Linux 3.12.70
[linux/fpc-iii.git] / net / sctp / auth.c
blobbd20514178c864f9ccfe2b3163a1fdaccb2a60cc
1 /* SCTP kernel implementation
2 * (C) Copyright 2007 Hewlett-Packard Development Company, L.P.
4 * This file is part of the SCTP kernel implementation
6 * This SCTP implementation is free software;
7 * you can redistribute it and/or modify it under the terms of
8 * the GNU General Public License as published by
9 * the Free Software Foundation; either version 2, or (at your option)
10 * any later version.
12 * This SCTP implementation is distributed in the hope that it
13 * will be useful, but WITHOUT ANY WARRANTY; without even the implied
14 * ************************
15 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
16 * See the GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public License
19 * along with GNU CC; see the file COPYING. If not, write to
20 * the Free Software Foundation, 59 Temple Place - Suite 330,
21 * Boston, MA 02111-1307, USA.
23 * Please send any bug reports or fixes you make to the
24 * email address(es):
25 * lksctp developers <linux-sctp@vger.kernel.org>
27 * Written or modified by:
28 * Vlad Yasevich <vladislav.yasevich@hp.com>
31 #include <linux/slab.h>
32 #include <linux/types.h>
33 #include <linux/crypto.h>
34 #include <linux/scatterlist.h>
35 #include <net/sctp/sctp.h>
36 #include <net/sctp/auth.h>
38 static struct sctp_hmac sctp_hmac_list[SCTP_AUTH_NUM_HMACS] = {
40 /* id 0 is reserved. as all 0 */
41 .hmac_id = SCTP_AUTH_HMAC_ID_RESERVED_0,
44 .hmac_id = SCTP_AUTH_HMAC_ID_SHA1,
45 .hmac_name="hmac(sha1)",
46 .hmac_len = SCTP_SHA1_SIG_SIZE,
49 /* id 2 is reserved as well */
50 .hmac_id = SCTP_AUTH_HMAC_ID_RESERVED_2,
52 #if defined (CONFIG_CRYPTO_SHA256) || defined (CONFIG_CRYPTO_SHA256_MODULE)
54 .hmac_id = SCTP_AUTH_HMAC_ID_SHA256,
55 .hmac_name="hmac(sha256)",
56 .hmac_len = SCTP_SHA256_SIG_SIZE,
58 #endif
62 void sctp_auth_key_put(struct sctp_auth_bytes *key)
64 if (!key)
65 return;
67 if (atomic_dec_and_test(&key->refcnt)) {
68 kzfree(key);
69 SCTP_DBG_OBJCNT_DEC(keys);
73 /* Create a new key structure of a given length */
74 static struct sctp_auth_bytes *sctp_auth_create_key(__u32 key_len, gfp_t gfp)
76 struct sctp_auth_bytes *key;
78 /* Verify that we are not going to overflow INT_MAX */
79 if (key_len > (INT_MAX - sizeof(struct sctp_auth_bytes)))
80 return NULL;
82 /* Allocate the shared key */
83 key = kmalloc(sizeof(struct sctp_auth_bytes) + key_len, gfp);
84 if (!key)
85 return NULL;
87 key->len = key_len;
88 atomic_set(&key->refcnt, 1);
89 SCTP_DBG_OBJCNT_INC(keys);
91 return key;
94 /* Create a new shared key container with a give key id */
95 struct sctp_shared_key *sctp_auth_shkey_create(__u16 key_id, gfp_t gfp)
97 struct sctp_shared_key *new;
99 /* Allocate the shared key container */
100 new = kzalloc(sizeof(struct sctp_shared_key), gfp);
101 if (!new)
102 return NULL;
104 INIT_LIST_HEAD(&new->key_list);
105 new->key_id = key_id;
107 return new;
110 /* Free the shared key structure */
111 static void sctp_auth_shkey_free(struct sctp_shared_key *sh_key)
113 BUG_ON(!list_empty(&sh_key->key_list));
114 sctp_auth_key_put(sh_key->key);
115 sh_key->key = NULL;
116 kfree(sh_key);
119 /* Destroy the entire key list. This is done during the
120 * associon and endpoint free process.
122 void sctp_auth_destroy_keys(struct list_head *keys)
124 struct sctp_shared_key *ep_key;
125 struct sctp_shared_key *tmp;
127 if (list_empty(keys))
128 return;
130 key_for_each_safe(ep_key, tmp, keys) {
131 list_del_init(&ep_key->key_list);
132 sctp_auth_shkey_free(ep_key);
136 /* Compare two byte vectors as numbers. Return values
137 * are:
138 * 0 - vectors are equal
139 * < 0 - vector 1 is smaller than vector2
140 * > 0 - vector 1 is greater than vector2
142 * Algorithm is:
143 * This is performed by selecting the numerically smaller key vector...
144 * If the key vectors are equal as numbers but differ in length ...
145 * the shorter vector is considered smaller
147 * Examples (with small values):
148 * 000123456789 > 123456789 (first number is longer)
149 * 000123456789 < 234567891 (second number is larger numerically)
150 * 123456789 > 2345678 (first number is both larger & longer)
152 static int sctp_auth_compare_vectors(struct sctp_auth_bytes *vector1,
153 struct sctp_auth_bytes *vector2)
155 int diff;
156 int i;
157 const __u8 *longer;
159 diff = vector1->len - vector2->len;
160 if (diff) {
161 longer = (diff > 0) ? vector1->data : vector2->data;
163 /* Check to see if the longer number is
164 * lead-zero padded. If it is not, it
165 * is automatically larger numerically.
167 for (i = 0; i < abs(diff); i++ ) {
168 if (longer[i] != 0)
169 return diff;
173 /* lengths are the same, compare numbers */
174 return memcmp(vector1->data, vector2->data, vector1->len);
178 * Create a key vector as described in SCTP-AUTH, Section 6.1
179 * The RANDOM parameter, the CHUNKS parameter and the HMAC-ALGO
180 * parameter sent by each endpoint are concatenated as byte vectors.
181 * These parameters include the parameter type, parameter length, and
182 * the parameter value, but padding is omitted; all padding MUST be
183 * removed from this concatenation before proceeding with further
184 * computation of keys. Parameters which were not sent are simply
185 * omitted from the concatenation process. The resulting two vectors
186 * are called the two key vectors.
188 static struct sctp_auth_bytes *sctp_auth_make_key_vector(
189 sctp_random_param_t *random,
190 sctp_chunks_param_t *chunks,
191 sctp_hmac_algo_param_t *hmacs,
192 gfp_t gfp)
194 struct sctp_auth_bytes *new;
195 __u32 len;
196 __u32 offset = 0;
197 __u16 random_len, hmacs_len, chunks_len = 0;
199 random_len = ntohs(random->param_hdr.length);
200 hmacs_len = ntohs(hmacs->param_hdr.length);
201 if (chunks)
202 chunks_len = ntohs(chunks->param_hdr.length);
204 len = random_len + hmacs_len + chunks_len;
206 new = sctp_auth_create_key(len, gfp);
207 if (!new)
208 return NULL;
210 memcpy(new->data, random, random_len);
211 offset += random_len;
213 if (chunks) {
214 memcpy(new->data + offset, chunks, chunks_len);
215 offset += chunks_len;
218 memcpy(new->data + offset, hmacs, hmacs_len);
220 return new;
224 /* Make a key vector based on our local parameters */
225 static struct sctp_auth_bytes *sctp_auth_make_local_vector(
226 const struct sctp_association *asoc,
227 gfp_t gfp)
229 return sctp_auth_make_key_vector(
230 (sctp_random_param_t*)asoc->c.auth_random,
231 (sctp_chunks_param_t*)asoc->c.auth_chunks,
232 (sctp_hmac_algo_param_t*)asoc->c.auth_hmacs,
233 gfp);
236 /* Make a key vector based on peer's parameters */
237 static struct sctp_auth_bytes *sctp_auth_make_peer_vector(
238 const struct sctp_association *asoc,
239 gfp_t gfp)
241 return sctp_auth_make_key_vector(asoc->peer.peer_random,
242 asoc->peer.peer_chunks,
243 asoc->peer.peer_hmacs,
244 gfp);
248 /* Set the value of the association shared key base on the parameters
249 * given. The algorithm is:
250 * From the endpoint pair shared keys and the key vectors the
251 * association shared keys are computed. This is performed by selecting
252 * the numerically smaller key vector and concatenating it to the
253 * endpoint pair shared key, and then concatenating the numerically
254 * larger key vector to that. The result of the concatenation is the
255 * association shared key.
257 static struct sctp_auth_bytes *sctp_auth_asoc_set_secret(
258 struct sctp_shared_key *ep_key,
259 struct sctp_auth_bytes *first_vector,
260 struct sctp_auth_bytes *last_vector,
261 gfp_t gfp)
263 struct sctp_auth_bytes *secret;
264 __u32 offset = 0;
265 __u32 auth_len;
267 auth_len = first_vector->len + last_vector->len;
268 if (ep_key->key)
269 auth_len += ep_key->key->len;
271 secret = sctp_auth_create_key(auth_len, gfp);
272 if (!secret)
273 return NULL;
275 if (ep_key->key) {
276 memcpy(secret->data, ep_key->key->data, ep_key->key->len);
277 offset += ep_key->key->len;
280 memcpy(secret->data + offset, first_vector->data, first_vector->len);
281 offset += first_vector->len;
283 memcpy(secret->data + offset, last_vector->data, last_vector->len);
285 return secret;
288 /* Create an association shared key. Follow the algorithm
289 * described in SCTP-AUTH, Section 6.1
291 static struct sctp_auth_bytes *sctp_auth_asoc_create_secret(
292 const struct sctp_association *asoc,
293 struct sctp_shared_key *ep_key,
294 gfp_t gfp)
296 struct sctp_auth_bytes *local_key_vector;
297 struct sctp_auth_bytes *peer_key_vector;
298 struct sctp_auth_bytes *first_vector,
299 *last_vector;
300 struct sctp_auth_bytes *secret = NULL;
301 int cmp;
304 /* Now we need to build the key vectors
305 * SCTP-AUTH , Section 6.1
306 * The RANDOM parameter, the CHUNKS parameter and the HMAC-ALGO
307 * parameter sent by each endpoint are concatenated as byte vectors.
308 * These parameters include the parameter type, parameter length, and
309 * the parameter value, but padding is omitted; all padding MUST be
310 * removed from this concatenation before proceeding with further
311 * computation of keys. Parameters which were not sent are simply
312 * omitted from the concatenation process. The resulting two vectors
313 * are called the two key vectors.
316 local_key_vector = sctp_auth_make_local_vector(asoc, gfp);
317 peer_key_vector = sctp_auth_make_peer_vector(asoc, gfp);
319 if (!peer_key_vector || !local_key_vector)
320 goto out;
322 /* Figure out the order in which the key_vectors will be
323 * added to the endpoint shared key.
324 * SCTP-AUTH, Section 6.1:
325 * This is performed by selecting the numerically smaller key
326 * vector and concatenating it to the endpoint pair shared
327 * key, and then concatenating the numerically larger key
328 * vector to that. If the key vectors are equal as numbers
329 * but differ in length, then the concatenation order is the
330 * endpoint shared key, followed by the shorter key vector,
331 * followed by the longer key vector. Otherwise, the key
332 * vectors are identical, and may be concatenated to the
333 * endpoint pair key in any order.
335 cmp = sctp_auth_compare_vectors(local_key_vector,
336 peer_key_vector);
337 if (cmp < 0) {
338 first_vector = local_key_vector;
339 last_vector = peer_key_vector;
340 } else {
341 first_vector = peer_key_vector;
342 last_vector = local_key_vector;
345 secret = sctp_auth_asoc_set_secret(ep_key, first_vector, last_vector,
346 gfp);
347 out:
348 sctp_auth_key_put(local_key_vector);
349 sctp_auth_key_put(peer_key_vector);
351 return secret;
355 * Populate the association overlay list with the list
356 * from the endpoint.
358 int sctp_auth_asoc_copy_shkeys(const struct sctp_endpoint *ep,
359 struct sctp_association *asoc,
360 gfp_t gfp)
362 struct sctp_shared_key *sh_key;
363 struct sctp_shared_key *new;
365 BUG_ON(!list_empty(&asoc->endpoint_shared_keys));
367 key_for_each(sh_key, &ep->endpoint_shared_keys) {
368 new = sctp_auth_shkey_create(sh_key->key_id, gfp);
369 if (!new)
370 goto nomem;
372 new->key = sh_key->key;
373 sctp_auth_key_hold(new->key);
374 list_add(&new->key_list, &asoc->endpoint_shared_keys);
377 return 0;
379 nomem:
380 sctp_auth_destroy_keys(&asoc->endpoint_shared_keys);
381 return -ENOMEM;
385 /* Public interface to creat the association shared key.
386 * See code above for the algorithm.
388 int sctp_auth_asoc_init_active_key(struct sctp_association *asoc, gfp_t gfp)
390 struct sctp_auth_bytes *secret;
391 struct sctp_shared_key *ep_key;
393 /* If we don't support AUTH, or peer is not capable
394 * we don't need to do anything.
396 if (!asoc->ep->auth_enable || !asoc->peer.auth_capable)
397 return 0;
399 /* If the key_id is non-zero and we couldn't find an
400 * endpoint pair shared key, we can't compute the
401 * secret.
402 * For key_id 0, endpoint pair shared key is a NULL key.
404 ep_key = sctp_auth_get_shkey(asoc, asoc->active_key_id);
405 BUG_ON(!ep_key);
407 secret = sctp_auth_asoc_create_secret(asoc, ep_key, gfp);
408 if (!secret)
409 return -ENOMEM;
411 sctp_auth_key_put(asoc->asoc_shared_key);
412 asoc->asoc_shared_key = secret;
414 return 0;
418 /* Find the endpoint pair shared key based on the key_id */
419 struct sctp_shared_key *sctp_auth_get_shkey(
420 const struct sctp_association *asoc,
421 __u16 key_id)
423 struct sctp_shared_key *key;
425 /* First search associations set of endpoint pair shared keys */
426 key_for_each(key, &asoc->endpoint_shared_keys) {
427 if (key->key_id == key_id)
428 return key;
431 return NULL;
435 * Initialize all the possible digest transforms that we can use. Right now
436 * now, the supported digests are SHA1 and SHA256. We do this here once
437 * because of the restrictiong that transforms may only be allocated in
438 * user context. This forces us to pre-allocated all possible transforms
439 * at the endpoint init time.
441 int sctp_auth_init_hmacs(struct sctp_endpoint *ep, gfp_t gfp)
443 struct crypto_hash *tfm = NULL;
444 __u16 id;
446 /* If AUTH extension is disabled, we are done */
447 if (!ep->auth_enable) {
448 ep->auth_hmacs = NULL;
449 return 0;
452 /* If the transforms are already allocated, we are done */
453 if (ep->auth_hmacs)
454 return 0;
456 /* Allocated the array of pointers to transorms */
457 ep->auth_hmacs = kzalloc(
458 sizeof(struct crypto_hash *) * SCTP_AUTH_NUM_HMACS,
459 gfp);
460 if (!ep->auth_hmacs)
461 return -ENOMEM;
463 for (id = 0; id < SCTP_AUTH_NUM_HMACS; id++) {
465 /* See is we support the id. Supported IDs have name and
466 * length fields set, so that we can allocated and use
467 * them. We can safely just check for name, for without the
468 * name, we can't allocate the TFM.
470 if (!sctp_hmac_list[id].hmac_name)
471 continue;
473 /* If this TFM has been allocated, we are all set */
474 if (ep->auth_hmacs[id])
475 continue;
477 /* Allocate the ID */
478 tfm = crypto_alloc_hash(sctp_hmac_list[id].hmac_name, 0,
479 CRYPTO_ALG_ASYNC);
480 if (IS_ERR(tfm))
481 goto out_err;
483 ep->auth_hmacs[id] = tfm;
486 return 0;
488 out_err:
489 /* Clean up any successful allocations */
490 sctp_auth_destroy_hmacs(ep->auth_hmacs);
491 return -ENOMEM;
494 /* Destroy the hmac tfm array */
495 void sctp_auth_destroy_hmacs(struct crypto_hash *auth_hmacs[])
497 int i;
499 if (!auth_hmacs)
500 return;
502 for (i = 0; i < SCTP_AUTH_NUM_HMACS; i++)
504 if (auth_hmacs[i])
505 crypto_free_hash(auth_hmacs[i]);
507 kfree(auth_hmacs);
511 struct sctp_hmac *sctp_auth_get_hmac(__u16 hmac_id)
513 return &sctp_hmac_list[hmac_id];
516 /* Get an hmac description information that we can use to build
517 * the AUTH chunk
519 struct sctp_hmac *sctp_auth_asoc_get_hmac(const struct sctp_association *asoc)
521 struct sctp_hmac_algo_param *hmacs;
522 __u16 n_elt;
523 __u16 id = 0;
524 int i;
526 /* If we have a default entry, use it */
527 if (asoc->default_hmac_id)
528 return &sctp_hmac_list[asoc->default_hmac_id];
530 /* Since we do not have a default entry, find the first entry
531 * we support and return that. Do not cache that id.
533 hmacs = asoc->peer.peer_hmacs;
534 if (!hmacs)
535 return NULL;
537 n_elt = (ntohs(hmacs->param_hdr.length) - sizeof(sctp_paramhdr_t)) >> 1;
538 for (i = 0; i < n_elt; i++) {
539 id = ntohs(hmacs->hmac_ids[i]);
541 /* Check the id is in the supported range */
542 if (id > SCTP_AUTH_HMAC_ID_MAX) {
543 id = 0;
544 continue;
547 /* See is we support the id. Supported IDs have name and
548 * length fields set, so that we can allocated and use
549 * them. We can safely just check for name, for without the
550 * name, we can't allocate the TFM.
552 if (!sctp_hmac_list[id].hmac_name) {
553 id = 0;
554 continue;
557 break;
560 if (id == 0)
561 return NULL;
563 return &sctp_hmac_list[id];
566 static int __sctp_auth_find_hmacid(__be16 *hmacs, int n_elts, __be16 hmac_id)
568 int found = 0;
569 int i;
571 for (i = 0; i < n_elts; i++) {
572 if (hmac_id == hmacs[i]) {
573 found = 1;
574 break;
578 return found;
581 /* See if the HMAC_ID is one that we claim as supported */
582 int sctp_auth_asoc_verify_hmac_id(const struct sctp_association *asoc,
583 __be16 hmac_id)
585 struct sctp_hmac_algo_param *hmacs;
586 __u16 n_elt;
588 if (!asoc)
589 return 0;
591 hmacs = (struct sctp_hmac_algo_param *)asoc->c.auth_hmacs;
592 n_elt = (ntohs(hmacs->param_hdr.length) - sizeof(sctp_paramhdr_t)) >> 1;
594 return __sctp_auth_find_hmacid(hmacs->hmac_ids, n_elt, hmac_id);
598 /* Cache the default HMAC id. This to follow this text from SCTP-AUTH:
599 * Section 6.1:
600 * The receiver of a HMAC-ALGO parameter SHOULD use the first listed
601 * algorithm it supports.
603 void sctp_auth_asoc_set_default_hmac(struct sctp_association *asoc,
604 struct sctp_hmac_algo_param *hmacs)
606 struct sctp_endpoint *ep;
607 __u16 id;
608 int i;
609 int n_params;
611 /* if the default id is already set, use it */
612 if (asoc->default_hmac_id)
613 return;
615 n_params = (ntohs(hmacs->param_hdr.length)
616 - sizeof(sctp_paramhdr_t)) >> 1;
617 ep = asoc->ep;
618 for (i = 0; i < n_params; i++) {
619 id = ntohs(hmacs->hmac_ids[i]);
621 /* Check the id is in the supported range */
622 if (id > SCTP_AUTH_HMAC_ID_MAX)
623 continue;
625 /* If this TFM has been allocated, use this id */
626 if (ep->auth_hmacs[id]) {
627 asoc->default_hmac_id = id;
628 break;
634 /* Check to see if the given chunk is supposed to be authenticated */
635 static int __sctp_auth_cid(sctp_cid_t chunk, struct sctp_chunks_param *param)
637 unsigned short len;
638 int found = 0;
639 int i;
641 if (!param || param->param_hdr.length == 0)
642 return 0;
644 len = ntohs(param->param_hdr.length) - sizeof(sctp_paramhdr_t);
646 /* SCTP-AUTH, Section 3.2
647 * The chunk types for INIT, INIT-ACK, SHUTDOWN-COMPLETE and AUTH
648 * chunks MUST NOT be listed in the CHUNKS parameter. However, if
649 * a CHUNKS parameter is received then the types for INIT, INIT-ACK,
650 * SHUTDOWN-COMPLETE and AUTH chunks MUST be ignored.
652 for (i = 0; !found && i < len; i++) {
653 switch (param->chunks[i]) {
654 case SCTP_CID_INIT:
655 case SCTP_CID_INIT_ACK:
656 case SCTP_CID_SHUTDOWN_COMPLETE:
657 case SCTP_CID_AUTH:
658 break;
660 default:
661 if (param->chunks[i] == chunk)
662 found = 1;
663 break;
667 return found;
670 /* Check if peer requested that this chunk is authenticated */
671 int sctp_auth_send_cid(sctp_cid_t chunk, const struct sctp_association *asoc)
673 if (!asoc)
674 return 0;
676 if (!asoc->ep->auth_enable || !asoc->peer.auth_capable)
677 return 0;
679 return __sctp_auth_cid(chunk, asoc->peer.peer_chunks);
682 /* Check if we requested that peer authenticate this chunk. */
683 int sctp_auth_recv_cid(sctp_cid_t chunk, const struct sctp_association *asoc)
685 if (!asoc)
686 return 0;
688 if (!asoc->ep->auth_enable)
689 return 0;
691 return __sctp_auth_cid(chunk,
692 (struct sctp_chunks_param *)asoc->c.auth_chunks);
695 /* SCTP-AUTH: Section 6.2:
696 * The sender MUST calculate the MAC as described in RFC2104 [2] using
697 * the hash function H as described by the MAC Identifier and the shared
698 * association key K based on the endpoint pair shared key described by
699 * the shared key identifier. The 'data' used for the computation of
700 * the AUTH-chunk is given by the AUTH chunk with its HMAC field set to
701 * zero (as shown in Figure 6) followed by all chunks that are placed
702 * after the AUTH chunk in the SCTP packet.
704 void sctp_auth_calculate_hmac(const struct sctp_association *asoc,
705 struct sk_buff *skb,
706 struct sctp_auth_chunk *auth,
707 gfp_t gfp)
709 struct scatterlist sg;
710 struct hash_desc desc;
711 struct sctp_auth_bytes *asoc_key;
712 __u16 key_id, hmac_id;
713 __u8 *digest;
714 unsigned char *end;
715 int free_key = 0;
717 /* Extract the info we need:
718 * - hmac id
719 * - key id
721 key_id = ntohs(auth->auth_hdr.shkey_id);
722 hmac_id = ntohs(auth->auth_hdr.hmac_id);
724 if (key_id == asoc->active_key_id)
725 asoc_key = asoc->asoc_shared_key;
726 else {
727 struct sctp_shared_key *ep_key;
729 ep_key = sctp_auth_get_shkey(asoc, key_id);
730 if (!ep_key)
731 return;
733 asoc_key = sctp_auth_asoc_create_secret(asoc, ep_key, gfp);
734 if (!asoc_key)
735 return;
737 free_key = 1;
740 /* set up scatter list */
741 end = skb_tail_pointer(skb);
742 sg_init_one(&sg, auth, end - (unsigned char *)auth);
744 desc.tfm = asoc->ep->auth_hmacs[hmac_id];
745 desc.flags = 0;
747 digest = auth->auth_hdr.hmac;
748 if (crypto_hash_setkey(desc.tfm, &asoc_key->data[0], asoc_key->len))
749 goto free;
751 crypto_hash_digest(&desc, &sg, sg.length, digest);
753 free:
754 if (free_key)
755 sctp_auth_key_put(asoc_key);
758 /* API Helpers */
760 /* Add a chunk to the endpoint authenticated chunk list */
761 int sctp_auth_ep_add_chunkid(struct sctp_endpoint *ep, __u8 chunk_id)
763 struct sctp_chunks_param *p = ep->auth_chunk_list;
764 __u16 nchunks;
765 __u16 param_len;
767 /* If this chunk is already specified, we are done */
768 if (__sctp_auth_cid(chunk_id, p))
769 return 0;
771 /* Check if we can add this chunk to the array */
772 param_len = ntohs(p->param_hdr.length);
773 nchunks = param_len - sizeof(sctp_paramhdr_t);
774 if (nchunks == SCTP_NUM_CHUNK_TYPES)
775 return -EINVAL;
777 p->chunks[nchunks] = chunk_id;
778 p->param_hdr.length = htons(param_len + 1);
779 return 0;
782 /* Add hmac identifires to the endpoint list of supported hmac ids */
783 int sctp_auth_ep_set_hmacs(struct sctp_endpoint *ep,
784 struct sctp_hmacalgo *hmacs)
786 int has_sha1 = 0;
787 __u16 id;
788 int i;
790 /* Scan the list looking for unsupported id. Also make sure that
791 * SHA1 is specified.
793 for (i = 0; i < hmacs->shmac_num_idents; i++) {
794 id = hmacs->shmac_idents[i];
796 if (id > SCTP_AUTH_HMAC_ID_MAX)
797 return -EOPNOTSUPP;
799 if (SCTP_AUTH_HMAC_ID_SHA1 == id)
800 has_sha1 = 1;
802 if (!sctp_hmac_list[id].hmac_name)
803 return -EOPNOTSUPP;
806 if (!has_sha1)
807 return -EINVAL;
809 for (i = 0; i < hmacs->shmac_num_idents; i++)
810 ep->auth_hmacs_list->hmac_ids[i] = htons(hmacs->shmac_idents[i]);
811 ep->auth_hmacs_list->param_hdr.length = htons(sizeof(sctp_paramhdr_t) +
812 hmacs->shmac_num_idents * sizeof(__u16));
813 return 0;
816 /* Set a new shared key on either endpoint or association. If the
817 * the key with a same ID already exists, replace the key (remove the
818 * old key and add a new one).
820 int sctp_auth_set_key(struct sctp_endpoint *ep,
821 struct sctp_association *asoc,
822 struct sctp_authkey *auth_key)
824 struct sctp_shared_key *cur_key = NULL;
825 struct sctp_auth_bytes *key;
826 struct list_head *sh_keys;
827 int replace = 0;
829 /* Try to find the given key id to see if
830 * we are doing a replace, or adding a new key
832 if (asoc)
833 sh_keys = &asoc->endpoint_shared_keys;
834 else
835 sh_keys = &ep->endpoint_shared_keys;
837 key_for_each(cur_key, sh_keys) {
838 if (cur_key->key_id == auth_key->sca_keynumber) {
839 replace = 1;
840 break;
844 /* If we are not replacing a key id, we need to allocate
845 * a shared key.
847 if (!replace) {
848 cur_key = sctp_auth_shkey_create(auth_key->sca_keynumber,
849 GFP_KERNEL);
850 if (!cur_key)
851 return -ENOMEM;
854 /* Create a new key data based on the info passed in */
855 key = sctp_auth_create_key(auth_key->sca_keylength, GFP_KERNEL);
856 if (!key)
857 goto nomem;
859 memcpy(key->data, &auth_key->sca_key[0], auth_key->sca_keylength);
861 /* If we are replacing, remove the old keys data from the
862 * key id. If we are adding new key id, add it to the
863 * list.
865 if (replace)
866 sctp_auth_key_put(cur_key->key);
867 else
868 list_add(&cur_key->key_list, sh_keys);
870 cur_key->key = key;
871 return 0;
872 nomem:
873 if (!replace)
874 sctp_auth_shkey_free(cur_key);
876 return -ENOMEM;
879 int sctp_auth_set_active_key(struct sctp_endpoint *ep,
880 struct sctp_association *asoc,
881 __u16 key_id)
883 struct sctp_shared_key *key;
884 struct list_head *sh_keys;
885 int found = 0;
887 /* The key identifier MUST correst to an existing key */
888 if (asoc)
889 sh_keys = &asoc->endpoint_shared_keys;
890 else
891 sh_keys = &ep->endpoint_shared_keys;
893 key_for_each(key, sh_keys) {
894 if (key->key_id == key_id) {
895 found = 1;
896 break;
900 if (!found)
901 return -EINVAL;
903 if (asoc) {
904 asoc->active_key_id = key_id;
905 sctp_auth_asoc_init_active_key(asoc, GFP_KERNEL);
906 } else
907 ep->active_key_id = key_id;
909 return 0;
912 int sctp_auth_del_key_id(struct sctp_endpoint *ep,
913 struct sctp_association *asoc,
914 __u16 key_id)
916 struct sctp_shared_key *key;
917 struct list_head *sh_keys;
918 int found = 0;
920 /* The key identifier MUST NOT be the current active key
921 * The key identifier MUST correst to an existing key
923 if (asoc) {
924 if (asoc->active_key_id == key_id)
925 return -EINVAL;
927 sh_keys = &asoc->endpoint_shared_keys;
928 } else {
929 if (ep->active_key_id == key_id)
930 return -EINVAL;
932 sh_keys = &ep->endpoint_shared_keys;
935 key_for_each(key, sh_keys) {
936 if (key->key_id == key_id) {
937 found = 1;
938 break;
942 if (!found)
943 return -EINVAL;
945 /* Delete the shared key */
946 list_del_init(&key->key_list);
947 sctp_auth_shkey_free(key);
949 return 0;