpu_to_le16(znode
->level
);
857 for (i
= 0; i
< znode
->child_cnt
; i
++) {
858 struct ubifs_branch
*br
= ubifs_idx_branch(c
, idx
, i
);
859 struct ubifs_zbranch
*zbr
= &znode
->zbranch
[i
];
861 key_write_idx(c
, &zbr
->key
, &br
->key
);
862 br
->lnum
= cpu_to_le32(zbr
->lnum
);
863 br
->offs
= cpu_to_le32(zbr
->offs
);
864 br
->len
= cpu_to_le32(zbr
->len
);
865 if (!zbr
->lnum
|| !zbr
->len
) {
866 ubifs_err("bad ref in znode");
867 dbg_dump_znode(c
, znode
);
869 dbg_dump_znode(c
, zbr
->znode
);
872 len
= ubifs_idx_node_sz(c
, znode
->child_cnt
);
873 ubifs_prepare_node(c
, idx
, len
, 0);
875 /* Determine the index node position */
877 lnum
= c
->ilebs
[lnum_pos
++];
882 offs
= buf_offs
+ used
;
884 #ifdef CONFIG_UBIFS_FS_DEBUG
885 if (lnum
!= znode
->lnum
|| offs
!= znode
->offs
||
887 ubifs_err("inconsistent znode posn");
892 /* Grab some stuff from znode while we still can */
893 cnext
= znode
->cnext
;
895 ubifs_assert(ubifs_zn_dirty(znode
));
896 ubifs_assert(ubifs_zn_cow(znode
));
899 * It is important that other threads should see %DIRTY_ZNODE
900 * flag cleared before %COW_ZNODE. Specifically, it matters in
901 * the 'dirty_cow_znode()' function. This is the reason for the
902 * first barrier. Also, we want the bit changes to be seen to
903 * other threads ASAP, to avoid unnecesarry copying, which is
904 * the reason for the second barrier.
906 clear_bit(DIRTY_ZNODE
, &znode
->flags
);
907 smp_mb__before_clear_bit();
908 clear_bit(COW_ZNODE
, &znode
->flags
);
909 smp_mb__after_clear_bit();
912 * We have marked the znode as clean but have not updated the
913 * @c->clean_zn_cnt counter. If this znode becomes dirty again
914 * before 'free_obsolete_znodes()' is called, then
915 * @c->clean_zn_cnt will be decremented before it gets
916 * incremented (resulting in 2 decrements for the same znode).
917 * This means that @c->clean_zn_cnt may become negative for a
920 * Q: why we cannot increment @c->clean_zn_cnt?
921 * A: because we do not have the @c->tnc_mutex locked, and the
922 * following code would be racy and buggy:
924 * if (!ubifs_zn_obsolete(znode)) {
925 * atomic_long_inc(&c->clean_zn_cnt);
926 * atomic_long_inc(&ubifs_clean_zn_cnt);
929 * Thus, we just delay the @c->clean_zn_cnt update until we
930 * have the mutex locked.
933 /* Do not access znode from this point on */
935 /* Update buffer positions */
937 used
+= ALIGN(len
, 8);
938 avail
-= ALIGN(len
, 8);
941 * Calculate the next index node length to see if there is
944 if (cnext
== c
->cnext
)
947 next_len
= ubifs_idx_node_sz(c
, cnext
->child_cnt
);
949 nxt_offs
= buf_offs
+ used
+ next_len
;
950 if (next_len
&& nxt_offs
<= c
->leb_size
) {
956 wlen
= ALIGN(wlen
, 8);
957 blen
= ALIGN(wlen
, c
->min_io_size
);
958 ubifs_pad(c
, c
->cbuf
+ wlen
, blen
- wlen
);
961 /* The buffer is full or there are no more znodes to do */
962 err
= ubifs_leb_write(c
, lnum
, c
->cbuf
, buf_offs
, blen
,
968 if (nxt_offs
> c
->leb_size
) {
969 err
= ubifs_update_one_lp(c
, lnum
, LPROPS_NC
, 0,
978 avail
= buf_len
- used
;
979 memmove(c
->cbuf
, c
->cbuf
+ blen
, used
);
985 #ifdef CONFIG_UBIFS_FS_DEBUG
986 if (lnum
!= c
->dbg
->new_ihead_lnum
||
987 buf_offs
!= c
->dbg
->new_ihead_offs
) {
988 ubifs_err("inconsistent ihead");
993 c
->ihead_lnum
= lnum
;
994 c
->ihead_offs
= buf_offs
;
1000 * free_obsolete_znodes - free obsolete znodes.
1001 * @c: UBIFS file-system description object
1003 * At the end of commit end, obsolete znodes are freed.
1005 static void free_obsolete_znodes(struct ubifs_info
*c
)
1007 struct ubifs_znode
*znode
, *cnext
;
1012 cnext
= znode
->cnext
;
1013 if (ubifs_zn_obsolete(znode
))
1016 znode
->cnext
= NULL
;
1017 atomic_long_inc(&c
->clean_zn_cnt
);
1018 atomic_long_inc(&ubifs_clean_zn_cnt
);
1020 } while (cnext
!= c
->cnext
);
1024 * return_gap_lebs - return LEBs used by the in-gap commit method.
1025 * @c: UBIFS file-system description object
1027 * This function clears the "taken" flag for the LEBs which were used by the
1028 * "commit in-the-gaps" method.
1030 static int return_gap_lebs(struct ubifs_info
*c
)
1038 for (p
= c
->gap_lebs
; *p
!= -1; p
++) {
1039 err
= ubifs_change_one_lp(c
, *p
, LPROPS_NC
, LPROPS_NC
, 0,
1051 * ubifs_tnc_end_commit - update the TNC for commit end.
1052 * @c: UBIFS file-system description object
1054 * Write the dirty znodes.
1056 int ubifs_tnc_end_commit(struct ubifs_info
*c
)
1063 err
= return_gap_lebs(c
);
1067 err
= write_index(c
);
1071 mutex_lock(&c
->tnc_mutex
);
1073 dbg_cmt("TNC height is %d", c
->zroot
.znode
->level
+ 1);
1075 free_obsolete_znodes(c
);
1081 mutex_unlock(&c
->tnc_mutex
);