Linux 3.12.70
[linux/fpc-iii.git] / mm / hugetlb.c
blob24d50334d51c28bfc315e3a645a07f40e2371f1a
1 /*
2 * Generic hugetlb support.
3 * (C) Nadia Yvette Chambers, April 2004
4 */
5 #include <linux/list.h>
6 #include <linux/init.h>
7 #include <linux/module.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/cpuset.h>
17 #include <linux/mutex.h>
18 #include <linux/bootmem.h>
19 #include <linux/sysfs.h>
20 #include <linux/slab.h>
21 #include <linux/rmap.h>
22 #include <linux/swap.h>
23 #include <linux/swapops.h>
24 #include <linux/page-isolation.h>
26 #include <asm/page.h>
27 #include <asm/pgtable.h>
28 #include <asm/tlb.h>
30 #include <linux/io.h>
31 #include <linux/hugetlb.h>
32 #include <linux/hugetlb_cgroup.h>
33 #include <linux/node.h>
34 #include "internal.h"
36 const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
37 unsigned long hugepages_treat_as_movable;
39 int hugetlb_max_hstate __read_mostly;
40 unsigned int default_hstate_idx;
41 struct hstate hstates[HUGE_MAX_HSTATE];
43 __initdata LIST_HEAD(huge_boot_pages);
45 /* for command line parsing */
46 static struct hstate * __initdata parsed_hstate;
47 static unsigned long __initdata default_hstate_max_huge_pages;
48 static unsigned long __initdata default_hstate_size;
51 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
52 * free_huge_pages, and surplus_huge_pages.
54 DEFINE_SPINLOCK(hugetlb_lock);
56 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
58 bool free = (spool->count == 0) && (spool->used_hpages == 0);
60 spin_unlock(&spool->lock);
62 /* If no pages are used, and no other handles to the subpool
63 * remain, free the subpool the subpool remain */
64 if (free)
65 kfree(spool);
68 struct hugepage_subpool *hugepage_new_subpool(long nr_blocks)
70 struct hugepage_subpool *spool;
72 spool = kmalloc(sizeof(*spool), GFP_KERNEL);
73 if (!spool)
74 return NULL;
76 spin_lock_init(&spool->lock);
77 spool->count = 1;
78 spool->max_hpages = nr_blocks;
79 spool->used_hpages = 0;
81 return spool;
84 void hugepage_put_subpool(struct hugepage_subpool *spool)
86 spin_lock(&spool->lock);
87 BUG_ON(!spool->count);
88 spool->count--;
89 unlock_or_release_subpool(spool);
92 static int hugepage_subpool_get_pages(struct hugepage_subpool *spool,
93 long delta)
95 int ret = 0;
97 if (!spool)
98 return 0;
100 spin_lock(&spool->lock);
101 if ((spool->used_hpages + delta) <= spool->max_hpages) {
102 spool->used_hpages += delta;
103 } else {
104 ret = -ENOMEM;
106 spin_unlock(&spool->lock);
108 return ret;
111 static void hugepage_subpool_put_pages(struct hugepage_subpool *spool,
112 long delta)
114 if (!spool)
115 return;
117 spin_lock(&spool->lock);
118 spool->used_hpages -= delta;
119 /* If hugetlbfs_put_super couldn't free spool due to
120 * an outstanding quota reference, free it now. */
121 unlock_or_release_subpool(spool);
124 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
126 return HUGETLBFS_SB(inode->i_sb)->spool;
129 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
131 return subpool_inode(file_inode(vma->vm_file));
135 * Region tracking -- allows tracking of reservations and instantiated pages
136 * across the pages in a mapping.
138 * The region data structures are protected by a combination of the mmap_sem
139 * and the hugetlb_instantiation_mutex. To access or modify a region the caller
140 * must either hold the mmap_sem for write, or the mmap_sem for read and
141 * the hugetlb_instantiation_mutex:
143 * down_write(&mm->mmap_sem);
144 * or
145 * down_read(&mm->mmap_sem);
146 * mutex_lock(&hugetlb_instantiation_mutex);
148 struct file_region {
149 struct list_head link;
150 long from;
151 long to;
154 static long region_add(struct list_head *head, long f, long t)
156 struct file_region *rg, *nrg, *trg;
158 /* Locate the region we are either in or before. */
159 list_for_each_entry(rg, head, link)
160 if (f <= rg->to)
161 break;
163 /* Round our left edge to the current segment if it encloses us. */
164 if (f > rg->from)
165 f = rg->from;
167 /* Check for and consume any regions we now overlap with. */
168 nrg = rg;
169 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
170 if (&rg->link == head)
171 break;
172 if (rg->from > t)
173 break;
175 /* If this area reaches higher then extend our area to
176 * include it completely. If this is not the first area
177 * which we intend to reuse, free it. */
178 if (rg->to > t)
179 t = rg->to;
180 if (rg != nrg) {
181 list_del(&rg->link);
182 kfree(rg);
185 nrg->from = f;
186 nrg->to = t;
187 return 0;
190 static long region_chg(struct list_head *head, long f, long t)
192 struct file_region *rg, *nrg;
193 long chg = 0;
195 /* Locate the region we are before or in. */
196 list_for_each_entry(rg, head, link)
197 if (f <= rg->to)
198 break;
200 /* If we are below the current region then a new region is required.
201 * Subtle, allocate a new region at the position but make it zero
202 * size such that we can guarantee to record the reservation. */
203 if (&rg->link == head || t < rg->from) {
204 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
205 if (!nrg)
206 return -ENOMEM;
207 nrg->from = f;
208 nrg->to = f;
209 INIT_LIST_HEAD(&nrg->link);
210 list_add(&nrg->link, rg->link.prev);
212 return t - f;
215 /* Round our left edge to the current segment if it encloses us. */
216 if (f > rg->from)
217 f = rg->from;
218 chg = t - f;
220 /* Check for and consume any regions we now overlap with. */
221 list_for_each_entry(rg, rg->link.prev, link) {
222 if (&rg->link == head)
223 break;
224 if (rg->from > t)
225 return chg;
227 /* We overlap with this area, if it extends further than
228 * us then we must extend ourselves. Account for its
229 * existing reservation. */
230 if (rg->to > t) {
231 chg += rg->to - t;
232 t = rg->to;
234 chg -= rg->to - rg->from;
236 return chg;
239 static long region_truncate(struct list_head *head, long end)
241 struct file_region *rg, *trg;
242 long chg = 0;
244 /* Locate the region we are either in or before. */
245 list_for_each_entry(rg, head, link)
246 if (end <= rg->to)
247 break;
248 if (&rg->link == head)
249 return 0;
251 /* If we are in the middle of a region then adjust it. */
252 if (end > rg->from) {
253 chg = rg->to - end;
254 rg->to = end;
255 rg = list_entry(rg->link.next, typeof(*rg), link);
258 /* Drop any remaining regions. */
259 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
260 if (&rg->link == head)
261 break;
262 chg += rg->to - rg->from;
263 list_del(&rg->link);
264 kfree(rg);
266 return chg;
269 static long region_count(struct list_head *head, long f, long t)
271 struct file_region *rg;
272 long chg = 0;
274 /* Locate each segment we overlap with, and count that overlap. */
275 list_for_each_entry(rg, head, link) {
276 long seg_from;
277 long seg_to;
279 if (rg->to <= f)
280 continue;
281 if (rg->from >= t)
282 break;
284 seg_from = max(rg->from, f);
285 seg_to = min(rg->to, t);
287 chg += seg_to - seg_from;
290 return chg;
294 * Convert the address within this vma to the page offset within
295 * the mapping, in pagecache page units; huge pages here.
297 static pgoff_t vma_hugecache_offset(struct hstate *h,
298 struct vm_area_struct *vma, unsigned long address)
300 return ((address - vma->vm_start) >> huge_page_shift(h)) +
301 (vma->vm_pgoff >> huge_page_order(h));
304 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
305 unsigned long address)
307 return vma_hugecache_offset(hstate_vma(vma), vma, address);
311 * Return the size of the pages allocated when backing a VMA. In the majority
312 * cases this will be same size as used by the page table entries.
314 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
316 struct hstate *hstate;
318 if (!is_vm_hugetlb_page(vma))
319 return PAGE_SIZE;
321 hstate = hstate_vma(vma);
323 return 1UL << huge_page_shift(hstate);
325 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
328 * Return the page size being used by the MMU to back a VMA. In the majority
329 * of cases, the page size used by the kernel matches the MMU size. On
330 * architectures where it differs, an architecture-specific version of this
331 * function is required.
333 #ifndef vma_mmu_pagesize
334 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
336 return vma_kernel_pagesize(vma);
338 #endif
341 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
342 * bits of the reservation map pointer, which are always clear due to
343 * alignment.
345 #define HPAGE_RESV_OWNER (1UL << 0)
346 #define HPAGE_RESV_UNMAPPED (1UL << 1)
347 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
350 * These helpers are used to track how many pages are reserved for
351 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
352 * is guaranteed to have their future faults succeed.
354 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
355 * the reserve counters are updated with the hugetlb_lock held. It is safe
356 * to reset the VMA at fork() time as it is not in use yet and there is no
357 * chance of the global counters getting corrupted as a result of the values.
359 * The private mapping reservation is represented in a subtly different
360 * manner to a shared mapping. A shared mapping has a region map associated
361 * with the underlying file, this region map represents the backing file
362 * pages which have ever had a reservation assigned which this persists even
363 * after the page is instantiated. A private mapping has a region map
364 * associated with the original mmap which is attached to all VMAs which
365 * reference it, this region map represents those offsets which have consumed
366 * reservation ie. where pages have been instantiated.
368 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
370 return (unsigned long)vma->vm_private_data;
373 static void set_vma_private_data(struct vm_area_struct *vma,
374 unsigned long value)
376 vma->vm_private_data = (void *)value;
379 struct resv_map {
380 struct kref refs;
381 struct list_head regions;
384 static struct resv_map *resv_map_alloc(void)
386 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
387 if (!resv_map)
388 return NULL;
390 kref_init(&resv_map->refs);
391 INIT_LIST_HEAD(&resv_map->regions);
393 return resv_map;
396 static void resv_map_release(struct kref *ref)
398 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
400 /* Clear out any active regions before we release the map. */
401 region_truncate(&resv_map->regions, 0);
402 kfree(resv_map);
405 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
407 VM_BUG_ON(!is_vm_hugetlb_page(vma));
408 if (!(vma->vm_flags & VM_MAYSHARE))
409 return (struct resv_map *)(get_vma_private_data(vma) &
410 ~HPAGE_RESV_MASK);
411 return NULL;
414 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
416 VM_BUG_ON(!is_vm_hugetlb_page(vma));
417 VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
419 set_vma_private_data(vma, (get_vma_private_data(vma) &
420 HPAGE_RESV_MASK) | (unsigned long)map);
423 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
425 VM_BUG_ON(!is_vm_hugetlb_page(vma));
426 VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
428 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
431 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
433 VM_BUG_ON(!is_vm_hugetlb_page(vma));
435 return (get_vma_private_data(vma) & flag) != 0;
438 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
439 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
441 VM_BUG_ON(!is_vm_hugetlb_page(vma));
442 if (!(vma->vm_flags & VM_MAYSHARE))
443 vma->vm_private_data = (void *)0;
446 /* Returns true if the VMA has associated reserve pages */
447 static int vma_has_reserves(struct vm_area_struct *vma, long chg)
449 if (vma->vm_flags & VM_NORESERVE) {
451 * This address is already reserved by other process(chg == 0),
452 * so, we should decrement reserved count. Without decrementing,
453 * reserve count remains after releasing inode, because this
454 * allocated page will go into page cache and is regarded as
455 * coming from reserved pool in releasing step. Currently, we
456 * don't have any other solution to deal with this situation
457 * properly, so add work-around here.
459 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
460 return 1;
461 else
462 return 0;
465 /* Shared mappings always use reserves */
466 if (vma->vm_flags & VM_MAYSHARE)
467 return 1;
470 * Only the process that called mmap() has reserves for
471 * private mappings.
473 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
474 return 1;
476 return 0;
479 static void enqueue_huge_page(struct hstate *h, struct page *page)
481 int nid = page_to_nid(page);
482 list_move(&page->lru, &h->hugepage_freelists[nid]);
483 h->free_huge_pages++;
484 h->free_huge_pages_node[nid]++;
487 static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
489 struct page *page;
491 list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
492 if (!is_migrate_isolate_page(page))
493 break;
495 * if 'non-isolated free hugepage' not found on the list,
496 * the allocation fails.
498 if (&h->hugepage_freelists[nid] == &page->lru)
499 return NULL;
500 list_move(&page->lru, &h->hugepage_activelist);
501 set_page_refcounted(page);
502 h->free_huge_pages--;
503 h->free_huge_pages_node[nid]--;
504 return page;
507 /* Movability of hugepages depends on migration support. */
508 static inline gfp_t htlb_alloc_mask(struct hstate *h)
510 if (hugepages_treat_as_movable || hugepage_migration_support(h))
511 return GFP_HIGHUSER_MOVABLE;
512 else
513 return GFP_HIGHUSER;
516 static struct page *dequeue_huge_page_vma(struct hstate *h,
517 struct vm_area_struct *vma,
518 unsigned long address, int avoid_reserve,
519 long chg)
521 struct page *page = NULL;
522 struct mempolicy *mpol;
523 nodemask_t *nodemask;
524 struct zonelist *zonelist;
525 struct zone *zone;
526 struct zoneref *z;
527 unsigned int cpuset_mems_cookie;
530 * A child process with MAP_PRIVATE mappings created by their parent
531 * have no page reserves. This check ensures that reservations are
532 * not "stolen". The child may still get SIGKILLed
534 if (!vma_has_reserves(vma, chg) &&
535 h->free_huge_pages - h->resv_huge_pages == 0)
536 goto err;
538 /* If reserves cannot be used, ensure enough pages are in the pool */
539 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
540 goto err;
542 retry_cpuset:
543 cpuset_mems_cookie = read_mems_allowed_begin();
544 zonelist = huge_zonelist(vma, address,
545 htlb_alloc_mask(h), &mpol, &nodemask);
547 for_each_zone_zonelist_nodemask(zone, z, zonelist,
548 MAX_NR_ZONES - 1, nodemask) {
549 if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask(h))) {
550 page = dequeue_huge_page_node(h, zone_to_nid(zone));
551 if (page) {
552 if (avoid_reserve)
553 break;
554 if (!vma_has_reserves(vma, chg))
555 break;
557 SetPagePrivate(page);
558 h->resv_huge_pages--;
559 break;
564 mpol_cond_put(mpol);
565 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
566 goto retry_cpuset;
567 return page;
569 err:
570 return NULL;
573 static void update_and_free_page(struct hstate *h, struct page *page)
575 int i;
577 VM_BUG_ON(h->order >= MAX_ORDER);
579 h->nr_huge_pages--;
580 h->nr_huge_pages_node[page_to_nid(page)]--;
581 for (i = 0; i < pages_per_huge_page(h); i++) {
582 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
583 1 << PG_referenced | 1 << PG_dirty |
584 1 << PG_active | 1 << PG_reserved |
585 1 << PG_private | 1 << PG_writeback);
587 VM_BUG_ON(hugetlb_cgroup_from_page(page));
588 set_compound_page_dtor(page, NULL);
589 set_page_refcounted(page);
590 arch_release_hugepage(page);
591 __free_pages(page, huge_page_order(h));
594 struct hstate *size_to_hstate(unsigned long size)
596 struct hstate *h;
598 for_each_hstate(h) {
599 if (huge_page_size(h) == size)
600 return h;
602 return NULL;
605 static void free_huge_page(struct page *page)
608 * Can't pass hstate in here because it is called from the
609 * compound page destructor.
611 struct hstate *h = page_hstate(page);
612 int nid = page_to_nid(page);
613 struct hugepage_subpool *spool =
614 (struct hugepage_subpool *)page_private(page);
615 bool restore_reserve;
617 set_page_private(page, 0);
618 page->mapping = NULL;
619 BUG_ON(page_count(page));
620 BUG_ON(page_mapcount(page));
621 restore_reserve = PagePrivate(page);
622 ClearPagePrivate(page);
624 spin_lock(&hugetlb_lock);
625 hugetlb_cgroup_uncharge_page(hstate_index(h),
626 pages_per_huge_page(h), page);
627 if (restore_reserve)
628 h->resv_huge_pages++;
630 if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
631 /* remove the page from active list */
632 list_del(&page->lru);
633 update_and_free_page(h, page);
634 h->surplus_huge_pages--;
635 h->surplus_huge_pages_node[nid]--;
636 } else {
637 arch_clear_hugepage_flags(page);
638 enqueue_huge_page(h, page);
640 spin_unlock(&hugetlb_lock);
641 hugepage_subpool_put_pages(spool, 1);
644 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
646 INIT_LIST_HEAD(&page->lru);
647 set_compound_page_dtor(page, free_huge_page);
648 spin_lock(&hugetlb_lock);
649 set_hugetlb_cgroup(page, NULL);
650 h->nr_huge_pages++;
651 h->nr_huge_pages_node[nid]++;
652 spin_unlock(&hugetlb_lock);
653 put_page(page); /* free it into the hugepage allocator */
656 static void prep_compound_gigantic_page(struct page *page, unsigned long order)
658 int i;
659 int nr_pages = 1 << order;
660 struct page *p = page + 1;
662 /* we rely on prep_new_huge_page to set the destructor */
663 set_compound_order(page, order);
664 __SetPageHead(page);
665 __ClearPageReserved(page);
666 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
667 __SetPageTail(p);
669 * For gigantic hugepages allocated through bootmem at
670 * boot, it's safer to be consistent with the not-gigantic
671 * hugepages and clear the PG_reserved bit from all tail pages
672 * too. Otherwse drivers using get_user_pages() to access tail
673 * pages may get the reference counting wrong if they see
674 * PG_reserved set on a tail page (despite the head page not
675 * having PG_reserved set). Enforcing this consistency between
676 * head and tail pages allows drivers to optimize away a check
677 * on the head page when they need know if put_page() is needed
678 * after get_user_pages().
680 __ClearPageReserved(p);
681 set_page_count(p, 0);
682 p->first_page = page;
687 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
688 * transparent huge pages. See the PageTransHuge() documentation for more
689 * details.
691 int PageHuge(struct page *page)
693 compound_page_dtor *dtor;
695 if (!PageCompound(page))
696 return 0;
698 page = compound_head(page);
699 dtor = get_compound_page_dtor(page);
701 return dtor == free_huge_page;
703 EXPORT_SYMBOL_GPL(PageHuge);
706 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
707 * normal or transparent huge pages.
709 int PageHeadHuge(struct page *page_head)
711 compound_page_dtor *dtor;
713 if (!PageHead(page_head))
714 return 0;
716 dtor = get_compound_page_dtor(page_head);
718 return dtor == free_huge_page;
720 EXPORT_SYMBOL_GPL(PageHeadHuge);
722 pgoff_t __basepage_index(struct page *page)
724 struct page *page_head = compound_head(page);
725 pgoff_t index = page_index(page_head);
726 unsigned long compound_idx;
728 if (!PageHuge(page_head))
729 return page_index(page);
731 if (compound_order(page_head) >= MAX_ORDER)
732 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
733 else
734 compound_idx = page - page_head;
736 return (index << compound_order(page_head)) + compound_idx;
739 static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
741 struct page *page;
743 if (h->order >= MAX_ORDER)
744 return NULL;
746 page = alloc_pages_exact_node(nid,
747 htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
748 __GFP_REPEAT|__GFP_NOWARN,
749 huge_page_order(h));
750 if (page) {
751 if (arch_prepare_hugepage(page)) {
752 __free_pages(page, huge_page_order(h));
753 return NULL;
755 prep_new_huge_page(h, page, nid);
758 return page;
762 * common helper functions for hstate_next_node_to_{alloc|free}.
763 * We may have allocated or freed a huge page based on a different
764 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
765 * be outside of *nodes_allowed. Ensure that we use an allowed
766 * node for alloc or free.
768 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
770 nid = next_node(nid, *nodes_allowed);
771 if (nid == MAX_NUMNODES)
772 nid = first_node(*nodes_allowed);
773 VM_BUG_ON(nid >= MAX_NUMNODES);
775 return nid;
778 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
780 if (!node_isset(nid, *nodes_allowed))
781 nid = next_node_allowed(nid, nodes_allowed);
782 return nid;
786 * returns the previously saved node ["this node"] from which to
787 * allocate a persistent huge page for the pool and advance the
788 * next node from which to allocate, handling wrap at end of node
789 * mask.
791 static int hstate_next_node_to_alloc(struct hstate *h,
792 nodemask_t *nodes_allowed)
794 int nid;
796 VM_BUG_ON(!nodes_allowed);
798 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
799 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
801 return nid;
805 * helper for free_pool_huge_page() - return the previously saved
806 * node ["this node"] from which to free a huge page. Advance the
807 * next node id whether or not we find a free huge page to free so
808 * that the next attempt to free addresses the next node.
810 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
812 int nid;
814 VM_BUG_ON(!nodes_allowed);
816 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
817 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
819 return nid;
822 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
823 for (nr_nodes = nodes_weight(*mask); \
824 nr_nodes > 0 && \
825 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
826 nr_nodes--)
828 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
829 for (nr_nodes = nodes_weight(*mask); \
830 nr_nodes > 0 && \
831 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
832 nr_nodes--)
834 static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
836 struct page *page;
837 int nr_nodes, node;
838 int ret = 0;
840 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
841 page = alloc_fresh_huge_page_node(h, node);
842 if (page) {
843 ret = 1;
844 break;
848 if (ret)
849 count_vm_event(HTLB_BUDDY_PGALLOC);
850 else
851 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
853 return ret;
857 * Free huge page from pool from next node to free.
858 * Attempt to keep persistent huge pages more or less
859 * balanced over allowed nodes.
860 * Called with hugetlb_lock locked.
862 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
863 bool acct_surplus)
865 int nr_nodes, node;
866 int ret = 0;
868 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
870 * If we're returning unused surplus pages, only examine
871 * nodes with surplus pages.
873 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
874 !list_empty(&h->hugepage_freelists[node])) {
875 struct page *page =
876 list_entry(h->hugepage_freelists[node].next,
877 struct page, lru);
878 list_del(&page->lru);
879 h->free_huge_pages--;
880 h->free_huge_pages_node[node]--;
881 if (acct_surplus) {
882 h->surplus_huge_pages--;
883 h->surplus_huge_pages_node[node]--;
885 update_and_free_page(h, page);
886 ret = 1;
887 break;
891 return ret;
895 * Dissolve a given free hugepage into free buddy pages. This function does
896 * nothing for in-use (including surplus) hugepages.
898 static void dissolve_free_huge_page(struct page *page)
900 spin_lock(&hugetlb_lock);
901 if (PageHuge(page) && !page_count(page)) {
902 struct page *head = compound_head(page);
903 struct hstate *h = page_hstate(head);
904 int nid = page_to_nid(head);
905 list_del(&head->lru);
906 h->free_huge_pages--;
907 h->free_huge_pages_node[nid]--;
908 update_and_free_page(h, head);
910 spin_unlock(&hugetlb_lock);
914 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
915 * make specified memory blocks removable from the system.
916 * Note that this will dissolve a free gigantic hugepage completely, if any
917 * part of it lies within the given range.
919 void dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
921 unsigned int order = 8 * sizeof(void *);
922 unsigned long pfn;
923 struct hstate *h;
925 /* Set scan step to minimum hugepage size */
926 for_each_hstate(h)
927 if (order > huge_page_order(h))
928 order = huge_page_order(h);
929 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order)
930 dissolve_free_huge_page(pfn_to_page(pfn));
933 static struct page *alloc_buddy_huge_page(struct hstate *h, int nid)
935 struct page *page;
936 unsigned int r_nid;
938 if (h->order >= MAX_ORDER)
939 return NULL;
942 * Assume we will successfully allocate the surplus page to
943 * prevent racing processes from causing the surplus to exceed
944 * overcommit
946 * This however introduces a different race, where a process B
947 * tries to grow the static hugepage pool while alloc_pages() is
948 * called by process A. B will only examine the per-node
949 * counters in determining if surplus huge pages can be
950 * converted to normal huge pages in adjust_pool_surplus(). A
951 * won't be able to increment the per-node counter, until the
952 * lock is dropped by B, but B doesn't drop hugetlb_lock until
953 * no more huge pages can be converted from surplus to normal
954 * state (and doesn't try to convert again). Thus, we have a
955 * case where a surplus huge page exists, the pool is grown, and
956 * the surplus huge page still exists after, even though it
957 * should just have been converted to a normal huge page. This
958 * does not leak memory, though, as the hugepage will be freed
959 * once it is out of use. It also does not allow the counters to
960 * go out of whack in adjust_pool_surplus() as we don't modify
961 * the node values until we've gotten the hugepage and only the
962 * per-node value is checked there.
964 spin_lock(&hugetlb_lock);
965 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
966 spin_unlock(&hugetlb_lock);
967 return NULL;
968 } else {
969 h->nr_huge_pages++;
970 h->surplus_huge_pages++;
972 spin_unlock(&hugetlb_lock);
974 if (nid == NUMA_NO_NODE)
975 page = alloc_pages(htlb_alloc_mask(h)|__GFP_COMP|
976 __GFP_REPEAT|__GFP_NOWARN,
977 huge_page_order(h));
978 else
979 page = alloc_pages_exact_node(nid,
980 htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
981 __GFP_REPEAT|__GFP_NOWARN, huge_page_order(h));
983 if (page && arch_prepare_hugepage(page)) {
984 __free_pages(page, huge_page_order(h));
985 page = NULL;
988 spin_lock(&hugetlb_lock);
989 if (page) {
990 INIT_LIST_HEAD(&page->lru);
991 r_nid = page_to_nid(page);
992 set_compound_page_dtor(page, free_huge_page);
993 set_hugetlb_cgroup(page, NULL);
995 * We incremented the global counters already
997 h->nr_huge_pages_node[r_nid]++;
998 h->surplus_huge_pages_node[r_nid]++;
999 __count_vm_event(HTLB_BUDDY_PGALLOC);
1000 } else {
1001 h->nr_huge_pages--;
1002 h->surplus_huge_pages--;
1003 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1005 spin_unlock(&hugetlb_lock);
1007 return page;
1011 * This allocation function is useful in the context where vma is irrelevant.
1012 * E.g. soft-offlining uses this function because it only cares physical
1013 * address of error page.
1015 struct page *alloc_huge_page_node(struct hstate *h, int nid)
1017 struct page *page = NULL;
1019 spin_lock(&hugetlb_lock);
1020 if (h->free_huge_pages - h->resv_huge_pages > 0)
1021 page = dequeue_huge_page_node(h, nid);
1022 spin_unlock(&hugetlb_lock);
1024 if (!page)
1025 page = alloc_buddy_huge_page(h, nid);
1027 return page;
1031 * Increase the hugetlb pool such that it can accommodate a reservation
1032 * of size 'delta'.
1034 static int gather_surplus_pages(struct hstate *h, int delta)
1036 struct list_head surplus_list;
1037 struct page *page, *tmp;
1038 int ret, i;
1039 int needed, allocated;
1040 bool alloc_ok = true;
1042 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1043 if (needed <= 0) {
1044 h->resv_huge_pages += delta;
1045 return 0;
1048 allocated = 0;
1049 INIT_LIST_HEAD(&surplus_list);
1051 ret = -ENOMEM;
1052 retry:
1053 spin_unlock(&hugetlb_lock);
1054 for (i = 0; i < needed; i++) {
1055 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
1056 if (!page) {
1057 alloc_ok = false;
1058 break;
1060 list_add(&page->lru, &surplus_list);
1062 allocated += i;
1065 * After retaking hugetlb_lock, we need to recalculate 'needed'
1066 * because either resv_huge_pages or free_huge_pages may have changed.
1068 spin_lock(&hugetlb_lock);
1069 needed = (h->resv_huge_pages + delta) -
1070 (h->free_huge_pages + allocated);
1071 if (needed > 0) {
1072 if (alloc_ok)
1073 goto retry;
1075 * We were not able to allocate enough pages to
1076 * satisfy the entire reservation so we free what
1077 * we've allocated so far.
1079 goto free;
1082 * The surplus_list now contains _at_least_ the number of extra pages
1083 * needed to accommodate the reservation. Add the appropriate number
1084 * of pages to the hugetlb pool and free the extras back to the buddy
1085 * allocator. Commit the entire reservation here to prevent another
1086 * process from stealing the pages as they are added to the pool but
1087 * before they are reserved.
1089 needed += allocated;
1090 h->resv_huge_pages += delta;
1091 ret = 0;
1093 /* Free the needed pages to the hugetlb pool */
1094 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1095 if ((--needed) < 0)
1096 break;
1098 * This page is now managed by the hugetlb allocator and has
1099 * no users -- drop the buddy allocator's reference.
1101 put_page_testzero(page);
1102 VM_BUG_ON(page_count(page));
1103 enqueue_huge_page(h, page);
1105 free:
1106 spin_unlock(&hugetlb_lock);
1108 /* Free unnecessary surplus pages to the buddy allocator */
1109 list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1110 put_page(page);
1111 spin_lock(&hugetlb_lock);
1113 return ret;
1117 * This routine has two main purposes:
1118 * 1) Decrement the reservation count (resv_huge_pages) by the value passed
1119 * in unused_resv_pages. This corresponds to the prior adjustments made
1120 * to the associated reservation map.
1121 * 2) Free any unused surplus pages that may have been allocated to satisfy
1122 * the reservation. As many as unused_resv_pages may be freed.
1124 * Called with hugetlb_lock held. However, the lock could be dropped (and
1125 * reacquired) during calls to cond_resched_lock. Whenever dropping the lock,
1126 * we must make sure nobody else can claim pages we are in the process of
1127 * freeing. Do this by ensuring resv_huge_page always is greater than the
1128 * number of huge pages we plan to free when dropping the lock.
1130 static void return_unused_surplus_pages(struct hstate *h,
1131 unsigned long unused_resv_pages)
1133 unsigned long nr_pages;
1135 /* Cannot return gigantic pages currently */
1136 if (h->order >= MAX_ORDER)
1137 goto out;
1140 * Part (or even all) of the reservation could have been backed
1141 * by pre-allocated pages. Only free surplus pages.
1143 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1146 * We want to release as many surplus pages as possible, spread
1147 * evenly across all nodes with memory. Iterate across these nodes
1148 * until we can no longer free unreserved surplus pages. This occurs
1149 * when the nodes with surplus pages have no free pages.
1150 * free_pool_huge_page() will balance the the freed pages across the
1151 * on-line nodes with memory and will handle the hstate accounting.
1153 * Note that we decrement resv_huge_pages as we free the pages. If
1154 * we drop the lock, resv_huge_pages will still be sufficiently large
1155 * to cover subsequent pages we may free.
1157 while (nr_pages--) {
1158 h->resv_huge_pages--;
1159 unused_resv_pages--;
1160 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1161 goto out;
1162 cond_resched_lock(&hugetlb_lock);
1165 out:
1166 /* Fully uncommit the reservation */
1167 h->resv_huge_pages -= unused_resv_pages;
1171 * Determine if the huge page at addr within the vma has an associated
1172 * reservation. Where it does not we will need to logically increase
1173 * reservation and actually increase subpool usage before an allocation
1174 * can occur. Where any new reservation would be required the
1175 * reservation change is prepared, but not committed. Once the page
1176 * has been allocated from the subpool and instantiated the change should
1177 * be committed via vma_commit_reservation. No action is required on
1178 * failure.
1180 static long vma_needs_reservation(struct hstate *h,
1181 struct vm_area_struct *vma, unsigned long addr)
1183 struct address_space *mapping = vma->vm_file->f_mapping;
1184 struct inode *inode = mapping->host;
1186 if (vma->vm_flags & VM_MAYSHARE) {
1187 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1188 return region_chg(&inode->i_mapping->private_list,
1189 idx, idx + 1);
1191 } else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1192 return 1;
1194 } else {
1195 long err;
1196 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1197 struct resv_map *resv = vma_resv_map(vma);
1199 err = region_chg(&resv->regions, idx, idx + 1);
1200 if (err < 0)
1201 return err;
1202 return 0;
1205 static void vma_commit_reservation(struct hstate *h,
1206 struct vm_area_struct *vma, unsigned long addr)
1208 struct address_space *mapping = vma->vm_file->f_mapping;
1209 struct inode *inode = mapping->host;
1211 if (vma->vm_flags & VM_MAYSHARE) {
1212 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1213 region_add(&inode->i_mapping->private_list, idx, idx + 1);
1215 } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1216 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1217 struct resv_map *resv = vma_resv_map(vma);
1219 /* Mark this page used in the map. */
1220 region_add(&resv->regions, idx, idx + 1);
1224 static struct page *alloc_huge_page(struct vm_area_struct *vma,
1225 unsigned long addr, int avoid_reserve)
1227 struct hugepage_subpool *spool = subpool_vma(vma);
1228 struct hstate *h = hstate_vma(vma);
1229 struct page *page;
1230 long chg;
1231 int ret, idx;
1232 struct hugetlb_cgroup *h_cg;
1234 idx = hstate_index(h);
1236 * Processes that did not create the mapping will have no
1237 * reserves and will not have accounted against subpool
1238 * limit. Check that the subpool limit can be made before
1239 * satisfying the allocation MAP_NORESERVE mappings may also
1240 * need pages and subpool limit allocated allocated if no reserve
1241 * mapping overlaps.
1243 chg = vma_needs_reservation(h, vma, addr);
1244 if (chg < 0)
1245 return ERR_PTR(-ENOMEM);
1246 if (chg || avoid_reserve)
1247 if (hugepage_subpool_get_pages(spool, 1))
1248 return ERR_PTR(-ENOSPC);
1250 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
1251 if (ret) {
1252 if (chg || avoid_reserve)
1253 hugepage_subpool_put_pages(spool, 1);
1254 return ERR_PTR(-ENOSPC);
1256 spin_lock(&hugetlb_lock);
1257 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, chg);
1258 if (!page) {
1259 spin_unlock(&hugetlb_lock);
1260 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
1261 if (!page) {
1262 hugetlb_cgroup_uncharge_cgroup(idx,
1263 pages_per_huge_page(h),
1264 h_cg);
1265 if (chg || avoid_reserve)
1266 hugepage_subpool_put_pages(spool, 1);
1267 return ERR_PTR(-ENOSPC);
1269 spin_lock(&hugetlb_lock);
1270 list_move(&page->lru, &h->hugepage_activelist);
1271 /* Fall through */
1273 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
1274 spin_unlock(&hugetlb_lock);
1276 set_page_private(page, (unsigned long)spool);
1278 vma_commit_reservation(h, vma, addr);
1279 return page;
1283 * alloc_huge_page()'s wrapper which simply returns the page if allocation
1284 * succeeds, otherwise NULL. This function is called from new_vma_page(),
1285 * where no ERR_VALUE is expected to be returned.
1287 struct page *alloc_huge_page_noerr(struct vm_area_struct *vma,
1288 unsigned long addr, int avoid_reserve)
1290 struct page *page = alloc_huge_page(vma, addr, avoid_reserve);
1291 if (IS_ERR(page))
1292 page = NULL;
1293 return page;
1296 int __weak alloc_bootmem_huge_page(struct hstate *h)
1298 struct huge_bootmem_page *m;
1299 int nr_nodes, node;
1301 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
1302 void *addr;
1304 addr = __alloc_bootmem_node_nopanic(NODE_DATA(node),
1305 huge_page_size(h), huge_page_size(h), 0);
1307 if (addr) {
1309 * Use the beginning of the huge page to store the
1310 * huge_bootmem_page struct (until gather_bootmem
1311 * puts them into the mem_map).
1313 m = addr;
1314 goto found;
1317 return 0;
1319 found:
1320 BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
1321 /* Put them into a private list first because mem_map is not up yet */
1322 list_add(&m->list, &huge_boot_pages);
1323 m->hstate = h;
1324 return 1;
1327 static void prep_compound_huge_page(struct page *page, int order)
1329 if (unlikely(order > (MAX_ORDER - 1)))
1330 prep_compound_gigantic_page(page, order);
1331 else
1332 prep_compound_page(page, order);
1335 /* Put bootmem huge pages into the standard lists after mem_map is up */
1336 static void __init gather_bootmem_prealloc(void)
1338 struct huge_bootmem_page *m;
1340 list_for_each_entry(m, &huge_boot_pages, list) {
1341 struct hstate *h = m->hstate;
1342 struct page *page;
1344 #ifdef CONFIG_HIGHMEM
1345 page = pfn_to_page(m->phys >> PAGE_SHIFT);
1346 free_bootmem_late((unsigned long)m,
1347 sizeof(struct huge_bootmem_page));
1348 #else
1349 page = virt_to_page(m);
1350 #endif
1351 WARN_ON(page_count(page) != 1);
1352 prep_compound_huge_page(page, h->order);
1353 WARN_ON(PageReserved(page));
1354 prep_new_huge_page(h, page, page_to_nid(page));
1356 * If we had gigantic hugepages allocated at boot time, we need
1357 * to restore the 'stolen' pages to totalram_pages in order to
1358 * fix confusing memory reports from free(1) and another
1359 * side-effects, like CommitLimit going negative.
1361 if (h->order > (MAX_ORDER - 1))
1362 adjust_managed_page_count(page, 1 << h->order);
1366 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1368 unsigned long i;
1370 for (i = 0; i < h->max_huge_pages; ++i) {
1371 if (h->order >= MAX_ORDER) {
1372 if (!alloc_bootmem_huge_page(h))
1373 break;
1374 } else if (!alloc_fresh_huge_page(h,
1375 &node_states[N_MEMORY]))
1376 break;
1378 h->max_huge_pages = i;
1381 static void __init hugetlb_init_hstates(void)
1383 struct hstate *h;
1385 for_each_hstate(h) {
1386 /* oversize hugepages were init'ed in early boot */
1387 if (h->order < MAX_ORDER)
1388 hugetlb_hstate_alloc_pages(h);
1392 static char * __init memfmt(char *buf, unsigned long n)
1394 if (n >= (1UL << 30))
1395 sprintf(buf, "%lu GB", n >> 30);
1396 else if (n >= (1UL << 20))
1397 sprintf(buf, "%lu MB", n >> 20);
1398 else
1399 sprintf(buf, "%lu KB", n >> 10);
1400 return buf;
1403 static void __init report_hugepages(void)
1405 struct hstate *h;
1407 for_each_hstate(h) {
1408 char buf[32];
1409 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
1410 memfmt(buf, huge_page_size(h)),
1411 h->free_huge_pages);
1415 #ifdef CONFIG_HIGHMEM
1416 static void try_to_free_low(struct hstate *h, unsigned long count,
1417 nodemask_t *nodes_allowed)
1419 int i;
1421 if (h->order >= MAX_ORDER)
1422 return;
1424 for_each_node_mask(i, *nodes_allowed) {
1425 struct page *page, *next;
1426 struct list_head *freel = &h->hugepage_freelists[i];
1427 list_for_each_entry_safe(page, next, freel, lru) {
1428 if (count >= h->nr_huge_pages)
1429 return;
1430 if (PageHighMem(page))
1431 continue;
1432 list_del(&page->lru);
1433 update_and_free_page(h, page);
1434 h->free_huge_pages--;
1435 h->free_huge_pages_node[page_to_nid(page)]--;
1439 #else
1440 static inline void try_to_free_low(struct hstate *h, unsigned long count,
1441 nodemask_t *nodes_allowed)
1444 #endif
1447 * Increment or decrement surplus_huge_pages. Keep node-specific counters
1448 * balanced by operating on them in a round-robin fashion.
1449 * Returns 1 if an adjustment was made.
1451 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
1452 int delta)
1454 int nr_nodes, node;
1456 VM_BUG_ON(delta != -1 && delta != 1);
1458 if (delta < 0) {
1459 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1460 if (h->surplus_huge_pages_node[node])
1461 goto found;
1463 } else {
1464 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1465 if (h->surplus_huge_pages_node[node] <
1466 h->nr_huge_pages_node[node])
1467 goto found;
1470 return 0;
1472 found:
1473 h->surplus_huge_pages += delta;
1474 h->surplus_huge_pages_node[node] += delta;
1475 return 1;
1478 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1479 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
1480 nodemask_t *nodes_allowed)
1482 unsigned long min_count, ret;
1484 if (h->order >= MAX_ORDER)
1485 return h->max_huge_pages;
1488 * Increase the pool size
1489 * First take pages out of surplus state. Then make up the
1490 * remaining difference by allocating fresh huge pages.
1492 * We might race with alloc_buddy_huge_page() here and be unable
1493 * to convert a surplus huge page to a normal huge page. That is
1494 * not critical, though, it just means the overall size of the
1495 * pool might be one hugepage larger than it needs to be, but
1496 * within all the constraints specified by the sysctls.
1498 spin_lock(&hugetlb_lock);
1499 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
1500 if (!adjust_pool_surplus(h, nodes_allowed, -1))
1501 break;
1504 while (count > persistent_huge_pages(h)) {
1506 * If this allocation races such that we no longer need the
1507 * page, free_huge_page will handle it by freeing the page
1508 * and reducing the surplus.
1510 spin_unlock(&hugetlb_lock);
1511 ret = alloc_fresh_huge_page(h, nodes_allowed);
1512 spin_lock(&hugetlb_lock);
1513 if (!ret)
1514 goto out;
1516 /* Bail for signals. Probably ctrl-c from user */
1517 if (signal_pending(current))
1518 goto out;
1522 * Decrease the pool size
1523 * First return free pages to the buddy allocator (being careful
1524 * to keep enough around to satisfy reservations). Then place
1525 * pages into surplus state as needed so the pool will shrink
1526 * to the desired size as pages become free.
1528 * By placing pages into the surplus state independent of the
1529 * overcommit value, we are allowing the surplus pool size to
1530 * exceed overcommit. There are few sane options here. Since
1531 * alloc_buddy_huge_page() is checking the global counter,
1532 * though, we'll note that we're not allowed to exceed surplus
1533 * and won't grow the pool anywhere else. Not until one of the
1534 * sysctls are changed, or the surplus pages go out of use.
1536 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
1537 min_count = max(count, min_count);
1538 try_to_free_low(h, min_count, nodes_allowed);
1539 while (min_count < persistent_huge_pages(h)) {
1540 if (!free_pool_huge_page(h, nodes_allowed, 0))
1541 break;
1542 cond_resched_lock(&hugetlb_lock);
1544 while (count < persistent_huge_pages(h)) {
1545 if (!adjust_pool_surplus(h, nodes_allowed, 1))
1546 break;
1548 out:
1549 ret = persistent_huge_pages(h);
1550 spin_unlock(&hugetlb_lock);
1551 return ret;
1554 #define HSTATE_ATTR_RO(_name) \
1555 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1557 #define HSTATE_ATTR(_name) \
1558 static struct kobj_attribute _name##_attr = \
1559 __ATTR(_name, 0644, _name##_show, _name##_store)
1561 static struct kobject *hugepages_kobj;
1562 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1564 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
1566 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
1568 int i;
1570 for (i = 0; i < HUGE_MAX_HSTATE; i++)
1571 if (hstate_kobjs[i] == kobj) {
1572 if (nidp)
1573 *nidp = NUMA_NO_NODE;
1574 return &hstates[i];
1577 return kobj_to_node_hstate(kobj, nidp);
1580 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
1581 struct kobj_attribute *attr, char *buf)
1583 struct hstate *h;
1584 unsigned long nr_huge_pages;
1585 int nid;
1587 h = kobj_to_hstate(kobj, &nid);
1588 if (nid == NUMA_NO_NODE)
1589 nr_huge_pages = h->nr_huge_pages;
1590 else
1591 nr_huge_pages = h->nr_huge_pages_node[nid];
1593 return sprintf(buf, "%lu\n", nr_huge_pages);
1596 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
1597 struct kobject *kobj, struct kobj_attribute *attr,
1598 const char *buf, size_t len)
1600 int err;
1601 int nid;
1602 unsigned long count;
1603 struct hstate *h;
1604 NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
1606 err = kstrtoul(buf, 10, &count);
1607 if (err)
1608 goto out;
1610 h = kobj_to_hstate(kobj, &nid);
1611 if (h->order >= MAX_ORDER) {
1612 err = -EINVAL;
1613 goto out;
1616 if (nid == NUMA_NO_NODE) {
1618 * global hstate attribute
1620 if (!(obey_mempolicy &&
1621 init_nodemask_of_mempolicy(nodes_allowed))) {
1622 NODEMASK_FREE(nodes_allowed);
1623 nodes_allowed = &node_states[N_MEMORY];
1625 } else if (nodes_allowed) {
1627 * per node hstate attribute: adjust count to global,
1628 * but restrict alloc/free to the specified node.
1630 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
1631 init_nodemask_of_node(nodes_allowed, nid);
1632 } else
1633 nodes_allowed = &node_states[N_MEMORY];
1635 h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
1637 if (nodes_allowed != &node_states[N_MEMORY])
1638 NODEMASK_FREE(nodes_allowed);
1640 return len;
1641 out:
1642 NODEMASK_FREE(nodes_allowed);
1643 return err;
1646 static ssize_t nr_hugepages_show(struct kobject *kobj,
1647 struct kobj_attribute *attr, char *buf)
1649 return nr_hugepages_show_common(kobj, attr, buf);
1652 static ssize_t nr_hugepages_store(struct kobject *kobj,
1653 struct kobj_attribute *attr, const char *buf, size_t len)
1655 return nr_hugepages_store_common(false, kobj, attr, buf, len);
1657 HSTATE_ATTR(nr_hugepages);
1659 #ifdef CONFIG_NUMA
1662 * hstate attribute for optionally mempolicy-based constraint on persistent
1663 * huge page alloc/free.
1665 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
1666 struct kobj_attribute *attr, char *buf)
1668 return nr_hugepages_show_common(kobj, attr, buf);
1671 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
1672 struct kobj_attribute *attr, const char *buf, size_t len)
1674 return nr_hugepages_store_common(true, kobj, attr, buf, len);
1676 HSTATE_ATTR(nr_hugepages_mempolicy);
1677 #endif
1680 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
1681 struct kobj_attribute *attr, char *buf)
1683 struct hstate *h = kobj_to_hstate(kobj, NULL);
1684 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
1687 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
1688 struct kobj_attribute *attr, const char *buf, size_t count)
1690 int err;
1691 unsigned long input;
1692 struct hstate *h = kobj_to_hstate(kobj, NULL);
1694 if (h->order >= MAX_ORDER)
1695 return -EINVAL;
1697 err = kstrtoul(buf, 10, &input);
1698 if (err)
1699 return err;
1701 spin_lock(&hugetlb_lock);
1702 h->nr_overcommit_huge_pages = input;
1703 spin_unlock(&hugetlb_lock);
1705 return count;
1707 HSTATE_ATTR(nr_overcommit_hugepages);
1709 static ssize_t free_hugepages_show(struct kobject *kobj,
1710 struct kobj_attribute *attr, char *buf)
1712 struct hstate *h;
1713 unsigned long free_huge_pages;
1714 int nid;
1716 h = kobj_to_hstate(kobj, &nid);
1717 if (nid == NUMA_NO_NODE)
1718 free_huge_pages = h->free_huge_pages;
1719 else
1720 free_huge_pages = h->free_huge_pages_node[nid];
1722 return sprintf(buf, "%lu\n", free_huge_pages);
1724 HSTATE_ATTR_RO(free_hugepages);
1726 static ssize_t resv_hugepages_show(struct kobject *kobj,
1727 struct kobj_attribute *attr, char *buf)
1729 struct hstate *h = kobj_to_hstate(kobj, NULL);
1730 return sprintf(buf, "%lu\n", h->resv_huge_pages);
1732 HSTATE_ATTR_RO(resv_hugepages);
1734 static ssize_t surplus_hugepages_show(struct kobject *kobj,
1735 struct kobj_attribute *attr, char *buf)
1737 struct hstate *h;
1738 unsigned long surplus_huge_pages;
1739 int nid;
1741 h = kobj_to_hstate(kobj, &nid);
1742 if (nid == NUMA_NO_NODE)
1743 surplus_huge_pages = h->surplus_huge_pages;
1744 else
1745 surplus_huge_pages = h->surplus_huge_pages_node[nid];
1747 return sprintf(buf, "%lu\n", surplus_huge_pages);
1749 HSTATE_ATTR_RO(surplus_hugepages);
1751 static struct attribute *hstate_attrs[] = {
1752 &nr_hugepages_attr.attr,
1753 &nr_overcommit_hugepages_attr.attr,
1754 &free_hugepages_attr.attr,
1755 &resv_hugepages_attr.attr,
1756 &surplus_hugepages_attr.attr,
1757 #ifdef CONFIG_NUMA
1758 &nr_hugepages_mempolicy_attr.attr,
1759 #endif
1760 NULL,
1763 static struct attribute_group hstate_attr_group = {
1764 .attrs = hstate_attrs,
1767 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
1768 struct kobject **hstate_kobjs,
1769 struct attribute_group *hstate_attr_group)
1771 int retval;
1772 int hi = hstate_index(h);
1774 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
1775 if (!hstate_kobjs[hi])
1776 return -ENOMEM;
1778 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
1779 if (retval)
1780 kobject_put(hstate_kobjs[hi]);
1782 return retval;
1785 static void __init hugetlb_sysfs_init(void)
1787 struct hstate *h;
1788 int err;
1790 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
1791 if (!hugepages_kobj)
1792 return;
1794 for_each_hstate(h) {
1795 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
1796 hstate_kobjs, &hstate_attr_group);
1797 if (err)
1798 pr_err("Hugetlb: Unable to add hstate %s", h->name);
1802 #ifdef CONFIG_NUMA
1805 * node_hstate/s - associate per node hstate attributes, via their kobjects,
1806 * with node devices in node_devices[] using a parallel array. The array
1807 * index of a node device or _hstate == node id.
1808 * This is here to avoid any static dependency of the node device driver, in
1809 * the base kernel, on the hugetlb module.
1811 struct node_hstate {
1812 struct kobject *hugepages_kobj;
1813 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1815 struct node_hstate node_hstates[MAX_NUMNODES];
1818 * A subset of global hstate attributes for node devices
1820 static struct attribute *per_node_hstate_attrs[] = {
1821 &nr_hugepages_attr.attr,
1822 &free_hugepages_attr.attr,
1823 &surplus_hugepages_attr.attr,
1824 NULL,
1827 static struct attribute_group per_node_hstate_attr_group = {
1828 .attrs = per_node_hstate_attrs,
1832 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
1833 * Returns node id via non-NULL nidp.
1835 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1837 int nid;
1839 for (nid = 0; nid < nr_node_ids; nid++) {
1840 struct node_hstate *nhs = &node_hstates[nid];
1841 int i;
1842 for (i = 0; i < HUGE_MAX_HSTATE; i++)
1843 if (nhs->hstate_kobjs[i] == kobj) {
1844 if (nidp)
1845 *nidp = nid;
1846 return &hstates[i];
1850 BUG();
1851 return NULL;
1855 * Unregister hstate attributes from a single node device.
1856 * No-op if no hstate attributes attached.
1858 static void hugetlb_unregister_node(struct node *node)
1860 struct hstate *h;
1861 struct node_hstate *nhs = &node_hstates[node->dev.id];
1863 if (!nhs->hugepages_kobj)
1864 return; /* no hstate attributes */
1866 for_each_hstate(h) {
1867 int idx = hstate_index(h);
1868 if (nhs->hstate_kobjs[idx]) {
1869 kobject_put(nhs->hstate_kobjs[idx]);
1870 nhs->hstate_kobjs[idx] = NULL;
1874 kobject_put(nhs->hugepages_kobj);
1875 nhs->hugepages_kobj = NULL;
1879 * hugetlb module exit: unregister hstate attributes from node devices
1880 * that have them.
1882 static void hugetlb_unregister_all_nodes(void)
1884 int nid;
1887 * disable node device registrations.
1889 register_hugetlbfs_with_node(NULL, NULL);
1892 * remove hstate attributes from any nodes that have them.
1894 for (nid = 0; nid < nr_node_ids; nid++)
1895 hugetlb_unregister_node(node_devices[nid]);
1899 * Register hstate attributes for a single node device.
1900 * No-op if attributes already registered.
1902 static void hugetlb_register_node(struct node *node)
1904 struct hstate *h;
1905 struct node_hstate *nhs = &node_hstates[node->dev.id];
1906 int err;
1908 if (nhs->hugepages_kobj)
1909 return; /* already allocated */
1911 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
1912 &node->dev.kobj);
1913 if (!nhs->hugepages_kobj)
1914 return;
1916 for_each_hstate(h) {
1917 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
1918 nhs->hstate_kobjs,
1919 &per_node_hstate_attr_group);
1920 if (err) {
1921 pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
1922 h->name, node->dev.id);
1923 hugetlb_unregister_node(node);
1924 break;
1930 * hugetlb init time: register hstate attributes for all registered node
1931 * devices of nodes that have memory. All on-line nodes should have
1932 * registered their associated device by this time.
1934 static void hugetlb_register_all_nodes(void)
1936 int nid;
1938 for_each_node_state(nid, N_MEMORY) {
1939 struct node *node = node_devices[nid];
1940 if (node->dev.id == nid)
1941 hugetlb_register_node(node);
1945 * Let the node device driver know we're here so it can
1946 * [un]register hstate attributes on node hotplug.
1948 register_hugetlbfs_with_node(hugetlb_register_node,
1949 hugetlb_unregister_node);
1951 #else /* !CONFIG_NUMA */
1953 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1955 BUG();
1956 if (nidp)
1957 *nidp = -1;
1958 return NULL;
1961 static void hugetlb_unregister_all_nodes(void) { }
1963 static void hugetlb_register_all_nodes(void) { }
1965 #endif
1967 static void __exit hugetlb_exit(void)
1969 struct hstate *h;
1971 hugetlb_unregister_all_nodes();
1973 for_each_hstate(h) {
1974 kobject_put(hstate_kobjs[hstate_index(h)]);
1977 kobject_put(hugepages_kobj);
1979 module_exit(hugetlb_exit);
1981 static int __init hugetlb_init(void)
1983 /* Some platform decide whether they support huge pages at boot
1984 * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
1985 * there is no such support
1987 if (HPAGE_SHIFT == 0)
1988 return 0;
1990 if (!size_to_hstate(default_hstate_size)) {
1991 default_hstate_size = HPAGE_SIZE;
1992 if (!size_to_hstate(default_hstate_size))
1993 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
1995 default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
1996 if (default_hstate_max_huge_pages)
1997 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
1999 hugetlb_init_hstates();
2000 gather_bootmem_prealloc();
2001 report_hugepages();
2003 hugetlb_sysfs_init();
2004 hugetlb_register_all_nodes();
2005 hugetlb_cgroup_file_init();
2007 return 0;
2009 module_init(hugetlb_init);
2011 /* Should be called on processing a hugepagesz=... option */
2012 void __init hugetlb_add_hstate(unsigned order)
2014 struct hstate *h;
2015 unsigned long i;
2017 if (size_to_hstate(PAGE_SIZE << order)) {
2018 pr_warning("hugepagesz= specified twice, ignoring\n");
2019 return;
2021 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
2022 BUG_ON(order == 0);
2023 h = &hstates[hugetlb_max_hstate++];
2024 h->order = order;
2025 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
2026 h->nr_huge_pages = 0;
2027 h->free_huge_pages = 0;
2028 for (i = 0; i < MAX_NUMNODES; ++i)
2029 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
2030 INIT_LIST_HEAD(&h->hugepage_activelist);
2031 h->next_nid_to_alloc = first_node(node_states[N_MEMORY]);
2032 h->next_nid_to_free = first_node(node_states[N_MEMORY]);
2033 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
2034 huge_page_size(h)/1024);
2036 parsed_hstate = h;
2039 static int __init hugetlb_nrpages_setup(char *s)
2041 unsigned long *mhp;
2042 static unsigned long *last_mhp;
2045 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2046 * so this hugepages= parameter goes to the "default hstate".
2048 if (!hugetlb_max_hstate)
2049 mhp = &default_hstate_max_huge_pages;
2050 else
2051 mhp = &parsed_hstate->max_huge_pages;
2053 if (mhp == last_mhp) {
2054 pr_warning("hugepages= specified twice without "
2055 "interleaving hugepagesz=, ignoring\n");
2056 return 1;
2059 if (sscanf(s, "%lu", mhp) <= 0)
2060 *mhp = 0;
2063 * Global state is always initialized later in hugetlb_init.
2064 * But we need to allocate >= MAX_ORDER hstates here early to still
2065 * use the bootmem allocator.
2067 if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
2068 hugetlb_hstate_alloc_pages(parsed_hstate);
2070 last_mhp = mhp;
2072 return 1;
2074 __setup("hugepages=", hugetlb_nrpages_setup);
2076 static int __init hugetlb_default_setup(char *s)
2078 default_hstate_size = memparse(s, &s);
2079 return 1;
2081 __setup("default_hugepagesz=", hugetlb_default_setup);
2083 static unsigned int cpuset_mems_nr(unsigned int *array)
2085 int node;
2086 unsigned int nr = 0;
2088 for_each_node_mask(node, cpuset_current_mems_allowed)
2089 nr += array[node];
2091 return nr;
2094 #ifdef CONFIG_SYSCTL
2095 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2096 struct ctl_table *table, int write,
2097 void __user *buffer, size_t *length, loff_t *ppos)
2099 struct hstate *h = &default_hstate;
2100 unsigned long tmp;
2101 int ret;
2103 if (!hugepages_supported())
2104 return -ENOTSUPP;
2106 tmp = h->max_huge_pages;
2108 if (write && h->order >= MAX_ORDER)
2109 return -EINVAL;
2111 table->data = &tmp;
2112 table->maxlen = sizeof(unsigned long);
2113 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2114 if (ret)
2115 goto out;
2117 if (write) {
2118 NODEMASK_ALLOC(nodemask_t, nodes_allowed,
2119 GFP_KERNEL | __GFP_NORETRY);
2120 if (!(obey_mempolicy &&
2121 init_nodemask_of_mempolicy(nodes_allowed))) {
2122 NODEMASK_FREE(nodes_allowed);
2123 nodes_allowed = &node_states[N_MEMORY];
2125 h->max_huge_pages = set_max_huge_pages(h, tmp, nodes_allowed);
2127 if (nodes_allowed != &node_states[N_MEMORY])
2128 NODEMASK_FREE(nodes_allowed);
2130 out:
2131 return ret;
2134 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2135 void __user *buffer, size_t *length, loff_t *ppos)
2138 return hugetlb_sysctl_handler_common(false, table, write,
2139 buffer, length, ppos);
2142 #ifdef CONFIG_NUMA
2143 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2144 void __user *buffer, size_t *length, loff_t *ppos)
2146 return hugetlb_sysctl_handler_common(true, table, write,
2147 buffer, length, ppos);
2149 #endif /* CONFIG_NUMA */
2151 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2152 void __user *buffer,
2153 size_t *length, loff_t *ppos)
2155 struct hstate *h = &default_hstate;
2156 unsigned long tmp;
2157 int ret;
2159 if (!hugepages_supported())
2160 return -ENOTSUPP;
2162 tmp = h->nr_overcommit_huge_pages;
2164 if (write && h->order >= MAX_ORDER)
2165 return -EINVAL;
2167 table->data = &tmp;
2168 table->maxlen = sizeof(unsigned long);
2169 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2170 if (ret)
2171 goto out;
2173 if (write) {
2174 spin_lock(&hugetlb_lock);
2175 h->nr_overcommit_huge_pages = tmp;
2176 spin_unlock(&hugetlb_lock);
2178 out:
2179 return ret;
2182 #endif /* CONFIG_SYSCTL */
2184 void hugetlb_report_meminfo(struct seq_file *m)
2186 struct hstate *h = &default_hstate;
2187 if (!hugepages_supported())
2188 return;
2189 seq_printf(m,
2190 "HugePages_Total: %5lu\n"
2191 "HugePages_Free: %5lu\n"
2192 "HugePages_Rsvd: %5lu\n"
2193 "HugePages_Surp: %5lu\n"
2194 "Hugepagesize: %8lu kB\n",
2195 h->nr_huge_pages,
2196 h->free_huge_pages,
2197 h->resv_huge_pages,
2198 h->surplus_huge_pages,
2199 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2202 int hugetlb_report_node_meminfo(int nid, char *buf)
2204 struct hstate *h = &default_hstate;
2205 if (!hugepages_supported())
2206 return 0;
2207 return sprintf(buf,
2208 "Node %d HugePages_Total: %5u\n"
2209 "Node %d HugePages_Free: %5u\n"
2210 "Node %d HugePages_Surp: %5u\n",
2211 nid, h->nr_huge_pages_node[nid],
2212 nid, h->free_huge_pages_node[nid],
2213 nid, h->surplus_huge_pages_node[nid]);
2216 void hugetlb_show_meminfo(void)
2218 struct hstate *h;
2219 int nid;
2221 if (!hugepages_supported())
2222 return;
2224 for_each_node_state(nid, N_MEMORY)
2225 for_each_hstate(h)
2226 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
2227 nid,
2228 h->nr_huge_pages_node[nid],
2229 h->free_huge_pages_node[nid],
2230 h->surplus_huge_pages_node[nid],
2231 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2234 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
2235 unsigned long hugetlb_total_pages(void)
2237 struct hstate *h;
2238 unsigned long nr_total_pages = 0;
2240 for_each_hstate(h)
2241 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
2242 return nr_total_pages;
2245 static int hugetlb_acct_memory(struct hstate *h, long delta)
2247 int ret = -ENOMEM;
2249 spin_lock(&hugetlb_lock);
2251 * When cpuset is configured, it breaks the strict hugetlb page
2252 * reservation as the accounting is done on a global variable. Such
2253 * reservation is completely rubbish in the presence of cpuset because
2254 * the reservation is not checked against page availability for the
2255 * current cpuset. Application can still potentially OOM'ed by kernel
2256 * with lack of free htlb page in cpuset that the task is in.
2257 * Attempt to enforce strict accounting with cpuset is almost
2258 * impossible (or too ugly) because cpuset is too fluid that
2259 * task or memory node can be dynamically moved between cpusets.
2261 * The change of semantics for shared hugetlb mapping with cpuset is
2262 * undesirable. However, in order to preserve some of the semantics,
2263 * we fall back to check against current free page availability as
2264 * a best attempt and hopefully to minimize the impact of changing
2265 * semantics that cpuset has.
2267 if (delta > 0) {
2268 if (gather_surplus_pages(h, delta) < 0)
2269 goto out;
2271 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
2272 return_unused_surplus_pages(h, delta);
2273 goto out;
2277 ret = 0;
2278 if (delta < 0)
2279 return_unused_surplus_pages(h, (unsigned long) -delta);
2281 out:
2282 spin_unlock(&hugetlb_lock);
2283 return ret;
2286 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
2288 struct resv_map *resv = vma_resv_map(vma);
2291 * This new VMA should share its siblings reservation map if present.
2292 * The VMA will only ever have a valid reservation map pointer where
2293 * it is being copied for another still existing VMA. As that VMA
2294 * has a reference to the reservation map it cannot disappear until
2295 * after this open call completes. It is therefore safe to take a
2296 * new reference here without additional locking.
2298 if (resv)
2299 kref_get(&resv->refs);
2302 static void resv_map_put(struct vm_area_struct *vma)
2304 struct resv_map *resv = vma_resv_map(vma);
2306 if (!resv)
2307 return;
2308 kref_put(&resv->refs, resv_map_release);
2311 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
2313 struct hstate *h = hstate_vma(vma);
2314 struct resv_map *resv = vma_resv_map(vma);
2315 struct hugepage_subpool *spool = subpool_vma(vma);
2316 unsigned long reserve;
2317 unsigned long start;
2318 unsigned long end;
2320 if (resv) {
2321 start = vma_hugecache_offset(h, vma, vma->vm_start);
2322 end = vma_hugecache_offset(h, vma, vma->vm_end);
2324 reserve = (end - start) -
2325 region_count(&resv->regions, start, end);
2327 resv_map_put(vma);
2329 if (reserve) {
2330 hugetlb_acct_memory(h, -reserve);
2331 hugepage_subpool_put_pages(spool, reserve);
2337 * We cannot handle pagefaults against hugetlb pages at all. They cause
2338 * handle_mm_fault() to try to instantiate regular-sized pages in the
2339 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
2340 * this far.
2342 static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2344 BUG();
2345 return 0;
2348 const struct vm_operations_struct hugetlb_vm_ops = {
2349 .fault = hugetlb_vm_op_fault,
2350 .open = hugetlb_vm_op_open,
2351 .close = hugetlb_vm_op_close,
2354 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
2355 int writable)
2357 pte_t entry;
2359 if (writable) {
2360 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
2361 vma->vm_page_prot)));
2362 } else {
2363 entry = huge_pte_wrprotect(mk_huge_pte(page,
2364 vma->vm_page_prot));
2366 entry = pte_mkyoung(entry);
2367 entry = pte_mkhuge(entry);
2368 entry = arch_make_huge_pte(entry, vma, page, writable);
2370 return entry;
2373 static void set_huge_ptep_writable(struct vm_area_struct *vma,
2374 unsigned long address, pte_t *ptep)
2376 pte_t entry;
2378 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
2379 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
2380 update_mmu_cache(vma, address, ptep);
2383 static int is_hugetlb_entry_migration(pte_t pte)
2385 swp_entry_t swp;
2387 if (huge_pte_none(pte) || pte_present(pte))
2388 return 0;
2389 swp = pte_to_swp_entry(pte);
2390 if (non_swap_entry(swp) && is_migration_entry(swp))
2391 return 1;
2392 else
2393 return 0;
2396 static int is_hugetlb_entry_hwpoisoned(pte_t pte)
2398 swp_entry_t swp;
2400 if (huge_pte_none(pte) || pte_present(pte))
2401 return 0;
2402 swp = pte_to_swp_entry(pte);
2403 if (non_swap_entry(swp) && is_hwpoison_entry(swp))
2404 return 1;
2405 else
2406 return 0;
2409 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
2410 struct vm_area_struct *vma)
2412 pte_t *src_pte, *dst_pte, entry;
2413 struct page *ptepage;
2414 unsigned long addr;
2415 int cow;
2416 struct hstate *h = hstate_vma(vma);
2417 unsigned long sz = huge_page_size(h);
2419 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
2421 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
2422 src_pte = huge_pte_offset(src, addr);
2423 if (!src_pte)
2424 continue;
2425 dst_pte = huge_pte_alloc(dst, addr, sz);
2426 if (!dst_pte)
2427 goto nomem;
2429 /* If the pagetables are shared don't copy or take references */
2430 if (dst_pte == src_pte)
2431 continue;
2433 spin_lock(&dst->page_table_lock);
2434 spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING);
2435 entry = huge_ptep_get(src_pte);
2436 if (huge_pte_none(entry)) { /* skip none entry */
2438 } else if (unlikely(is_hugetlb_entry_migration(entry) ||
2439 is_hugetlb_entry_hwpoisoned(entry))) {
2440 swp_entry_t swp_entry = pte_to_swp_entry(entry);
2442 if (is_write_migration_entry(swp_entry) && cow) {
2444 * COW mappings require pages in both
2445 * parent and child to be set to read.
2447 make_migration_entry_read(&swp_entry);
2448 entry = swp_entry_to_pte(swp_entry);
2449 set_huge_pte_at(src, addr, src_pte, entry);
2451 set_huge_pte_at(dst, addr, dst_pte, entry);
2452 } else {
2453 if (cow)
2454 huge_ptep_set_wrprotect(src, addr, src_pte);
2455 entry = huge_ptep_get(src_pte);
2456 ptepage = pte_page(entry);
2457 get_page(ptepage);
2458 page_dup_rmap(ptepage);
2459 set_huge_pte_at(dst, addr, dst_pte, entry);
2461 spin_unlock(&src->page_table_lock);
2462 spin_unlock(&dst->page_table_lock);
2464 return 0;
2466 nomem:
2467 return -ENOMEM;
2470 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
2471 unsigned long start, unsigned long end,
2472 struct page *ref_page)
2474 int force_flush = 0;
2475 struct mm_struct *mm = vma->vm_mm;
2476 unsigned long address;
2477 pte_t *ptep;
2478 pte_t pte;
2479 struct page *page;
2480 struct hstate *h = hstate_vma(vma);
2481 unsigned long sz = huge_page_size(h);
2482 const unsigned long mmun_start = start; /* For mmu_notifiers */
2483 const unsigned long mmun_end = end; /* For mmu_notifiers */
2485 WARN_ON(!is_vm_hugetlb_page(vma));
2486 BUG_ON(start & ~huge_page_mask(h));
2487 BUG_ON(end & ~huge_page_mask(h));
2489 tlb_start_vma(tlb, vma);
2490 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2491 again:
2492 spin_lock(&mm->page_table_lock);
2493 for (address = start; address < end; address += sz) {
2494 ptep = huge_pte_offset(mm, address);
2495 if (!ptep)
2496 continue;
2498 if (huge_pmd_unshare(mm, &address, ptep))
2499 continue;
2501 pte = huge_ptep_get(ptep);
2502 if (huge_pte_none(pte))
2503 continue;
2506 * Migrating hugepage or HWPoisoned hugepage is already
2507 * unmapped and its refcount is dropped, so just clear pte here.
2509 if (unlikely(!pte_present(pte))) {
2510 huge_pte_clear(mm, address, ptep);
2511 continue;
2514 page = pte_page(pte);
2516 * If a reference page is supplied, it is because a specific
2517 * page is being unmapped, not a range. Ensure the page we
2518 * are about to unmap is the actual page of interest.
2520 if (ref_page) {
2521 if (page != ref_page)
2522 continue;
2525 * Mark the VMA as having unmapped its page so that
2526 * future faults in this VMA will fail rather than
2527 * looking like data was lost
2529 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
2532 pte = huge_ptep_get_and_clear(mm, address, ptep);
2533 tlb_remove_tlb_entry(tlb, ptep, address);
2534 if (huge_pte_dirty(pte))
2535 set_page_dirty(page);
2537 page_remove_rmap(page);
2538 force_flush = !__tlb_remove_page(tlb, page);
2539 if (force_flush)
2540 break;
2541 /* Bail out after unmapping reference page if supplied */
2542 if (ref_page)
2543 break;
2545 spin_unlock(&mm->page_table_lock);
2547 * mmu_gather ran out of room to batch pages, we break out of
2548 * the PTE lock to avoid doing the potential expensive TLB invalidate
2549 * and page-free while holding it.
2551 if (force_flush) {
2552 force_flush = 0;
2553 tlb_flush_mmu(tlb);
2554 if (address < end && !ref_page)
2555 goto again;
2557 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2558 tlb_end_vma(tlb, vma);
2561 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
2562 struct vm_area_struct *vma, unsigned long start,
2563 unsigned long end, struct page *ref_page)
2565 __unmap_hugepage_range(tlb, vma, start, end, ref_page);
2568 * Clear this flag so that x86's huge_pmd_share page_table_shareable
2569 * test will fail on a vma being torn down, and not grab a page table
2570 * on its way out. We're lucky that the flag has such an appropriate
2571 * name, and can in fact be safely cleared here. We could clear it
2572 * before the __unmap_hugepage_range above, but all that's necessary
2573 * is to clear it before releasing the i_mmap_mutex. This works
2574 * because in the context this is called, the VMA is about to be
2575 * destroyed and the i_mmap_mutex is held.
2577 vma->vm_flags &= ~VM_MAYSHARE;
2580 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
2581 unsigned long end, struct page *ref_page)
2583 struct mm_struct *mm;
2584 struct mmu_gather tlb;
2586 mm = vma->vm_mm;
2588 tlb_gather_mmu(&tlb, mm, start, end);
2589 __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
2590 tlb_finish_mmu(&tlb, start, end);
2594 * This is called when the original mapper is failing to COW a MAP_PRIVATE
2595 * mappping it owns the reserve page for. The intention is to unmap the page
2596 * from other VMAs and let the children be SIGKILLed if they are faulting the
2597 * same region.
2599 static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
2600 struct page *page, unsigned long address)
2602 struct hstate *h = hstate_vma(vma);
2603 struct vm_area_struct *iter_vma;
2604 struct address_space *mapping;
2605 pgoff_t pgoff;
2608 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
2609 * from page cache lookup which is in HPAGE_SIZE units.
2611 address = address & huge_page_mask(h);
2612 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
2613 vma->vm_pgoff;
2614 mapping = file_inode(vma->vm_file)->i_mapping;
2617 * Take the mapping lock for the duration of the table walk. As
2618 * this mapping should be shared between all the VMAs,
2619 * __unmap_hugepage_range() is called as the lock is already held
2621 mutex_lock(&mapping->i_mmap_mutex);
2622 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
2623 /* Do not unmap the current VMA */
2624 if (iter_vma == vma)
2625 continue;
2628 * Shared VMAs have their own reserves and do not affect
2629 * MAP_PRIVATE accounting but it is possible that a shared
2630 * VMA is using the same page so check and skip such VMAs.
2632 if (iter_vma->vm_flags & VM_MAYSHARE)
2633 continue;
2636 * Unmap the page from other VMAs without their own reserves.
2637 * They get marked to be SIGKILLed if they fault in these
2638 * areas. This is because a future no-page fault on this VMA
2639 * could insert a zeroed page instead of the data existing
2640 * from the time of fork. This would look like data corruption
2642 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
2643 unmap_hugepage_range(iter_vma, address,
2644 address + huge_page_size(h), page);
2646 mutex_unlock(&mapping->i_mmap_mutex);
2648 return 1;
2652 * Hugetlb_cow() should be called with page lock of the original hugepage held.
2653 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
2654 * cannot race with other handlers or page migration.
2655 * Keep the pte_same checks anyway to make transition from the mutex easier.
2657 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
2658 unsigned long address, pte_t *ptep, pte_t pte,
2659 struct page *pagecache_page)
2661 struct hstate *h = hstate_vma(vma);
2662 struct page *old_page, *new_page;
2663 int outside_reserve = 0;
2664 unsigned long mmun_start; /* For mmu_notifiers */
2665 unsigned long mmun_end; /* For mmu_notifiers */
2667 old_page = pte_page(pte);
2669 retry_avoidcopy:
2670 /* If no-one else is actually using this page, avoid the copy
2671 * and just make the page writable */
2672 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
2673 page_move_anon_rmap(old_page, vma, address);
2674 set_huge_ptep_writable(vma, address, ptep);
2675 return 0;
2679 * If the process that created a MAP_PRIVATE mapping is about to
2680 * perform a COW due to a shared page count, attempt to satisfy
2681 * the allocation without using the existing reserves. The pagecache
2682 * page is used to determine if the reserve at this address was
2683 * consumed or not. If reserves were used, a partial faulted mapping
2684 * at the time of fork() could consume its reserves on COW instead
2685 * of the full address range.
2687 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
2688 old_page != pagecache_page)
2689 outside_reserve = 1;
2691 page_cache_get(old_page);
2693 /* Drop page_table_lock as buddy allocator may be called */
2694 spin_unlock(&mm->page_table_lock);
2695 new_page = alloc_huge_page(vma, address, outside_reserve);
2697 if (IS_ERR(new_page)) {
2698 long err = PTR_ERR(new_page);
2699 page_cache_release(old_page);
2702 * If a process owning a MAP_PRIVATE mapping fails to COW,
2703 * it is due to references held by a child and an insufficient
2704 * huge page pool. To guarantee the original mappers
2705 * reliability, unmap the page from child processes. The child
2706 * may get SIGKILLed if it later faults.
2708 if (outside_reserve) {
2709 BUG_ON(huge_pte_none(pte));
2710 if (unmap_ref_private(mm, vma, old_page, address)) {
2711 BUG_ON(huge_pte_none(pte));
2712 spin_lock(&mm->page_table_lock);
2713 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2714 if (likely(pte_same(huge_ptep_get(ptep), pte)))
2715 goto retry_avoidcopy;
2717 * race occurs while re-acquiring page_table_lock, and
2718 * our job is done.
2720 return 0;
2722 WARN_ON_ONCE(1);
2725 /* Caller expects lock to be held */
2726 spin_lock(&mm->page_table_lock);
2727 if (err == -ENOMEM)
2728 return VM_FAULT_OOM;
2729 else
2730 return VM_FAULT_SIGBUS;
2734 * When the original hugepage is shared one, it does not have
2735 * anon_vma prepared.
2737 if (unlikely(anon_vma_prepare(vma))) {
2738 page_cache_release(new_page);
2739 page_cache_release(old_page);
2740 /* Caller expects lock to be held */
2741 spin_lock(&mm->page_table_lock);
2742 return VM_FAULT_OOM;
2745 copy_user_huge_page(new_page, old_page, address, vma,
2746 pages_per_huge_page(h));
2747 __SetPageUptodate(new_page);
2749 mmun_start = address & huge_page_mask(h);
2750 mmun_end = mmun_start + huge_page_size(h);
2751 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2753 * Retake the page_table_lock to check for racing updates
2754 * before the page tables are altered
2756 spin_lock(&mm->page_table_lock);
2757 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2758 if (likely(pte_same(huge_ptep_get(ptep), pte))) {
2759 ClearPagePrivate(new_page);
2761 /* Break COW */
2762 huge_ptep_clear_flush(vma, address, ptep);
2763 set_huge_pte_at(mm, address, ptep,
2764 make_huge_pte(vma, new_page, 1));
2765 page_remove_rmap(old_page);
2766 hugepage_add_new_anon_rmap(new_page, vma, address);
2767 /* Make the old page be freed below */
2768 new_page = old_page;
2770 spin_unlock(&mm->page_table_lock);
2771 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2772 page_cache_release(new_page);
2773 page_cache_release(old_page);
2775 /* Caller expects lock to be held */
2776 spin_lock(&mm->page_table_lock);
2777 return 0;
2780 /* Return the pagecache page at a given address within a VMA */
2781 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
2782 struct vm_area_struct *vma, unsigned long address)
2784 struct address_space *mapping;
2785 pgoff_t idx;
2787 mapping = vma->vm_file->f_mapping;
2788 idx = vma_hugecache_offset(h, vma, address);
2790 return find_lock_page(mapping, idx);
2794 * Return whether there is a pagecache page to back given address within VMA.
2795 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
2797 static bool hugetlbfs_pagecache_present(struct hstate *h,
2798 struct vm_area_struct *vma, unsigned long address)
2800 struct address_space *mapping;
2801 pgoff_t idx;
2802 struct page *page;
2804 mapping = vma->vm_file->f_mapping;
2805 idx = vma_hugecache_offset(h, vma, address);
2807 page = find_get_page(mapping, idx);
2808 if (page)
2809 put_page(page);
2810 return page != NULL;
2813 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
2814 unsigned long address, pte_t *ptep, unsigned int flags)
2816 struct hstate *h = hstate_vma(vma);
2817 int ret = VM_FAULT_SIGBUS;
2818 int anon_rmap = 0;
2819 pgoff_t idx;
2820 unsigned long size;
2821 struct page *page;
2822 struct address_space *mapping;
2823 pte_t new_pte;
2826 * Currently, we are forced to kill the process in the event the
2827 * original mapper has unmapped pages from the child due to a failed
2828 * COW. Warn that such a situation has occurred as it may not be obvious
2830 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
2831 pr_warning("PID %d killed due to inadequate hugepage pool\n",
2832 current->pid);
2833 return ret;
2836 mapping = vma->vm_file->f_mapping;
2837 idx = vma_hugecache_offset(h, vma, address);
2840 * Use page lock to guard against racing truncation
2841 * before we get page_table_lock.
2843 retry:
2844 page = find_lock_page(mapping, idx);
2845 if (!page) {
2846 size = i_size_read(mapping->host) >> huge_page_shift(h);
2847 if (idx >= size)
2848 goto out;
2849 page = alloc_huge_page(vma, address, 0);
2850 if (IS_ERR(page)) {
2851 ret = PTR_ERR(page);
2852 if (ret == -ENOMEM)
2853 ret = VM_FAULT_OOM;
2854 else
2855 ret = VM_FAULT_SIGBUS;
2856 goto out;
2858 clear_huge_page(page, address, pages_per_huge_page(h));
2859 __SetPageUptodate(page);
2861 if (vma->vm_flags & VM_MAYSHARE) {
2862 int err;
2863 struct inode *inode = mapping->host;
2865 err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
2866 if (err) {
2867 put_page(page);
2868 if (err == -EEXIST)
2869 goto retry;
2870 goto out;
2872 ClearPagePrivate(page);
2874 spin_lock(&inode->i_lock);
2875 inode->i_blocks += blocks_per_huge_page(h);
2876 spin_unlock(&inode->i_lock);
2877 } else {
2878 lock_page(page);
2879 if (unlikely(anon_vma_prepare(vma))) {
2880 ret = VM_FAULT_OOM;
2881 goto backout_unlocked;
2883 anon_rmap = 1;
2885 } else {
2887 * If memory error occurs between mmap() and fault, some process
2888 * don't have hwpoisoned swap entry for errored virtual address.
2889 * So we need to block hugepage fault by PG_hwpoison bit check.
2891 if (unlikely(PageHWPoison(page))) {
2892 ret = VM_FAULT_HWPOISON |
2893 VM_FAULT_SET_HINDEX(hstate_index(h));
2894 goto backout_unlocked;
2899 * If we are going to COW a private mapping later, we examine the
2900 * pending reservations for this page now. This will ensure that
2901 * any allocations necessary to record that reservation occur outside
2902 * the spinlock.
2904 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
2905 if (vma_needs_reservation(h, vma, address) < 0) {
2906 ret = VM_FAULT_OOM;
2907 goto backout_unlocked;
2910 spin_lock(&mm->page_table_lock);
2911 size = i_size_read(mapping->host) >> huge_page_shift(h);
2912 if (idx >= size)
2913 goto backout;
2915 ret = 0;
2916 if (!huge_pte_none(huge_ptep_get(ptep)))
2917 goto backout;
2919 if (anon_rmap) {
2920 ClearPagePrivate(page);
2921 hugepage_add_new_anon_rmap(page, vma, address);
2923 else
2924 page_dup_rmap(page);
2925 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
2926 && (vma->vm_flags & VM_SHARED)));
2927 set_huge_pte_at(mm, address, ptep, new_pte);
2929 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
2930 /* Optimization, do the COW without a second fault */
2931 ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page);
2934 spin_unlock(&mm->page_table_lock);
2935 unlock_page(page);
2936 out:
2937 return ret;
2939 backout:
2940 spin_unlock(&mm->page_table_lock);
2941 backout_unlocked:
2942 unlock_page(page);
2943 put_page(page);
2944 goto out;
2947 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2948 unsigned long address, unsigned int flags)
2950 pte_t *ptep;
2951 pte_t entry;
2952 int ret;
2953 struct page *page = NULL;
2954 struct page *pagecache_page = NULL;
2955 static DEFINE_MUTEX(hugetlb_instantiation_mutex);
2956 struct hstate *h = hstate_vma(vma);
2957 int need_wait_lock = 0;
2959 address &= huge_page_mask(h);
2961 ptep = huge_pte_offset(mm, address);
2962 if (ptep) {
2963 entry = huge_ptep_get(ptep);
2964 if (unlikely(is_hugetlb_entry_migration(entry))) {
2965 migration_entry_wait_huge(mm, ptep);
2966 return 0;
2967 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
2968 return VM_FAULT_HWPOISON_LARGE |
2969 VM_FAULT_SET_HINDEX(hstate_index(h));
2972 ptep = huge_pte_alloc(mm, address, huge_page_size(h));
2973 if (!ptep)
2974 return VM_FAULT_OOM;
2977 * Serialize hugepage allocation and instantiation, so that we don't
2978 * get spurious allocation failures if two CPUs race to instantiate
2979 * the same page in the page cache.
2981 mutex_lock(&hugetlb_instantiation_mutex);
2982 entry = huge_ptep_get(ptep);
2983 if (huge_pte_none(entry)) {
2984 ret = hugetlb_no_page(mm, vma, address, ptep, flags);
2985 goto out_mutex;
2988 ret = 0;
2991 * entry could be a migration/hwpoison entry at this point, so this
2992 * check prevents the kernel from going below assuming that we have
2993 * a active hugepage in pagecache. This goto expects the 2nd page fault,
2994 * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
2995 * handle it.
2997 if (!pte_present(entry))
2998 goto out_mutex;
3001 * If we are going to COW the mapping later, we examine the pending
3002 * reservations for this page now. This will ensure that any
3003 * allocations necessary to record that reservation occur outside the
3004 * spinlock. For private mappings, we also lookup the pagecache
3005 * page now as it is used to determine if a reservation has been
3006 * consumed.
3008 if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
3009 if (vma_needs_reservation(h, vma, address) < 0) {
3010 ret = VM_FAULT_OOM;
3011 goto out_mutex;
3014 if (!(vma->vm_flags & VM_MAYSHARE))
3015 pagecache_page = hugetlbfs_pagecache_page(h,
3016 vma, address);
3019 spin_lock(&mm->page_table_lock);
3021 /* Check for a racing update before calling hugetlb_cow */
3022 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
3023 goto out_page_table_lock;
3026 * hugetlb_cow() requires page locks of pte_page(entry) and
3027 * pagecache_page, so here we need take the former one
3028 * when page != pagecache_page or !pagecache_page.
3030 page = pte_page(entry);
3031 if (page != pagecache_page)
3032 if (!trylock_page(page)) {
3033 need_wait_lock = 1;
3034 goto out_page_table_lock;
3037 get_page(page);
3039 if (flags & FAULT_FLAG_WRITE) {
3040 if (!huge_pte_write(entry)) {
3041 ret = hugetlb_cow(mm, vma, address, ptep, entry,
3042 pagecache_page);
3043 goto out_put_page;
3045 entry = huge_pte_mkdirty(entry);
3047 entry = pte_mkyoung(entry);
3048 if (huge_ptep_set_access_flags(vma, address, ptep, entry,
3049 flags & FAULT_FLAG_WRITE))
3050 update_mmu_cache(vma, address, ptep);
3051 out_put_page:
3052 if (page != pagecache_page)
3053 unlock_page(page);
3054 put_page(page);
3055 out_page_table_lock:
3056 spin_unlock(&mm->page_table_lock);
3058 if (pagecache_page) {
3059 unlock_page(pagecache_page);
3060 put_page(pagecache_page);
3062 out_mutex:
3063 mutex_unlock(&hugetlb_instantiation_mutex);
3066 * Generally it's safe to hold refcount during waiting page lock. But
3067 * here we just wait to defer the next page fault to avoid busy loop and
3068 * the page is not used after unlocked before returning from the current
3069 * page fault. So we are safe from accessing freed page, even if we wait
3070 * here without taking refcount.
3072 if (need_wait_lock)
3073 wait_on_page_locked(page);
3074 return ret;
3077 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
3078 struct page **pages, struct vm_area_struct **vmas,
3079 unsigned long *position, unsigned long *nr_pages,
3080 long i, unsigned int flags)
3082 unsigned long pfn_offset;
3083 unsigned long vaddr = *position;
3084 unsigned long remainder = *nr_pages;
3085 struct hstate *h = hstate_vma(vma);
3087 spin_lock(&mm->page_table_lock);
3088 while (vaddr < vma->vm_end && remainder) {
3089 pte_t *pte;
3090 int absent;
3091 struct page *page;
3094 * Some archs (sparc64, sh*) have multiple pte_ts to
3095 * each hugepage. We have to make sure we get the
3096 * first, for the page indexing below to work.
3098 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
3099 absent = !pte || huge_pte_none(huge_ptep_get(pte));
3102 * When coredumping, it suits get_dump_page if we just return
3103 * an error where there's an empty slot with no huge pagecache
3104 * to back it. This way, we avoid allocating a hugepage, and
3105 * the sparse dumpfile avoids allocating disk blocks, but its
3106 * huge holes still show up with zeroes where they need to be.
3108 if (absent && (flags & FOLL_DUMP) &&
3109 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
3110 remainder = 0;
3111 break;
3115 * We need call hugetlb_fault for both hugepages under migration
3116 * (in which case hugetlb_fault waits for the migration,) and
3117 * hwpoisoned hugepages (in which case we need to prevent the
3118 * caller from accessing to them.) In order to do this, we use
3119 * here is_swap_pte instead of is_hugetlb_entry_migration and
3120 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
3121 * both cases, and because we can't follow correct pages
3122 * directly from any kind of swap entries.
3124 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
3125 ((flags & FOLL_WRITE) &&
3126 !huge_pte_write(huge_ptep_get(pte)))) {
3127 int ret;
3129 spin_unlock(&mm->page_table_lock);
3130 ret = hugetlb_fault(mm, vma, vaddr,
3131 (flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
3132 spin_lock(&mm->page_table_lock);
3133 if (!(ret & VM_FAULT_ERROR))
3134 continue;
3136 remainder = 0;
3137 break;
3140 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
3141 page = pte_page(huge_ptep_get(pte));
3142 same_page:
3143 if (pages) {
3144 pages[i] = mem_map_offset(page, pfn_offset);
3145 get_page(pages[i]);
3148 if (vmas)
3149 vmas[i] = vma;
3151 vaddr += PAGE_SIZE;
3152 ++pfn_offset;
3153 --remainder;
3154 ++i;
3155 if (vaddr < vma->vm_end && remainder &&
3156 pfn_offset < pages_per_huge_page(h)) {
3158 * We use pfn_offset to avoid touching the pageframes
3159 * of this compound page.
3161 goto same_page;
3164 spin_unlock(&mm->page_table_lock);
3165 *nr_pages = remainder;
3166 *position = vaddr;
3168 return i ? i : -EFAULT;
3171 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
3172 unsigned long address, unsigned long end, pgprot_t newprot)
3174 struct mm_struct *mm = vma->vm_mm;
3175 unsigned long start = address;
3176 pte_t *ptep;
3177 pte_t pte;
3178 struct hstate *h = hstate_vma(vma);
3179 unsigned long pages = 0;
3181 BUG_ON(address >= end);
3182 flush_cache_range(vma, address, end);
3184 mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
3185 spin_lock(&mm->page_table_lock);
3186 for (; address < end; address += huge_page_size(h)) {
3187 ptep = huge_pte_offset(mm, address);
3188 if (!ptep)
3189 continue;
3190 if (huge_pmd_unshare(mm, &address, ptep)) {
3191 pages++;
3192 continue;
3194 pte = huge_ptep_get(ptep);
3195 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
3196 continue;
3198 if (unlikely(is_hugetlb_entry_migration(pte))) {
3199 swp_entry_t entry = pte_to_swp_entry(pte);
3201 if (is_write_migration_entry(entry)) {
3202 pte_t newpte;
3204 make_migration_entry_read(&entry);
3205 newpte = swp_entry_to_pte(entry);
3206 set_huge_pte_at(mm, address, ptep, newpte);
3207 pages++;
3209 continue;
3211 if (!huge_pte_none(pte)) {
3212 pte = huge_ptep_get_and_clear(mm, address, ptep);
3213 pte = pte_mkhuge(huge_pte_modify(pte, newprot));
3214 pte = arch_make_huge_pte(pte, vma, NULL, 0);
3215 set_huge_pte_at(mm, address, ptep, pte);
3216 pages++;
3219 spin_unlock(&mm->page_table_lock);
3221 * Must flush TLB before releasing i_mmap_mutex: x86's huge_pmd_unshare
3222 * may have cleared our pud entry and done put_page on the page table:
3223 * once we release i_mmap_mutex, another task can do the final put_page
3224 * and that page table be reused and filled with junk.
3226 flush_tlb_range(vma, start, end);
3227 mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
3229 return pages << h->order;
3232 int hugetlb_reserve_pages(struct inode *inode,
3233 long from, long to,
3234 struct vm_area_struct *vma,
3235 vm_flags_t vm_flags)
3237 long ret, chg;
3238 struct hstate *h = hstate_inode(inode);
3239 struct hugepage_subpool *spool = subpool_inode(inode);
3242 * Only apply hugepage reservation if asked. At fault time, an
3243 * attempt will be made for VM_NORESERVE to allocate a page
3244 * without using reserves
3246 if (vm_flags & VM_NORESERVE)
3247 return 0;
3250 * Shared mappings base their reservation on the number of pages that
3251 * are already allocated on behalf of the file. Private mappings need
3252 * to reserve the full area even if read-only as mprotect() may be
3253 * called to make the mapping read-write. Assume !vma is a shm mapping
3255 if (!vma || vma->vm_flags & VM_MAYSHARE)
3256 chg = region_chg(&inode->i_mapping->private_list, from, to);
3257 else {
3258 struct resv_map *resv_map = resv_map_alloc();
3259 if (!resv_map)
3260 return -ENOMEM;
3262 chg = to - from;
3264 set_vma_resv_map(vma, resv_map);
3265 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
3268 if (chg < 0) {
3269 ret = chg;
3270 goto out_err;
3273 /* There must be enough pages in the subpool for the mapping */
3274 if (hugepage_subpool_get_pages(spool, chg)) {
3275 ret = -ENOSPC;
3276 goto out_err;
3280 * Check enough hugepages are available for the reservation.
3281 * Hand the pages back to the subpool if there are not
3283 ret = hugetlb_acct_memory(h, chg);
3284 if (ret < 0) {
3285 hugepage_subpool_put_pages(spool, chg);
3286 goto out_err;
3290 * Account for the reservations made. Shared mappings record regions
3291 * that have reservations as they are shared by multiple VMAs.
3292 * When the last VMA disappears, the region map says how much
3293 * the reservation was and the page cache tells how much of
3294 * the reservation was consumed. Private mappings are per-VMA and
3295 * only the consumed reservations are tracked. When the VMA
3296 * disappears, the original reservation is the VMA size and the
3297 * consumed reservations are stored in the map. Hence, nothing
3298 * else has to be done for private mappings here
3300 if (!vma || vma->vm_flags & VM_MAYSHARE)
3301 region_add(&inode->i_mapping->private_list, from, to);
3302 return 0;
3303 out_err:
3304 if (vma)
3305 resv_map_put(vma);
3306 return ret;
3309 void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
3311 struct hstate *h = hstate_inode(inode);
3312 long chg = region_truncate(&inode->i_mapping->private_list, offset);
3313 struct hugepage_subpool *spool = subpool_inode(inode);
3315 spin_lock(&inode->i_lock);
3316 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
3317 spin_unlock(&inode->i_lock);
3319 hugepage_subpool_put_pages(spool, (chg - freed));
3320 hugetlb_acct_memory(h, -(chg - freed));
3323 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
3324 static unsigned long page_table_shareable(struct vm_area_struct *svma,
3325 struct vm_area_struct *vma,
3326 unsigned long addr, pgoff_t idx)
3328 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
3329 svma->vm_start;
3330 unsigned long sbase = saddr & PUD_MASK;
3331 unsigned long s_end = sbase + PUD_SIZE;
3333 /* Allow segments to share if only one is marked locked */
3334 unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED;
3335 unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED;
3338 * match the virtual addresses, permission and the alignment of the
3339 * page table page.
3341 if (pmd_index(addr) != pmd_index(saddr) ||
3342 vm_flags != svm_flags ||
3343 sbase < svma->vm_start || svma->vm_end < s_end)
3344 return 0;
3346 return saddr;
3349 static int vma_shareable(struct vm_area_struct *vma, unsigned long addr)
3351 unsigned long base = addr & PUD_MASK;
3352 unsigned long end = base + PUD_SIZE;
3355 * check on proper vm_flags and page table alignment
3357 if (vma->vm_flags & VM_MAYSHARE &&
3358 vma->vm_start <= base && end <= vma->vm_end)
3359 return 1;
3360 return 0;
3364 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
3365 * and returns the corresponding pte. While this is not necessary for the
3366 * !shared pmd case because we can allocate the pmd later as well, it makes the
3367 * code much cleaner. pmd allocation is essential for the shared case because
3368 * pud has to be populated inside the same i_mmap_mutex section - otherwise
3369 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
3370 * bad pmd for sharing.
3372 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
3374 struct vm_area_struct *vma = find_vma(mm, addr);
3375 struct address_space *mapping = vma->vm_file->f_mapping;
3376 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
3377 vma->vm_pgoff;
3378 struct vm_area_struct *svma;
3379 unsigned long saddr;
3380 pte_t *spte = NULL;
3381 pte_t *pte;
3383 if (!vma_shareable(vma, addr))
3384 return (pte_t *)pmd_alloc(mm, pud, addr);
3386 mutex_lock(&mapping->i_mmap_mutex);
3387 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
3388 if (svma == vma)
3389 continue;
3391 saddr = page_table_shareable(svma, vma, addr, idx);
3392 if (saddr) {
3393 spte = huge_pte_offset(svma->vm_mm, saddr);
3394 if (spte) {
3395 get_page(virt_to_page(spte));
3396 break;
3401 if (!spte)
3402 goto out;
3404 spin_lock(&mm->page_table_lock);
3405 if (pud_none(*pud))
3406 pud_populate(mm, pud,
3407 (pmd_t *)((unsigned long)spte & PAGE_MASK));
3408 else
3409 put_page(virt_to_page(spte));
3410 spin_unlock(&mm->page_table_lock);
3411 out:
3412 pte = (pte_t *)pmd_alloc(mm, pud, addr);
3413 mutex_unlock(&mapping->i_mmap_mutex);
3414 return pte;
3418 * unmap huge page backed by shared pte.
3420 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
3421 * indicated by page_count > 1, unmap is achieved by clearing pud and
3422 * decrementing the ref count. If count == 1, the pte page is not shared.
3424 * called with vma->vm_mm->page_table_lock held.
3426 * returns: 1 successfully unmapped a shared pte page
3427 * 0 the underlying pte page is not shared, or it is the last user
3429 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
3431 pgd_t *pgd = pgd_offset(mm, *addr);
3432 pud_t *pud = pud_offset(pgd, *addr);
3434 BUG_ON(page_count(virt_to_page(ptep)) == 0);
3435 if (page_count(virt_to_page(ptep)) == 1)
3436 return 0;
3438 pud_clear(pud);
3439 put_page(virt_to_page(ptep));
3440 *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
3441 return 1;
3443 #define want_pmd_share() (1)
3444 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
3445 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
3447 return NULL;
3449 #define want_pmd_share() (0)
3450 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
3452 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
3453 pte_t *huge_pte_alloc(struct mm_struct *mm,
3454 unsigned long addr, unsigned long sz)
3456 pgd_t *pgd;
3457 pud_t *pud;
3458 pte_t *pte = NULL;
3460 pgd = pgd_offset(mm, addr);
3461 pud = pud_alloc(mm, pgd, addr);
3462 if (pud) {
3463 if (sz == PUD_SIZE) {
3464 pte = (pte_t *)pud;
3465 } else {
3466 BUG_ON(sz != PMD_SIZE);
3467 if (want_pmd_share() && pud_none(*pud))
3468 pte = huge_pmd_share(mm, addr, pud);
3469 else
3470 pte = (pte_t *)pmd_alloc(mm, pud, addr);
3473 BUG_ON(pte && !pte_none(*pte) && !pte_huge(*pte));
3475 return pte;
3478 pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
3480 pgd_t *pgd;
3481 pud_t *pud;
3482 pmd_t *pmd = NULL;
3484 pgd = pgd_offset(mm, addr);
3485 if (pgd_present(*pgd)) {
3486 pud = pud_offset(pgd, addr);
3487 if (pud_present(*pud)) {
3488 if (pud_huge(*pud))
3489 return (pte_t *)pud;
3490 pmd = pmd_offset(pud, addr);
3493 return (pte_t *) pmd;
3496 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
3499 * These functions are overwritable if your architecture needs its own
3500 * behavior.
3502 struct page * __weak
3503 follow_huge_addr(struct mm_struct *mm, unsigned long address,
3504 int write)
3506 return ERR_PTR(-EINVAL);
3509 struct page * __weak
3510 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
3511 pmd_t *pmd, int flags)
3513 struct page *page = NULL;
3514 spinlock_t *ptl;
3515 retry:
3516 ptl = &mm->page_table_lock;
3517 spin_lock(ptl);
3519 * make sure that the address range covered by this pmd is not
3520 * unmapped from other threads.
3522 if (!pmd_huge(*pmd))
3523 goto out;
3524 if (pmd_present(*pmd)) {
3525 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
3526 if (flags & FOLL_GET)
3527 get_page(page);
3528 } else {
3529 if (is_hugetlb_entry_migration(huge_ptep_get((pte_t *)pmd))) {
3530 spin_unlock(ptl);
3531 __migration_entry_wait(mm, (pte_t *)pmd, ptl);
3532 goto retry;
3535 * hwpoisoned entry is treated as no_page_table in
3536 * follow_page_mask().
3539 out:
3540 spin_unlock(ptl);
3541 return page;
3544 struct page * __weak
3545 follow_huge_pud(struct mm_struct *mm, unsigned long address,
3546 pud_t *pud, int flags)
3548 if (flags & FOLL_GET)
3549 return NULL;
3551 return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
3554 #ifdef CONFIG_MEMORY_FAILURE
3556 /* Should be called in hugetlb_lock */
3557 static int is_hugepage_on_freelist(struct page *hpage)
3559 struct page *page;
3560 struct page *tmp;
3561 struct hstate *h = page_hstate(hpage);
3562 int nid = page_to_nid(hpage);
3564 list_for_each_entry_safe(page, tmp, &h->hugepage_freelists[nid], lru)
3565 if (page == hpage)
3566 return 1;
3567 return 0;
3571 * This function is called from memory failure code.
3572 * Assume the caller holds page lock of the head page.
3574 int dequeue_hwpoisoned_huge_page(struct page *hpage)
3576 struct hstate *h = page_hstate(hpage);
3577 int nid = page_to_nid(hpage);
3578 int ret = -EBUSY;
3580 spin_lock(&hugetlb_lock);
3581 if (is_hugepage_on_freelist(hpage)) {
3583 * Hwpoisoned hugepage isn't linked to activelist or freelist,
3584 * but dangling hpage->lru can trigger list-debug warnings
3585 * (this happens when we call unpoison_memory() on it),
3586 * so let it point to itself with list_del_init().
3588 list_del_init(&hpage->lru);
3589 set_page_refcounted(hpage);
3590 h->free_huge_pages--;
3591 h->free_huge_pages_node[nid]--;
3592 ret = 0;
3594 spin_unlock(&hugetlb_lock);
3595 return ret;
3597 #endif
3599 bool isolate_huge_page(struct page *page, struct list_head *list)
3601 VM_BUG_ON(!PageHead(page));
3602 if (!get_page_unless_zero(page))
3603 return false;
3604 spin_lock(&hugetlb_lock);
3605 list_move_tail(&page->lru, list);
3606 spin_unlock(&hugetlb_lock);
3607 return true;
3610 void putback_active_hugepage(struct page *page)
3612 VM_BUG_ON(!PageHead(page));
3613 spin_lock(&hugetlb_lock);
3614 list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
3615 spin_unlock(&hugetlb_lock);
3616 put_page(page);
3619 bool is_hugepage_active(struct page *page)
3621 VM_BUG_ON(!PageHuge(page));
3623 * This function can be called for a tail page because the caller,
3624 * scan_movable_pages, scans through a given pfn-range which typically
3625 * covers one memory block. In systems using gigantic hugepage (1GB
3626 * for x86_64,) a hugepage is larger than a memory block, and we don't
3627 * support migrating such large hugepages for now, so return false
3628 * when called for tail pages.
3630 if (PageTail(page))
3631 return false;
3633 * Refcount of a hwpoisoned hugepages is 1, but they are not active,
3634 * so we should return false for them.
3636 if (unlikely(PageHWPoison(page)))
3637 return false;
3638 return page_count(page) > 0;