Linux 3.12.70
[linux/fpc-iii.git] / net / socket.c
blob64c47cd62e1416570407059802663d591855856d
1 /*
2 * NET An implementation of the SOCKET network access protocol.
4 * Version: @(#)socket.c 1.1.93 18/02/95
6 * Authors: Orest Zborowski, <obz@Kodak.COM>
7 * Ross Biro
8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Fixes:
11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in
12 * shutdown()
13 * Alan Cox : verify_area() fixes
14 * Alan Cox : Removed DDI
15 * Jonathan Kamens : SOCK_DGRAM reconnect bug
16 * Alan Cox : Moved a load of checks to the very
17 * top level.
18 * Alan Cox : Move address structures to/from user
19 * mode above the protocol layers.
20 * Rob Janssen : Allow 0 length sends.
21 * Alan Cox : Asynchronous I/O support (cribbed from the
22 * tty drivers).
23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style)
24 * Jeff Uphoff : Made max number of sockets command-line
25 * configurable.
26 * Matti Aarnio : Made the number of sockets dynamic,
27 * to be allocated when needed, and mr.
28 * Uphoff's max is used as max to be
29 * allowed to allocate.
30 * Linus : Argh. removed all the socket allocation
31 * altogether: it's in the inode now.
32 * Alan Cox : Made sock_alloc()/sock_release() public
33 * for NetROM and future kernel nfsd type
34 * stuff.
35 * Alan Cox : sendmsg/recvmsg basics.
36 * Tom Dyas : Export net symbols.
37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n".
38 * Alan Cox : Added thread locking to sys_* calls
39 * for sockets. May have errors at the
40 * moment.
41 * Kevin Buhr : Fixed the dumb errors in the above.
42 * Andi Kleen : Some small cleanups, optimizations,
43 * and fixed a copy_from_user() bug.
44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0)
45 * Tigran Aivazian : Made listen(2) backlog sanity checks
46 * protocol-independent
49 * This program is free software; you can redistribute it and/or
50 * modify it under the terms of the GNU General Public License
51 * as published by the Free Software Foundation; either version
52 * 2 of the License, or (at your option) any later version.
55 * This module is effectively the top level interface to the BSD socket
56 * paradigm.
58 * Based upon Swansea University Computer Society NET3.039
61 #include <linux/mm.h>
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/thread_info.h>
67 #include <linux/rcupdate.h>
68 #include <linux/netdevice.h>
69 #include <linux/proc_fs.h>
70 #include <linux/seq_file.h>
71 #include <linux/mutex.h>
72 #include <linux/if_bridge.h>
73 #include <linux/if_frad.h>
74 #include <linux/if_vlan.h>
75 #include <linux/init.h>
76 #include <linux/poll.h>
77 #include <linux/cache.h>
78 #include <linux/module.h>
79 #include <linux/highmem.h>
80 #include <linux/mount.h>
81 #include <linux/security.h>
82 #include <linux/syscalls.h>
83 #include <linux/compat.h>
84 #include <linux/kmod.h>
85 #include <linux/audit.h>
86 #include <linux/wireless.h>
87 #include <linux/nsproxy.h>
88 #include <linux/magic.h>
89 #include <linux/slab.h>
90 #include <linux/xattr.h>
92 #include <asm/uaccess.h>
93 #include <asm/unistd.h>
95 #include <net/compat.h>
96 #include <net/wext.h>
97 #include <net/cls_cgroup.h>
99 #include <net/sock.h>
100 #include <linux/netfilter.h>
102 #include <linux/if_tun.h>
103 #include <linux/ipv6_route.h>
104 #include <linux/route.h>
105 #include <linux/sockios.h>
106 #include <linux/atalk.h>
107 #include <net/busy_poll.h>
109 #ifdef CONFIG_NET_RX_BUSY_POLL
110 unsigned int sysctl_net_busy_read __read_mostly;
111 unsigned int sysctl_net_busy_poll __read_mostly;
112 #endif
114 static int sock_no_open(struct inode *irrelevant, struct file *dontcare);
115 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
116 unsigned long nr_segs, loff_t pos);
117 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
118 unsigned long nr_segs, loff_t pos);
119 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
121 static int sock_close(struct inode *inode, struct file *file);
122 static unsigned int sock_poll(struct file *file,
123 struct poll_table_struct *wait);
124 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
125 #ifdef CONFIG_COMPAT
126 static long compat_sock_ioctl(struct file *file,
127 unsigned int cmd, unsigned long arg);
128 #endif
129 static int sock_fasync(int fd, struct file *filp, int on);
130 static ssize_t sock_sendpage(struct file *file, struct page *page,
131 int offset, size_t size, loff_t *ppos, int more);
132 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
133 struct pipe_inode_info *pipe, size_t len,
134 unsigned int flags);
137 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
138 * in the operation structures but are done directly via the socketcall() multiplexor.
141 static const struct file_operations socket_file_ops = {
142 .owner = THIS_MODULE,
143 .llseek = no_llseek,
144 .aio_read = sock_aio_read,
145 .aio_write = sock_aio_write,
146 .poll = sock_poll,
147 .unlocked_ioctl = sock_ioctl,
148 #ifdef CONFIG_COMPAT
149 .compat_ioctl = compat_sock_ioctl,
150 #endif
151 .mmap = sock_mmap,
152 .open = sock_no_open, /* special open code to disallow open via /proc */
153 .release = sock_close,
154 .fasync = sock_fasync,
155 .sendpage = sock_sendpage,
156 .splice_write = generic_splice_sendpage,
157 .splice_read = sock_splice_read,
161 * The protocol list. Each protocol is registered in here.
164 static DEFINE_SPINLOCK(net_family_lock);
165 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
168 * Statistics counters of the socket lists
171 static DEFINE_PER_CPU(int, sockets_in_use);
174 * Support routines.
175 * Move socket addresses back and forth across the kernel/user
176 * divide and look after the messy bits.
180 * move_addr_to_kernel - copy a socket address into kernel space
181 * @uaddr: Address in user space
182 * @kaddr: Address in kernel space
183 * @ulen: Length in user space
185 * The address is copied into kernel space. If the provided address is
186 * too long an error code of -EINVAL is returned. If the copy gives
187 * invalid addresses -EFAULT is returned. On a success 0 is returned.
190 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
192 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
193 return -EINVAL;
194 if (ulen == 0)
195 return 0;
196 if (copy_from_user(kaddr, uaddr, ulen))
197 return -EFAULT;
198 return audit_sockaddr(ulen, kaddr);
202 * move_addr_to_user - copy an address to user space
203 * @kaddr: kernel space address
204 * @klen: length of address in kernel
205 * @uaddr: user space address
206 * @ulen: pointer to user length field
208 * The value pointed to by ulen on entry is the buffer length available.
209 * This is overwritten with the buffer space used. -EINVAL is returned
210 * if an overlong buffer is specified or a negative buffer size. -EFAULT
211 * is returned if either the buffer or the length field are not
212 * accessible.
213 * After copying the data up to the limit the user specifies, the true
214 * length of the data is written over the length limit the user
215 * specified. Zero is returned for a success.
218 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
219 void __user *uaddr, int __user *ulen)
221 int err;
222 int len;
224 BUG_ON(klen > sizeof(struct sockaddr_storage));
225 err = get_user(len, ulen);
226 if (err)
227 return err;
228 if (len > klen)
229 len = klen;
230 if (len < 0)
231 return -EINVAL;
232 if (len) {
233 if (audit_sockaddr(klen, kaddr))
234 return -ENOMEM;
235 if (copy_to_user(uaddr, kaddr, len))
236 return -EFAULT;
239 * "fromlen shall refer to the value before truncation.."
240 * 1003.1g
242 return __put_user(klen, ulen);
245 static struct kmem_cache *sock_inode_cachep __read_mostly;
247 static struct inode *sock_alloc_inode(struct super_block *sb)
249 struct socket_alloc *ei;
250 struct socket_wq *wq;
252 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
253 if (!ei)
254 return NULL;
255 wq = kmalloc(sizeof(*wq), GFP_KERNEL);
256 if (!wq) {
257 kmem_cache_free(sock_inode_cachep, ei);
258 return NULL;
260 init_waitqueue_head(&wq->wait);
261 wq->fasync_list = NULL;
262 RCU_INIT_POINTER(ei->socket.wq, wq);
264 ei->socket.state = SS_UNCONNECTED;
265 ei->socket.flags = 0;
266 ei->socket.ops = NULL;
267 ei->socket.sk = NULL;
268 ei->socket.file = NULL;
270 return &ei->vfs_inode;
273 static void sock_destroy_inode(struct inode *inode)
275 struct socket_alloc *ei;
276 struct socket_wq *wq;
278 ei = container_of(inode, struct socket_alloc, vfs_inode);
279 wq = rcu_dereference_protected(ei->socket.wq, 1);
280 kfree_rcu(wq, rcu);
281 kmem_cache_free(sock_inode_cachep, ei);
284 static void init_once(void *foo)
286 struct socket_alloc *ei = (struct socket_alloc *)foo;
288 inode_init_once(&ei->vfs_inode);
291 static int init_inodecache(void)
293 sock_inode_cachep = kmem_cache_create("sock_inode_cache",
294 sizeof(struct socket_alloc),
296 (SLAB_HWCACHE_ALIGN |
297 SLAB_RECLAIM_ACCOUNT |
298 SLAB_MEM_SPREAD),
299 init_once);
300 if (sock_inode_cachep == NULL)
301 return -ENOMEM;
302 return 0;
305 static const struct super_operations sockfs_ops = {
306 .alloc_inode = sock_alloc_inode,
307 .destroy_inode = sock_destroy_inode,
308 .statfs = simple_statfs,
312 * sockfs_dname() is called from d_path().
314 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
316 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
317 dentry->d_inode->i_ino);
320 static const struct dentry_operations sockfs_dentry_operations = {
321 .d_dname = sockfs_dname,
324 static struct dentry *sockfs_mount(struct file_system_type *fs_type,
325 int flags, const char *dev_name, void *data)
327 return mount_pseudo(fs_type, "socket:", &sockfs_ops,
328 &sockfs_dentry_operations, SOCKFS_MAGIC);
331 static struct vfsmount *sock_mnt __read_mostly;
333 static struct file_system_type sock_fs_type = {
334 .name = "sockfs",
335 .mount = sockfs_mount,
336 .kill_sb = kill_anon_super,
340 * Obtains the first available file descriptor and sets it up for use.
342 * These functions create file structures and maps them to fd space
343 * of the current process. On success it returns file descriptor
344 * and file struct implicitly stored in sock->file.
345 * Note that another thread may close file descriptor before we return
346 * from this function. We use the fact that now we do not refer
347 * to socket after mapping. If one day we will need it, this
348 * function will increment ref. count on file by 1.
350 * In any case returned fd MAY BE not valid!
351 * This race condition is unavoidable
352 * with shared fd spaces, we cannot solve it inside kernel,
353 * but we take care of internal coherence yet.
356 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
358 struct qstr name = { .name = "" };
359 struct path path;
360 struct file *file;
362 if (dname) {
363 name.name = dname;
364 name.len = strlen(name.name);
365 } else if (sock->sk) {
366 name.name = sock->sk->sk_prot_creator->name;
367 name.len = strlen(name.name);
369 path.dentry = d_alloc_pseudo(sock_mnt->mnt_sb, &name);
370 if (unlikely(!path.dentry))
371 return ERR_PTR(-ENOMEM);
372 path.mnt = mntget(sock_mnt);
374 d_instantiate(path.dentry, SOCK_INODE(sock));
375 SOCK_INODE(sock)->i_fop = &socket_file_ops;
377 file = alloc_file(&path, FMODE_READ | FMODE_WRITE,
378 &socket_file_ops);
379 if (unlikely(IS_ERR(file))) {
380 /* drop dentry, keep inode */
381 ihold(path.dentry->d_inode);
382 path_put(&path);
383 return file;
386 sock->file = file;
387 file->f_flags = O_RDWR | (flags & O_NONBLOCK);
388 file->private_data = sock;
389 return file;
391 EXPORT_SYMBOL(sock_alloc_file);
393 static int sock_map_fd(struct socket *sock, int flags)
395 struct file *newfile;
396 int fd = get_unused_fd_flags(flags);
397 if (unlikely(fd < 0))
398 return fd;
400 newfile = sock_alloc_file(sock, flags, NULL);
401 if (likely(!IS_ERR(newfile))) {
402 fd_install(fd, newfile);
403 return fd;
406 put_unused_fd(fd);
407 return PTR_ERR(newfile);
410 struct socket *sock_from_file(struct file *file, int *err)
412 if (file->f_op == &socket_file_ops)
413 return file->private_data; /* set in sock_map_fd */
415 *err = -ENOTSOCK;
416 return NULL;
418 EXPORT_SYMBOL(sock_from_file);
421 * sockfd_lookup - Go from a file number to its socket slot
422 * @fd: file handle
423 * @err: pointer to an error code return
425 * The file handle passed in is locked and the socket it is bound
426 * too is returned. If an error occurs the err pointer is overwritten
427 * with a negative errno code and NULL is returned. The function checks
428 * for both invalid handles and passing a handle which is not a socket.
430 * On a success the socket object pointer is returned.
433 struct socket *sockfd_lookup(int fd, int *err)
435 struct file *file;
436 struct socket *sock;
438 file = fget(fd);
439 if (!file) {
440 *err = -EBADF;
441 return NULL;
444 sock = sock_from_file(file, err);
445 if (!sock)
446 fput(file);
447 return sock;
449 EXPORT_SYMBOL(sockfd_lookup);
451 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
453 struct file *file;
454 struct socket *sock;
456 *err = -EBADF;
457 file = fget_light(fd, fput_needed);
458 if (file) {
459 sock = sock_from_file(file, err);
460 if (sock)
461 return sock;
462 fput_light(file, *fput_needed);
464 return NULL;
467 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
468 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
469 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
470 static ssize_t sockfs_getxattr(struct dentry *dentry,
471 const char *name, void *value, size_t size)
473 const char *proto_name;
474 size_t proto_size;
475 int error;
477 error = -ENODATA;
478 if (!strncmp(name, XATTR_NAME_SOCKPROTONAME, XATTR_NAME_SOCKPROTONAME_LEN)) {
479 proto_name = dentry->d_name.name;
480 proto_size = strlen(proto_name);
482 if (value) {
483 error = -ERANGE;
484 if (proto_size + 1 > size)
485 goto out;
487 strncpy(value, proto_name, proto_size + 1);
489 error = proto_size + 1;
492 out:
493 return error;
496 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
497 size_t size)
499 ssize_t len;
500 ssize_t used = 0;
502 len = security_inode_listsecurity(dentry->d_inode, buffer, size);
503 if (len < 0)
504 return len;
505 used += len;
506 if (buffer) {
507 if (size < used)
508 return -ERANGE;
509 buffer += len;
512 len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
513 used += len;
514 if (buffer) {
515 if (size < used)
516 return -ERANGE;
517 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
518 buffer += len;
521 return used;
524 static const struct inode_operations sockfs_inode_ops = {
525 .getxattr = sockfs_getxattr,
526 .listxattr = sockfs_listxattr,
530 * sock_alloc - allocate a socket
532 * Allocate a new inode and socket object. The two are bound together
533 * and initialised. The socket is then returned. If we are out of inodes
534 * NULL is returned.
537 static struct socket *sock_alloc(void)
539 struct inode *inode;
540 struct socket *sock;
542 inode = new_inode_pseudo(sock_mnt->mnt_sb);
543 if (!inode)
544 return NULL;
546 sock = SOCKET_I(inode);
548 kmemcheck_annotate_bitfield(sock, type);
549 inode->i_ino = get_next_ino();
550 inode->i_mode = S_IFSOCK | S_IRWXUGO;
551 inode->i_uid = current_fsuid();
552 inode->i_gid = current_fsgid();
553 inode->i_op = &sockfs_inode_ops;
555 this_cpu_add(sockets_in_use, 1);
556 return sock;
560 * In theory you can't get an open on this inode, but /proc provides
561 * a back door. Remember to keep it shut otherwise you'll let the
562 * creepy crawlies in.
565 static int sock_no_open(struct inode *irrelevant, struct file *dontcare)
567 return -ENXIO;
570 const struct file_operations bad_sock_fops = {
571 .owner = THIS_MODULE,
572 .open = sock_no_open,
573 .llseek = noop_llseek,
577 * sock_release - close a socket
578 * @sock: socket to close
580 * The socket is released from the protocol stack if it has a release
581 * callback, and the inode is then released if the socket is bound to
582 * an inode not a file.
585 void sock_release(struct socket *sock)
587 if (sock->ops) {
588 struct module *owner = sock->ops->owner;
590 sock->ops->release(sock);
591 sock->ops = NULL;
592 module_put(owner);
595 if (rcu_dereference_protected(sock->wq, 1)->fasync_list)
596 printk(KERN_ERR "sock_release: fasync list not empty!\n");
598 if (test_bit(SOCK_EXTERNALLY_ALLOCATED, &sock->flags))
599 return;
601 this_cpu_sub(sockets_in_use, 1);
602 if (!sock->file) {
603 iput(SOCK_INODE(sock));
604 return;
606 sock->file = NULL;
608 EXPORT_SYMBOL(sock_release);
610 void sock_tx_timestamp(struct sock *sk, __u8 *tx_flags)
612 *tx_flags = 0;
613 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE))
614 *tx_flags |= SKBTX_HW_TSTAMP;
615 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE))
616 *tx_flags |= SKBTX_SW_TSTAMP;
617 if (sock_flag(sk, SOCK_WIFI_STATUS))
618 *tx_flags |= SKBTX_WIFI_STATUS;
620 EXPORT_SYMBOL(sock_tx_timestamp);
622 static inline int __sock_sendmsg_nosec(struct kiocb *iocb, struct socket *sock,
623 struct msghdr *msg, size_t size)
625 struct sock_iocb *si = kiocb_to_siocb(iocb);
627 si->sock = sock;
628 si->scm = NULL;
629 si->msg = msg;
630 si->size = size;
632 return sock->ops->sendmsg(iocb, sock, msg, size);
635 static inline int __sock_sendmsg(struct kiocb *iocb, struct socket *sock,
636 struct msghdr *msg, size_t size)
638 int err = security_socket_sendmsg(sock, msg, size);
640 return err ?: __sock_sendmsg_nosec(iocb, sock, msg, size);
643 int sock_sendmsg(struct socket *sock, struct msghdr *msg, size_t size)
645 struct kiocb iocb;
646 struct sock_iocb siocb;
647 int ret;
649 init_sync_kiocb(&iocb, NULL);
650 iocb.private = &siocb;
651 ret = __sock_sendmsg(&iocb, sock, msg, size);
652 if (-EIOCBQUEUED == ret)
653 ret = wait_on_sync_kiocb(&iocb);
654 return ret;
656 EXPORT_SYMBOL(sock_sendmsg);
658 static int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg, size_t size)
660 struct kiocb iocb;
661 struct sock_iocb siocb;
662 int ret;
664 init_sync_kiocb(&iocb, NULL);
665 iocb.private = &siocb;
666 ret = __sock_sendmsg_nosec(&iocb, sock, msg, size);
667 if (-EIOCBQUEUED == ret)
668 ret = wait_on_sync_kiocb(&iocb);
669 return ret;
672 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
673 struct kvec *vec, size_t num, size_t size)
675 mm_segment_t oldfs = get_fs();
676 int result;
678 set_fs(KERNEL_DS);
680 * the following is safe, since for compiler definitions of kvec and
681 * iovec are identical, yielding the same in-core layout and alignment
683 msg->msg_iov = (struct iovec *)vec;
684 msg->msg_iovlen = num;
685 result = sock_sendmsg(sock, msg, size);
686 set_fs(oldfs);
687 return result;
689 EXPORT_SYMBOL(kernel_sendmsg);
692 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
694 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
695 struct sk_buff *skb)
697 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
698 struct timespec ts[3];
699 int empty = 1;
700 struct skb_shared_hwtstamps *shhwtstamps =
701 skb_hwtstamps(skb);
703 /* Race occurred between timestamp enabling and packet
704 receiving. Fill in the current time for now. */
705 if (need_software_tstamp && skb->tstamp.tv64 == 0)
706 __net_timestamp(skb);
708 if (need_software_tstamp) {
709 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
710 struct timeval tv;
711 skb_get_timestamp(skb, &tv);
712 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
713 sizeof(tv), &tv);
714 } else {
715 skb_get_timestampns(skb, &ts[0]);
716 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
717 sizeof(ts[0]), &ts[0]);
722 memset(ts, 0, sizeof(ts));
723 if (sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE) &&
724 ktime_to_timespec_cond(skb->tstamp, ts + 0))
725 empty = 0;
726 if (shhwtstamps) {
727 if (sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE) &&
728 ktime_to_timespec_cond(shhwtstamps->syststamp, ts + 1))
729 empty = 0;
730 if (sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE) &&
731 ktime_to_timespec_cond(shhwtstamps->hwtstamp, ts + 2))
732 empty = 0;
734 if (!empty)
735 put_cmsg(msg, SOL_SOCKET,
736 SCM_TIMESTAMPING, sizeof(ts), &ts);
738 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
740 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
741 struct sk_buff *skb)
743 int ack;
745 if (!sock_flag(sk, SOCK_WIFI_STATUS))
746 return;
747 if (!skb->wifi_acked_valid)
748 return;
750 ack = skb->wifi_acked;
752 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
754 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
756 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
757 struct sk_buff *skb)
759 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && skb->dropcount)
760 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
761 sizeof(__u32), &skb->dropcount);
764 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
765 struct sk_buff *skb)
767 sock_recv_timestamp(msg, sk, skb);
768 sock_recv_drops(msg, sk, skb);
770 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
772 static inline int __sock_recvmsg_nosec(struct kiocb *iocb, struct socket *sock,
773 struct msghdr *msg, size_t size, int flags)
775 struct sock_iocb *si = kiocb_to_siocb(iocb);
777 si->sock = sock;
778 si->scm = NULL;
779 si->msg = msg;
780 si->size = size;
781 si->flags = flags;
783 return sock->ops->recvmsg(iocb, sock, msg, size, flags);
786 static inline int __sock_recvmsg(struct kiocb *iocb, struct socket *sock,
787 struct msghdr *msg, size_t size, int flags)
789 int err = security_socket_recvmsg(sock, msg, size, flags);
791 return err ?: __sock_recvmsg_nosec(iocb, sock, msg, size, flags);
794 int sock_recvmsg(struct socket *sock, struct msghdr *msg,
795 size_t size, int flags)
797 struct kiocb iocb;
798 struct sock_iocb siocb;
799 int ret;
801 init_sync_kiocb(&iocb, NULL);
802 iocb.private = &siocb;
803 ret = __sock_recvmsg(&iocb, sock, msg, size, flags);
804 if (-EIOCBQUEUED == ret)
805 ret = wait_on_sync_kiocb(&iocb);
806 return ret;
808 EXPORT_SYMBOL(sock_recvmsg);
810 static int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
811 size_t size, int flags)
813 struct kiocb iocb;
814 struct sock_iocb siocb;
815 int ret;
817 init_sync_kiocb(&iocb, NULL);
818 iocb.private = &siocb;
819 ret = __sock_recvmsg_nosec(&iocb, sock, msg, size, flags);
820 if (-EIOCBQUEUED == ret)
821 ret = wait_on_sync_kiocb(&iocb);
822 return ret;
826 * kernel_recvmsg - Receive a message from a socket (kernel space)
827 * @sock: The socket to receive the message from
828 * @msg: Received message
829 * @vec: Input s/g array for message data
830 * @num: Size of input s/g array
831 * @size: Number of bytes to read
832 * @flags: Message flags (MSG_DONTWAIT, etc...)
834 * On return the msg structure contains the scatter/gather array passed in the
835 * vec argument. The array is modified so that it consists of the unfilled
836 * portion of the original array.
838 * The returned value is the total number of bytes received, or an error.
840 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
841 struct kvec *vec, size_t num, size_t size, int flags)
843 mm_segment_t oldfs = get_fs();
844 int result;
846 set_fs(KERNEL_DS);
848 * the following is safe, since for compiler definitions of kvec and
849 * iovec are identical, yielding the same in-core layout and alignment
851 msg->msg_iov = (struct iovec *)vec, msg->msg_iovlen = num;
852 result = sock_recvmsg(sock, msg, size, flags);
853 set_fs(oldfs);
854 return result;
856 EXPORT_SYMBOL(kernel_recvmsg);
858 static ssize_t sock_sendpage(struct file *file, struct page *page,
859 int offset, size_t size, loff_t *ppos, int more)
861 struct socket *sock;
862 int flags;
864 sock = file->private_data;
866 flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
867 /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
868 flags |= more;
870 return kernel_sendpage(sock, page, offset, size, flags);
873 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
874 struct pipe_inode_info *pipe, size_t len,
875 unsigned int flags)
877 struct socket *sock = file->private_data;
879 if (unlikely(!sock->ops->splice_read))
880 return -EINVAL;
882 return sock->ops->splice_read(sock, ppos, pipe, len, flags);
885 static struct sock_iocb *alloc_sock_iocb(struct kiocb *iocb,
886 struct sock_iocb *siocb)
888 siocb->kiocb = iocb;
889 iocb->private = siocb;
890 return siocb;
893 static ssize_t do_sock_read(struct msghdr *msg, struct kiocb *iocb,
894 struct file *file, const struct iovec *iov,
895 unsigned long nr_segs)
897 struct socket *sock = file->private_data;
898 size_t size = 0;
899 int i;
901 for (i = 0; i < nr_segs; i++)
902 size += iov[i].iov_len;
904 msg->msg_name = NULL;
905 msg->msg_namelen = 0;
906 msg->msg_control = NULL;
907 msg->msg_controllen = 0;
908 msg->msg_iov = (struct iovec *)iov;
909 msg->msg_iovlen = nr_segs;
910 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
912 return __sock_recvmsg(iocb, sock, msg, size, msg->msg_flags);
915 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
916 unsigned long nr_segs, loff_t pos)
918 struct sock_iocb siocb, *x;
920 if (pos != 0)
921 return -ESPIPE;
923 if (iocb->ki_nbytes == 0) /* Match SYS5 behaviour */
924 return 0;
927 x = alloc_sock_iocb(iocb, &siocb);
928 if (!x)
929 return -ENOMEM;
930 return do_sock_read(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
933 static ssize_t do_sock_write(struct msghdr *msg, struct kiocb *iocb,
934 struct file *file, const struct iovec *iov,
935 unsigned long nr_segs)
937 struct socket *sock = file->private_data;
938 size_t size = 0;
939 int i;
941 for (i = 0; i < nr_segs; i++)
942 size += iov[i].iov_len;
944 msg->msg_name = NULL;
945 msg->msg_namelen = 0;
946 msg->msg_control = NULL;
947 msg->msg_controllen = 0;
948 msg->msg_iov = (struct iovec *)iov;
949 msg->msg_iovlen = nr_segs;
950 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
951 if (sock->type == SOCK_SEQPACKET)
952 msg->msg_flags |= MSG_EOR;
954 return __sock_sendmsg(iocb, sock, msg, size);
957 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
958 unsigned long nr_segs, loff_t pos)
960 struct sock_iocb siocb, *x;
962 if (pos != 0)
963 return -ESPIPE;
965 x = alloc_sock_iocb(iocb, &siocb);
966 if (!x)
967 return -ENOMEM;
969 return do_sock_write(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
973 * Atomic setting of ioctl hooks to avoid race
974 * with module unload.
977 static DEFINE_MUTEX(br_ioctl_mutex);
978 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
980 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
982 mutex_lock(&br_ioctl_mutex);
983 br_ioctl_hook = hook;
984 mutex_unlock(&br_ioctl_mutex);
986 EXPORT_SYMBOL(brioctl_set);
988 static DEFINE_MUTEX(vlan_ioctl_mutex);
989 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
991 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
993 mutex_lock(&vlan_ioctl_mutex);
994 vlan_ioctl_hook = hook;
995 mutex_unlock(&vlan_ioctl_mutex);
997 EXPORT_SYMBOL(vlan_ioctl_set);
999 static DEFINE_MUTEX(dlci_ioctl_mutex);
1000 static int (*dlci_ioctl_hook) (unsigned int, void __user *);
1002 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
1004 mutex_lock(&dlci_ioctl_mutex);
1005 dlci_ioctl_hook = hook;
1006 mutex_unlock(&dlci_ioctl_mutex);
1008 EXPORT_SYMBOL(dlci_ioctl_set);
1010 static long sock_do_ioctl(struct net *net, struct socket *sock,
1011 unsigned int cmd, unsigned long arg)
1013 int err;
1014 void __user *argp = (void __user *)arg;
1016 err = sock->ops->ioctl(sock, cmd, arg);
1019 * If this ioctl is unknown try to hand it down
1020 * to the NIC driver.
1022 if (err == -ENOIOCTLCMD)
1023 err = dev_ioctl(net, cmd, argp);
1025 return err;
1029 * With an ioctl, arg may well be a user mode pointer, but we don't know
1030 * what to do with it - that's up to the protocol still.
1033 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1035 struct socket *sock;
1036 struct sock *sk;
1037 void __user *argp = (void __user *)arg;
1038 int pid, err;
1039 struct net *net;
1041 sock = file->private_data;
1042 sk = sock->sk;
1043 net = sock_net(sk);
1044 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
1045 err = dev_ioctl(net, cmd, argp);
1046 } else
1047 #ifdef CONFIG_WEXT_CORE
1048 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
1049 err = dev_ioctl(net, cmd, argp);
1050 } else
1051 #endif
1052 switch (cmd) {
1053 case FIOSETOWN:
1054 case SIOCSPGRP:
1055 err = -EFAULT;
1056 if (get_user(pid, (int __user *)argp))
1057 break;
1058 err = f_setown(sock->file, pid, 1);
1059 break;
1060 case FIOGETOWN:
1061 case SIOCGPGRP:
1062 err = put_user(f_getown(sock->file),
1063 (int __user *)argp);
1064 break;
1065 case SIOCGIFBR:
1066 case SIOCSIFBR:
1067 case SIOCBRADDBR:
1068 case SIOCBRDELBR:
1069 err = -ENOPKG;
1070 if (!br_ioctl_hook)
1071 request_module("bridge");
1073 mutex_lock(&br_ioctl_mutex);
1074 if (br_ioctl_hook)
1075 err = br_ioctl_hook(net, cmd, argp);
1076 mutex_unlock(&br_ioctl_mutex);
1077 break;
1078 case SIOCGIFVLAN:
1079 case SIOCSIFVLAN:
1080 err = -ENOPKG;
1081 if (!vlan_ioctl_hook)
1082 request_module("8021q");
1084 mutex_lock(&vlan_ioctl_mutex);
1085 if (vlan_ioctl_hook)
1086 err = vlan_ioctl_hook(net, argp);
1087 mutex_unlock(&vlan_ioctl_mutex);
1088 break;
1089 case SIOCADDDLCI:
1090 case SIOCDELDLCI:
1091 err = -ENOPKG;
1092 if (!dlci_ioctl_hook)
1093 request_module("dlci");
1095 mutex_lock(&dlci_ioctl_mutex);
1096 if (dlci_ioctl_hook)
1097 err = dlci_ioctl_hook(cmd, argp);
1098 mutex_unlock(&dlci_ioctl_mutex);
1099 break;
1100 default:
1101 err = sock_do_ioctl(net, sock, cmd, arg);
1102 break;
1104 return err;
1107 int sock_create_lite(int family, int type, int protocol, struct socket **res)
1109 int err;
1110 struct socket *sock = NULL;
1112 err = security_socket_create(family, type, protocol, 1);
1113 if (err)
1114 goto out;
1116 sock = sock_alloc();
1117 if (!sock) {
1118 err = -ENOMEM;
1119 goto out;
1122 sock->type = type;
1123 err = security_socket_post_create(sock, family, type, protocol, 1);
1124 if (err)
1125 goto out_release;
1127 out:
1128 *res = sock;
1129 return err;
1130 out_release:
1131 sock_release(sock);
1132 sock = NULL;
1133 goto out;
1135 EXPORT_SYMBOL(sock_create_lite);
1137 /* No kernel lock held - perfect */
1138 static unsigned int sock_poll(struct file *file, poll_table *wait)
1140 unsigned int busy_flag = 0;
1141 struct socket *sock;
1144 * We can't return errors to poll, so it's either yes or no.
1146 sock = file->private_data;
1148 if (sk_can_busy_loop(sock->sk)) {
1149 /* this socket can poll_ll so tell the system call */
1150 busy_flag = POLL_BUSY_LOOP;
1152 /* once, only if requested by syscall */
1153 if (wait && (wait->_key & POLL_BUSY_LOOP))
1154 sk_busy_loop(sock->sk, 1);
1157 return busy_flag | sock->ops->poll(file, sock, wait);
1160 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1162 struct socket *sock = file->private_data;
1164 return sock->ops->mmap(file, sock, vma);
1167 static int sock_close(struct inode *inode, struct file *filp)
1169 sock_release(SOCKET_I(inode));
1170 return 0;
1174 * Update the socket async list
1176 * Fasync_list locking strategy.
1178 * 1. fasync_list is modified only under process context socket lock
1179 * i.e. under semaphore.
1180 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1181 * or under socket lock
1184 static int sock_fasync(int fd, struct file *filp, int on)
1186 struct socket *sock = filp->private_data;
1187 struct sock *sk = sock->sk;
1188 struct socket_wq *wq;
1190 if (sk == NULL)
1191 return -EINVAL;
1193 lock_sock(sk);
1194 wq = rcu_dereference_protected(sock->wq, sock_owned_by_user(sk));
1195 fasync_helper(fd, filp, on, &wq->fasync_list);
1197 if (!wq->fasync_list)
1198 sock_reset_flag(sk, SOCK_FASYNC);
1199 else
1200 sock_set_flag(sk, SOCK_FASYNC);
1202 release_sock(sk);
1203 return 0;
1206 /* This function may be called only under socket lock or callback_lock or rcu_lock */
1208 int sock_wake_async(struct socket *sock, int how, int band)
1210 struct socket_wq *wq;
1212 if (!sock)
1213 return -1;
1214 rcu_read_lock();
1215 wq = rcu_dereference(sock->wq);
1216 if (!wq || !wq->fasync_list) {
1217 rcu_read_unlock();
1218 return -1;
1220 switch (how) {
1221 case SOCK_WAKE_WAITD:
1222 if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags))
1223 break;
1224 goto call_kill;
1225 case SOCK_WAKE_SPACE:
1226 if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags))
1227 break;
1228 /* fall through */
1229 case SOCK_WAKE_IO:
1230 call_kill:
1231 kill_fasync(&wq->fasync_list, SIGIO, band);
1232 break;
1233 case SOCK_WAKE_URG:
1234 kill_fasync(&wq->fasync_list, SIGURG, band);
1236 rcu_read_unlock();
1237 return 0;
1239 EXPORT_SYMBOL(sock_wake_async);
1241 int __sock_create(struct net *net, int family, int type, int protocol,
1242 struct socket **res, int kern)
1244 int err;
1245 struct socket *sock;
1246 const struct net_proto_family *pf;
1249 * Check protocol is in range
1251 if (family < 0 || family >= NPROTO)
1252 return -EAFNOSUPPORT;
1253 if (type < 0 || type >= SOCK_MAX)
1254 return -EINVAL;
1256 /* Compatibility.
1258 This uglymoron is moved from INET layer to here to avoid
1259 deadlock in module load.
1261 if (family == PF_INET && type == SOCK_PACKET) {
1262 static int warned;
1263 if (!warned) {
1264 warned = 1;
1265 printk(KERN_INFO "%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1266 current->comm);
1268 family = PF_PACKET;
1271 err = security_socket_create(family, type, protocol, kern);
1272 if (err)
1273 return err;
1276 * Allocate the socket and allow the family to set things up. if
1277 * the protocol is 0, the family is instructed to select an appropriate
1278 * default.
1280 sock = sock_alloc();
1281 if (!sock) {
1282 net_warn_ratelimited("socket: no more sockets\n");
1283 return -ENFILE; /* Not exactly a match, but its the
1284 closest posix thing */
1287 sock->type = type;
1289 #ifdef CONFIG_MODULES
1290 /* Attempt to load a protocol module if the find failed.
1292 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1293 * requested real, full-featured networking support upon configuration.
1294 * Otherwise module support will break!
1296 if (rcu_access_pointer(net_families[family]) == NULL)
1297 request_module("net-pf-%d", family);
1298 #endif
1300 rcu_read_lock();
1301 pf = rcu_dereference(net_families[family]);
1302 err = -EAFNOSUPPORT;
1303 if (!pf)
1304 goto out_release;
1307 * We will call the ->create function, that possibly is in a loadable
1308 * module, so we have to bump that loadable module refcnt first.
1310 if (!try_module_get(pf->owner))
1311 goto out_release;
1313 /* Now protected by module ref count */
1314 rcu_read_unlock();
1316 err = pf->create(net, sock, protocol, kern);
1317 if (err < 0)
1318 goto out_module_put;
1321 * Now to bump the refcnt of the [loadable] module that owns this
1322 * socket at sock_release time we decrement its refcnt.
1324 if (!try_module_get(sock->ops->owner))
1325 goto out_module_busy;
1328 * Now that we're done with the ->create function, the [loadable]
1329 * module can have its refcnt decremented
1331 module_put(pf->owner);
1332 err = security_socket_post_create(sock, family, type, protocol, kern);
1333 if (err)
1334 goto out_sock_release;
1335 *res = sock;
1337 return 0;
1339 out_module_busy:
1340 err = -EAFNOSUPPORT;
1341 out_module_put:
1342 sock->ops = NULL;
1343 module_put(pf->owner);
1344 out_sock_release:
1345 sock_release(sock);
1346 return err;
1348 out_release:
1349 rcu_read_unlock();
1350 goto out_sock_release;
1352 EXPORT_SYMBOL(__sock_create);
1354 int sock_create(int family, int type, int protocol, struct socket **res)
1356 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1358 EXPORT_SYMBOL(sock_create);
1360 int sock_create_kern(int family, int type, int protocol, struct socket **res)
1362 return __sock_create(&init_net, family, type, protocol, res, 1);
1364 EXPORT_SYMBOL(sock_create_kern);
1366 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1368 int retval;
1369 struct socket *sock;
1370 int flags;
1372 /* Check the SOCK_* constants for consistency. */
1373 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1374 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1375 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1376 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1378 flags = type & ~SOCK_TYPE_MASK;
1379 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1380 return -EINVAL;
1381 type &= SOCK_TYPE_MASK;
1383 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1384 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1386 retval = sock_create(family, type, protocol, &sock);
1387 if (retval < 0)
1388 goto out;
1390 retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1391 if (retval < 0)
1392 goto out_release;
1394 out:
1395 /* It may be already another descriptor 8) Not kernel problem. */
1396 return retval;
1398 out_release:
1399 sock_release(sock);
1400 return retval;
1404 * Create a pair of connected sockets.
1407 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1408 int __user *, usockvec)
1410 struct socket *sock1, *sock2;
1411 int fd1, fd2, err;
1412 struct file *newfile1, *newfile2;
1413 int flags;
1415 flags = type & ~SOCK_TYPE_MASK;
1416 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1417 return -EINVAL;
1418 type &= SOCK_TYPE_MASK;
1420 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1421 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1424 * Obtain the first socket and check if the underlying protocol
1425 * supports the socketpair call.
1428 err = sock_create(family, type, protocol, &sock1);
1429 if (err < 0)
1430 goto out;
1432 err = sock_create(family, type, protocol, &sock2);
1433 if (err < 0)
1434 goto out_release_1;
1436 err = sock1->ops->socketpair(sock1, sock2);
1437 if (err < 0)
1438 goto out_release_both;
1440 fd1 = get_unused_fd_flags(flags);
1441 if (unlikely(fd1 < 0)) {
1442 err = fd1;
1443 goto out_release_both;
1445 fd2 = get_unused_fd_flags(flags);
1446 if (unlikely(fd2 < 0)) {
1447 err = fd2;
1448 put_unused_fd(fd1);
1449 goto out_release_both;
1452 newfile1 = sock_alloc_file(sock1, flags, NULL);
1453 if (unlikely(IS_ERR(newfile1))) {
1454 err = PTR_ERR(newfile1);
1455 put_unused_fd(fd1);
1456 put_unused_fd(fd2);
1457 goto out_release_both;
1460 newfile2 = sock_alloc_file(sock2, flags, NULL);
1461 if (IS_ERR(newfile2)) {
1462 err = PTR_ERR(newfile2);
1463 fput(newfile1);
1464 put_unused_fd(fd1);
1465 put_unused_fd(fd2);
1466 sock_release(sock2);
1467 goto out;
1470 audit_fd_pair(fd1, fd2);
1471 fd_install(fd1, newfile1);
1472 fd_install(fd2, newfile2);
1473 /* fd1 and fd2 may be already another descriptors.
1474 * Not kernel problem.
1477 err = put_user(fd1, &usockvec[0]);
1478 if (!err)
1479 err = put_user(fd2, &usockvec[1]);
1480 if (!err)
1481 return 0;
1483 sys_close(fd2);
1484 sys_close(fd1);
1485 return err;
1487 out_release_both:
1488 sock_release(sock2);
1489 out_release_1:
1490 sock_release(sock1);
1491 out:
1492 return err;
1496 * Bind a name to a socket. Nothing much to do here since it's
1497 * the protocol's responsibility to handle the local address.
1499 * We move the socket address to kernel space before we call
1500 * the protocol layer (having also checked the address is ok).
1503 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1505 struct socket *sock;
1506 struct sockaddr_storage address;
1507 int err, fput_needed;
1509 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1510 if (sock) {
1511 err = move_addr_to_kernel(umyaddr, addrlen, &address);
1512 if (err >= 0) {
1513 err = security_socket_bind(sock,
1514 (struct sockaddr *)&address,
1515 addrlen);
1516 if (!err)
1517 err = sock->ops->bind(sock,
1518 (struct sockaddr *)
1519 &address, addrlen);
1521 fput_light(sock->file, fput_needed);
1523 return err;
1527 * Perform a listen. Basically, we allow the protocol to do anything
1528 * necessary for a listen, and if that works, we mark the socket as
1529 * ready for listening.
1532 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1534 struct socket *sock;
1535 int err, fput_needed;
1536 int somaxconn;
1538 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1539 if (sock) {
1540 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1541 if ((unsigned int)backlog > somaxconn)
1542 backlog = somaxconn;
1544 err = security_socket_listen(sock, backlog);
1545 if (!err)
1546 err = sock->ops->listen(sock, backlog);
1548 fput_light(sock->file, fput_needed);
1550 return err;
1554 * For accept, we attempt to create a new socket, set up the link
1555 * with the client, wake up the client, then return the new
1556 * connected fd. We collect the address of the connector in kernel
1557 * space and move it to user at the very end. This is unclean because
1558 * we open the socket then return an error.
1560 * 1003.1g adds the ability to recvmsg() to query connection pending
1561 * status to recvmsg. We need to add that support in a way thats
1562 * clean when we restucture accept also.
1565 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1566 int __user *, upeer_addrlen, int, flags)
1568 struct socket *sock, *newsock;
1569 struct file *newfile;
1570 int err, len, newfd, fput_needed;
1571 struct sockaddr_storage address;
1573 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1574 return -EINVAL;
1576 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1577 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1579 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1580 if (!sock)
1581 goto out;
1583 err = -ENFILE;
1584 newsock = sock_alloc();
1585 if (!newsock)
1586 goto out_put;
1588 newsock->type = sock->type;
1589 newsock->ops = sock->ops;
1592 * We don't need try_module_get here, as the listening socket (sock)
1593 * has the protocol module (sock->ops->owner) held.
1595 __module_get(newsock->ops->owner);
1597 newfd = get_unused_fd_flags(flags);
1598 if (unlikely(newfd < 0)) {
1599 err = newfd;
1600 sock_release(newsock);
1601 goto out_put;
1603 newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1604 if (unlikely(IS_ERR(newfile))) {
1605 err = PTR_ERR(newfile);
1606 put_unused_fd(newfd);
1607 sock_release(newsock);
1608 goto out_put;
1611 err = security_socket_accept(sock, newsock);
1612 if (err)
1613 goto out_fd;
1615 err = sock->ops->accept(sock, newsock, sock->file->f_flags);
1616 if (err < 0)
1617 goto out_fd;
1619 if (upeer_sockaddr) {
1620 if (newsock->ops->getname(newsock, (struct sockaddr *)&address,
1621 &len, 2) < 0) {
1622 err = -ECONNABORTED;
1623 goto out_fd;
1625 err = move_addr_to_user(&address,
1626 len, upeer_sockaddr, upeer_addrlen);
1627 if (err < 0)
1628 goto out_fd;
1631 /* File flags are not inherited via accept() unlike another OSes. */
1633 fd_install(newfd, newfile);
1634 err = newfd;
1636 out_put:
1637 fput_light(sock->file, fput_needed);
1638 out:
1639 return err;
1640 out_fd:
1641 fput(newfile);
1642 put_unused_fd(newfd);
1643 goto out_put;
1646 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1647 int __user *, upeer_addrlen)
1649 return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1653 * Attempt to connect to a socket with the server address. The address
1654 * is in user space so we verify it is OK and move it to kernel space.
1656 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1657 * break bindings
1659 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1660 * other SEQPACKET protocols that take time to connect() as it doesn't
1661 * include the -EINPROGRESS status for such sockets.
1664 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1665 int, addrlen)
1667 struct socket *sock;
1668 struct sockaddr_storage address;
1669 int err, fput_needed;
1671 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1672 if (!sock)
1673 goto out;
1674 err = move_addr_to_kernel(uservaddr, addrlen, &address);
1675 if (err < 0)
1676 goto out_put;
1678 err =
1679 security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1680 if (err)
1681 goto out_put;
1683 err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1684 sock->file->f_flags);
1685 out_put:
1686 fput_light(sock->file, fput_needed);
1687 out:
1688 return err;
1692 * Get the local address ('name') of a socket object. Move the obtained
1693 * name to user space.
1696 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1697 int __user *, usockaddr_len)
1699 struct socket *sock;
1700 struct sockaddr_storage address;
1701 int len, err, fput_needed;
1703 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1704 if (!sock)
1705 goto out;
1707 err = security_socket_getsockname(sock);
1708 if (err)
1709 goto out_put;
1711 err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0);
1712 if (err)
1713 goto out_put;
1714 err = move_addr_to_user(&address, len, usockaddr, usockaddr_len);
1716 out_put:
1717 fput_light(sock->file, fput_needed);
1718 out:
1719 return err;
1723 * Get the remote address ('name') of a socket object. Move the obtained
1724 * name to user space.
1727 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1728 int __user *, usockaddr_len)
1730 struct socket *sock;
1731 struct sockaddr_storage address;
1732 int len, err, fput_needed;
1734 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1735 if (sock != NULL) {
1736 err = security_socket_getpeername(sock);
1737 if (err) {
1738 fput_light(sock->file, fput_needed);
1739 return err;
1742 err =
1743 sock->ops->getname(sock, (struct sockaddr *)&address, &len,
1745 if (!err)
1746 err = move_addr_to_user(&address, len, usockaddr,
1747 usockaddr_len);
1748 fput_light(sock->file, fput_needed);
1750 return err;
1754 * Send a datagram to a given address. We move the address into kernel
1755 * space and check the user space data area is readable before invoking
1756 * the protocol.
1759 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1760 unsigned int, flags, struct sockaddr __user *, addr,
1761 int, addr_len)
1763 struct socket *sock;
1764 struct sockaddr_storage address;
1765 int err;
1766 struct msghdr msg;
1767 struct iovec iov;
1768 int fput_needed;
1770 if (len > INT_MAX)
1771 len = INT_MAX;
1772 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1773 if (!sock)
1774 goto out;
1776 iov.iov_base = buff;
1777 iov.iov_len = len;
1778 msg.msg_name = NULL;
1779 msg.msg_iov = &iov;
1780 msg.msg_iovlen = 1;
1781 msg.msg_control = NULL;
1782 msg.msg_controllen = 0;
1783 msg.msg_namelen = 0;
1784 if (addr) {
1785 err = move_addr_to_kernel(addr, addr_len, &address);
1786 if (err < 0)
1787 goto out_put;
1788 msg.msg_name = (struct sockaddr *)&address;
1789 msg.msg_namelen = addr_len;
1791 if (sock->file->f_flags & O_NONBLOCK)
1792 flags |= MSG_DONTWAIT;
1793 msg.msg_flags = flags;
1794 err = sock_sendmsg(sock, &msg, len);
1796 out_put:
1797 fput_light(sock->file, fput_needed);
1798 out:
1799 return err;
1803 * Send a datagram down a socket.
1806 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1807 unsigned int, flags)
1809 return sys_sendto(fd, buff, len, flags, NULL, 0);
1813 * Receive a frame from the socket and optionally record the address of the
1814 * sender. We verify the buffers are writable and if needed move the
1815 * sender address from kernel to user space.
1818 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
1819 unsigned int, flags, struct sockaddr __user *, addr,
1820 int __user *, addr_len)
1822 struct socket *sock;
1823 struct iovec iov;
1824 struct msghdr msg;
1825 struct sockaddr_storage address;
1826 int err, err2;
1827 int fput_needed;
1829 if (size > INT_MAX)
1830 size = INT_MAX;
1831 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1832 if (!sock)
1833 goto out;
1835 msg.msg_control = NULL;
1836 msg.msg_controllen = 0;
1837 msg.msg_iovlen = 1;
1838 msg.msg_iov = &iov;
1839 iov.iov_len = size;
1840 iov.iov_base = ubuf;
1841 /* Save some cycles and don't copy the address if not needed */
1842 msg.msg_name = addr ? (struct sockaddr *)&address : NULL;
1843 /* We assume all kernel code knows the size of sockaddr_storage */
1844 msg.msg_namelen = 0;
1845 if (sock->file->f_flags & O_NONBLOCK)
1846 flags |= MSG_DONTWAIT;
1847 err = sock_recvmsg(sock, &msg, size, flags);
1849 if (err >= 0 && addr != NULL) {
1850 err2 = move_addr_to_user(&address,
1851 msg.msg_namelen, addr, addr_len);
1852 if (err2 < 0)
1853 err = err2;
1856 fput_light(sock->file, fput_needed);
1857 out:
1858 return err;
1862 * Receive a datagram from a socket.
1865 asmlinkage long sys_recv(int fd, void __user *ubuf, size_t size,
1866 unsigned int flags)
1868 return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1872 * Set a socket option. Because we don't know the option lengths we have
1873 * to pass the user mode parameter for the protocols to sort out.
1876 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
1877 char __user *, optval, int, optlen)
1879 int err, fput_needed;
1880 struct socket *sock;
1882 if (optlen < 0)
1883 return -EINVAL;
1885 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1886 if (sock != NULL) {
1887 err = security_socket_setsockopt(sock, level, optname);
1888 if (err)
1889 goto out_put;
1891 if (level == SOL_SOCKET)
1892 err =
1893 sock_setsockopt(sock, level, optname, optval,
1894 optlen);
1895 else
1896 err =
1897 sock->ops->setsockopt(sock, level, optname, optval,
1898 optlen);
1899 out_put:
1900 fput_light(sock->file, fput_needed);
1902 return err;
1906 * Get a socket option. Because we don't know the option lengths we have
1907 * to pass a user mode parameter for the protocols to sort out.
1910 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
1911 char __user *, optval, int __user *, optlen)
1913 int err, fput_needed;
1914 struct socket *sock;
1916 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1917 if (sock != NULL) {
1918 err = security_socket_getsockopt(sock, level, optname);
1919 if (err)
1920 goto out_put;
1922 if (level == SOL_SOCKET)
1923 err =
1924 sock_getsockopt(sock, level, optname, optval,
1925 optlen);
1926 else
1927 err =
1928 sock->ops->getsockopt(sock, level, optname, optval,
1929 optlen);
1930 out_put:
1931 fput_light(sock->file, fput_needed);
1933 return err;
1937 * Shutdown a socket.
1940 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
1942 int err, fput_needed;
1943 struct socket *sock;
1945 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1946 if (sock != NULL) {
1947 err = security_socket_shutdown(sock, how);
1948 if (!err)
1949 err = sock->ops->shutdown(sock, how);
1950 fput_light(sock->file, fput_needed);
1952 return err;
1955 /* A couple of helpful macros for getting the address of the 32/64 bit
1956 * fields which are the same type (int / unsigned) on our platforms.
1958 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1959 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen)
1960 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags)
1962 struct used_address {
1963 struct sockaddr_storage name;
1964 unsigned int name_len;
1967 static int copy_msghdr_from_user(struct msghdr *kmsg,
1968 struct msghdr __user *umsg)
1970 if (copy_from_user(kmsg, umsg, sizeof(struct msghdr)))
1971 return -EFAULT;
1973 if (kmsg->msg_name == NULL)
1974 kmsg->msg_namelen = 0;
1976 if (kmsg->msg_namelen < 0)
1977 return -EINVAL;
1979 if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
1980 kmsg->msg_namelen = sizeof(struct sockaddr_storage);
1981 return 0;
1984 static int ___sys_sendmsg(struct socket *sock, struct msghdr __user *msg,
1985 struct msghdr *msg_sys, unsigned int flags,
1986 struct used_address *used_address)
1988 struct compat_msghdr __user *msg_compat =
1989 (struct compat_msghdr __user *)msg;
1990 struct sockaddr_storage address;
1991 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
1992 unsigned char ctl[sizeof(struct cmsghdr) + 20]
1993 __attribute__ ((aligned(sizeof(__kernel_size_t))));
1994 /* 20 is size of ipv6_pktinfo */
1995 unsigned char *ctl_buf = ctl;
1996 int err, ctl_len, total_len;
1998 err = -EFAULT;
1999 if (MSG_CMSG_COMPAT & flags)
2000 err = get_compat_msghdr(msg_sys, msg_compat);
2001 else
2002 err = copy_msghdr_from_user(msg_sys, msg);
2003 if (err)
2004 return err;
2006 if (msg_sys->msg_iovlen > UIO_FASTIOV) {
2007 err = -EMSGSIZE;
2008 if (msg_sys->msg_iovlen > UIO_MAXIOV)
2009 goto out;
2010 err = -ENOMEM;
2011 iov = kmalloc(msg_sys->msg_iovlen * sizeof(struct iovec),
2012 GFP_KERNEL);
2013 if (!iov)
2014 goto out;
2017 /* This will also move the address data into kernel space */
2018 if (MSG_CMSG_COMPAT & flags) {
2019 err = verify_compat_iovec(msg_sys, iov, &address, VERIFY_READ);
2020 } else
2021 err = verify_iovec(msg_sys, iov, &address, VERIFY_READ);
2022 if (err < 0)
2023 goto out_freeiov;
2024 total_len = err;
2026 err = -ENOBUFS;
2028 if (msg_sys->msg_controllen > INT_MAX)
2029 goto out_freeiov;
2030 ctl_len = msg_sys->msg_controllen;
2031 if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
2032 err =
2033 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
2034 sizeof(ctl));
2035 if (err)
2036 goto out_freeiov;
2037 ctl_buf = msg_sys->msg_control;
2038 ctl_len = msg_sys->msg_controllen;
2039 } else if (ctl_len) {
2040 if (ctl_len > sizeof(ctl)) {
2041 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
2042 if (ctl_buf == NULL)
2043 goto out_freeiov;
2045 err = -EFAULT;
2047 * Careful! Before this, msg_sys->msg_control contains a user pointer.
2048 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
2049 * checking falls down on this.
2051 if (copy_from_user(ctl_buf,
2052 (void __user __force *)msg_sys->msg_control,
2053 ctl_len))
2054 goto out_freectl;
2055 msg_sys->msg_control = ctl_buf;
2057 msg_sys->msg_flags = flags;
2059 if (sock->file->f_flags & O_NONBLOCK)
2060 msg_sys->msg_flags |= MSG_DONTWAIT;
2062 * If this is sendmmsg() and current destination address is same as
2063 * previously succeeded address, omit asking LSM's decision.
2064 * used_address->name_len is initialized to UINT_MAX so that the first
2065 * destination address never matches.
2067 if (used_address && msg_sys->msg_name &&
2068 used_address->name_len == msg_sys->msg_namelen &&
2069 !memcmp(&used_address->name, msg_sys->msg_name,
2070 used_address->name_len)) {
2071 err = sock_sendmsg_nosec(sock, msg_sys, total_len);
2072 goto out_freectl;
2074 err = sock_sendmsg(sock, msg_sys, total_len);
2076 * If this is sendmmsg() and sending to current destination address was
2077 * successful, remember it.
2079 if (used_address && err >= 0) {
2080 used_address->name_len = msg_sys->msg_namelen;
2081 if (msg_sys->msg_name)
2082 memcpy(&used_address->name, msg_sys->msg_name,
2083 used_address->name_len);
2086 out_freectl:
2087 if (ctl_buf != ctl)
2088 sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2089 out_freeiov:
2090 if (iov != iovstack)
2091 kfree(iov);
2092 out:
2093 return err;
2097 * BSD sendmsg interface
2100 long __sys_sendmsg(int fd, struct msghdr __user *msg, unsigned flags)
2102 int fput_needed, err;
2103 struct msghdr msg_sys;
2104 struct socket *sock;
2106 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2107 if (!sock)
2108 goto out;
2110 err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL);
2112 fput_light(sock->file, fput_needed);
2113 out:
2114 return err;
2117 SYSCALL_DEFINE3(sendmsg, int, fd, struct msghdr __user *, msg, unsigned int, flags)
2119 if (flags & MSG_CMSG_COMPAT)
2120 return -EINVAL;
2121 return __sys_sendmsg(fd, msg, flags);
2125 * Linux sendmmsg interface
2128 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2129 unsigned int flags)
2131 int fput_needed, err, datagrams;
2132 struct socket *sock;
2133 struct mmsghdr __user *entry;
2134 struct compat_mmsghdr __user *compat_entry;
2135 struct msghdr msg_sys;
2136 struct used_address used_address;
2138 if (vlen > UIO_MAXIOV)
2139 vlen = UIO_MAXIOV;
2141 datagrams = 0;
2143 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2144 if (!sock)
2145 return err;
2147 used_address.name_len = UINT_MAX;
2148 entry = mmsg;
2149 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2150 err = 0;
2152 while (datagrams < vlen) {
2153 if (MSG_CMSG_COMPAT & flags) {
2154 err = ___sys_sendmsg(sock, (struct msghdr __user *)compat_entry,
2155 &msg_sys, flags, &used_address);
2156 if (err < 0)
2157 break;
2158 err = __put_user(err, &compat_entry->msg_len);
2159 ++compat_entry;
2160 } else {
2161 err = ___sys_sendmsg(sock,
2162 (struct msghdr __user *)entry,
2163 &msg_sys, flags, &used_address);
2164 if (err < 0)
2165 break;
2166 err = put_user(err, &entry->msg_len);
2167 ++entry;
2170 if (err)
2171 break;
2172 ++datagrams;
2175 fput_light(sock->file, fput_needed);
2177 /* We only return an error if no datagrams were able to be sent */
2178 if (datagrams != 0)
2179 return datagrams;
2181 return err;
2184 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2185 unsigned int, vlen, unsigned int, flags)
2187 if (flags & MSG_CMSG_COMPAT)
2188 return -EINVAL;
2189 return __sys_sendmmsg(fd, mmsg, vlen, flags);
2192 static int ___sys_recvmsg(struct socket *sock, struct msghdr __user *msg,
2193 struct msghdr *msg_sys, unsigned int flags, int nosec)
2195 struct compat_msghdr __user *msg_compat =
2196 (struct compat_msghdr __user *)msg;
2197 struct iovec iovstack[UIO_FASTIOV];
2198 struct iovec *iov = iovstack;
2199 unsigned long cmsg_ptr;
2200 int err, total_len, len;
2202 /* kernel mode address */
2203 struct sockaddr_storage addr;
2205 /* user mode address pointers */
2206 struct sockaddr __user *uaddr;
2207 int __user *uaddr_len;
2209 if (MSG_CMSG_COMPAT & flags)
2210 err = get_compat_msghdr(msg_sys, msg_compat);
2211 else
2212 err = copy_msghdr_from_user(msg_sys, msg);
2213 if (err)
2214 return err;
2216 if (msg_sys->msg_iovlen > UIO_FASTIOV) {
2217 err = -EMSGSIZE;
2218 if (msg_sys->msg_iovlen > UIO_MAXIOV)
2219 goto out;
2220 err = -ENOMEM;
2221 iov = kmalloc(msg_sys->msg_iovlen * sizeof(struct iovec),
2222 GFP_KERNEL);
2223 if (!iov)
2224 goto out;
2227 /* Save the user-mode address (verify_iovec will change the
2228 * kernel msghdr to use the kernel address space)
2230 uaddr = (__force void __user *)msg_sys->msg_name;
2231 uaddr_len = COMPAT_NAMELEN(msg);
2232 if (MSG_CMSG_COMPAT & flags)
2233 err = verify_compat_iovec(msg_sys, iov, &addr, VERIFY_WRITE);
2234 else
2235 err = verify_iovec(msg_sys, iov, &addr, VERIFY_WRITE);
2236 if (err < 0)
2237 goto out_freeiov;
2238 total_len = err;
2240 cmsg_ptr = (unsigned long)msg_sys->msg_control;
2241 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2243 /* We assume all kernel code knows the size of sockaddr_storage */
2244 msg_sys->msg_namelen = 0;
2246 if (sock->file->f_flags & O_NONBLOCK)
2247 flags |= MSG_DONTWAIT;
2248 err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys,
2249 total_len, flags);
2250 if (err < 0)
2251 goto out_freeiov;
2252 len = err;
2254 if (uaddr != NULL) {
2255 err = move_addr_to_user(&addr,
2256 msg_sys->msg_namelen, uaddr,
2257 uaddr_len);
2258 if (err < 0)
2259 goto out_freeiov;
2261 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2262 COMPAT_FLAGS(msg));
2263 if (err)
2264 goto out_freeiov;
2265 if (MSG_CMSG_COMPAT & flags)
2266 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2267 &msg_compat->msg_controllen);
2268 else
2269 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2270 &msg->msg_controllen);
2271 if (err)
2272 goto out_freeiov;
2273 err = len;
2275 out_freeiov:
2276 if (iov != iovstack)
2277 kfree(iov);
2278 out:
2279 return err;
2283 * BSD recvmsg interface
2286 long __sys_recvmsg(int fd, struct msghdr __user *msg, unsigned flags)
2288 int fput_needed, err;
2289 struct msghdr msg_sys;
2290 struct socket *sock;
2292 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2293 if (!sock)
2294 goto out;
2296 err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2298 fput_light(sock->file, fput_needed);
2299 out:
2300 return err;
2303 SYSCALL_DEFINE3(recvmsg, int, fd, struct msghdr __user *, msg,
2304 unsigned int, flags)
2306 if (flags & MSG_CMSG_COMPAT)
2307 return -EINVAL;
2308 return __sys_recvmsg(fd, msg, flags);
2312 * Linux recvmmsg interface
2315 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2316 unsigned int flags, struct timespec *timeout)
2318 int fput_needed, err, datagrams;
2319 struct socket *sock;
2320 struct mmsghdr __user *entry;
2321 struct compat_mmsghdr __user *compat_entry;
2322 struct msghdr msg_sys;
2323 struct timespec end_time;
2325 if (timeout &&
2326 poll_select_set_timeout(&end_time, timeout->tv_sec,
2327 timeout->tv_nsec))
2328 return -EINVAL;
2330 datagrams = 0;
2332 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2333 if (!sock)
2334 return err;
2336 err = sock_error(sock->sk);
2337 if (err)
2338 goto out_put;
2340 entry = mmsg;
2341 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2343 while (datagrams < vlen) {
2345 * No need to ask LSM for more than the first datagram.
2347 if (MSG_CMSG_COMPAT & flags) {
2348 err = ___sys_recvmsg(sock, (struct msghdr __user *)compat_entry,
2349 &msg_sys, flags & ~MSG_WAITFORONE,
2350 datagrams);
2351 if (err < 0)
2352 break;
2353 err = __put_user(err, &compat_entry->msg_len);
2354 ++compat_entry;
2355 } else {
2356 err = ___sys_recvmsg(sock,
2357 (struct msghdr __user *)entry,
2358 &msg_sys, flags & ~MSG_WAITFORONE,
2359 datagrams);
2360 if (err < 0)
2361 break;
2362 err = put_user(err, &entry->msg_len);
2363 ++entry;
2366 if (err)
2367 break;
2368 ++datagrams;
2370 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2371 if (flags & MSG_WAITFORONE)
2372 flags |= MSG_DONTWAIT;
2374 if (timeout) {
2375 ktime_get_ts(timeout);
2376 *timeout = timespec_sub(end_time, *timeout);
2377 if (timeout->tv_sec < 0) {
2378 timeout->tv_sec = timeout->tv_nsec = 0;
2379 break;
2382 /* Timeout, return less than vlen datagrams */
2383 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2384 break;
2387 /* Out of band data, return right away */
2388 if (msg_sys.msg_flags & MSG_OOB)
2389 break;
2392 if (err == 0)
2393 goto out_put;
2395 if (datagrams == 0) {
2396 datagrams = err;
2397 goto out_put;
2401 * We may return less entries than requested (vlen) if the
2402 * sock is non block and there aren't enough datagrams...
2404 if (err != -EAGAIN) {
2406 * ... or if recvmsg returns an error after we
2407 * received some datagrams, where we record the
2408 * error to return on the next call or if the
2409 * app asks about it using getsockopt(SO_ERROR).
2411 sock->sk->sk_err = -err;
2413 out_put:
2414 fput_light(sock->file, fput_needed);
2416 return datagrams;
2419 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2420 unsigned int, vlen, unsigned int, flags,
2421 struct timespec __user *, timeout)
2423 int datagrams;
2424 struct timespec timeout_sys;
2426 if (flags & MSG_CMSG_COMPAT)
2427 return -EINVAL;
2429 if (!timeout)
2430 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL);
2432 if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys)))
2433 return -EFAULT;
2435 datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2437 if (datagrams > 0 &&
2438 copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys)))
2439 datagrams = -EFAULT;
2441 return datagrams;
2444 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2445 /* Argument list sizes for sys_socketcall */
2446 #define AL(x) ((x) * sizeof(unsigned long))
2447 static const unsigned char nargs[21] = {
2448 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2449 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2450 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2451 AL(4), AL(5), AL(4)
2454 #undef AL
2457 * System call vectors.
2459 * Argument checking cleaned up. Saved 20% in size.
2460 * This function doesn't need to set the kernel lock because
2461 * it is set by the callees.
2464 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2466 unsigned long a[AUDITSC_ARGS];
2467 unsigned long a0, a1;
2468 int err;
2469 unsigned int len;
2471 if (call < 1 || call > SYS_SENDMMSG)
2472 return -EINVAL;
2474 len = nargs[call];
2475 if (len > sizeof(a))
2476 return -EINVAL;
2478 /* copy_from_user should be SMP safe. */
2479 if (copy_from_user(a, args, len))
2480 return -EFAULT;
2482 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2483 if (err)
2484 return err;
2486 a0 = a[0];
2487 a1 = a[1];
2489 switch (call) {
2490 case SYS_SOCKET:
2491 err = sys_socket(a0, a1, a[2]);
2492 break;
2493 case SYS_BIND:
2494 err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2495 break;
2496 case SYS_CONNECT:
2497 err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2498 break;
2499 case SYS_LISTEN:
2500 err = sys_listen(a0, a1);
2501 break;
2502 case SYS_ACCEPT:
2503 err = sys_accept4(a0, (struct sockaddr __user *)a1,
2504 (int __user *)a[2], 0);
2505 break;
2506 case SYS_GETSOCKNAME:
2507 err =
2508 sys_getsockname(a0, (struct sockaddr __user *)a1,
2509 (int __user *)a[2]);
2510 break;
2511 case SYS_GETPEERNAME:
2512 err =
2513 sys_getpeername(a0, (struct sockaddr __user *)a1,
2514 (int __user *)a[2]);
2515 break;
2516 case SYS_SOCKETPAIR:
2517 err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2518 break;
2519 case SYS_SEND:
2520 err = sys_send(a0, (void __user *)a1, a[2], a[3]);
2521 break;
2522 case SYS_SENDTO:
2523 err = sys_sendto(a0, (void __user *)a1, a[2], a[3],
2524 (struct sockaddr __user *)a[4], a[5]);
2525 break;
2526 case SYS_RECV:
2527 err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
2528 break;
2529 case SYS_RECVFROM:
2530 err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2531 (struct sockaddr __user *)a[4],
2532 (int __user *)a[5]);
2533 break;
2534 case SYS_SHUTDOWN:
2535 err = sys_shutdown(a0, a1);
2536 break;
2537 case SYS_SETSOCKOPT:
2538 err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
2539 break;
2540 case SYS_GETSOCKOPT:
2541 err =
2542 sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2543 (int __user *)a[4]);
2544 break;
2545 case SYS_SENDMSG:
2546 err = sys_sendmsg(a0, (struct msghdr __user *)a1, a[2]);
2547 break;
2548 case SYS_SENDMMSG:
2549 err = sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3]);
2550 break;
2551 case SYS_RECVMSG:
2552 err = sys_recvmsg(a0, (struct msghdr __user *)a1, a[2]);
2553 break;
2554 case SYS_RECVMMSG:
2555 err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3],
2556 (struct timespec __user *)a[4]);
2557 break;
2558 case SYS_ACCEPT4:
2559 err = sys_accept4(a0, (struct sockaddr __user *)a1,
2560 (int __user *)a[2], a[3]);
2561 break;
2562 default:
2563 err = -EINVAL;
2564 break;
2566 return err;
2569 #endif /* __ARCH_WANT_SYS_SOCKETCALL */
2572 * sock_register - add a socket protocol handler
2573 * @ops: description of protocol
2575 * This function is called by a protocol handler that wants to
2576 * advertise its address family, and have it linked into the
2577 * socket interface. The value ops->family coresponds to the
2578 * socket system call protocol family.
2580 int sock_register(const struct net_proto_family *ops)
2582 int err;
2584 if (ops->family >= NPROTO) {
2585 printk(KERN_CRIT "protocol %d >= NPROTO(%d)\n", ops->family,
2586 NPROTO);
2587 return -ENOBUFS;
2590 spin_lock(&net_family_lock);
2591 if (rcu_dereference_protected(net_families[ops->family],
2592 lockdep_is_held(&net_family_lock)))
2593 err = -EEXIST;
2594 else {
2595 rcu_assign_pointer(net_families[ops->family], ops);
2596 err = 0;
2598 spin_unlock(&net_family_lock);
2600 printk(KERN_INFO "NET: Registered protocol family %d\n", ops->family);
2601 return err;
2603 EXPORT_SYMBOL(sock_register);
2606 * sock_unregister - remove a protocol handler
2607 * @family: protocol family to remove
2609 * This function is called by a protocol handler that wants to
2610 * remove its address family, and have it unlinked from the
2611 * new socket creation.
2613 * If protocol handler is a module, then it can use module reference
2614 * counts to protect against new references. If protocol handler is not
2615 * a module then it needs to provide its own protection in
2616 * the ops->create routine.
2618 void sock_unregister(int family)
2620 BUG_ON(family < 0 || family >= NPROTO);
2622 spin_lock(&net_family_lock);
2623 RCU_INIT_POINTER(net_families[family], NULL);
2624 spin_unlock(&net_family_lock);
2626 synchronize_rcu();
2628 printk(KERN_INFO "NET: Unregistered protocol family %d\n", family);
2630 EXPORT_SYMBOL(sock_unregister);
2632 static int __init sock_init(void)
2634 int err;
2636 * Initialize the network sysctl infrastructure.
2638 err = net_sysctl_init();
2639 if (err)
2640 goto out;
2643 * Initialize skbuff SLAB cache
2645 skb_init();
2648 * Initialize the protocols module.
2651 init_inodecache();
2653 err = register_filesystem(&sock_fs_type);
2654 if (err)
2655 goto out_fs;
2656 sock_mnt = kern_mount(&sock_fs_type);
2657 if (IS_ERR(sock_mnt)) {
2658 err = PTR_ERR(sock_mnt);
2659 goto out_mount;
2662 /* The real protocol initialization is performed in later initcalls.
2665 #ifdef CONFIG_NETFILTER
2666 err = netfilter_init();
2667 if (err)
2668 goto out;
2669 #endif
2671 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
2672 skb_timestamping_init();
2673 #endif
2675 out:
2676 return err;
2678 out_mount:
2679 unregister_filesystem(&sock_fs_type);
2680 out_fs:
2681 goto out;
2684 core_initcall(sock_init); /* early initcall */
2686 #ifdef CONFIG_PROC_FS
2687 void socket_seq_show(struct seq_file *seq)
2689 int cpu;
2690 int counter = 0;
2692 for_each_possible_cpu(cpu)
2693 counter += per_cpu(sockets_in_use, cpu);
2695 /* It can be negative, by the way. 8) */
2696 if (counter < 0)
2697 counter = 0;
2699 seq_printf(seq, "sockets: used %d\n", counter);
2701 #endif /* CONFIG_PROC_FS */
2703 #ifdef CONFIG_COMPAT
2704 static int do_siocgstamp(struct net *net, struct socket *sock,
2705 unsigned int cmd, void __user *up)
2707 mm_segment_t old_fs = get_fs();
2708 struct timeval ktv;
2709 int err;
2711 set_fs(KERNEL_DS);
2712 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv);
2713 set_fs(old_fs);
2714 if (!err)
2715 err = compat_put_timeval(&ktv, up);
2717 return err;
2720 static int do_siocgstampns(struct net *net, struct socket *sock,
2721 unsigned int cmd, void __user *up)
2723 mm_segment_t old_fs = get_fs();
2724 struct timespec kts;
2725 int err;
2727 set_fs(KERNEL_DS);
2728 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts);
2729 set_fs(old_fs);
2730 if (!err)
2731 err = compat_put_timespec(&kts, up);
2733 return err;
2736 static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32)
2738 struct ifreq __user *uifr;
2739 int err;
2741 uifr = compat_alloc_user_space(sizeof(struct ifreq));
2742 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2743 return -EFAULT;
2745 err = dev_ioctl(net, SIOCGIFNAME, uifr);
2746 if (err)
2747 return err;
2749 if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq)))
2750 return -EFAULT;
2752 return 0;
2755 static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
2757 struct compat_ifconf ifc32;
2758 struct ifconf ifc;
2759 struct ifconf __user *uifc;
2760 struct compat_ifreq __user *ifr32;
2761 struct ifreq __user *ifr;
2762 unsigned int i, j;
2763 int err;
2765 if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
2766 return -EFAULT;
2768 memset(&ifc, 0, sizeof(ifc));
2769 if (ifc32.ifcbuf == 0) {
2770 ifc32.ifc_len = 0;
2771 ifc.ifc_len = 0;
2772 ifc.ifc_req = NULL;
2773 uifc = compat_alloc_user_space(sizeof(struct ifconf));
2774 } else {
2775 size_t len = ((ifc32.ifc_len / sizeof(struct compat_ifreq)) + 1) *
2776 sizeof(struct ifreq);
2777 uifc = compat_alloc_user_space(sizeof(struct ifconf) + len);
2778 ifc.ifc_len = len;
2779 ifr = ifc.ifc_req = (void __user *)(uifc + 1);
2780 ifr32 = compat_ptr(ifc32.ifcbuf);
2781 for (i = 0; i < ifc32.ifc_len; i += sizeof(struct compat_ifreq)) {
2782 if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq)))
2783 return -EFAULT;
2784 ifr++;
2785 ifr32++;
2788 if (copy_to_user(uifc, &ifc, sizeof(struct ifconf)))
2789 return -EFAULT;
2791 err = dev_ioctl(net, SIOCGIFCONF, uifc);
2792 if (err)
2793 return err;
2795 if (copy_from_user(&ifc, uifc, sizeof(struct ifconf)))
2796 return -EFAULT;
2798 ifr = ifc.ifc_req;
2799 ifr32 = compat_ptr(ifc32.ifcbuf);
2800 for (i = 0, j = 0;
2801 i + sizeof(struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len;
2802 i += sizeof(struct compat_ifreq), j += sizeof(struct ifreq)) {
2803 if (copy_in_user(ifr32, ifr, sizeof(struct compat_ifreq)))
2804 return -EFAULT;
2805 ifr32++;
2806 ifr++;
2809 if (ifc32.ifcbuf == 0) {
2810 /* Translate from 64-bit structure multiple to
2811 * a 32-bit one.
2813 i = ifc.ifc_len;
2814 i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq));
2815 ifc32.ifc_len = i;
2816 } else {
2817 ifc32.ifc_len = i;
2819 if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
2820 return -EFAULT;
2822 return 0;
2825 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
2827 struct compat_ethtool_rxnfc __user *compat_rxnfc;
2828 bool convert_in = false, convert_out = false;
2829 size_t buf_size = ALIGN(sizeof(struct ifreq), 8);
2830 struct ethtool_rxnfc __user *rxnfc;
2831 struct ifreq __user *ifr;
2832 u32 rule_cnt = 0, actual_rule_cnt;
2833 u32 ethcmd;
2834 u32 data;
2835 int ret;
2837 if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2838 return -EFAULT;
2840 compat_rxnfc = compat_ptr(data);
2842 if (get_user(ethcmd, &compat_rxnfc->cmd))
2843 return -EFAULT;
2845 /* Most ethtool structures are defined without padding.
2846 * Unfortunately struct ethtool_rxnfc is an exception.
2848 switch (ethcmd) {
2849 default:
2850 break;
2851 case ETHTOOL_GRXCLSRLALL:
2852 /* Buffer size is variable */
2853 if (get_user(rule_cnt, &compat_rxnfc->rule_cnt))
2854 return -EFAULT;
2855 if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32))
2856 return -ENOMEM;
2857 buf_size += rule_cnt * sizeof(u32);
2858 /* fall through */
2859 case ETHTOOL_GRXRINGS:
2860 case ETHTOOL_GRXCLSRLCNT:
2861 case ETHTOOL_GRXCLSRULE:
2862 case ETHTOOL_SRXCLSRLINS:
2863 convert_out = true;
2864 /* fall through */
2865 case ETHTOOL_SRXCLSRLDEL:
2866 buf_size += sizeof(struct ethtool_rxnfc);
2867 convert_in = true;
2868 break;
2871 ifr = compat_alloc_user_space(buf_size);
2872 rxnfc = (void __user *)ifr + ALIGN(sizeof(struct ifreq), 8);
2874 if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2875 return -EFAULT;
2877 if (put_user(convert_in ? rxnfc : compat_ptr(data),
2878 &ifr->ifr_ifru.ifru_data))
2879 return -EFAULT;
2881 if (convert_in) {
2882 /* We expect there to be holes between fs.m_ext and
2883 * fs.ring_cookie and at the end of fs, but nowhere else.
2885 BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) +
2886 sizeof(compat_rxnfc->fs.m_ext) !=
2887 offsetof(struct ethtool_rxnfc, fs.m_ext) +
2888 sizeof(rxnfc->fs.m_ext));
2889 BUILD_BUG_ON(
2890 offsetof(struct compat_ethtool_rxnfc, fs.location) -
2891 offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) !=
2892 offsetof(struct ethtool_rxnfc, fs.location) -
2893 offsetof(struct ethtool_rxnfc, fs.ring_cookie));
2895 if (copy_in_user(rxnfc, compat_rxnfc,
2896 (void __user *)(&rxnfc->fs.m_ext + 1) -
2897 (void __user *)rxnfc) ||
2898 copy_in_user(&rxnfc->fs.ring_cookie,
2899 &compat_rxnfc->fs.ring_cookie,
2900 (void __user *)(&rxnfc->fs.location + 1) -
2901 (void __user *)&rxnfc->fs.ring_cookie) ||
2902 copy_in_user(&rxnfc->rule_cnt, &compat_rxnfc->rule_cnt,
2903 sizeof(rxnfc->rule_cnt)))
2904 return -EFAULT;
2907 ret = dev_ioctl(net, SIOCETHTOOL, ifr);
2908 if (ret)
2909 return ret;
2911 if (convert_out) {
2912 if (copy_in_user(compat_rxnfc, rxnfc,
2913 (const void __user *)(&rxnfc->fs.m_ext + 1) -
2914 (const void __user *)rxnfc) ||
2915 copy_in_user(&compat_rxnfc->fs.ring_cookie,
2916 &rxnfc->fs.ring_cookie,
2917 (const void __user *)(&rxnfc->fs.location + 1) -
2918 (const void __user *)&rxnfc->fs.ring_cookie) ||
2919 copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt,
2920 sizeof(rxnfc->rule_cnt)))
2921 return -EFAULT;
2923 if (ethcmd == ETHTOOL_GRXCLSRLALL) {
2924 /* As an optimisation, we only copy the actual
2925 * number of rules that the underlying
2926 * function returned. Since Mallory might
2927 * change the rule count in user memory, we
2928 * check that it is less than the rule count
2929 * originally given (as the user buffer size),
2930 * which has been range-checked.
2932 if (get_user(actual_rule_cnt, &rxnfc->rule_cnt))
2933 return -EFAULT;
2934 if (actual_rule_cnt < rule_cnt)
2935 rule_cnt = actual_rule_cnt;
2936 if (copy_in_user(&compat_rxnfc->rule_locs[0],
2937 &rxnfc->rule_locs[0],
2938 rule_cnt * sizeof(u32)))
2939 return -EFAULT;
2943 return 0;
2946 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
2948 void __user *uptr;
2949 compat_uptr_t uptr32;
2950 struct ifreq __user *uifr;
2952 uifr = compat_alloc_user_space(sizeof(*uifr));
2953 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2954 return -EFAULT;
2956 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
2957 return -EFAULT;
2959 uptr = compat_ptr(uptr32);
2961 if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc))
2962 return -EFAULT;
2964 return dev_ioctl(net, SIOCWANDEV, uifr);
2967 static int bond_ioctl(struct net *net, unsigned int cmd,
2968 struct compat_ifreq __user *ifr32)
2970 struct ifreq kifr;
2971 struct ifreq __user *uifr;
2972 mm_segment_t old_fs;
2973 int err;
2974 u32 data;
2975 void __user *datap;
2977 switch (cmd) {
2978 case SIOCBONDENSLAVE:
2979 case SIOCBONDRELEASE:
2980 case SIOCBONDSETHWADDR:
2981 case SIOCBONDCHANGEACTIVE:
2982 if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq)))
2983 return -EFAULT;
2985 old_fs = get_fs();
2986 set_fs(KERNEL_DS);
2987 err = dev_ioctl(net, cmd,
2988 (struct ifreq __user __force *) &kifr);
2989 set_fs(old_fs);
2991 return err;
2992 case SIOCBONDSLAVEINFOQUERY:
2993 case SIOCBONDINFOQUERY:
2994 uifr = compat_alloc_user_space(sizeof(*uifr));
2995 if (copy_in_user(&uifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2996 return -EFAULT;
2998 if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2999 return -EFAULT;
3001 datap = compat_ptr(data);
3002 if (put_user(datap, &uifr->ifr_ifru.ifru_data))
3003 return -EFAULT;
3005 return dev_ioctl(net, cmd, uifr);
3006 default:
3007 return -ENOIOCTLCMD;
3011 static int siocdevprivate_ioctl(struct net *net, unsigned int cmd,
3012 struct compat_ifreq __user *u_ifreq32)
3014 struct ifreq __user *u_ifreq64;
3015 char tmp_buf[IFNAMSIZ];
3016 void __user *data64;
3017 u32 data32;
3019 if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]),
3020 IFNAMSIZ))
3021 return -EFAULT;
3022 if (get_user(data32, &u_ifreq32->ifr_ifru.ifru_data))
3023 return -EFAULT;
3024 data64 = compat_ptr(data32);
3026 u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64));
3028 if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0],
3029 IFNAMSIZ))
3030 return -EFAULT;
3031 if (put_user(data64, &u_ifreq64->ifr_ifru.ifru_data))
3032 return -EFAULT;
3034 return dev_ioctl(net, cmd, u_ifreq64);
3037 static int dev_ifsioc(struct net *net, struct socket *sock,
3038 unsigned int cmd, struct compat_ifreq __user *uifr32)
3040 struct ifreq __user *uifr;
3041 int err;
3043 uifr = compat_alloc_user_space(sizeof(*uifr));
3044 if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
3045 return -EFAULT;
3047 err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
3049 if (!err) {
3050 switch (cmd) {
3051 case SIOCGIFFLAGS:
3052 case SIOCGIFMETRIC:
3053 case SIOCGIFMTU:
3054 case SIOCGIFMEM:
3055 case SIOCGIFHWADDR:
3056 case SIOCGIFINDEX:
3057 case SIOCGIFADDR:
3058 case SIOCGIFBRDADDR:
3059 case SIOCGIFDSTADDR:
3060 case SIOCGIFNETMASK:
3061 case SIOCGIFPFLAGS:
3062 case SIOCGIFTXQLEN:
3063 case SIOCGMIIPHY:
3064 case SIOCGMIIREG:
3065 if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
3066 err = -EFAULT;
3067 break;
3070 return err;
3073 static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
3074 struct compat_ifreq __user *uifr32)
3076 struct ifreq ifr;
3077 struct compat_ifmap __user *uifmap32;
3078 mm_segment_t old_fs;
3079 int err;
3081 uifmap32 = &uifr32->ifr_ifru.ifru_map;
3082 err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
3083 err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3084 err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3085 err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3086 err |= get_user(ifr.ifr_map.irq, &uifmap32->irq);
3087 err |= get_user(ifr.ifr_map.dma, &uifmap32->dma);
3088 err |= get_user(ifr.ifr_map.port, &uifmap32->port);
3089 if (err)
3090 return -EFAULT;
3092 old_fs = get_fs();
3093 set_fs(KERNEL_DS);
3094 err = dev_ioctl(net, cmd, (void __user __force *)&ifr);
3095 set_fs(old_fs);
3097 if (cmd == SIOCGIFMAP && !err) {
3098 err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
3099 err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3100 err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3101 err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3102 err |= put_user(ifr.ifr_map.irq, &uifmap32->irq);
3103 err |= put_user(ifr.ifr_map.dma, &uifmap32->dma);
3104 err |= put_user(ifr.ifr_map.port, &uifmap32->port);
3105 if (err)
3106 err = -EFAULT;
3108 return err;
3111 static int compat_siocshwtstamp(struct net *net, struct compat_ifreq __user *uifr32)
3113 void __user *uptr;
3114 compat_uptr_t uptr32;
3115 struct ifreq __user *uifr;
3117 uifr = compat_alloc_user_space(sizeof(*uifr));
3118 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
3119 return -EFAULT;
3121 if (get_user(uptr32, &uifr32->ifr_data))
3122 return -EFAULT;
3124 uptr = compat_ptr(uptr32);
3126 if (put_user(uptr, &uifr->ifr_data))
3127 return -EFAULT;
3129 return dev_ioctl(net, SIOCSHWTSTAMP, uifr);
3132 struct rtentry32 {
3133 u32 rt_pad1;
3134 struct sockaddr rt_dst; /* target address */
3135 struct sockaddr rt_gateway; /* gateway addr (RTF_GATEWAY) */
3136 struct sockaddr rt_genmask; /* target network mask (IP) */
3137 unsigned short rt_flags;
3138 short rt_pad2;
3139 u32 rt_pad3;
3140 unsigned char rt_tos;
3141 unsigned char rt_class;
3142 short rt_pad4;
3143 short rt_metric; /* +1 for binary compatibility! */
3144 /* char * */ u32 rt_dev; /* forcing the device at add */
3145 u32 rt_mtu; /* per route MTU/Window */
3146 u32 rt_window; /* Window clamping */
3147 unsigned short rt_irtt; /* Initial RTT */
3150 struct in6_rtmsg32 {
3151 struct in6_addr rtmsg_dst;
3152 struct in6_addr rtmsg_src;
3153 struct in6_addr rtmsg_gateway;
3154 u32 rtmsg_type;
3155 u16 rtmsg_dst_len;
3156 u16 rtmsg_src_len;
3157 u32 rtmsg_metric;
3158 u32 rtmsg_info;
3159 u32 rtmsg_flags;
3160 s32 rtmsg_ifindex;
3163 static int routing_ioctl(struct net *net, struct socket *sock,
3164 unsigned int cmd, void __user *argp)
3166 int ret;
3167 void *r = NULL;
3168 struct in6_rtmsg r6;
3169 struct rtentry r4;
3170 char devname[16];
3171 u32 rtdev;
3172 mm_segment_t old_fs = get_fs();
3174 if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
3175 struct in6_rtmsg32 __user *ur6 = argp;
3176 ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst),
3177 3 * sizeof(struct in6_addr));
3178 ret |= get_user(r6.rtmsg_type, &(ur6->rtmsg_type));
3179 ret |= get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
3180 ret |= get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
3181 ret |= get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric));
3182 ret |= get_user(r6.rtmsg_info, &(ur6->rtmsg_info));
3183 ret |= get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags));
3184 ret |= get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
3186 r = (void *) &r6;
3187 } else { /* ipv4 */
3188 struct rtentry32 __user *ur4 = argp;
3189 ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst),
3190 3 * sizeof(struct sockaddr));
3191 ret |= get_user(r4.rt_flags, &(ur4->rt_flags));
3192 ret |= get_user(r4.rt_metric, &(ur4->rt_metric));
3193 ret |= get_user(r4.rt_mtu, &(ur4->rt_mtu));
3194 ret |= get_user(r4.rt_window, &(ur4->rt_window));
3195 ret |= get_user(r4.rt_irtt, &(ur4->rt_irtt));
3196 ret |= get_user(rtdev, &(ur4->rt_dev));
3197 if (rtdev) {
3198 ret |= copy_from_user(devname, compat_ptr(rtdev), 15);
3199 r4.rt_dev = (char __user __force *)devname;
3200 devname[15] = 0;
3201 } else
3202 r4.rt_dev = NULL;
3204 r = (void *) &r4;
3207 if (ret) {
3208 ret = -EFAULT;
3209 goto out;
3212 set_fs(KERNEL_DS);
3213 ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
3214 set_fs(old_fs);
3216 out:
3217 return ret;
3220 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3221 * for some operations; this forces use of the newer bridge-utils that
3222 * use compatible ioctls
3224 static int old_bridge_ioctl(compat_ulong_t __user *argp)
3226 compat_ulong_t tmp;
3228 if (get_user(tmp, argp))
3229 return -EFAULT;
3230 if (tmp == BRCTL_GET_VERSION)
3231 return BRCTL_VERSION + 1;
3232 return -EINVAL;
3235 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3236 unsigned int cmd, unsigned long arg)
3238 void __user *argp = compat_ptr(arg);
3239 struct sock *sk = sock->sk;
3240 struct net *net = sock_net(sk);
3242 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3243 return siocdevprivate_ioctl(net, cmd, argp);
3245 switch (cmd) {
3246 case SIOCSIFBR:
3247 case SIOCGIFBR:
3248 return old_bridge_ioctl(argp);
3249 case SIOCGIFNAME:
3250 return dev_ifname32(net, argp);
3251 case SIOCGIFCONF:
3252 return dev_ifconf(net, argp);
3253 case SIOCETHTOOL:
3254 return ethtool_ioctl(net, argp);
3255 case SIOCWANDEV:
3256 return compat_siocwandev(net, argp);
3257 case SIOCGIFMAP:
3258 case SIOCSIFMAP:
3259 return compat_sioc_ifmap(net, cmd, argp);
3260 case SIOCBONDENSLAVE:
3261 case SIOCBONDRELEASE:
3262 case SIOCBONDSETHWADDR:
3263 case SIOCBONDSLAVEINFOQUERY:
3264 case SIOCBONDINFOQUERY:
3265 case SIOCBONDCHANGEACTIVE:
3266 return bond_ioctl(net, cmd, argp);
3267 case SIOCADDRT:
3268 case SIOCDELRT:
3269 return routing_ioctl(net, sock, cmd, argp);
3270 case SIOCGSTAMP:
3271 return do_siocgstamp(net, sock, cmd, argp);
3272 case SIOCGSTAMPNS:
3273 return do_siocgstampns(net, sock, cmd, argp);
3274 case SIOCSHWTSTAMP:
3275 return compat_siocshwtstamp(net, argp);
3277 case FIOSETOWN:
3278 case SIOCSPGRP:
3279 case FIOGETOWN:
3280 case SIOCGPGRP:
3281 case SIOCBRADDBR:
3282 case SIOCBRDELBR:
3283 case SIOCGIFVLAN:
3284 case SIOCSIFVLAN:
3285 case SIOCADDDLCI:
3286 case SIOCDELDLCI:
3287 return sock_ioctl(file, cmd, arg);
3289 case SIOCGIFFLAGS:
3290 case SIOCSIFFLAGS:
3291 case SIOCGIFMETRIC:
3292 case SIOCSIFMETRIC:
3293 case SIOCGIFMTU:
3294 case SIOCSIFMTU:
3295 case SIOCGIFMEM:
3296 case SIOCSIFMEM:
3297 case SIOCGIFHWADDR:
3298 case SIOCSIFHWADDR:
3299 case SIOCADDMULTI:
3300 case SIOCDELMULTI:
3301 case SIOCGIFINDEX:
3302 case SIOCGIFADDR:
3303 case SIOCSIFADDR:
3304 case SIOCSIFHWBROADCAST:
3305 case SIOCDIFADDR:
3306 case SIOCGIFBRDADDR:
3307 case SIOCSIFBRDADDR:
3308 case SIOCGIFDSTADDR:
3309 case SIOCSIFDSTADDR:
3310 case SIOCGIFNETMASK:
3311 case SIOCSIFNETMASK:
3312 case SIOCSIFPFLAGS:
3313 case SIOCGIFPFLAGS:
3314 case SIOCGIFTXQLEN:
3315 case SIOCSIFTXQLEN:
3316 case SIOCBRADDIF:
3317 case SIOCBRDELIF:
3318 case SIOCSIFNAME:
3319 case SIOCGMIIPHY:
3320 case SIOCGMIIREG:
3321 case SIOCSMIIREG:
3322 return dev_ifsioc(net, sock, cmd, argp);
3324 case SIOCSARP:
3325 case SIOCGARP:
3326 case SIOCDARP:
3327 case SIOCATMARK:
3328 return sock_do_ioctl(net, sock, cmd, arg);
3331 return -ENOIOCTLCMD;
3334 static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3335 unsigned long arg)
3337 struct socket *sock = file->private_data;
3338 int ret = -ENOIOCTLCMD;
3339 struct sock *sk;
3340 struct net *net;
3342 sk = sock->sk;
3343 net = sock_net(sk);
3345 if (sock->ops->compat_ioctl)
3346 ret = sock->ops->compat_ioctl(sock, cmd, arg);
3348 if (ret == -ENOIOCTLCMD &&
3349 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3350 ret = compat_wext_handle_ioctl(net, cmd, arg);
3352 if (ret == -ENOIOCTLCMD)
3353 ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3355 return ret;
3357 #endif
3359 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3361 return sock->ops->bind(sock, addr, addrlen);
3363 EXPORT_SYMBOL(kernel_bind);
3365 int kernel_listen(struct socket *sock, int backlog)
3367 return sock->ops->listen(sock, backlog);
3369 EXPORT_SYMBOL(kernel_listen);
3371 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3373 struct sock *sk = sock->sk;
3374 int err;
3376 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3377 newsock);
3378 if (err < 0)
3379 goto done;
3381 err = sock->ops->accept(sock, *newsock, flags);
3382 if (err < 0) {
3383 sock_release(*newsock);
3384 *newsock = NULL;
3385 goto done;
3388 (*newsock)->ops = sock->ops;
3389 __module_get((*newsock)->ops->owner);
3391 done:
3392 return err;
3394 EXPORT_SYMBOL(kernel_accept);
3396 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3397 int flags)
3399 return sock->ops->connect(sock, addr, addrlen, flags);
3401 EXPORT_SYMBOL(kernel_connect);
3403 int kernel_getsockname(struct socket *sock, struct sockaddr *addr,
3404 int *addrlen)
3406 return sock->ops->getname(sock, addr, addrlen, 0);
3408 EXPORT_SYMBOL(kernel_getsockname);
3410 int kernel_getpeername(struct socket *sock, struct sockaddr *addr,
3411 int *addrlen)
3413 return sock->ops->getname(sock, addr, addrlen, 1);
3415 EXPORT_SYMBOL(kernel_getpeername);
3417 int kernel_getsockopt(struct socket *sock, int level, int optname,
3418 char *optval, int *optlen)
3420 mm_segment_t oldfs = get_fs();
3421 char __user *uoptval;
3422 int __user *uoptlen;
3423 int err;
3425 uoptval = (char __user __force *) optval;
3426 uoptlen = (int __user __force *) optlen;
3428 set_fs(KERNEL_DS);
3429 if (level == SOL_SOCKET)
3430 err = sock_getsockopt(sock, level, optname, uoptval, uoptlen);
3431 else
3432 err = sock->ops->getsockopt(sock, level, optname, uoptval,
3433 uoptlen);
3434 set_fs(oldfs);
3435 return err;
3437 EXPORT_SYMBOL(kernel_getsockopt);
3439 int kernel_setsockopt(struct socket *sock, int level, int optname,
3440 char *optval, unsigned int optlen)
3442 mm_segment_t oldfs = get_fs();
3443 char __user *uoptval;
3444 int err;
3446 uoptval = (char __user __force *) optval;
3448 set_fs(KERNEL_DS);
3449 if (level == SOL_SOCKET)
3450 err = sock_setsockopt(sock, level, optname, uoptval, optlen);
3451 else
3452 err = sock->ops->setsockopt(sock, level, optname, uoptval,
3453 optlen);
3454 set_fs(oldfs);
3455 return err;
3457 EXPORT_SYMBOL(kernel_setsockopt);
3459 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3460 size_t size, int flags)
3462 if (sock->ops->sendpage)
3463 return sock->ops->sendpage(sock, page, offset, size, flags);
3465 return sock_no_sendpage(sock, page, offset, size, flags);
3467 EXPORT_SYMBOL(kernel_sendpage);
3469 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg)
3471 mm_segment_t oldfs = get_fs();
3472 int err;
3474 set_fs(KERNEL_DS);
3475 err = sock->ops->ioctl(sock, cmd, arg);
3476 set_fs(oldfs);
3478 return err;
3480 EXPORT_SYMBOL(kernel_sock_ioctl);
3482 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3484 return sock->ops->shutdown(sock, how);
3486 EXPORT_SYMBOL(kernel_sock_shutdown);