2 * RTC subsystem, interface functions
4 * Copyright (C) 2005 Tower Technologies
5 * Author: Alessandro Zummo <a.zummo@towertech.it>
7 * based on arch/arm/common/rtctime.c
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
14 #include <linux/rtc.h>
15 #include <linux/sched.h>
16 #include <linux/module.h>
17 #include <linux/log2.h>
18 #include <linux/workqueue.h>
20 static int rtc_timer_enqueue(struct rtc_device
*rtc
, struct rtc_timer
*timer
);
21 static void rtc_timer_remove(struct rtc_device
*rtc
, struct rtc_timer
*timer
);
23 static int __rtc_read_time(struct rtc_device
*rtc
, struct rtc_time
*tm
)
28 else if (!rtc
->ops
->read_time
)
31 memset(tm
, 0, sizeof(struct rtc_time
));
32 err
= rtc
->ops
->read_time(rtc
->dev
.parent
, tm
);
37 int rtc_read_time(struct rtc_device
*rtc
, struct rtc_time
*tm
)
41 err
= mutex_lock_interruptible(&rtc
->ops_lock
);
45 err
= __rtc_read_time(rtc
, tm
);
46 mutex_unlock(&rtc
->ops_lock
);
49 EXPORT_SYMBOL_GPL(rtc_read_time
);
51 int rtc_set_time(struct rtc_device
*rtc
, struct rtc_time
*tm
)
55 err
= rtc_valid_tm(tm
);
59 err
= mutex_lock_interruptible(&rtc
->ops_lock
);
65 else if (rtc
->ops
->set_time
)
66 err
= rtc
->ops
->set_time(rtc
->dev
.parent
, tm
);
67 else if (rtc
->ops
->set_mmss
) {
69 err
= rtc_tm_to_time(tm
, &secs
);
71 err
= rtc
->ops
->set_mmss(rtc
->dev
.parent
, secs
);
75 mutex_unlock(&rtc
->ops_lock
);
76 /* A timer might have just expired */
77 schedule_work(&rtc
->irqwork
);
80 EXPORT_SYMBOL_GPL(rtc_set_time
);
82 int rtc_set_mmss(struct rtc_device
*rtc
, unsigned long secs
)
86 err
= mutex_lock_interruptible(&rtc
->ops_lock
);
92 else if (rtc
->ops
->set_mmss
)
93 err
= rtc
->ops
->set_mmss(rtc
->dev
.parent
, secs
);
94 else if (rtc
->ops
->read_time
&& rtc
->ops
->set_time
) {
95 struct rtc_time
new, old
;
97 err
= rtc
->ops
->read_time(rtc
->dev
.parent
, &old
);
99 rtc_time_to_tm(secs
, &new);
102 * avoid writing when we're going to change the day of
103 * the month. We will retry in the next minute. This
104 * basically means that if the RTC must not drift
105 * by more than 1 minute in 11 minutes.
107 if (!((old
.tm_hour
== 23 && old
.tm_min
== 59) ||
108 (new.tm_hour
== 23 && new.tm_min
== 59)))
109 err
= rtc
->ops
->set_time(rtc
->dev
.parent
,
116 mutex_unlock(&rtc
->ops_lock
);
117 /* A timer might have just expired */
118 schedule_work(&rtc
->irqwork
);
122 EXPORT_SYMBOL_GPL(rtc_set_mmss
);
124 static int rtc_read_alarm_internal(struct rtc_device
*rtc
, struct rtc_wkalrm
*alarm
)
128 err
= mutex_lock_interruptible(&rtc
->ops_lock
);
132 if (rtc
->ops
== NULL
)
134 else if (!rtc
->ops
->read_alarm
)
137 memset(alarm
, 0, sizeof(struct rtc_wkalrm
));
138 err
= rtc
->ops
->read_alarm(rtc
->dev
.parent
, alarm
);
141 mutex_unlock(&rtc
->ops_lock
);
145 int __rtc_read_alarm(struct rtc_device
*rtc
, struct rtc_wkalrm
*alarm
)
148 struct rtc_time before
, now
;
150 unsigned long t_now
, t_alm
;
151 enum { none
, day
, month
, year
} missing
= none
;
154 /* The lower level RTC driver may return -1 in some fields,
155 * creating invalid alarm->time values, for reasons like:
157 * - The hardware may not be capable of filling them in;
158 * many alarms match only on time-of-day fields, not
159 * day/month/year calendar data.
161 * - Some hardware uses illegal values as "wildcard" match
162 * values, which non-Linux firmware (like a BIOS) may try
163 * to set up as e.g. "alarm 15 minutes after each hour".
164 * Linux uses only oneshot alarms.
166 * When we see that here, we deal with it by using values from
167 * a current RTC timestamp for any missing (-1) values. The
168 * RTC driver prevents "periodic alarm" modes.
170 * But this can be racey, because some fields of the RTC timestamp
171 * may have wrapped in the interval since we read the RTC alarm,
172 * which would lead to us inserting inconsistent values in place
175 * Reading the alarm and timestamp in the reverse sequence
176 * would have the same race condition, and not solve the issue.
178 * So, we must first read the RTC timestamp,
179 * then read the RTC alarm value,
180 * and then read a second RTC timestamp.
182 * If any fields of the second timestamp have changed
183 * when compared with the first timestamp, then we know
184 * our timestamp may be inconsistent with that used by
185 * the low-level rtc_read_alarm_internal() function.
187 * So, when the two timestamps disagree, we just loop and do
188 * the process again to get a fully consistent set of values.
190 * This could all instead be done in the lower level driver,
191 * but since more than one lower level RTC implementation needs it,
192 * then it's probably best best to do it here instead of there..
195 /* Get the "before" timestamp */
196 err
= rtc_read_time(rtc
, &before
);
201 memcpy(&before
, &now
, sizeof(struct rtc_time
));
204 /* get the RTC alarm values, which may be incomplete */
205 err
= rtc_read_alarm_internal(rtc
, alarm
);
209 /* full-function RTCs won't have such missing fields */
210 if (rtc_valid_tm(&alarm
->time
) == 0)
213 /* get the "after" timestamp, to detect wrapped fields */
214 err
= rtc_read_time(rtc
, &now
);
218 /* note that tm_sec is a "don't care" value here: */
219 } while ( before
.tm_min
!= now
.tm_min
220 || before
.tm_hour
!= now
.tm_hour
221 || before
.tm_mon
!= now
.tm_mon
222 || before
.tm_year
!= now
.tm_year
);
224 /* Fill in the missing alarm fields using the timestamp; we
225 * know there's at least one since alarm->time is invalid.
227 if (alarm
->time
.tm_sec
== -1)
228 alarm
->time
.tm_sec
= now
.tm_sec
;
229 if (alarm
->time
.tm_min
== -1)
230 alarm
->time
.tm_min
= now
.tm_min
;
231 if (alarm
->time
.tm_hour
== -1)
232 alarm
->time
.tm_hour
= now
.tm_hour
;
234 /* For simplicity, only support date rollover for now */
235 if (alarm
->time
.tm_mday
< 1 || alarm
->time
.tm_mday
> 31) {
236 alarm
->time
.tm_mday
= now
.tm_mday
;
239 if ((unsigned)alarm
->time
.tm_mon
>= 12) {
240 alarm
->time
.tm_mon
= now
.tm_mon
;
244 if (alarm
->time
.tm_year
== -1) {
245 alarm
->time
.tm_year
= now
.tm_year
;
250 /* with luck, no rollover is needed */
251 rtc_tm_to_time(&now
, &t_now
);
252 rtc_tm_to_time(&alarm
->time
, &t_alm
);
258 /* 24 hour rollover ... if it's now 10am Monday, an alarm that
259 * that will trigger at 5am will do so at 5am Tuesday, which
260 * could also be in the next month or year. This is a common
261 * case, especially for PCs.
264 dev_dbg(&rtc
->dev
, "alarm rollover: %s\n", "day");
265 t_alm
+= 24 * 60 * 60;
266 rtc_time_to_tm(t_alm
, &alarm
->time
);
269 /* Month rollover ... if it's the 31th, an alarm on the 3rd will
270 * be next month. An alarm matching on the 30th, 29th, or 28th
271 * may end up in the month after that! Many newer PCs support
272 * this type of alarm.
275 dev_dbg(&rtc
->dev
, "alarm rollover: %s\n", "month");
277 if (alarm
->time
.tm_mon
< 11)
278 alarm
->time
.tm_mon
++;
280 alarm
->time
.tm_mon
= 0;
281 alarm
->time
.tm_year
++;
283 days
= rtc_month_days(alarm
->time
.tm_mon
,
284 alarm
->time
.tm_year
);
285 } while (days
< alarm
->time
.tm_mday
);
288 /* Year rollover ... easy except for leap years! */
290 dev_dbg(&rtc
->dev
, "alarm rollover: %s\n", "year");
292 alarm
->time
.tm_year
++;
293 } while (!is_leap_year(alarm
->time
.tm_year
+ 1900)
294 && rtc_valid_tm(&alarm
->time
) != 0);
298 dev_warn(&rtc
->dev
, "alarm rollover not handled\n");
302 err
= rtc_valid_tm(&alarm
->time
);
305 dev_warn(&rtc
->dev
, "invalid alarm value: %d-%d-%d %d:%d:%d\n",
306 alarm
->time
.tm_year
+ 1900, alarm
->time
.tm_mon
+ 1,
307 alarm
->time
.tm_mday
, alarm
->time
.tm_hour
, alarm
->time
.tm_min
,
314 int rtc_read_alarm(struct rtc_device
*rtc
, struct rtc_wkalrm
*alarm
)
318 err
= mutex_lock_interruptible(&rtc
->ops_lock
);
321 if (rtc
->ops
== NULL
)
323 else if (!rtc
->ops
->read_alarm
)
326 memset(alarm
, 0, sizeof(struct rtc_wkalrm
));
327 alarm
->enabled
= rtc
->aie_timer
.enabled
;
328 alarm
->time
= rtc_ktime_to_tm(rtc
->aie_timer
.node
.expires
);
330 mutex_unlock(&rtc
->ops_lock
);
334 EXPORT_SYMBOL_GPL(rtc_read_alarm
);
336 static int __rtc_set_alarm(struct rtc_device
*rtc
, struct rtc_wkalrm
*alarm
)
342 err
= rtc_valid_tm(&alarm
->time
);
345 rtc_tm_to_time(&alarm
->time
, &scheduled
);
347 /* Make sure we're not setting alarms in the past */
348 err
= __rtc_read_time(rtc
, &tm
);
349 rtc_tm_to_time(&tm
, &now
);
350 if (scheduled
<= now
)
353 * XXX - We just checked to make sure the alarm time is not
354 * in the past, but there is still a race window where if
355 * the is alarm set for the next second and the second ticks
356 * over right here, before we set the alarm.
361 else if (!rtc
->ops
->set_alarm
)
364 err
= rtc
->ops
->set_alarm(rtc
->dev
.parent
, alarm
);
369 int rtc_set_alarm(struct rtc_device
*rtc
, struct rtc_wkalrm
*alarm
)
373 err
= rtc_valid_tm(&alarm
->time
);
377 err
= mutex_lock_interruptible(&rtc
->ops_lock
);
380 if (rtc
->aie_timer
.enabled
)
381 rtc_timer_remove(rtc
, &rtc
->aie_timer
);
383 rtc
->aie_timer
.node
.expires
= rtc_tm_to_ktime(alarm
->time
);
384 rtc
->aie_timer
.period
= ktime_set(0, 0);
386 err
= rtc_timer_enqueue(rtc
, &rtc
->aie_timer
);
388 mutex_unlock(&rtc
->ops_lock
);
391 EXPORT_SYMBOL_GPL(rtc_set_alarm
);
393 /* Called once per device from rtc_device_register */
394 int rtc_initialize_alarm(struct rtc_device
*rtc
, struct rtc_wkalrm
*alarm
)
399 err
= rtc_valid_tm(&alarm
->time
);
403 err
= rtc_read_time(rtc
, &now
);
407 err
= mutex_lock_interruptible(&rtc
->ops_lock
);
411 rtc
->aie_timer
.node
.expires
= rtc_tm_to_ktime(alarm
->time
);
412 rtc
->aie_timer
.period
= ktime_set(0, 0);
414 /* Alarm has to be enabled & in the futrure for us to enqueue it */
415 if (alarm
->enabled
&& (rtc_tm_to_ktime(now
).tv64
<
416 rtc
->aie_timer
.node
.expires
.tv64
)) {
418 rtc
->aie_timer
.enabled
= 1;
419 timerqueue_add(&rtc
->timerqueue
, &rtc
->aie_timer
.node
);
421 mutex_unlock(&rtc
->ops_lock
);
424 EXPORT_SYMBOL_GPL(rtc_initialize_alarm
);
428 int rtc_alarm_irq_enable(struct rtc_device
*rtc
, unsigned int enabled
)
430 int err
= mutex_lock_interruptible(&rtc
->ops_lock
);
434 if (rtc
->aie_timer
.enabled
!= enabled
) {
436 err
= rtc_timer_enqueue(rtc
, &rtc
->aie_timer
);
438 rtc_timer_remove(rtc
, &rtc
->aie_timer
);
445 else if (!rtc
->ops
->alarm_irq_enable
)
448 err
= rtc
->ops
->alarm_irq_enable(rtc
->dev
.parent
, enabled
);
450 mutex_unlock(&rtc
->ops_lock
);
453 EXPORT_SYMBOL_GPL(rtc_alarm_irq_enable
);
455 int rtc_update_irq_enable(struct rtc_device
*rtc
, unsigned int enabled
)
457 int err
= mutex_lock_interruptible(&rtc
->ops_lock
);
461 #ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL
462 if (enabled
== 0 && rtc
->uie_irq_active
) {
463 mutex_unlock(&rtc
->ops_lock
);
464 return rtc_dev_update_irq_enable_emul(rtc
, 0);
467 /* make sure we're changing state */
468 if (rtc
->uie_rtctimer
.enabled
== enabled
)
471 if (rtc
->uie_unsupported
) {
480 __rtc_read_time(rtc
, &tm
);
481 onesec
= ktime_set(1, 0);
482 now
= rtc_tm_to_ktime(tm
);
483 rtc
->uie_rtctimer
.node
.expires
= ktime_add(now
, onesec
);
484 rtc
->uie_rtctimer
.period
= ktime_set(1, 0);
485 err
= rtc_timer_enqueue(rtc
, &rtc
->uie_rtctimer
);
487 rtc_timer_remove(rtc
, &rtc
->uie_rtctimer
);
490 mutex_unlock(&rtc
->ops_lock
);
491 #ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL
493 * Enable emulation if the driver did not provide
494 * the update_irq_enable function pointer or if returned
495 * -EINVAL to signal that it has been configured without
496 * interrupts or that are not available at the moment.
499 err
= rtc_dev_update_irq_enable_emul(rtc
, enabled
);
504 EXPORT_SYMBOL_GPL(rtc_update_irq_enable
);
508 * rtc_handle_legacy_irq - AIE, UIE and PIE event hook
509 * @rtc: pointer to the rtc device
511 * This function is called when an AIE, UIE or PIE mode interrupt
512 * has occurred (or been emulated).
514 * Triggers the registered irq_task function callback.
516 void rtc_handle_legacy_irq(struct rtc_device
*rtc
, int num
, int mode
)
520 /* mark one irq of the appropriate mode */
521 spin_lock_irqsave(&rtc
->irq_lock
, flags
);
522 rtc
->irq_data
= (rtc
->irq_data
+ (num
<< 8)) | (RTC_IRQF
|mode
);
523 spin_unlock_irqrestore(&rtc
->irq_lock
, flags
);
525 /* call the task func */
526 spin_lock_irqsave(&rtc
->irq_task_lock
, flags
);
528 rtc
->irq_task
->func(rtc
->irq_task
->private_data
);
529 spin_unlock_irqrestore(&rtc
->irq_task_lock
, flags
);
531 wake_up_interruptible(&rtc
->irq_queue
);
532 kill_fasync(&rtc
->async_queue
, SIGIO
, POLL_IN
);
537 * rtc_aie_update_irq - AIE mode rtctimer hook
538 * @private: pointer to the rtc_device
540 * This functions is called when the aie_timer expires.
542 void rtc_aie_update_irq(void *private)
544 struct rtc_device
*rtc
= (struct rtc_device
*)private;
545 rtc_handle_legacy_irq(rtc
, 1, RTC_AF
);
550 * rtc_uie_update_irq - UIE mode rtctimer hook
551 * @private: pointer to the rtc_device
553 * This functions is called when the uie_timer expires.
555 void rtc_uie_update_irq(void *private)
557 struct rtc_device
*rtc
= (struct rtc_device
*)private;
558 rtc_handle_legacy_irq(rtc
, 1, RTC_UF
);
563 * rtc_pie_update_irq - PIE mode hrtimer hook
564 * @timer: pointer to the pie mode hrtimer
566 * This function is used to emulate PIE mode interrupts
567 * using an hrtimer. This function is called when the periodic
570 enum hrtimer_restart
rtc_pie_update_irq(struct hrtimer
*timer
)
572 struct rtc_device
*rtc
;
575 rtc
= container_of(timer
, struct rtc_device
, pie_timer
);
577 period
= ktime_set(0, NSEC_PER_SEC
/rtc
->irq_freq
);
578 count
= hrtimer_forward_now(timer
, period
);
580 rtc_handle_legacy_irq(rtc
, count
, RTC_PF
);
582 return HRTIMER_RESTART
;
586 * rtc_update_irq - Triggered when a RTC interrupt occurs.
587 * @rtc: the rtc device
588 * @num: how many irqs are being reported (usually one)
589 * @events: mask of RTC_IRQF with one or more of RTC_PF, RTC_AF, RTC_UF
592 void rtc_update_irq(struct rtc_device
*rtc
,
593 unsigned long num
, unsigned long events
)
595 pm_stay_awake(rtc
->dev
.parent
);
596 schedule_work(&rtc
->irqwork
);
598 EXPORT_SYMBOL_GPL(rtc_update_irq
);
600 static int __rtc_match(struct device
*dev
, const void *data
)
602 const char *name
= data
;
604 if (strcmp(dev_name(dev
), name
) == 0)
609 struct rtc_device
*rtc_class_open(const char *name
)
612 struct rtc_device
*rtc
= NULL
;
614 dev
= class_find_device(rtc_class
, NULL
, name
, __rtc_match
);
616 rtc
= to_rtc_device(dev
);
619 if (!try_module_get(rtc
->owner
)) {
627 EXPORT_SYMBOL_GPL(rtc_class_open
);
629 void rtc_class_close(struct rtc_device
*rtc
)
631 module_put(rtc
->owner
);
632 put_device(&rtc
->dev
);
634 EXPORT_SYMBOL_GPL(rtc_class_close
);
636 int rtc_irq_register(struct rtc_device
*rtc
, struct rtc_task
*task
)
640 if (task
== NULL
|| task
->func
== NULL
)
643 /* Cannot register while the char dev is in use */
644 if (test_and_set_bit_lock(RTC_DEV_BUSY
, &rtc
->flags
))
647 spin_lock_irq(&rtc
->irq_task_lock
);
648 if (rtc
->irq_task
== NULL
) {
649 rtc
->irq_task
= task
;
652 spin_unlock_irq(&rtc
->irq_task_lock
);
654 clear_bit_unlock(RTC_DEV_BUSY
, &rtc
->flags
);
658 EXPORT_SYMBOL_GPL(rtc_irq_register
);
660 void rtc_irq_unregister(struct rtc_device
*rtc
, struct rtc_task
*task
)
662 spin_lock_irq(&rtc
->irq_task_lock
);
663 if (rtc
->irq_task
== task
)
664 rtc
->irq_task
= NULL
;
665 spin_unlock_irq(&rtc
->irq_task_lock
);
667 EXPORT_SYMBOL_GPL(rtc_irq_unregister
);
669 static int rtc_update_hrtimer(struct rtc_device
*rtc
, int enabled
)
672 * We always cancel the timer here first, because otherwise
673 * we could run into BUG_ON(timer->state != HRTIMER_STATE_CALLBACK);
674 * when we manage to start the timer before the callback
675 * returns HRTIMER_RESTART.
677 * We cannot use hrtimer_cancel() here as a running callback
678 * could be blocked on rtc->irq_task_lock and hrtimer_cancel()
679 * would spin forever.
681 if (hrtimer_try_to_cancel(&rtc
->pie_timer
) < 0)
685 ktime_t period
= ktime_set(0, NSEC_PER_SEC
/ rtc
->irq_freq
);
687 hrtimer_start(&rtc
->pie_timer
, period
, HRTIMER_MODE_REL
);
693 * rtc_irq_set_state - enable/disable 2^N Hz periodic IRQs
694 * @rtc: the rtc device
695 * @task: currently registered with rtc_irq_register()
696 * @enabled: true to enable periodic IRQs
699 * Note that rtc_irq_set_freq() should previously have been used to
700 * specify the desired frequency of periodic IRQ task->func() callbacks.
702 int rtc_irq_set_state(struct rtc_device
*rtc
, struct rtc_task
*task
, int enabled
)
708 spin_lock_irqsave(&rtc
->irq_task_lock
, flags
);
709 if (rtc
->irq_task
!= NULL
&& task
== NULL
)
711 else if (rtc
->irq_task
!= task
)
714 if (rtc_update_hrtimer(rtc
, enabled
) < 0) {
715 spin_unlock_irqrestore(&rtc
->irq_task_lock
, flags
);
719 rtc
->pie_enabled
= enabled
;
721 spin_unlock_irqrestore(&rtc
->irq_task_lock
, flags
);
724 EXPORT_SYMBOL_GPL(rtc_irq_set_state
);
727 * rtc_irq_set_freq - set 2^N Hz periodic IRQ frequency for IRQ
728 * @rtc: the rtc device
729 * @task: currently registered with rtc_irq_register()
730 * @freq: positive frequency with which task->func() will be called
733 * Note that rtc_irq_set_state() is used to enable or disable the
736 int rtc_irq_set_freq(struct rtc_device
*rtc
, struct rtc_task
*task
, int freq
)
741 if (freq
<= 0 || freq
> RTC_MAX_FREQ
)
744 spin_lock_irqsave(&rtc
->irq_task_lock
, flags
);
745 if (rtc
->irq_task
!= NULL
&& task
== NULL
)
747 else if (rtc
->irq_task
!= task
)
750 rtc
->irq_freq
= freq
;
751 if (rtc
->pie_enabled
&& rtc_update_hrtimer(rtc
, 1) < 0) {
752 spin_unlock_irqrestore(&rtc
->irq_task_lock
, flags
);
757 spin_unlock_irqrestore(&rtc
->irq_task_lock
, flags
);
760 EXPORT_SYMBOL_GPL(rtc_irq_set_freq
);
763 * rtc_timer_enqueue - Adds a rtc_timer to the rtc_device timerqueue
765 * @timer timer being added.
767 * Enqueues a timer onto the rtc devices timerqueue and sets
768 * the next alarm event appropriately.
770 * Sets the enabled bit on the added timer.
772 * Must hold ops_lock for proper serialization of timerqueue
774 static int rtc_timer_enqueue(struct rtc_device
*rtc
, struct rtc_timer
*timer
)
777 timerqueue_add(&rtc
->timerqueue
, &timer
->node
);
778 if (&timer
->node
== timerqueue_getnext(&rtc
->timerqueue
)) {
779 struct rtc_wkalrm alarm
;
781 alarm
.time
= rtc_ktime_to_tm(timer
->node
.expires
);
783 err
= __rtc_set_alarm(rtc
, &alarm
);
785 schedule_work(&rtc
->irqwork
);
787 timerqueue_del(&rtc
->timerqueue
, &timer
->node
);
795 static void rtc_alarm_disable(struct rtc_device
*rtc
)
797 if (!rtc
->ops
|| !rtc
->ops
->alarm_irq_enable
)
800 rtc
->ops
->alarm_irq_enable(rtc
->dev
.parent
, false);
804 * rtc_timer_remove - Removes a rtc_timer from the rtc_device timerqueue
806 * @timer timer being removed.
808 * Removes a timer onto the rtc devices timerqueue and sets
809 * the next alarm event appropriately.
811 * Clears the enabled bit on the removed timer.
813 * Must hold ops_lock for proper serialization of timerqueue
815 static void rtc_timer_remove(struct rtc_device
*rtc
, struct rtc_timer
*timer
)
817 struct timerqueue_node
*next
= timerqueue_getnext(&rtc
->timerqueue
);
818 timerqueue_del(&rtc
->timerqueue
, &timer
->node
);
820 if (next
== &timer
->node
) {
821 struct rtc_wkalrm alarm
;
823 next
= timerqueue_getnext(&rtc
->timerqueue
);
825 rtc_alarm_disable(rtc
);
828 alarm
.time
= rtc_ktime_to_tm(next
->expires
);
830 err
= __rtc_set_alarm(rtc
, &alarm
);
832 schedule_work(&rtc
->irqwork
);
837 * rtc_timer_do_work - Expires rtc timers
839 * @timer timer being removed.
841 * Expires rtc timers. Reprograms next alarm event if needed.
842 * Called via worktask.
844 * Serializes access to timerqueue via ops_lock mutex
846 void rtc_timer_do_work(struct work_struct
*work
)
848 struct rtc_timer
*timer
;
849 struct timerqueue_node
*next
;
853 struct rtc_device
*rtc
=
854 container_of(work
, struct rtc_device
, irqwork
);
856 mutex_lock(&rtc
->ops_lock
);
858 pm_relax(rtc
->dev
.parent
);
859 __rtc_read_time(rtc
, &tm
);
860 now
= rtc_tm_to_ktime(tm
);
861 while ((next
= timerqueue_getnext(&rtc
->timerqueue
))) {
862 if (next
->expires
.tv64
> now
.tv64
)
866 timer
= container_of(next
, struct rtc_timer
, node
);
867 timerqueue_del(&rtc
->timerqueue
, &timer
->node
);
869 if (timer
->task
.func
)
870 timer
->task
.func(timer
->task
.private_data
);
872 /* Re-add/fwd periodic timers */
873 if (ktime_to_ns(timer
->period
)) {
874 timer
->node
.expires
= ktime_add(timer
->node
.expires
,
877 timerqueue_add(&rtc
->timerqueue
, &timer
->node
);
883 struct rtc_wkalrm alarm
;
885 alarm
.time
= rtc_ktime_to_tm(next
->expires
);
887 err
= __rtc_set_alarm(rtc
, &alarm
);
891 rtc_alarm_disable(rtc
);
893 mutex_unlock(&rtc
->ops_lock
);
897 /* rtc_timer_init - Initializes an rtc_timer
898 * @timer: timer to be intiialized
899 * @f: function pointer to be called when timer fires
900 * @data: private data passed to function pointer
902 * Kernel interface to initializing an rtc_timer.
904 void rtc_timer_init(struct rtc_timer
*timer
, void (*f
)(void *p
), void *data
)
906 timerqueue_init(&timer
->node
);
908 timer
->task
.func
= f
;
909 timer
->task
.private_data
= data
;
912 /* rtc_timer_start - Sets an rtc_timer to fire in the future
913 * @ rtc: rtc device to be used
914 * @ timer: timer being set
915 * @ expires: time at which to expire the timer
916 * @ period: period that the timer will recur
918 * Kernel interface to set an rtc_timer
920 int rtc_timer_start(struct rtc_device
*rtc
, struct rtc_timer
*timer
,
921 ktime_t expires
, ktime_t period
)
924 mutex_lock(&rtc
->ops_lock
);
926 rtc_timer_remove(rtc
, timer
);
928 timer
->node
.expires
= expires
;
929 timer
->period
= period
;
931 ret
= rtc_timer_enqueue(rtc
, timer
);
933 mutex_unlock(&rtc
->ops_lock
);
937 /* rtc_timer_cancel - Stops an rtc_timer
938 * @ rtc: rtc device to be used
939 * @ timer: timer being set
941 * Kernel interface to cancel an rtc_timer
943 int rtc_timer_cancel(struct rtc_device
*rtc
, struct rtc_timer
*timer
)
946 mutex_lock(&rtc
->ops_lock
);
948 rtc_timer_remove(rtc
, timer
);
949 mutex_unlock(&rtc
->ops_lock
);