2 * Generic hugetlb support.
3 * (C) Nadia Yvette Chambers, April 2004
5 #include <linux/list.h>
6 #include <linux/init.h>
7 #include <linux/module.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/cpuset.h>
17 #include <linux/mutex.h>
18 #include <linux/bootmem.h>
19 #include <linux/sysfs.h>
20 #include <linux/slab.h>
21 #include <linux/rmap.h>
22 #include <linux/swap.h>
23 #include <linux/swapops.h>
24 #include <linux/page-isolation.h>
27 #include <asm/pgtable.h>
31 #include <linux/hugetlb.h>
32 #include <linux/hugetlb_cgroup.h>
33 #include <linux/node.h>
36 const unsigned long hugetlb_zero
= 0, hugetlb_infinity
= ~0UL;
37 unsigned long hugepages_treat_as_movable
;
39 int hugetlb_max_hstate __read_mostly
;
40 unsigned int default_hstate_idx
;
41 struct hstate hstates
[HUGE_MAX_HSTATE
];
43 __initdata
LIST_HEAD(huge_boot_pages
);
45 /* for command line parsing */
46 static struct hstate
* __initdata parsed_hstate
;
47 static unsigned long __initdata default_hstate_max_huge_pages
;
48 static unsigned long __initdata default_hstate_size
;
51 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
52 * free_huge_pages, and surplus_huge_pages.
54 DEFINE_SPINLOCK(hugetlb_lock
);
56 static inline void unlock_or_release_subpool(struct hugepage_subpool
*spool
)
58 bool free
= (spool
->count
== 0) && (spool
->used_hpages
== 0);
60 spin_unlock(&spool
->lock
);
62 /* If no pages are used, and no other handles to the subpool
63 * remain, free the subpool the subpool remain */
68 struct hugepage_subpool
*hugepage_new_subpool(long nr_blocks
)
70 struct hugepage_subpool
*spool
;
72 spool
= kmalloc(sizeof(*spool
), GFP_KERNEL
);
76 spin_lock_init(&spool
->lock
);
78 spool
->max_hpages
= nr_blocks
;
79 spool
->used_hpages
= 0;
84 void hugepage_put_subpool(struct hugepage_subpool
*spool
)
86 spin_lock(&spool
->lock
);
87 BUG_ON(!spool
->count
);
89 unlock_or_release_subpool(spool
);
92 static int hugepage_subpool_get_pages(struct hugepage_subpool
*spool
,
100 spin_lock(&spool
->lock
);
101 if ((spool
->used_hpages
+ delta
) <= spool
->max_hpages
) {
102 spool
->used_hpages
+= delta
;
106 spin_unlock(&spool
->lock
);
111 static void hugepage_subpool_put_pages(struct hugepage_subpool
*spool
,
117 spin_lock(&spool
->lock
);
118 spool
->used_hpages
-= delta
;
119 /* If hugetlbfs_put_super couldn't free spool due to
120 * an outstanding quota reference, free it now. */
121 unlock_or_release_subpool(spool
);
124 static inline struct hugepage_subpool
*subpool_inode(struct inode
*inode
)
126 return HUGETLBFS_SB(inode
->i_sb
)->spool
;
129 static inline struct hugepage_subpool
*subpool_vma(struct vm_area_struct
*vma
)
131 return subpool_inode(file_inode(vma
->vm_file
));
135 * Region tracking -- allows tracking of reservations and instantiated pages
136 * across the pages in a mapping.
138 * The region data structures are protected by a combination of the mmap_sem
139 * and the hugetlb_instantiation_mutex. To access or modify a region the caller
140 * must either hold the mmap_sem for write, or the mmap_sem for read and
141 * the hugetlb_instantiation_mutex:
143 * down_write(&mm->mmap_sem);
145 * down_read(&mm->mmap_sem);
146 * mutex_lock(&hugetlb_instantiation_mutex);
149 struct list_head link
;
154 static long region_add(struct list_head
*head
, long f
, long t
)
156 struct file_region
*rg
, *nrg
, *trg
;
158 /* Locate the region we are either in or before. */
159 list_for_each_entry(rg
, head
, link
)
163 /* Round our left edge to the current segment if it encloses us. */
167 /* Check for and consume any regions we now overlap with. */
169 list_for_each_entry_safe(rg
, trg
, rg
->link
.prev
, link
) {
170 if (&rg
->link
== head
)
175 /* If this area reaches higher then extend our area to
176 * include it completely. If this is not the first area
177 * which we intend to reuse, free it. */
190 static long region_chg(struct list_head
*head
, long f
, long t
)
192 struct file_region
*rg
, *nrg
;
195 /* Locate the region we are before or in. */
196 list_for_each_entry(rg
, head
, link
)
200 /* If we are below the current region then a new region is required.
201 * Subtle, allocate a new region at the position but make it zero
202 * size such that we can guarantee to record the reservation. */
203 if (&rg
->link
== head
|| t
< rg
->from
) {
204 nrg
= kmalloc(sizeof(*nrg
), GFP_KERNEL
);
209 INIT_LIST_HEAD(&nrg
->link
);
210 list_add(&nrg
->link
, rg
->link
.prev
);
215 /* Round our left edge to the current segment if it encloses us. */
220 /* Check for and consume any regions we now overlap with. */
221 list_for_each_entry(rg
, rg
->link
.prev
, link
) {
222 if (&rg
->link
== head
)
227 /* We overlap with this area, if it extends further than
228 * us then we must extend ourselves. Account for its
229 * existing reservation. */
234 chg
-= rg
->to
- rg
->from
;
239 static long region_truncate(struct list_head
*head
, long end
)
241 struct file_region
*rg
, *trg
;
244 /* Locate the region we are either in or before. */
245 list_for_each_entry(rg
, head
, link
)
248 if (&rg
->link
== head
)
251 /* If we are in the middle of a region then adjust it. */
252 if (end
> rg
->from
) {
255 rg
= list_entry(rg
->link
.next
, typeof(*rg
), link
);
258 /* Drop any remaining regions. */
259 list_for_each_entry_safe(rg
, trg
, rg
->link
.prev
, link
) {
260 if (&rg
->link
== head
)
262 chg
+= rg
->to
- rg
->from
;
269 static long region_count(struct list_head
*head
, long f
, long t
)
271 struct file_region
*rg
;
274 /* Locate each segment we overlap with, and count that overlap. */
275 list_for_each_entry(rg
, head
, link
) {
284 seg_from
= max(rg
->from
, f
);
285 seg_to
= min(rg
->to
, t
);
287 chg
+= seg_to
- seg_from
;
294 * Convert the address within this vma to the page offset within
295 * the mapping, in pagecache page units; huge pages here.
297 static pgoff_t
vma_hugecache_offset(struct hstate
*h
,
298 struct vm_area_struct
*vma
, unsigned long address
)
300 return ((address
- vma
->vm_start
) >> huge_page_shift(h
)) +
301 (vma
->vm_pgoff
>> huge_page_order(h
));
304 pgoff_t
linear_hugepage_index(struct vm_area_struct
*vma
,
305 unsigned long address
)
307 return vma_hugecache_offset(hstate_vma(vma
), vma
, address
);
311 * Return the size of the pages allocated when backing a VMA. In the majority
312 * cases this will be same size as used by the page table entries.
314 unsigned long vma_kernel_pagesize(struct vm_area_struct
*vma
)
316 struct hstate
*hstate
;
318 if (!is_vm_hugetlb_page(vma
))
321 hstate
= hstate_vma(vma
);
323 return 1UL << huge_page_shift(hstate
);
325 EXPORT_SYMBOL_GPL(vma_kernel_pagesize
);
328 * Return the page size being used by the MMU to back a VMA. In the majority
329 * of cases, the page size used by the kernel matches the MMU size. On
330 * architectures where it differs, an architecture-specific version of this
331 * function is required.
333 #ifndef vma_mmu_pagesize
334 unsigned long vma_mmu_pagesize(struct vm_area_struct
*vma
)
336 return vma_kernel_pagesize(vma
);
341 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
342 * bits of the reservation map pointer, which are always clear due to
345 #define HPAGE_RESV_OWNER (1UL << 0)
346 #define HPAGE_RESV_UNMAPPED (1UL << 1)
347 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
350 * These helpers are used to track how many pages are reserved for
351 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
352 * is guaranteed to have their future faults succeed.
354 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
355 * the reserve counters are updated with the hugetlb_lock held. It is safe
356 * to reset the VMA at fork() time as it is not in use yet and there is no
357 * chance of the global counters getting corrupted as a result of the values.
359 * The private mapping reservation is represented in a subtly different
360 * manner to a shared mapping. A shared mapping has a region map associated
361 * with the underlying file, this region map represents the backing file
362 * pages which have ever had a reservation assigned which this persists even
363 * after the page is instantiated. A private mapping has a region map
364 * associated with the original mmap which is attached to all VMAs which
365 * reference it, this region map represents those offsets which have consumed
366 * reservation ie. where pages have been instantiated.
368 static unsigned long get_vma_private_data(struct vm_area_struct
*vma
)
370 return (unsigned long)vma
->vm_private_data
;
373 static void set_vma_private_data(struct vm_area_struct
*vma
,
376 vma
->vm_private_data
= (void *)value
;
381 struct list_head regions
;
384 static struct resv_map
*resv_map_alloc(void)
386 struct resv_map
*resv_map
= kmalloc(sizeof(*resv_map
), GFP_KERNEL
);
390 kref_init(&resv_map
->refs
);
391 INIT_LIST_HEAD(&resv_map
->regions
);
396 static void resv_map_release(struct kref
*ref
)
398 struct resv_map
*resv_map
= container_of(ref
, struct resv_map
, refs
);
400 /* Clear out any active regions before we release the map. */
401 region_truncate(&resv_map
->regions
, 0);
405 static struct resv_map
*vma_resv_map(struct vm_area_struct
*vma
)
407 VM_BUG_ON(!is_vm_hugetlb_page(vma
));
408 if (!(vma
->vm_flags
& VM_MAYSHARE
))
409 return (struct resv_map
*)(get_vma_private_data(vma
) &
414 static void set_vma_resv_map(struct vm_area_struct
*vma
, struct resv_map
*map
)
416 VM_BUG_ON(!is_vm_hugetlb_page(vma
));
417 VM_BUG_ON(vma
->vm_flags
& VM_MAYSHARE
);
419 set_vma_private_data(vma
, (get_vma_private_data(vma
) &
420 HPAGE_RESV_MASK
) | (unsigned long)map
);
423 static void set_vma_resv_flags(struct vm_area_struct
*vma
, unsigned long flags
)
425 VM_BUG_ON(!is_vm_hugetlb_page(vma
));
426 VM_BUG_ON(vma
->vm_flags
& VM_MAYSHARE
);
428 set_vma_private_data(vma
, get_vma_private_data(vma
) | flags
);
431 static int is_vma_resv_set(struct vm_area_struct
*vma
, unsigned long flag
)
433 VM_BUG_ON(!is_vm_hugetlb_page(vma
));
435 return (get_vma_private_data(vma
) & flag
) != 0;
438 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
439 void reset_vma_resv_huge_pages(struct vm_area_struct
*vma
)
441 VM_BUG_ON(!is_vm_hugetlb_page(vma
));
442 if (!(vma
->vm_flags
& VM_MAYSHARE
))
443 vma
->vm_private_data
= (void *)0;
446 /* Returns true if the VMA has associated reserve pages */
447 static int vma_has_reserves(struct vm_area_struct
*vma
, long chg
)
449 if (vma
->vm_flags
& VM_NORESERVE
) {
451 * This address is already reserved by other process(chg == 0),
452 * so, we should decrement reserved count. Without decrementing,
453 * reserve count remains after releasing inode, because this
454 * allocated page will go into page cache and is regarded as
455 * coming from reserved pool in releasing step. Currently, we
456 * don't have any other solution to deal with this situation
457 * properly, so add work-around here.
459 if (vma
->vm_flags
& VM_MAYSHARE
&& chg
== 0)
465 /* Shared mappings always use reserves */
466 if (vma
->vm_flags
& VM_MAYSHARE
)
470 * Only the process that called mmap() has reserves for
473 if (is_vma_resv_set(vma
, HPAGE_RESV_OWNER
))
479 static void enqueue_huge_page(struct hstate
*h
, struct page
*page
)
481 int nid
= page_to_nid(page
);
482 list_move(&page
->lru
, &h
->hugepage_freelists
[nid
]);
483 h
->free_huge_pages
++;
484 h
->free_huge_pages_node
[nid
]++;
487 static struct page
*dequeue_huge_page_node(struct hstate
*h
, int nid
)
491 list_for_each_entry(page
, &h
->hugepage_freelists
[nid
], lru
)
492 if (!is_migrate_isolate_page(page
))
495 * if 'non-isolated free hugepage' not found on the list,
496 * the allocation fails.
498 if (&h
->hugepage_freelists
[nid
] == &page
->lru
)
500 list_move(&page
->lru
, &h
->hugepage_activelist
);
501 set_page_refcounted(page
);
502 h
->free_huge_pages
--;
503 h
->free_huge_pages_node
[nid
]--;
507 /* Movability of hugepages depends on migration support. */
508 static inline gfp_t
htlb_alloc_mask(struct hstate
*h
)
510 if (hugepages_treat_as_movable
|| hugepage_migration_support(h
))
511 return GFP_HIGHUSER_MOVABLE
;
516 static struct page
*dequeue_huge_page_vma(struct hstate
*h
,
517 struct vm_area_struct
*vma
,
518 unsigned long address
, int avoid_reserve
,
521 struct page
*page
= NULL
;
522 struct mempolicy
*mpol
;
523 nodemask_t
*nodemask
;
524 struct zonelist
*zonelist
;
527 unsigned int cpuset_mems_cookie
;
530 * A child process with MAP_PRIVATE mappings created by their parent
531 * have no page reserves. This check ensures that reservations are
532 * not "stolen". The child may still get SIGKILLed
534 if (!vma_has_reserves(vma
, chg
) &&
535 h
->free_huge_pages
- h
->resv_huge_pages
== 0)
538 /* If reserves cannot be used, ensure enough pages are in the pool */
539 if (avoid_reserve
&& h
->free_huge_pages
- h
->resv_huge_pages
== 0)
543 cpuset_mems_cookie
= read_mems_allowed_begin();
544 zonelist
= huge_zonelist(vma
, address
,
545 htlb_alloc_mask(h
), &mpol
, &nodemask
);
547 for_each_zone_zonelist_nodemask(zone
, z
, zonelist
,
548 MAX_NR_ZONES
- 1, nodemask
) {
549 if (cpuset_zone_allowed_softwall(zone
, htlb_alloc_mask(h
))) {
550 page
= dequeue_huge_page_node(h
, zone_to_nid(zone
));
554 if (!vma_has_reserves(vma
, chg
))
557 SetPagePrivate(page
);
558 h
->resv_huge_pages
--;
565 if (unlikely(!page
&& read_mems_allowed_retry(cpuset_mems_cookie
)))
573 static void update_and_free_page(struct hstate
*h
, struct page
*page
)
577 VM_BUG_ON(h
->order
>= MAX_ORDER
);
580 h
->nr_huge_pages_node
[page_to_nid(page
)]--;
581 for (i
= 0; i
< pages_per_huge_page(h
); i
++) {
582 page
[i
].flags
&= ~(1 << PG_locked
| 1 << PG_error
|
583 1 << PG_referenced
| 1 << PG_dirty
|
584 1 << PG_active
| 1 << PG_reserved
|
585 1 << PG_private
| 1 << PG_writeback
);
587 VM_BUG_ON(hugetlb_cgroup_from_page(page
));
588 set_compound_page_dtor(page
, NULL
);
589 set_page_refcounted(page
);
590 arch_release_hugepage(page
);
591 __free_pages(page
, huge_page_order(h
));
594 struct hstate
*size_to_hstate(unsigned long size
)
599 if (huge_page_size(h
) == size
)
605 static void free_huge_page(struct page
*page
)
608 * Can't pass hstate in here because it is called from the
609 * compound page destructor.
611 struct hstate
*h
= page_hstate(page
);
612 int nid
= page_to_nid(page
);
613 struct hugepage_subpool
*spool
=
614 (struct hugepage_subpool
*)page_private(page
);
615 bool restore_reserve
;
617 set_page_private(page
, 0);
618 page
->mapping
= NULL
;
619 BUG_ON(page_count(page
));
620 BUG_ON(page_mapcount(page
));
621 restore_reserve
= PagePrivate(page
);
622 ClearPagePrivate(page
);
624 spin_lock(&hugetlb_lock
);
625 hugetlb_cgroup_uncharge_page(hstate_index(h
),
626 pages_per_huge_page(h
), page
);
628 h
->resv_huge_pages
++;
630 if (h
->surplus_huge_pages_node
[nid
] && huge_page_order(h
) < MAX_ORDER
) {
631 /* remove the page from active list */
632 list_del(&page
->lru
);
633 update_and_free_page(h
, page
);
634 h
->surplus_huge_pages
--;
635 h
->surplus_huge_pages_node
[nid
]--;
637 arch_clear_hugepage_flags(page
);
638 enqueue_huge_page(h
, page
);
640 spin_unlock(&hugetlb_lock
);
641 hugepage_subpool_put_pages(spool
, 1);
644 static void prep_new_huge_page(struct hstate
*h
, struct page
*page
, int nid
)
646 INIT_LIST_HEAD(&page
->lru
);
647 set_compound_page_dtor(page
, free_huge_page
);
648 spin_lock(&hugetlb_lock
);
649 set_hugetlb_cgroup(page
, NULL
);
651 h
->nr_huge_pages_node
[nid
]++;
652 spin_unlock(&hugetlb_lock
);
653 put_page(page
); /* free it into the hugepage allocator */
656 static void prep_compound_gigantic_page(struct page
*page
, unsigned long order
)
659 int nr_pages
= 1 << order
;
660 struct page
*p
= page
+ 1;
662 /* we rely on prep_new_huge_page to set the destructor */
663 set_compound_order(page
, order
);
665 __ClearPageReserved(page
);
666 for (i
= 1; i
< nr_pages
; i
++, p
= mem_map_next(p
, page
, i
)) {
669 * For gigantic hugepages allocated through bootmem at
670 * boot, it's safer to be consistent with the not-gigantic
671 * hugepages and clear the PG_reserved bit from all tail pages
672 * too. Otherwse drivers using get_user_pages() to access tail
673 * pages may get the reference counting wrong if they see
674 * PG_reserved set on a tail page (despite the head page not
675 * having PG_reserved set). Enforcing this consistency between
676 * head and tail pages allows drivers to optimize away a check
677 * on the head page when they need know if put_page() is needed
678 * after get_user_pages().
680 __ClearPageReserved(p
);
681 set_page_count(p
, 0);
682 p
->first_page
= page
;
687 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
688 * transparent huge pages. See the PageTransHuge() documentation for more
691 int PageHuge(struct page
*page
)
693 compound_page_dtor
*dtor
;
695 if (!PageCompound(page
))
698 page
= compound_head(page
);
699 dtor
= get_compound_page_dtor(page
);
701 return dtor
== free_huge_page
;
703 EXPORT_SYMBOL_GPL(PageHuge
);
706 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
707 * normal or transparent huge pages.
709 int PageHeadHuge(struct page
*page_head
)
711 compound_page_dtor
*dtor
;
713 if (!PageHead(page_head
))
716 dtor
= get_compound_page_dtor(page_head
);
718 return dtor
== free_huge_page
;
720 EXPORT_SYMBOL_GPL(PageHeadHuge
);
722 pgoff_t
__basepage_index(struct page
*page
)
724 struct page
*page_head
= compound_head(page
);
725 pgoff_t index
= page_index(page_head
);
726 unsigned long compound_idx
;
728 if (!PageHuge(page_head
))
729 return page_index(page
);
731 if (compound_order(page_head
) >= MAX_ORDER
)
732 compound_idx
= page_to_pfn(page
) - page_to_pfn(page_head
);
734 compound_idx
= page
- page_head
;
736 return (index
<< compound_order(page_head
)) + compound_idx
;
739 static struct page
*alloc_fresh_huge_page_node(struct hstate
*h
, int nid
)
743 if (h
->order
>= MAX_ORDER
)
746 page
= alloc_pages_exact_node(nid
,
747 htlb_alloc_mask(h
)|__GFP_COMP
|__GFP_THISNODE
|
748 __GFP_REPEAT
|__GFP_NOWARN
,
751 if (arch_prepare_hugepage(page
)) {
752 __free_pages(page
, huge_page_order(h
));
755 prep_new_huge_page(h
, page
, nid
);
762 * common helper functions for hstate_next_node_to_{alloc|free}.
763 * We may have allocated or freed a huge page based on a different
764 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
765 * be outside of *nodes_allowed. Ensure that we use an allowed
766 * node for alloc or free.
768 static int next_node_allowed(int nid
, nodemask_t
*nodes_allowed
)
770 nid
= next_node(nid
, *nodes_allowed
);
771 if (nid
== MAX_NUMNODES
)
772 nid
= first_node(*nodes_allowed
);
773 VM_BUG_ON(nid
>= MAX_NUMNODES
);
778 static int get_valid_node_allowed(int nid
, nodemask_t
*nodes_allowed
)
780 if (!node_isset(nid
, *nodes_allowed
))
781 nid
= next_node_allowed(nid
, nodes_allowed
);
786 * returns the previously saved node ["this node"] from which to
787 * allocate a persistent huge page for the pool and advance the
788 * next node from which to allocate, handling wrap at end of node
791 static int hstate_next_node_to_alloc(struct hstate
*h
,
792 nodemask_t
*nodes_allowed
)
796 VM_BUG_ON(!nodes_allowed
);
798 nid
= get_valid_node_allowed(h
->next_nid_to_alloc
, nodes_allowed
);
799 h
->next_nid_to_alloc
= next_node_allowed(nid
, nodes_allowed
);
805 * helper for free_pool_huge_page() - return the previously saved
806 * node ["this node"] from which to free a huge page. Advance the
807 * next node id whether or not we find a free huge page to free so
808 * that the next attempt to free addresses the next node.
810 static int hstate_next_node_to_free(struct hstate
*h
, nodemask_t
*nodes_allowed
)
814 VM_BUG_ON(!nodes_allowed
);
816 nid
= get_valid_node_allowed(h
->next_nid_to_free
, nodes_allowed
);
817 h
->next_nid_to_free
= next_node_allowed(nid
, nodes_allowed
);
822 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
823 for (nr_nodes = nodes_weight(*mask); \
825 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
828 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
829 for (nr_nodes = nodes_weight(*mask); \
831 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
834 static int alloc_fresh_huge_page(struct hstate
*h
, nodemask_t
*nodes_allowed
)
840 for_each_node_mask_to_alloc(h
, nr_nodes
, node
, nodes_allowed
) {
841 page
= alloc_fresh_huge_page_node(h
, node
);
849 count_vm_event(HTLB_BUDDY_PGALLOC
);
851 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL
);
857 * Free huge page from pool from next node to free.
858 * Attempt to keep persistent huge pages more or less
859 * balanced over allowed nodes.
860 * Called with hugetlb_lock locked.
862 static int free_pool_huge_page(struct hstate
*h
, nodemask_t
*nodes_allowed
,
868 for_each_node_mask_to_free(h
, nr_nodes
, node
, nodes_allowed
) {
870 * If we're returning unused surplus pages, only examine
871 * nodes with surplus pages.
873 if ((!acct_surplus
|| h
->surplus_huge_pages_node
[node
]) &&
874 !list_empty(&h
->hugepage_freelists
[node
])) {
876 list_entry(h
->hugepage_freelists
[node
].next
,
878 list_del(&page
->lru
);
879 h
->free_huge_pages
--;
880 h
->free_huge_pages_node
[node
]--;
882 h
->surplus_huge_pages
--;
883 h
->surplus_huge_pages_node
[node
]--;
885 update_and_free_page(h
, page
);
895 * Dissolve a given free hugepage into free buddy pages. This function does
896 * nothing for in-use (including surplus) hugepages.
898 static void dissolve_free_huge_page(struct page
*page
)
900 spin_lock(&hugetlb_lock
);
901 if (PageHuge(page
) && !page_count(page
)) {
902 struct page
*head
= compound_head(page
);
903 struct hstate
*h
= page_hstate(head
);
904 int nid
= page_to_nid(head
);
905 list_del(&head
->lru
);
906 h
->free_huge_pages
--;
907 h
->free_huge_pages_node
[nid
]--;
908 update_and_free_page(h
, head
);
910 spin_unlock(&hugetlb_lock
);
914 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
915 * make specified memory blocks removable from the system.
916 * Note that this will dissolve a free gigantic hugepage completely, if any
917 * part of it lies within the given range.
919 void dissolve_free_huge_pages(unsigned long start_pfn
, unsigned long end_pfn
)
921 unsigned int order
= 8 * sizeof(void *);
925 /* Set scan step to minimum hugepage size */
927 if (order
> huge_page_order(h
))
928 order
= huge_page_order(h
);
929 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
+= 1 << order
)
930 dissolve_free_huge_page(pfn_to_page(pfn
));
933 static struct page
*alloc_buddy_huge_page(struct hstate
*h
, int nid
)
938 if (h
->order
>= MAX_ORDER
)
942 * Assume we will successfully allocate the surplus page to
943 * prevent racing processes from causing the surplus to exceed
946 * This however introduces a different race, where a process B
947 * tries to grow the static hugepage pool while alloc_pages() is
948 * called by process A. B will only examine the per-node
949 * counters in determining if surplus huge pages can be
950 * converted to normal huge pages in adjust_pool_surplus(). A
951 * won't be able to increment the per-node counter, until the
952 * lock is dropped by B, but B doesn't drop hugetlb_lock until
953 * no more huge pages can be converted from surplus to normal
954 * state (and doesn't try to convert again). Thus, we have a
955 * case where a surplus huge page exists, the pool is grown, and
956 * the surplus huge page still exists after, even though it
957 * should just have been converted to a normal huge page. This
958 * does not leak memory, though, as the hugepage will be freed
959 * once it is out of use. It also does not allow the counters to
960 * go out of whack in adjust_pool_surplus() as we don't modify
961 * the node values until we've gotten the hugepage and only the
962 * per-node value is checked there.
964 spin_lock(&hugetlb_lock
);
965 if (h
->surplus_huge_pages
>= h
->nr_overcommit_huge_pages
) {
966 spin_unlock(&hugetlb_lock
);
970 h
->surplus_huge_pages
++;
972 spin_unlock(&hugetlb_lock
);
974 if (nid
== NUMA_NO_NODE
)
975 page
= alloc_pages(htlb_alloc_mask(h
)|__GFP_COMP
|
976 __GFP_REPEAT
|__GFP_NOWARN
,
979 page
= alloc_pages_exact_node(nid
,
980 htlb_alloc_mask(h
)|__GFP_COMP
|__GFP_THISNODE
|
981 __GFP_REPEAT
|__GFP_NOWARN
, huge_page_order(h
));
983 if (page
&& arch_prepare_hugepage(page
)) {
984 __free_pages(page
, huge_page_order(h
));
988 spin_lock(&hugetlb_lock
);
990 INIT_LIST_HEAD(&page
->lru
);
991 r_nid
= page_to_nid(page
);
992 set_compound_page_dtor(page
, free_huge_page
);
993 set_hugetlb_cgroup(page
, NULL
);
995 * We incremented the global counters already
997 h
->nr_huge_pages_node
[r_nid
]++;
998 h
->surplus_huge_pages_node
[r_nid
]++;
999 __count_vm_event(HTLB_BUDDY_PGALLOC
);
1002 h
->surplus_huge_pages
--;
1003 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL
);
1005 spin_unlock(&hugetlb_lock
);
1011 * This allocation function is useful in the context where vma is irrelevant.
1012 * E.g. soft-offlining uses this function because it only cares physical
1013 * address of error page.
1015 struct page
*alloc_huge_page_node(struct hstate
*h
, int nid
)
1017 struct page
*page
= NULL
;
1019 spin_lock(&hugetlb_lock
);
1020 if (h
->free_huge_pages
- h
->resv_huge_pages
> 0)
1021 page
= dequeue_huge_page_node(h
, nid
);
1022 spin_unlock(&hugetlb_lock
);
1025 page
= alloc_buddy_huge_page(h
, nid
);
1031 * Increase the hugetlb pool such that it can accommodate a reservation
1034 static int gather_surplus_pages(struct hstate
*h
, int delta
)
1036 struct list_head surplus_list
;
1037 struct page
*page
, *tmp
;
1039 int needed
, allocated
;
1040 bool alloc_ok
= true;
1042 needed
= (h
->resv_huge_pages
+ delta
) - h
->free_huge_pages
;
1044 h
->resv_huge_pages
+= delta
;
1049 INIT_LIST_HEAD(&surplus_list
);
1053 spin_unlock(&hugetlb_lock
);
1054 for (i
= 0; i
< needed
; i
++) {
1055 page
= alloc_buddy_huge_page(h
, NUMA_NO_NODE
);
1060 list_add(&page
->lru
, &surplus_list
);
1065 * After retaking hugetlb_lock, we need to recalculate 'needed'
1066 * because either resv_huge_pages or free_huge_pages may have changed.
1068 spin_lock(&hugetlb_lock
);
1069 needed
= (h
->resv_huge_pages
+ delta
) -
1070 (h
->free_huge_pages
+ allocated
);
1075 * We were not able to allocate enough pages to
1076 * satisfy the entire reservation so we free what
1077 * we've allocated so far.
1082 * The surplus_list now contains _at_least_ the number of extra pages
1083 * needed to accommodate the reservation. Add the appropriate number
1084 * of pages to the hugetlb pool and free the extras back to the buddy
1085 * allocator. Commit the entire reservation here to prevent another
1086 * process from stealing the pages as they are added to the pool but
1087 * before they are reserved.
1089 needed
+= allocated
;
1090 h
->resv_huge_pages
+= delta
;
1093 /* Free the needed pages to the hugetlb pool */
1094 list_for_each_entry_safe(page
, tmp
, &surplus_list
, lru
) {
1098 * This page is now managed by the hugetlb allocator and has
1099 * no users -- drop the buddy allocator's reference.
1101 put_page_testzero(page
);
1102 VM_BUG_ON(page_count(page
));
1103 enqueue_huge_page(h
, page
);
1106 spin_unlock(&hugetlb_lock
);
1108 /* Free unnecessary surplus pages to the buddy allocator */
1109 list_for_each_entry_safe(page
, tmp
, &surplus_list
, lru
)
1111 spin_lock(&hugetlb_lock
);
1117 * This routine has two main purposes:
1118 * 1) Decrement the reservation count (resv_huge_pages) by the value passed
1119 * in unused_resv_pages. This corresponds to the prior adjustments made
1120 * to the associated reservation map.
1121 * 2) Free any unused surplus pages that may have been allocated to satisfy
1122 * the reservation. As many as unused_resv_pages may be freed.
1124 * Called with hugetlb_lock held. However, the lock could be dropped (and
1125 * reacquired) during calls to cond_resched_lock. Whenever dropping the lock,
1126 * we must make sure nobody else can claim pages we are in the process of
1127 * freeing. Do this by ensuring resv_huge_page always is greater than the
1128 * number of huge pages we plan to free when dropping the lock.
1130 static void return_unused_surplus_pages(struct hstate
*h
,
1131 unsigned long unused_resv_pages
)
1133 unsigned long nr_pages
;
1135 /* Cannot return gigantic pages currently */
1136 if (h
->order
>= MAX_ORDER
)
1140 * Part (or even all) of the reservation could have been backed
1141 * by pre-allocated pages. Only free surplus pages.
1143 nr_pages
= min(unused_resv_pages
, h
->surplus_huge_pages
);
1146 * We want to release as many surplus pages as possible, spread
1147 * evenly across all nodes with memory. Iterate across these nodes
1148 * until we can no longer free unreserved surplus pages. This occurs
1149 * when the nodes with surplus pages have no free pages.
1150 * free_pool_huge_page() will balance the the freed pages across the
1151 * on-line nodes with memory and will handle the hstate accounting.
1153 * Note that we decrement resv_huge_pages as we free the pages. If
1154 * we drop the lock, resv_huge_pages will still be sufficiently large
1155 * to cover subsequent pages we may free.
1157 while (nr_pages
--) {
1158 h
->resv_huge_pages
--;
1159 unused_resv_pages
--;
1160 if (!free_pool_huge_page(h
, &node_states
[N_MEMORY
], 1))
1162 cond_resched_lock(&hugetlb_lock
);
1166 /* Fully uncommit the reservation */
1167 h
->resv_huge_pages
-= unused_resv_pages
;
1171 * Determine if the huge page at addr within the vma has an associated
1172 * reservation. Where it does not we will need to logically increase
1173 * reservation and actually increase subpool usage before an allocation
1174 * can occur. Where any new reservation would be required the
1175 * reservation change is prepared, but not committed. Once the page
1176 * has been allocated from the subpool and instantiated the change should
1177 * be committed via vma_commit_reservation. No action is required on
1180 static long vma_needs_reservation(struct hstate
*h
,
1181 struct vm_area_struct
*vma
, unsigned long addr
)
1183 struct address_space
*mapping
= vma
->vm_file
->f_mapping
;
1184 struct inode
*inode
= mapping
->host
;
1186 if (vma
->vm_flags
& VM_MAYSHARE
) {
1187 pgoff_t idx
= vma_hugecache_offset(h
, vma
, addr
);
1188 return region_chg(&inode
->i_mapping
->private_list
,
1191 } else if (!is_vma_resv_set(vma
, HPAGE_RESV_OWNER
)) {
1196 pgoff_t idx
= vma_hugecache_offset(h
, vma
, addr
);
1197 struct resv_map
*resv
= vma_resv_map(vma
);
1199 err
= region_chg(&resv
->regions
, idx
, idx
+ 1);
1205 static void vma_commit_reservation(struct hstate
*h
,
1206 struct vm_area_struct
*vma
, unsigned long addr
)
1208 struct address_space
*mapping
= vma
->vm_file
->f_mapping
;
1209 struct inode
*inode
= mapping
->host
;
1211 if (vma
->vm_flags
& VM_MAYSHARE
) {
1212 pgoff_t idx
= vma_hugecache_offset(h
, vma
, addr
);
1213 region_add(&inode
->i_mapping
->private_list
, idx
, idx
+ 1);
1215 } else if (is_vma_resv_set(vma
, HPAGE_RESV_OWNER
)) {
1216 pgoff_t idx
= vma_hugecache_offset(h
, vma
, addr
);
1217 struct resv_map
*resv
= vma_resv_map(vma
);
1219 /* Mark this page used in the map. */
1220 region_add(&resv
->regions
, idx
, idx
+ 1);
1224 static struct page
*alloc_huge_page(struct vm_area_struct
*vma
,
1225 unsigned long addr
, int avoid_reserve
)
1227 struct hugepage_subpool
*spool
= subpool_vma(vma
);
1228 struct hstate
*h
= hstate_vma(vma
);
1232 struct hugetlb_cgroup
*h_cg
;
1234 idx
= hstate_index(h
);
1236 * Processes that did not create the mapping will have no
1237 * reserves and will not have accounted against subpool
1238 * limit. Check that the subpool limit can be made before
1239 * satisfying the allocation MAP_NORESERVE mappings may also
1240 * need pages and subpool limit allocated allocated if no reserve
1243 chg
= vma_needs_reservation(h
, vma
, addr
);
1245 return ERR_PTR(-ENOMEM
);
1246 if (chg
|| avoid_reserve
)
1247 if (hugepage_subpool_get_pages(spool
, 1))
1248 return ERR_PTR(-ENOSPC
);
1250 ret
= hugetlb_cgroup_charge_cgroup(idx
, pages_per_huge_page(h
), &h_cg
);
1252 if (chg
|| avoid_reserve
)
1253 hugepage_subpool_put_pages(spool
, 1);
1254 return ERR_PTR(-ENOSPC
);
1256 spin_lock(&hugetlb_lock
);
1257 page
= dequeue_huge_page_vma(h
, vma
, addr
, avoid_reserve
, chg
);
1259 spin_unlock(&hugetlb_lock
);
1260 page
= alloc_buddy_huge_page(h
, NUMA_NO_NODE
);
1262 hugetlb_cgroup_uncharge_cgroup(idx
,
1263 pages_per_huge_page(h
),
1265 if (chg
|| avoid_reserve
)
1266 hugepage_subpool_put_pages(spool
, 1);
1267 return ERR_PTR(-ENOSPC
);
1269 spin_lock(&hugetlb_lock
);
1270 list_move(&page
->lru
, &h
->hugepage_activelist
);
1273 hugetlb_cgroup_commit_charge(idx
, pages_per_huge_page(h
), h_cg
, page
);
1274 spin_unlock(&hugetlb_lock
);
1276 set_page_private(page
, (unsigned long)spool
);
1278 vma_commit_reservation(h
, vma
, addr
);
1283 * alloc_huge_page()'s wrapper which simply returns the page if allocation
1284 * succeeds, otherwise NULL. This function is called from new_vma_page(),
1285 * where no ERR_VALUE is expected to be returned.
1287 struct page
*alloc_huge_page_noerr(struct vm_area_struct
*vma
,
1288 unsigned long addr
, int avoid_reserve
)
1290 struct page
*page
= alloc_huge_page(vma
, addr
, avoid_reserve
);
1296 int __weak
alloc_bootmem_huge_page(struct hstate
*h
)
1298 struct huge_bootmem_page
*m
;
1301 for_each_node_mask_to_alloc(h
, nr_nodes
, node
, &node_states
[N_MEMORY
]) {
1304 addr
= __alloc_bootmem_node_nopanic(NODE_DATA(node
),
1305 huge_page_size(h
), huge_page_size(h
), 0);
1309 * Use the beginning of the huge page to store the
1310 * huge_bootmem_page struct (until gather_bootmem
1311 * puts them into the mem_map).
1320 BUG_ON((unsigned long)virt_to_phys(m
) & (huge_page_size(h
) - 1));
1321 /* Put them into a private list first because mem_map is not up yet */
1322 list_add(&m
->list
, &huge_boot_pages
);
1327 static void prep_compound_huge_page(struct page
*page
, int order
)
1329 if (unlikely(order
> (MAX_ORDER
- 1)))
1330 prep_compound_gigantic_page(page
, order
);
1332 prep_compound_page(page
, order
);
1335 /* Put bootmem huge pages into the standard lists after mem_map is up */
1336 static void __init
gather_bootmem_prealloc(void)
1338 struct huge_bootmem_page
*m
;
1340 list_for_each_entry(m
, &huge_boot_pages
, list
) {
1341 struct hstate
*h
= m
->hstate
;
1344 #ifdef CONFIG_HIGHMEM
1345 page
= pfn_to_page(m
->phys
>> PAGE_SHIFT
);
1346 free_bootmem_late((unsigned long)m
,
1347 sizeof(struct huge_bootmem_page
));
1349 page
= virt_to_page(m
);
1351 WARN_ON(page_count(page
) != 1);
1352 prep_compound_huge_page(page
, h
->order
);
1353 WARN_ON(PageReserved(page
));
1354 prep_new_huge_page(h
, page
, page_to_nid(page
));
1356 * If we had gigantic hugepages allocated at boot time, we need
1357 * to restore the 'stolen' pages to totalram_pages in order to
1358 * fix confusing memory reports from free(1) and another
1359 * side-effects, like CommitLimit going negative.
1361 if (h
->order
> (MAX_ORDER
- 1))
1362 adjust_managed_page_count(page
, 1 << h
->order
);
1366 static void __init
hugetlb_hstate_alloc_pages(struct hstate
*h
)
1370 for (i
= 0; i
< h
->max_huge_pages
; ++i
) {
1371 if (h
->order
>= MAX_ORDER
) {
1372 if (!alloc_bootmem_huge_page(h
))
1374 } else if (!alloc_fresh_huge_page(h
,
1375 &node_states
[N_MEMORY
]))
1378 h
->max_huge_pages
= i
;
1381 static void __init
hugetlb_init_hstates(void)
1385 for_each_hstate(h
) {
1386 /* oversize hugepages were init'ed in early boot */
1387 if (h
->order
< MAX_ORDER
)
1388 hugetlb_hstate_alloc_pages(h
);
1392 static char * __init
memfmt(char *buf
, unsigned long n
)
1394 if (n
>= (1UL << 30))
1395 sprintf(buf
, "%lu GB", n
>> 30);
1396 else if (n
>= (1UL << 20))
1397 sprintf(buf
, "%lu MB", n
>> 20);
1399 sprintf(buf
, "%lu KB", n
>> 10);
1403 static void __init
report_hugepages(void)
1407 for_each_hstate(h
) {
1409 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
1410 memfmt(buf
, huge_page_size(h
)),
1411 h
->free_huge_pages
);
1415 #ifdef CONFIG_HIGHMEM
1416 static void try_to_free_low(struct hstate
*h
, unsigned long count
,
1417 nodemask_t
*nodes_allowed
)
1421 if (h
->order
>= MAX_ORDER
)
1424 for_each_node_mask(i
, *nodes_allowed
) {
1425 struct page
*page
, *next
;
1426 struct list_head
*freel
= &h
->hugepage_freelists
[i
];
1427 list_for_each_entry_safe(page
, next
, freel
, lru
) {
1428 if (count
>= h
->nr_huge_pages
)
1430 if (PageHighMem(page
))
1432 list_del(&page
->lru
);
1433 update_and_free_page(h
, page
);
1434 h
->free_huge_pages
--;
1435 h
->free_huge_pages_node
[page_to_nid(page
)]--;
1440 static inline void try_to_free_low(struct hstate
*h
, unsigned long count
,
1441 nodemask_t
*nodes_allowed
)
1447 * Increment or decrement surplus_huge_pages. Keep node-specific counters
1448 * balanced by operating on them in a round-robin fashion.
1449 * Returns 1 if an adjustment was made.
1451 static int adjust_pool_surplus(struct hstate
*h
, nodemask_t
*nodes_allowed
,
1456 VM_BUG_ON(delta
!= -1 && delta
!= 1);
1459 for_each_node_mask_to_alloc(h
, nr_nodes
, node
, nodes_allowed
) {
1460 if (h
->surplus_huge_pages_node
[node
])
1464 for_each_node_mask_to_free(h
, nr_nodes
, node
, nodes_allowed
) {
1465 if (h
->surplus_huge_pages_node
[node
] <
1466 h
->nr_huge_pages_node
[node
])
1473 h
->surplus_huge_pages
+= delta
;
1474 h
->surplus_huge_pages_node
[node
] += delta
;
1478 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1479 static unsigned long set_max_huge_pages(struct hstate
*h
, unsigned long count
,
1480 nodemask_t
*nodes_allowed
)
1482 unsigned long min_count
, ret
;
1484 if (h
->order
>= MAX_ORDER
)
1485 return h
->max_huge_pages
;
1488 * Increase the pool size
1489 * First take pages out of surplus state. Then make up the
1490 * remaining difference by allocating fresh huge pages.
1492 * We might race with alloc_buddy_huge_page() here and be unable
1493 * to convert a surplus huge page to a normal huge page. That is
1494 * not critical, though, it just means the overall size of the
1495 * pool might be one hugepage larger than it needs to be, but
1496 * within all the constraints specified by the sysctls.
1498 spin_lock(&hugetlb_lock
);
1499 while (h
->surplus_huge_pages
&& count
> persistent_huge_pages(h
)) {
1500 if (!adjust_pool_surplus(h
, nodes_allowed
, -1))
1504 while (count
> persistent_huge_pages(h
)) {
1506 * If this allocation races such that we no longer need the
1507 * page, free_huge_page will handle it by freeing the page
1508 * and reducing the surplus.
1510 spin_unlock(&hugetlb_lock
);
1511 ret
= alloc_fresh_huge_page(h
, nodes_allowed
);
1512 spin_lock(&hugetlb_lock
);
1516 /* Bail for signals. Probably ctrl-c from user */
1517 if (signal_pending(current
))
1522 * Decrease the pool size
1523 * First return free pages to the buddy allocator (being careful
1524 * to keep enough around to satisfy reservations). Then place
1525 * pages into surplus state as needed so the pool will shrink
1526 * to the desired size as pages become free.
1528 * By placing pages into the surplus state independent of the
1529 * overcommit value, we are allowing the surplus pool size to
1530 * exceed overcommit. There are few sane options here. Since
1531 * alloc_buddy_huge_page() is checking the global counter,
1532 * though, we'll note that we're not allowed to exceed surplus
1533 * and won't grow the pool anywhere else. Not until one of the
1534 * sysctls are changed, or the surplus pages go out of use.
1536 min_count
= h
->resv_huge_pages
+ h
->nr_huge_pages
- h
->free_huge_pages
;
1537 min_count
= max(count
, min_count
);
1538 try_to_free_low(h
, min_count
, nodes_allowed
);
1539 while (min_count
< persistent_huge_pages(h
)) {
1540 if (!free_pool_huge_page(h
, nodes_allowed
, 0))
1542 cond_resched_lock(&hugetlb_lock
);
1544 while (count
< persistent_huge_pages(h
)) {
1545 if (!adjust_pool_surplus(h
, nodes_allowed
, 1))
1549 ret
= persistent_huge_pages(h
);
1550 spin_unlock(&hugetlb_lock
);
1554 #define HSTATE_ATTR_RO(_name) \
1555 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1557 #define HSTATE_ATTR(_name) \
1558 static struct kobj_attribute _name##_attr = \
1559 __ATTR(_name, 0644, _name##_show, _name##_store)
1561 static struct kobject
*hugepages_kobj
;
1562 static struct kobject
*hstate_kobjs
[HUGE_MAX_HSTATE
];
1564 static struct hstate
*kobj_to_node_hstate(struct kobject
*kobj
, int *nidp
);
1566 static struct hstate
*kobj_to_hstate(struct kobject
*kobj
, int *nidp
)
1570 for (i
= 0; i
< HUGE_MAX_HSTATE
; i
++)
1571 if (hstate_kobjs
[i
] == kobj
) {
1573 *nidp
= NUMA_NO_NODE
;
1577 return kobj_to_node_hstate(kobj
, nidp
);
1580 static ssize_t
nr_hugepages_show_common(struct kobject
*kobj
,
1581 struct kobj_attribute
*attr
, char *buf
)
1584 unsigned long nr_huge_pages
;
1587 h
= kobj_to_hstate(kobj
, &nid
);
1588 if (nid
== NUMA_NO_NODE
)
1589 nr_huge_pages
= h
->nr_huge_pages
;
1591 nr_huge_pages
= h
->nr_huge_pages_node
[nid
];
1593 return sprintf(buf
, "%lu\n", nr_huge_pages
);
1596 static ssize_t
nr_hugepages_store_common(bool obey_mempolicy
,
1597 struct kobject
*kobj
, struct kobj_attribute
*attr
,
1598 const char *buf
, size_t len
)
1602 unsigned long count
;
1604 NODEMASK_ALLOC(nodemask_t
, nodes_allowed
, GFP_KERNEL
| __GFP_NORETRY
);
1606 err
= kstrtoul(buf
, 10, &count
);
1610 h
= kobj_to_hstate(kobj
, &nid
);
1611 if (h
->order
>= MAX_ORDER
) {
1616 if (nid
== NUMA_NO_NODE
) {
1618 * global hstate attribute
1620 if (!(obey_mempolicy
&&
1621 init_nodemask_of_mempolicy(nodes_allowed
))) {
1622 NODEMASK_FREE(nodes_allowed
);
1623 nodes_allowed
= &node_states
[N_MEMORY
];
1625 } else if (nodes_allowed
) {
1627 * per node hstate attribute: adjust count to global,
1628 * but restrict alloc/free to the specified node.
1630 count
+= h
->nr_huge_pages
- h
->nr_huge_pages_node
[nid
];
1631 init_nodemask_of_node(nodes_allowed
, nid
);
1633 nodes_allowed
= &node_states
[N_MEMORY
];
1635 h
->max_huge_pages
= set_max_huge_pages(h
, count
, nodes_allowed
);
1637 if (nodes_allowed
!= &node_states
[N_MEMORY
])
1638 NODEMASK_FREE(nodes_allowed
);
1642 NODEMASK_FREE(nodes_allowed
);
1646 static ssize_t
nr_hugepages_show(struct kobject
*kobj
,
1647 struct kobj_attribute
*attr
, char *buf
)
1649 return nr_hugepages_show_common(kobj
, attr
, buf
);
1652 static ssize_t
nr_hugepages_store(struct kobject
*kobj
,
1653 struct kobj_attribute
*attr
, const char *buf
, size_t len
)
1655 return nr_hugepages_store_common(false, kobj
, attr
, buf
, len
);
1657 HSTATE_ATTR(nr_hugepages
);
1662 * hstate attribute for optionally mempolicy-based constraint on persistent
1663 * huge page alloc/free.
1665 static ssize_t
nr_hugepages_mempolicy_show(struct kobject
*kobj
,
1666 struct kobj_attribute
*attr
, char *buf
)
1668 return nr_hugepages_show_common(kobj
, attr
, buf
);
1671 static ssize_t
nr_hugepages_mempolicy_store(struct kobject
*kobj
,
1672 struct kobj_attribute
*attr
, const char *buf
, size_t len
)
1674 return nr_hugepages_store_common(true, kobj
, attr
, buf
, len
);
1676 HSTATE_ATTR(nr_hugepages_mempolicy
);
1680 static ssize_t
nr_overcommit_hugepages_show(struct kobject
*kobj
,
1681 struct kobj_attribute
*attr
, char *buf
)
1683 struct hstate
*h
= kobj_to_hstate(kobj
, NULL
);
1684 return sprintf(buf
, "%lu\n", h
->nr_overcommit_huge_pages
);
1687 static ssize_t
nr_overcommit_hugepages_store(struct kobject
*kobj
,
1688 struct kobj_attribute
*attr
, const char *buf
, size_t count
)
1691 unsigned long input
;
1692 struct hstate
*h
= kobj_to_hstate(kobj
, NULL
);
1694 if (h
->order
>= MAX_ORDER
)
1697 err
= kstrtoul(buf
, 10, &input
);
1701 spin_lock(&hugetlb_lock
);
1702 h
->nr_overcommit_huge_pages
= input
;
1703 spin_unlock(&hugetlb_lock
);
1707 HSTATE_ATTR(nr_overcommit_hugepages
);
1709 static ssize_t
free_hugepages_show(struct kobject
*kobj
,
1710 struct kobj_attribute
*attr
, char *buf
)
1713 unsigned long free_huge_pages
;
1716 h
= kobj_to_hstate(kobj
, &nid
);
1717 if (nid
== NUMA_NO_NODE
)
1718 free_huge_pages
= h
->free_huge_pages
;
1720 free_huge_pages
= h
->free_huge_pages_node
[nid
];
1722 return sprintf(buf
, "%lu\n", free_huge_pages
);
1724 HSTATE_ATTR_RO(free_hugepages
);
1726 static ssize_t
resv_hugepages_show(struct kobject
*kobj
,
1727 struct kobj_attribute
*attr
, char *buf
)
1729 struct hstate
*h
= kobj_to_hstate(kobj
, NULL
);
1730 return sprintf(buf
, "%lu\n", h
->resv_huge_pages
);
1732 HSTATE_ATTR_RO(resv_hugepages
);
1734 static ssize_t
surplus_hugepages_show(struct kobject
*kobj
,
1735 struct kobj_attribute
*attr
, char *buf
)
1738 unsigned long surplus_huge_pages
;
1741 h
= kobj_to_hstate(kobj
, &nid
);
1742 if (nid
== NUMA_NO_NODE
)
1743 surplus_huge_pages
= h
->surplus_huge_pages
;
1745 surplus_huge_pages
= h
->surplus_huge_pages_node
[nid
];
1747 return sprintf(buf
, "%lu\n", surplus_huge_pages
);
1749 HSTATE_ATTR_RO(surplus_hugepages
);
1751 static struct attribute
*hstate_attrs
[] = {
1752 &nr_hugepages_attr
.attr
,
1753 &nr_overcommit_hugepages_attr
.attr
,
1754 &free_hugepages_attr
.attr
,
1755 &resv_hugepages_attr
.attr
,
1756 &surplus_hugepages_attr
.attr
,
1758 &nr_hugepages_mempolicy_attr
.attr
,
1763 static struct attribute_group hstate_attr_group
= {
1764 .attrs
= hstate_attrs
,
1767 static int hugetlb_sysfs_add_hstate(struct hstate
*h
, struct kobject
*parent
,
1768 struct kobject
**hstate_kobjs
,
1769 struct attribute_group
*hstate_attr_group
)
1772 int hi
= hstate_index(h
);
1774 hstate_kobjs
[hi
] = kobject_create_and_add(h
->name
, parent
);
1775 if (!hstate_kobjs
[hi
])
1778 retval
= sysfs_create_group(hstate_kobjs
[hi
], hstate_attr_group
);
1780 kobject_put(hstate_kobjs
[hi
]);
1785 static void __init
hugetlb_sysfs_init(void)
1790 hugepages_kobj
= kobject_create_and_add("hugepages", mm_kobj
);
1791 if (!hugepages_kobj
)
1794 for_each_hstate(h
) {
1795 err
= hugetlb_sysfs_add_hstate(h
, hugepages_kobj
,
1796 hstate_kobjs
, &hstate_attr_group
);
1798 pr_err("Hugetlb: Unable to add hstate %s", h
->name
);
1805 * node_hstate/s - associate per node hstate attributes, via their kobjects,
1806 * with node devices in node_devices[] using a parallel array. The array
1807 * index of a node device or _hstate == node id.
1808 * This is here to avoid any static dependency of the node device driver, in
1809 * the base kernel, on the hugetlb module.
1811 struct node_hstate
{
1812 struct kobject
*hugepages_kobj
;
1813 struct kobject
*hstate_kobjs
[HUGE_MAX_HSTATE
];
1815 struct node_hstate node_hstates
[MAX_NUMNODES
];
1818 * A subset of global hstate attributes for node devices
1820 static struct attribute
*per_node_hstate_attrs
[] = {
1821 &nr_hugepages_attr
.attr
,
1822 &free_hugepages_attr
.attr
,
1823 &surplus_hugepages_attr
.attr
,
1827 static struct attribute_group per_node_hstate_attr_group
= {
1828 .attrs
= per_node_hstate_attrs
,
1832 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
1833 * Returns node id via non-NULL nidp.
1835 static struct hstate
*kobj_to_node_hstate(struct kobject
*kobj
, int *nidp
)
1839 for (nid
= 0; nid
< nr_node_ids
; nid
++) {
1840 struct node_hstate
*nhs
= &node_hstates
[nid
];
1842 for (i
= 0; i
< HUGE_MAX_HSTATE
; i
++)
1843 if (nhs
->hstate_kobjs
[i
] == kobj
) {
1855 * Unregister hstate attributes from a single node device.
1856 * No-op if no hstate attributes attached.
1858 static void hugetlb_unregister_node(struct node
*node
)
1861 struct node_hstate
*nhs
= &node_hstates
[node
->dev
.id
];
1863 if (!nhs
->hugepages_kobj
)
1864 return; /* no hstate attributes */
1866 for_each_hstate(h
) {
1867 int idx
= hstate_index(h
);
1868 if (nhs
->hstate_kobjs
[idx
]) {
1869 kobject_put(nhs
->hstate_kobjs
[idx
]);
1870 nhs
->hstate_kobjs
[idx
] = NULL
;
1874 kobject_put(nhs
->hugepages_kobj
);
1875 nhs
->hugepages_kobj
= NULL
;
1879 * hugetlb module exit: unregister hstate attributes from node devices
1882 static void hugetlb_unregister_all_nodes(void)
1887 * disable node device registrations.
1889 register_hugetlbfs_with_node(NULL
, NULL
);
1892 * remove hstate attributes from any nodes that have them.
1894 for (nid
= 0; nid
< nr_node_ids
; nid
++)
1895 hugetlb_unregister_node(node_devices
[nid
]);
1899 * Register hstate attributes for a single node device.
1900 * No-op if attributes already registered.
1902 static void hugetlb_register_node(struct node
*node
)
1905 struct node_hstate
*nhs
= &node_hstates
[node
->dev
.id
];
1908 if (nhs
->hugepages_kobj
)
1909 return; /* already allocated */
1911 nhs
->hugepages_kobj
= kobject_create_and_add("hugepages",
1913 if (!nhs
->hugepages_kobj
)
1916 for_each_hstate(h
) {
1917 err
= hugetlb_sysfs_add_hstate(h
, nhs
->hugepages_kobj
,
1919 &per_node_hstate_attr_group
);
1921 pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
1922 h
->name
, node
->dev
.id
);
1923 hugetlb_unregister_node(node
);
1930 * hugetlb init time: register hstate attributes for all registered node
1931 * devices of nodes that have memory. All on-line nodes should have
1932 * registered their associated device by this time.
1934 static void hugetlb_register_all_nodes(void)
1938 for_each_node_state(nid
, N_MEMORY
) {
1939 struct node
*node
= node_devices
[nid
];
1940 if (node
->dev
.id
== nid
)
1941 hugetlb_register_node(node
);
1945 * Let the node device driver know we're here so it can
1946 * [un]register hstate attributes on node hotplug.
1948 register_hugetlbfs_with_node(hugetlb_register_node
,
1949 hugetlb_unregister_node
);
1951 #else /* !CONFIG_NUMA */
1953 static struct hstate
*kobj_to_node_hstate(struct kobject
*kobj
, int *nidp
)
1961 static void hugetlb_unregister_all_nodes(void) { }
1963 static void hugetlb_register_all_nodes(void) { }
1967 static void __exit
hugetlb_exit(void)
1971 hugetlb_unregister_all_nodes();
1973 for_each_hstate(h
) {
1974 kobject_put(hstate_kobjs
[hstate_index(h
)]);
1977 kobject_put(hugepages_kobj
);
1979 module_exit(hugetlb_exit
);
1981 static int __init
hugetlb_init(void)
1983 /* Some platform decide whether they support huge pages at boot
1984 * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
1985 * there is no such support
1987 if (HPAGE_SHIFT
== 0)
1990 if (!size_to_hstate(default_hstate_size
)) {
1991 default_hstate_size
= HPAGE_SIZE
;
1992 if (!size_to_hstate(default_hstate_size
))
1993 hugetlb_add_hstate(HUGETLB_PAGE_ORDER
);
1995 default_hstate_idx
= hstate_index(size_to_hstate(default_hstate_size
));
1996 if (default_hstate_max_huge_pages
)
1997 default_hstate
.max_huge_pages
= default_hstate_max_huge_pages
;
1999 hugetlb_init_hstates();
2000 gather_bootmem_prealloc();
2003 hugetlb_sysfs_init();
2004 hugetlb_register_all_nodes();
2005 hugetlb_cgroup_file_init();
2009 module_init(hugetlb_init
);
2011 /* Should be called on processing a hugepagesz=... option */
2012 void __init
hugetlb_add_hstate(unsigned order
)
2017 if (size_to_hstate(PAGE_SIZE
<< order
)) {
2018 pr_warning("hugepagesz= specified twice, ignoring\n");
2021 BUG_ON(hugetlb_max_hstate
>= HUGE_MAX_HSTATE
);
2023 h
= &hstates
[hugetlb_max_hstate
++];
2025 h
->mask
= ~((1ULL << (order
+ PAGE_SHIFT
)) - 1);
2026 h
->nr_huge_pages
= 0;
2027 h
->free_huge_pages
= 0;
2028 for (i
= 0; i
< MAX_NUMNODES
; ++i
)
2029 INIT_LIST_HEAD(&h
->hugepage_freelists
[i
]);
2030 INIT_LIST_HEAD(&h
->hugepage_activelist
);
2031 h
->next_nid_to_alloc
= first_node(node_states
[N_MEMORY
]);
2032 h
->next_nid_to_free
= first_node(node_states
[N_MEMORY
]);
2033 snprintf(h
->name
, HSTATE_NAME_LEN
, "hugepages-%lukB",
2034 huge_page_size(h
)/1024);
2039 static int __init
hugetlb_nrpages_setup(char *s
)
2042 static unsigned long *last_mhp
;
2045 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2046 * so this hugepages= parameter goes to the "default hstate".
2048 if (!hugetlb_max_hstate
)
2049 mhp
= &default_hstate_max_huge_pages
;
2051 mhp
= &parsed_hstate
->max_huge_pages
;
2053 if (mhp
== last_mhp
) {
2054 pr_warning("hugepages= specified twice without "
2055 "interleaving hugepagesz=, ignoring\n");
2059 if (sscanf(s
, "%lu", mhp
) <= 0)
2063 * Global state is always initialized later in hugetlb_init.
2064 * But we need to allocate >= MAX_ORDER hstates here early to still
2065 * use the bootmem allocator.
2067 if (hugetlb_max_hstate
&& parsed_hstate
->order
>= MAX_ORDER
)
2068 hugetlb_hstate_alloc_pages(parsed_hstate
);
2074 __setup("hugepages=", hugetlb_nrpages_setup
);
2076 static int __init
hugetlb_default_setup(char *s
)
2078 default_hstate_size
= memparse(s
, &s
);
2081 __setup("default_hugepagesz=", hugetlb_default_setup
);
2083 static unsigned int cpuset_mems_nr(unsigned int *array
)
2086 unsigned int nr
= 0;
2088 for_each_node_mask(node
, cpuset_current_mems_allowed
)
2094 #ifdef CONFIG_SYSCTL
2095 static int hugetlb_sysctl_handler_common(bool obey_mempolicy
,
2096 struct ctl_table
*table
, int write
,
2097 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
2099 struct hstate
*h
= &default_hstate
;
2103 if (!hugepages_supported())
2106 tmp
= h
->max_huge_pages
;
2108 if (write
&& h
->order
>= MAX_ORDER
)
2112 table
->maxlen
= sizeof(unsigned long);
2113 ret
= proc_doulongvec_minmax(table
, write
, buffer
, length
, ppos
);
2118 NODEMASK_ALLOC(nodemask_t
, nodes_allowed
,
2119 GFP_KERNEL
| __GFP_NORETRY
);
2120 if (!(obey_mempolicy
&&
2121 init_nodemask_of_mempolicy(nodes_allowed
))) {
2122 NODEMASK_FREE(nodes_allowed
);
2123 nodes_allowed
= &node_states
[N_MEMORY
];
2125 h
->max_huge_pages
= set_max_huge_pages(h
, tmp
, nodes_allowed
);
2127 if (nodes_allowed
!= &node_states
[N_MEMORY
])
2128 NODEMASK_FREE(nodes_allowed
);
2134 int hugetlb_sysctl_handler(struct ctl_table
*table
, int write
,
2135 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
2138 return hugetlb_sysctl_handler_common(false, table
, write
,
2139 buffer
, length
, ppos
);
2143 int hugetlb_mempolicy_sysctl_handler(struct ctl_table
*table
, int write
,
2144 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
2146 return hugetlb_sysctl_handler_common(true, table
, write
,
2147 buffer
, length
, ppos
);
2149 #endif /* CONFIG_NUMA */
2151 int hugetlb_overcommit_handler(struct ctl_table
*table
, int write
,
2152 void __user
*buffer
,
2153 size_t *length
, loff_t
*ppos
)
2155 struct hstate
*h
= &default_hstate
;
2159 if (!hugepages_supported())
2162 tmp
= h
->nr_overcommit_huge_pages
;
2164 if (write
&& h
->order
>= MAX_ORDER
)
2168 table
->maxlen
= sizeof(unsigned long);
2169 ret
= proc_doulongvec_minmax(table
, write
, buffer
, length
, ppos
);
2174 spin_lock(&hugetlb_lock
);
2175 h
->nr_overcommit_huge_pages
= tmp
;
2176 spin_unlock(&hugetlb_lock
);
2182 #endif /* CONFIG_SYSCTL */
2184 void hugetlb_report_meminfo(struct seq_file
*m
)
2186 struct hstate
*h
= &default_hstate
;
2187 if (!hugepages_supported())
2190 "HugePages_Total: %5lu\n"
2191 "HugePages_Free: %5lu\n"
2192 "HugePages_Rsvd: %5lu\n"
2193 "HugePages_Surp: %5lu\n"
2194 "Hugepagesize: %8lu kB\n",
2198 h
->surplus_huge_pages
,
2199 1UL << (huge_page_order(h
) + PAGE_SHIFT
- 10));
2202 int hugetlb_report_node_meminfo(int nid
, char *buf
)
2204 struct hstate
*h
= &default_hstate
;
2205 if (!hugepages_supported())
2208 "Node %d HugePages_Total: %5u\n"
2209 "Node %d HugePages_Free: %5u\n"
2210 "Node %d HugePages_Surp: %5u\n",
2211 nid
, h
->nr_huge_pages_node
[nid
],
2212 nid
, h
->free_huge_pages_node
[nid
],
2213 nid
, h
->surplus_huge_pages_node
[nid
]);
2216 void hugetlb_show_meminfo(void)
2221 if (!hugepages_supported())
2224 for_each_node_state(nid
, N_MEMORY
)
2226 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
2228 h
->nr_huge_pages_node
[nid
],
2229 h
->free_huge_pages_node
[nid
],
2230 h
->surplus_huge_pages_node
[nid
],
2231 1UL << (huge_page_order(h
) + PAGE_SHIFT
- 10));
2234 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
2235 unsigned long hugetlb_total_pages(void)
2238 unsigned long nr_total_pages
= 0;
2241 nr_total_pages
+= h
->nr_huge_pages
* pages_per_huge_page(h
);
2242 return nr_total_pages
;
2245 static int hugetlb_acct_memory(struct hstate
*h
, long delta
)
2249 spin_lock(&hugetlb_lock
);
2251 * When cpuset is configured, it breaks the strict hugetlb page
2252 * reservation as the accounting is done on a global variable. Such
2253 * reservation is completely rubbish in the presence of cpuset because
2254 * the reservation is not checked against page availability for the
2255 * current cpuset. Application can still potentially OOM'ed by kernel
2256 * with lack of free htlb page in cpuset that the task is in.
2257 * Attempt to enforce strict accounting with cpuset is almost
2258 * impossible (or too ugly) because cpuset is too fluid that
2259 * task or memory node can be dynamically moved between cpusets.
2261 * The change of semantics for shared hugetlb mapping with cpuset is
2262 * undesirable. However, in order to preserve some of the semantics,
2263 * we fall back to check against current free page availability as
2264 * a best attempt and hopefully to minimize the impact of changing
2265 * semantics that cpuset has.
2268 if (gather_surplus_pages(h
, delta
) < 0)
2271 if (delta
> cpuset_mems_nr(h
->free_huge_pages_node
)) {
2272 return_unused_surplus_pages(h
, delta
);
2279 return_unused_surplus_pages(h
, (unsigned long) -delta
);
2282 spin_unlock(&hugetlb_lock
);
2286 static void hugetlb_vm_op_open(struct vm_area_struct
*vma
)
2288 struct resv_map
*resv
= vma_resv_map(vma
);
2291 * This new VMA should share its siblings reservation map if present.
2292 * The VMA will only ever have a valid reservation map pointer where
2293 * it is being copied for another still existing VMA. As that VMA
2294 * has a reference to the reservation map it cannot disappear until
2295 * after this open call completes. It is therefore safe to take a
2296 * new reference here without additional locking.
2299 kref_get(&resv
->refs
);
2302 static void resv_map_put(struct vm_area_struct
*vma
)
2304 struct resv_map
*resv
= vma_resv_map(vma
);
2308 kref_put(&resv
->refs
, resv_map_release
);
2311 static void hugetlb_vm_op_close(struct vm_area_struct
*vma
)
2313 struct hstate
*h
= hstate_vma(vma
);
2314 struct resv_map
*resv
= vma_resv_map(vma
);
2315 struct hugepage_subpool
*spool
= subpool_vma(vma
);
2316 unsigned long reserve
;
2317 unsigned long start
;
2321 start
= vma_hugecache_offset(h
, vma
, vma
->vm_start
);
2322 end
= vma_hugecache_offset(h
, vma
, vma
->vm_end
);
2324 reserve
= (end
- start
) -
2325 region_count(&resv
->regions
, start
, end
);
2330 hugetlb_acct_memory(h
, -reserve
);
2331 hugepage_subpool_put_pages(spool
, reserve
);
2337 * We cannot handle pagefaults against hugetlb pages at all. They cause
2338 * handle_mm_fault() to try to instantiate regular-sized pages in the
2339 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
2342 static int hugetlb_vm_op_fault(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
2348 const struct vm_operations_struct hugetlb_vm_ops
= {
2349 .fault
= hugetlb_vm_op_fault
,
2350 .open
= hugetlb_vm_op_open
,
2351 .close
= hugetlb_vm_op_close
,
2354 static pte_t
make_huge_pte(struct vm_area_struct
*vma
, struct page
*page
,
2360 entry
= huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page
,
2361 vma
->vm_page_prot
)));
2363 entry
= huge_pte_wrprotect(mk_huge_pte(page
,
2364 vma
->vm_page_prot
));
2366 entry
= pte_mkyoung(entry
);
2367 entry
= pte_mkhuge(entry
);
2368 entry
= arch_make_huge_pte(entry
, vma
, page
, writable
);
2373 static void set_huge_ptep_writable(struct vm_area_struct
*vma
,
2374 unsigned long address
, pte_t
*ptep
)
2378 entry
= huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep
)));
2379 if (huge_ptep_set_access_flags(vma
, address
, ptep
, entry
, 1))
2380 update_mmu_cache(vma
, address
, ptep
);
2383 static int is_hugetlb_entry_migration(pte_t pte
)
2387 if (huge_pte_none(pte
) || pte_present(pte
))
2389 swp
= pte_to_swp_entry(pte
);
2390 if (non_swap_entry(swp
) && is_migration_entry(swp
))
2396 static int is_hugetlb_entry_hwpoisoned(pte_t pte
)
2400 if (huge_pte_none(pte
) || pte_present(pte
))
2402 swp
= pte_to_swp_entry(pte
);
2403 if (non_swap_entry(swp
) && is_hwpoison_entry(swp
))
2409 int copy_hugetlb_page_range(struct mm_struct
*dst
, struct mm_struct
*src
,
2410 struct vm_area_struct
*vma
)
2412 pte_t
*src_pte
, *dst_pte
, entry
;
2413 struct page
*ptepage
;
2416 struct hstate
*h
= hstate_vma(vma
);
2417 unsigned long sz
= huge_page_size(h
);
2419 cow
= (vma
->vm_flags
& (VM_SHARED
| VM_MAYWRITE
)) == VM_MAYWRITE
;
2421 for (addr
= vma
->vm_start
; addr
< vma
->vm_end
; addr
+= sz
) {
2422 src_pte
= huge_pte_offset(src
, addr
);
2425 dst_pte
= huge_pte_alloc(dst
, addr
, sz
);
2429 /* If the pagetables are shared don't copy or take references */
2430 if (dst_pte
== src_pte
)
2433 spin_lock(&dst
->page_table_lock
);
2434 spin_lock_nested(&src
->page_table_lock
, SINGLE_DEPTH_NESTING
);
2435 entry
= huge_ptep_get(src_pte
);
2436 if (huge_pte_none(entry
)) { /* skip none entry */
2438 } else if (unlikely(is_hugetlb_entry_migration(entry
) ||
2439 is_hugetlb_entry_hwpoisoned(entry
))) {
2440 swp_entry_t swp_entry
= pte_to_swp_entry(entry
);
2442 if (is_write_migration_entry(swp_entry
) && cow
) {
2444 * COW mappings require pages in both
2445 * parent and child to be set to read.
2447 make_migration_entry_read(&swp_entry
);
2448 entry
= swp_entry_to_pte(swp_entry
);
2449 set_huge_pte_at(src
, addr
, src_pte
, entry
);
2451 set_huge_pte_at(dst
, addr
, dst_pte
, entry
);
2454 huge_ptep_set_wrprotect(src
, addr
, src_pte
);
2455 entry
= huge_ptep_get(src_pte
);
2456 ptepage
= pte_page(entry
);
2458 page_dup_rmap(ptepage
);
2459 set_huge_pte_at(dst
, addr
, dst_pte
, entry
);
2461 spin_unlock(&src
->page_table_lock
);
2462 spin_unlock(&dst
->page_table_lock
);
2470 void __unmap_hugepage_range(struct mmu_gather
*tlb
, struct vm_area_struct
*vma
,
2471 unsigned long start
, unsigned long end
,
2472 struct page
*ref_page
)
2474 int force_flush
= 0;
2475 struct mm_struct
*mm
= vma
->vm_mm
;
2476 unsigned long address
;
2480 struct hstate
*h
= hstate_vma(vma
);
2481 unsigned long sz
= huge_page_size(h
);
2482 const unsigned long mmun_start
= start
; /* For mmu_notifiers */
2483 const unsigned long mmun_end
= end
; /* For mmu_notifiers */
2485 WARN_ON(!is_vm_hugetlb_page(vma
));
2486 BUG_ON(start
& ~huge_page_mask(h
));
2487 BUG_ON(end
& ~huge_page_mask(h
));
2489 tlb_start_vma(tlb
, vma
);
2490 mmu_notifier_invalidate_range_start(mm
, mmun_start
, mmun_end
);
2492 spin_lock(&mm
->page_table_lock
);
2493 for (address
= start
; address
< end
; address
+= sz
) {
2494 ptep
= huge_pte_offset(mm
, address
);
2498 if (huge_pmd_unshare(mm
, &address
, ptep
))
2501 pte
= huge_ptep_get(ptep
);
2502 if (huge_pte_none(pte
))
2506 * Migrating hugepage or HWPoisoned hugepage is already
2507 * unmapped and its refcount is dropped, so just clear pte here.
2509 if (unlikely(!pte_present(pte
))) {
2510 huge_pte_clear(mm
, address
, ptep
);
2514 page
= pte_page(pte
);
2516 * If a reference page is supplied, it is because a specific
2517 * page is being unmapped, not a range. Ensure the page we
2518 * are about to unmap is the actual page of interest.
2521 if (page
!= ref_page
)
2525 * Mark the VMA as having unmapped its page so that
2526 * future faults in this VMA will fail rather than
2527 * looking like data was lost
2529 set_vma_resv_flags(vma
, HPAGE_RESV_UNMAPPED
);
2532 pte
= huge_ptep_get_and_clear(mm
, address
, ptep
);
2533 tlb_remove_tlb_entry(tlb
, ptep
, address
);
2534 if (huge_pte_dirty(pte
))
2535 set_page_dirty(page
);
2537 page_remove_rmap(page
);
2538 force_flush
= !__tlb_remove_page(tlb
, page
);
2541 /* Bail out after unmapping reference page if supplied */
2545 spin_unlock(&mm
->page_table_lock
);
2547 * mmu_gather ran out of room to batch pages, we break out of
2548 * the PTE lock to avoid doing the potential expensive TLB invalidate
2549 * and page-free while holding it.
2554 if (address
< end
&& !ref_page
)
2557 mmu_notifier_invalidate_range_end(mm
, mmun_start
, mmun_end
);
2558 tlb_end_vma(tlb
, vma
);
2561 void __unmap_hugepage_range_final(struct mmu_gather
*tlb
,
2562 struct vm_area_struct
*vma
, unsigned long start
,
2563 unsigned long end
, struct page
*ref_page
)
2565 __unmap_hugepage_range(tlb
, vma
, start
, end
, ref_page
);
2568 * Clear this flag so that x86's huge_pmd_share page_table_shareable
2569 * test will fail on a vma being torn down, and not grab a page table
2570 * on its way out. We're lucky that the flag has such an appropriate
2571 * name, and can in fact be safely cleared here. We could clear it
2572 * before the __unmap_hugepage_range above, but all that's necessary
2573 * is to clear it before releasing the i_mmap_mutex. This works
2574 * because in the context this is called, the VMA is about to be
2575 * destroyed and the i_mmap_mutex is held.
2577 vma
->vm_flags
&= ~VM_MAYSHARE
;
2580 void unmap_hugepage_range(struct vm_area_struct
*vma
, unsigned long start
,
2581 unsigned long end
, struct page
*ref_page
)
2583 struct mm_struct
*mm
;
2584 struct mmu_gather tlb
;
2588 tlb_gather_mmu(&tlb
, mm
, start
, end
);
2589 __unmap_hugepage_range(&tlb
, vma
, start
, end
, ref_page
);
2590 tlb_finish_mmu(&tlb
, start
, end
);
2594 * This is called when the original mapper is failing to COW a MAP_PRIVATE
2595 * mappping it owns the reserve page for. The intention is to unmap the page
2596 * from other VMAs and let the children be SIGKILLed if they are faulting the
2599 static int unmap_ref_private(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2600 struct page
*page
, unsigned long address
)
2602 struct hstate
*h
= hstate_vma(vma
);
2603 struct vm_area_struct
*iter_vma
;
2604 struct address_space
*mapping
;
2608 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
2609 * from page cache lookup which is in HPAGE_SIZE units.
2611 address
= address
& huge_page_mask(h
);
2612 pgoff
= ((address
- vma
->vm_start
) >> PAGE_SHIFT
) +
2614 mapping
= file_inode(vma
->vm_file
)->i_mapping
;
2617 * Take the mapping lock for the duration of the table walk. As
2618 * this mapping should be shared between all the VMAs,
2619 * __unmap_hugepage_range() is called as the lock is already held
2621 mutex_lock(&mapping
->i_mmap_mutex
);
2622 vma_interval_tree_foreach(iter_vma
, &mapping
->i_mmap
, pgoff
, pgoff
) {
2623 /* Do not unmap the current VMA */
2624 if (iter_vma
== vma
)
2628 * Shared VMAs have their own reserves and do not affect
2629 * MAP_PRIVATE accounting but it is possible that a shared
2630 * VMA is using the same page so check and skip such VMAs.
2632 if (iter_vma
->vm_flags
& VM_MAYSHARE
)
2636 * Unmap the page from other VMAs without their own reserves.
2637 * They get marked to be SIGKILLed if they fault in these
2638 * areas. This is because a future no-page fault on this VMA
2639 * could insert a zeroed page instead of the data existing
2640 * from the time of fork. This would look like data corruption
2642 if (!is_vma_resv_set(iter_vma
, HPAGE_RESV_OWNER
))
2643 unmap_hugepage_range(iter_vma
, address
,
2644 address
+ huge_page_size(h
), page
);
2646 mutex_unlock(&mapping
->i_mmap_mutex
);
2652 * Hugetlb_cow() should be called with page lock of the original hugepage held.
2653 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
2654 * cannot race with other handlers or page migration.
2655 * Keep the pte_same checks anyway to make transition from the mutex easier.
2657 static int hugetlb_cow(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2658 unsigned long address
, pte_t
*ptep
, pte_t pte
,
2659 struct page
*pagecache_page
)
2661 struct hstate
*h
= hstate_vma(vma
);
2662 struct page
*old_page
, *new_page
;
2663 int outside_reserve
= 0;
2664 unsigned long mmun_start
; /* For mmu_notifiers */
2665 unsigned long mmun_end
; /* For mmu_notifiers */
2667 old_page
= pte_page(pte
);
2670 /* If no-one else is actually using this page, avoid the copy
2671 * and just make the page writable */
2672 if (page_mapcount(old_page
) == 1 && PageAnon(old_page
)) {
2673 page_move_anon_rmap(old_page
, vma
, address
);
2674 set_huge_ptep_writable(vma
, address
, ptep
);
2679 * If the process that created a MAP_PRIVATE mapping is about to
2680 * perform a COW due to a shared page count, attempt to satisfy
2681 * the allocation without using the existing reserves. The pagecache
2682 * page is used to determine if the reserve at this address was
2683 * consumed or not. If reserves were used, a partial faulted mapping
2684 * at the time of fork() could consume its reserves on COW instead
2685 * of the full address range.
2687 if (is_vma_resv_set(vma
, HPAGE_RESV_OWNER
) &&
2688 old_page
!= pagecache_page
)
2689 outside_reserve
= 1;
2691 page_cache_get(old_page
);
2693 /* Drop page_table_lock as buddy allocator may be called */
2694 spin_unlock(&mm
->page_table_lock
);
2695 new_page
= alloc_huge_page(vma
, address
, outside_reserve
);
2697 if (IS_ERR(new_page
)) {
2698 long err
= PTR_ERR(new_page
);
2699 page_cache_release(old_page
);
2702 * If a process owning a MAP_PRIVATE mapping fails to COW,
2703 * it is due to references held by a child and an insufficient
2704 * huge page pool. To guarantee the original mappers
2705 * reliability, unmap the page from child processes. The child
2706 * may get SIGKILLed if it later faults.
2708 if (outside_reserve
) {
2709 BUG_ON(huge_pte_none(pte
));
2710 if (unmap_ref_private(mm
, vma
, old_page
, address
)) {
2711 BUG_ON(huge_pte_none(pte
));
2712 spin_lock(&mm
->page_table_lock
);
2713 ptep
= huge_pte_offset(mm
, address
& huge_page_mask(h
));
2714 if (likely(pte_same(huge_ptep_get(ptep
), pte
)))
2715 goto retry_avoidcopy
;
2717 * race occurs while re-acquiring page_table_lock, and
2725 /* Caller expects lock to be held */
2726 spin_lock(&mm
->page_table_lock
);
2728 return VM_FAULT_OOM
;
2730 return VM_FAULT_SIGBUS
;
2734 * When the original hugepage is shared one, it does not have
2735 * anon_vma prepared.
2737 if (unlikely(anon_vma_prepare(vma
))) {
2738 page_cache_release(new_page
);
2739 page_cache_release(old_page
);
2740 /* Caller expects lock to be held */
2741 spin_lock(&mm
->page_table_lock
);
2742 return VM_FAULT_OOM
;
2745 copy_user_huge_page(new_page
, old_page
, address
, vma
,
2746 pages_per_huge_page(h
));
2747 __SetPageUptodate(new_page
);
2749 mmun_start
= address
& huge_page_mask(h
);
2750 mmun_end
= mmun_start
+ huge_page_size(h
);
2751 mmu_notifier_invalidate_range_start(mm
, mmun_start
, mmun_end
);
2753 * Retake the page_table_lock to check for racing updates
2754 * before the page tables are altered
2756 spin_lock(&mm
->page_table_lock
);
2757 ptep
= huge_pte_offset(mm
, address
& huge_page_mask(h
));
2758 if (likely(pte_same(huge_ptep_get(ptep
), pte
))) {
2759 ClearPagePrivate(new_page
);
2762 huge_ptep_clear_flush(vma
, address
, ptep
);
2763 set_huge_pte_at(mm
, address
, ptep
,
2764 make_huge_pte(vma
, new_page
, 1));
2765 page_remove_rmap(old_page
);
2766 hugepage_add_new_anon_rmap(new_page
, vma
, address
);
2767 /* Make the old page be freed below */
2768 new_page
= old_page
;
2770 spin_unlock(&mm
->page_table_lock
);
2771 mmu_notifier_invalidate_range_end(mm
, mmun_start
, mmun_end
);
2772 page_cache_release(new_page
);
2773 page_cache_release(old_page
);
2775 /* Caller expects lock to be held */
2776 spin_lock(&mm
->page_table_lock
);
2780 /* Return the pagecache page at a given address within a VMA */
2781 static struct page
*hugetlbfs_pagecache_page(struct hstate
*h
,
2782 struct vm_area_struct
*vma
, unsigned long address
)
2784 struct address_space
*mapping
;
2787 mapping
= vma
->vm_file
->f_mapping
;
2788 idx
= vma_hugecache_offset(h
, vma
, address
);
2790 return find_lock_page(mapping
, idx
);
2794 * Return whether there is a pagecache page to back given address within VMA.
2795 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
2797 static bool hugetlbfs_pagecache_present(struct hstate
*h
,
2798 struct vm_area_struct
*vma
, unsigned long address
)
2800 struct address_space
*mapping
;
2804 mapping
= vma
->vm_file
->f_mapping
;
2805 idx
= vma_hugecache_offset(h
, vma
, address
);
2807 page
= find_get_page(mapping
, idx
);
2810 return page
!= NULL
;
2813 static int hugetlb_no_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2814 unsigned long address
, pte_t
*ptep
, unsigned int flags
)
2816 struct hstate
*h
= hstate_vma(vma
);
2817 int ret
= VM_FAULT_SIGBUS
;
2822 struct address_space
*mapping
;
2826 * Currently, we are forced to kill the process in the event the
2827 * original mapper has unmapped pages from the child due to a failed
2828 * COW. Warn that such a situation has occurred as it may not be obvious
2830 if (is_vma_resv_set(vma
, HPAGE_RESV_UNMAPPED
)) {
2831 pr_warning("PID %d killed due to inadequate hugepage pool\n",
2836 mapping
= vma
->vm_file
->f_mapping
;
2837 idx
= vma_hugecache_offset(h
, vma
, address
);
2840 * Use page lock to guard against racing truncation
2841 * before we get page_table_lock.
2844 page
= find_lock_page(mapping
, idx
);
2846 size
= i_size_read(mapping
->host
) >> huge_page_shift(h
);
2849 page
= alloc_huge_page(vma
, address
, 0);
2851 ret
= PTR_ERR(page
);
2855 ret
= VM_FAULT_SIGBUS
;
2858 clear_huge_page(page
, address
, pages_per_huge_page(h
));
2859 __SetPageUptodate(page
);
2861 if (vma
->vm_flags
& VM_MAYSHARE
) {
2863 struct inode
*inode
= mapping
->host
;
2865 err
= add_to_page_cache(page
, mapping
, idx
, GFP_KERNEL
);
2872 ClearPagePrivate(page
);
2874 spin_lock(&inode
->i_lock
);
2875 inode
->i_blocks
+= blocks_per_huge_page(h
);
2876 spin_unlock(&inode
->i_lock
);
2879 if (unlikely(anon_vma_prepare(vma
))) {
2881 goto backout_unlocked
;
2887 * If memory error occurs between mmap() and fault, some process
2888 * don't have hwpoisoned swap entry for errored virtual address.
2889 * So we need to block hugepage fault by PG_hwpoison bit check.
2891 if (unlikely(PageHWPoison(page
))) {
2892 ret
= VM_FAULT_HWPOISON
|
2893 VM_FAULT_SET_HINDEX(hstate_index(h
));
2894 goto backout_unlocked
;
2899 * If we are going to COW a private mapping later, we examine the
2900 * pending reservations for this page now. This will ensure that
2901 * any allocations necessary to record that reservation occur outside
2904 if ((flags
& FAULT_FLAG_WRITE
) && !(vma
->vm_flags
& VM_SHARED
))
2905 if (vma_needs_reservation(h
, vma
, address
) < 0) {
2907 goto backout_unlocked
;
2910 spin_lock(&mm
->page_table_lock
);
2911 size
= i_size_read(mapping
->host
) >> huge_page_shift(h
);
2916 if (!huge_pte_none(huge_ptep_get(ptep
)))
2920 ClearPagePrivate(page
);
2921 hugepage_add_new_anon_rmap(page
, vma
, address
);
2924 page_dup_rmap(page
);
2925 new_pte
= make_huge_pte(vma
, page
, ((vma
->vm_flags
& VM_WRITE
)
2926 && (vma
->vm_flags
& VM_SHARED
)));
2927 set_huge_pte_at(mm
, address
, ptep
, new_pte
);
2929 if ((flags
& FAULT_FLAG_WRITE
) && !(vma
->vm_flags
& VM_SHARED
)) {
2930 /* Optimization, do the COW without a second fault */
2931 ret
= hugetlb_cow(mm
, vma
, address
, ptep
, new_pte
, page
);
2934 spin_unlock(&mm
->page_table_lock
);
2940 spin_unlock(&mm
->page_table_lock
);
2947 int hugetlb_fault(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2948 unsigned long address
, unsigned int flags
)
2953 struct page
*page
= NULL
;
2954 struct page
*pagecache_page
= NULL
;
2955 static DEFINE_MUTEX(hugetlb_instantiation_mutex
);
2956 struct hstate
*h
= hstate_vma(vma
);
2957 int need_wait_lock
= 0;
2959 address
&= huge_page_mask(h
);
2961 ptep
= huge_pte_offset(mm
, address
);
2963 entry
= huge_ptep_get(ptep
);
2964 if (unlikely(is_hugetlb_entry_migration(entry
))) {
2965 migration_entry_wait_huge(mm
, ptep
);
2967 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry
)))
2968 return VM_FAULT_HWPOISON_LARGE
|
2969 VM_FAULT_SET_HINDEX(hstate_index(h
));
2972 ptep
= huge_pte_alloc(mm
, address
, huge_page_size(h
));
2974 return VM_FAULT_OOM
;
2977 * Serialize hugepage allocation and instantiation, so that we don't
2978 * get spurious allocation failures if two CPUs race to instantiate
2979 * the same page in the page cache.
2981 mutex_lock(&hugetlb_instantiation_mutex
);
2982 entry
= huge_ptep_get(ptep
);
2983 if (huge_pte_none(entry
)) {
2984 ret
= hugetlb_no_page(mm
, vma
, address
, ptep
, flags
);
2991 * entry could be a migration/hwpoison entry at this point, so this
2992 * check prevents the kernel from going below assuming that we have
2993 * a active hugepage in pagecache. This goto expects the 2nd page fault,
2994 * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
2997 if (!pte_present(entry
))
3001 * If we are going to COW the mapping later, we examine the pending
3002 * reservations for this page now. This will ensure that any
3003 * allocations necessary to record that reservation occur outside the
3004 * spinlock. For private mappings, we also lookup the pagecache
3005 * page now as it is used to determine if a reservation has been
3008 if ((flags
& FAULT_FLAG_WRITE
) && !huge_pte_write(entry
)) {
3009 if (vma_needs_reservation(h
, vma
, address
) < 0) {
3014 if (!(vma
->vm_flags
& VM_MAYSHARE
))
3015 pagecache_page
= hugetlbfs_pagecache_page(h
,
3019 spin_lock(&mm
->page_table_lock
);
3021 /* Check for a racing update before calling hugetlb_cow */
3022 if (unlikely(!pte_same(entry
, huge_ptep_get(ptep
))))
3023 goto out_page_table_lock
;
3026 * hugetlb_cow() requires page locks of pte_page(entry) and
3027 * pagecache_page, so here we need take the former one
3028 * when page != pagecache_page or !pagecache_page.
3030 page
= pte_page(entry
);
3031 if (page
!= pagecache_page
)
3032 if (!trylock_page(page
)) {
3034 goto out_page_table_lock
;
3039 if (flags
& FAULT_FLAG_WRITE
) {
3040 if (!huge_pte_write(entry
)) {
3041 ret
= hugetlb_cow(mm
, vma
, address
, ptep
, entry
,
3045 entry
= huge_pte_mkdirty(entry
);
3047 entry
= pte_mkyoung(entry
);
3048 if (huge_ptep_set_access_flags(vma
, address
, ptep
, entry
,
3049 flags
& FAULT_FLAG_WRITE
))
3050 update_mmu_cache(vma
, address
, ptep
);
3052 if (page
!= pagecache_page
)
3055 out_page_table_lock
:
3056 spin_unlock(&mm
->page_table_lock
);
3058 if (pagecache_page
) {
3059 unlock_page(pagecache_page
);
3060 put_page(pagecache_page
);
3063 mutex_unlock(&hugetlb_instantiation_mutex
);
3066 * Generally it's safe to hold refcount during waiting page lock. But
3067 * here we just wait to defer the next page fault to avoid busy loop and
3068 * the page is not used after unlocked before returning from the current
3069 * page fault. So we are safe from accessing freed page, even if we wait
3070 * here without taking refcount.
3073 wait_on_page_locked(page
);
3077 long follow_hugetlb_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
3078 struct page
**pages
, struct vm_area_struct
**vmas
,
3079 unsigned long *position
, unsigned long *nr_pages
,
3080 long i
, unsigned int flags
)
3082 unsigned long pfn_offset
;
3083 unsigned long vaddr
= *position
;
3084 unsigned long remainder
= *nr_pages
;
3085 struct hstate
*h
= hstate_vma(vma
);
3087 spin_lock(&mm
->page_table_lock
);
3088 while (vaddr
< vma
->vm_end
&& remainder
) {
3094 * Some archs (sparc64, sh*) have multiple pte_ts to
3095 * each hugepage. We have to make sure we get the
3096 * first, for the page indexing below to work.
3098 pte
= huge_pte_offset(mm
, vaddr
& huge_page_mask(h
));
3099 absent
= !pte
|| huge_pte_none(huge_ptep_get(pte
));
3102 * When coredumping, it suits get_dump_page if we just return
3103 * an error where there's an empty slot with no huge pagecache
3104 * to back it. This way, we avoid allocating a hugepage, and
3105 * the sparse dumpfile avoids allocating disk blocks, but its
3106 * huge holes still show up with zeroes where they need to be.
3108 if (absent
&& (flags
& FOLL_DUMP
) &&
3109 !hugetlbfs_pagecache_present(h
, vma
, vaddr
)) {
3115 * We need call hugetlb_fault for both hugepages under migration
3116 * (in which case hugetlb_fault waits for the migration,) and
3117 * hwpoisoned hugepages (in which case we need to prevent the
3118 * caller from accessing to them.) In order to do this, we use
3119 * here is_swap_pte instead of is_hugetlb_entry_migration and
3120 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
3121 * both cases, and because we can't follow correct pages
3122 * directly from any kind of swap entries.
3124 if (absent
|| is_swap_pte(huge_ptep_get(pte
)) ||
3125 ((flags
& FOLL_WRITE
) &&
3126 !huge_pte_write(huge_ptep_get(pte
)))) {
3129 spin_unlock(&mm
->page_table_lock
);
3130 ret
= hugetlb_fault(mm
, vma
, vaddr
,
3131 (flags
& FOLL_WRITE
) ? FAULT_FLAG_WRITE
: 0);
3132 spin_lock(&mm
->page_table_lock
);
3133 if (!(ret
& VM_FAULT_ERROR
))
3140 pfn_offset
= (vaddr
& ~huge_page_mask(h
)) >> PAGE_SHIFT
;
3141 page
= pte_page(huge_ptep_get(pte
));
3144 pages
[i
] = mem_map_offset(page
, pfn_offset
);
3155 if (vaddr
< vma
->vm_end
&& remainder
&&
3156 pfn_offset
< pages_per_huge_page(h
)) {
3158 * We use pfn_offset to avoid touching the pageframes
3159 * of this compound page.
3164 spin_unlock(&mm
->page_table_lock
);
3165 *nr_pages
= remainder
;
3168 return i
? i
: -EFAULT
;
3171 unsigned long hugetlb_change_protection(struct vm_area_struct
*vma
,
3172 unsigned long address
, unsigned long end
, pgprot_t newprot
)
3174 struct mm_struct
*mm
= vma
->vm_mm
;
3175 unsigned long start
= address
;
3178 struct hstate
*h
= hstate_vma(vma
);
3179 unsigned long pages
= 0;
3181 BUG_ON(address
>= end
);
3182 flush_cache_range(vma
, address
, end
);
3184 mutex_lock(&vma
->vm_file
->f_mapping
->i_mmap_mutex
);
3185 spin_lock(&mm
->page_table_lock
);
3186 for (; address
< end
; address
+= huge_page_size(h
)) {
3187 ptep
= huge_pte_offset(mm
, address
);
3190 if (huge_pmd_unshare(mm
, &address
, ptep
)) {
3194 pte
= huge_ptep_get(ptep
);
3195 if (unlikely(is_hugetlb_entry_hwpoisoned(pte
))) {
3198 if (unlikely(is_hugetlb_entry_migration(pte
))) {
3199 swp_entry_t entry
= pte_to_swp_entry(pte
);
3201 if (is_write_migration_entry(entry
)) {
3204 make_migration_entry_read(&entry
);
3205 newpte
= swp_entry_to_pte(entry
);
3206 set_huge_pte_at(mm
, address
, ptep
, newpte
);
3211 if (!huge_pte_none(pte
)) {
3212 pte
= huge_ptep_get_and_clear(mm
, address
, ptep
);
3213 pte
= pte_mkhuge(huge_pte_modify(pte
, newprot
));
3214 pte
= arch_make_huge_pte(pte
, vma
, NULL
, 0);
3215 set_huge_pte_at(mm
, address
, ptep
, pte
);
3219 spin_unlock(&mm
->page_table_lock
);
3221 * Must flush TLB before releasing i_mmap_mutex: x86's huge_pmd_unshare
3222 * may have cleared our pud entry and done put_page on the page table:
3223 * once we release i_mmap_mutex, another task can do the final put_page
3224 * and that page table be reused and filled with junk.
3226 flush_tlb_range(vma
, start
, end
);
3227 mutex_unlock(&vma
->vm_file
->f_mapping
->i_mmap_mutex
);
3229 return pages
<< h
->order
;
3232 int hugetlb_reserve_pages(struct inode
*inode
,
3234 struct vm_area_struct
*vma
,
3235 vm_flags_t vm_flags
)
3238 struct hstate
*h
= hstate_inode(inode
);
3239 struct hugepage_subpool
*spool
= subpool_inode(inode
);
3242 * Only apply hugepage reservation if asked. At fault time, an
3243 * attempt will be made for VM_NORESERVE to allocate a page
3244 * without using reserves
3246 if (vm_flags
& VM_NORESERVE
)
3250 * Shared mappings base their reservation on the number of pages that
3251 * are already allocated on behalf of the file. Private mappings need
3252 * to reserve the full area even if read-only as mprotect() may be
3253 * called to make the mapping read-write. Assume !vma is a shm mapping
3255 if (!vma
|| vma
->vm_flags
& VM_MAYSHARE
)
3256 chg
= region_chg(&inode
->i_mapping
->private_list
, from
, to
);
3258 struct resv_map
*resv_map
= resv_map_alloc();
3264 set_vma_resv_map(vma
, resv_map
);
3265 set_vma_resv_flags(vma
, HPAGE_RESV_OWNER
);
3273 /* There must be enough pages in the subpool for the mapping */
3274 if (hugepage_subpool_get_pages(spool
, chg
)) {
3280 * Check enough hugepages are available for the reservation.
3281 * Hand the pages back to the subpool if there are not
3283 ret
= hugetlb_acct_memory(h
, chg
);
3285 hugepage_subpool_put_pages(spool
, chg
);
3290 * Account for the reservations made. Shared mappings record regions
3291 * that have reservations as they are shared by multiple VMAs.
3292 * When the last VMA disappears, the region map says how much
3293 * the reservation was and the page cache tells how much of
3294 * the reservation was consumed. Private mappings are per-VMA and
3295 * only the consumed reservations are tracked. When the VMA
3296 * disappears, the original reservation is the VMA size and the
3297 * consumed reservations are stored in the map. Hence, nothing
3298 * else has to be done for private mappings here
3300 if (!vma
|| vma
->vm_flags
& VM_MAYSHARE
)
3301 region_add(&inode
->i_mapping
->private_list
, from
, to
);
3309 void hugetlb_unreserve_pages(struct inode
*inode
, long offset
, long freed
)
3311 struct hstate
*h
= hstate_inode(inode
);
3312 long chg
= region_truncate(&inode
->i_mapping
->private_list
, offset
);
3313 struct hugepage_subpool
*spool
= subpool_inode(inode
);
3315 spin_lock(&inode
->i_lock
);
3316 inode
->i_blocks
-= (blocks_per_huge_page(h
) * freed
);
3317 spin_unlock(&inode
->i_lock
);
3319 hugepage_subpool_put_pages(spool
, (chg
- freed
));
3320 hugetlb_acct_memory(h
, -(chg
- freed
));
3323 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
3324 static unsigned long page_table_shareable(struct vm_area_struct
*svma
,
3325 struct vm_area_struct
*vma
,
3326 unsigned long addr
, pgoff_t idx
)
3328 unsigned long saddr
= ((idx
- svma
->vm_pgoff
) << PAGE_SHIFT
) +
3330 unsigned long sbase
= saddr
& PUD_MASK
;
3331 unsigned long s_end
= sbase
+ PUD_SIZE
;
3333 /* Allow segments to share if only one is marked locked */
3334 unsigned long vm_flags
= vma
->vm_flags
& ~VM_LOCKED
;
3335 unsigned long svm_flags
= svma
->vm_flags
& ~VM_LOCKED
;
3338 * match the virtual addresses, permission and the alignment of the
3341 if (pmd_index(addr
) != pmd_index(saddr
) ||
3342 vm_flags
!= svm_flags
||
3343 sbase
< svma
->vm_start
|| svma
->vm_end
< s_end
)
3349 static int vma_shareable(struct vm_area_struct
*vma
, unsigned long addr
)
3351 unsigned long base
= addr
& PUD_MASK
;
3352 unsigned long end
= base
+ PUD_SIZE
;
3355 * check on proper vm_flags and page table alignment
3357 if (vma
->vm_flags
& VM_MAYSHARE
&&
3358 vma
->vm_start
<= base
&& end
<= vma
->vm_end
)
3364 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
3365 * and returns the corresponding pte. While this is not necessary for the
3366 * !shared pmd case because we can allocate the pmd later as well, it makes the
3367 * code much cleaner. pmd allocation is essential for the shared case because
3368 * pud has to be populated inside the same i_mmap_mutex section - otherwise
3369 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
3370 * bad pmd for sharing.
3372 pte_t
*huge_pmd_share(struct mm_struct
*mm
, unsigned long addr
, pud_t
*pud
)
3374 struct vm_area_struct
*vma
= find_vma(mm
, addr
);
3375 struct address_space
*mapping
= vma
->vm_file
->f_mapping
;
3376 pgoff_t idx
= ((addr
- vma
->vm_start
) >> PAGE_SHIFT
) +
3378 struct vm_area_struct
*svma
;
3379 unsigned long saddr
;
3383 if (!vma_shareable(vma
, addr
))
3384 return (pte_t
*)pmd_alloc(mm
, pud
, addr
);
3386 mutex_lock(&mapping
->i_mmap_mutex
);
3387 vma_interval_tree_foreach(svma
, &mapping
->i_mmap
, idx
, idx
) {
3391 saddr
= page_table_shareable(svma
, vma
, addr
, idx
);
3393 spte
= huge_pte_offset(svma
->vm_mm
, saddr
);
3395 get_page(virt_to_page(spte
));
3404 spin_lock(&mm
->page_table_lock
);
3406 pud_populate(mm
, pud
,
3407 (pmd_t
*)((unsigned long)spte
& PAGE_MASK
));
3409 put_page(virt_to_page(spte
));
3410 spin_unlock(&mm
->page_table_lock
);
3412 pte
= (pte_t
*)pmd_alloc(mm
, pud
, addr
);
3413 mutex_unlock(&mapping
->i_mmap_mutex
);
3418 * unmap huge page backed by shared pte.
3420 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
3421 * indicated by page_count > 1, unmap is achieved by clearing pud and
3422 * decrementing the ref count. If count == 1, the pte page is not shared.
3424 * called with vma->vm_mm->page_table_lock held.
3426 * returns: 1 successfully unmapped a shared pte page
3427 * 0 the underlying pte page is not shared, or it is the last user
3429 int huge_pmd_unshare(struct mm_struct
*mm
, unsigned long *addr
, pte_t
*ptep
)
3431 pgd_t
*pgd
= pgd_offset(mm
, *addr
);
3432 pud_t
*pud
= pud_offset(pgd
, *addr
);
3434 BUG_ON(page_count(virt_to_page(ptep
)) == 0);
3435 if (page_count(virt_to_page(ptep
)) == 1)
3439 put_page(virt_to_page(ptep
));
3440 *addr
= ALIGN(*addr
, HPAGE_SIZE
* PTRS_PER_PTE
) - HPAGE_SIZE
;
3443 #define want_pmd_share() (1)
3444 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
3445 pte_t
*huge_pmd_share(struct mm_struct
*mm
, unsigned long addr
, pud_t
*pud
)
3449 #define want_pmd_share() (0)
3450 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
3452 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
3453 pte_t
*huge_pte_alloc(struct mm_struct
*mm
,
3454 unsigned long addr
, unsigned long sz
)
3460 pgd
= pgd_offset(mm
, addr
);
3461 pud
= pud_alloc(mm
, pgd
, addr
);
3463 if (sz
== PUD_SIZE
) {
3466 BUG_ON(sz
!= PMD_SIZE
);
3467 if (want_pmd_share() && pud_none(*pud
))
3468 pte
= huge_pmd_share(mm
, addr
, pud
);
3470 pte
= (pte_t
*)pmd_alloc(mm
, pud
, addr
);
3473 BUG_ON(pte
&& !pte_none(*pte
) && !pte_huge(*pte
));
3478 pte_t
*huge_pte_offset(struct mm_struct
*mm
, unsigned long addr
)
3484 pgd
= pgd_offset(mm
, addr
);
3485 if (pgd_present(*pgd
)) {
3486 pud
= pud_offset(pgd
, addr
);
3487 if (pud_present(*pud
)) {
3489 return (pte_t
*)pud
;
3490 pmd
= pmd_offset(pud
, addr
);
3493 return (pte_t
*) pmd
;
3496 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
3499 * These functions are overwritable if your architecture needs its own
3502 struct page
* __weak
3503 follow_huge_addr(struct mm_struct
*mm
, unsigned long address
,
3506 return ERR_PTR(-EINVAL
);
3509 struct page
* __weak
3510 follow_huge_pmd(struct mm_struct
*mm
, unsigned long address
,
3511 pmd_t
*pmd
, int flags
)
3513 struct page
*page
= NULL
;
3516 ptl
= &mm
->page_table_lock
;
3519 * make sure that the address range covered by this pmd is not
3520 * unmapped from other threads.
3522 if (!pmd_huge(*pmd
))
3524 if (pmd_present(*pmd
)) {
3525 page
= pmd_page(*pmd
) + ((address
& ~PMD_MASK
) >> PAGE_SHIFT
);
3526 if (flags
& FOLL_GET
)
3529 if (is_hugetlb_entry_migration(huge_ptep_get((pte_t
*)pmd
))) {
3531 __migration_entry_wait(mm
, (pte_t
*)pmd
, ptl
);
3535 * hwpoisoned entry is treated as no_page_table in
3536 * follow_page_mask().
3544 struct page
* __weak
3545 follow_huge_pud(struct mm_struct
*mm
, unsigned long address
,
3546 pud_t
*pud
, int flags
)
3548 if (flags
& FOLL_GET
)
3551 return pte_page(*(pte_t
*)pud
) + ((address
& ~PUD_MASK
) >> PAGE_SHIFT
);
3554 #ifdef CONFIG_MEMORY_FAILURE
3556 /* Should be called in hugetlb_lock */
3557 static int is_hugepage_on_freelist(struct page
*hpage
)
3561 struct hstate
*h
= page_hstate(hpage
);
3562 int nid
= page_to_nid(hpage
);
3564 list_for_each_entry_safe(page
, tmp
, &h
->hugepage_freelists
[nid
], lru
)
3571 * This function is called from memory failure code.
3572 * Assume the caller holds page lock of the head page.
3574 int dequeue_hwpoisoned_huge_page(struct page
*hpage
)
3576 struct hstate
*h
= page_hstate(hpage
);
3577 int nid
= page_to_nid(hpage
);
3580 spin_lock(&hugetlb_lock
);
3581 if (is_hugepage_on_freelist(hpage
)) {
3583 * Hwpoisoned hugepage isn't linked to activelist or freelist,
3584 * but dangling hpage->lru can trigger list-debug warnings
3585 * (this happens when we call unpoison_memory() on it),
3586 * so let it point to itself with list_del_init().
3588 list_del_init(&hpage
->lru
);
3589 set_page_refcounted(hpage
);
3590 h
->free_huge_pages
--;
3591 h
->free_huge_pages_node
[nid
]--;
3594 spin_unlock(&hugetlb_lock
);
3599 bool isolate_huge_page(struct page
*page
, struct list_head
*list
)
3601 VM_BUG_ON(!PageHead(page
));
3602 if (!get_page_unless_zero(page
))
3604 spin_lock(&hugetlb_lock
);
3605 list_move_tail(&page
->lru
, list
);
3606 spin_unlock(&hugetlb_lock
);
3610 void putback_active_hugepage(struct page
*page
)
3612 VM_BUG_ON(!PageHead(page
));
3613 spin_lock(&hugetlb_lock
);
3614 list_move_tail(&page
->lru
, &(page_hstate(page
))->hugepage_activelist
);
3615 spin_unlock(&hugetlb_lock
);
3619 bool is_hugepage_active(struct page
*page
)
3621 VM_BUG_ON(!PageHuge(page
));
3623 * This function can be called for a tail page because the caller,
3624 * scan_movable_pages, scans through a given pfn-range which typically
3625 * covers one memory block. In systems using gigantic hugepage (1GB
3626 * for x86_64,) a hugepage is larger than a memory block, and we don't
3627 * support migrating such large hugepages for now, so return false
3628 * when called for tail pages.
3633 * Refcount of a hwpoisoned hugepages is 1, but they are not active,
3634 * so we should return false for them.
3636 if (unlikely(PageHWPoison(page
)))
3638 return page_count(page
) > 0;