Linux 3.12.70
[linux/fpc-iii.git] / drivers / rtc / interface.c
blobff20d90ea8e7a2ae92a5313b119138e6d5b696ba
1 /*
2 * RTC subsystem, interface functions
4 * Copyright (C) 2005 Tower Technologies
5 * Author: Alessandro Zummo <a.zummo@towertech.it>
7 * based on arch/arm/common/rtctime.c
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
14 #include <linux/rtc.h>
15 #include <linux/sched.h>
16 #include <linux/module.h>
17 #include <linux/log2.h>
18 #include <linux/workqueue.h>
20 static int rtc_timer_enqueue(struct rtc_device *rtc, struct rtc_timer *timer);
21 static void rtc_timer_remove(struct rtc_device *rtc, struct rtc_timer *timer);
23 static int __rtc_read_time(struct rtc_device *rtc, struct rtc_time *tm)
25 int err;
26 if (!rtc->ops)
27 err = -ENODEV;
28 else if (!rtc->ops->read_time)
29 err = -EINVAL;
30 else {
31 memset(tm, 0, sizeof(struct rtc_time));
32 err = rtc->ops->read_time(rtc->dev.parent, tm);
34 return err;
37 int rtc_read_time(struct rtc_device *rtc, struct rtc_time *tm)
39 int err;
41 err = mutex_lock_interruptible(&rtc->ops_lock);
42 if (err)
43 return err;
45 err = __rtc_read_time(rtc, tm);
46 mutex_unlock(&rtc->ops_lock);
47 return err;
49 EXPORT_SYMBOL_GPL(rtc_read_time);
51 int rtc_set_time(struct rtc_device *rtc, struct rtc_time *tm)
53 int err;
55 err = rtc_valid_tm(tm);
56 if (err != 0)
57 return err;
59 err = mutex_lock_interruptible(&rtc->ops_lock);
60 if (err)
61 return err;
63 if (!rtc->ops)
64 err = -ENODEV;
65 else if (rtc->ops->set_time)
66 err = rtc->ops->set_time(rtc->dev.parent, tm);
67 else if (rtc->ops->set_mmss) {
68 unsigned long secs;
69 err = rtc_tm_to_time(tm, &secs);
70 if (err == 0)
71 err = rtc->ops->set_mmss(rtc->dev.parent, secs);
72 } else
73 err = -EINVAL;
75 mutex_unlock(&rtc->ops_lock);
76 /* A timer might have just expired */
77 schedule_work(&rtc->irqwork);
78 return err;
80 EXPORT_SYMBOL_GPL(rtc_set_time);
82 int rtc_set_mmss(struct rtc_device *rtc, unsigned long secs)
84 int err;
86 err = mutex_lock_interruptible(&rtc->ops_lock);
87 if (err)
88 return err;
90 if (!rtc->ops)
91 err = -ENODEV;
92 else if (rtc->ops->set_mmss)
93 err = rtc->ops->set_mmss(rtc->dev.parent, secs);
94 else if (rtc->ops->read_time && rtc->ops->set_time) {
95 struct rtc_time new, old;
97 err = rtc->ops->read_time(rtc->dev.parent, &old);
98 if (err == 0) {
99 rtc_time_to_tm(secs, &new);
102 * avoid writing when we're going to change the day of
103 * the month. We will retry in the next minute. This
104 * basically means that if the RTC must not drift
105 * by more than 1 minute in 11 minutes.
107 if (!((old.tm_hour == 23 && old.tm_min == 59) ||
108 (new.tm_hour == 23 && new.tm_min == 59)))
109 err = rtc->ops->set_time(rtc->dev.parent,
110 &new);
112 } else {
113 err = -EINVAL;
116 mutex_unlock(&rtc->ops_lock);
117 /* A timer might have just expired */
118 schedule_work(&rtc->irqwork);
120 return err;
122 EXPORT_SYMBOL_GPL(rtc_set_mmss);
124 static int rtc_read_alarm_internal(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
126 int err;
128 err = mutex_lock_interruptible(&rtc->ops_lock);
129 if (err)
130 return err;
132 if (rtc->ops == NULL)
133 err = -ENODEV;
134 else if (!rtc->ops->read_alarm)
135 err = -EINVAL;
136 else {
137 memset(alarm, 0, sizeof(struct rtc_wkalrm));
138 err = rtc->ops->read_alarm(rtc->dev.parent, alarm);
141 mutex_unlock(&rtc->ops_lock);
142 return err;
145 int __rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
147 int err;
148 struct rtc_time before, now;
149 int first_time = 1;
150 unsigned long t_now, t_alm;
151 enum { none, day, month, year } missing = none;
152 unsigned days;
154 /* The lower level RTC driver may return -1 in some fields,
155 * creating invalid alarm->time values, for reasons like:
157 * - The hardware may not be capable of filling them in;
158 * many alarms match only on time-of-day fields, not
159 * day/month/year calendar data.
161 * - Some hardware uses illegal values as "wildcard" match
162 * values, which non-Linux firmware (like a BIOS) may try
163 * to set up as e.g. "alarm 15 minutes after each hour".
164 * Linux uses only oneshot alarms.
166 * When we see that here, we deal with it by using values from
167 * a current RTC timestamp for any missing (-1) values. The
168 * RTC driver prevents "periodic alarm" modes.
170 * But this can be racey, because some fields of the RTC timestamp
171 * may have wrapped in the interval since we read the RTC alarm,
172 * which would lead to us inserting inconsistent values in place
173 * of the -1 fields.
175 * Reading the alarm and timestamp in the reverse sequence
176 * would have the same race condition, and not solve the issue.
178 * So, we must first read the RTC timestamp,
179 * then read the RTC alarm value,
180 * and then read a second RTC timestamp.
182 * If any fields of the second timestamp have changed
183 * when compared with the first timestamp, then we know
184 * our timestamp may be inconsistent with that used by
185 * the low-level rtc_read_alarm_internal() function.
187 * So, when the two timestamps disagree, we just loop and do
188 * the process again to get a fully consistent set of values.
190 * This could all instead be done in the lower level driver,
191 * but since more than one lower level RTC implementation needs it,
192 * then it's probably best best to do it here instead of there..
195 /* Get the "before" timestamp */
196 err = rtc_read_time(rtc, &before);
197 if (err < 0)
198 return err;
199 do {
200 if (!first_time)
201 memcpy(&before, &now, sizeof(struct rtc_time));
202 first_time = 0;
204 /* get the RTC alarm values, which may be incomplete */
205 err = rtc_read_alarm_internal(rtc, alarm);
206 if (err)
207 return err;
209 /* full-function RTCs won't have such missing fields */
210 if (rtc_valid_tm(&alarm->time) == 0)
211 return 0;
213 /* get the "after" timestamp, to detect wrapped fields */
214 err = rtc_read_time(rtc, &now);
215 if (err < 0)
216 return err;
218 /* note that tm_sec is a "don't care" value here: */
219 } while ( before.tm_min != now.tm_min
220 || before.tm_hour != now.tm_hour
221 || before.tm_mon != now.tm_mon
222 || before.tm_year != now.tm_year);
224 /* Fill in the missing alarm fields using the timestamp; we
225 * know there's at least one since alarm->time is invalid.
227 if (alarm->time.tm_sec == -1)
228 alarm->time.tm_sec = now.tm_sec;
229 if (alarm->time.tm_min == -1)
230 alarm->time.tm_min = now.tm_min;
231 if (alarm->time.tm_hour == -1)
232 alarm->time.tm_hour = now.tm_hour;
234 /* For simplicity, only support date rollover for now */
235 if (alarm->time.tm_mday < 1 || alarm->time.tm_mday > 31) {
236 alarm->time.tm_mday = now.tm_mday;
237 missing = day;
239 if ((unsigned)alarm->time.tm_mon >= 12) {
240 alarm->time.tm_mon = now.tm_mon;
241 if (missing == none)
242 missing = month;
244 if (alarm->time.tm_year == -1) {
245 alarm->time.tm_year = now.tm_year;
246 if (missing == none)
247 missing = year;
250 /* with luck, no rollover is needed */
251 rtc_tm_to_time(&now, &t_now);
252 rtc_tm_to_time(&alarm->time, &t_alm);
253 if (t_now < t_alm)
254 goto done;
256 switch (missing) {
258 /* 24 hour rollover ... if it's now 10am Monday, an alarm that
259 * that will trigger at 5am will do so at 5am Tuesday, which
260 * could also be in the next month or year. This is a common
261 * case, especially for PCs.
263 case day:
264 dev_dbg(&rtc->dev, "alarm rollover: %s\n", "day");
265 t_alm += 24 * 60 * 60;
266 rtc_time_to_tm(t_alm, &alarm->time);
267 break;
269 /* Month rollover ... if it's the 31th, an alarm on the 3rd will
270 * be next month. An alarm matching on the 30th, 29th, or 28th
271 * may end up in the month after that! Many newer PCs support
272 * this type of alarm.
274 case month:
275 dev_dbg(&rtc->dev, "alarm rollover: %s\n", "month");
276 do {
277 if (alarm->time.tm_mon < 11)
278 alarm->time.tm_mon++;
279 else {
280 alarm->time.tm_mon = 0;
281 alarm->time.tm_year++;
283 days = rtc_month_days(alarm->time.tm_mon,
284 alarm->time.tm_year);
285 } while (days < alarm->time.tm_mday);
286 break;
288 /* Year rollover ... easy except for leap years! */
289 case year:
290 dev_dbg(&rtc->dev, "alarm rollover: %s\n", "year");
291 do {
292 alarm->time.tm_year++;
293 } while (!is_leap_year(alarm->time.tm_year + 1900)
294 && rtc_valid_tm(&alarm->time) != 0);
295 break;
297 default:
298 dev_warn(&rtc->dev, "alarm rollover not handled\n");
301 done:
302 err = rtc_valid_tm(&alarm->time);
304 if (err) {
305 dev_warn(&rtc->dev, "invalid alarm value: %d-%d-%d %d:%d:%d\n",
306 alarm->time.tm_year + 1900, alarm->time.tm_mon + 1,
307 alarm->time.tm_mday, alarm->time.tm_hour, alarm->time.tm_min,
308 alarm->time.tm_sec);
311 return err;
314 int rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
316 int err;
318 err = mutex_lock_interruptible(&rtc->ops_lock);
319 if (err)
320 return err;
321 if (rtc->ops == NULL)
322 err = -ENODEV;
323 else if (!rtc->ops->read_alarm)
324 err = -EINVAL;
325 else {
326 memset(alarm, 0, sizeof(struct rtc_wkalrm));
327 alarm->enabled = rtc->aie_timer.enabled;
328 alarm->time = rtc_ktime_to_tm(rtc->aie_timer.node.expires);
330 mutex_unlock(&rtc->ops_lock);
332 return err;
334 EXPORT_SYMBOL_GPL(rtc_read_alarm);
336 static int __rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
338 struct rtc_time tm;
339 long now, scheduled;
340 int err;
342 err = rtc_valid_tm(&alarm->time);
343 if (err)
344 return err;
345 rtc_tm_to_time(&alarm->time, &scheduled);
347 /* Make sure we're not setting alarms in the past */
348 err = __rtc_read_time(rtc, &tm);
349 rtc_tm_to_time(&tm, &now);
350 if (scheduled <= now)
351 return -ETIME;
353 * XXX - We just checked to make sure the alarm time is not
354 * in the past, but there is still a race window where if
355 * the is alarm set for the next second and the second ticks
356 * over right here, before we set the alarm.
359 if (!rtc->ops)
360 err = -ENODEV;
361 else if (!rtc->ops->set_alarm)
362 err = -EINVAL;
363 else
364 err = rtc->ops->set_alarm(rtc->dev.parent, alarm);
366 return err;
369 int rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
371 int err;
373 err = rtc_valid_tm(&alarm->time);
374 if (err != 0)
375 return err;
377 err = mutex_lock_interruptible(&rtc->ops_lock);
378 if (err)
379 return err;
380 if (rtc->aie_timer.enabled)
381 rtc_timer_remove(rtc, &rtc->aie_timer);
383 rtc->aie_timer.node.expires = rtc_tm_to_ktime(alarm->time);
384 rtc->aie_timer.period = ktime_set(0, 0);
385 if (alarm->enabled)
386 err = rtc_timer_enqueue(rtc, &rtc->aie_timer);
388 mutex_unlock(&rtc->ops_lock);
389 return err;
391 EXPORT_SYMBOL_GPL(rtc_set_alarm);
393 /* Called once per device from rtc_device_register */
394 int rtc_initialize_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
396 int err;
397 struct rtc_time now;
399 err = rtc_valid_tm(&alarm->time);
400 if (err != 0)
401 return err;
403 err = rtc_read_time(rtc, &now);
404 if (err)
405 return err;
407 err = mutex_lock_interruptible(&rtc->ops_lock);
408 if (err)
409 return err;
411 rtc->aie_timer.node.expires = rtc_tm_to_ktime(alarm->time);
412 rtc->aie_timer.period = ktime_set(0, 0);
414 /* Alarm has to be enabled & in the futrure for us to enqueue it */
415 if (alarm->enabled && (rtc_tm_to_ktime(now).tv64 <
416 rtc->aie_timer.node.expires.tv64)) {
418 rtc->aie_timer.enabled = 1;
419 timerqueue_add(&rtc->timerqueue, &rtc->aie_timer.node);
421 mutex_unlock(&rtc->ops_lock);
422 return err;
424 EXPORT_SYMBOL_GPL(rtc_initialize_alarm);
428 int rtc_alarm_irq_enable(struct rtc_device *rtc, unsigned int enabled)
430 int err = mutex_lock_interruptible(&rtc->ops_lock);
431 if (err)
432 return err;
434 if (rtc->aie_timer.enabled != enabled) {
435 if (enabled)
436 err = rtc_timer_enqueue(rtc, &rtc->aie_timer);
437 else
438 rtc_timer_remove(rtc, &rtc->aie_timer);
441 if (err)
442 /* nothing */;
443 else if (!rtc->ops)
444 err = -ENODEV;
445 else if (!rtc->ops->alarm_irq_enable)
446 err = -EINVAL;
447 else
448 err = rtc->ops->alarm_irq_enable(rtc->dev.parent, enabled);
450 mutex_unlock(&rtc->ops_lock);
451 return err;
453 EXPORT_SYMBOL_GPL(rtc_alarm_irq_enable);
455 int rtc_update_irq_enable(struct rtc_device *rtc, unsigned int enabled)
457 int err = mutex_lock_interruptible(&rtc->ops_lock);
458 if (err)
459 return err;
461 #ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL
462 if (enabled == 0 && rtc->uie_irq_active) {
463 mutex_unlock(&rtc->ops_lock);
464 return rtc_dev_update_irq_enable_emul(rtc, 0);
466 #endif
467 /* make sure we're changing state */
468 if (rtc->uie_rtctimer.enabled == enabled)
469 goto out;
471 if (rtc->uie_unsupported) {
472 err = -EINVAL;
473 goto out;
476 if (enabled) {
477 struct rtc_time tm;
478 ktime_t now, onesec;
480 __rtc_read_time(rtc, &tm);
481 onesec = ktime_set(1, 0);
482 now = rtc_tm_to_ktime(tm);
483 rtc->uie_rtctimer.node.expires = ktime_add(now, onesec);
484 rtc->uie_rtctimer.period = ktime_set(1, 0);
485 err = rtc_timer_enqueue(rtc, &rtc->uie_rtctimer);
486 } else
487 rtc_timer_remove(rtc, &rtc->uie_rtctimer);
489 out:
490 mutex_unlock(&rtc->ops_lock);
491 #ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL
493 * Enable emulation if the driver did not provide
494 * the update_irq_enable function pointer or if returned
495 * -EINVAL to signal that it has been configured without
496 * interrupts or that are not available at the moment.
498 if (err == -EINVAL)
499 err = rtc_dev_update_irq_enable_emul(rtc, enabled);
500 #endif
501 return err;
504 EXPORT_SYMBOL_GPL(rtc_update_irq_enable);
508 * rtc_handle_legacy_irq - AIE, UIE and PIE event hook
509 * @rtc: pointer to the rtc device
511 * This function is called when an AIE, UIE or PIE mode interrupt
512 * has occurred (or been emulated).
514 * Triggers the registered irq_task function callback.
516 void rtc_handle_legacy_irq(struct rtc_device *rtc, int num, int mode)
518 unsigned long flags;
520 /* mark one irq of the appropriate mode */
521 spin_lock_irqsave(&rtc->irq_lock, flags);
522 rtc->irq_data = (rtc->irq_data + (num << 8)) | (RTC_IRQF|mode);
523 spin_unlock_irqrestore(&rtc->irq_lock, flags);
525 /* call the task func */
526 spin_lock_irqsave(&rtc->irq_task_lock, flags);
527 if (rtc->irq_task)
528 rtc->irq_task->func(rtc->irq_task->private_data);
529 spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
531 wake_up_interruptible(&rtc->irq_queue);
532 kill_fasync(&rtc->async_queue, SIGIO, POLL_IN);
537 * rtc_aie_update_irq - AIE mode rtctimer hook
538 * @private: pointer to the rtc_device
540 * This functions is called when the aie_timer expires.
542 void rtc_aie_update_irq(void *private)
544 struct rtc_device *rtc = (struct rtc_device *)private;
545 rtc_handle_legacy_irq(rtc, 1, RTC_AF);
550 * rtc_uie_update_irq - UIE mode rtctimer hook
551 * @private: pointer to the rtc_device
553 * This functions is called when the uie_timer expires.
555 void rtc_uie_update_irq(void *private)
557 struct rtc_device *rtc = (struct rtc_device *)private;
558 rtc_handle_legacy_irq(rtc, 1, RTC_UF);
563 * rtc_pie_update_irq - PIE mode hrtimer hook
564 * @timer: pointer to the pie mode hrtimer
566 * This function is used to emulate PIE mode interrupts
567 * using an hrtimer. This function is called when the periodic
568 * hrtimer expires.
570 enum hrtimer_restart rtc_pie_update_irq(struct hrtimer *timer)
572 struct rtc_device *rtc;
573 ktime_t period;
574 int count;
575 rtc = container_of(timer, struct rtc_device, pie_timer);
577 period = ktime_set(0, NSEC_PER_SEC/rtc->irq_freq);
578 count = hrtimer_forward_now(timer, period);
580 rtc_handle_legacy_irq(rtc, count, RTC_PF);
582 return HRTIMER_RESTART;
586 * rtc_update_irq - Triggered when a RTC interrupt occurs.
587 * @rtc: the rtc device
588 * @num: how many irqs are being reported (usually one)
589 * @events: mask of RTC_IRQF with one or more of RTC_PF, RTC_AF, RTC_UF
590 * Context: any
592 void rtc_update_irq(struct rtc_device *rtc,
593 unsigned long num, unsigned long events)
595 pm_stay_awake(rtc->dev.parent);
596 schedule_work(&rtc->irqwork);
598 EXPORT_SYMBOL_GPL(rtc_update_irq);
600 static int __rtc_match(struct device *dev, const void *data)
602 const char *name = data;
604 if (strcmp(dev_name(dev), name) == 0)
605 return 1;
606 return 0;
609 struct rtc_device *rtc_class_open(const char *name)
611 struct device *dev;
612 struct rtc_device *rtc = NULL;
614 dev = class_find_device(rtc_class, NULL, name, __rtc_match);
615 if (dev)
616 rtc = to_rtc_device(dev);
618 if (rtc) {
619 if (!try_module_get(rtc->owner)) {
620 put_device(dev);
621 rtc = NULL;
625 return rtc;
627 EXPORT_SYMBOL_GPL(rtc_class_open);
629 void rtc_class_close(struct rtc_device *rtc)
631 module_put(rtc->owner);
632 put_device(&rtc->dev);
634 EXPORT_SYMBOL_GPL(rtc_class_close);
636 int rtc_irq_register(struct rtc_device *rtc, struct rtc_task *task)
638 int retval = -EBUSY;
640 if (task == NULL || task->func == NULL)
641 return -EINVAL;
643 /* Cannot register while the char dev is in use */
644 if (test_and_set_bit_lock(RTC_DEV_BUSY, &rtc->flags))
645 return -EBUSY;
647 spin_lock_irq(&rtc->irq_task_lock);
648 if (rtc->irq_task == NULL) {
649 rtc->irq_task = task;
650 retval = 0;
652 spin_unlock_irq(&rtc->irq_task_lock);
654 clear_bit_unlock(RTC_DEV_BUSY, &rtc->flags);
656 return retval;
658 EXPORT_SYMBOL_GPL(rtc_irq_register);
660 void rtc_irq_unregister(struct rtc_device *rtc, struct rtc_task *task)
662 spin_lock_irq(&rtc->irq_task_lock);
663 if (rtc->irq_task == task)
664 rtc->irq_task = NULL;
665 spin_unlock_irq(&rtc->irq_task_lock);
667 EXPORT_SYMBOL_GPL(rtc_irq_unregister);
669 static int rtc_update_hrtimer(struct rtc_device *rtc, int enabled)
672 * We always cancel the timer here first, because otherwise
673 * we could run into BUG_ON(timer->state != HRTIMER_STATE_CALLBACK);
674 * when we manage to start the timer before the callback
675 * returns HRTIMER_RESTART.
677 * We cannot use hrtimer_cancel() here as a running callback
678 * could be blocked on rtc->irq_task_lock and hrtimer_cancel()
679 * would spin forever.
681 if (hrtimer_try_to_cancel(&rtc->pie_timer) < 0)
682 return -1;
684 if (enabled) {
685 ktime_t period = ktime_set(0, NSEC_PER_SEC / rtc->irq_freq);
687 hrtimer_start(&rtc->pie_timer, period, HRTIMER_MODE_REL);
689 return 0;
693 * rtc_irq_set_state - enable/disable 2^N Hz periodic IRQs
694 * @rtc: the rtc device
695 * @task: currently registered with rtc_irq_register()
696 * @enabled: true to enable periodic IRQs
697 * Context: any
699 * Note that rtc_irq_set_freq() should previously have been used to
700 * specify the desired frequency of periodic IRQ task->func() callbacks.
702 int rtc_irq_set_state(struct rtc_device *rtc, struct rtc_task *task, int enabled)
704 int err = 0;
705 unsigned long flags;
707 retry:
708 spin_lock_irqsave(&rtc->irq_task_lock, flags);
709 if (rtc->irq_task != NULL && task == NULL)
710 err = -EBUSY;
711 else if (rtc->irq_task != task)
712 err = -EACCES;
713 else {
714 if (rtc_update_hrtimer(rtc, enabled) < 0) {
715 spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
716 cpu_relax();
717 goto retry;
719 rtc->pie_enabled = enabled;
721 spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
722 return err;
724 EXPORT_SYMBOL_GPL(rtc_irq_set_state);
727 * rtc_irq_set_freq - set 2^N Hz periodic IRQ frequency for IRQ
728 * @rtc: the rtc device
729 * @task: currently registered with rtc_irq_register()
730 * @freq: positive frequency with which task->func() will be called
731 * Context: any
733 * Note that rtc_irq_set_state() is used to enable or disable the
734 * periodic IRQs.
736 int rtc_irq_set_freq(struct rtc_device *rtc, struct rtc_task *task, int freq)
738 int err = 0;
739 unsigned long flags;
741 if (freq <= 0 || freq > RTC_MAX_FREQ)
742 return -EINVAL;
743 retry:
744 spin_lock_irqsave(&rtc->irq_task_lock, flags);
745 if (rtc->irq_task != NULL && task == NULL)
746 err = -EBUSY;
747 else if (rtc->irq_task != task)
748 err = -EACCES;
749 else {
750 rtc->irq_freq = freq;
751 if (rtc->pie_enabled && rtc_update_hrtimer(rtc, 1) < 0) {
752 spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
753 cpu_relax();
754 goto retry;
757 spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
758 return err;
760 EXPORT_SYMBOL_GPL(rtc_irq_set_freq);
763 * rtc_timer_enqueue - Adds a rtc_timer to the rtc_device timerqueue
764 * @rtc rtc device
765 * @timer timer being added.
767 * Enqueues a timer onto the rtc devices timerqueue and sets
768 * the next alarm event appropriately.
770 * Sets the enabled bit on the added timer.
772 * Must hold ops_lock for proper serialization of timerqueue
774 static int rtc_timer_enqueue(struct rtc_device *rtc, struct rtc_timer *timer)
776 timer->enabled = 1;
777 timerqueue_add(&rtc->timerqueue, &timer->node);
778 if (&timer->node == timerqueue_getnext(&rtc->timerqueue)) {
779 struct rtc_wkalrm alarm;
780 int err;
781 alarm.time = rtc_ktime_to_tm(timer->node.expires);
782 alarm.enabled = 1;
783 err = __rtc_set_alarm(rtc, &alarm);
784 if (err == -ETIME)
785 schedule_work(&rtc->irqwork);
786 else if (err) {
787 timerqueue_del(&rtc->timerqueue, &timer->node);
788 timer->enabled = 0;
789 return err;
792 return 0;
795 static void rtc_alarm_disable(struct rtc_device *rtc)
797 if (!rtc->ops || !rtc->ops->alarm_irq_enable)
798 return;
800 rtc->ops->alarm_irq_enable(rtc->dev.parent, false);
804 * rtc_timer_remove - Removes a rtc_timer from the rtc_device timerqueue
805 * @rtc rtc device
806 * @timer timer being removed.
808 * Removes a timer onto the rtc devices timerqueue and sets
809 * the next alarm event appropriately.
811 * Clears the enabled bit on the removed timer.
813 * Must hold ops_lock for proper serialization of timerqueue
815 static void rtc_timer_remove(struct rtc_device *rtc, struct rtc_timer *timer)
817 struct timerqueue_node *next = timerqueue_getnext(&rtc->timerqueue);
818 timerqueue_del(&rtc->timerqueue, &timer->node);
819 timer->enabled = 0;
820 if (next == &timer->node) {
821 struct rtc_wkalrm alarm;
822 int err;
823 next = timerqueue_getnext(&rtc->timerqueue);
824 if (!next) {
825 rtc_alarm_disable(rtc);
826 return;
828 alarm.time = rtc_ktime_to_tm(next->expires);
829 alarm.enabled = 1;
830 err = __rtc_set_alarm(rtc, &alarm);
831 if (err == -ETIME)
832 schedule_work(&rtc->irqwork);
837 * rtc_timer_do_work - Expires rtc timers
838 * @rtc rtc device
839 * @timer timer being removed.
841 * Expires rtc timers. Reprograms next alarm event if needed.
842 * Called via worktask.
844 * Serializes access to timerqueue via ops_lock mutex
846 void rtc_timer_do_work(struct work_struct *work)
848 struct rtc_timer *timer;
849 struct timerqueue_node *next;
850 ktime_t now;
851 struct rtc_time tm;
853 struct rtc_device *rtc =
854 container_of(work, struct rtc_device, irqwork);
856 mutex_lock(&rtc->ops_lock);
857 again:
858 pm_relax(rtc->dev.parent);
859 __rtc_read_time(rtc, &tm);
860 now = rtc_tm_to_ktime(tm);
861 while ((next = timerqueue_getnext(&rtc->timerqueue))) {
862 if (next->expires.tv64 > now.tv64)
863 break;
865 /* expire timer */
866 timer = container_of(next, struct rtc_timer, node);
867 timerqueue_del(&rtc->timerqueue, &timer->node);
868 timer->enabled = 0;
869 if (timer->task.func)
870 timer->task.func(timer->task.private_data);
872 /* Re-add/fwd periodic timers */
873 if (ktime_to_ns(timer->period)) {
874 timer->node.expires = ktime_add(timer->node.expires,
875 timer->period);
876 timer->enabled = 1;
877 timerqueue_add(&rtc->timerqueue, &timer->node);
881 /* Set next alarm */
882 if (next) {
883 struct rtc_wkalrm alarm;
884 int err;
885 alarm.time = rtc_ktime_to_tm(next->expires);
886 alarm.enabled = 1;
887 err = __rtc_set_alarm(rtc, &alarm);
888 if (err == -ETIME)
889 goto again;
890 } else
891 rtc_alarm_disable(rtc);
893 mutex_unlock(&rtc->ops_lock);
897 /* rtc_timer_init - Initializes an rtc_timer
898 * @timer: timer to be intiialized
899 * @f: function pointer to be called when timer fires
900 * @data: private data passed to function pointer
902 * Kernel interface to initializing an rtc_timer.
904 void rtc_timer_init(struct rtc_timer *timer, void (*f)(void *p), void *data)
906 timerqueue_init(&timer->node);
907 timer->enabled = 0;
908 timer->task.func = f;
909 timer->task.private_data = data;
912 /* rtc_timer_start - Sets an rtc_timer to fire in the future
913 * @ rtc: rtc device to be used
914 * @ timer: timer being set
915 * @ expires: time at which to expire the timer
916 * @ period: period that the timer will recur
918 * Kernel interface to set an rtc_timer
920 int rtc_timer_start(struct rtc_device *rtc, struct rtc_timer *timer,
921 ktime_t expires, ktime_t period)
923 int ret = 0;
924 mutex_lock(&rtc->ops_lock);
925 if (timer->enabled)
926 rtc_timer_remove(rtc, timer);
928 timer->node.expires = expires;
929 timer->period = period;
931 ret = rtc_timer_enqueue(rtc, timer);
933 mutex_unlock(&rtc->ops_lock);
934 return ret;
937 /* rtc_timer_cancel - Stops an rtc_timer
938 * @ rtc: rtc device to be used
939 * @ timer: timer being set
941 * Kernel interface to cancel an rtc_timer
943 int rtc_timer_cancel(struct rtc_device *rtc, struct rtc_timer *timer)
945 int ret = 0;
946 mutex_lock(&rtc->ops_lock);
947 if (timer->enabled)
948 rtc_timer_remove(rtc, timer);
949 mutex_unlock(&rtc->ops_lock);
950 return ret;