arm64: ptdump: Indicate whether memory should be faulting
[linux/fpc-iii.git] / kernel / module.c
blob9537da37ce87fe28cf11ee97d78bfa17ddc6beb3
1 /*
2 Copyright (C) 2002 Richard Henderson
3 Copyright (C) 2001 Rusty Russell, 2002, 2010 Rusty Russell IBM.
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the Free Software
17 Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 #include <linux/export.h>
20 #include <linux/moduleloader.h>
21 #include <linux/trace_events.h>
22 #include <linux/init.h>
23 #include <linux/kallsyms.h>
24 #include <linux/file.h>
25 #include <linux/fs.h>
26 #include <linux/sysfs.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/vmalloc.h>
30 #include <linux/elf.h>
31 #include <linux/proc_fs.h>
32 #include <linux/security.h>
33 #include <linux/seq_file.h>
34 #include <linux/syscalls.h>
35 #include <linux/fcntl.h>
36 #include <linux/rcupdate.h>
37 #include <linux/capability.h>
38 #include <linux/cpu.h>
39 #include <linux/moduleparam.h>
40 #include <linux/errno.h>
41 #include <linux/err.h>
42 #include <linux/vermagic.h>
43 #include <linux/notifier.h>
44 #include <linux/sched.h>
45 #include <linux/device.h>
46 #include <linux/string.h>
47 #include <linux/mutex.h>
48 #include <linux/rculist.h>
49 #include <asm/uaccess.h>
50 #include <asm/cacheflush.h>
51 #include <asm/mmu_context.h>
52 #include <linux/license.h>
53 #include <asm/sections.h>
54 #include <linux/tracepoint.h>
55 #include <linux/ftrace.h>
56 #include <linux/async.h>
57 #include <linux/percpu.h>
58 #include <linux/kmemleak.h>
59 #include <linux/jump_label.h>
60 #include <linux/pfn.h>
61 #include <linux/bsearch.h>
62 #include <uapi/linux/module.h>
63 #include "module-internal.h"
65 #define CREATE_TRACE_POINTS
66 #include <trace/events/module.h>
68 #ifndef ARCH_SHF_SMALL
69 #define ARCH_SHF_SMALL 0
70 #endif
73 * Modules' sections will be aligned on page boundaries
74 * to ensure complete separation of code and data, but
75 * only when CONFIG_DEBUG_SET_MODULE_RONX=y
77 #ifdef CONFIG_DEBUG_SET_MODULE_RONX
78 # define debug_align(X) ALIGN(X, PAGE_SIZE)
79 #else
80 # define debug_align(X) (X)
81 #endif
83 /* If this is set, the section belongs in the init part of the module */
84 #define INIT_OFFSET_MASK (1UL << (BITS_PER_LONG-1))
87 * Mutex protects:
88 * 1) List of modules (also safely readable with preempt_disable),
89 * 2) module_use links,
90 * 3) module_addr_min/module_addr_max.
91 * (delete and add uses RCU list operations). */
92 DEFINE_MUTEX(module_mutex);
93 EXPORT_SYMBOL_GPL(module_mutex);
94 static LIST_HEAD(modules);
96 #ifdef CONFIG_MODULES_TREE_LOOKUP
99 * Use a latched RB-tree for __module_address(); this allows us to use
100 * RCU-sched lookups of the address from any context.
102 * This is conditional on PERF_EVENTS || TRACING because those can really hit
103 * __module_address() hard by doing a lot of stack unwinding; potentially from
104 * NMI context.
107 static __always_inline unsigned long __mod_tree_val(struct latch_tree_node *n)
109 struct module_layout *layout = container_of(n, struct module_layout, mtn.node);
111 return (unsigned long)layout->base;
114 static __always_inline unsigned long __mod_tree_size(struct latch_tree_node *n)
116 struct module_layout *layout = container_of(n, struct module_layout, mtn.node);
118 return (unsigned long)layout->size;
121 static __always_inline bool
122 mod_tree_less(struct latch_tree_node *a, struct latch_tree_node *b)
124 return __mod_tree_val(a) < __mod_tree_val(b);
127 static __always_inline int
128 mod_tree_comp(void *key, struct latch_tree_node *n)
130 unsigned long val = (unsigned long)key;
131 unsigned long start, end;
133 start = __mod_tree_val(n);
134 if (val < start)
135 return -1;
137 end = start + __mod_tree_size(n);
138 if (val >= end)
139 return 1;
141 return 0;
144 static const struct latch_tree_ops mod_tree_ops = {
145 .less = mod_tree_less,
146 .comp = mod_tree_comp,
149 static struct mod_tree_root {
150 struct latch_tree_root root;
151 unsigned long addr_min;
152 unsigned long addr_max;
153 } mod_tree __cacheline_aligned = {
154 .addr_min = -1UL,
157 #define module_addr_min mod_tree.addr_min
158 #define module_addr_max mod_tree.addr_max
160 static noinline void __mod_tree_insert(struct mod_tree_node *node)
162 latch_tree_insert(&node->node, &mod_tree.root, &mod_tree_ops);
165 static void __mod_tree_remove(struct mod_tree_node *node)
167 latch_tree_erase(&node->node, &mod_tree.root, &mod_tree_ops);
171 * These modifications: insert, remove_init and remove; are serialized by the
172 * module_mutex.
174 static void mod_tree_insert(struct module *mod)
176 mod->core_layout.mtn.mod = mod;
177 mod->init_layout.mtn.mod = mod;
179 __mod_tree_insert(&mod->core_layout.mtn);
180 if (mod->init_layout.size)
181 __mod_tree_insert(&mod->init_layout.mtn);
184 static void mod_tree_remove_init(struct module *mod)
186 if (mod->init_layout.size)
187 __mod_tree_remove(&mod->init_layout.mtn);
190 static void mod_tree_remove(struct module *mod)
192 __mod_tree_remove(&mod->core_layout.mtn);
193 mod_tree_remove_init(mod);
196 static struct module *mod_find(unsigned long addr)
198 struct latch_tree_node *ltn;
200 ltn = latch_tree_find((void *)addr, &mod_tree.root, &mod_tree_ops);
201 if (!ltn)
202 return NULL;
204 return container_of(ltn, struct mod_tree_node, node)->mod;
207 #else /* MODULES_TREE_LOOKUP */
209 static unsigned long module_addr_min = -1UL, module_addr_max = 0;
211 static void mod_tree_insert(struct module *mod) { }
212 static void mod_tree_remove_init(struct module *mod) { }
213 static void mod_tree_remove(struct module *mod) { }
215 static struct module *mod_find(unsigned long addr)
217 struct module *mod;
219 list_for_each_entry_rcu(mod, &modules, list) {
220 if (within_module(addr, mod))
221 return mod;
224 return NULL;
227 #endif /* MODULES_TREE_LOOKUP */
230 * Bounds of module text, for speeding up __module_address.
231 * Protected by module_mutex.
233 static void __mod_update_bounds(void *base, unsigned int size)
235 unsigned long min = (unsigned long)base;
236 unsigned long max = min + size;
238 if (min < module_addr_min)
239 module_addr_min = min;
240 if (max > module_addr_max)
241 module_addr_max = max;
244 static void mod_update_bounds(struct module *mod)
246 __mod_update_bounds(mod->core_layout.base, mod->core_layout.size);
247 if (mod->init_layout.size)
248 __mod_update_bounds(mod->init_layout.base, mod->init_layout.size);
251 #ifdef CONFIG_KGDB_KDB
252 struct list_head *kdb_modules = &modules; /* kdb needs the list of modules */
253 #endif /* CONFIG_KGDB_KDB */
255 static void module_assert_mutex(void)
257 lockdep_assert_held(&module_mutex);
260 static void module_assert_mutex_or_preempt(void)
262 #ifdef CONFIG_LOCKDEP
263 if (unlikely(!debug_locks))
264 return;
266 WARN_ON(!rcu_read_lock_sched_held() &&
267 !lockdep_is_held(&module_mutex));
268 #endif
271 static bool sig_enforce = IS_ENABLED(CONFIG_MODULE_SIG_FORCE);
272 #ifndef CONFIG_MODULE_SIG_FORCE
273 module_param(sig_enforce, bool_enable_only, 0644);
274 #endif /* !CONFIG_MODULE_SIG_FORCE */
276 /* Block module loading/unloading? */
277 int modules_disabled = 0;
278 core_param(nomodule, modules_disabled, bint, 0);
280 /* Waiting for a module to finish initializing? */
281 static DECLARE_WAIT_QUEUE_HEAD(module_wq);
283 static BLOCKING_NOTIFIER_HEAD(module_notify_list);
285 int register_module_notifier(struct notifier_block *nb)
287 return blocking_notifier_chain_register(&module_notify_list, nb);
289 EXPORT_SYMBOL(register_module_notifier);
291 int unregister_module_notifier(struct notifier_block *nb)
293 return blocking_notifier_chain_unregister(&module_notify_list, nb);
295 EXPORT_SYMBOL(unregister_module_notifier);
297 struct load_info {
298 Elf_Ehdr *hdr;
299 unsigned long len;
300 Elf_Shdr *sechdrs;
301 char *secstrings, *strtab;
302 unsigned long symoffs, stroffs;
303 struct _ddebug *debug;
304 unsigned int num_debug;
305 bool sig_ok;
306 #ifdef CONFIG_KALLSYMS
307 unsigned long mod_kallsyms_init_off;
308 #endif
309 struct {
310 unsigned int sym, str, mod, vers, info, pcpu;
311 } index;
314 /* We require a truly strong try_module_get(): 0 means failure due to
315 ongoing or failed initialization etc. */
316 static inline int strong_try_module_get(struct module *mod)
318 BUG_ON(mod && mod->state == MODULE_STATE_UNFORMED);
319 if (mod && mod->state == MODULE_STATE_COMING)
320 return -EBUSY;
321 if (try_module_get(mod))
322 return 0;
323 else
324 return -ENOENT;
327 static inline void add_taint_module(struct module *mod, unsigned flag,
328 enum lockdep_ok lockdep_ok)
330 add_taint(flag, lockdep_ok);
331 mod->taints |= (1U << flag);
335 * A thread that wants to hold a reference to a module only while it
336 * is running can call this to safely exit. nfsd and lockd use this.
338 void __module_put_and_exit(struct module *mod, long code)
340 module_put(mod);
341 do_exit(code);
343 EXPORT_SYMBOL(__module_put_and_exit);
345 /* Find a module section: 0 means not found. */
346 static unsigned int find_sec(const struct load_info *info, const char *name)
348 unsigned int i;
350 for (i = 1; i < info->hdr->e_shnum; i++) {
351 Elf_Shdr *shdr = &info->sechdrs[i];
352 /* Alloc bit cleared means "ignore it." */
353 if ((shdr->sh_flags & SHF_ALLOC)
354 && strcmp(info->secstrings + shdr->sh_name, name) == 0)
355 return i;
357 return 0;
360 /* Find a module section, or NULL. */
361 static void *section_addr(const struct load_info *info, const char *name)
363 /* Section 0 has sh_addr 0. */
364 return (void *)info->sechdrs[find_sec(info, name)].sh_addr;
367 /* Find a module section, or NULL. Fill in number of "objects" in section. */
368 static void *section_objs(const struct load_info *info,
369 const char *name,
370 size_t object_size,
371 unsigned int *num)
373 unsigned int sec = find_sec(info, name);
375 /* Section 0 has sh_addr 0 and sh_size 0. */
376 *num = info->sechdrs[sec].sh_size / object_size;
377 return (void *)info->sechdrs[sec].sh_addr;
380 /* Provided by the linker */
381 extern const struct kernel_symbol __start___ksymtab[];
382 extern const struct kernel_symbol __stop___ksymtab[];
383 extern const struct kernel_symbol __start___ksymtab_gpl[];
384 extern const struct kernel_symbol __stop___ksymtab_gpl[];
385 extern const struct kernel_symbol __start___ksymtab_gpl_future[];
386 extern const struct kernel_symbol __stop___ksymtab_gpl_future[];
387 extern const unsigned long __start___kcrctab[];
388 extern const unsigned long __start___kcrctab_gpl[];
389 extern const unsigned long __start___kcrctab_gpl_future[];
390 #ifdef CONFIG_UNUSED_SYMBOLS
391 extern const struct kernel_symbol __start___ksymtab_unused[];
392 extern const struct kernel_symbol __stop___ksymtab_unused[];
393 extern const struct kernel_symbol __start___ksymtab_unused_gpl[];
394 extern const struct kernel_symbol __stop___ksymtab_unused_gpl[];
395 extern const unsigned long __start___kcrctab_unused[];
396 extern const unsigned long __start___kcrctab_unused_gpl[];
397 #endif
399 #ifndef CONFIG_MODVERSIONS
400 #define symversion(base, idx) NULL
401 #else
402 #define symversion(base, idx) ((base != NULL) ? ((base) + (idx)) : NULL)
403 #endif
405 static bool each_symbol_in_section(const struct symsearch *arr,
406 unsigned int arrsize,
407 struct module *owner,
408 bool (*fn)(const struct symsearch *syms,
409 struct module *owner,
410 void *data),
411 void *data)
413 unsigned int j;
415 for (j = 0; j < arrsize; j++) {
416 if (fn(&arr[j], owner, data))
417 return true;
420 return false;
423 /* Returns true as soon as fn returns true, otherwise false. */
424 bool each_symbol_section(bool (*fn)(const struct symsearch *arr,
425 struct module *owner,
426 void *data),
427 void *data)
429 struct module *mod;
430 static const struct symsearch arr[] = {
431 { __start___ksymtab, __stop___ksymtab, __start___kcrctab,
432 NOT_GPL_ONLY, false },
433 { __start___ksymtab_gpl, __stop___ksymtab_gpl,
434 __start___kcrctab_gpl,
435 GPL_ONLY, false },
436 { __start___ksymtab_gpl_future, __stop___ksymtab_gpl_future,
437 __start___kcrctab_gpl_future,
438 WILL_BE_GPL_ONLY, false },
439 #ifdef CONFIG_UNUSED_SYMBOLS
440 { __start___ksymtab_unused, __stop___ksymtab_unused,
441 __start___kcrctab_unused,
442 NOT_GPL_ONLY, true },
443 { __start___ksymtab_unused_gpl, __stop___ksymtab_unused_gpl,
444 __start___kcrctab_unused_gpl,
445 GPL_ONLY, true },
446 #endif
449 module_assert_mutex_or_preempt();
451 if (each_symbol_in_section(arr, ARRAY_SIZE(arr), NULL, fn, data))
452 return true;
454 list_for_each_entry_rcu(mod, &modules, list) {
455 struct symsearch arr[] = {
456 { mod->syms, mod->syms + mod->num_syms, mod->crcs,
457 NOT_GPL_ONLY, false },
458 { mod->gpl_syms, mod->gpl_syms + mod->num_gpl_syms,
459 mod->gpl_crcs,
460 GPL_ONLY, false },
461 { mod->gpl_future_syms,
462 mod->gpl_future_syms + mod->num_gpl_future_syms,
463 mod->gpl_future_crcs,
464 WILL_BE_GPL_ONLY, false },
465 #ifdef CONFIG_UNUSED_SYMBOLS
466 { mod->unused_syms,
467 mod->unused_syms + mod->num_unused_syms,
468 mod->unused_crcs,
469 NOT_GPL_ONLY, true },
470 { mod->unused_gpl_syms,
471 mod->unused_gpl_syms + mod->num_unused_gpl_syms,
472 mod->unused_gpl_crcs,
473 GPL_ONLY, true },
474 #endif
477 if (mod->state == MODULE_STATE_UNFORMED)
478 continue;
480 if (each_symbol_in_section(arr, ARRAY_SIZE(arr), mod, fn, data))
481 return true;
483 return false;
485 EXPORT_SYMBOL_GPL(each_symbol_section);
487 struct find_symbol_arg {
488 /* Input */
489 const char *name;
490 bool gplok;
491 bool warn;
493 /* Output */
494 struct module *owner;
495 const unsigned long *crc;
496 const struct kernel_symbol *sym;
499 static bool check_symbol(const struct symsearch *syms,
500 struct module *owner,
501 unsigned int symnum, void *data)
503 struct find_symbol_arg *fsa = data;
505 if (!fsa->gplok) {
506 if (syms->licence == GPL_ONLY)
507 return false;
508 if (syms->licence == WILL_BE_GPL_ONLY && fsa->warn) {
509 pr_warn("Symbol %s is being used by a non-GPL module, "
510 "which will not be allowed in the future\n",
511 fsa->name);
515 #ifdef CONFIG_UNUSED_SYMBOLS
516 if (syms->unused && fsa->warn) {
517 pr_warn("Symbol %s is marked as UNUSED, however this module is "
518 "using it.\n", fsa->name);
519 pr_warn("This symbol will go away in the future.\n");
520 pr_warn("Please evaluate if this is the right api to use and "
521 "if it really is, submit a report to the linux kernel "
522 "mailing list together with submitting your code for "
523 "inclusion.\n");
525 #endif
527 fsa->owner = owner;
528 fsa->crc = symversion(syms->crcs, symnum);
529 fsa->sym = &syms->start[symnum];
530 return true;
533 static int cmp_name(const void *va, const void *vb)
535 const char *a;
536 const struct kernel_symbol *b;
537 a = va; b = vb;
538 return strcmp(a, b->name);
541 static bool find_symbol_in_section(const struct symsearch *syms,
542 struct module *owner,
543 void *data)
545 struct find_symbol_arg *fsa = data;
546 struct kernel_symbol *sym;
548 sym = bsearch(fsa->name, syms->start, syms->stop - syms->start,
549 sizeof(struct kernel_symbol), cmp_name);
551 if (sym != NULL && check_symbol(syms, owner, sym - syms->start, data))
552 return true;
554 return false;
557 /* Find a symbol and return it, along with, (optional) crc and
558 * (optional) module which owns it. Needs preempt disabled or module_mutex. */
559 const struct kernel_symbol *find_symbol(const char *name,
560 struct module **owner,
561 const unsigned long **crc,
562 bool gplok,
563 bool warn)
565 struct find_symbol_arg fsa;
567 fsa.name = name;
568 fsa.gplok = gplok;
569 fsa.warn = warn;
571 if (each_symbol_section(find_symbol_in_section, &fsa)) {
572 if (owner)
573 *owner = fsa.owner;
574 if (crc)
575 *crc = fsa.crc;
576 return fsa.sym;
579 pr_debug("Failed to find symbol %s\n", name);
580 return NULL;
582 EXPORT_SYMBOL_GPL(find_symbol);
585 * Search for module by name: must hold module_mutex (or preempt disabled
586 * for read-only access).
588 static struct module *find_module_all(const char *name, size_t len,
589 bool even_unformed)
591 struct module *mod;
593 module_assert_mutex_or_preempt();
595 list_for_each_entry(mod, &modules, list) {
596 if (!even_unformed && mod->state == MODULE_STATE_UNFORMED)
597 continue;
598 if (strlen(mod->name) == len && !memcmp(mod->name, name, len))
599 return mod;
601 return NULL;
604 struct module *find_module(const char *name)
606 module_assert_mutex();
607 return find_module_all(name, strlen(name), false);
609 EXPORT_SYMBOL_GPL(find_module);
611 #ifdef CONFIG_SMP
613 static inline void __percpu *mod_percpu(struct module *mod)
615 return mod->percpu;
618 static int percpu_modalloc(struct module *mod, struct load_info *info)
620 Elf_Shdr *pcpusec = &info->sechdrs[info->index.pcpu];
621 unsigned long align = pcpusec->sh_addralign;
623 if (!pcpusec->sh_size)
624 return 0;
626 if (align > PAGE_SIZE) {
627 pr_warn("%s: per-cpu alignment %li > %li\n",
628 mod->name, align, PAGE_SIZE);
629 align = PAGE_SIZE;
632 mod->percpu = __alloc_reserved_percpu(pcpusec->sh_size, align);
633 if (!mod->percpu) {
634 pr_warn("%s: Could not allocate %lu bytes percpu data\n",
635 mod->name, (unsigned long)pcpusec->sh_size);
636 return -ENOMEM;
638 mod->percpu_size = pcpusec->sh_size;
639 return 0;
642 static void percpu_modfree(struct module *mod)
644 free_percpu(mod->percpu);
647 static unsigned int find_pcpusec(struct load_info *info)
649 return find_sec(info, ".data..percpu");
652 static void percpu_modcopy(struct module *mod,
653 const void *from, unsigned long size)
655 int cpu;
657 for_each_possible_cpu(cpu)
658 memcpy(per_cpu_ptr(mod->percpu, cpu), from, size);
662 * is_module_percpu_address - test whether address is from module static percpu
663 * @addr: address to test
665 * Test whether @addr belongs to module static percpu area.
667 * RETURNS:
668 * %true if @addr is from module static percpu area
670 bool is_module_percpu_address(unsigned long addr)
672 struct module *mod;
673 unsigned int cpu;
675 preempt_disable();
677 list_for_each_entry_rcu(mod, &modules, list) {
678 if (mod->state == MODULE_STATE_UNFORMED)
679 continue;
680 if (!mod->percpu_size)
681 continue;
682 for_each_possible_cpu(cpu) {
683 void *start = per_cpu_ptr(mod->percpu, cpu);
685 if ((void *)addr >= start &&
686 (void *)addr < start + mod->percpu_size) {
687 preempt_enable();
688 return true;
693 preempt_enable();
694 return false;
697 #else /* ... !CONFIG_SMP */
699 static inline void __percpu *mod_percpu(struct module *mod)
701 return NULL;
703 static int percpu_modalloc(struct module *mod, struct load_info *info)
705 /* UP modules shouldn't have this section: ENOMEM isn't quite right */
706 if (info->sechdrs[info->index.pcpu].sh_size != 0)
707 return -ENOMEM;
708 return 0;
710 static inline void percpu_modfree(struct module *mod)
713 static unsigned int find_pcpusec(struct load_info *info)
715 return 0;
717 static inline void percpu_modcopy(struct module *mod,
718 const void *from, unsigned long size)
720 /* pcpusec should be 0, and size of that section should be 0. */
721 BUG_ON(size != 0);
723 bool is_module_percpu_address(unsigned long addr)
725 return false;
728 #endif /* CONFIG_SMP */
730 #define MODINFO_ATTR(field) \
731 static void setup_modinfo_##field(struct module *mod, const char *s) \
733 mod->field = kstrdup(s, GFP_KERNEL); \
735 static ssize_t show_modinfo_##field(struct module_attribute *mattr, \
736 struct module_kobject *mk, char *buffer) \
738 return scnprintf(buffer, PAGE_SIZE, "%s\n", mk->mod->field); \
740 static int modinfo_##field##_exists(struct module *mod) \
742 return mod->field != NULL; \
744 static void free_modinfo_##field(struct module *mod) \
746 kfree(mod->field); \
747 mod->field = NULL; \
749 static struct module_attribute modinfo_##field = { \
750 .attr = { .name = __stringify(field), .mode = 0444 }, \
751 .show = show_modinfo_##field, \
752 .setup = setup_modinfo_##field, \
753 .test = modinfo_##field##_exists, \
754 .free = free_modinfo_##field, \
757 MODINFO_ATTR(version);
758 MODINFO_ATTR(srcversion);
760 static char last_unloaded_module[MODULE_NAME_LEN+1];
762 #ifdef CONFIG_MODULE_UNLOAD
764 EXPORT_TRACEPOINT_SYMBOL(module_get);
766 /* MODULE_REF_BASE is the base reference count by kmodule loader. */
767 #define MODULE_REF_BASE 1
769 /* Init the unload section of the module. */
770 static int module_unload_init(struct module *mod)
773 * Initialize reference counter to MODULE_REF_BASE.
774 * refcnt == 0 means module is going.
776 atomic_set(&mod->refcnt, MODULE_REF_BASE);
778 INIT_LIST_HEAD(&mod->source_list);
779 INIT_LIST_HEAD(&mod->target_list);
781 /* Hold reference count during initialization. */
782 atomic_inc(&mod->refcnt);
784 return 0;
787 /* Does a already use b? */
788 static int already_uses(struct module *a, struct module *b)
790 struct module_use *use;
792 list_for_each_entry(use, &b->source_list, source_list) {
793 if (use->source == a) {
794 pr_debug("%s uses %s!\n", a->name, b->name);
795 return 1;
798 pr_debug("%s does not use %s!\n", a->name, b->name);
799 return 0;
803 * Module a uses b
804 * - we add 'a' as a "source", 'b' as a "target" of module use
805 * - the module_use is added to the list of 'b' sources (so
806 * 'b' can walk the list to see who sourced them), and of 'a'
807 * targets (so 'a' can see what modules it targets).
809 static int add_module_usage(struct module *a, struct module *b)
811 struct module_use *use;
813 pr_debug("Allocating new usage for %s.\n", a->name);
814 use = kmalloc(sizeof(*use), GFP_ATOMIC);
815 if (!use) {
816 pr_warn("%s: out of memory loading\n", a->name);
817 return -ENOMEM;
820 use->source = a;
821 use->target = b;
822 list_add(&use->source_list, &b->source_list);
823 list_add(&use->target_list, &a->target_list);
824 return 0;
827 /* Module a uses b: caller needs module_mutex() */
828 int ref_module(struct module *a, struct module *b)
830 int err;
832 if (b == NULL || already_uses(a, b))
833 return 0;
835 /* If module isn't available, we fail. */
836 err = strong_try_module_get(b);
837 if (err)
838 return err;
840 err = add_module_usage(a, b);
841 if (err) {
842 module_put(b);
843 return err;
845 return 0;
847 EXPORT_SYMBOL_GPL(ref_module);
849 /* Clear the unload stuff of the module. */
850 static void module_unload_free(struct module *mod)
852 struct module_use *use, *tmp;
854 mutex_lock(&module_mutex);
855 list_for_each_entry_safe(use, tmp, &mod->target_list, target_list) {
856 struct module *i = use->target;
857 pr_debug("%s unusing %s\n", mod->name, i->name);
858 module_put(i);
859 list_del(&use->source_list);
860 list_del(&use->target_list);
861 kfree(use);
863 mutex_unlock(&module_mutex);
866 #ifdef CONFIG_MODULE_FORCE_UNLOAD
867 static inline int try_force_unload(unsigned int flags)
869 int ret = (flags & O_TRUNC);
870 if (ret)
871 add_taint(TAINT_FORCED_RMMOD, LOCKDEP_NOW_UNRELIABLE);
872 return ret;
874 #else
875 static inline int try_force_unload(unsigned int flags)
877 return 0;
879 #endif /* CONFIG_MODULE_FORCE_UNLOAD */
881 /* Try to release refcount of module, 0 means success. */
882 static int try_release_module_ref(struct module *mod)
884 int ret;
886 /* Try to decrement refcnt which we set at loading */
887 ret = atomic_sub_return(MODULE_REF_BASE, &mod->refcnt);
888 BUG_ON(ret < 0);
889 if (ret)
890 /* Someone can put this right now, recover with checking */
891 ret = atomic_add_unless(&mod->refcnt, MODULE_REF_BASE, 0);
893 return ret;
896 static int try_stop_module(struct module *mod, int flags, int *forced)
898 /* If it's not unused, quit unless we're forcing. */
899 if (try_release_module_ref(mod) != 0) {
900 *forced = try_force_unload(flags);
901 if (!(*forced))
902 return -EWOULDBLOCK;
905 /* Mark it as dying. */
906 mod->state = MODULE_STATE_GOING;
908 return 0;
912 * module_refcount - return the refcount or -1 if unloading
914 * @mod: the module we're checking
916 * Returns:
917 * -1 if the module is in the process of unloading
918 * otherwise the number of references in the kernel to the module
920 int module_refcount(struct module *mod)
922 return atomic_read(&mod->refcnt) - MODULE_REF_BASE;
924 EXPORT_SYMBOL(module_refcount);
926 /* This exists whether we can unload or not */
927 static void free_module(struct module *mod);
929 SYSCALL_DEFINE2(delete_module, const char __user *, name_user,
930 unsigned int, flags)
932 struct module *mod;
933 char name[MODULE_NAME_LEN];
934 int ret, forced = 0;
936 if (!capable(CAP_SYS_MODULE) || modules_disabled)
937 return -EPERM;
939 if (strncpy_from_user(name, name_user, MODULE_NAME_LEN-1) < 0)
940 return -EFAULT;
941 name[MODULE_NAME_LEN-1] = '\0';
943 if (mutex_lock_interruptible(&module_mutex) != 0)
944 return -EINTR;
946 mod = find_module(name);
947 if (!mod) {
948 ret = -ENOENT;
949 goto out;
952 if (!list_empty(&mod->source_list)) {
953 /* Other modules depend on us: get rid of them first. */
954 ret = -EWOULDBLOCK;
955 goto out;
958 /* Doing init or already dying? */
959 if (mod->state != MODULE_STATE_LIVE) {
960 /* FIXME: if (force), slam module count damn the torpedoes */
961 pr_debug("%s already dying\n", mod->name);
962 ret = -EBUSY;
963 goto out;
966 /* If it has an init func, it must have an exit func to unload */
967 if (mod->init && !mod->exit) {
968 forced = try_force_unload(flags);
969 if (!forced) {
970 /* This module can't be removed */
971 ret = -EBUSY;
972 goto out;
976 /* Stop the machine so refcounts can't move and disable module. */
977 ret = try_stop_module(mod, flags, &forced);
978 if (ret != 0)
979 goto out;
981 mutex_unlock(&module_mutex);
982 /* Final destruction now no one is using it. */
983 if (mod->exit != NULL)
984 mod->exit();
985 blocking_notifier_call_chain(&module_notify_list,
986 MODULE_STATE_GOING, mod);
987 async_synchronize_full();
989 /* Store the name of the last unloaded module for diagnostic purposes */
990 strlcpy(last_unloaded_module, mod->name, sizeof(last_unloaded_module));
992 free_module(mod);
993 return 0;
994 out:
995 mutex_unlock(&module_mutex);
996 return ret;
999 static inline void print_unload_info(struct seq_file *m, struct module *mod)
1001 struct module_use *use;
1002 int printed_something = 0;
1004 seq_printf(m, " %i ", module_refcount(mod));
1007 * Always include a trailing , so userspace can differentiate
1008 * between this and the old multi-field proc format.
1010 list_for_each_entry(use, &mod->source_list, source_list) {
1011 printed_something = 1;
1012 seq_printf(m, "%s,", use->source->name);
1015 if (mod->init != NULL && mod->exit == NULL) {
1016 printed_something = 1;
1017 seq_puts(m, "[permanent],");
1020 if (!printed_something)
1021 seq_puts(m, "-");
1024 void __symbol_put(const char *symbol)
1026 struct module *owner;
1028 preempt_disable();
1029 if (!find_symbol(symbol, &owner, NULL, true, false))
1030 BUG();
1031 module_put(owner);
1032 preempt_enable();
1034 EXPORT_SYMBOL(__symbol_put);
1036 /* Note this assumes addr is a function, which it currently always is. */
1037 void symbol_put_addr(void *addr)
1039 struct module *modaddr;
1040 unsigned long a = (unsigned long)dereference_function_descriptor(addr);
1042 if (core_kernel_text(a))
1043 return;
1046 * Even though we hold a reference on the module; we still need to
1047 * disable preemption in order to safely traverse the data structure.
1049 preempt_disable();
1050 modaddr = __module_text_address(a);
1051 BUG_ON(!modaddr);
1052 module_put(modaddr);
1053 preempt_enable();
1055 EXPORT_SYMBOL_GPL(symbol_put_addr);
1057 static ssize_t show_refcnt(struct module_attribute *mattr,
1058 struct module_kobject *mk, char *buffer)
1060 return sprintf(buffer, "%i\n", module_refcount(mk->mod));
1063 static struct module_attribute modinfo_refcnt =
1064 __ATTR(refcnt, 0444, show_refcnt, NULL);
1066 void __module_get(struct module *module)
1068 if (module) {
1069 preempt_disable();
1070 atomic_inc(&module->refcnt);
1071 trace_module_get(module, _RET_IP_);
1072 preempt_enable();
1075 EXPORT_SYMBOL(__module_get);
1077 bool try_module_get(struct module *module)
1079 bool ret = true;
1081 if (module) {
1082 preempt_disable();
1083 /* Note: here, we can fail to get a reference */
1084 if (likely(module_is_live(module) &&
1085 atomic_inc_not_zero(&module->refcnt) != 0))
1086 trace_module_get(module, _RET_IP_);
1087 else
1088 ret = false;
1090 preempt_enable();
1092 return ret;
1094 EXPORT_SYMBOL(try_module_get);
1096 void module_put(struct module *module)
1098 int ret;
1100 if (module) {
1101 preempt_disable();
1102 ret = atomic_dec_if_positive(&module->refcnt);
1103 WARN_ON(ret < 0); /* Failed to put refcount */
1104 trace_module_put(module, _RET_IP_);
1105 preempt_enable();
1108 EXPORT_SYMBOL(module_put);
1110 #else /* !CONFIG_MODULE_UNLOAD */
1111 static inline void print_unload_info(struct seq_file *m, struct module *mod)
1113 /* We don't know the usage count, or what modules are using. */
1114 seq_puts(m, " - -");
1117 static inline void module_unload_free(struct module *mod)
1121 int ref_module(struct module *a, struct module *b)
1123 return strong_try_module_get(b);
1125 EXPORT_SYMBOL_GPL(ref_module);
1127 static inline int module_unload_init(struct module *mod)
1129 return 0;
1131 #endif /* CONFIG_MODULE_UNLOAD */
1133 static size_t module_flags_taint(struct module *mod, char *buf)
1135 size_t l = 0;
1137 if (mod->taints & (1 << TAINT_PROPRIETARY_MODULE))
1138 buf[l++] = 'P';
1139 if (mod->taints & (1 << TAINT_OOT_MODULE))
1140 buf[l++] = 'O';
1141 if (mod->taints & (1 << TAINT_FORCED_MODULE))
1142 buf[l++] = 'F';
1143 if (mod->taints & (1 << TAINT_CRAP))
1144 buf[l++] = 'C';
1145 if (mod->taints & (1 << TAINT_UNSIGNED_MODULE))
1146 buf[l++] = 'E';
1148 * TAINT_FORCED_RMMOD: could be added.
1149 * TAINT_CPU_OUT_OF_SPEC, TAINT_MACHINE_CHECK, TAINT_BAD_PAGE don't
1150 * apply to modules.
1152 return l;
1155 static ssize_t show_initstate(struct module_attribute *mattr,
1156 struct module_kobject *mk, char *buffer)
1158 const char *state = "unknown";
1160 switch (mk->mod->state) {
1161 case MODULE_STATE_LIVE:
1162 state = "live";
1163 break;
1164 case MODULE_STATE_COMING:
1165 state = "coming";
1166 break;
1167 case MODULE_STATE_GOING:
1168 state = "going";
1169 break;
1170 default:
1171 BUG();
1173 return sprintf(buffer, "%s\n", state);
1176 static struct module_attribute modinfo_initstate =
1177 __ATTR(initstate, 0444, show_initstate, NULL);
1179 static ssize_t store_uevent(struct module_attribute *mattr,
1180 struct module_kobject *mk,
1181 const char *buffer, size_t count)
1183 enum kobject_action action;
1185 if (kobject_action_type(buffer, count, &action) == 0)
1186 kobject_uevent(&mk->kobj, action);
1187 return count;
1190 struct module_attribute module_uevent =
1191 __ATTR(uevent, 0200, NULL, store_uevent);
1193 static ssize_t show_coresize(struct module_attribute *mattr,
1194 struct module_kobject *mk, char *buffer)
1196 return sprintf(buffer, "%u\n", mk->mod->core_layout.size);
1199 static struct module_attribute modinfo_coresize =
1200 __ATTR(coresize, 0444, show_coresize, NULL);
1202 static ssize_t show_initsize(struct module_attribute *mattr,
1203 struct module_kobject *mk, char *buffer)
1205 return sprintf(buffer, "%u\n", mk->mod->init_layout.size);
1208 static struct module_attribute modinfo_initsize =
1209 __ATTR(initsize, 0444, show_initsize, NULL);
1211 static ssize_t show_taint(struct module_attribute *mattr,
1212 struct module_kobject *mk, char *buffer)
1214 size_t l;
1216 l = module_flags_taint(mk->mod, buffer);
1217 buffer[l++] = '\n';
1218 return l;
1221 static struct module_attribute modinfo_taint =
1222 __ATTR(taint, 0444, show_taint, NULL);
1224 static struct module_attribute *modinfo_attrs[] = {
1225 &module_uevent,
1226 &modinfo_version,
1227 &modinfo_srcversion,
1228 &modinfo_initstate,
1229 &modinfo_coresize,
1230 &modinfo_initsize,
1231 &modinfo_taint,
1232 #ifdef CONFIG_MODULE_UNLOAD
1233 &modinfo_refcnt,
1234 #endif
1235 NULL,
1238 static const char vermagic[] = VERMAGIC_STRING;
1240 static int try_to_force_load(struct module *mod, const char *reason)
1242 #ifdef CONFIG_MODULE_FORCE_LOAD
1243 if (!test_taint(TAINT_FORCED_MODULE))
1244 pr_warn("%s: %s: kernel tainted.\n", mod->name, reason);
1245 add_taint_module(mod, TAINT_FORCED_MODULE, LOCKDEP_NOW_UNRELIABLE);
1246 return 0;
1247 #else
1248 return -ENOEXEC;
1249 #endif
1252 #ifdef CONFIG_MODVERSIONS
1253 /* If the arch applies (non-zero) relocations to kernel kcrctab, unapply it. */
1254 static unsigned long maybe_relocated(unsigned long crc,
1255 const struct module *crc_owner)
1257 #ifdef ARCH_RELOCATES_KCRCTAB
1258 if (crc_owner == NULL)
1259 return crc - (unsigned long)reloc_start;
1260 #endif
1261 return crc;
1264 static int check_version(Elf_Shdr *sechdrs,
1265 unsigned int versindex,
1266 const char *symname,
1267 struct module *mod,
1268 const unsigned long *crc,
1269 const struct module *crc_owner)
1271 unsigned int i, num_versions;
1272 struct modversion_info *versions;
1274 /* Exporting module didn't supply crcs? OK, we're already tainted. */
1275 if (!crc)
1276 return 1;
1278 /* No versions at all? modprobe --force does this. */
1279 if (versindex == 0)
1280 return try_to_force_load(mod, symname) == 0;
1282 versions = (void *) sechdrs[versindex].sh_addr;
1283 num_versions = sechdrs[versindex].sh_size
1284 / sizeof(struct modversion_info);
1286 for (i = 0; i < num_versions; i++) {
1287 if (strcmp(versions[i].name, symname) != 0)
1288 continue;
1290 if (versions[i].crc == maybe_relocated(*crc, crc_owner))
1291 return 1;
1292 pr_debug("Found checksum %lX vs module %lX\n",
1293 maybe_relocated(*crc, crc_owner), versions[i].crc);
1294 goto bad_version;
1297 pr_warn("%s: no symbol version for %s\n", mod->name, symname);
1298 return 0;
1300 bad_version:
1301 pr_warn("%s: disagrees about version of symbol %s\n",
1302 mod->name, symname);
1303 return 0;
1306 static inline int check_modstruct_version(Elf_Shdr *sechdrs,
1307 unsigned int versindex,
1308 struct module *mod)
1310 const unsigned long *crc;
1313 * Since this should be found in kernel (which can't be removed), no
1314 * locking is necessary -- use preempt_disable() to placate lockdep.
1316 preempt_disable();
1317 if (!find_symbol(VMLINUX_SYMBOL_STR(module_layout), NULL,
1318 &crc, true, false)) {
1319 preempt_enable();
1320 BUG();
1322 preempt_enable();
1323 return check_version(sechdrs, versindex,
1324 VMLINUX_SYMBOL_STR(module_layout), mod, crc,
1325 NULL);
1328 /* First part is kernel version, which we ignore if module has crcs. */
1329 static inline int same_magic(const char *amagic, const char *bmagic,
1330 bool has_crcs)
1332 if (has_crcs) {
1333 amagic += strcspn(amagic, " ");
1334 bmagic += strcspn(bmagic, " ");
1336 return strcmp(amagic, bmagic) == 0;
1338 #else
1339 static inline int check_version(Elf_Shdr *sechdrs,
1340 unsigned int versindex,
1341 const char *symname,
1342 struct module *mod,
1343 const unsigned long *crc,
1344 const struct module *crc_owner)
1346 return 1;
1349 static inline int check_modstruct_version(Elf_Shdr *sechdrs,
1350 unsigned int versindex,
1351 struct module *mod)
1353 return 1;
1356 static inline int same_magic(const char *amagic, const char *bmagic,
1357 bool has_crcs)
1359 return strcmp(amagic, bmagic) == 0;
1361 #endif /* CONFIG_MODVERSIONS */
1363 /* Resolve a symbol for this module. I.e. if we find one, record usage. */
1364 static const struct kernel_symbol *resolve_symbol(struct module *mod,
1365 const struct load_info *info,
1366 const char *name,
1367 char ownername[])
1369 struct module *owner;
1370 const struct kernel_symbol *sym;
1371 const unsigned long *crc;
1372 int err;
1375 * The module_mutex should not be a heavily contended lock;
1376 * if we get the occasional sleep here, we'll go an extra iteration
1377 * in the wait_event_interruptible(), which is harmless.
1379 sched_annotate_sleep();
1380 mutex_lock(&module_mutex);
1381 sym = find_symbol(name, &owner, &crc,
1382 !(mod->taints & (1 << TAINT_PROPRIETARY_MODULE)), true);
1383 if (!sym)
1384 goto unlock;
1386 if (!check_version(info->sechdrs, info->index.vers, name, mod, crc,
1387 owner)) {
1388 sym = ERR_PTR(-EINVAL);
1389 goto getname;
1392 err = ref_module(mod, owner);
1393 if (err) {
1394 sym = ERR_PTR(err);
1395 goto getname;
1398 getname:
1399 /* We must make copy under the lock if we failed to get ref. */
1400 strncpy(ownername, module_name(owner), MODULE_NAME_LEN);
1401 unlock:
1402 mutex_unlock(&module_mutex);
1403 return sym;
1406 static const struct kernel_symbol *
1407 resolve_symbol_wait(struct module *mod,
1408 const struct load_info *info,
1409 const char *name)
1411 const struct kernel_symbol *ksym;
1412 char owner[MODULE_NAME_LEN];
1414 if (wait_event_interruptible_timeout(module_wq,
1415 !IS_ERR(ksym = resolve_symbol(mod, info, name, owner))
1416 || PTR_ERR(ksym) != -EBUSY,
1417 30 * HZ) <= 0) {
1418 pr_warn("%s: gave up waiting for init of module %s.\n",
1419 mod->name, owner);
1421 return ksym;
1425 * /sys/module/foo/sections stuff
1426 * J. Corbet <corbet@lwn.net>
1428 #ifdef CONFIG_SYSFS
1430 #ifdef CONFIG_KALLSYMS
1431 static inline bool sect_empty(const Elf_Shdr *sect)
1433 return !(sect->sh_flags & SHF_ALLOC) || sect->sh_size == 0;
1436 struct module_sect_attr {
1437 struct module_attribute mattr;
1438 char *name;
1439 unsigned long address;
1442 struct module_sect_attrs {
1443 struct attribute_group grp;
1444 unsigned int nsections;
1445 struct module_sect_attr attrs[0];
1448 static ssize_t module_sect_show(struct module_attribute *mattr,
1449 struct module_kobject *mk, char *buf)
1451 struct module_sect_attr *sattr =
1452 container_of(mattr, struct module_sect_attr, mattr);
1453 return sprintf(buf, "0x%pK\n", (void *)sattr->address);
1456 static void free_sect_attrs(struct module_sect_attrs *sect_attrs)
1458 unsigned int section;
1460 for (section = 0; section < sect_attrs->nsections; section++)
1461 kfree(sect_attrs->attrs[section].name);
1462 kfree(sect_attrs);
1465 static void add_sect_attrs(struct module *mod, const struct load_info *info)
1467 unsigned int nloaded = 0, i, size[2];
1468 struct module_sect_attrs *sect_attrs;
1469 struct module_sect_attr *sattr;
1470 struct attribute **gattr;
1472 /* Count loaded sections and allocate structures */
1473 for (i = 0; i < info->hdr->e_shnum; i++)
1474 if (!sect_empty(&info->sechdrs[i]))
1475 nloaded++;
1476 size[0] = ALIGN(sizeof(*sect_attrs)
1477 + nloaded * sizeof(sect_attrs->attrs[0]),
1478 sizeof(sect_attrs->grp.attrs[0]));
1479 size[1] = (nloaded + 1) * sizeof(sect_attrs->grp.attrs[0]);
1480 sect_attrs = kzalloc(size[0] + size[1], GFP_KERNEL);
1481 if (sect_attrs == NULL)
1482 return;
1484 /* Setup section attributes. */
1485 sect_attrs->grp.name = "sections";
1486 sect_attrs->grp.attrs = (void *)sect_attrs + size[0];
1488 sect_attrs->nsections = 0;
1489 sattr = &sect_attrs->attrs[0];
1490 gattr = &sect_attrs->grp.attrs[0];
1491 for (i = 0; i < info->hdr->e_shnum; i++) {
1492 Elf_Shdr *sec = &info->sechdrs[i];
1493 if (sect_empty(sec))
1494 continue;
1495 sattr->address = sec->sh_addr;
1496 sattr->name = kstrdup(info->secstrings + sec->sh_name,
1497 GFP_KERNEL);
1498 if (sattr->name == NULL)
1499 goto out;
1500 sect_attrs->nsections++;
1501 sysfs_attr_init(&sattr->mattr.attr);
1502 sattr->mattr.show = module_sect_show;
1503 sattr->mattr.store = NULL;
1504 sattr->mattr.attr.name = sattr->name;
1505 sattr->mattr.attr.mode = S_IRUGO;
1506 *(gattr++) = &(sattr++)->mattr.attr;
1508 *gattr = NULL;
1510 if (sysfs_create_group(&mod->mkobj.kobj, &sect_attrs->grp))
1511 goto out;
1513 mod->sect_attrs = sect_attrs;
1514 return;
1515 out:
1516 free_sect_attrs(sect_attrs);
1519 static void remove_sect_attrs(struct module *mod)
1521 if (mod->sect_attrs) {
1522 sysfs_remove_group(&mod->mkobj.kobj,
1523 &mod->sect_attrs->grp);
1524 /* We are positive that no one is using any sect attrs
1525 * at this point. Deallocate immediately. */
1526 free_sect_attrs(mod->sect_attrs);
1527 mod->sect_attrs = NULL;
1532 * /sys/module/foo/notes/.section.name gives contents of SHT_NOTE sections.
1535 struct module_notes_attrs {
1536 struct kobject *dir;
1537 unsigned int notes;
1538 struct bin_attribute attrs[0];
1541 static ssize_t module_notes_read(struct file *filp, struct kobject *kobj,
1542 struct bin_attribute *bin_attr,
1543 char *buf, loff_t pos, size_t count)
1546 * The caller checked the pos and count against our size.
1548 memcpy(buf, bin_attr->private + pos, count);
1549 return count;
1552 static void free_notes_attrs(struct module_notes_attrs *notes_attrs,
1553 unsigned int i)
1555 if (notes_attrs->dir) {
1556 while (i-- > 0)
1557 sysfs_remove_bin_file(notes_attrs->dir,
1558 &notes_attrs->attrs[i]);
1559 kobject_put(notes_attrs->dir);
1561 kfree(notes_attrs);
1564 static void add_notes_attrs(struct module *mod, const struct load_info *info)
1566 unsigned int notes, loaded, i;
1567 struct module_notes_attrs *notes_attrs;
1568 struct bin_attribute *nattr;
1570 /* failed to create section attributes, so can't create notes */
1571 if (!mod->sect_attrs)
1572 return;
1574 /* Count notes sections and allocate structures. */
1575 notes = 0;
1576 for (i = 0; i < info->hdr->e_shnum; i++)
1577 if (!sect_empty(&info->sechdrs[i]) &&
1578 (info->sechdrs[i].sh_type == SHT_NOTE))
1579 ++notes;
1581 if (notes == 0)
1582 return;
1584 notes_attrs = kzalloc(sizeof(*notes_attrs)
1585 + notes * sizeof(notes_attrs->attrs[0]),
1586 GFP_KERNEL);
1587 if (notes_attrs == NULL)
1588 return;
1590 notes_attrs->notes = notes;
1591 nattr = &notes_attrs->attrs[0];
1592 for (loaded = i = 0; i < info->hdr->e_shnum; ++i) {
1593 if (sect_empty(&info->sechdrs[i]))
1594 continue;
1595 if (info->sechdrs[i].sh_type == SHT_NOTE) {
1596 sysfs_bin_attr_init(nattr);
1597 nattr->attr.name = mod->sect_attrs->attrs[loaded].name;
1598 nattr->attr.mode = S_IRUGO;
1599 nattr->size = info->sechdrs[i].sh_size;
1600 nattr->private = (void *) info->sechdrs[i].sh_addr;
1601 nattr->read = module_notes_read;
1602 ++nattr;
1604 ++loaded;
1607 notes_attrs->dir = kobject_create_and_add("notes", &mod->mkobj.kobj);
1608 if (!notes_attrs->dir)
1609 goto out;
1611 for (i = 0; i < notes; ++i)
1612 if (sysfs_create_bin_file(notes_attrs->dir,
1613 &notes_attrs->attrs[i]))
1614 goto out;
1616 mod->notes_attrs = notes_attrs;
1617 return;
1619 out:
1620 free_notes_attrs(notes_attrs, i);
1623 static void remove_notes_attrs(struct module *mod)
1625 if (mod->notes_attrs)
1626 free_notes_attrs(mod->notes_attrs, mod->notes_attrs->notes);
1629 #else
1631 static inline void add_sect_attrs(struct module *mod,
1632 const struct load_info *info)
1636 static inline void remove_sect_attrs(struct module *mod)
1640 static inline void add_notes_attrs(struct module *mod,
1641 const struct load_info *info)
1645 static inline void remove_notes_attrs(struct module *mod)
1648 #endif /* CONFIG_KALLSYMS */
1650 static void add_usage_links(struct module *mod)
1652 #ifdef CONFIG_MODULE_UNLOAD
1653 struct module_use *use;
1654 int nowarn;
1656 mutex_lock(&module_mutex);
1657 list_for_each_entry(use, &mod->target_list, target_list) {
1658 nowarn = sysfs_create_link(use->target->holders_dir,
1659 &mod->mkobj.kobj, mod->name);
1661 mutex_unlock(&module_mutex);
1662 #endif
1665 static void del_usage_links(struct module *mod)
1667 #ifdef CONFIG_MODULE_UNLOAD
1668 struct module_use *use;
1670 mutex_lock(&module_mutex);
1671 list_for_each_entry(use, &mod->target_list, target_list)
1672 sysfs_remove_link(use->target->holders_dir, mod->name);
1673 mutex_unlock(&module_mutex);
1674 #endif
1677 static int module_add_modinfo_attrs(struct module *mod)
1679 struct module_attribute *attr;
1680 struct module_attribute *temp_attr;
1681 int error = 0;
1682 int i;
1684 mod->modinfo_attrs = kzalloc((sizeof(struct module_attribute) *
1685 (ARRAY_SIZE(modinfo_attrs) + 1)),
1686 GFP_KERNEL);
1687 if (!mod->modinfo_attrs)
1688 return -ENOMEM;
1690 temp_attr = mod->modinfo_attrs;
1691 for (i = 0; (attr = modinfo_attrs[i]) && !error; i++) {
1692 if (!attr->test ||
1693 (attr->test && attr->test(mod))) {
1694 memcpy(temp_attr, attr, sizeof(*temp_attr));
1695 sysfs_attr_init(&temp_attr->attr);
1696 error = sysfs_create_file(&mod->mkobj.kobj,
1697 &temp_attr->attr);
1698 ++temp_attr;
1701 return error;
1704 static void module_remove_modinfo_attrs(struct module *mod)
1706 struct module_attribute *attr;
1707 int i;
1709 for (i = 0; (attr = &mod->modinfo_attrs[i]); i++) {
1710 /* pick a field to test for end of list */
1711 if (!attr->attr.name)
1712 break;
1713 sysfs_remove_file(&mod->mkobj.kobj, &attr->attr);
1714 if (attr->free)
1715 attr->free(mod);
1717 kfree(mod->modinfo_attrs);
1720 static void mod_kobject_put(struct module *mod)
1722 DECLARE_COMPLETION_ONSTACK(c);
1723 mod->mkobj.kobj_completion = &c;
1724 kobject_put(&mod->mkobj.kobj);
1725 wait_for_completion(&c);
1728 static int mod_sysfs_init(struct module *mod)
1730 int err;
1731 struct kobject *kobj;
1733 if (!module_sysfs_initialized) {
1734 pr_err("%s: module sysfs not initialized\n", mod->name);
1735 err = -EINVAL;
1736 goto out;
1739 kobj = kset_find_obj(module_kset, mod->name);
1740 if (kobj) {
1741 pr_err("%s: module is already loaded\n", mod->name);
1742 kobject_put(kobj);
1743 err = -EINVAL;
1744 goto out;
1747 mod->mkobj.mod = mod;
1749 memset(&mod->mkobj.kobj, 0, sizeof(mod->mkobj.kobj));
1750 mod->mkobj.kobj.kset = module_kset;
1751 err = kobject_init_and_add(&mod->mkobj.kobj, &module_ktype, NULL,
1752 "%s", mod->name);
1753 if (err)
1754 mod_kobject_put(mod);
1756 /* delay uevent until full sysfs population */
1757 out:
1758 return err;
1761 static int mod_sysfs_setup(struct module *mod,
1762 const struct load_info *info,
1763 struct kernel_param *kparam,
1764 unsigned int num_params)
1766 int err;
1768 err = mod_sysfs_init(mod);
1769 if (err)
1770 goto out;
1772 mod->holders_dir = kobject_create_and_add("holders", &mod->mkobj.kobj);
1773 if (!mod->holders_dir) {
1774 err = -ENOMEM;
1775 goto out_unreg;
1778 err = module_param_sysfs_setup(mod, kparam, num_params);
1779 if (err)
1780 goto out_unreg_holders;
1782 err = module_add_modinfo_attrs(mod);
1783 if (err)
1784 goto out_unreg_param;
1786 add_usage_links(mod);
1787 add_sect_attrs(mod, info);
1788 add_notes_attrs(mod, info);
1790 kobject_uevent(&mod->mkobj.kobj, KOBJ_ADD);
1791 return 0;
1793 out_unreg_param:
1794 module_param_sysfs_remove(mod);
1795 out_unreg_holders:
1796 kobject_put(mod->holders_dir);
1797 out_unreg:
1798 mod_kobject_put(mod);
1799 out:
1800 return err;
1803 static void mod_sysfs_fini(struct module *mod)
1805 remove_notes_attrs(mod);
1806 remove_sect_attrs(mod);
1807 mod_kobject_put(mod);
1810 static void init_param_lock(struct module *mod)
1812 mutex_init(&mod->param_lock);
1814 #else /* !CONFIG_SYSFS */
1816 static int mod_sysfs_setup(struct module *mod,
1817 const struct load_info *info,
1818 struct kernel_param *kparam,
1819 unsigned int num_params)
1821 return 0;
1824 static void mod_sysfs_fini(struct module *mod)
1828 static void module_remove_modinfo_attrs(struct module *mod)
1832 static void del_usage_links(struct module *mod)
1836 static void init_param_lock(struct module *mod)
1839 #endif /* CONFIG_SYSFS */
1841 static void mod_sysfs_teardown(struct module *mod)
1843 del_usage_links(mod);
1844 module_remove_modinfo_attrs(mod);
1845 module_param_sysfs_remove(mod);
1846 kobject_put(mod->mkobj.drivers_dir);
1847 kobject_put(mod->holders_dir);
1848 mod_sysfs_fini(mod);
1851 #ifdef CONFIG_DEBUG_SET_MODULE_RONX
1853 * LKM RO/NX protection: protect module's text/ro-data
1854 * from modification and any data from execution.
1856 * General layout of module is:
1857 * [text] [read-only-data] [writable data]
1858 * text_size -----^ ^ ^
1859 * ro_size ------------------------| |
1860 * size -------------------------------------------|
1862 * These values are always page-aligned (as is base)
1864 static void frob_text(const struct module_layout *layout,
1865 int (*set_memory)(unsigned long start, int num_pages))
1867 BUG_ON((unsigned long)layout->base & (PAGE_SIZE-1));
1868 BUG_ON((unsigned long)layout->text_size & (PAGE_SIZE-1));
1869 set_memory((unsigned long)layout->base,
1870 layout->text_size >> PAGE_SHIFT);
1873 static void frob_rodata(const struct module_layout *layout,
1874 int (*set_memory)(unsigned long start, int num_pages))
1876 BUG_ON((unsigned long)layout->base & (PAGE_SIZE-1));
1877 BUG_ON((unsigned long)layout->text_size & (PAGE_SIZE-1));
1878 BUG_ON((unsigned long)layout->ro_size & (PAGE_SIZE-1));
1879 set_memory((unsigned long)layout->base + layout->text_size,
1880 (layout->ro_size - layout->text_size) >> PAGE_SHIFT);
1883 static void frob_writable_data(const struct module_layout *layout,
1884 int (*set_memory)(unsigned long start, int num_pages))
1886 BUG_ON((unsigned long)layout->base & (PAGE_SIZE-1));
1887 BUG_ON((unsigned long)layout->ro_size & (PAGE_SIZE-1));
1888 BUG_ON((unsigned long)layout->size & (PAGE_SIZE-1));
1889 set_memory((unsigned long)layout->base + layout->ro_size,
1890 (layout->size - layout->ro_size) >> PAGE_SHIFT);
1893 /* livepatching wants to disable read-only so it can frob module. */
1894 void module_disable_ro(const struct module *mod)
1896 frob_text(&mod->core_layout, set_memory_rw);
1897 frob_rodata(&mod->core_layout, set_memory_rw);
1898 frob_text(&mod->init_layout, set_memory_rw);
1899 frob_rodata(&mod->init_layout, set_memory_rw);
1902 void module_enable_ro(const struct module *mod)
1904 frob_text(&mod->core_layout, set_memory_ro);
1905 frob_rodata(&mod->core_layout, set_memory_ro);
1906 frob_text(&mod->init_layout, set_memory_ro);
1907 frob_rodata(&mod->init_layout, set_memory_ro);
1910 static void module_enable_nx(const struct module *mod)
1912 frob_rodata(&mod->core_layout, set_memory_nx);
1913 frob_writable_data(&mod->core_layout, set_memory_nx);
1914 frob_rodata(&mod->init_layout, set_memory_nx);
1915 frob_writable_data(&mod->init_layout, set_memory_nx);
1918 static void module_disable_nx(const struct module *mod)
1920 frob_rodata(&mod->core_layout, set_memory_x);
1921 frob_writable_data(&mod->core_layout, set_memory_x);
1922 frob_rodata(&mod->init_layout, set_memory_x);
1923 frob_writable_data(&mod->init_layout, set_memory_x);
1926 /* Iterate through all modules and set each module's text as RW */
1927 void set_all_modules_text_rw(void)
1929 struct module *mod;
1931 mutex_lock(&module_mutex);
1932 list_for_each_entry_rcu(mod, &modules, list) {
1933 if (mod->state == MODULE_STATE_UNFORMED)
1934 continue;
1936 frob_text(&mod->core_layout, set_memory_rw);
1937 frob_text(&mod->init_layout, set_memory_rw);
1939 mutex_unlock(&module_mutex);
1942 /* Iterate through all modules and set each module's text as RO */
1943 void set_all_modules_text_ro(void)
1945 struct module *mod;
1947 mutex_lock(&module_mutex);
1948 list_for_each_entry_rcu(mod, &modules, list) {
1949 if (mod->state == MODULE_STATE_UNFORMED)
1950 continue;
1952 frob_text(&mod->core_layout, set_memory_ro);
1953 frob_text(&mod->init_layout, set_memory_ro);
1955 mutex_unlock(&module_mutex);
1958 static void disable_ro_nx(const struct module_layout *layout)
1960 frob_text(layout, set_memory_rw);
1961 frob_rodata(layout, set_memory_rw);
1962 frob_rodata(layout, set_memory_x);
1963 frob_writable_data(layout, set_memory_x);
1966 #else
1967 static void disable_ro_nx(const struct module_layout *layout) { }
1968 static void module_enable_nx(const struct module *mod) { }
1969 static void module_disable_nx(const struct module *mod) { }
1970 #endif
1972 void __weak module_memfree(void *module_region)
1974 vfree(module_region);
1977 void __weak module_arch_cleanup(struct module *mod)
1981 void __weak module_arch_freeing_init(struct module *mod)
1985 /* Free a module, remove from lists, etc. */
1986 static void free_module(struct module *mod)
1988 trace_module_free(mod);
1990 mod_sysfs_teardown(mod);
1992 /* We leave it in list to prevent duplicate loads, but make sure
1993 * that noone uses it while it's being deconstructed. */
1994 mutex_lock(&module_mutex);
1995 mod->state = MODULE_STATE_UNFORMED;
1996 mutex_unlock(&module_mutex);
1998 /* Remove dynamic debug info */
1999 ddebug_remove_module(mod->name);
2001 /* Arch-specific cleanup. */
2002 module_arch_cleanup(mod);
2004 /* Module unload stuff */
2005 module_unload_free(mod);
2007 /* Free any allocated parameters. */
2008 destroy_params(mod->kp, mod->num_kp);
2010 /* Now we can delete it from the lists */
2011 mutex_lock(&module_mutex);
2012 /* Unlink carefully: kallsyms could be walking list. */
2013 list_del_rcu(&mod->list);
2014 mod_tree_remove(mod);
2015 /* Remove this module from bug list, this uses list_del_rcu */
2016 module_bug_cleanup(mod);
2017 /* Wait for RCU-sched synchronizing before releasing mod->list and buglist. */
2018 synchronize_sched();
2019 mutex_unlock(&module_mutex);
2021 /* This may be empty, but that's OK */
2022 disable_ro_nx(&mod->init_layout);
2023 module_arch_freeing_init(mod);
2024 module_memfree(mod->init_layout.base);
2025 kfree(mod->args);
2026 percpu_modfree(mod);
2028 /* Free lock-classes; relies on the preceding sync_rcu(). */
2029 lockdep_free_key_range(mod->core_layout.base, mod->core_layout.size);
2031 /* Finally, free the core (containing the module structure) */
2032 disable_ro_nx(&mod->core_layout);
2033 module_memfree(mod->core_layout.base);
2035 #ifdef CONFIG_MPU
2036 update_protections(current->mm);
2037 #endif
2040 void *__symbol_get(const char *symbol)
2042 struct module *owner;
2043 const struct kernel_symbol *sym;
2045 preempt_disable();
2046 sym = find_symbol(symbol, &owner, NULL, true, true);
2047 if (sym && strong_try_module_get(owner))
2048 sym = NULL;
2049 preempt_enable();
2051 return sym ? (void *)sym->value : NULL;
2053 EXPORT_SYMBOL_GPL(__symbol_get);
2056 * Ensure that an exported symbol [global namespace] does not already exist
2057 * in the kernel or in some other module's exported symbol table.
2059 * You must hold the module_mutex.
2061 static int verify_export_symbols(struct module *mod)
2063 unsigned int i;
2064 struct module *owner;
2065 const struct kernel_symbol *s;
2066 struct {
2067 const struct kernel_symbol *sym;
2068 unsigned int num;
2069 } arr[] = {
2070 { mod->syms, mod->num_syms },
2071 { mod->gpl_syms, mod->num_gpl_syms },
2072 { mod->gpl_future_syms, mod->num_gpl_future_syms },
2073 #ifdef CONFIG_UNUSED_SYMBOLS
2074 { mod->unused_syms, mod->num_unused_syms },
2075 { mod->unused_gpl_syms, mod->num_unused_gpl_syms },
2076 #endif
2079 for (i = 0; i < ARRAY_SIZE(arr); i++) {
2080 for (s = arr[i].sym; s < arr[i].sym + arr[i].num; s++) {
2081 if (find_symbol(s->name, &owner, NULL, true, false)) {
2082 pr_err("%s: exports duplicate symbol %s"
2083 " (owned by %s)\n",
2084 mod->name, s->name, module_name(owner));
2085 return -ENOEXEC;
2089 return 0;
2092 /* Change all symbols so that st_value encodes the pointer directly. */
2093 static int simplify_symbols(struct module *mod, const struct load_info *info)
2095 Elf_Shdr *symsec = &info->sechdrs[info->index.sym];
2096 Elf_Sym *sym = (void *)symsec->sh_addr;
2097 unsigned long secbase;
2098 unsigned int i;
2099 int ret = 0;
2100 const struct kernel_symbol *ksym;
2102 for (i = 1; i < symsec->sh_size / sizeof(Elf_Sym); i++) {
2103 const char *name = info->strtab + sym[i].st_name;
2105 switch (sym[i].st_shndx) {
2106 case SHN_COMMON:
2107 /* Ignore common symbols */
2108 if (!strncmp(name, "__gnu_lto", 9))
2109 break;
2111 /* We compiled with -fno-common. These are not
2112 supposed to happen. */
2113 pr_debug("Common symbol: %s\n", name);
2114 pr_warn("%s: please compile with -fno-common\n",
2115 mod->name);
2116 ret = -ENOEXEC;
2117 break;
2119 case SHN_ABS:
2120 /* Don't need to do anything */
2121 pr_debug("Absolute symbol: 0x%08lx\n",
2122 (long)sym[i].st_value);
2123 break;
2125 case SHN_UNDEF:
2126 ksym = resolve_symbol_wait(mod, info, name);
2127 /* Ok if resolved. */
2128 if (ksym && !IS_ERR(ksym)) {
2129 sym[i].st_value = ksym->value;
2130 break;
2133 /* Ok if weak. */
2134 if (!ksym && ELF_ST_BIND(sym[i].st_info) == STB_WEAK)
2135 break;
2137 pr_warn("%s: Unknown symbol %s (err %li)\n",
2138 mod->name, name, PTR_ERR(ksym));
2139 ret = PTR_ERR(ksym) ?: -ENOENT;
2140 break;
2142 default:
2143 /* Divert to percpu allocation if a percpu var. */
2144 if (sym[i].st_shndx == info->index.pcpu)
2145 secbase = (unsigned long)mod_percpu(mod);
2146 else
2147 secbase = info->sechdrs[sym[i].st_shndx].sh_addr;
2148 sym[i].st_value += secbase;
2149 break;
2153 return ret;
2156 static int apply_relocations(struct module *mod, const struct load_info *info)
2158 unsigned int i;
2159 int err = 0;
2161 /* Now do relocations. */
2162 for (i = 1; i < info->hdr->e_shnum; i++) {
2163 unsigned int infosec = info->sechdrs[i].sh_info;
2165 /* Not a valid relocation section? */
2166 if (infosec >= info->hdr->e_shnum)
2167 continue;
2169 /* Don't bother with non-allocated sections */
2170 if (!(info->sechdrs[infosec].sh_flags & SHF_ALLOC))
2171 continue;
2173 if (info->sechdrs[i].sh_type == SHT_REL)
2174 err = apply_relocate(info->sechdrs, info->strtab,
2175 info->index.sym, i, mod);
2176 else if (info->sechdrs[i].sh_type == SHT_RELA)
2177 err = apply_relocate_add(info->sechdrs, info->strtab,
2178 info->index.sym, i, mod);
2179 if (err < 0)
2180 break;
2182 return err;
2185 /* Additional bytes needed by arch in front of individual sections */
2186 unsigned int __weak arch_mod_section_prepend(struct module *mod,
2187 unsigned int section)
2189 /* default implementation just returns zero */
2190 return 0;
2193 /* Update size with this section: return offset. */
2194 static long get_offset(struct module *mod, unsigned int *size,
2195 Elf_Shdr *sechdr, unsigned int section)
2197 long ret;
2199 *size += arch_mod_section_prepend(mod, section);
2200 ret = ALIGN(*size, sechdr->sh_addralign ?: 1);
2201 *size = ret + sechdr->sh_size;
2202 return ret;
2205 /* Lay out the SHF_ALLOC sections in a way not dissimilar to how ld
2206 might -- code, read-only data, read-write data, small data. Tally
2207 sizes, and place the offsets into sh_entsize fields: high bit means it
2208 belongs in init. */
2209 static void layout_sections(struct module *mod, struct load_info *info)
2211 static unsigned long const masks[][2] = {
2212 /* NOTE: all executable code must be the first section
2213 * in this array; otherwise modify the text_size
2214 * finder in the two loops below */
2215 { SHF_EXECINSTR | SHF_ALLOC, ARCH_SHF_SMALL },
2216 { SHF_ALLOC, SHF_WRITE | ARCH_SHF_SMALL },
2217 { SHF_WRITE | SHF_ALLOC, ARCH_SHF_SMALL },
2218 { ARCH_SHF_SMALL | SHF_ALLOC, 0 }
2220 unsigned int m, i;
2222 for (i = 0; i < info->hdr->e_shnum; i++)
2223 info->sechdrs[i].sh_entsize = ~0UL;
2225 pr_debug("Core section allocation order:\n");
2226 for (m = 0; m < ARRAY_SIZE(masks); ++m) {
2227 for (i = 0; i < info->hdr->e_shnum; ++i) {
2228 Elf_Shdr *s = &info->sechdrs[i];
2229 const char *sname = info->secstrings + s->sh_name;
2231 if ((s->sh_flags & masks[m][0]) != masks[m][0]
2232 || (s->sh_flags & masks[m][1])
2233 || s->sh_entsize != ~0UL
2234 || strstarts(sname, ".init"))
2235 continue;
2236 s->sh_entsize = get_offset(mod, &mod->core_layout.size, s, i);
2237 pr_debug("\t%s\n", sname);
2239 switch (m) {
2240 case 0: /* executable */
2241 mod->core_layout.size = debug_align(mod->core_layout.size);
2242 mod->core_layout.text_size = mod->core_layout.size;
2243 break;
2244 case 1: /* RO: text and ro-data */
2245 mod->core_layout.size = debug_align(mod->core_layout.size);
2246 mod->core_layout.ro_size = mod->core_layout.size;
2247 break;
2248 case 3: /* whole core */
2249 mod->core_layout.size = debug_align(mod->core_layout.size);
2250 break;
2254 pr_debug("Init section allocation order:\n");
2255 for (m = 0; m < ARRAY_SIZE(masks); ++m) {
2256 for (i = 0; i < info->hdr->e_shnum; ++i) {
2257 Elf_Shdr *s = &info->sechdrs[i];
2258 const char *sname = info->secstrings + s->sh_name;
2260 if ((s->sh_flags & masks[m][0]) != masks[m][0]
2261 || (s->sh_flags & masks[m][1])
2262 || s->sh_entsize != ~0UL
2263 || !strstarts(sname, ".init"))
2264 continue;
2265 s->sh_entsize = (get_offset(mod, &mod->init_layout.size, s, i)
2266 | INIT_OFFSET_MASK);
2267 pr_debug("\t%s\n", sname);
2269 switch (m) {
2270 case 0: /* executable */
2271 mod->init_layout.size = debug_align(mod->init_layout.size);
2272 mod->init_layout.text_size = mod->init_layout.size;
2273 break;
2274 case 1: /* RO: text and ro-data */
2275 mod->init_layout.size = debug_align(mod->init_layout.size);
2276 mod->init_layout.ro_size = mod->init_layout.size;
2277 break;
2278 case 3: /* whole init */
2279 mod->init_layout.size = debug_align(mod->init_layout.size);
2280 break;
2285 static void set_license(struct module *mod, const char *license)
2287 if (!license)
2288 license = "unspecified";
2290 if (!license_is_gpl_compatible(license)) {
2291 if (!test_taint(TAINT_PROPRIETARY_MODULE))
2292 pr_warn("%s: module license '%s' taints kernel.\n",
2293 mod->name, license);
2294 add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
2295 LOCKDEP_NOW_UNRELIABLE);
2299 /* Parse tag=value strings from .modinfo section */
2300 static char *next_string(char *string, unsigned long *secsize)
2302 /* Skip non-zero chars */
2303 while (string[0]) {
2304 string++;
2305 if ((*secsize)-- <= 1)
2306 return NULL;
2309 /* Skip any zero padding. */
2310 while (!string[0]) {
2311 string++;
2312 if ((*secsize)-- <= 1)
2313 return NULL;
2315 return string;
2318 static char *get_modinfo(struct load_info *info, const char *tag)
2320 char *p;
2321 unsigned int taglen = strlen(tag);
2322 Elf_Shdr *infosec = &info->sechdrs[info->index.info];
2323 unsigned long size = infosec->sh_size;
2325 for (p = (char *)infosec->sh_addr; p; p = next_string(p, &size)) {
2326 if (strncmp(p, tag, taglen) == 0 && p[taglen] == '=')
2327 return p + taglen + 1;
2329 return NULL;
2332 static void setup_modinfo(struct module *mod, struct load_info *info)
2334 struct module_attribute *attr;
2335 int i;
2337 for (i = 0; (attr = modinfo_attrs[i]); i++) {
2338 if (attr->setup)
2339 attr->setup(mod, get_modinfo(info, attr->attr.name));
2343 static void free_modinfo(struct module *mod)
2345 struct module_attribute *attr;
2346 int i;
2348 for (i = 0; (attr = modinfo_attrs[i]); i++) {
2349 if (attr->free)
2350 attr->free(mod);
2354 #ifdef CONFIG_KALLSYMS
2356 /* lookup symbol in given range of kernel_symbols */
2357 static const struct kernel_symbol *lookup_symbol(const char *name,
2358 const struct kernel_symbol *start,
2359 const struct kernel_symbol *stop)
2361 return bsearch(name, start, stop - start,
2362 sizeof(struct kernel_symbol), cmp_name);
2365 static int is_exported(const char *name, unsigned long value,
2366 const struct module *mod)
2368 const struct kernel_symbol *ks;
2369 if (!mod)
2370 ks = lookup_symbol(name, __start___ksymtab, __stop___ksymtab);
2371 else
2372 ks = lookup_symbol(name, mod->syms, mod->syms + mod->num_syms);
2373 return ks != NULL && ks->value == value;
2376 /* As per nm */
2377 static char elf_type(const Elf_Sym *sym, const struct load_info *info)
2379 const Elf_Shdr *sechdrs = info->sechdrs;
2381 if (ELF_ST_BIND(sym->st_info) == STB_WEAK) {
2382 if (ELF_ST_TYPE(sym->st_info) == STT_OBJECT)
2383 return 'v';
2384 else
2385 return 'w';
2387 if (sym->st_shndx == SHN_UNDEF)
2388 return 'U';
2389 if (sym->st_shndx == SHN_ABS || sym->st_shndx == info->index.pcpu)
2390 return 'a';
2391 if (sym->st_shndx >= SHN_LORESERVE)
2392 return '?';
2393 if (sechdrs[sym->st_shndx].sh_flags & SHF_EXECINSTR)
2394 return 't';
2395 if (sechdrs[sym->st_shndx].sh_flags & SHF_ALLOC
2396 && sechdrs[sym->st_shndx].sh_type != SHT_NOBITS) {
2397 if (!(sechdrs[sym->st_shndx].sh_flags & SHF_WRITE))
2398 return 'r';
2399 else if (sechdrs[sym->st_shndx].sh_flags & ARCH_SHF_SMALL)
2400 return 'g';
2401 else
2402 return 'd';
2404 if (sechdrs[sym->st_shndx].sh_type == SHT_NOBITS) {
2405 if (sechdrs[sym->st_shndx].sh_flags & ARCH_SHF_SMALL)
2406 return 's';
2407 else
2408 return 'b';
2410 if (strstarts(info->secstrings + sechdrs[sym->st_shndx].sh_name,
2411 ".debug")) {
2412 return 'n';
2414 return '?';
2417 static bool is_core_symbol(const Elf_Sym *src, const Elf_Shdr *sechdrs,
2418 unsigned int shnum, unsigned int pcpundx)
2420 const Elf_Shdr *sec;
2422 if (src->st_shndx == SHN_UNDEF
2423 || src->st_shndx >= shnum
2424 || !src->st_name)
2425 return false;
2427 #ifdef CONFIG_KALLSYMS_ALL
2428 if (src->st_shndx == pcpundx)
2429 return true;
2430 #endif
2432 sec = sechdrs + src->st_shndx;
2433 if (!(sec->sh_flags & SHF_ALLOC)
2434 #ifndef CONFIG_KALLSYMS_ALL
2435 || !(sec->sh_flags & SHF_EXECINSTR)
2436 #endif
2437 || (sec->sh_entsize & INIT_OFFSET_MASK))
2438 return false;
2440 return true;
2444 * We only allocate and copy the strings needed by the parts of symtab
2445 * we keep. This is simple, but has the effect of making multiple
2446 * copies of duplicates. We could be more sophisticated, see
2447 * linux-kernel thread starting with
2448 * <73defb5e4bca04a6431392cc341112b1@localhost>.
2450 static void layout_symtab(struct module *mod, struct load_info *info)
2452 Elf_Shdr *symsect = info->sechdrs + info->index.sym;
2453 Elf_Shdr *strsect = info->sechdrs + info->index.str;
2454 const Elf_Sym *src;
2455 unsigned int i, nsrc, ndst, strtab_size = 0;
2457 /* Put symbol section at end of init part of module. */
2458 symsect->sh_flags |= SHF_ALLOC;
2459 symsect->sh_entsize = get_offset(mod, &mod->init_layout.size, symsect,
2460 info->index.sym) | INIT_OFFSET_MASK;
2461 pr_debug("\t%s\n", info->secstrings + symsect->sh_name);
2463 src = (void *)info->hdr + symsect->sh_offset;
2464 nsrc = symsect->sh_size / sizeof(*src);
2466 /* Compute total space required for the core symbols' strtab. */
2467 for (ndst = i = 0; i < nsrc; i++) {
2468 if (i == 0 ||
2469 is_core_symbol(src+i, info->sechdrs, info->hdr->e_shnum,
2470 info->index.pcpu)) {
2471 strtab_size += strlen(&info->strtab[src[i].st_name])+1;
2472 ndst++;
2476 /* Append room for core symbols at end of core part. */
2477 info->symoffs = ALIGN(mod->core_layout.size, symsect->sh_addralign ?: 1);
2478 info->stroffs = mod->core_layout.size = info->symoffs + ndst * sizeof(Elf_Sym);
2479 mod->core_layout.size += strtab_size;
2480 mod->core_layout.size = debug_align(mod->core_layout.size);
2482 /* Put string table section at end of init part of module. */
2483 strsect->sh_flags |= SHF_ALLOC;
2484 strsect->sh_entsize = get_offset(mod, &mod->init_layout.size, strsect,
2485 info->index.str) | INIT_OFFSET_MASK;
2486 pr_debug("\t%s\n", info->secstrings + strsect->sh_name);
2488 /* We'll tack temporary mod_kallsyms on the end. */
2489 mod->init_layout.size = ALIGN(mod->init_layout.size,
2490 __alignof__(struct mod_kallsyms));
2491 info->mod_kallsyms_init_off = mod->init_layout.size;
2492 mod->init_layout.size += sizeof(struct mod_kallsyms);
2493 mod->init_layout.size = debug_align(mod->init_layout.size);
2497 * We use the full symtab and strtab which layout_symtab arranged to
2498 * be appended to the init section. Later we switch to the cut-down
2499 * core-only ones.
2501 static void add_kallsyms(struct module *mod, const struct load_info *info)
2503 unsigned int i, ndst;
2504 const Elf_Sym *src;
2505 Elf_Sym *dst;
2506 char *s;
2507 Elf_Shdr *symsec = &info->sechdrs[info->index.sym];
2509 /* Set up to point into init section. */
2510 mod->kallsyms = mod->init_layout.base + info->mod_kallsyms_init_off;
2512 mod->kallsyms->symtab = (void *)symsec->sh_addr;
2513 mod->kallsyms->num_symtab = symsec->sh_size / sizeof(Elf_Sym);
2514 /* Make sure we get permanent strtab: don't use info->strtab. */
2515 mod->kallsyms->strtab = (void *)info->sechdrs[info->index.str].sh_addr;
2517 /* Set types up while we still have access to sections. */
2518 for (i = 0; i < mod->kallsyms->num_symtab; i++)
2519 mod->kallsyms->symtab[i].st_info
2520 = elf_type(&mod->kallsyms->symtab[i], info);
2522 /* Now populate the cut down core kallsyms for after init. */
2523 mod->core_kallsyms.symtab = dst = mod->core_layout.base + info->symoffs;
2524 mod->core_kallsyms.strtab = s = mod->core_layout.base + info->stroffs;
2525 src = mod->kallsyms->symtab;
2526 for (ndst = i = 0; i < mod->kallsyms->num_symtab; i++) {
2527 if (i == 0 ||
2528 is_core_symbol(src+i, info->sechdrs, info->hdr->e_shnum,
2529 info->index.pcpu)) {
2530 dst[ndst] = src[i];
2531 dst[ndst++].st_name = s - mod->core_kallsyms.strtab;
2532 s += strlcpy(s, &mod->kallsyms->strtab[src[i].st_name],
2533 KSYM_NAME_LEN) + 1;
2536 mod->core_kallsyms.num_symtab = ndst;
2538 #else
2539 static inline void layout_symtab(struct module *mod, struct load_info *info)
2543 static void add_kallsyms(struct module *mod, const struct load_info *info)
2546 #endif /* CONFIG_KALLSYMS */
2548 static void dynamic_debug_setup(struct _ddebug *debug, unsigned int num)
2550 if (!debug)
2551 return;
2552 #ifdef CONFIG_DYNAMIC_DEBUG
2553 if (ddebug_add_module(debug, num, debug->modname))
2554 pr_err("dynamic debug error adding module: %s\n",
2555 debug->modname);
2556 #endif
2559 static void dynamic_debug_remove(struct _ddebug *debug)
2561 if (debug)
2562 ddebug_remove_module(debug->modname);
2565 void * __weak module_alloc(unsigned long size)
2567 return vmalloc_exec(size);
2570 #ifdef CONFIG_DEBUG_KMEMLEAK
2571 static void kmemleak_load_module(const struct module *mod,
2572 const struct load_info *info)
2574 unsigned int i;
2576 /* only scan the sections containing data */
2577 kmemleak_scan_area(mod, sizeof(struct module), GFP_KERNEL);
2579 for (i = 1; i < info->hdr->e_shnum; i++) {
2580 /* Scan all writable sections that's not executable */
2581 if (!(info->sechdrs[i].sh_flags & SHF_ALLOC) ||
2582 !(info->sechdrs[i].sh_flags & SHF_WRITE) ||
2583 (info->sechdrs[i].sh_flags & SHF_EXECINSTR))
2584 continue;
2586 kmemleak_scan_area((void *)info->sechdrs[i].sh_addr,
2587 info->sechdrs[i].sh_size, GFP_KERNEL);
2590 #else
2591 static inline void kmemleak_load_module(const struct module *mod,
2592 const struct load_info *info)
2595 #endif
2597 #ifdef CONFIG_MODULE_SIG
2598 static int module_sig_check(struct load_info *info)
2600 int err = -ENOKEY;
2601 const unsigned long markerlen = sizeof(MODULE_SIG_STRING) - 1;
2602 const void *mod = info->hdr;
2604 if (info->len > markerlen &&
2605 memcmp(mod + info->len - markerlen, MODULE_SIG_STRING, markerlen) == 0) {
2606 /* We truncate the module to discard the signature */
2607 info->len -= markerlen;
2608 err = mod_verify_sig(mod, &info->len);
2611 if (!err) {
2612 info->sig_ok = true;
2613 return 0;
2616 /* Not having a signature is only an error if we're strict. */
2617 if (err == -ENOKEY && !sig_enforce)
2618 err = 0;
2620 return err;
2622 #else /* !CONFIG_MODULE_SIG */
2623 static int module_sig_check(struct load_info *info)
2625 return 0;
2627 #endif /* !CONFIG_MODULE_SIG */
2629 /* Sanity checks against invalid binaries, wrong arch, weird elf version. */
2630 static int elf_header_check(struct load_info *info)
2632 if (info->len < sizeof(*(info->hdr)))
2633 return -ENOEXEC;
2635 if (memcmp(info->hdr->e_ident, ELFMAG, SELFMAG) != 0
2636 || info->hdr->e_type != ET_REL
2637 || !elf_check_arch(info->hdr)
2638 || info->hdr->e_shentsize != sizeof(Elf_Shdr))
2639 return -ENOEXEC;
2641 if (info->hdr->e_shoff >= info->len
2642 || (info->hdr->e_shnum * sizeof(Elf_Shdr) >
2643 info->len - info->hdr->e_shoff))
2644 return -ENOEXEC;
2646 return 0;
2649 #define COPY_CHUNK_SIZE (16*PAGE_SIZE)
2651 static int copy_chunked_from_user(void *dst, const void __user *usrc, unsigned long len)
2653 do {
2654 unsigned long n = min(len, COPY_CHUNK_SIZE);
2656 if (copy_from_user(dst, usrc, n) != 0)
2657 return -EFAULT;
2658 cond_resched();
2659 dst += n;
2660 usrc += n;
2661 len -= n;
2662 } while (len);
2663 return 0;
2666 /* Sets info->hdr and info->len. */
2667 static int copy_module_from_user(const void __user *umod, unsigned long len,
2668 struct load_info *info)
2670 int err;
2672 info->len = len;
2673 if (info->len < sizeof(*(info->hdr)))
2674 return -ENOEXEC;
2676 err = security_kernel_module_from_file(NULL);
2677 if (err)
2678 return err;
2680 /* Suck in entire file: we'll want most of it. */
2681 info->hdr = __vmalloc(info->len,
2682 GFP_KERNEL | __GFP_HIGHMEM | __GFP_NOWARN, PAGE_KERNEL);
2683 if (!info->hdr)
2684 return -ENOMEM;
2686 if (copy_chunked_from_user(info->hdr, umod, info->len) != 0) {
2687 vfree(info->hdr);
2688 return -EFAULT;
2691 return 0;
2694 /* Sets info->hdr and info->len. */
2695 static int copy_module_from_fd(int fd, struct load_info *info)
2697 struct fd f = fdget(fd);
2698 int err;
2699 struct kstat stat;
2700 loff_t pos;
2701 ssize_t bytes = 0;
2703 if (!f.file)
2704 return -ENOEXEC;
2706 err = security_kernel_module_from_file(f.file);
2707 if (err)
2708 goto out;
2710 err = vfs_getattr(&f.file->f_path, &stat);
2711 if (err)
2712 goto out;
2714 if (stat.size > INT_MAX) {
2715 err = -EFBIG;
2716 goto out;
2719 /* Don't hand 0 to vmalloc, it whines. */
2720 if (stat.size == 0) {
2721 err = -EINVAL;
2722 goto out;
2725 info->hdr = vmalloc(stat.size);
2726 if (!info->hdr) {
2727 err = -ENOMEM;
2728 goto out;
2731 pos = 0;
2732 while (pos < stat.size) {
2733 bytes = kernel_read(f.file, pos, (char *)(info->hdr) + pos,
2734 stat.size - pos);
2735 if (bytes < 0) {
2736 vfree(info->hdr);
2737 err = bytes;
2738 goto out;
2740 if (bytes == 0)
2741 break;
2742 pos += bytes;
2744 info->len = pos;
2746 out:
2747 fdput(f);
2748 return err;
2751 static void free_copy(struct load_info *info)
2753 vfree(info->hdr);
2756 static int rewrite_section_headers(struct load_info *info, int flags)
2758 unsigned int i;
2760 /* This should always be true, but let's be sure. */
2761 info->sechdrs[0].sh_addr = 0;
2763 for (i = 1; i < info->hdr->e_shnum; i++) {
2764 Elf_Shdr *shdr = &info->sechdrs[i];
2765 if (shdr->sh_type != SHT_NOBITS
2766 && info->len < shdr->sh_offset + shdr->sh_size) {
2767 pr_err("Module len %lu truncated\n", info->len);
2768 return -ENOEXEC;
2771 /* Mark all sections sh_addr with their address in the
2772 temporary image. */
2773 shdr->sh_addr = (size_t)info->hdr + shdr->sh_offset;
2775 #ifndef CONFIG_MODULE_UNLOAD
2776 /* Don't load .exit sections */
2777 if (strstarts(info->secstrings+shdr->sh_name, ".exit"))
2778 shdr->sh_flags &= ~(unsigned long)SHF_ALLOC;
2779 #endif
2782 /* Track but don't keep modinfo and version sections. */
2783 if (flags & MODULE_INIT_IGNORE_MODVERSIONS)
2784 info->index.vers = 0; /* Pretend no __versions section! */
2785 else
2786 info->index.vers = find_sec(info, "__versions");
2787 info->index.info = find_sec(info, ".modinfo");
2788 info->sechdrs[info->index.info].sh_flags &= ~(unsigned long)SHF_ALLOC;
2789 info->sechdrs[info->index.vers].sh_flags &= ~(unsigned long)SHF_ALLOC;
2790 return 0;
2794 * Set up our basic convenience variables (pointers to section headers,
2795 * search for module section index etc), and do some basic section
2796 * verification.
2798 * Return the temporary module pointer (we'll replace it with the final
2799 * one when we move the module sections around).
2801 static struct module *setup_load_info(struct load_info *info, int flags)
2803 unsigned int i;
2804 int err;
2805 struct module *mod;
2807 /* Set up the convenience variables */
2808 info->sechdrs = (void *)info->hdr + info->hdr->e_shoff;
2809 info->secstrings = (void *)info->hdr
2810 + info->sechdrs[info->hdr->e_shstrndx].sh_offset;
2812 err = rewrite_section_headers(info, flags);
2813 if (err)
2814 return ERR_PTR(err);
2816 /* Find internal symbols and strings. */
2817 for (i = 1; i < info->hdr->e_shnum; i++) {
2818 if (info->sechdrs[i].sh_type == SHT_SYMTAB) {
2819 info->index.sym = i;
2820 info->index.str = info->sechdrs[i].sh_link;
2821 info->strtab = (char *)info->hdr
2822 + info->sechdrs[info->index.str].sh_offset;
2823 break;
2827 info->index.mod = find_sec(info, ".gnu.linkonce.this_module");
2828 if (!info->index.mod) {
2829 pr_warn("No module found in object\n");
2830 return ERR_PTR(-ENOEXEC);
2832 /* This is temporary: point mod into copy of data. */
2833 mod = (void *)info->sechdrs[info->index.mod].sh_addr;
2835 if (info->index.sym == 0) {
2836 pr_warn("%s: module has no symbols (stripped?)\n", mod->name);
2837 return ERR_PTR(-ENOEXEC);
2840 info->index.pcpu = find_pcpusec(info);
2842 /* Check module struct version now, before we try to use module. */
2843 if (!check_modstruct_version(info->sechdrs, info->index.vers, mod))
2844 return ERR_PTR(-ENOEXEC);
2846 return mod;
2849 static int check_modinfo(struct module *mod, struct load_info *info, int flags)
2851 const char *modmagic = get_modinfo(info, "vermagic");
2852 int err;
2854 if (flags & MODULE_INIT_IGNORE_VERMAGIC)
2855 modmagic = NULL;
2857 /* This is allowed: modprobe --force will invalidate it. */
2858 if (!modmagic) {
2859 err = try_to_force_load(mod, "bad vermagic");
2860 if (err)
2861 return err;
2862 } else if (!same_magic(modmagic, vermagic, info->index.vers)) {
2863 pr_err("%s: version magic '%s' should be '%s'\n",
2864 mod->name, modmagic, vermagic);
2865 return -ENOEXEC;
2868 if (!get_modinfo(info, "intree"))
2869 add_taint_module(mod, TAINT_OOT_MODULE, LOCKDEP_STILL_OK);
2871 if (get_modinfo(info, "staging")) {
2872 add_taint_module(mod, TAINT_CRAP, LOCKDEP_STILL_OK);
2873 pr_warn("%s: module is from the staging directory, the quality "
2874 "is unknown, you have been warned.\n", mod->name);
2877 /* Set up license info based on the info section */
2878 set_license(mod, get_modinfo(info, "license"));
2880 return 0;
2883 static int find_module_sections(struct module *mod, struct load_info *info)
2885 mod->kp = section_objs(info, "__param",
2886 sizeof(*mod->kp), &mod->num_kp);
2887 mod->syms = section_objs(info, "__ksymtab",
2888 sizeof(*mod->syms), &mod->num_syms);
2889 mod->crcs = section_addr(info, "__kcrctab");
2890 mod->gpl_syms = section_objs(info, "__ksymtab_gpl",
2891 sizeof(*mod->gpl_syms),
2892 &mod->num_gpl_syms);
2893 mod->gpl_crcs = section_addr(info, "__kcrctab_gpl");
2894 mod->gpl_future_syms = section_objs(info,
2895 "__ksymtab_gpl_future",
2896 sizeof(*mod->gpl_future_syms),
2897 &mod->num_gpl_future_syms);
2898 mod->gpl_future_crcs = section_addr(info, "__kcrctab_gpl_future");
2900 #ifdef CONFIG_UNUSED_SYMBOLS
2901 mod->unused_syms = section_objs(info, "__ksymtab_unused",
2902 sizeof(*mod->unused_syms),
2903 &mod->num_unused_syms);
2904 mod->unused_crcs = section_addr(info, "__kcrctab_unused");
2905 mod->unused_gpl_syms = section_objs(info, "__ksymtab_unused_gpl",
2906 sizeof(*mod->unused_gpl_syms),
2907 &mod->num_unused_gpl_syms);
2908 mod->unused_gpl_crcs = section_addr(info, "__kcrctab_unused_gpl");
2909 #endif
2910 #ifdef CONFIG_CONSTRUCTORS
2911 mod->ctors = section_objs(info, ".ctors",
2912 sizeof(*mod->ctors), &mod->num_ctors);
2913 if (!mod->ctors)
2914 mod->ctors = section_objs(info, ".init_array",
2915 sizeof(*mod->ctors), &mod->num_ctors);
2916 else if (find_sec(info, ".init_array")) {
2918 * This shouldn't happen with same compiler and binutils
2919 * building all parts of the module.
2921 pr_warn("%s: has both .ctors and .init_array.\n",
2922 mod->name);
2923 return -EINVAL;
2925 #endif
2927 #ifdef CONFIG_TRACEPOINTS
2928 mod->tracepoints_ptrs = section_objs(info, "__tracepoints_ptrs",
2929 sizeof(*mod->tracepoints_ptrs),
2930 &mod->num_tracepoints);
2931 #endif
2932 #ifdef HAVE_JUMP_LABEL
2933 mod->jump_entries = section_objs(info, "__jump_table",
2934 sizeof(*mod->jump_entries),
2935 &mod->num_jump_entries);
2936 #endif
2937 #ifdef CONFIG_EVENT_TRACING
2938 mod->trace_events = section_objs(info, "_ftrace_events",
2939 sizeof(*mod->trace_events),
2940 &mod->num_trace_events);
2941 mod->trace_enums = section_objs(info, "_ftrace_enum_map",
2942 sizeof(*mod->trace_enums),
2943 &mod->num_trace_enums);
2944 #endif
2945 #ifdef CONFIG_TRACING
2946 mod->trace_bprintk_fmt_start = section_objs(info, "__trace_printk_fmt",
2947 sizeof(*mod->trace_bprintk_fmt_start),
2948 &mod->num_trace_bprintk_fmt);
2949 #endif
2950 #ifdef CONFIG_FTRACE_MCOUNT_RECORD
2951 /* sechdrs[0].sh_size is always zero */
2952 mod->ftrace_callsites = section_objs(info, "__mcount_loc",
2953 sizeof(*mod->ftrace_callsites),
2954 &mod->num_ftrace_callsites);
2955 #endif
2957 mod->extable = section_objs(info, "__ex_table",
2958 sizeof(*mod->extable), &mod->num_exentries);
2960 if (section_addr(info, "__obsparm"))
2961 pr_warn("%s: Ignoring obsolete parameters\n", mod->name);
2963 info->debug = section_objs(info, "__verbose",
2964 sizeof(*info->debug), &info->num_debug);
2966 return 0;
2969 static int move_module(struct module *mod, struct load_info *info)
2971 int i;
2972 void *ptr;
2974 /* Do the allocs. */
2975 ptr = module_alloc(mod->core_layout.size);
2977 * The pointer to this block is stored in the module structure
2978 * which is inside the block. Just mark it as not being a
2979 * leak.
2981 kmemleak_not_leak(ptr);
2982 if (!ptr)
2983 return -ENOMEM;
2985 memset(ptr, 0, mod->core_layout.size);
2986 mod->core_layout.base = ptr;
2988 if (mod->init_layout.size) {
2989 ptr = module_alloc(mod->init_layout.size);
2991 * The pointer to this block is stored in the module structure
2992 * which is inside the block. This block doesn't need to be
2993 * scanned as it contains data and code that will be freed
2994 * after the module is initialized.
2996 kmemleak_ignore(ptr);
2997 if (!ptr) {
2998 module_memfree(mod->core_layout.base);
2999 return -ENOMEM;
3001 memset(ptr, 0, mod->init_layout.size);
3002 mod->init_layout.base = ptr;
3003 } else
3004 mod->init_layout.base = NULL;
3006 /* Transfer each section which specifies SHF_ALLOC */
3007 pr_debug("final section addresses:\n");
3008 for (i = 0; i < info->hdr->e_shnum; i++) {
3009 void *dest;
3010 Elf_Shdr *shdr = &info->sechdrs[i];
3012 if (!(shdr->sh_flags & SHF_ALLOC))
3013 continue;
3015 if (shdr->sh_entsize & INIT_OFFSET_MASK)
3016 dest = mod->init_layout.base
3017 + (shdr->sh_entsize & ~INIT_OFFSET_MASK);
3018 else
3019 dest = mod->core_layout.base + shdr->sh_entsize;
3021 if (shdr->sh_type != SHT_NOBITS)
3022 memcpy(dest, (void *)shdr->sh_addr, shdr->sh_size);
3023 /* Update sh_addr to point to copy in image. */
3024 shdr->sh_addr = (unsigned long)dest;
3025 pr_debug("\t0x%lx %s\n",
3026 (long)shdr->sh_addr, info->secstrings + shdr->sh_name);
3029 return 0;
3032 static int check_module_license_and_versions(struct module *mod)
3035 * ndiswrapper is under GPL by itself, but loads proprietary modules.
3036 * Don't use add_taint_module(), as it would prevent ndiswrapper from
3037 * using GPL-only symbols it needs.
3039 if (strcmp(mod->name, "ndiswrapper") == 0)
3040 add_taint(TAINT_PROPRIETARY_MODULE, LOCKDEP_NOW_UNRELIABLE);
3042 /* driverloader was caught wrongly pretending to be under GPL */
3043 if (strcmp(mod->name, "driverloader") == 0)
3044 add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
3045 LOCKDEP_NOW_UNRELIABLE);
3047 /* lve claims to be GPL but upstream won't provide source */
3048 if (strcmp(mod->name, "lve") == 0)
3049 add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
3050 LOCKDEP_NOW_UNRELIABLE);
3052 #ifdef CONFIG_MODVERSIONS
3053 if ((mod->num_syms && !mod->crcs)
3054 || (mod->num_gpl_syms && !mod->gpl_crcs)
3055 || (mod->num_gpl_future_syms && !mod->gpl_future_crcs)
3056 #ifdef CONFIG_UNUSED_SYMBOLS
3057 || (mod->num_unused_syms && !mod->unused_crcs)
3058 || (mod->num_unused_gpl_syms && !mod->unused_gpl_crcs)
3059 #endif
3061 return try_to_force_load(mod,
3062 "no versions for exported symbols");
3064 #endif
3065 return 0;
3068 static void flush_module_icache(const struct module *mod)
3070 mm_segment_t old_fs;
3072 /* flush the icache in correct context */
3073 old_fs = get_fs();
3074 set_fs(KERNEL_DS);
3077 * Flush the instruction cache, since we've played with text.
3078 * Do it before processing of module parameters, so the module
3079 * can provide parameter accessor functions of its own.
3081 if (mod->init_layout.base)
3082 flush_icache_range((unsigned long)mod->init_layout.base,
3083 (unsigned long)mod->init_layout.base
3084 + mod->init_layout.size);
3085 flush_icache_range((unsigned long)mod->core_layout.base,
3086 (unsigned long)mod->core_layout.base + mod->core_layout.size);
3088 set_fs(old_fs);
3091 int __weak module_frob_arch_sections(Elf_Ehdr *hdr,
3092 Elf_Shdr *sechdrs,
3093 char *secstrings,
3094 struct module *mod)
3096 return 0;
3099 static struct module *layout_and_allocate(struct load_info *info, int flags)
3101 /* Module within temporary copy. */
3102 struct module *mod;
3103 int err;
3105 mod = setup_load_info(info, flags);
3106 if (IS_ERR(mod))
3107 return mod;
3109 err = check_modinfo(mod, info, flags);
3110 if (err)
3111 return ERR_PTR(err);
3113 /* Allow arches to frob section contents and sizes. */
3114 err = module_frob_arch_sections(info->hdr, info->sechdrs,
3115 info->secstrings, mod);
3116 if (err < 0)
3117 return ERR_PTR(err);
3119 /* We will do a special allocation for per-cpu sections later. */
3120 info->sechdrs[info->index.pcpu].sh_flags &= ~(unsigned long)SHF_ALLOC;
3122 /* Determine total sizes, and put offsets in sh_entsize. For now
3123 this is done generically; there doesn't appear to be any
3124 special cases for the architectures. */
3125 layout_sections(mod, info);
3126 layout_symtab(mod, info);
3128 /* Allocate and move to the final place */
3129 err = move_module(mod, info);
3130 if (err)
3131 return ERR_PTR(err);
3133 /* Module has been copied to its final place now: return it. */
3134 mod = (void *)info->sechdrs[info->index.mod].sh_addr;
3135 kmemleak_load_module(mod, info);
3136 return mod;
3139 /* mod is no longer valid after this! */
3140 static void module_deallocate(struct module *mod, struct load_info *info)
3142 percpu_modfree(mod);
3143 module_arch_freeing_init(mod);
3144 module_memfree(mod->init_layout.base);
3145 module_memfree(mod->core_layout.base);
3148 int __weak module_finalize(const Elf_Ehdr *hdr,
3149 const Elf_Shdr *sechdrs,
3150 struct module *me)
3152 return 0;
3155 static int post_relocation(struct module *mod, const struct load_info *info)
3157 /* Sort exception table now relocations are done. */
3158 sort_extable(mod->extable, mod->extable + mod->num_exentries);
3160 /* Copy relocated percpu area over. */
3161 percpu_modcopy(mod, (void *)info->sechdrs[info->index.pcpu].sh_addr,
3162 info->sechdrs[info->index.pcpu].sh_size);
3164 /* Setup kallsyms-specific fields. */
3165 add_kallsyms(mod, info);
3167 /* Arch-specific module finalizing. */
3168 return module_finalize(info->hdr, info->sechdrs, mod);
3171 /* Is this module of this name done loading? No locks held. */
3172 static bool finished_loading(const char *name)
3174 struct module *mod;
3175 bool ret;
3178 * The module_mutex should not be a heavily contended lock;
3179 * if we get the occasional sleep here, we'll go an extra iteration
3180 * in the wait_event_interruptible(), which is harmless.
3182 sched_annotate_sleep();
3183 mutex_lock(&module_mutex);
3184 mod = find_module_all(name, strlen(name), true);
3185 ret = !mod || mod->state == MODULE_STATE_LIVE
3186 || mod->state == MODULE_STATE_GOING;
3187 mutex_unlock(&module_mutex);
3189 return ret;
3192 /* Call module constructors. */
3193 static void do_mod_ctors(struct module *mod)
3195 #ifdef CONFIG_CONSTRUCTORS
3196 unsigned long i;
3198 for (i = 0; i < mod->num_ctors; i++)
3199 mod->ctors[i]();
3200 #endif
3203 /* For freeing module_init on success, in case kallsyms traversing */
3204 struct mod_initfree {
3205 struct rcu_head rcu;
3206 void *module_init;
3209 static void do_free_init(struct rcu_head *head)
3211 struct mod_initfree *m = container_of(head, struct mod_initfree, rcu);
3212 module_memfree(m->module_init);
3213 kfree(m);
3217 * This is where the real work happens.
3219 * Keep it uninlined to provide a reliable breakpoint target, e.g. for the gdb
3220 * helper command 'lx-symbols'.
3222 static noinline int do_init_module(struct module *mod)
3224 int ret = 0;
3225 struct mod_initfree *freeinit;
3227 freeinit = kmalloc(sizeof(*freeinit), GFP_KERNEL);
3228 if (!freeinit) {
3229 ret = -ENOMEM;
3230 goto fail;
3232 freeinit->module_init = mod->init_layout.base;
3235 * We want to find out whether @mod uses async during init. Clear
3236 * PF_USED_ASYNC. async_schedule*() will set it.
3238 current->flags &= ~PF_USED_ASYNC;
3240 do_mod_ctors(mod);
3241 /* Start the module */
3242 if (mod->init != NULL)
3243 ret = do_one_initcall(mod->init);
3244 if (ret < 0) {
3245 goto fail_free_freeinit;
3247 if (ret > 0) {
3248 pr_warn("%s: '%s'->init suspiciously returned %d, it should "
3249 "follow 0/-E convention\n"
3250 "%s: loading module anyway...\n",
3251 __func__, mod->name, ret, __func__);
3252 dump_stack();
3255 /* Now it's a first class citizen! */
3256 mod->state = MODULE_STATE_LIVE;
3257 blocking_notifier_call_chain(&module_notify_list,
3258 MODULE_STATE_LIVE, mod);
3261 * We need to finish all async code before the module init sequence
3262 * is done. This has potential to deadlock. For example, a newly
3263 * detected block device can trigger request_module() of the
3264 * default iosched from async probing task. Once userland helper
3265 * reaches here, async_synchronize_full() will wait on the async
3266 * task waiting on request_module() and deadlock.
3268 * This deadlock is avoided by perfomring async_synchronize_full()
3269 * iff module init queued any async jobs. This isn't a full
3270 * solution as it will deadlock the same if module loading from
3271 * async jobs nests more than once; however, due to the various
3272 * constraints, this hack seems to be the best option for now.
3273 * Please refer to the following thread for details.
3275 * http://thread.gmane.org/gmane.linux.kernel/1420814
3277 if (!mod->async_probe_requested && (current->flags & PF_USED_ASYNC))
3278 async_synchronize_full();
3280 mutex_lock(&module_mutex);
3281 /* Drop initial reference. */
3282 module_put(mod);
3283 trim_init_extable(mod);
3284 #ifdef CONFIG_KALLSYMS
3285 /* Switch to core kallsyms now init is done: kallsyms may be walking! */
3286 rcu_assign_pointer(mod->kallsyms, &mod->core_kallsyms);
3287 #endif
3288 mod_tree_remove_init(mod);
3289 disable_ro_nx(&mod->init_layout);
3290 module_arch_freeing_init(mod);
3291 mod->init_layout.base = NULL;
3292 mod->init_layout.size = 0;
3293 mod->init_layout.ro_size = 0;
3294 mod->init_layout.text_size = 0;
3296 * We want to free module_init, but be aware that kallsyms may be
3297 * walking this with preempt disabled. In all the failure paths, we
3298 * call synchronize_sched(), but we don't want to slow down the success
3299 * path, so use actual RCU here.
3301 call_rcu_sched(&freeinit->rcu, do_free_init);
3302 mutex_unlock(&module_mutex);
3303 wake_up_all(&module_wq);
3305 return 0;
3307 fail_free_freeinit:
3308 kfree(freeinit);
3309 fail:
3310 /* Try to protect us from buggy refcounters. */
3311 mod->state = MODULE_STATE_GOING;
3312 synchronize_sched();
3313 module_put(mod);
3314 blocking_notifier_call_chain(&module_notify_list,
3315 MODULE_STATE_GOING, mod);
3316 free_module(mod);
3317 wake_up_all(&module_wq);
3318 return ret;
3321 static int may_init_module(void)
3323 if (!capable(CAP_SYS_MODULE) || modules_disabled)
3324 return -EPERM;
3326 return 0;
3330 * We try to place it in the list now to make sure it's unique before
3331 * we dedicate too many resources. In particular, temporary percpu
3332 * memory exhaustion.
3334 static int add_unformed_module(struct module *mod)
3336 int err;
3337 struct module *old;
3339 mod->state = MODULE_STATE_UNFORMED;
3341 again:
3342 mutex_lock(&module_mutex);
3343 old = find_module_all(mod->name, strlen(mod->name), true);
3344 if (old != NULL) {
3345 if (old->state == MODULE_STATE_COMING
3346 || old->state == MODULE_STATE_UNFORMED) {
3347 /* Wait in case it fails to load. */
3348 mutex_unlock(&module_mutex);
3349 err = wait_event_interruptible(module_wq,
3350 finished_loading(mod->name));
3351 if (err)
3352 goto out_unlocked;
3353 goto again;
3355 err = -EEXIST;
3356 goto out;
3358 mod_update_bounds(mod);
3359 list_add_rcu(&mod->list, &modules);
3360 mod_tree_insert(mod);
3361 err = 0;
3363 out:
3364 mutex_unlock(&module_mutex);
3365 out_unlocked:
3366 return err;
3369 static int complete_formation(struct module *mod, struct load_info *info)
3371 int err;
3373 mutex_lock(&module_mutex);
3375 /* Find duplicate symbols (must be called under lock). */
3376 err = verify_export_symbols(mod);
3377 if (err < 0)
3378 goto out;
3380 /* This relies on module_mutex for list integrity. */
3381 module_bug_finalize(info->hdr, info->sechdrs, mod);
3383 /* Set RO and NX regions */
3384 module_enable_ro(mod);
3385 module_enable_nx(mod);
3387 /* Mark state as coming so strong_try_module_get() ignores us,
3388 * but kallsyms etc. can see us. */
3389 mod->state = MODULE_STATE_COMING;
3390 mutex_unlock(&module_mutex);
3392 blocking_notifier_call_chain(&module_notify_list,
3393 MODULE_STATE_COMING, mod);
3394 return 0;
3396 out:
3397 mutex_unlock(&module_mutex);
3398 return err;
3401 static int unknown_module_param_cb(char *param, char *val, const char *modname,
3402 void *arg)
3404 struct module *mod = arg;
3405 int ret;
3407 if (strcmp(param, "async_probe") == 0) {
3408 mod->async_probe_requested = true;
3409 return 0;
3412 /* Check for magic 'dyndbg' arg */
3413 ret = ddebug_dyndbg_module_param_cb(param, val, modname);
3414 if (ret != 0)
3415 pr_warn("%s: unknown parameter '%s' ignored\n", modname, param);
3416 return 0;
3419 /* Allocate and load the module: note that size of section 0 is always
3420 zero, and we rely on this for optional sections. */
3421 static int load_module(struct load_info *info, const char __user *uargs,
3422 int flags)
3424 struct module *mod;
3425 long err;
3426 char *after_dashes;
3428 err = module_sig_check(info);
3429 if (err)
3430 goto free_copy;
3432 err = elf_header_check(info);
3433 if (err)
3434 goto free_copy;
3436 /* Figure out module layout, and allocate all the memory. */
3437 mod = layout_and_allocate(info, flags);
3438 if (IS_ERR(mod)) {
3439 err = PTR_ERR(mod);
3440 goto free_copy;
3443 /* Reserve our place in the list. */
3444 err = add_unformed_module(mod);
3445 if (err)
3446 goto free_module;
3448 #ifdef CONFIG_MODULE_SIG
3449 mod->sig_ok = info->sig_ok;
3450 if (!mod->sig_ok) {
3451 pr_notice_once("%s: module verification failed: signature "
3452 "and/or required key missing - tainting "
3453 "kernel\n", mod->name);
3454 add_taint_module(mod, TAINT_UNSIGNED_MODULE, LOCKDEP_STILL_OK);
3456 #endif
3458 /* To avoid stressing percpu allocator, do this once we're unique. */
3459 err = percpu_modalloc(mod, info);
3460 if (err)
3461 goto unlink_mod;
3463 /* Now module is in final location, initialize linked lists, etc. */
3464 err = module_unload_init(mod);
3465 if (err)
3466 goto unlink_mod;
3468 init_param_lock(mod);
3470 /* Now we've got everything in the final locations, we can
3471 * find optional sections. */
3472 err = find_module_sections(mod, info);
3473 if (err)
3474 goto free_unload;
3476 err = check_module_license_and_versions(mod);
3477 if (err)
3478 goto free_unload;
3480 /* Set up MODINFO_ATTR fields */
3481 setup_modinfo(mod, info);
3483 /* Fix up syms, so that st_value is a pointer to location. */
3484 err = simplify_symbols(mod, info);
3485 if (err < 0)
3486 goto free_modinfo;
3488 err = apply_relocations(mod, info);
3489 if (err < 0)
3490 goto free_modinfo;
3492 err = post_relocation(mod, info);
3493 if (err < 0)
3494 goto free_modinfo;
3496 flush_module_icache(mod);
3498 /* Now copy in args */
3499 mod->args = strndup_user(uargs, ~0UL >> 1);
3500 if (IS_ERR(mod->args)) {
3501 err = PTR_ERR(mod->args);
3502 goto free_arch_cleanup;
3505 dynamic_debug_setup(info->debug, info->num_debug);
3507 /* Ftrace init must be called in the MODULE_STATE_UNFORMED state */
3508 ftrace_module_init(mod);
3510 /* Finally it's fully formed, ready to start executing. */
3511 err = complete_formation(mod, info);
3512 if (err)
3513 goto ddebug_cleanup;
3515 /* Module is ready to execute: parsing args may do that. */
3516 after_dashes = parse_args(mod->name, mod->args, mod->kp, mod->num_kp,
3517 -32768, 32767, mod,
3518 unknown_module_param_cb);
3519 if (IS_ERR(after_dashes)) {
3520 err = PTR_ERR(after_dashes);
3521 goto bug_cleanup;
3522 } else if (after_dashes) {
3523 pr_warn("%s: parameters '%s' after `--' ignored\n",
3524 mod->name, after_dashes);
3527 /* Link in to syfs. */
3528 err = mod_sysfs_setup(mod, info, mod->kp, mod->num_kp);
3529 if (err < 0)
3530 goto bug_cleanup;
3532 /* Get rid of temporary copy. */
3533 free_copy(info);
3535 /* Done! */
3536 trace_module_load(mod);
3538 return do_init_module(mod);
3540 bug_cleanup:
3541 /* module_bug_cleanup needs module_mutex protection */
3542 mutex_lock(&module_mutex);
3543 module_bug_cleanup(mod);
3544 mutex_unlock(&module_mutex);
3546 blocking_notifier_call_chain(&module_notify_list,
3547 MODULE_STATE_GOING, mod);
3549 /* we can't deallocate the module until we clear memory protection */
3550 module_disable_ro(mod);
3551 module_disable_nx(mod);
3553 ddebug_cleanup:
3554 dynamic_debug_remove(info->debug);
3555 synchronize_sched();
3556 kfree(mod->args);
3557 free_arch_cleanup:
3558 module_arch_cleanup(mod);
3559 free_modinfo:
3560 free_modinfo(mod);
3561 free_unload:
3562 module_unload_free(mod);
3563 unlink_mod:
3564 mutex_lock(&module_mutex);
3565 /* Unlink carefully: kallsyms could be walking list. */
3566 list_del_rcu(&mod->list);
3567 mod_tree_remove(mod);
3568 wake_up_all(&module_wq);
3569 /* Wait for RCU-sched synchronizing before releasing mod->list. */
3570 synchronize_sched();
3571 mutex_unlock(&module_mutex);
3572 free_module:
3574 * Ftrace needs to clean up what it initialized.
3575 * This does nothing if ftrace_module_init() wasn't called,
3576 * but it must be called outside of module_mutex.
3578 ftrace_release_mod(mod);
3579 /* Free lock-classes; relies on the preceding sync_rcu() */
3580 lockdep_free_key_range(mod->core_layout.base, mod->core_layout.size);
3582 module_deallocate(mod, info);
3583 free_copy:
3584 free_copy(info);
3585 return err;
3588 SYSCALL_DEFINE3(init_module, void __user *, umod,
3589 unsigned long, len, const char __user *, uargs)
3591 int err;
3592 struct load_info info = { };
3594 err = may_init_module();
3595 if (err)
3596 return err;
3598 pr_debug("init_module: umod=%p, len=%lu, uargs=%p\n",
3599 umod, len, uargs);
3601 err = copy_module_from_user(umod, len, &info);
3602 if (err)
3603 return err;
3605 return load_module(&info, uargs, 0);
3608 SYSCALL_DEFINE3(finit_module, int, fd, const char __user *, uargs, int, flags)
3610 int err;
3611 struct load_info info = { };
3613 err = may_init_module();
3614 if (err)
3615 return err;
3617 pr_debug("finit_module: fd=%d, uargs=%p, flags=%i\n", fd, uargs, flags);
3619 if (flags & ~(MODULE_INIT_IGNORE_MODVERSIONS
3620 |MODULE_INIT_IGNORE_VERMAGIC))
3621 return -EINVAL;
3623 err = copy_module_from_fd(fd, &info);
3624 if (err)
3625 return err;
3627 return load_module(&info, uargs, flags);
3630 static inline int within(unsigned long addr, void *start, unsigned long size)
3632 return ((void *)addr >= start && (void *)addr < start + size);
3635 #ifdef CONFIG_KALLSYMS
3637 * This ignores the intensely annoying "mapping symbols" found
3638 * in ARM ELF files: $a, $t and $d.
3640 static inline int is_arm_mapping_symbol(const char *str)
3642 if (str[0] == '.' && str[1] == 'L')
3643 return true;
3644 return str[0] == '$' && strchr("axtd", str[1])
3645 && (str[2] == '\0' || str[2] == '.');
3648 static const char *symname(struct mod_kallsyms *kallsyms, unsigned int symnum)
3650 return kallsyms->strtab + kallsyms->symtab[symnum].st_name;
3653 static const char *get_ksymbol(struct module *mod,
3654 unsigned long addr,
3655 unsigned long *size,
3656 unsigned long *offset)
3658 unsigned int i, best = 0;
3659 unsigned long nextval;
3660 struct mod_kallsyms *kallsyms = rcu_dereference_sched(mod->kallsyms);
3662 /* At worse, next value is at end of module */
3663 if (within_module_init(addr, mod))
3664 nextval = (unsigned long)mod->init_layout.base+mod->init_layout.text_size;
3665 else
3666 nextval = (unsigned long)mod->core_layout.base+mod->core_layout.text_size;
3668 /* Scan for closest preceding symbol, and next symbol. (ELF
3669 starts real symbols at 1). */
3670 for (i = 1; i < kallsyms->num_symtab; i++) {
3671 if (kallsyms->symtab[i].st_shndx == SHN_UNDEF)
3672 continue;
3674 /* We ignore unnamed symbols: they're uninformative
3675 * and inserted at a whim. */
3676 if (*symname(kallsyms, i) == '\0'
3677 || is_arm_mapping_symbol(symname(kallsyms, i)))
3678 continue;
3680 if (kallsyms->symtab[i].st_value <= addr
3681 && kallsyms->symtab[i].st_value > kallsyms->symtab[best].st_value)
3682 best = i;
3683 if (kallsyms->symtab[i].st_value > addr
3684 && kallsyms->symtab[i].st_value < nextval)
3685 nextval = kallsyms->symtab[i].st_value;
3688 if (!best)
3689 return NULL;
3691 if (size)
3692 *size = nextval - kallsyms->symtab[best].st_value;
3693 if (offset)
3694 *offset = addr - kallsyms->symtab[best].st_value;
3695 return symname(kallsyms, best);
3698 /* For kallsyms to ask for address resolution. NULL means not found. Careful
3699 * not to lock to avoid deadlock on oopses, simply disable preemption. */
3700 const char *module_address_lookup(unsigned long addr,
3701 unsigned long *size,
3702 unsigned long *offset,
3703 char **modname,
3704 char *namebuf)
3706 const char *ret = NULL;
3707 struct module *mod;
3709 preempt_disable();
3710 mod = __module_address(addr);
3711 if (mod) {
3712 if (modname)
3713 *modname = mod->name;
3714 ret = get_ksymbol(mod, addr, size, offset);
3716 /* Make a copy in here where it's safe */
3717 if (ret) {
3718 strncpy(namebuf, ret, KSYM_NAME_LEN - 1);
3719 ret = namebuf;
3721 preempt_enable();
3723 return ret;
3726 int lookup_module_symbol_name(unsigned long addr, char *symname)
3728 struct module *mod;
3730 preempt_disable();
3731 list_for_each_entry_rcu(mod, &modules, list) {
3732 if (mod->state == MODULE_STATE_UNFORMED)
3733 continue;
3734 if (within_module(addr, mod)) {
3735 const char *sym;
3737 sym = get_ksymbol(mod, addr, NULL, NULL);
3738 if (!sym)
3739 goto out;
3740 strlcpy(symname, sym, KSYM_NAME_LEN);
3741 preempt_enable();
3742 return 0;
3745 out:
3746 preempt_enable();
3747 return -ERANGE;
3750 int lookup_module_symbol_attrs(unsigned long addr, unsigned long *size,
3751 unsigned long *offset, char *modname, char *name)
3753 struct module *mod;
3755 preempt_disable();
3756 list_for_each_entry_rcu(mod, &modules, list) {
3757 if (mod->state == MODULE_STATE_UNFORMED)
3758 continue;
3759 if (within_module(addr, mod)) {
3760 const char *sym;
3762 sym = get_ksymbol(mod, addr, size, offset);
3763 if (!sym)
3764 goto out;
3765 if (modname)
3766 strlcpy(modname, mod->name, MODULE_NAME_LEN);
3767 if (name)
3768 strlcpy(name, sym, KSYM_NAME_LEN);
3769 preempt_enable();
3770 return 0;
3773 out:
3774 preempt_enable();
3775 return -ERANGE;
3778 int module_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
3779 char *name, char *module_name, int *exported)
3781 struct module *mod;
3783 preempt_disable();
3784 list_for_each_entry_rcu(mod, &modules, list) {
3785 struct mod_kallsyms *kallsyms;
3787 if (mod->state == MODULE_STATE_UNFORMED)
3788 continue;
3789 kallsyms = rcu_dereference_sched(mod->kallsyms);
3790 if (symnum < kallsyms->num_symtab) {
3791 *value = kallsyms->symtab[symnum].st_value;
3792 *type = kallsyms->symtab[symnum].st_info;
3793 strlcpy(name, symname(kallsyms, symnum), KSYM_NAME_LEN);
3794 strlcpy(module_name, mod->name, MODULE_NAME_LEN);
3795 *exported = is_exported(name, *value, mod);
3796 preempt_enable();
3797 return 0;
3799 symnum -= kallsyms->num_symtab;
3801 preempt_enable();
3802 return -ERANGE;
3805 static unsigned long mod_find_symname(struct module *mod, const char *name)
3807 unsigned int i;
3808 struct mod_kallsyms *kallsyms = rcu_dereference_sched(mod->kallsyms);
3810 for (i = 0; i < kallsyms->num_symtab; i++)
3811 if (strcmp(name, symname(kallsyms, i)) == 0 &&
3812 kallsyms->symtab[i].st_info != 'U')
3813 return kallsyms->symtab[i].st_value;
3814 return 0;
3817 /* Look for this name: can be of form module:name. */
3818 unsigned long module_kallsyms_lookup_name(const char *name)
3820 struct module *mod;
3821 char *colon;
3822 unsigned long ret = 0;
3824 /* Don't lock: we're in enough trouble already. */
3825 preempt_disable();
3826 if ((colon = strchr(name, ':')) != NULL) {
3827 if ((mod = find_module_all(name, colon - name, false)) != NULL)
3828 ret = mod_find_symname(mod, colon+1);
3829 } else {
3830 list_for_each_entry_rcu(mod, &modules, list) {
3831 if (mod->state == MODULE_STATE_UNFORMED)
3832 continue;
3833 if ((ret = mod_find_symname(mod, name)) != 0)
3834 break;
3837 preempt_enable();
3838 return ret;
3841 int module_kallsyms_on_each_symbol(int (*fn)(void *, const char *,
3842 struct module *, unsigned long),
3843 void *data)
3845 struct module *mod;
3846 unsigned int i;
3847 int ret;
3849 module_assert_mutex();
3851 list_for_each_entry(mod, &modules, list) {
3852 /* We hold module_mutex: no need for rcu_dereference_sched */
3853 struct mod_kallsyms *kallsyms = mod->kallsyms;
3855 if (mod->state == MODULE_STATE_UNFORMED)
3856 continue;
3857 for (i = 0; i < kallsyms->num_symtab; i++) {
3858 ret = fn(data, symname(kallsyms, i),
3859 mod, kallsyms->symtab[i].st_value);
3860 if (ret != 0)
3861 return ret;
3864 return 0;
3866 #endif /* CONFIG_KALLSYMS */
3868 static char *module_flags(struct module *mod, char *buf)
3870 int bx = 0;
3872 BUG_ON(mod->state == MODULE_STATE_UNFORMED);
3873 if (mod->taints ||
3874 mod->state == MODULE_STATE_GOING ||
3875 mod->state == MODULE_STATE_COMING) {
3876 buf[bx++] = '(';
3877 bx += module_flags_taint(mod, buf + bx);
3878 /* Show a - for module-is-being-unloaded */
3879 if (mod->state == MODULE_STATE_GOING)
3880 buf[bx++] = '-';
3881 /* Show a + for module-is-being-loaded */
3882 if (mod->state == MODULE_STATE_COMING)
3883 buf[bx++] = '+';
3884 buf[bx++] = ')';
3886 buf[bx] = '\0';
3888 return buf;
3891 #ifdef CONFIG_PROC_FS
3892 /* Called by the /proc file system to return a list of modules. */
3893 static void *m_start(struct seq_file *m, loff_t *pos)
3895 mutex_lock(&module_mutex);
3896 return seq_list_start(&modules, *pos);
3899 static void *m_next(struct seq_file *m, void *p, loff_t *pos)
3901 return seq_list_next(p, &modules, pos);
3904 static void m_stop(struct seq_file *m, void *p)
3906 mutex_unlock(&module_mutex);
3909 static int m_show(struct seq_file *m, void *p)
3911 struct module *mod = list_entry(p, struct module, list);
3912 char buf[8];
3914 /* We always ignore unformed modules. */
3915 if (mod->state == MODULE_STATE_UNFORMED)
3916 return 0;
3918 seq_printf(m, "%s %u",
3919 mod->name, mod->init_layout.size + mod->core_layout.size);
3920 print_unload_info(m, mod);
3922 /* Informative for users. */
3923 seq_printf(m, " %s",
3924 mod->state == MODULE_STATE_GOING ? "Unloading" :
3925 mod->state == MODULE_STATE_COMING ? "Loading" :
3926 "Live");
3927 /* Used by oprofile and other similar tools. */
3928 seq_printf(m, " 0x%pK", mod->core_layout.base);
3930 /* Taints info */
3931 if (mod->taints)
3932 seq_printf(m, " %s", module_flags(mod, buf));
3934 seq_puts(m, "\n");
3935 return 0;
3938 /* Format: modulename size refcount deps address
3940 Where refcount is a number or -, and deps is a comma-separated list
3941 of depends or -.
3943 static const struct seq_operations modules_op = {
3944 .start = m_start,
3945 .next = m_next,
3946 .stop = m_stop,
3947 .show = m_show
3950 static int modules_open(struct inode *inode, struct file *file)
3952 return seq_open(file, &modules_op);
3955 static const struct file_operations proc_modules_operations = {
3956 .open = modules_open,
3957 .read = seq_read,
3958 .llseek = seq_lseek,
3959 .release = seq_release,
3962 static int __init proc_modules_init(void)
3964 proc_create("modules", 0, NULL, &proc_modules_operations);
3965 return 0;
3967 module_init(proc_modules_init);
3968 #endif
3970 /* Given an address, look for it in the module exception tables. */
3971 const struct exception_table_entry *search_module_extables(unsigned long addr)
3973 const struct exception_table_entry *e = NULL;
3974 struct module *mod;
3976 preempt_disable();
3977 list_for_each_entry_rcu(mod, &modules, list) {
3978 if (mod->state == MODULE_STATE_UNFORMED)
3979 continue;
3980 if (mod->num_exentries == 0)
3981 continue;
3983 e = search_extable(mod->extable,
3984 mod->extable + mod->num_exentries - 1,
3985 addr);
3986 if (e)
3987 break;
3989 preempt_enable();
3991 /* Now, if we found one, we are running inside it now, hence
3992 we cannot unload the module, hence no refcnt needed. */
3993 return e;
3997 * is_module_address - is this address inside a module?
3998 * @addr: the address to check.
4000 * See is_module_text_address() if you simply want to see if the address
4001 * is code (not data).
4003 bool is_module_address(unsigned long addr)
4005 bool ret;
4007 preempt_disable();
4008 ret = __module_address(addr) != NULL;
4009 preempt_enable();
4011 return ret;
4015 * __module_address - get the module which contains an address.
4016 * @addr: the address.
4018 * Must be called with preempt disabled or module mutex held so that
4019 * module doesn't get freed during this.
4021 struct module *__module_address(unsigned long addr)
4023 struct module *mod;
4025 if (addr < module_addr_min || addr > module_addr_max)
4026 return NULL;
4028 module_assert_mutex_or_preempt();
4030 mod = mod_find(addr);
4031 if (mod) {
4032 BUG_ON(!within_module(addr, mod));
4033 if (mod->state == MODULE_STATE_UNFORMED)
4034 mod = NULL;
4036 return mod;
4038 EXPORT_SYMBOL_GPL(__module_address);
4041 * is_module_text_address - is this address inside module code?
4042 * @addr: the address to check.
4044 * See is_module_address() if you simply want to see if the address is
4045 * anywhere in a module. See kernel_text_address() for testing if an
4046 * address corresponds to kernel or module code.
4048 bool is_module_text_address(unsigned long addr)
4050 bool ret;
4052 preempt_disable();
4053 ret = __module_text_address(addr) != NULL;
4054 preempt_enable();
4056 return ret;
4060 * __module_text_address - get the module whose code contains an address.
4061 * @addr: the address.
4063 * Must be called with preempt disabled or module mutex held so that
4064 * module doesn't get freed during this.
4066 struct module *__module_text_address(unsigned long addr)
4068 struct module *mod = __module_address(addr);
4069 if (mod) {
4070 /* Make sure it's within the text section. */
4071 if (!within(addr, mod->init_layout.base, mod->init_layout.text_size)
4072 && !within(addr, mod->core_layout.base, mod->core_layout.text_size))
4073 mod = NULL;
4075 return mod;
4077 EXPORT_SYMBOL_GPL(__module_text_address);
4079 /* Don't grab lock, we're oopsing. */
4080 void print_modules(void)
4082 struct module *mod;
4083 char buf[8];
4085 printk(KERN_DEFAULT "Modules linked in:");
4086 /* Most callers should already have preempt disabled, but make sure */
4087 preempt_disable();
4088 list_for_each_entry_rcu(mod, &modules, list) {
4089 if (mod->state == MODULE_STATE_UNFORMED)
4090 continue;
4091 pr_cont(" %s%s", mod->name, module_flags(mod, buf));
4093 preempt_enable();
4094 if (last_unloaded_module[0])
4095 pr_cont(" [last unloaded: %s]", last_unloaded_module);
4096 pr_cont("\n");
4099 #ifdef CONFIG_MODVERSIONS
4100 /* Generate the signature for all relevant module structures here.
4101 * If these change, we don't want to try to parse the module. */
4102 void module_layout(struct module *mod,
4103 struct modversion_info *ver,
4104 struct kernel_param *kp,
4105 struct kernel_symbol *ks,
4106 struct tracepoint * const *tp)
4109 EXPORT_SYMBOL(module_layout);
4110 #endif