2 * mm/rmap.c - physical to virtual reverse mappings
4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5 * Released under the General Public License (GPL).
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17 * Contributions by Hugh Dickins 2003, 2004
21 * Lock ordering in mm:
23 * inode->i_mutex (while writing or truncating, not reading or faulting)
25 * page->flags PG_locked (lock_page)
26 * mapping->i_mmap_mutex
28 * mm->page_table_lock or pte_lock
29 * zone->lru_lock (in mark_page_accessed, isolate_lru_page)
30 * swap_lock (in swap_duplicate, swap_info_get)
31 * mmlist_lock (in mmput, drain_mmlist and others)
32 * mapping->private_lock (in __set_page_dirty_buffers)
33 * inode->i_lock (in set_page_dirty's __mark_inode_dirty)
34 * bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
35 * sb_lock (within inode_lock in fs/fs-writeback.c)
36 * mapping->tree_lock (widely used, in set_page_dirty,
37 * in arch-dependent flush_dcache_mmap_lock,
38 * within bdi.wb->list_lock in __sync_single_inode)
40 * anon_vma->rwsem,mapping->i_mutex (memory_failure, collect_procs_anon)
46 #include <linux/pagemap.h>
47 #include <linux/swap.h>
48 #include <linux/swapops.h>
49 #include <linux/slab.h>
50 #include <linux/init.h>
51 #include <linux/ksm.h>
52 #include <linux/rmap.h>
53 #include <linux/rcupdate.h>
54 #include <linux/export.h>
55 #include <linux/memcontrol.h>
56 #include <linux/mmu_notifier.h>
57 #include <linux/migrate.h>
58 #include <linux/hugetlb.h>
59 #include <linux/backing-dev.h>
61 #include <asm/tlbflush.h>
65 static struct kmem_cache
*anon_vma_cachep
;
66 static struct kmem_cache
*anon_vma_chain_cachep
;
68 static inline struct anon_vma
*anon_vma_alloc(void)
70 struct anon_vma
*anon_vma
;
72 anon_vma
= kmem_cache_alloc(anon_vma_cachep
, GFP_KERNEL
);
74 atomic_set(&anon_vma
->refcount
, 1);
75 anon_vma
->degree
= 1; /* Reference for first vma */
76 anon_vma
->parent
= anon_vma
;
78 * Initialise the anon_vma root to point to itself. If called
79 * from fork, the root will be reset to the parents anon_vma.
81 anon_vma
->root
= anon_vma
;
87 static inline void anon_vma_free(struct anon_vma
*anon_vma
)
89 VM_BUG_ON(atomic_read(&anon_vma
->refcount
));
92 * Synchronize against page_lock_anon_vma_read() such that
93 * we can safely hold the lock without the anon_vma getting
96 * Relies on the full mb implied by the atomic_dec_and_test() from
97 * put_anon_vma() against the acquire barrier implied by
98 * down_read_trylock() from page_lock_anon_vma_read(). This orders:
100 * page_lock_anon_vma_read() VS put_anon_vma()
101 * down_read_trylock() atomic_dec_and_test()
103 * atomic_read() rwsem_is_locked()
105 * LOCK should suffice since the actual taking of the lock must
106 * happen _before_ what follows.
109 if (rwsem_is_locked(&anon_vma
->root
->rwsem
)) {
110 anon_vma_lock_write(anon_vma
);
111 anon_vma_unlock_write(anon_vma
);
114 kmem_cache_free(anon_vma_cachep
, anon_vma
);
117 static inline struct anon_vma_chain
*anon_vma_chain_alloc(gfp_t gfp
)
119 return kmem_cache_alloc(anon_vma_chain_cachep
, gfp
);
122 static void anon_vma_chain_free(struct anon_vma_chain
*anon_vma_chain
)
124 kmem_cache_free(anon_vma_chain_cachep
, anon_vma_chain
);
127 static void anon_vma_chain_link(struct vm_area_struct
*vma
,
128 struct anon_vma_chain
*avc
,
129 struct anon_vma
*anon_vma
)
132 avc
->anon_vma
= anon_vma
;
133 list_add(&avc
->same_vma
, &vma
->anon_vma_chain
);
134 anon_vma_interval_tree_insert(avc
, &anon_vma
->rb_root
);
138 * anon_vma_prepare - attach an anon_vma to a memory region
139 * @vma: the memory region in question
141 * This makes sure the memory mapping described by 'vma' has
142 * an 'anon_vma' attached to it, so that we can associate the
143 * anonymous pages mapped into it with that anon_vma.
145 * The common case will be that we already have one, but if
146 * not we either need to find an adjacent mapping that we
147 * can re-use the anon_vma from (very common when the only
148 * reason for splitting a vma has been mprotect()), or we
149 * allocate a new one.
151 * Anon-vma allocations are very subtle, because we may have
152 * optimistically looked up an anon_vma in page_lock_anon_vma_read()
153 * and that may actually touch the spinlock even in the newly
154 * allocated vma (it depends on RCU to make sure that the
155 * anon_vma isn't actually destroyed).
157 * As a result, we need to do proper anon_vma locking even
158 * for the new allocation. At the same time, we do not want
159 * to do any locking for the common case of already having
162 * This must be called with the mmap_sem held for reading.
164 int anon_vma_prepare(struct vm_area_struct
*vma
)
166 struct anon_vma
*anon_vma
= vma
->anon_vma
;
167 struct anon_vma_chain
*avc
;
170 if (unlikely(!anon_vma
)) {
171 struct mm_struct
*mm
= vma
->vm_mm
;
172 struct anon_vma
*allocated
;
174 avc
= anon_vma_chain_alloc(GFP_KERNEL
);
178 anon_vma
= find_mergeable_anon_vma(vma
);
181 anon_vma
= anon_vma_alloc();
182 if (unlikely(!anon_vma
))
183 goto out_enomem_free_avc
;
184 allocated
= anon_vma
;
187 anon_vma_lock_write(anon_vma
);
188 /* page_table_lock to protect against threads */
189 spin_lock(&mm
->page_table_lock
);
190 if (likely(!vma
->anon_vma
)) {
191 vma
->anon_vma
= anon_vma
;
192 anon_vma_chain_link(vma
, avc
, anon_vma
);
193 /* vma reference or self-parent link for new root */
198 spin_unlock(&mm
->page_table_lock
);
199 anon_vma_unlock_write(anon_vma
);
201 if (unlikely(allocated
))
202 put_anon_vma(allocated
);
204 anon_vma_chain_free(avc
);
209 anon_vma_chain_free(avc
);
215 * This is a useful helper function for locking the anon_vma root as
216 * we traverse the vma->anon_vma_chain, looping over anon_vma's that
219 * Such anon_vma's should have the same root, so you'd expect to see
220 * just a single mutex_lock for the whole traversal.
222 static inline struct anon_vma
*lock_anon_vma_root(struct anon_vma
*root
, struct anon_vma
*anon_vma
)
224 struct anon_vma
*new_root
= anon_vma
->root
;
225 if (new_root
!= root
) {
226 if (WARN_ON_ONCE(root
))
227 up_write(&root
->rwsem
);
229 down_write(&root
->rwsem
);
234 static inline void unlock_anon_vma_root(struct anon_vma
*root
)
237 up_write(&root
->rwsem
);
241 * Attach the anon_vmas from src to dst.
242 * Returns 0 on success, -ENOMEM on failure.
244 * If dst->anon_vma is NULL this function tries to find and reuse existing
245 * anon_vma which has no vmas and only one child anon_vma. This prevents
246 * degradation of anon_vma hierarchy to endless linear chain in case of
247 * constantly forking task. On the other hand, an anon_vma with more than one
248 * child isn't reused even if there was no alive vma, thus rmap walker has a
249 * good chance of avoiding scanning the whole hierarchy when it searches where
252 int anon_vma_clone(struct vm_area_struct
*dst
, struct vm_area_struct
*src
)
254 struct anon_vma_chain
*avc
, *pavc
;
255 struct anon_vma
*root
= NULL
;
257 list_for_each_entry_reverse(pavc
, &src
->anon_vma_chain
, same_vma
) {
258 struct anon_vma
*anon_vma
;
260 avc
= anon_vma_chain_alloc(GFP_NOWAIT
| __GFP_NOWARN
);
261 if (unlikely(!avc
)) {
262 unlock_anon_vma_root(root
);
264 avc
= anon_vma_chain_alloc(GFP_KERNEL
);
268 anon_vma
= pavc
->anon_vma
;
269 root
= lock_anon_vma_root(root
, anon_vma
);
270 anon_vma_chain_link(dst
, avc
, anon_vma
);
273 * Reuse existing anon_vma if its degree lower than two,
274 * that means it has no vma and only one anon_vma child.
276 * Do not chose parent anon_vma, otherwise first child
277 * will always reuse it. Root anon_vma is never reused:
278 * it has self-parent reference and at least one child.
280 if (!dst
->anon_vma
&& anon_vma
!= src
->anon_vma
&&
281 anon_vma
->degree
< 2)
282 dst
->anon_vma
= anon_vma
;
285 dst
->anon_vma
->degree
++;
286 unlock_anon_vma_root(root
);
291 * dst->anon_vma is dropped here otherwise its degree can be incorrectly
292 * decremented in unlink_anon_vmas().
293 * We can safely do this because callers of anon_vma_clone() don't care
294 * about dst->anon_vma if anon_vma_clone() failed.
296 dst
->anon_vma
= NULL
;
297 unlink_anon_vmas(dst
);
302 * Attach vma to its own anon_vma, as well as to the anon_vmas that
303 * the corresponding VMA in the parent process is attached to.
304 * Returns 0 on success, non-zero on failure.
306 int anon_vma_fork(struct vm_area_struct
*vma
, struct vm_area_struct
*pvma
)
308 struct anon_vma_chain
*avc
;
309 struct anon_vma
*anon_vma
;
312 /* Don't bother if the parent process has no anon_vma here. */
316 /* Drop inherited anon_vma, we'll reuse existing or allocate new. */
317 vma
->anon_vma
= NULL
;
320 * First, attach the new VMA to the parent VMA's anon_vmas,
321 * so rmap can find non-COWed pages in child processes.
323 error
= anon_vma_clone(vma
, pvma
);
327 /* An existing anon_vma has been reused, all done then. */
331 /* Then add our own anon_vma. */
332 anon_vma
= anon_vma_alloc();
335 avc
= anon_vma_chain_alloc(GFP_KERNEL
);
337 goto out_error_free_anon_vma
;
340 * The root anon_vma's spinlock is the lock actually used when we
341 * lock any of the anon_vmas in this anon_vma tree.
343 anon_vma
->root
= pvma
->anon_vma
->root
;
344 anon_vma
->parent
= pvma
->anon_vma
;
346 * With refcounts, an anon_vma can stay around longer than the
347 * process it belongs to. The root anon_vma needs to be pinned until
348 * this anon_vma is freed, because the lock lives in the root.
350 get_anon_vma(anon_vma
->root
);
351 /* Mark this anon_vma as the one where our new (COWed) pages go. */
352 vma
->anon_vma
= anon_vma
;
353 anon_vma_lock_write(anon_vma
);
354 anon_vma_chain_link(vma
, avc
, anon_vma
);
355 anon_vma
->parent
->degree
++;
356 anon_vma_unlock_write(anon_vma
);
360 out_error_free_anon_vma
:
361 put_anon_vma(anon_vma
);
363 unlink_anon_vmas(vma
);
367 void unlink_anon_vmas(struct vm_area_struct
*vma
)
369 struct anon_vma_chain
*avc
, *next
;
370 struct anon_vma
*root
= NULL
;
373 * Unlink each anon_vma chained to the VMA. This list is ordered
374 * from newest to oldest, ensuring the root anon_vma gets freed last.
376 list_for_each_entry_safe(avc
, next
, &vma
->anon_vma_chain
, same_vma
) {
377 struct anon_vma
*anon_vma
= avc
->anon_vma
;
379 root
= lock_anon_vma_root(root
, anon_vma
);
380 anon_vma_interval_tree_remove(avc
, &anon_vma
->rb_root
);
383 * Leave empty anon_vmas on the list - we'll need
384 * to free them outside the lock.
386 if (RB_EMPTY_ROOT(&anon_vma
->rb_root
)) {
387 anon_vma
->parent
->degree
--;
391 list_del(&avc
->same_vma
);
392 anon_vma_chain_free(avc
);
395 vma
->anon_vma
->degree
--;
396 unlock_anon_vma_root(root
);
399 * Iterate the list once more, it now only contains empty and unlinked
400 * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
401 * needing to write-acquire the anon_vma->root->rwsem.
403 list_for_each_entry_safe(avc
, next
, &vma
->anon_vma_chain
, same_vma
) {
404 struct anon_vma
*anon_vma
= avc
->anon_vma
;
406 BUG_ON(anon_vma
->degree
);
407 put_anon_vma(anon_vma
);
409 list_del(&avc
->same_vma
);
410 anon_vma_chain_free(avc
);
414 static void anon_vma_ctor(void *data
)
416 struct anon_vma
*anon_vma
= data
;
418 init_rwsem(&anon_vma
->rwsem
);
419 atomic_set(&anon_vma
->refcount
, 0);
420 anon_vma
->rb_root
= RB_ROOT
;
423 void __init
anon_vma_init(void)
425 anon_vma_cachep
= kmem_cache_create("anon_vma", sizeof(struct anon_vma
),
426 0, SLAB_DESTROY_BY_RCU
|SLAB_PANIC
, anon_vma_ctor
);
427 anon_vma_chain_cachep
= KMEM_CACHE(anon_vma_chain
, SLAB_PANIC
);
431 * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
433 * Since there is no serialization what so ever against page_remove_rmap()
434 * the best this function can do is return a locked anon_vma that might
435 * have been relevant to this page.
437 * The page might have been remapped to a different anon_vma or the anon_vma
438 * returned may already be freed (and even reused).
440 * In case it was remapped to a different anon_vma, the new anon_vma will be a
441 * child of the old anon_vma, and the anon_vma lifetime rules will therefore
442 * ensure that any anon_vma obtained from the page will still be valid for as
443 * long as we observe page_mapped() [ hence all those page_mapped() tests ].
445 * All users of this function must be very careful when walking the anon_vma
446 * chain and verify that the page in question is indeed mapped in it
447 * [ something equivalent to page_mapped_in_vma() ].
449 * Since anon_vma's slab is DESTROY_BY_RCU and we know from page_remove_rmap()
450 * that the anon_vma pointer from page->mapping is valid if there is a
451 * mapcount, we can dereference the anon_vma after observing those.
453 struct anon_vma
*page_get_anon_vma(struct page
*page
)
455 struct anon_vma
*anon_vma
= NULL
;
456 unsigned long anon_mapping
;
459 anon_mapping
= (unsigned long) ACCESS_ONCE(page
->mapping
);
460 if ((anon_mapping
& PAGE_MAPPING_FLAGS
) != PAGE_MAPPING_ANON
)
462 if (!page_mapped(page
))
465 anon_vma
= (struct anon_vma
*) (anon_mapping
- PAGE_MAPPING_ANON
);
466 if (!atomic_inc_not_zero(&anon_vma
->refcount
)) {
472 * If this page is still mapped, then its anon_vma cannot have been
473 * freed. But if it has been unmapped, we have no security against the
474 * anon_vma structure being freed and reused (for another anon_vma:
475 * SLAB_DESTROY_BY_RCU guarantees that - so the atomic_inc_not_zero()
476 * above cannot corrupt).
478 if (!page_mapped(page
)) {
480 put_anon_vma(anon_vma
);
490 * Similar to page_get_anon_vma() except it locks the anon_vma.
492 * Its a little more complex as it tries to keep the fast path to a single
493 * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
494 * reference like with page_get_anon_vma() and then block on the mutex.
496 struct anon_vma
*page_lock_anon_vma_read(struct page
*page
)
498 struct anon_vma
*anon_vma
= NULL
;
499 struct anon_vma
*root_anon_vma
;
500 unsigned long anon_mapping
;
503 anon_mapping
= (unsigned long) ACCESS_ONCE(page
->mapping
);
504 if ((anon_mapping
& PAGE_MAPPING_FLAGS
) != PAGE_MAPPING_ANON
)
506 if (!page_mapped(page
))
509 anon_vma
= (struct anon_vma
*) (anon_mapping
- PAGE_MAPPING_ANON
);
510 root_anon_vma
= ACCESS_ONCE(anon_vma
->root
);
511 if (down_read_trylock(&root_anon_vma
->rwsem
)) {
513 * If the page is still mapped, then this anon_vma is still
514 * its anon_vma, and holding the mutex ensures that it will
515 * not go away, see anon_vma_free().
517 if (!page_mapped(page
)) {
518 up_read(&root_anon_vma
->rwsem
);
524 /* trylock failed, we got to sleep */
525 if (!atomic_inc_not_zero(&anon_vma
->refcount
)) {
530 if (!page_mapped(page
)) {
532 put_anon_vma(anon_vma
);
536 /* we pinned the anon_vma, its safe to sleep */
538 anon_vma_lock_read(anon_vma
);
540 if (atomic_dec_and_test(&anon_vma
->refcount
)) {
542 * Oops, we held the last refcount, release the lock
543 * and bail -- can't simply use put_anon_vma() because
544 * we'll deadlock on the anon_vma_lock_write() recursion.
546 anon_vma_unlock_read(anon_vma
);
547 __put_anon_vma(anon_vma
);
558 void page_unlock_anon_vma_read(struct anon_vma
*anon_vma
)
560 anon_vma_unlock_read(anon_vma
);
564 * At what user virtual address is page expected in @vma?
566 static inline unsigned long
567 __vma_address(struct page
*page
, struct vm_area_struct
*vma
)
569 pgoff_t pgoff
= page
->index
<< (PAGE_CACHE_SHIFT
- PAGE_SHIFT
);
571 if (unlikely(is_vm_hugetlb_page(vma
)))
572 pgoff
= page
->index
<< huge_page_order(page_hstate(page
));
574 return vma
->vm_start
+ ((pgoff
- vma
->vm_pgoff
) << PAGE_SHIFT
);
578 vma_address(struct page
*page
, struct vm_area_struct
*vma
)
580 unsigned long address
= __vma_address(page
, vma
);
582 /* page should be within @vma mapping range */
583 VM_BUG_ON(address
< vma
->vm_start
|| address
>= vma
->vm_end
);
589 * At what user virtual address is page expected in vma?
590 * Caller should check the page is actually part of the vma.
592 unsigned long page_address_in_vma(struct page
*page
, struct vm_area_struct
*vma
)
594 unsigned long address
;
595 if (PageAnon(page
)) {
596 struct anon_vma
*page__anon_vma
= page_anon_vma(page
);
598 * Note: swapoff's unuse_vma() is more efficient with this
599 * check, and needs it to match anon_vma when KSM is active.
601 if (!vma
->anon_vma
|| !page__anon_vma
||
602 vma
->anon_vma
->root
!= page__anon_vma
->root
)
604 } else if (page
->mapping
&& !(vma
->vm_flags
& VM_NONLINEAR
)) {
606 vma
->vm_file
->f_mapping
!= page
->mapping
)
610 address
= __vma_address(page
, vma
);
611 if (unlikely(address
< vma
->vm_start
|| address
>= vma
->vm_end
))
616 pmd_t
*mm_find_pmd(struct mm_struct
*mm
, unsigned long address
)
623 pgd
= pgd_offset(mm
, address
);
624 if (!pgd_present(*pgd
))
627 pud
= pud_offset(pgd
, address
);
628 if (!pud_present(*pud
))
631 pmd
= pmd_offset(pud
, address
);
633 * Some THP functions use the sequence pmdp_clear_flush(), set_pmd_at()
634 * without holding anon_vma lock for write. So when looking for a
635 * genuine pmde (in which to find pte), test present and !THP together.
637 pmde
= ACCESS_ONCE(*pmd
);
638 if (!pmd_present(pmde
) || pmd_trans_huge(pmde
))
645 * Check that @page is mapped at @address into @mm.
647 * If @sync is false, page_check_address may perform a racy check to avoid
648 * the page table lock when the pte is not present (helpful when reclaiming
649 * highly shared pages).
651 * On success returns with pte mapped and locked.
653 pte_t
*__page_check_address(struct page
*page
, struct mm_struct
*mm
,
654 unsigned long address
, spinlock_t
**ptlp
, int sync
)
660 if (unlikely(PageHuge(page
))) {
661 /* when pud is not present, pte will be NULL */
662 pte
= huge_pte_offset(mm
, address
);
666 ptl
= &mm
->page_table_lock
;
670 pmd
= mm_find_pmd(mm
, address
);
674 pte
= pte_offset_map(pmd
, address
);
675 /* Make a quick check before getting the lock */
676 if (!sync
&& !pte_present(*pte
)) {
681 ptl
= pte_lockptr(mm
, pmd
);
684 if (pte_present(*pte
) && page_to_pfn(page
) == pte_pfn(*pte
)) {
688 pte_unmap_unlock(pte
, ptl
);
693 * page_mapped_in_vma - check whether a page is really mapped in a VMA
694 * @page: the page to test
695 * @vma: the VMA to test
697 * Returns 1 if the page is mapped into the page tables of the VMA, 0
698 * if the page is not mapped into the page tables of this VMA. Only
699 * valid for normal file or anonymous VMAs.
701 int page_mapped_in_vma(struct page
*page
, struct vm_area_struct
*vma
)
703 unsigned long address
;
707 address
= __vma_address(page
, vma
);
708 if (unlikely(address
< vma
->vm_start
|| address
>= vma
->vm_end
))
710 pte
= page_check_address(page
, vma
->vm_mm
, address
, &ptl
, 1);
711 if (!pte
) /* the page is not in this mm */
713 pte_unmap_unlock(pte
, ptl
);
719 * Subfunctions of page_referenced: page_referenced_one called
720 * repeatedly from either page_referenced_anon or page_referenced_file.
722 int page_referenced_one(struct page
*page
, struct vm_area_struct
*vma
,
723 unsigned long address
, unsigned int *mapcount
,
724 unsigned long *vm_flags
)
726 struct mm_struct
*mm
= vma
->vm_mm
;
729 if (unlikely(PageTransHuge(page
))) {
732 spin_lock(&mm
->page_table_lock
);
734 * rmap might return false positives; we must filter
735 * these out using page_check_address_pmd().
737 pmd
= page_check_address_pmd(page
, mm
, address
,
738 PAGE_CHECK_ADDRESS_PMD_FLAG
);
740 spin_unlock(&mm
->page_table_lock
);
744 if (vma
->vm_flags
& VM_LOCKED
) {
745 spin_unlock(&mm
->page_table_lock
);
746 *mapcount
= 0; /* break early from loop */
747 *vm_flags
|= VM_LOCKED
;
751 /* go ahead even if the pmd is pmd_trans_splitting() */
752 if (pmdp_clear_flush_young_notify(vma
, address
, pmd
))
754 spin_unlock(&mm
->page_table_lock
);
760 * rmap might return false positives; we must filter
761 * these out using page_check_address().
763 pte
= page_check_address(page
, mm
, address
, &ptl
, 0);
767 if (vma
->vm_flags
& VM_LOCKED
) {
768 pte_unmap_unlock(pte
, ptl
);
769 *mapcount
= 0; /* break early from loop */
770 *vm_flags
|= VM_LOCKED
;
774 if (ptep_clear_flush_young_notify(vma
, address
, pte
)) {
776 * Don't treat a reference through a sequentially read
777 * mapping as such. If the page has been used in
778 * another mapping, we will catch it; if this other
779 * mapping is already gone, the unmap path will have
780 * set PG_referenced or activated the page.
782 if (likely(!(vma
->vm_flags
& VM_SEQ_READ
)))
785 pte_unmap_unlock(pte
, ptl
);
791 *vm_flags
|= vma
->vm_flags
;
796 static int page_referenced_anon(struct page
*page
,
797 struct mem_cgroup
*memcg
,
798 unsigned long *vm_flags
)
800 unsigned int mapcount
;
801 struct anon_vma
*anon_vma
;
803 struct anon_vma_chain
*avc
;
806 anon_vma
= page_lock_anon_vma_read(page
);
810 mapcount
= page_mapcount(page
);
811 pgoff
= page
->index
<< (PAGE_CACHE_SHIFT
- PAGE_SHIFT
);
812 anon_vma_interval_tree_foreach(avc
, &anon_vma
->rb_root
, pgoff
, pgoff
) {
813 struct vm_area_struct
*vma
= avc
->vma
;
814 unsigned long address
= vma_address(page
, vma
);
816 * If we are reclaiming on behalf of a cgroup, skip
817 * counting on behalf of references from different
820 if (memcg
&& !mm_match_cgroup(vma
->vm_mm
, memcg
))
822 referenced
+= page_referenced_one(page
, vma
, address
,
823 &mapcount
, vm_flags
);
828 page_unlock_anon_vma_read(anon_vma
);
833 * page_referenced_file - referenced check for object-based rmap
834 * @page: the page we're checking references on.
835 * @memcg: target memory control group
836 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
838 * For an object-based mapped page, find all the places it is mapped and
839 * check/clear the referenced flag. This is done by following the page->mapping
840 * pointer, then walking the chain of vmas it holds. It returns the number
841 * of references it found.
843 * This function is only called from page_referenced for object-based pages.
845 static int page_referenced_file(struct page
*page
,
846 struct mem_cgroup
*memcg
,
847 unsigned long *vm_flags
)
849 unsigned int mapcount
;
850 struct address_space
*mapping
= page
->mapping
;
851 pgoff_t pgoff
= page
->index
<< (PAGE_CACHE_SHIFT
- PAGE_SHIFT
);
852 struct vm_area_struct
*vma
;
856 * The caller's checks on page->mapping and !PageAnon have made
857 * sure that this is a file page: the check for page->mapping
858 * excludes the case just before it gets set on an anon page.
860 BUG_ON(PageAnon(page
));
863 * The page lock not only makes sure that page->mapping cannot
864 * suddenly be NULLified by truncation, it makes sure that the
865 * structure at mapping cannot be freed and reused yet,
866 * so we can safely take mapping->i_mmap_mutex.
868 BUG_ON(!PageLocked(page
));
870 mutex_lock(&mapping
->i_mmap_mutex
);
873 * i_mmap_mutex does not stabilize mapcount at all, but mapcount
874 * is more likely to be accurate if we note it after spinning.
876 mapcount
= page_mapcount(page
);
878 vma_interval_tree_foreach(vma
, &mapping
->i_mmap
, pgoff
, pgoff
) {
879 unsigned long address
= vma_address(page
, vma
);
881 * If we are reclaiming on behalf of a cgroup, skip
882 * counting on behalf of references from different
885 if (memcg
&& !mm_match_cgroup(vma
->vm_mm
, memcg
))
887 referenced
+= page_referenced_one(page
, vma
, address
,
888 &mapcount
, vm_flags
);
893 mutex_unlock(&mapping
->i_mmap_mutex
);
898 * page_referenced - test if the page was referenced
899 * @page: the page to test
900 * @is_locked: caller holds lock on the page
901 * @memcg: target memory cgroup
902 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
904 * Quick test_and_clear_referenced for all mappings to a page,
905 * returns the number of ptes which referenced the page.
907 int page_referenced(struct page
*page
,
909 struct mem_cgroup
*memcg
,
910 unsigned long *vm_flags
)
916 if (page_mapped(page
) && page_rmapping(page
)) {
917 if (!is_locked
&& (!PageAnon(page
) || PageKsm(page
))) {
918 we_locked
= trylock_page(page
);
924 if (unlikely(PageKsm(page
)))
925 referenced
+= page_referenced_ksm(page
, memcg
,
927 else if (PageAnon(page
))
928 referenced
+= page_referenced_anon(page
, memcg
,
930 else if (page
->mapping
)
931 referenced
+= page_referenced_file(page
, memcg
,
940 static int page_mkclean_one(struct page
*page
, struct vm_area_struct
*vma
,
941 unsigned long address
)
943 struct mm_struct
*mm
= vma
->vm_mm
;
948 pte
= page_check_address(page
, mm
, address
, &ptl
, 1);
952 if (pte_dirty(*pte
) || pte_write(*pte
)) {
955 flush_cache_page(vma
, address
, pte_pfn(*pte
));
956 entry
= ptep_clear_flush(vma
, address
, pte
);
957 entry
= pte_wrprotect(entry
);
958 entry
= pte_mkclean(entry
);
959 set_pte_at(mm
, address
, pte
, entry
);
963 pte_unmap_unlock(pte
, ptl
);
966 mmu_notifier_invalidate_page(mm
, address
);
971 static int page_mkclean_file(struct address_space
*mapping
, struct page
*page
)
973 pgoff_t pgoff
= page
->index
<< (PAGE_CACHE_SHIFT
- PAGE_SHIFT
);
974 struct vm_area_struct
*vma
;
977 BUG_ON(PageAnon(page
));
979 mutex_lock(&mapping
->i_mmap_mutex
);
980 vma_interval_tree_foreach(vma
, &mapping
->i_mmap
, pgoff
, pgoff
) {
981 if (vma
->vm_flags
& VM_SHARED
) {
982 unsigned long address
= vma_address(page
, vma
);
983 ret
+= page_mkclean_one(page
, vma
, address
);
986 mutex_unlock(&mapping
->i_mmap_mutex
);
990 int page_mkclean(struct page
*page
)
994 BUG_ON(!PageLocked(page
));
996 if (page_mapped(page
)) {
997 struct address_space
*mapping
= page_mapping(page
);
999 ret
= page_mkclean_file(mapping
, page
);
1004 EXPORT_SYMBOL_GPL(page_mkclean
);
1007 * page_move_anon_rmap - move a page to our anon_vma
1008 * @page: the page to move to our anon_vma
1009 * @vma: the vma the page belongs to
1010 * @address: the user virtual address mapped
1012 * When a page belongs exclusively to one process after a COW event,
1013 * that page can be moved into the anon_vma that belongs to just that
1014 * process, so the rmap code will not search the parent or sibling
1017 void page_move_anon_rmap(struct page
*page
,
1018 struct vm_area_struct
*vma
, unsigned long address
)
1020 struct anon_vma
*anon_vma
= vma
->anon_vma
;
1022 VM_BUG_ON(!PageLocked(page
));
1023 VM_BUG_ON(!anon_vma
);
1024 VM_BUG_ON(page
->index
!= linear_page_index(vma
, address
));
1026 anon_vma
= (void *) anon_vma
+ PAGE_MAPPING_ANON
;
1027 page
->mapping
= (struct address_space
*) anon_vma
;
1031 * __page_set_anon_rmap - set up new anonymous rmap
1032 * @page: Page to add to rmap
1033 * @vma: VM area to add page to.
1034 * @address: User virtual address of the mapping
1035 * @exclusive: the page is exclusively owned by the current process
1037 static void __page_set_anon_rmap(struct page
*page
,
1038 struct vm_area_struct
*vma
, unsigned long address
, int exclusive
)
1040 struct anon_vma
*anon_vma
= vma
->anon_vma
;
1048 * If the page isn't exclusively mapped into this vma,
1049 * we must use the _oldest_ possible anon_vma for the
1053 anon_vma
= anon_vma
->root
;
1055 anon_vma
= (void *) anon_vma
+ PAGE_MAPPING_ANON
;
1056 page
->mapping
= (struct address_space
*) anon_vma
;
1057 page
->index
= linear_page_index(vma
, address
);
1061 * __page_check_anon_rmap - sanity check anonymous rmap addition
1062 * @page: the page to add the mapping to
1063 * @vma: the vm area in which the mapping is added
1064 * @address: the user virtual address mapped
1066 static void __page_check_anon_rmap(struct page
*page
,
1067 struct vm_area_struct
*vma
, unsigned long address
)
1069 #ifdef CONFIG_DEBUG_VM
1071 * The page's anon-rmap details (mapping and index) are guaranteed to
1072 * be set up correctly at this point.
1074 * We have exclusion against page_add_anon_rmap because the caller
1075 * always holds the page locked, except if called from page_dup_rmap,
1076 * in which case the page is already known to be setup.
1078 * We have exclusion against page_add_new_anon_rmap because those pages
1079 * are initially only visible via the pagetables, and the pte is locked
1080 * over the call to page_add_new_anon_rmap.
1082 BUG_ON(page_anon_vma(page
)->root
!= vma
->anon_vma
->root
);
1083 BUG_ON(page
->index
!= linear_page_index(vma
, address
));
1088 * page_add_anon_rmap - add pte mapping to an anonymous page
1089 * @page: the page to add the mapping to
1090 * @vma: the vm area in which the mapping is added
1091 * @address: the user virtual address mapped
1093 * The caller needs to hold the pte lock, and the page must be locked in
1094 * the anon_vma case: to serialize mapping,index checking after setting,
1095 * and to ensure that PageAnon is not being upgraded racily to PageKsm
1096 * (but PageKsm is never downgraded to PageAnon).
1098 void page_add_anon_rmap(struct page
*page
,
1099 struct vm_area_struct
*vma
, unsigned long address
)
1101 do_page_add_anon_rmap(page
, vma
, address
, 0);
1105 * Special version of the above for do_swap_page, which often runs
1106 * into pages that are exclusively owned by the current process.
1107 * Everybody else should continue to use page_add_anon_rmap above.
1109 void do_page_add_anon_rmap(struct page
*page
,
1110 struct vm_area_struct
*vma
, unsigned long address
, int exclusive
)
1112 int first
= atomic_inc_and_test(&page
->_mapcount
);
1114 if (PageTransHuge(page
))
1115 __inc_zone_page_state(page
,
1116 NR_ANON_TRANSPARENT_HUGEPAGES
);
1117 __mod_zone_page_state(page_zone(page
), NR_ANON_PAGES
,
1118 hpage_nr_pages(page
));
1120 if (unlikely(PageKsm(page
)))
1123 VM_BUG_ON(!PageLocked(page
));
1124 /* address might be in next vma when migration races vma_adjust */
1126 __page_set_anon_rmap(page
, vma
, address
, exclusive
);
1128 __page_check_anon_rmap(page
, vma
, address
);
1132 * page_add_new_anon_rmap - add pte mapping to a new anonymous page
1133 * @page: the page to add the mapping to
1134 * @vma: the vm area in which the mapping is added
1135 * @address: the user virtual address mapped
1137 * Same as page_add_anon_rmap but must only be called on *new* pages.
1138 * This means the inc-and-test can be bypassed.
1139 * Page does not have to be locked.
1141 void page_add_new_anon_rmap(struct page
*page
,
1142 struct vm_area_struct
*vma
, unsigned long address
)
1144 VM_BUG_ON(address
< vma
->vm_start
|| address
>= vma
->vm_end
);
1145 SetPageSwapBacked(page
);
1146 atomic_set(&page
->_mapcount
, 0); /* increment count (starts at -1) */
1147 if (PageTransHuge(page
))
1148 __inc_zone_page_state(page
, NR_ANON_TRANSPARENT_HUGEPAGES
);
1149 __mod_zone_page_state(page_zone(page
), NR_ANON_PAGES
,
1150 hpage_nr_pages(page
));
1151 __page_set_anon_rmap(page
, vma
, address
, 1);
1152 if (!mlocked_vma_newpage(vma
, page
)) {
1153 SetPageActive(page
);
1154 lru_cache_add(page
);
1156 add_page_to_unevictable_list(page
);
1160 * page_add_file_rmap - add pte mapping to a file page
1161 * @page: the page to add the mapping to
1163 * The caller needs to hold the pte lock.
1165 void page_add_file_rmap(struct page
*page
)
1168 unsigned long flags
;
1170 mem_cgroup_begin_update_page_stat(page
, &locked
, &flags
);
1171 if (atomic_inc_and_test(&page
->_mapcount
)) {
1172 __inc_zone_page_state(page
, NR_FILE_MAPPED
);
1173 mem_cgroup_inc_page_stat(page
, MEM_CGROUP_STAT_FILE_MAPPED
);
1175 mem_cgroup_end_update_page_stat(page
, &locked
, &flags
);
1179 * page_remove_rmap - take down pte mapping from a page
1180 * @page: page to remove mapping from
1182 * The caller needs to hold the pte lock.
1184 void page_remove_rmap(struct page
*page
)
1186 bool anon
= PageAnon(page
);
1188 unsigned long flags
;
1191 * The anon case has no mem_cgroup page_stat to update; but may
1192 * uncharge_page() below, where the lock ordering can deadlock if
1193 * we hold the lock against page_stat move: so avoid it on anon.
1196 mem_cgroup_begin_update_page_stat(page
, &locked
, &flags
);
1198 /* page still mapped by someone else? */
1199 if (!atomic_add_negative(-1, &page
->_mapcount
))
1203 * Hugepages are not counted in NR_ANON_PAGES nor NR_FILE_MAPPED
1204 * and not charged by memcg for now.
1206 if (unlikely(PageHuge(page
)))
1209 mem_cgroup_uncharge_page(page
);
1210 if (PageTransHuge(page
))
1211 __dec_zone_page_state(page
,
1212 NR_ANON_TRANSPARENT_HUGEPAGES
);
1213 __mod_zone_page_state(page_zone(page
), NR_ANON_PAGES
,
1214 -hpage_nr_pages(page
));
1216 __dec_zone_page_state(page
, NR_FILE_MAPPED
);
1217 mem_cgroup_dec_page_stat(page
, MEM_CGROUP_STAT_FILE_MAPPED
);
1218 mem_cgroup_end_update_page_stat(page
, &locked
, &flags
);
1220 if (unlikely(PageMlocked(page
)))
1221 clear_page_mlock(page
);
1223 * It would be tidy to reset the PageAnon mapping here,
1224 * but that might overwrite a racing page_add_anon_rmap
1225 * which increments mapcount after us but sets mapping
1226 * before us: so leave the reset to free_hot_cold_page,
1227 * and remember that it's only reliable while mapped.
1228 * Leaving it set also helps swapoff to reinstate ptes
1229 * faster for those pages still in swapcache.
1234 mem_cgroup_end_update_page_stat(page
, &locked
, &flags
);
1238 * Subfunctions of try_to_unmap: try_to_unmap_one called
1239 * repeatedly from try_to_unmap_ksm, try_to_unmap_anon or try_to_unmap_file.
1241 int try_to_unmap_one(struct page
*page
, struct vm_area_struct
*vma
,
1242 unsigned long address
, enum ttu_flags flags
)
1244 struct mm_struct
*mm
= vma
->vm_mm
;
1248 int ret
= SWAP_AGAIN
;
1250 pte
= page_check_address(page
, mm
, address
, &ptl
, 0);
1255 * If the page is mlock()d, we cannot swap it out.
1256 * If it's recently referenced (perhaps page_referenced
1257 * skipped over this mm) then we should reactivate it.
1259 if (!(flags
& TTU_IGNORE_MLOCK
)) {
1260 if (vma
->vm_flags
& VM_LOCKED
)
1263 if (TTU_ACTION(flags
) == TTU_MUNLOCK
)
1266 if (!(flags
& TTU_IGNORE_ACCESS
)) {
1267 if (ptep_clear_flush_young_notify(vma
, address
, pte
)) {
1273 /* Nuke the page table entry. */
1274 flush_cache_page(vma
, address
, page_to_pfn(page
));
1275 pteval
= ptep_clear_flush(vma
, address
, pte
);
1277 /* Move the dirty bit to the physical page now the pte is gone. */
1278 if (pte_dirty(pteval
))
1279 set_page_dirty(page
);
1281 /* Update high watermark before we lower rss */
1282 update_hiwater_rss(mm
);
1284 if (PageHWPoison(page
) && !(flags
& TTU_IGNORE_HWPOISON
)) {
1285 if (!PageHuge(page
)) {
1287 dec_mm_counter(mm
, MM_ANONPAGES
);
1289 dec_mm_counter(mm
, MM_FILEPAGES
);
1291 set_pte_at(mm
, address
, pte
,
1292 swp_entry_to_pte(make_hwpoison_entry(page
)));
1293 } else if (PageAnon(page
)) {
1294 swp_entry_t entry
= { .val
= page_private(page
) };
1297 if (PageSwapCache(page
)) {
1299 * Store the swap location in the pte.
1300 * See handle_pte_fault() ...
1302 if (swap_duplicate(entry
) < 0) {
1303 set_pte_at(mm
, address
, pte
, pteval
);
1307 if (list_empty(&mm
->mmlist
)) {
1308 spin_lock(&mmlist_lock
);
1309 if (list_empty(&mm
->mmlist
))
1310 list_add(&mm
->mmlist
, &init_mm
.mmlist
);
1311 spin_unlock(&mmlist_lock
);
1313 dec_mm_counter(mm
, MM_ANONPAGES
);
1314 inc_mm_counter(mm
, MM_SWAPENTS
);
1315 } else if (IS_ENABLED(CONFIG_MIGRATION
)) {
1317 * Store the pfn of the page in a special migration
1318 * pte. do_swap_page() will wait until the migration
1319 * pte is removed and then restart fault handling.
1321 BUG_ON(TTU_ACTION(flags
) != TTU_MIGRATION
);
1322 entry
= make_migration_entry(page
, pte_write(pteval
));
1324 swp_pte
= swp_entry_to_pte(entry
);
1325 if (pte_soft_dirty(pteval
))
1326 swp_pte
= pte_swp_mksoft_dirty(swp_pte
);
1327 set_pte_at(mm
, address
, pte
, swp_pte
);
1328 BUG_ON(pte_file(*pte
));
1329 } else if (IS_ENABLED(CONFIG_MIGRATION
) &&
1330 (TTU_ACTION(flags
) == TTU_MIGRATION
)) {
1331 /* Establish migration entry for a file page */
1333 entry
= make_migration_entry(page
, pte_write(pteval
));
1334 set_pte_at(mm
, address
, pte
, swp_entry_to_pte(entry
));
1336 dec_mm_counter(mm
, MM_FILEPAGES
);
1338 page_remove_rmap(page
);
1339 page_cache_release(page
);
1342 pte_unmap_unlock(pte
, ptl
);
1343 if (ret
!= SWAP_FAIL
)
1344 mmu_notifier_invalidate_page(mm
, address
);
1349 pte_unmap_unlock(pte
, ptl
);
1353 * We need mmap_sem locking, Otherwise VM_LOCKED check makes
1354 * unstable result and race. Plus, We can't wait here because
1355 * we now hold anon_vma->rwsem or mapping->i_mmap_mutex.
1356 * if trylock failed, the page remain in evictable lru and later
1357 * vmscan could retry to move the page to unevictable lru if the
1358 * page is actually mlocked.
1360 if (down_read_trylock(&vma
->vm_mm
->mmap_sem
)) {
1361 if (vma
->vm_flags
& VM_LOCKED
) {
1362 mlock_vma_page(page
);
1365 up_read(&vma
->vm_mm
->mmap_sem
);
1371 * objrmap doesn't work for nonlinear VMAs because the assumption that
1372 * offset-into-file correlates with offset-into-virtual-addresses does not hold.
1373 * Consequently, given a particular page and its ->index, we cannot locate the
1374 * ptes which are mapping that page without an exhaustive linear search.
1376 * So what this code does is a mini "virtual scan" of each nonlinear VMA which
1377 * maps the file to which the target page belongs. The ->vm_private_data field
1378 * holds the current cursor into that scan. Successive searches will circulate
1379 * around the vma's virtual address space.
1381 * So as more replacement pressure is applied to the pages in a nonlinear VMA,
1382 * more scanning pressure is placed against them as well. Eventually pages
1383 * will become fully unmapped and are eligible for eviction.
1385 * For very sparsely populated VMAs this is a little inefficient - chances are
1386 * there there won't be many ptes located within the scan cluster. In this case
1387 * maybe we could scan further - to the end of the pte page, perhaps.
1389 * Mlocked pages: check VM_LOCKED under mmap_sem held for read, if we can
1390 * acquire it without blocking. If vma locked, mlock the pages in the cluster,
1391 * rather than unmapping them. If we encounter the "check_page" that vmscan is
1392 * trying to unmap, return SWAP_MLOCK, else default SWAP_AGAIN.
1394 #define CLUSTER_SIZE min(32*PAGE_SIZE, PMD_SIZE)
1395 #define CLUSTER_MASK (~(CLUSTER_SIZE - 1))
1397 static int try_to_unmap_cluster(unsigned long cursor
, unsigned int *mapcount
,
1398 struct vm_area_struct
*vma
, struct page
*check_page
)
1400 struct mm_struct
*mm
= vma
->vm_mm
;
1406 unsigned long address
;
1407 unsigned long mmun_start
; /* For mmu_notifiers */
1408 unsigned long mmun_end
; /* For mmu_notifiers */
1410 int ret
= SWAP_AGAIN
;
1413 address
= (vma
->vm_start
+ cursor
) & CLUSTER_MASK
;
1414 end
= address
+ CLUSTER_SIZE
;
1415 if (address
< vma
->vm_start
)
1416 address
= vma
->vm_start
;
1417 if (end
> vma
->vm_end
)
1420 pmd
= mm_find_pmd(mm
, address
);
1424 mmun_start
= address
;
1426 mmu_notifier_invalidate_range_start(mm
, mmun_start
, mmun_end
);
1429 * If we can acquire the mmap_sem for read, and vma is VM_LOCKED,
1430 * keep the sem while scanning the cluster for mlocking pages.
1432 if (down_read_trylock(&vma
->vm_mm
->mmap_sem
)) {
1433 locked_vma
= (vma
->vm_flags
& VM_LOCKED
);
1435 up_read(&vma
->vm_mm
->mmap_sem
); /* don't need it */
1438 pte
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
1440 /* Update high watermark before we lower rss */
1441 update_hiwater_rss(mm
);
1443 for (; address
< end
; pte
++, address
+= PAGE_SIZE
) {
1444 if (!pte_present(*pte
))
1446 page
= vm_normal_page(vma
, address
, *pte
);
1447 BUG_ON(!page
|| PageAnon(page
));
1450 if (page
== check_page
) {
1451 /* we know we have check_page locked */
1452 mlock_vma_page(page
);
1454 } else if (trylock_page(page
)) {
1456 * If we can lock the page, perform mlock.
1457 * Otherwise leave the page alone, it will be
1458 * eventually encountered again later.
1460 mlock_vma_page(page
);
1463 continue; /* don't unmap */
1466 if (ptep_clear_flush_young_notify(vma
, address
, pte
))
1469 /* Nuke the page table entry. */
1470 flush_cache_page(vma
, address
, pte_pfn(*pte
));
1471 pteval
= ptep_clear_flush(vma
, address
, pte
);
1473 /* If nonlinear, store the file page offset in the pte. */
1474 if (page
->index
!= linear_page_index(vma
, address
)) {
1475 pte_t ptfile
= pgoff_to_pte(page
->index
);
1476 if (pte_soft_dirty(pteval
))
1477 pte_file_mksoft_dirty(ptfile
);
1478 set_pte_at(mm
, address
, pte
, ptfile
);
1481 /* Move the dirty bit to the physical page now the pte is gone. */
1482 if (pte_dirty(pteval
))
1483 set_page_dirty(page
);
1485 page_remove_rmap(page
);
1486 page_cache_release(page
);
1487 dec_mm_counter(mm
, MM_FILEPAGES
);
1490 pte_unmap_unlock(pte
- 1, ptl
);
1491 mmu_notifier_invalidate_range_end(mm
, mmun_start
, mmun_end
);
1493 up_read(&vma
->vm_mm
->mmap_sem
);
1497 bool is_vma_temporary_stack(struct vm_area_struct
*vma
)
1499 int maybe_stack
= vma
->vm_flags
& (VM_GROWSDOWN
| VM_GROWSUP
);
1504 if ((vma
->vm_flags
& VM_STACK_INCOMPLETE_SETUP
) ==
1505 VM_STACK_INCOMPLETE_SETUP
)
1512 * try_to_unmap_anon - unmap or unlock anonymous page using the object-based
1514 * @page: the page to unmap/unlock
1515 * @flags: action and flags
1517 * Find all the mappings of a page using the mapping pointer and the vma chains
1518 * contained in the anon_vma struct it points to.
1520 * This function is only called from try_to_unmap/try_to_munlock for
1522 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1523 * where the page was found will be held for write. So, we won't recheck
1524 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1527 static int try_to_unmap_anon(struct page
*page
, enum ttu_flags flags
)
1529 struct anon_vma
*anon_vma
;
1531 struct anon_vma_chain
*avc
;
1532 int ret
= SWAP_AGAIN
;
1534 anon_vma
= page_lock_anon_vma_read(page
);
1538 pgoff
= page
->index
<< (PAGE_CACHE_SHIFT
- PAGE_SHIFT
);
1539 anon_vma_interval_tree_foreach(avc
, &anon_vma
->rb_root
, pgoff
, pgoff
) {
1540 struct vm_area_struct
*vma
= avc
->vma
;
1541 unsigned long address
;
1544 * During exec, a temporary VMA is setup and later moved.
1545 * The VMA is moved under the anon_vma lock but not the
1546 * page tables leading to a race where migration cannot
1547 * find the migration ptes. Rather than increasing the
1548 * locking requirements of exec(), migration skips
1549 * temporary VMAs until after exec() completes.
1551 if (IS_ENABLED(CONFIG_MIGRATION
) && (flags
& TTU_MIGRATION
) &&
1552 is_vma_temporary_stack(vma
))
1555 address
= vma_address(page
, vma
);
1556 ret
= try_to_unmap_one(page
, vma
, address
, flags
);
1557 if (ret
!= SWAP_AGAIN
|| !page_mapped(page
))
1561 page_unlock_anon_vma_read(anon_vma
);
1566 * try_to_unmap_file - unmap/unlock file page using the object-based rmap method
1567 * @page: the page to unmap/unlock
1568 * @flags: action and flags
1570 * Find all the mappings of a page using the mapping pointer and the vma chains
1571 * contained in the address_space struct it points to.
1573 * This function is only called from try_to_unmap/try_to_munlock for
1574 * object-based pages.
1575 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1576 * where the page was found will be held for write. So, we won't recheck
1577 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1580 static int try_to_unmap_file(struct page
*page
, enum ttu_flags flags
)
1582 struct address_space
*mapping
= page
->mapping
;
1583 pgoff_t pgoff
= page
->index
<< (PAGE_CACHE_SHIFT
- PAGE_SHIFT
);
1584 struct vm_area_struct
*vma
;
1585 int ret
= SWAP_AGAIN
;
1586 unsigned long cursor
;
1587 unsigned long max_nl_cursor
= 0;
1588 unsigned long max_nl_size
= 0;
1589 unsigned int mapcount
;
1592 pgoff
= page
->index
<< compound_order(page
);
1594 mutex_lock(&mapping
->i_mmap_mutex
);
1595 vma_interval_tree_foreach(vma
, &mapping
->i_mmap
, pgoff
, pgoff
) {
1596 unsigned long address
= vma_address(page
, vma
);
1597 ret
= try_to_unmap_one(page
, vma
, address
, flags
);
1598 if (ret
!= SWAP_AGAIN
|| !page_mapped(page
))
1602 if (list_empty(&mapping
->i_mmap_nonlinear
))
1606 * We don't bother to try to find the munlocked page in nonlinears.
1607 * It's costly. Instead, later, page reclaim logic may call
1608 * try_to_unmap(TTU_MUNLOCK) and recover PG_mlocked lazily.
1610 if (TTU_ACTION(flags
) == TTU_MUNLOCK
)
1613 list_for_each_entry(vma
, &mapping
->i_mmap_nonlinear
,
1615 cursor
= (unsigned long) vma
->vm_private_data
;
1616 if (cursor
> max_nl_cursor
)
1617 max_nl_cursor
= cursor
;
1618 cursor
= vma
->vm_end
- vma
->vm_start
;
1619 if (cursor
> max_nl_size
)
1620 max_nl_size
= cursor
;
1623 if (max_nl_size
== 0) { /* all nonlinears locked or reserved ? */
1629 * We don't try to search for this page in the nonlinear vmas,
1630 * and page_referenced wouldn't have found it anyway. Instead
1631 * just walk the nonlinear vmas trying to age and unmap some.
1632 * The mapcount of the page we came in with is irrelevant,
1633 * but even so use it as a guide to how hard we should try?
1635 mapcount
= page_mapcount(page
);
1640 max_nl_size
= (max_nl_size
+ CLUSTER_SIZE
- 1) & CLUSTER_MASK
;
1641 if (max_nl_cursor
== 0)
1642 max_nl_cursor
= CLUSTER_SIZE
;
1645 list_for_each_entry(vma
, &mapping
->i_mmap_nonlinear
,
1647 cursor
= (unsigned long) vma
->vm_private_data
;
1648 while ( cursor
< max_nl_cursor
&&
1649 cursor
< vma
->vm_end
- vma
->vm_start
) {
1650 if (try_to_unmap_cluster(cursor
, &mapcount
,
1651 vma
, page
) == SWAP_MLOCK
)
1653 cursor
+= CLUSTER_SIZE
;
1654 vma
->vm_private_data
= (void *) cursor
;
1655 if ((int)mapcount
<= 0)
1658 vma
->vm_private_data
= (void *) max_nl_cursor
;
1661 max_nl_cursor
+= CLUSTER_SIZE
;
1662 } while (max_nl_cursor
<= max_nl_size
);
1665 * Don't loop forever (perhaps all the remaining pages are
1666 * in locked vmas). Reset cursor on all unreserved nonlinear
1667 * vmas, now forgetting on which ones it had fallen behind.
1669 list_for_each_entry(vma
, &mapping
->i_mmap_nonlinear
, shared
.nonlinear
)
1670 vma
->vm_private_data
= NULL
;
1672 mutex_unlock(&mapping
->i_mmap_mutex
);
1677 * try_to_unmap - try to remove all page table mappings to a page
1678 * @page: the page to get unmapped
1679 * @flags: action and flags
1681 * Tries to remove all the page table entries which are mapping this
1682 * page, used in the pageout path. Caller must hold the page lock.
1683 * Return values are:
1685 * SWAP_SUCCESS - we succeeded in removing all mappings
1686 * SWAP_AGAIN - we missed a mapping, try again later
1687 * SWAP_FAIL - the page is unswappable
1688 * SWAP_MLOCK - page is mlocked.
1690 int try_to_unmap(struct page
*page
, enum ttu_flags flags
)
1694 BUG_ON(!PageLocked(page
));
1695 VM_BUG_ON(!PageHuge(page
) && PageTransHuge(page
));
1697 if (unlikely(PageKsm(page
)))
1698 ret
= try_to_unmap_ksm(page
, flags
);
1699 else if (PageAnon(page
))
1700 ret
= try_to_unmap_anon(page
, flags
);
1702 ret
= try_to_unmap_file(page
, flags
);
1703 if (ret
!= SWAP_MLOCK
&& !page_mapped(page
))
1709 * try_to_munlock - try to munlock a page
1710 * @page: the page to be munlocked
1712 * Called from munlock code. Checks all of the VMAs mapping the page
1713 * to make sure nobody else has this page mlocked. The page will be
1714 * returned with PG_mlocked cleared if no other vmas have it mlocked.
1716 * Return values are:
1718 * SWAP_AGAIN - no vma is holding page mlocked, or,
1719 * SWAP_AGAIN - page mapped in mlocked vma -- couldn't acquire mmap sem
1720 * SWAP_FAIL - page cannot be located at present
1721 * SWAP_MLOCK - page is now mlocked.
1723 int try_to_munlock(struct page
*page
)
1725 VM_BUG_ON(!PageLocked(page
) || PageLRU(page
));
1727 if (unlikely(PageKsm(page
)))
1728 return try_to_unmap_ksm(page
, TTU_MUNLOCK
);
1729 else if (PageAnon(page
))
1730 return try_to_unmap_anon(page
, TTU_MUNLOCK
);
1732 return try_to_unmap_file(page
, TTU_MUNLOCK
);
1735 void __put_anon_vma(struct anon_vma
*anon_vma
)
1737 struct anon_vma
*root
= anon_vma
->root
;
1739 anon_vma_free(anon_vma
);
1740 if (root
!= anon_vma
&& atomic_dec_and_test(&root
->refcount
))
1741 anon_vma_free(root
);
1744 #ifdef CONFIG_MIGRATION
1746 * rmap_walk() and its helpers rmap_walk_anon() and rmap_walk_file():
1747 * Called by migrate.c to remove migration ptes, but might be used more later.
1749 static int rmap_walk_anon(struct page
*page
, int (*rmap_one
)(struct page
*,
1750 struct vm_area_struct
*, unsigned long, void *), void *arg
)
1752 struct anon_vma
*anon_vma
;
1753 pgoff_t pgoff
= page
->index
<< (PAGE_CACHE_SHIFT
- PAGE_SHIFT
);
1754 struct anon_vma_chain
*avc
;
1755 int ret
= SWAP_AGAIN
;
1758 * Note: remove_migration_ptes() cannot use page_lock_anon_vma_read()
1759 * because that depends on page_mapped(); but not all its usages
1760 * are holding mmap_sem. Users without mmap_sem are required to
1761 * take a reference count to prevent the anon_vma disappearing
1763 anon_vma
= page_anon_vma(page
);
1766 anon_vma_lock_read(anon_vma
);
1767 anon_vma_interval_tree_foreach(avc
, &anon_vma
->rb_root
, pgoff
, pgoff
) {
1768 struct vm_area_struct
*vma
= avc
->vma
;
1769 unsigned long address
= vma_address(page
, vma
);
1770 ret
= rmap_one(page
, vma
, address
, arg
);
1771 if (ret
!= SWAP_AGAIN
)
1774 anon_vma_unlock_read(anon_vma
);
1778 static int rmap_walk_file(struct page
*page
, int (*rmap_one
)(struct page
*,
1779 struct vm_area_struct
*, unsigned long, void *), void *arg
)
1781 struct address_space
*mapping
= page
->mapping
;
1782 pgoff_t pgoff
= page
->index
<< (PAGE_CACHE_SHIFT
- PAGE_SHIFT
);
1783 struct vm_area_struct
*vma
;
1784 int ret
= SWAP_AGAIN
;
1788 mutex_lock(&mapping
->i_mmap_mutex
);
1789 vma_interval_tree_foreach(vma
, &mapping
->i_mmap
, pgoff
, pgoff
) {
1790 unsigned long address
= vma_address(page
, vma
);
1791 ret
= rmap_one(page
, vma
, address
, arg
);
1792 if (ret
!= SWAP_AGAIN
)
1796 * No nonlinear handling: being always shared, nonlinear vmas
1797 * never contain migration ptes. Decide what to do about this
1798 * limitation to linear when we need rmap_walk() on nonlinear.
1800 mutex_unlock(&mapping
->i_mmap_mutex
);
1804 int rmap_walk(struct page
*page
, int (*rmap_one
)(struct page
*,
1805 struct vm_area_struct
*, unsigned long, void *), void *arg
)
1807 VM_BUG_ON(!PageLocked(page
));
1809 if (unlikely(PageKsm(page
)))
1810 return rmap_walk_ksm(page
, rmap_one
, arg
);
1811 else if (PageAnon(page
))
1812 return rmap_walk_anon(page
, rmap_one
, arg
);
1814 return rmap_walk_file(page
, rmap_one
, arg
);
1816 #endif /* CONFIG_MIGRATION */
1818 #ifdef CONFIG_HUGETLB_PAGE
1820 * The following three functions are for anonymous (private mapped) hugepages.
1821 * Unlike common anonymous pages, anonymous hugepages have no accounting code
1822 * and no lru code, because we handle hugepages differently from common pages.
1824 static void __hugepage_set_anon_rmap(struct page
*page
,
1825 struct vm_area_struct
*vma
, unsigned long address
, int exclusive
)
1827 struct anon_vma
*anon_vma
= vma
->anon_vma
;
1834 anon_vma
= anon_vma
->root
;
1836 anon_vma
= (void *) anon_vma
+ PAGE_MAPPING_ANON
;
1837 page
->mapping
= (struct address_space
*) anon_vma
;
1838 page
->index
= linear_page_index(vma
, address
);
1841 void hugepage_add_anon_rmap(struct page
*page
,
1842 struct vm_area_struct
*vma
, unsigned long address
)
1844 struct anon_vma
*anon_vma
= vma
->anon_vma
;
1847 BUG_ON(!PageLocked(page
));
1849 /* address might be in next vma when migration races vma_adjust */
1850 first
= atomic_inc_and_test(&page
->_mapcount
);
1852 __hugepage_set_anon_rmap(page
, vma
, address
, 0);
1855 void hugepage_add_new_anon_rmap(struct page
*page
,
1856 struct vm_area_struct
*vma
, unsigned long address
)
1858 BUG_ON(address
< vma
->vm_start
|| address
>= vma
->vm_end
);
1859 atomic_set(&page
->_mapcount
, 0);
1860 __hugepage_set_anon_rmap(page
, vma
, address
, 1);
1862 #endif /* CONFIG_HUGETLB_PAGE */