Linux 3.12.70
[linux/fpc-iii.git] / mm / rmap.c
blobecb6136559b6bac2be0cf6463f33ef24005f31a8
1 /*
2 * mm/rmap.c - physical to virtual reverse mappings
4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5 * Released under the General Public License (GPL).
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17 * Contributions by Hugh Dickins 2003, 2004
21 * Lock ordering in mm:
23 * inode->i_mutex (while writing or truncating, not reading or faulting)
24 * mm->mmap_sem
25 * page->flags PG_locked (lock_page)
26 * mapping->i_mmap_mutex
27 * anon_vma->rwsem
28 * mm->page_table_lock or pte_lock
29 * zone->lru_lock (in mark_page_accessed, isolate_lru_page)
30 * swap_lock (in swap_duplicate, swap_info_get)
31 * mmlist_lock (in mmput, drain_mmlist and others)
32 * mapping->private_lock (in __set_page_dirty_buffers)
33 * inode->i_lock (in set_page_dirty's __mark_inode_dirty)
34 * bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
35 * sb_lock (within inode_lock in fs/fs-writeback.c)
36 * mapping->tree_lock (widely used, in set_page_dirty,
37 * in arch-dependent flush_dcache_mmap_lock,
38 * within bdi.wb->list_lock in __sync_single_inode)
40 * anon_vma->rwsem,mapping->i_mutex (memory_failure, collect_procs_anon)
41 * ->tasklist_lock
42 * pte map lock
45 #include <linux/mm.h>
46 #include <linux/pagemap.h>
47 #include <linux/swap.h>
48 #include <linux/swapops.h>
49 #include <linux/slab.h>
50 #include <linux/init.h>
51 #include <linux/ksm.h>
52 #include <linux/rmap.h>
53 #include <linux/rcupdate.h>
54 #include <linux/export.h>
55 #include <linux/memcontrol.h>
56 #include <linux/mmu_notifier.h>
57 #include <linux/migrate.h>
58 #include <linux/hugetlb.h>
59 #include <linux/backing-dev.h>
61 #include <asm/tlbflush.h>
63 #include "internal.h"
65 static struct kmem_cache *anon_vma_cachep;
66 static struct kmem_cache *anon_vma_chain_cachep;
68 static inline struct anon_vma *anon_vma_alloc(void)
70 struct anon_vma *anon_vma;
72 anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
73 if (anon_vma) {
74 atomic_set(&anon_vma->refcount, 1);
75 anon_vma->degree = 1; /* Reference for first vma */
76 anon_vma->parent = anon_vma;
78 * Initialise the anon_vma root to point to itself. If called
79 * from fork, the root will be reset to the parents anon_vma.
81 anon_vma->root = anon_vma;
84 return anon_vma;
87 static inline void anon_vma_free(struct anon_vma *anon_vma)
89 VM_BUG_ON(atomic_read(&anon_vma->refcount));
92 * Synchronize against page_lock_anon_vma_read() such that
93 * we can safely hold the lock without the anon_vma getting
94 * freed.
96 * Relies on the full mb implied by the atomic_dec_and_test() from
97 * put_anon_vma() against the acquire barrier implied by
98 * down_read_trylock() from page_lock_anon_vma_read(). This orders:
100 * page_lock_anon_vma_read() VS put_anon_vma()
101 * down_read_trylock() atomic_dec_and_test()
102 * LOCK MB
103 * atomic_read() rwsem_is_locked()
105 * LOCK should suffice since the actual taking of the lock must
106 * happen _before_ what follows.
108 might_sleep();
109 if (rwsem_is_locked(&anon_vma->root->rwsem)) {
110 anon_vma_lock_write(anon_vma);
111 anon_vma_unlock_write(anon_vma);
114 kmem_cache_free(anon_vma_cachep, anon_vma);
117 static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp)
119 return kmem_cache_alloc(anon_vma_chain_cachep, gfp);
122 static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
124 kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
127 static void anon_vma_chain_link(struct vm_area_struct *vma,
128 struct anon_vma_chain *avc,
129 struct anon_vma *anon_vma)
131 avc->vma = vma;
132 avc->anon_vma = anon_vma;
133 list_add(&avc->same_vma, &vma->anon_vma_chain);
134 anon_vma_interval_tree_insert(avc, &anon_vma->rb_root);
138 * anon_vma_prepare - attach an anon_vma to a memory region
139 * @vma: the memory region in question
141 * This makes sure the memory mapping described by 'vma' has
142 * an 'anon_vma' attached to it, so that we can associate the
143 * anonymous pages mapped into it with that anon_vma.
145 * The common case will be that we already have one, but if
146 * not we either need to find an adjacent mapping that we
147 * can re-use the anon_vma from (very common when the only
148 * reason for splitting a vma has been mprotect()), or we
149 * allocate a new one.
151 * Anon-vma allocations are very subtle, because we may have
152 * optimistically looked up an anon_vma in page_lock_anon_vma_read()
153 * and that may actually touch the spinlock even in the newly
154 * allocated vma (it depends on RCU to make sure that the
155 * anon_vma isn't actually destroyed).
157 * As a result, we need to do proper anon_vma locking even
158 * for the new allocation. At the same time, we do not want
159 * to do any locking for the common case of already having
160 * an anon_vma.
162 * This must be called with the mmap_sem held for reading.
164 int anon_vma_prepare(struct vm_area_struct *vma)
166 struct anon_vma *anon_vma = vma->anon_vma;
167 struct anon_vma_chain *avc;
169 might_sleep();
170 if (unlikely(!anon_vma)) {
171 struct mm_struct *mm = vma->vm_mm;
172 struct anon_vma *allocated;
174 avc = anon_vma_chain_alloc(GFP_KERNEL);
175 if (!avc)
176 goto out_enomem;
178 anon_vma = find_mergeable_anon_vma(vma);
179 allocated = NULL;
180 if (!anon_vma) {
181 anon_vma = anon_vma_alloc();
182 if (unlikely(!anon_vma))
183 goto out_enomem_free_avc;
184 allocated = anon_vma;
187 anon_vma_lock_write(anon_vma);
188 /* page_table_lock to protect against threads */
189 spin_lock(&mm->page_table_lock);
190 if (likely(!vma->anon_vma)) {
191 vma->anon_vma = anon_vma;
192 anon_vma_chain_link(vma, avc, anon_vma);
193 /* vma reference or self-parent link for new root */
194 anon_vma->degree++;
195 allocated = NULL;
196 avc = NULL;
198 spin_unlock(&mm->page_table_lock);
199 anon_vma_unlock_write(anon_vma);
201 if (unlikely(allocated))
202 put_anon_vma(allocated);
203 if (unlikely(avc))
204 anon_vma_chain_free(avc);
206 return 0;
208 out_enomem_free_avc:
209 anon_vma_chain_free(avc);
210 out_enomem:
211 return -ENOMEM;
215 * This is a useful helper function for locking the anon_vma root as
216 * we traverse the vma->anon_vma_chain, looping over anon_vma's that
217 * have the same vma.
219 * Such anon_vma's should have the same root, so you'd expect to see
220 * just a single mutex_lock for the whole traversal.
222 static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
224 struct anon_vma *new_root = anon_vma->root;
225 if (new_root != root) {
226 if (WARN_ON_ONCE(root))
227 up_write(&root->rwsem);
228 root = new_root;
229 down_write(&root->rwsem);
231 return root;
234 static inline void unlock_anon_vma_root(struct anon_vma *root)
236 if (root)
237 up_write(&root->rwsem);
241 * Attach the anon_vmas from src to dst.
242 * Returns 0 on success, -ENOMEM on failure.
244 * If dst->anon_vma is NULL this function tries to find and reuse existing
245 * anon_vma which has no vmas and only one child anon_vma. This prevents
246 * degradation of anon_vma hierarchy to endless linear chain in case of
247 * constantly forking task. On the other hand, an anon_vma with more than one
248 * child isn't reused even if there was no alive vma, thus rmap walker has a
249 * good chance of avoiding scanning the whole hierarchy when it searches where
250 * page is mapped.
252 int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
254 struct anon_vma_chain *avc, *pavc;
255 struct anon_vma *root = NULL;
257 list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
258 struct anon_vma *anon_vma;
260 avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN);
261 if (unlikely(!avc)) {
262 unlock_anon_vma_root(root);
263 root = NULL;
264 avc = anon_vma_chain_alloc(GFP_KERNEL);
265 if (!avc)
266 goto enomem_failure;
268 anon_vma = pavc->anon_vma;
269 root = lock_anon_vma_root(root, anon_vma);
270 anon_vma_chain_link(dst, avc, anon_vma);
273 * Reuse existing anon_vma if its degree lower than two,
274 * that means it has no vma and only one anon_vma child.
276 * Do not chose parent anon_vma, otherwise first child
277 * will always reuse it. Root anon_vma is never reused:
278 * it has self-parent reference and at least one child.
280 if (!dst->anon_vma && anon_vma != src->anon_vma &&
281 anon_vma->degree < 2)
282 dst->anon_vma = anon_vma;
284 if (dst->anon_vma)
285 dst->anon_vma->degree++;
286 unlock_anon_vma_root(root);
287 return 0;
289 enomem_failure:
291 * dst->anon_vma is dropped here otherwise its degree can be incorrectly
292 * decremented in unlink_anon_vmas().
293 * We can safely do this because callers of anon_vma_clone() don't care
294 * about dst->anon_vma if anon_vma_clone() failed.
296 dst->anon_vma = NULL;
297 unlink_anon_vmas(dst);
298 return -ENOMEM;
302 * Attach vma to its own anon_vma, as well as to the anon_vmas that
303 * the corresponding VMA in the parent process is attached to.
304 * Returns 0 on success, non-zero on failure.
306 int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
308 struct anon_vma_chain *avc;
309 struct anon_vma *anon_vma;
310 int error;
312 /* Don't bother if the parent process has no anon_vma here. */
313 if (!pvma->anon_vma)
314 return 0;
316 /* Drop inherited anon_vma, we'll reuse existing or allocate new. */
317 vma->anon_vma = NULL;
320 * First, attach the new VMA to the parent VMA's anon_vmas,
321 * so rmap can find non-COWed pages in child processes.
323 error = anon_vma_clone(vma, pvma);
324 if (error)
325 return error;
327 /* An existing anon_vma has been reused, all done then. */
328 if (vma->anon_vma)
329 return 0;
331 /* Then add our own anon_vma. */
332 anon_vma = anon_vma_alloc();
333 if (!anon_vma)
334 goto out_error;
335 avc = anon_vma_chain_alloc(GFP_KERNEL);
336 if (!avc)
337 goto out_error_free_anon_vma;
340 * The root anon_vma's spinlock is the lock actually used when we
341 * lock any of the anon_vmas in this anon_vma tree.
343 anon_vma->root = pvma->anon_vma->root;
344 anon_vma->parent = pvma->anon_vma;
346 * With refcounts, an anon_vma can stay around longer than the
347 * process it belongs to. The root anon_vma needs to be pinned until
348 * this anon_vma is freed, because the lock lives in the root.
350 get_anon_vma(anon_vma->root);
351 /* Mark this anon_vma as the one where our new (COWed) pages go. */
352 vma->anon_vma = anon_vma;
353 anon_vma_lock_write(anon_vma);
354 anon_vma_chain_link(vma, avc, anon_vma);
355 anon_vma->parent->degree++;
356 anon_vma_unlock_write(anon_vma);
358 return 0;
360 out_error_free_anon_vma:
361 put_anon_vma(anon_vma);
362 out_error:
363 unlink_anon_vmas(vma);
364 return -ENOMEM;
367 void unlink_anon_vmas(struct vm_area_struct *vma)
369 struct anon_vma_chain *avc, *next;
370 struct anon_vma *root = NULL;
373 * Unlink each anon_vma chained to the VMA. This list is ordered
374 * from newest to oldest, ensuring the root anon_vma gets freed last.
376 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
377 struct anon_vma *anon_vma = avc->anon_vma;
379 root = lock_anon_vma_root(root, anon_vma);
380 anon_vma_interval_tree_remove(avc, &anon_vma->rb_root);
383 * Leave empty anon_vmas on the list - we'll need
384 * to free them outside the lock.
386 if (RB_EMPTY_ROOT(&anon_vma->rb_root)) {
387 anon_vma->parent->degree--;
388 continue;
391 list_del(&avc->same_vma);
392 anon_vma_chain_free(avc);
394 if (vma->anon_vma)
395 vma->anon_vma->degree--;
396 unlock_anon_vma_root(root);
399 * Iterate the list once more, it now only contains empty and unlinked
400 * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
401 * needing to write-acquire the anon_vma->root->rwsem.
403 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
404 struct anon_vma *anon_vma = avc->anon_vma;
406 BUG_ON(anon_vma->degree);
407 put_anon_vma(anon_vma);
409 list_del(&avc->same_vma);
410 anon_vma_chain_free(avc);
414 static void anon_vma_ctor(void *data)
416 struct anon_vma *anon_vma = data;
418 init_rwsem(&anon_vma->rwsem);
419 atomic_set(&anon_vma->refcount, 0);
420 anon_vma->rb_root = RB_ROOT;
423 void __init anon_vma_init(void)
425 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
426 0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor);
427 anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, SLAB_PANIC);
431 * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
433 * Since there is no serialization what so ever against page_remove_rmap()
434 * the best this function can do is return a locked anon_vma that might
435 * have been relevant to this page.
437 * The page might have been remapped to a different anon_vma or the anon_vma
438 * returned may already be freed (and even reused).
440 * In case it was remapped to a different anon_vma, the new anon_vma will be a
441 * child of the old anon_vma, and the anon_vma lifetime rules will therefore
442 * ensure that any anon_vma obtained from the page will still be valid for as
443 * long as we observe page_mapped() [ hence all those page_mapped() tests ].
445 * All users of this function must be very careful when walking the anon_vma
446 * chain and verify that the page in question is indeed mapped in it
447 * [ something equivalent to page_mapped_in_vma() ].
449 * Since anon_vma's slab is DESTROY_BY_RCU and we know from page_remove_rmap()
450 * that the anon_vma pointer from page->mapping is valid if there is a
451 * mapcount, we can dereference the anon_vma after observing those.
453 struct anon_vma *page_get_anon_vma(struct page *page)
455 struct anon_vma *anon_vma = NULL;
456 unsigned long anon_mapping;
458 rcu_read_lock();
459 anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
460 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
461 goto out;
462 if (!page_mapped(page))
463 goto out;
465 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
466 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
467 anon_vma = NULL;
468 goto out;
472 * If this page is still mapped, then its anon_vma cannot have been
473 * freed. But if it has been unmapped, we have no security against the
474 * anon_vma structure being freed and reused (for another anon_vma:
475 * SLAB_DESTROY_BY_RCU guarantees that - so the atomic_inc_not_zero()
476 * above cannot corrupt).
478 if (!page_mapped(page)) {
479 rcu_read_unlock();
480 put_anon_vma(anon_vma);
481 return NULL;
483 out:
484 rcu_read_unlock();
486 return anon_vma;
490 * Similar to page_get_anon_vma() except it locks the anon_vma.
492 * Its a little more complex as it tries to keep the fast path to a single
493 * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
494 * reference like with page_get_anon_vma() and then block on the mutex.
496 struct anon_vma *page_lock_anon_vma_read(struct page *page)
498 struct anon_vma *anon_vma = NULL;
499 struct anon_vma *root_anon_vma;
500 unsigned long anon_mapping;
502 rcu_read_lock();
503 anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
504 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
505 goto out;
506 if (!page_mapped(page))
507 goto out;
509 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
510 root_anon_vma = ACCESS_ONCE(anon_vma->root);
511 if (down_read_trylock(&root_anon_vma->rwsem)) {
513 * If the page is still mapped, then this anon_vma is still
514 * its anon_vma, and holding the mutex ensures that it will
515 * not go away, see anon_vma_free().
517 if (!page_mapped(page)) {
518 up_read(&root_anon_vma->rwsem);
519 anon_vma = NULL;
521 goto out;
524 /* trylock failed, we got to sleep */
525 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
526 anon_vma = NULL;
527 goto out;
530 if (!page_mapped(page)) {
531 rcu_read_unlock();
532 put_anon_vma(anon_vma);
533 return NULL;
536 /* we pinned the anon_vma, its safe to sleep */
537 rcu_read_unlock();
538 anon_vma_lock_read(anon_vma);
540 if (atomic_dec_and_test(&anon_vma->refcount)) {
542 * Oops, we held the last refcount, release the lock
543 * and bail -- can't simply use put_anon_vma() because
544 * we'll deadlock on the anon_vma_lock_write() recursion.
546 anon_vma_unlock_read(anon_vma);
547 __put_anon_vma(anon_vma);
548 anon_vma = NULL;
551 return anon_vma;
553 out:
554 rcu_read_unlock();
555 return anon_vma;
558 void page_unlock_anon_vma_read(struct anon_vma *anon_vma)
560 anon_vma_unlock_read(anon_vma);
564 * At what user virtual address is page expected in @vma?
566 static inline unsigned long
567 __vma_address(struct page *page, struct vm_area_struct *vma)
569 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
571 if (unlikely(is_vm_hugetlb_page(vma)))
572 pgoff = page->index << huge_page_order(page_hstate(page));
574 return vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
577 inline unsigned long
578 vma_address(struct page *page, struct vm_area_struct *vma)
580 unsigned long address = __vma_address(page, vma);
582 /* page should be within @vma mapping range */
583 VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
585 return address;
589 * At what user virtual address is page expected in vma?
590 * Caller should check the page is actually part of the vma.
592 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
594 unsigned long address;
595 if (PageAnon(page)) {
596 struct anon_vma *page__anon_vma = page_anon_vma(page);
598 * Note: swapoff's unuse_vma() is more efficient with this
599 * check, and needs it to match anon_vma when KSM is active.
601 if (!vma->anon_vma || !page__anon_vma ||
602 vma->anon_vma->root != page__anon_vma->root)
603 return -EFAULT;
604 } else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) {
605 if (!vma->vm_file ||
606 vma->vm_file->f_mapping != page->mapping)
607 return -EFAULT;
608 } else
609 return -EFAULT;
610 address = __vma_address(page, vma);
611 if (unlikely(address < vma->vm_start || address >= vma->vm_end))
612 return -EFAULT;
613 return address;
616 pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address)
618 pgd_t *pgd;
619 pud_t *pud;
620 pmd_t *pmd = NULL;
621 pmd_t pmde;
623 pgd = pgd_offset(mm, address);
624 if (!pgd_present(*pgd))
625 goto out;
627 pud = pud_offset(pgd, address);
628 if (!pud_present(*pud))
629 goto out;
631 pmd = pmd_offset(pud, address);
633 * Some THP functions use the sequence pmdp_clear_flush(), set_pmd_at()
634 * without holding anon_vma lock for write. So when looking for a
635 * genuine pmde (in which to find pte), test present and !THP together.
637 pmde = ACCESS_ONCE(*pmd);
638 if (!pmd_present(pmde) || pmd_trans_huge(pmde))
639 pmd = NULL;
640 out:
641 return pmd;
645 * Check that @page is mapped at @address into @mm.
647 * If @sync is false, page_check_address may perform a racy check to avoid
648 * the page table lock when the pte is not present (helpful when reclaiming
649 * highly shared pages).
651 * On success returns with pte mapped and locked.
653 pte_t *__page_check_address(struct page *page, struct mm_struct *mm,
654 unsigned long address, spinlock_t **ptlp, int sync)
656 pmd_t *pmd;
657 pte_t *pte;
658 spinlock_t *ptl;
660 if (unlikely(PageHuge(page))) {
661 /* when pud is not present, pte will be NULL */
662 pte = huge_pte_offset(mm, address);
663 if (!pte)
664 return NULL;
666 ptl = &mm->page_table_lock;
667 goto check;
670 pmd = mm_find_pmd(mm, address);
671 if (!pmd)
672 return NULL;
674 pte = pte_offset_map(pmd, address);
675 /* Make a quick check before getting the lock */
676 if (!sync && !pte_present(*pte)) {
677 pte_unmap(pte);
678 return NULL;
681 ptl = pte_lockptr(mm, pmd);
682 check:
683 spin_lock(ptl);
684 if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
685 *ptlp = ptl;
686 return pte;
688 pte_unmap_unlock(pte, ptl);
689 return NULL;
693 * page_mapped_in_vma - check whether a page is really mapped in a VMA
694 * @page: the page to test
695 * @vma: the VMA to test
697 * Returns 1 if the page is mapped into the page tables of the VMA, 0
698 * if the page is not mapped into the page tables of this VMA. Only
699 * valid for normal file or anonymous VMAs.
701 int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma)
703 unsigned long address;
704 pte_t *pte;
705 spinlock_t *ptl;
707 address = __vma_address(page, vma);
708 if (unlikely(address < vma->vm_start || address >= vma->vm_end))
709 return 0;
710 pte = page_check_address(page, vma->vm_mm, address, &ptl, 1);
711 if (!pte) /* the page is not in this mm */
712 return 0;
713 pte_unmap_unlock(pte, ptl);
715 return 1;
719 * Subfunctions of page_referenced: page_referenced_one called
720 * repeatedly from either page_referenced_anon or page_referenced_file.
722 int page_referenced_one(struct page *page, struct vm_area_struct *vma,
723 unsigned long address, unsigned int *mapcount,
724 unsigned long *vm_flags)
726 struct mm_struct *mm = vma->vm_mm;
727 int referenced = 0;
729 if (unlikely(PageTransHuge(page))) {
730 pmd_t *pmd;
732 spin_lock(&mm->page_table_lock);
734 * rmap might return false positives; we must filter
735 * these out using page_check_address_pmd().
737 pmd = page_check_address_pmd(page, mm, address,
738 PAGE_CHECK_ADDRESS_PMD_FLAG);
739 if (!pmd) {
740 spin_unlock(&mm->page_table_lock);
741 goto out;
744 if (vma->vm_flags & VM_LOCKED) {
745 spin_unlock(&mm->page_table_lock);
746 *mapcount = 0; /* break early from loop */
747 *vm_flags |= VM_LOCKED;
748 goto out;
751 /* go ahead even if the pmd is pmd_trans_splitting() */
752 if (pmdp_clear_flush_young_notify(vma, address, pmd))
753 referenced++;
754 spin_unlock(&mm->page_table_lock);
755 } else {
756 pte_t *pte;
757 spinlock_t *ptl;
760 * rmap might return false positives; we must filter
761 * these out using page_check_address().
763 pte = page_check_address(page, mm, address, &ptl, 0);
764 if (!pte)
765 goto out;
767 if (vma->vm_flags & VM_LOCKED) {
768 pte_unmap_unlock(pte, ptl);
769 *mapcount = 0; /* break early from loop */
770 *vm_flags |= VM_LOCKED;
771 goto out;
774 if (ptep_clear_flush_young_notify(vma, address, pte)) {
776 * Don't treat a reference through a sequentially read
777 * mapping as such. If the page has been used in
778 * another mapping, we will catch it; if this other
779 * mapping is already gone, the unmap path will have
780 * set PG_referenced or activated the page.
782 if (likely(!(vma->vm_flags & VM_SEQ_READ)))
783 referenced++;
785 pte_unmap_unlock(pte, ptl);
788 (*mapcount)--;
790 if (referenced)
791 *vm_flags |= vma->vm_flags;
792 out:
793 return referenced;
796 static int page_referenced_anon(struct page *page,
797 struct mem_cgroup *memcg,
798 unsigned long *vm_flags)
800 unsigned int mapcount;
801 struct anon_vma *anon_vma;
802 pgoff_t pgoff;
803 struct anon_vma_chain *avc;
804 int referenced = 0;
806 anon_vma = page_lock_anon_vma_read(page);
807 if (!anon_vma)
808 return referenced;
810 mapcount = page_mapcount(page);
811 pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
812 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
813 struct vm_area_struct *vma = avc->vma;
814 unsigned long address = vma_address(page, vma);
816 * If we are reclaiming on behalf of a cgroup, skip
817 * counting on behalf of references from different
818 * cgroups
820 if (memcg && !mm_match_cgroup(vma->vm_mm, memcg))
821 continue;
822 referenced += page_referenced_one(page, vma, address,
823 &mapcount, vm_flags);
824 if (!mapcount)
825 break;
828 page_unlock_anon_vma_read(anon_vma);
829 return referenced;
833 * page_referenced_file - referenced check for object-based rmap
834 * @page: the page we're checking references on.
835 * @memcg: target memory control group
836 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
838 * For an object-based mapped page, find all the places it is mapped and
839 * check/clear the referenced flag. This is done by following the page->mapping
840 * pointer, then walking the chain of vmas it holds. It returns the number
841 * of references it found.
843 * This function is only called from page_referenced for object-based pages.
845 static int page_referenced_file(struct page *page,
846 struct mem_cgroup *memcg,
847 unsigned long *vm_flags)
849 unsigned int mapcount;
850 struct address_space *mapping = page->mapping;
851 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
852 struct vm_area_struct *vma;
853 int referenced = 0;
856 * The caller's checks on page->mapping and !PageAnon have made
857 * sure that this is a file page: the check for page->mapping
858 * excludes the case just before it gets set on an anon page.
860 BUG_ON(PageAnon(page));
863 * The page lock not only makes sure that page->mapping cannot
864 * suddenly be NULLified by truncation, it makes sure that the
865 * structure at mapping cannot be freed and reused yet,
866 * so we can safely take mapping->i_mmap_mutex.
868 BUG_ON(!PageLocked(page));
870 mutex_lock(&mapping->i_mmap_mutex);
873 * i_mmap_mutex does not stabilize mapcount at all, but mapcount
874 * is more likely to be accurate if we note it after spinning.
876 mapcount = page_mapcount(page);
878 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
879 unsigned long address = vma_address(page, vma);
881 * If we are reclaiming on behalf of a cgroup, skip
882 * counting on behalf of references from different
883 * cgroups
885 if (memcg && !mm_match_cgroup(vma->vm_mm, memcg))
886 continue;
887 referenced += page_referenced_one(page, vma, address,
888 &mapcount, vm_flags);
889 if (!mapcount)
890 break;
893 mutex_unlock(&mapping->i_mmap_mutex);
894 return referenced;
898 * page_referenced - test if the page was referenced
899 * @page: the page to test
900 * @is_locked: caller holds lock on the page
901 * @memcg: target memory cgroup
902 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
904 * Quick test_and_clear_referenced for all mappings to a page,
905 * returns the number of ptes which referenced the page.
907 int page_referenced(struct page *page,
908 int is_locked,
909 struct mem_cgroup *memcg,
910 unsigned long *vm_flags)
912 int referenced = 0;
913 int we_locked = 0;
915 *vm_flags = 0;
916 if (page_mapped(page) && page_rmapping(page)) {
917 if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
918 we_locked = trylock_page(page);
919 if (!we_locked) {
920 referenced++;
921 goto out;
924 if (unlikely(PageKsm(page)))
925 referenced += page_referenced_ksm(page, memcg,
926 vm_flags);
927 else if (PageAnon(page))
928 referenced += page_referenced_anon(page, memcg,
929 vm_flags);
930 else if (page->mapping)
931 referenced += page_referenced_file(page, memcg,
932 vm_flags);
933 if (we_locked)
934 unlock_page(page);
936 out:
937 return referenced;
940 static int page_mkclean_one(struct page *page, struct vm_area_struct *vma,
941 unsigned long address)
943 struct mm_struct *mm = vma->vm_mm;
944 pte_t *pte;
945 spinlock_t *ptl;
946 int ret = 0;
948 pte = page_check_address(page, mm, address, &ptl, 1);
949 if (!pte)
950 goto out;
952 if (pte_dirty(*pte) || pte_write(*pte)) {
953 pte_t entry;
955 flush_cache_page(vma, address, pte_pfn(*pte));
956 entry = ptep_clear_flush(vma, address, pte);
957 entry = pte_wrprotect(entry);
958 entry = pte_mkclean(entry);
959 set_pte_at(mm, address, pte, entry);
960 ret = 1;
963 pte_unmap_unlock(pte, ptl);
965 if (ret)
966 mmu_notifier_invalidate_page(mm, address);
967 out:
968 return ret;
971 static int page_mkclean_file(struct address_space *mapping, struct page *page)
973 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
974 struct vm_area_struct *vma;
975 int ret = 0;
977 BUG_ON(PageAnon(page));
979 mutex_lock(&mapping->i_mmap_mutex);
980 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
981 if (vma->vm_flags & VM_SHARED) {
982 unsigned long address = vma_address(page, vma);
983 ret += page_mkclean_one(page, vma, address);
986 mutex_unlock(&mapping->i_mmap_mutex);
987 return ret;
990 int page_mkclean(struct page *page)
992 int ret = 0;
994 BUG_ON(!PageLocked(page));
996 if (page_mapped(page)) {
997 struct address_space *mapping = page_mapping(page);
998 if (mapping)
999 ret = page_mkclean_file(mapping, page);
1002 return ret;
1004 EXPORT_SYMBOL_GPL(page_mkclean);
1007 * page_move_anon_rmap - move a page to our anon_vma
1008 * @page: the page to move to our anon_vma
1009 * @vma: the vma the page belongs to
1010 * @address: the user virtual address mapped
1012 * When a page belongs exclusively to one process after a COW event,
1013 * that page can be moved into the anon_vma that belongs to just that
1014 * process, so the rmap code will not search the parent or sibling
1015 * processes.
1017 void page_move_anon_rmap(struct page *page,
1018 struct vm_area_struct *vma, unsigned long address)
1020 struct anon_vma *anon_vma = vma->anon_vma;
1022 VM_BUG_ON(!PageLocked(page));
1023 VM_BUG_ON(!anon_vma);
1024 VM_BUG_ON(page->index != linear_page_index(vma, address));
1026 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1027 page->mapping = (struct address_space *) anon_vma;
1031 * __page_set_anon_rmap - set up new anonymous rmap
1032 * @page: Page to add to rmap
1033 * @vma: VM area to add page to.
1034 * @address: User virtual address of the mapping
1035 * @exclusive: the page is exclusively owned by the current process
1037 static void __page_set_anon_rmap(struct page *page,
1038 struct vm_area_struct *vma, unsigned long address, int exclusive)
1040 struct anon_vma *anon_vma = vma->anon_vma;
1042 BUG_ON(!anon_vma);
1044 if (PageAnon(page))
1045 return;
1048 * If the page isn't exclusively mapped into this vma,
1049 * we must use the _oldest_ possible anon_vma for the
1050 * page mapping!
1052 if (!exclusive)
1053 anon_vma = anon_vma->root;
1055 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1056 page->mapping = (struct address_space *) anon_vma;
1057 page->index = linear_page_index(vma, address);
1061 * __page_check_anon_rmap - sanity check anonymous rmap addition
1062 * @page: the page to add the mapping to
1063 * @vma: the vm area in which the mapping is added
1064 * @address: the user virtual address mapped
1066 static void __page_check_anon_rmap(struct page *page,
1067 struct vm_area_struct *vma, unsigned long address)
1069 #ifdef CONFIG_DEBUG_VM
1071 * The page's anon-rmap details (mapping and index) are guaranteed to
1072 * be set up correctly at this point.
1074 * We have exclusion against page_add_anon_rmap because the caller
1075 * always holds the page locked, except if called from page_dup_rmap,
1076 * in which case the page is already known to be setup.
1078 * We have exclusion against page_add_new_anon_rmap because those pages
1079 * are initially only visible via the pagetables, and the pte is locked
1080 * over the call to page_add_new_anon_rmap.
1082 BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root);
1083 BUG_ON(page->index != linear_page_index(vma, address));
1084 #endif
1088 * page_add_anon_rmap - add pte mapping to an anonymous page
1089 * @page: the page to add the mapping to
1090 * @vma: the vm area in which the mapping is added
1091 * @address: the user virtual address mapped
1093 * The caller needs to hold the pte lock, and the page must be locked in
1094 * the anon_vma case: to serialize mapping,index checking after setting,
1095 * and to ensure that PageAnon is not being upgraded racily to PageKsm
1096 * (but PageKsm is never downgraded to PageAnon).
1098 void page_add_anon_rmap(struct page *page,
1099 struct vm_area_struct *vma, unsigned long address)
1101 do_page_add_anon_rmap(page, vma, address, 0);
1105 * Special version of the above for do_swap_page, which often runs
1106 * into pages that are exclusively owned by the current process.
1107 * Everybody else should continue to use page_add_anon_rmap above.
1109 void do_page_add_anon_rmap(struct page *page,
1110 struct vm_area_struct *vma, unsigned long address, int exclusive)
1112 int first = atomic_inc_and_test(&page->_mapcount);
1113 if (first) {
1114 if (PageTransHuge(page))
1115 __inc_zone_page_state(page,
1116 NR_ANON_TRANSPARENT_HUGEPAGES);
1117 __mod_zone_page_state(page_zone(page), NR_ANON_PAGES,
1118 hpage_nr_pages(page));
1120 if (unlikely(PageKsm(page)))
1121 return;
1123 VM_BUG_ON(!PageLocked(page));
1124 /* address might be in next vma when migration races vma_adjust */
1125 if (first)
1126 __page_set_anon_rmap(page, vma, address, exclusive);
1127 else
1128 __page_check_anon_rmap(page, vma, address);
1132 * page_add_new_anon_rmap - add pte mapping to a new anonymous page
1133 * @page: the page to add the mapping to
1134 * @vma: the vm area in which the mapping is added
1135 * @address: the user virtual address mapped
1137 * Same as page_add_anon_rmap but must only be called on *new* pages.
1138 * This means the inc-and-test can be bypassed.
1139 * Page does not have to be locked.
1141 void page_add_new_anon_rmap(struct page *page,
1142 struct vm_area_struct *vma, unsigned long address)
1144 VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1145 SetPageSwapBacked(page);
1146 atomic_set(&page->_mapcount, 0); /* increment count (starts at -1) */
1147 if (PageTransHuge(page))
1148 __inc_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
1149 __mod_zone_page_state(page_zone(page), NR_ANON_PAGES,
1150 hpage_nr_pages(page));
1151 __page_set_anon_rmap(page, vma, address, 1);
1152 if (!mlocked_vma_newpage(vma, page)) {
1153 SetPageActive(page);
1154 lru_cache_add(page);
1155 } else
1156 add_page_to_unevictable_list(page);
1160 * page_add_file_rmap - add pte mapping to a file page
1161 * @page: the page to add the mapping to
1163 * The caller needs to hold the pte lock.
1165 void page_add_file_rmap(struct page *page)
1167 bool locked;
1168 unsigned long flags;
1170 mem_cgroup_begin_update_page_stat(page, &locked, &flags);
1171 if (atomic_inc_and_test(&page->_mapcount)) {
1172 __inc_zone_page_state(page, NR_FILE_MAPPED);
1173 mem_cgroup_inc_page_stat(page, MEM_CGROUP_STAT_FILE_MAPPED);
1175 mem_cgroup_end_update_page_stat(page, &locked, &flags);
1179 * page_remove_rmap - take down pte mapping from a page
1180 * @page: page to remove mapping from
1182 * The caller needs to hold the pte lock.
1184 void page_remove_rmap(struct page *page)
1186 bool anon = PageAnon(page);
1187 bool locked;
1188 unsigned long flags;
1191 * The anon case has no mem_cgroup page_stat to update; but may
1192 * uncharge_page() below, where the lock ordering can deadlock if
1193 * we hold the lock against page_stat move: so avoid it on anon.
1195 if (!anon)
1196 mem_cgroup_begin_update_page_stat(page, &locked, &flags);
1198 /* page still mapped by someone else? */
1199 if (!atomic_add_negative(-1, &page->_mapcount))
1200 goto out;
1203 * Hugepages are not counted in NR_ANON_PAGES nor NR_FILE_MAPPED
1204 * and not charged by memcg for now.
1206 if (unlikely(PageHuge(page)))
1207 goto out;
1208 if (anon) {
1209 mem_cgroup_uncharge_page(page);
1210 if (PageTransHuge(page))
1211 __dec_zone_page_state(page,
1212 NR_ANON_TRANSPARENT_HUGEPAGES);
1213 __mod_zone_page_state(page_zone(page), NR_ANON_PAGES,
1214 -hpage_nr_pages(page));
1215 } else {
1216 __dec_zone_page_state(page, NR_FILE_MAPPED);
1217 mem_cgroup_dec_page_stat(page, MEM_CGROUP_STAT_FILE_MAPPED);
1218 mem_cgroup_end_update_page_stat(page, &locked, &flags);
1220 if (unlikely(PageMlocked(page)))
1221 clear_page_mlock(page);
1223 * It would be tidy to reset the PageAnon mapping here,
1224 * but that might overwrite a racing page_add_anon_rmap
1225 * which increments mapcount after us but sets mapping
1226 * before us: so leave the reset to free_hot_cold_page,
1227 * and remember that it's only reliable while mapped.
1228 * Leaving it set also helps swapoff to reinstate ptes
1229 * faster for those pages still in swapcache.
1231 return;
1232 out:
1233 if (!anon)
1234 mem_cgroup_end_update_page_stat(page, &locked, &flags);
1238 * Subfunctions of try_to_unmap: try_to_unmap_one called
1239 * repeatedly from try_to_unmap_ksm, try_to_unmap_anon or try_to_unmap_file.
1241 int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
1242 unsigned long address, enum ttu_flags flags)
1244 struct mm_struct *mm = vma->vm_mm;
1245 pte_t *pte;
1246 pte_t pteval;
1247 spinlock_t *ptl;
1248 int ret = SWAP_AGAIN;
1250 pte = page_check_address(page, mm, address, &ptl, 0);
1251 if (!pte)
1252 goto out;
1255 * If the page is mlock()d, we cannot swap it out.
1256 * If it's recently referenced (perhaps page_referenced
1257 * skipped over this mm) then we should reactivate it.
1259 if (!(flags & TTU_IGNORE_MLOCK)) {
1260 if (vma->vm_flags & VM_LOCKED)
1261 goto out_mlock;
1263 if (TTU_ACTION(flags) == TTU_MUNLOCK)
1264 goto out_unmap;
1266 if (!(flags & TTU_IGNORE_ACCESS)) {
1267 if (ptep_clear_flush_young_notify(vma, address, pte)) {
1268 ret = SWAP_FAIL;
1269 goto out_unmap;
1273 /* Nuke the page table entry. */
1274 flush_cache_page(vma, address, page_to_pfn(page));
1275 pteval = ptep_clear_flush(vma, address, pte);
1277 /* Move the dirty bit to the physical page now the pte is gone. */
1278 if (pte_dirty(pteval))
1279 set_page_dirty(page);
1281 /* Update high watermark before we lower rss */
1282 update_hiwater_rss(mm);
1284 if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
1285 if (!PageHuge(page)) {
1286 if (PageAnon(page))
1287 dec_mm_counter(mm, MM_ANONPAGES);
1288 else
1289 dec_mm_counter(mm, MM_FILEPAGES);
1291 set_pte_at(mm, address, pte,
1292 swp_entry_to_pte(make_hwpoison_entry(page)));
1293 } else if (PageAnon(page)) {
1294 swp_entry_t entry = { .val = page_private(page) };
1295 pte_t swp_pte;
1297 if (PageSwapCache(page)) {
1299 * Store the swap location in the pte.
1300 * See handle_pte_fault() ...
1302 if (swap_duplicate(entry) < 0) {
1303 set_pte_at(mm, address, pte, pteval);
1304 ret = SWAP_FAIL;
1305 goto out_unmap;
1307 if (list_empty(&mm->mmlist)) {
1308 spin_lock(&mmlist_lock);
1309 if (list_empty(&mm->mmlist))
1310 list_add(&mm->mmlist, &init_mm.mmlist);
1311 spin_unlock(&mmlist_lock);
1313 dec_mm_counter(mm, MM_ANONPAGES);
1314 inc_mm_counter(mm, MM_SWAPENTS);
1315 } else if (IS_ENABLED(CONFIG_MIGRATION)) {
1317 * Store the pfn of the page in a special migration
1318 * pte. do_swap_page() will wait until the migration
1319 * pte is removed and then restart fault handling.
1321 BUG_ON(TTU_ACTION(flags) != TTU_MIGRATION);
1322 entry = make_migration_entry(page, pte_write(pteval));
1324 swp_pte = swp_entry_to_pte(entry);
1325 if (pte_soft_dirty(pteval))
1326 swp_pte = pte_swp_mksoft_dirty(swp_pte);
1327 set_pte_at(mm, address, pte, swp_pte);
1328 BUG_ON(pte_file(*pte));
1329 } else if (IS_ENABLED(CONFIG_MIGRATION) &&
1330 (TTU_ACTION(flags) == TTU_MIGRATION)) {
1331 /* Establish migration entry for a file page */
1332 swp_entry_t entry;
1333 entry = make_migration_entry(page, pte_write(pteval));
1334 set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
1335 } else
1336 dec_mm_counter(mm, MM_FILEPAGES);
1338 page_remove_rmap(page);
1339 page_cache_release(page);
1341 out_unmap:
1342 pte_unmap_unlock(pte, ptl);
1343 if (ret != SWAP_FAIL)
1344 mmu_notifier_invalidate_page(mm, address);
1345 out:
1346 return ret;
1348 out_mlock:
1349 pte_unmap_unlock(pte, ptl);
1353 * We need mmap_sem locking, Otherwise VM_LOCKED check makes
1354 * unstable result and race. Plus, We can't wait here because
1355 * we now hold anon_vma->rwsem or mapping->i_mmap_mutex.
1356 * if trylock failed, the page remain in evictable lru and later
1357 * vmscan could retry to move the page to unevictable lru if the
1358 * page is actually mlocked.
1360 if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
1361 if (vma->vm_flags & VM_LOCKED) {
1362 mlock_vma_page(page);
1363 ret = SWAP_MLOCK;
1365 up_read(&vma->vm_mm->mmap_sem);
1367 return ret;
1371 * objrmap doesn't work for nonlinear VMAs because the assumption that
1372 * offset-into-file correlates with offset-into-virtual-addresses does not hold.
1373 * Consequently, given a particular page and its ->index, we cannot locate the
1374 * ptes which are mapping that page without an exhaustive linear search.
1376 * So what this code does is a mini "virtual scan" of each nonlinear VMA which
1377 * maps the file to which the target page belongs. The ->vm_private_data field
1378 * holds the current cursor into that scan. Successive searches will circulate
1379 * around the vma's virtual address space.
1381 * So as more replacement pressure is applied to the pages in a nonlinear VMA,
1382 * more scanning pressure is placed against them as well. Eventually pages
1383 * will become fully unmapped and are eligible for eviction.
1385 * For very sparsely populated VMAs this is a little inefficient - chances are
1386 * there there won't be many ptes located within the scan cluster. In this case
1387 * maybe we could scan further - to the end of the pte page, perhaps.
1389 * Mlocked pages: check VM_LOCKED under mmap_sem held for read, if we can
1390 * acquire it without blocking. If vma locked, mlock the pages in the cluster,
1391 * rather than unmapping them. If we encounter the "check_page" that vmscan is
1392 * trying to unmap, return SWAP_MLOCK, else default SWAP_AGAIN.
1394 #define CLUSTER_SIZE min(32*PAGE_SIZE, PMD_SIZE)
1395 #define CLUSTER_MASK (~(CLUSTER_SIZE - 1))
1397 static int try_to_unmap_cluster(unsigned long cursor, unsigned int *mapcount,
1398 struct vm_area_struct *vma, struct page *check_page)
1400 struct mm_struct *mm = vma->vm_mm;
1401 pmd_t *pmd;
1402 pte_t *pte;
1403 pte_t pteval;
1404 spinlock_t *ptl;
1405 struct page *page;
1406 unsigned long address;
1407 unsigned long mmun_start; /* For mmu_notifiers */
1408 unsigned long mmun_end; /* For mmu_notifiers */
1409 unsigned long end;
1410 int ret = SWAP_AGAIN;
1411 int locked_vma = 0;
1413 address = (vma->vm_start + cursor) & CLUSTER_MASK;
1414 end = address + CLUSTER_SIZE;
1415 if (address < vma->vm_start)
1416 address = vma->vm_start;
1417 if (end > vma->vm_end)
1418 end = vma->vm_end;
1420 pmd = mm_find_pmd(mm, address);
1421 if (!pmd)
1422 return ret;
1424 mmun_start = address;
1425 mmun_end = end;
1426 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1429 * If we can acquire the mmap_sem for read, and vma is VM_LOCKED,
1430 * keep the sem while scanning the cluster for mlocking pages.
1432 if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
1433 locked_vma = (vma->vm_flags & VM_LOCKED);
1434 if (!locked_vma)
1435 up_read(&vma->vm_mm->mmap_sem); /* don't need it */
1438 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
1440 /* Update high watermark before we lower rss */
1441 update_hiwater_rss(mm);
1443 for (; address < end; pte++, address += PAGE_SIZE) {
1444 if (!pte_present(*pte))
1445 continue;
1446 page = vm_normal_page(vma, address, *pte);
1447 BUG_ON(!page || PageAnon(page));
1449 if (locked_vma) {
1450 if (page == check_page) {
1451 /* we know we have check_page locked */
1452 mlock_vma_page(page);
1453 ret = SWAP_MLOCK;
1454 } else if (trylock_page(page)) {
1456 * If we can lock the page, perform mlock.
1457 * Otherwise leave the page alone, it will be
1458 * eventually encountered again later.
1460 mlock_vma_page(page);
1461 unlock_page(page);
1463 continue; /* don't unmap */
1466 if (ptep_clear_flush_young_notify(vma, address, pte))
1467 continue;
1469 /* Nuke the page table entry. */
1470 flush_cache_page(vma, address, pte_pfn(*pte));
1471 pteval = ptep_clear_flush(vma, address, pte);
1473 /* If nonlinear, store the file page offset in the pte. */
1474 if (page->index != linear_page_index(vma, address)) {
1475 pte_t ptfile = pgoff_to_pte(page->index);
1476 if (pte_soft_dirty(pteval))
1477 pte_file_mksoft_dirty(ptfile);
1478 set_pte_at(mm, address, pte, ptfile);
1481 /* Move the dirty bit to the physical page now the pte is gone. */
1482 if (pte_dirty(pteval))
1483 set_page_dirty(page);
1485 page_remove_rmap(page);
1486 page_cache_release(page);
1487 dec_mm_counter(mm, MM_FILEPAGES);
1488 (*mapcount)--;
1490 pte_unmap_unlock(pte - 1, ptl);
1491 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1492 if (locked_vma)
1493 up_read(&vma->vm_mm->mmap_sem);
1494 return ret;
1497 bool is_vma_temporary_stack(struct vm_area_struct *vma)
1499 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
1501 if (!maybe_stack)
1502 return false;
1504 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
1505 VM_STACK_INCOMPLETE_SETUP)
1506 return true;
1508 return false;
1512 * try_to_unmap_anon - unmap or unlock anonymous page using the object-based
1513 * rmap method
1514 * @page: the page to unmap/unlock
1515 * @flags: action and flags
1517 * Find all the mappings of a page using the mapping pointer and the vma chains
1518 * contained in the anon_vma struct it points to.
1520 * This function is only called from try_to_unmap/try_to_munlock for
1521 * anonymous pages.
1522 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1523 * where the page was found will be held for write. So, we won't recheck
1524 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1525 * 'LOCKED.
1527 static int try_to_unmap_anon(struct page *page, enum ttu_flags flags)
1529 struct anon_vma *anon_vma;
1530 pgoff_t pgoff;
1531 struct anon_vma_chain *avc;
1532 int ret = SWAP_AGAIN;
1534 anon_vma = page_lock_anon_vma_read(page);
1535 if (!anon_vma)
1536 return ret;
1538 pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1539 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
1540 struct vm_area_struct *vma = avc->vma;
1541 unsigned long address;
1544 * During exec, a temporary VMA is setup and later moved.
1545 * The VMA is moved under the anon_vma lock but not the
1546 * page tables leading to a race where migration cannot
1547 * find the migration ptes. Rather than increasing the
1548 * locking requirements of exec(), migration skips
1549 * temporary VMAs until after exec() completes.
1551 if (IS_ENABLED(CONFIG_MIGRATION) && (flags & TTU_MIGRATION) &&
1552 is_vma_temporary_stack(vma))
1553 continue;
1555 address = vma_address(page, vma);
1556 ret = try_to_unmap_one(page, vma, address, flags);
1557 if (ret != SWAP_AGAIN || !page_mapped(page))
1558 break;
1561 page_unlock_anon_vma_read(anon_vma);
1562 return ret;
1566 * try_to_unmap_file - unmap/unlock file page using the object-based rmap method
1567 * @page: the page to unmap/unlock
1568 * @flags: action and flags
1570 * Find all the mappings of a page using the mapping pointer and the vma chains
1571 * contained in the address_space struct it points to.
1573 * This function is only called from try_to_unmap/try_to_munlock for
1574 * object-based pages.
1575 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1576 * where the page was found will be held for write. So, we won't recheck
1577 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1578 * 'LOCKED.
1580 static int try_to_unmap_file(struct page *page, enum ttu_flags flags)
1582 struct address_space *mapping = page->mapping;
1583 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1584 struct vm_area_struct *vma;
1585 int ret = SWAP_AGAIN;
1586 unsigned long cursor;
1587 unsigned long max_nl_cursor = 0;
1588 unsigned long max_nl_size = 0;
1589 unsigned int mapcount;
1591 if (PageHuge(page))
1592 pgoff = page->index << compound_order(page);
1594 mutex_lock(&mapping->i_mmap_mutex);
1595 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
1596 unsigned long address = vma_address(page, vma);
1597 ret = try_to_unmap_one(page, vma, address, flags);
1598 if (ret != SWAP_AGAIN || !page_mapped(page))
1599 goto out;
1602 if (list_empty(&mapping->i_mmap_nonlinear))
1603 goto out;
1606 * We don't bother to try to find the munlocked page in nonlinears.
1607 * It's costly. Instead, later, page reclaim logic may call
1608 * try_to_unmap(TTU_MUNLOCK) and recover PG_mlocked lazily.
1610 if (TTU_ACTION(flags) == TTU_MUNLOCK)
1611 goto out;
1613 list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
1614 shared.nonlinear) {
1615 cursor = (unsigned long) vma->vm_private_data;
1616 if (cursor > max_nl_cursor)
1617 max_nl_cursor = cursor;
1618 cursor = vma->vm_end - vma->vm_start;
1619 if (cursor > max_nl_size)
1620 max_nl_size = cursor;
1623 if (max_nl_size == 0) { /* all nonlinears locked or reserved ? */
1624 ret = SWAP_FAIL;
1625 goto out;
1629 * We don't try to search for this page in the nonlinear vmas,
1630 * and page_referenced wouldn't have found it anyway. Instead
1631 * just walk the nonlinear vmas trying to age and unmap some.
1632 * The mapcount of the page we came in with is irrelevant,
1633 * but even so use it as a guide to how hard we should try?
1635 mapcount = page_mapcount(page);
1636 if (!mapcount)
1637 goto out;
1638 cond_resched();
1640 max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK;
1641 if (max_nl_cursor == 0)
1642 max_nl_cursor = CLUSTER_SIZE;
1644 do {
1645 list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
1646 shared.nonlinear) {
1647 cursor = (unsigned long) vma->vm_private_data;
1648 while ( cursor < max_nl_cursor &&
1649 cursor < vma->vm_end - vma->vm_start) {
1650 if (try_to_unmap_cluster(cursor, &mapcount,
1651 vma, page) == SWAP_MLOCK)
1652 ret = SWAP_MLOCK;
1653 cursor += CLUSTER_SIZE;
1654 vma->vm_private_data = (void *) cursor;
1655 if ((int)mapcount <= 0)
1656 goto out;
1658 vma->vm_private_data = (void *) max_nl_cursor;
1660 cond_resched();
1661 max_nl_cursor += CLUSTER_SIZE;
1662 } while (max_nl_cursor <= max_nl_size);
1665 * Don't loop forever (perhaps all the remaining pages are
1666 * in locked vmas). Reset cursor on all unreserved nonlinear
1667 * vmas, now forgetting on which ones it had fallen behind.
1669 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.nonlinear)
1670 vma->vm_private_data = NULL;
1671 out:
1672 mutex_unlock(&mapping->i_mmap_mutex);
1673 return ret;
1677 * try_to_unmap - try to remove all page table mappings to a page
1678 * @page: the page to get unmapped
1679 * @flags: action and flags
1681 * Tries to remove all the page table entries which are mapping this
1682 * page, used in the pageout path. Caller must hold the page lock.
1683 * Return values are:
1685 * SWAP_SUCCESS - we succeeded in removing all mappings
1686 * SWAP_AGAIN - we missed a mapping, try again later
1687 * SWAP_FAIL - the page is unswappable
1688 * SWAP_MLOCK - page is mlocked.
1690 int try_to_unmap(struct page *page, enum ttu_flags flags)
1692 int ret;
1694 BUG_ON(!PageLocked(page));
1695 VM_BUG_ON(!PageHuge(page) && PageTransHuge(page));
1697 if (unlikely(PageKsm(page)))
1698 ret = try_to_unmap_ksm(page, flags);
1699 else if (PageAnon(page))
1700 ret = try_to_unmap_anon(page, flags);
1701 else
1702 ret = try_to_unmap_file(page, flags);
1703 if (ret != SWAP_MLOCK && !page_mapped(page))
1704 ret = SWAP_SUCCESS;
1705 return ret;
1709 * try_to_munlock - try to munlock a page
1710 * @page: the page to be munlocked
1712 * Called from munlock code. Checks all of the VMAs mapping the page
1713 * to make sure nobody else has this page mlocked. The page will be
1714 * returned with PG_mlocked cleared if no other vmas have it mlocked.
1716 * Return values are:
1718 * SWAP_AGAIN - no vma is holding page mlocked, or,
1719 * SWAP_AGAIN - page mapped in mlocked vma -- couldn't acquire mmap sem
1720 * SWAP_FAIL - page cannot be located at present
1721 * SWAP_MLOCK - page is now mlocked.
1723 int try_to_munlock(struct page *page)
1725 VM_BUG_ON(!PageLocked(page) || PageLRU(page));
1727 if (unlikely(PageKsm(page)))
1728 return try_to_unmap_ksm(page, TTU_MUNLOCK);
1729 else if (PageAnon(page))
1730 return try_to_unmap_anon(page, TTU_MUNLOCK);
1731 else
1732 return try_to_unmap_file(page, TTU_MUNLOCK);
1735 void __put_anon_vma(struct anon_vma *anon_vma)
1737 struct anon_vma *root = anon_vma->root;
1739 anon_vma_free(anon_vma);
1740 if (root != anon_vma && atomic_dec_and_test(&root->refcount))
1741 anon_vma_free(root);
1744 #ifdef CONFIG_MIGRATION
1746 * rmap_walk() and its helpers rmap_walk_anon() and rmap_walk_file():
1747 * Called by migrate.c to remove migration ptes, but might be used more later.
1749 static int rmap_walk_anon(struct page *page, int (*rmap_one)(struct page *,
1750 struct vm_area_struct *, unsigned long, void *), void *arg)
1752 struct anon_vma *anon_vma;
1753 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1754 struct anon_vma_chain *avc;
1755 int ret = SWAP_AGAIN;
1758 * Note: remove_migration_ptes() cannot use page_lock_anon_vma_read()
1759 * because that depends on page_mapped(); but not all its usages
1760 * are holding mmap_sem. Users without mmap_sem are required to
1761 * take a reference count to prevent the anon_vma disappearing
1763 anon_vma = page_anon_vma(page);
1764 if (!anon_vma)
1765 return ret;
1766 anon_vma_lock_read(anon_vma);
1767 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
1768 struct vm_area_struct *vma = avc->vma;
1769 unsigned long address = vma_address(page, vma);
1770 ret = rmap_one(page, vma, address, arg);
1771 if (ret != SWAP_AGAIN)
1772 break;
1774 anon_vma_unlock_read(anon_vma);
1775 return ret;
1778 static int rmap_walk_file(struct page *page, int (*rmap_one)(struct page *,
1779 struct vm_area_struct *, unsigned long, void *), void *arg)
1781 struct address_space *mapping = page->mapping;
1782 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1783 struct vm_area_struct *vma;
1784 int ret = SWAP_AGAIN;
1786 if (!mapping)
1787 return ret;
1788 mutex_lock(&mapping->i_mmap_mutex);
1789 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
1790 unsigned long address = vma_address(page, vma);
1791 ret = rmap_one(page, vma, address, arg);
1792 if (ret != SWAP_AGAIN)
1793 break;
1796 * No nonlinear handling: being always shared, nonlinear vmas
1797 * never contain migration ptes. Decide what to do about this
1798 * limitation to linear when we need rmap_walk() on nonlinear.
1800 mutex_unlock(&mapping->i_mmap_mutex);
1801 return ret;
1804 int rmap_walk(struct page *page, int (*rmap_one)(struct page *,
1805 struct vm_area_struct *, unsigned long, void *), void *arg)
1807 VM_BUG_ON(!PageLocked(page));
1809 if (unlikely(PageKsm(page)))
1810 return rmap_walk_ksm(page, rmap_one, arg);
1811 else if (PageAnon(page))
1812 return rmap_walk_anon(page, rmap_one, arg);
1813 else
1814 return rmap_walk_file(page, rmap_one, arg);
1816 #endif /* CONFIG_MIGRATION */
1818 #ifdef CONFIG_HUGETLB_PAGE
1820 * The following three functions are for anonymous (private mapped) hugepages.
1821 * Unlike common anonymous pages, anonymous hugepages have no accounting code
1822 * and no lru code, because we handle hugepages differently from common pages.
1824 static void __hugepage_set_anon_rmap(struct page *page,
1825 struct vm_area_struct *vma, unsigned long address, int exclusive)
1827 struct anon_vma *anon_vma = vma->anon_vma;
1829 BUG_ON(!anon_vma);
1831 if (PageAnon(page))
1832 return;
1833 if (!exclusive)
1834 anon_vma = anon_vma->root;
1836 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1837 page->mapping = (struct address_space *) anon_vma;
1838 page->index = linear_page_index(vma, address);
1841 void hugepage_add_anon_rmap(struct page *page,
1842 struct vm_area_struct *vma, unsigned long address)
1844 struct anon_vma *anon_vma = vma->anon_vma;
1845 int first;
1847 BUG_ON(!PageLocked(page));
1848 BUG_ON(!anon_vma);
1849 /* address might be in next vma when migration races vma_adjust */
1850 first = atomic_inc_and_test(&page->_mapcount);
1851 if (first)
1852 __hugepage_set_anon_rmap(page, vma, address, 0);
1855 void hugepage_add_new_anon_rmap(struct page *page,
1856 struct vm_area_struct *vma, unsigned long address)
1858 BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1859 atomic_set(&page->_mapcount, 0);
1860 __hugepage_set_anon_rmap(page, vma, address, 1);
1862 #endif /* CONFIG_HUGETLB_PAGE */